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This thesis work deals with the development of a machine learning algorithm
able to diagnose the applications state, carried out during my work experience in
Sogei s.p.a.

Sogei s.p.a.
Sogei s.p.a. is an italian company operating in the ICT field. It is 100% controlled
by the Ministry of Economy and Finance of which it is an in-house company. It
carries out IT consultancy services for the public administration, in particular
for the Ministry of Economy and Finance and for tax agencies on the basis of
multi-year service contracts. Its activities are:

• Development and management of the tax information system, or the tax
registry on behalf of the Ministry of Economy and Finance

• Development and management of the public accounting information system
for the State General Accounting Office, of the information and accounting
system of public debt

• Development and management of the public gaming information system on
behalf of the Customs and Monopolies Agency

• Public expenditure monitoring, in particular health expenditure

• Software development and management for tax agencies (Revenue, Customs
and Monopolies, State Property, eg. DOCFA)

• Supplier selection, production monitoring and shipment of the health card on
behalf of the Revenue Agency

• Creation of the national registry of the resident population (ANPR) in collab-
oration with the Ministry of the Interior

• Creation of public invoice and payment services

• Creation and management of the DGC national platform for the issue and
control of the COVID-19 Green Certification commonly known as the vaccine
Green Pass

Our mission, as a strategic partner of the Economic and Financial Administration,
is to contribute to the modernization of the country, actively participating in the
digital transformation process of the Public Administration.
I belong to the organizational unit called Application Performance Manage-
ment (APM). There are several applications running on virtual machines in Sogei,
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and the task of the APM is to monitor and look over the state of the whole system
and to cooperate with other units for debugging, benchmarks and many other
activities. This thesis work was born with the goal to simplify the application state
recognition using machine learning techniques, reducing the number of repetitive
actions that are necessary to monitor effectively the system.
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Chapter 1

Introduction

1.1 Bayes Theorem
To introduce properly the arguments present in this paper, it is necessary to intro-
duce the Bayes Theorem.
The Bayes Theorem provides a principled way for calculating a conditional prob-
ability. Although it is a powerful tool in the field of probability, Bayes Theorem
is also widely used in the field of machine learning, i.e. in developing models for
classification predictive modeling problems such as the Bayes Optimal Classifier
and Naive Bayes.
It is possible to distinguish between marginal, joint and conditional probability:

• Marginal Probability: Probability of an event irrespective of the outcomes
of other random variables, e.g. P (A)

• Joint Probability: Probability of two (or more) simultaneous events, P (A, B)

• Conditional Probability: Probability of one (or more) event given the
occurrence of another event, P (A|B).

The Bayes Formula is usually expressed as:

P (A|B) =P (B|A)P (A)
P (B)

It is also possible to represent the formula in an alternative way [1], that is:

P (B) = P (B|A) · P (A) + P (B|notA) · P (notA)

1



Introduction

1.2 Machine Learning
Machine Learning (ML) is a subset of artificial intelligence (AI) that is concerned
with creating systems that learn or improve performance based on the data they
use. With artificial intelligence, which is however a generic term, are intended
systems or machines that imitate human intelligence. Defining in a simple way
the characteristics and applications of machine learning is not always possible,
given that this branch is very vast and provides different methods, techniques
and tools to be implemented. In addition, the different algorithm learning and
development techniques give rise to as many possibilities of use that broaden
the field of application of machine learning, making a specific definition difficult.
However, it can be said that machine learning is about different mechanisms that
allow an artificial machine to learn and expand its capabilities and performance over
time. The machine, consequently, will be able to learn to fulfill certain assignments
by rising, through training or experience, its abilities, responses and capabilities.
At the basis of machine learning there are a series of different algorithms which,
starting from primitive notions, will be able to make a specific decision rather than
another or carry out actions learned over time.
The two main types of machine learning algorithms currently used are: supervised
learning and unsupervised learning. They are categorized according how each
algorithm learns the data to make predictions.
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Chapter 2

Types of learning

2.1 Supervised Learning
Supervised learning is a type of machine learning in which a machine learns from
known datasets (set of training examples), and then predicts the output. The
dataset is composed of several features and a label for each instance. A supervised
learning agent needs to find out the function that matches a given sample set.
[2] Supervised learning further can be classified into two categories of algorithms:
classification and regression.

2.1.1 Classification and Regression
The classification is a very common type of machine learning, and it deals with
categorizing several instances in one of the predefined categories/classes. It is
important to underline that target functions are discrete. This means that the
class attribute, whose values should be determined, is a categorical attribute, that
is to say that predicts categorical class labels based on the training set and the
values (class labels). Every object is classified into one of the classes with certain
accuracy. The task is that on the characteristics of objects whose classification is
known in advance, make a model by which will be performed classification of new
objects. In the problem of classification, the number of classes is known in advance
and limited. There are several classification algorithms, each with their own pros
and cons. In general this is the kind of learning that works best with supervised
learning.
The linear regression problem is instead a mathematical approach used to perform
predictive analysis with continuous/real or mathematical variables projections. It
is a mathematical test used for evaluating and quantifying the relationship between
the considered variables. Regression analyses are usually used for forecasting and
prediction, in which their application has major overlaps with the area of machine
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learning. Second, regression analysis can be used in some cases to determine
causal relations between the independent and dependent variables. Importantly,
regressions alone show only relations between a dependent variable and a fixed
dataset collection of different variables. [3]

2.1.2 Naive Bayes
In machine learning, Naive Bayes (NB) classifiers are a family of simple proba-
bilistic classifiers based on applying Bayes’ theorem under strong (naive) condi-
tional independence assumptions among the features. Using the naive conditional
independence assumption that P (xi|y, x1, . . . , xi−1, xi+1, . . . , xn) = P (xi|y) since
P (x1, . . . , xn) is constant given the input, we can use the following classification
rule:

P (y | x1, . . . , xn) ∝ P (y)
nÙ

i=1
P (xi | y)

⇓

ŷ = arg max
y

P (y)
nÙ

i=1
P (xi | y),

(2.1)

and we can use Maximum A Posteriori (MAP) estimation to estimate P (y) and
P (xi | y); the former is then the relative frequency of class y in the training set. The
assumptions regarding the distribution of P (xi | y) mainly influence the differences
between the naive Bayes classifiers.

In spite of their apparently over-simplified assumptions, naive Bayes classifiers
have worked quite well in many real-world situations, famously document classifica-
tion and spam filtering. They require a small amount of training data to estimate
the necessary parameters.

2.1.3 Linear Regression
In machine learning, linear regression is a technique of classifying the examples
of a dataset (training set) to allow the machine to automatically learn a decision
model. The algorithm assigns labels (categories) to instances using a continuous
function. Each row of the dataset is an example consisting of:

• The features (X), or attributes, which are the predictive variables that
describe a category.

• The result (Y), which is the target variable that tells the machine the correct
result if the instance belonged to the Z label. It is the data that instructs the
machine to decide in the right way
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The machine learning algorithm must find a relationship between the variables X
and Y through regression y = (x). The final result is a straight line that minimizes
the distance between the N examples in the training which belong to the same
category. Once found, the classification function can be used to evaluate instances
other than the training set. If the (x, y) coordinates of an instance approach the
regression function f (x), the instance is classified with the label Z.

Figure 2.1: Linear Regression

2.1.4 Logistic Regression

Binary classification problems, thus with categorical targets, can be tackled using
Logistic regression, another powerful supervised ML algorithm. It can be easily
imagined as a linear regression but for classification problems. In this problem, a
logistic function is used to model a binary output variable. The main difference
between linear regression and logistic regression is that the latter’s range starts
from 0 and it is limited to 1. Furthermore, as opposed to linear regression, its
input and output variables does not have to be necessarily linearly linked. This is
thanks to the application of a nonlinear log transformation to the odds ratio.
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Logistic function = 1
1+exp(−x)

Figure 2.2: Logistic function graph

2.1.5 Neural Networks (Deep Learning)
Deep learning (also known as deep structured learning, hierarchical learning or deep
machine learning) is a branch of machine learning based on a set of algorithms that
attempt to model high level abstractions in data. In a simple case, there could be
two sets of neurons: ones that receive an input signal and ones that send an output
signal. When the input layer acquires an input it sends a modified version of the
input to the next layer. In a deep network, many layers can be present between
the input and output, especially when it’s about a deep network; this allows the
algorithm to use multiple processing layers, usually made by many neurons and
accomplish multiple linear and non-linear transformations. Deep learning refers
to a rather wide class of machine learning techniques and architectures, with the
hallmark of using many layers of non-linear information processing stages that
are hierarchical in nature. According to how the architectures and methods are
intended for use, i.e., classification/recognition or synthesis/generation, it is possible
to categorize most of the elements in this area into three classes:

• Generative Adversarial Nets, or GAN, neural networks composed of
up to two networks competing with each other. The two networks namely
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generator — to generate data set and discriminator — to validate the data
set. The objective is generating data points that are comparable to some of
the data points in the training set. GANs are generative models that, through
supervised learning, approximate an unmanageable cost function, which is
a function that aims to minimize the error. Furthermore, it can be used to
generate different cost functions, i.e. the maximum likelihood function.

• Discriminative deep architectures: the aim is to directly provide discrim-
inative power for pattern classification, often by characterizing the posterior
distributions of classes conditioned on the visible data

• Hybrid deep architectures: the aim is to combine the power of discrimi-
nation with the outputs of generative architectures via better optimization
or/and regularization.

Despite the complex categorization of the deep learning architectures, the one’s
that are in practice are deep feed-forward networks, Convolutional networks
and Recurrent Networks.

Feed-forward Neural Networks

A Feed-Forward Neural Network is a single layer perceptron. In machine learn-
ing,The perceptron is a simple linear binary classifier and therefore capable of
effectively learning the rule necessary to recognize two different and linearly sep-
arable input classes. In other words, a binary classifier is a function which can
decide whether or not an input, represented by a vector of numbers, belongs to
some specific class. Data in succession can enter the layer and it is multiplied by
the weights of the model. Then the sum of the weighted input values is computed
to form a total. If the sum of the values is more than a predetermined threshold,
which is normally set at zero, the output value is usually 1, and if the sum is less
than the threshold, the output value is usually -1.

Figure 2.3: Neuron
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The neural network can compare the outputs of its nodes with the desired values
using a property known as the delta rule, allowing the network to alter its weights
through training to create more accurate output values. This procedure made
of training and learning is called gradient descent. The activity of updating
weights in multi-layered perceptrons is theoretically equal, however, the process is
defined back-propagation. In such conditions, the values returned as output by the
final layer are used to modify each hidden layer inside the network. The goal of
a feed-forward network is to approximate some function f∗. For example, for a
classifier, y = f ∗ (x) maps an input x to a category y. A feed-forward network
defines a mapping y = f(x; θ) and learns the value of the parameters θ that result
in the best function approximation.

Figure 2.4: Architecture of artificial neural network

Convolutional Neural Networks

A convolutional neural network (CNN or ConvNet) is a network architecture for
deep learning that learns directly from data, eliminating the need to manually
extract features. In other words, the pre-processing required in a ConvNet
is much lower as compared to other classification algorithms. Their name
is based on the mathematical operation called convolution. A convolution is an
operation between two functions of a variable which consists in integrating the
product between the first and the second translated by a certain value. It therefore
“blends” one function with another and indicates the overlap of the two functions
when one is shifted on the other. CNNs are particularly useful for identifying

8



Types of learning

patterns in images for recognizing objects, faces and scenes. Furthermore, they
can be effective for classifying non-image data such as audio data, time series and
signals. Applications that require object recognition and computer vision, such as
self-driving vehicles and facial recognition applications, rely heavily on CNNs. A
key ingredient of ConvNets is the convolution layer. It takes input data from the
previous layer and “averages” it locally via a filter, or weight pattern; the output is
a locally averaged version of the input layer.

Recurrent Neural Networks

Recurrent Neural Networks (RNN) are neural sequence models that achieve state
of the art performance on task like speech recognition, language modeling and
machine translation. They are incorporated into popular applications such as Siri,
voice search, and Google Translate. Like feed-forward and convolutional neural
networks (CNNs), recurrent neural networks utilize training data to learn.

Figure 2.5: Comparison of Recurrent Neural Networks (on the left) and Feedfor-
ward Neural Networks (on the right)

Another distinguishing characteristic of recurrent networks is that they share
parameters across each layer of the network. While feed-forward networks have
different weights across each node, recurrent neural networks share the same weight
parameter within each layer of the network. That said, these weights are still
adjusted in the through the processes of back-propagation and gradient descent to
facilitate reinforcement learning. Unlike feed forward neural networks, which map
one input to one output, RNNs do not have this constraint. In fact, their inputs
and outputs can vary in length, and different types of RNNs are used for different
use cases; common structures are one to one, one to many, many to one and many
to many. The activation functions are nearly the same as the other neural networks,
the most commonly used are the sigmoid, hyperbolic tangent and ReLU. [4]
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2.2 Unsupervised Learning
Unsupervised Learning uses machine learning algorithms to analyze and cluster
unlabeled datasets. These algorithms discover hidden patterns or data groupings
without the need for human intervention. It is considered an optimal solution for
exploratory data analysis, image recognition, cross selling strategies and costumer
segmentation due to its ability to detect similarity and differences in information.
In unsupervised learning, the algorithms are trained with data which is neither
labeled nor classified. In unsupervised learning, the machine needs to learn from
patterns without corresponding output values. The key points of unsupervised
learning are that:

• Unsupervised learning is helpful for finding useful insights from the data.

• Unsupervised learning is much similar to how a human learns to think by
their own experiences, which makes it closer to the real AI.

• Unsupervised learning works on unlabeled and uncategorized data which
makes unsupervised learning more important.

In real world, input data does not always have in advance the corresponding
output so, to solve such cases, unsupervised learning is needed. It is also com-
monly used in a wide spectrum of scenarios, such as: News Sections, Computer
vision, Medical imaging, Anomaly detection, Customer personas, Recommendation
Engines. There are two main types of unsupervised learning: Clustering and
Association. [5]

2.2.1 Clustering
Clustering consists of a set of methods for grouping objects into homogeneous classes.
A cluster is a set of objects that have similarities to each other, but which, on the
other hand, are dissimilar with objects in other clusters. The input of a clustering
algorithm consists of a sample of elements, while the output is given by a certain
number of clusters in which the elements of the sample are divided according to a
measure of similarity. It is a common technique for statistical data analysis, used
in many fields besides machine learning, like pattern recognition, image analysis,
information retrieval, bioinformatics, data compression and computer graphics.
Usually, clustering means the partitioning of a given set of points of a certain
metric space into subsets in such a way that close points fall into one group, and
distant ones fall into different groups. Usually, clustering means the partitioning of
a given set of points of a certain metric space into subsets in such a way that close
points fall into one group, and distant ones fall into different groups.

10
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Figure 2.6: Clustering

Clustering Algorithm: K-means

K-means clustering is the most commonly used clustering algorithm. It’s a centroid-
based algorithm and the simplest unsupervised learning algorithm. The target
of the algorithm is to minimize the data points variance within a cluster. The
k-means problem can be formalized as a non-convex, mixed Continuous/Boolean
problem. In this case study, it proved to be a good algorithm for the purpose, but
other different algorithms for clustering do exist however. Let C = [c1, ..., ck] be a
n × k matrix that contains the centers.
Let U be a N

r
k Boolean matrix that specifies which data point is assigned to

which center, i.e.

uij =

1 if x(i) is in cluster j

0 otherwise
(2.2)

U can be intended as a Boolean matrix with constraints U1k = 1N meaning that
each point is assigned to one and only one cluster.
The problem is formalized as:

min
C,U

NØ
i=1

......x(i) −
kØ

j=1
uijcj

......
2

2

:
kØ

j=1
uij = 1, 1 ≤ i ≤ N, U ∈ {0,1}N,k (2.3)

The k-means clustering algorithm uses iterative refinements to produce a final
result. The algorithm inputs are the number of clusters k and the data set, then
it starts with initial estimates for the k centroids, which can either be randomly
generated or randomly selected from the data set. The algorithm then iterates
between two steps:

11
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• A data assignment step, in which each data point is assigned to its nearest
centroid, based on the squared Euclidean distance;

• A centroid update step, in which optimal centroids are recomputed on the
basis of the cluster imputations of the previous step.

Data assignment step: for each x(i), compute the distances from the current
centroids cj, j = 1, ..., k, and assign point i to the closest centroid. The set of points
assigned to centroid cj constitutes the cluster Cj.
Centroid update step: given the current clusters, we have that:

J clust = min
c1,...,ck

NØ
i=1

min
j=1,...,k

...x(i) − cj

...2

2
= min

c1,...,ck

kØ
j=1

Ø
i∈Cj

...x(i) − cj

...2

2
=

kØ
j=1

min
cj

Ø
i∈Cj

...x(i) − cj

...2

2

(2.4)
The minimum of qi∈Cj

...x(i) − cj

...2

2
is simply attained by the centroid (barycenter)

of the cluster Cj:

cj = 1
|Cj|

Ø
i∈Cj

x(i) (2.5)

Given a list of N vectors x(1), ..., x(N), and an initial list of k cluster representatives
c1, ..., ck , repeat until convergence

1. Data assignment: assign each vector x(i), i = 1, ..., N to its nearest representa-
tive.

2. Update representatives: for each group j = 1, ..., k, set cj to be the mean of
the vectors in group j.

Clustering Algorithm: Hierarchical Clustering

Hierarchical clustering, is an unsupervised learning algorithm that groups similar
objects into groups called clusters.

There are ways to create cluster hierarchy:

• Agglomerative (bottom up approach)

• Divisive (top down approach)

In the Agglomerative Hierarchical Clustering Technique, initially each point
is considered a cluster. Then the algorithm finds out which 2 clusters are the most
similar and groups them to form a new cluster. It repeats this process till all the
clusters are merged to form a single cluster.
Its fundamental steps are:

12
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• In the initial step, the proximity of individual points is computed and all the
data points are considered as individual.

• Step two: single clusters are formed by merging together similar clusters.

• Repeat: merge the two closest clusters and update the proximity matrix, until
only a single cluster remains

The Hierarchical clustering Technique can be visualized using a dendrogram. A
dendrogram is a type of tree diagram showing hierarchical clustering — relationships
between similar sets of data. They can be column graphs (as in the image below)
or a row graph.

Figure 2.7: Dendrogram

The graph is composed by:

• The clade is the branch. Usually labeled with Greek letters from left to right
(e.g. α, β, γ. . . ).

• Each clade has one or more leaves. The leaves in the above image are:
-Single (simplicifolius): F
-Double (bifolius): D E
-Triple (trifolious): A B C
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The maximum number of leaves is theoretically infinite, but the more is it, the
more the graph will be hard to read. The clades arrangement is made according
the similarity (or dissimilarity) of the clades; for example, two clades with close
height are similar; clades with different heights are dissimilar — the greater the
difference in height, the more dissimilarity.

The Divisive Hierarchical Clustering Technique is less used than the previous
one, and works in the opposite way. In fact, all the data points are considered
as a single cluster and in each iteration, the data points are separated from the
cluster which are not similar. Individual clusters are made of also by each data
point which is separated. In the end, n clusters will be left. [6] [7] [8]

Clustering Algorithm: Spectral Clustering

Spectral clustering is a technique with roots in graph theory, where the approach
is used to identify communities of nodes in a graph based on the edges connecting
them. It makes use of the spectrum (eigenvalues) of the similarity matrix of the
data to perform dimensionality reduction before clustering in fewer dimensions.

A small recall about eigenvalues, eigenvectors and graphs
Let A be an n × n matrix.
A non-zero vector x⃗ ∈ Rn is called an eigenvector of A if there exists some scalar
λ ∈ R so that Ax⃗ = λx⃗.
If x⃗ is an eigenvector of A, the corresponding value λ is called an eigenvalue of A,
and λ is an eigenvalue of A with eigenvector x⃗.
While an eigenvector x⃗ must be non-zero (so that we are always excluding the
trivial case A0⃗ = 0⃗), it is possible for the value λ to be zero.A

1 2
2 4

B
has eigenvector

A
2

−1

B
with eigenvalue 0. If λ is an eigenvalue for A,

the eigenvectors for A corresponding to λ along with 0⃗ form a subspace of Rn.
Eigenvalues and eigenvectors of a matrix can be found in python using numpy, as
shown below:

1 import numpy as np
2

3 # a 2x2 matrix
4 A = np . array ( [ [ 0 , 1 ] , [ − 2 , − 3 ] ] )
5

6 # f i n d e i g enva lu e s and e i g e n v e c t o r s
7 vals , vecs = np . l i n a l g . e i g (A)
8

9 # pr in t r e s u l t s
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10 f o r i , va lue in enumerate ( va l s ) :
11 pr in t ( " Eigenvector : " , vecs [ : , i ] , " , Eigenvalue : " , va lue )
12

13 # Eigenvector : [ 0 .70710678 −0.70710678] , Eigenvalue : −1.0
14 # Eigenvector : [ −0.4472136 0 .89442719 ] , Eigenvalue : −2.0

A graph is a relational structure formed by a finite number V of vertices (or nodes)
and a finite number E of segments (edges or links) that connect each node to
the others. Let G = (V, E) be a simple graph (no loops or multiple edges) with
vertex set V (G) = {v1, · · · , vn} and edge set E(G). It can be represented using an
adjacency matrix A(G): the elements of the matrix indicate whether pairs of
vertices are adjacent (connected by an edge) or not in the graph. The elements
have float values if the edges are weighted and boolean values if not.

Figure 2.8: Graph example

Another important element in the graph theory is the degree matrix. The
degree of a node expresses many edges connect to it; the degree of a vertex vi is
denoted by d(vi) or dG(vi). The degree matrix is diagonal and each value at entry
(i, i) is the degree of node i. The values can be computed summing each element of
the relative row of the unweighted adjacency matrix.
Finally, the Laplacian matrix is another matrix representation of a graph, with
several useful properties that can be taken advantage of also in spectral clustering.
If D(G) = diag(d(u), u ∈ V ) is the diagonal matrix of vertex degrees of G and
A(G) is the (0,1) adjacency matrix of G, then the matrix L(G) = D(G) − A(G)
is called the Laplacian matrix of a graph G. It is obvious that L(G) is positive
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semi-definite and singular M−matrix.

Lij =


di if i = j
−wij if (i, j) ∈ E
0 if(i, j) /∈ E

(2.6)

Thus the all eigenvalues of L(G) are called the Laplacian eigenvalues (or some-
times just eigenvalues) of G and arranged in non-increasing order:

λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn = 0 (2.7)

The Laplacian’s diagonal is the degree of the nodes, and the off diagonal is the
negative edge weights. When a graph is completely disconnected, every Laplacian
eigenvalue is 0. As the number of edges increases, some of the eigenvalues increase.
In fact, the number of 0 eigenvalues corresponds to the number of connected
components in the graph. The first nonzero eigenvalue is called the spectral gap. It
gives some notion of the density of the graph. For example, in a 10 nodes graph
densely connected (all pairs of the 10 nodes had an edge), the spectral gap is
10. The second eigenvalue is called the Fiedler value and indicates the minimum
graph cut needed to separate the graph into two connected components. Thanks
to that, the value can indicate how to separate the nodes into those approximately
connected components.
Finally, spectral clustering involves 3 main steps:

1. Compute a similarity graph

2. Project the data onto a low-dimensional space

3. Create clusters

The graph can be created using ε-neighborhood, K-Nearest Neighbors (KNN)
or can be fully connected.

• ε-neighborhood consists in fixing a ε and connecting each point to all the
points which lie in it is ε-radius. Typically, the weight of the edges, i.e. the
distance between the two points, are stored if all the distances between any two
points are significantly different in scale, because they do provide additional
information; if the difference is negligible, the weight are not stored. Thus, in
this case, the graph built is an undirected and unweighted graph.

• K-Nearest Neighbors instead creates an edge for two vertices u and v only if v
is among the k-nearest neighbors of u. Note that this leads to the formation
of a weighted and directed graph because it is not always the case that for
each u having v as one of the k-nearest neighbors, it will be the same case for
v having u among its k-nearest neighbors.
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• A fully connected graph is characterized by having all points connected with
each other and edges weighted by the distance between the two points to every
other point.

In order to project the data onto a low-dimensional space, the graph
Laplacian matrix is computed, then normalized to improve math efficiency.
This is done to avoid excessive distances, in the given dimensional space, between
elements that could be of the same cluster. After that, k eigenvalues and eigenvectors
are computed with k = number of clusters. [9] [10] [11] [12] Finally, the cluster are
being defined:

1. Stack the eigenvectors vertically to form a matrix with the vectors as columns.

2. Every row of the new matrix represents the corresponding node. These rows
form the feature vectors of the nodes.

3. Use a clustering technique (usually k-means) to now cluster these points into
k clusters {C1, · · · , Ck}
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Chapter 3

System description

One of the software used to monitor the systems is Broadcom DX Application
Performance Management. CA Introscope is a product within the Application
Performance Management solution that allows to:

• Monitor complex web applications in production environments 24 hours a day,
7 days a week

• Detect problems before they affect customers

• Resolve these issues quickly and collaboratively

CA Introscope performs end-to-end application transaction management and anal-
ysis. It is worth to briefly explain the purpose of the agents and other key elements
in the monitoring process:

• The Enterprise Manager acts as the repository of Introscope performance
metrics. The Enterprise Manager receives performance metrics from one or
more Introscope agents. The agents users collect metrics centrally from many
applications, application servers, and supporting systems. The Enterprise
Managers can be deployed in different ways depending on the size and com-
plexity of the enterprise system. The role of an Enterprise Manager depends
on its deployment in a standalone or clustered APM environment.

• The agent is a data gathering component, collecting detailed performance
information about applications and the computing environment as transactions
are executed.

• The Workstation provides the Investigator, Console, and APM Status Con-
sole for viewing application health and data. With the Workstation, the CA
APM administrator can perform these actions:
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– Set alerts for individual metrics or logical metric groups.
– Customize views to represent their unique environment.
– Set up reports for application health, Service Level Agreements, and

capacity planning.

3.1 Dataset
The used dataset was extracted through the software described above. All the data
points detected were extracted with a 15 seconds gap from each other. There are
five main features:

• ART (Average Response Time). This value indicates the mean time in ms
passed between one transaction and another.

• Stalls, which indicates the number of freezed transactions whit no response.

• Concurrences, which indicates the number transactions of the same type
active on the application server

• RPI (Responses Per Interval)

• CPU, that reports the mean CPU usage in the interval

Other inevitably extracted data such as "Timestamp" or "app_name" was discarded
because not relevant for the purposes of training. Initially, in the dataset, was also
present a label indicating the application state, a boolean value specifying if the
app was running correctly or not. This label was used for the supervised learning
phase. The label expressing the malfunctioning of the app was manually inserted
the data values in correspondence with the problems.
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ART Stalli Concorrenze RPI CPU stato_app
26 0 10 2367 29 1
28 0 7 2392 30 1
26 0 4 2259 28 1
27 0 8 2566 30 1
29 0 8 2471 32 1
27 0 5 2428 30 1
28 0 10 2451 32 1
28 0 9 2474 31 1
26 0 3 2530 31 1
28 0 3 2573 32 1
29 0 5 2501 30 1
26 0 1 2569 29 1
29 0 8 2476 31 1
26 0 680 2341 30 1
38 0 997 1851 32 1
6075 0 1005 3337 32 0
4464 1 1006 2147 30 0
7321 0 1006 2782 31 0
4912 1 1004 1975 31 0
7121 0 1005 2644 30 0
4179 2 1007 2712 35 0
5840 0 1003 2949 31 0
5892 0 1006 2198 30 0
6959 2 1002 2447 30 0
4688 2 1005 2801 33 0
5872 0 1002 2834 31 0
4459 3 1011 3035 36 0
6990 0 1003 2328 28 0
5774 1 1005 2403 30 0
5869 0 1007 2714 31 0
4954 0 1006 2846 34 0
6526 4 1011 2356 29 0
5122 4 1003 2887 33 0
5233 3 996 2844 32 0
6293 3 1002 2452 35 0
6392 2 1002 2255 29 0
5197 2 1008 2995 34 0
4557 3 999 3053 32 0
5614 3 1006 2895 33 0
4463 2 1008 3030 32 0
5556 2 6 3793 33 0
28 0 6 2632 34 1
28 0 2 2572 33 1
28 0 7 2630 34 1
29 0 5 2493 31 1
29 0 6 2574 33 1
28 0 11 2519 32 1
27 0 6 2720 34 1
28 0 5 2777 36 1
27 0 5 2760 33 1
28 0 5 2767 34 1

Table 3.1: Dataset example
In this excerpt from the dataset it is possible to see the app passing from an OK

state (stato_app = 1) to a KO state (stato_app = 0)
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Chapter 4

Supervised learning

4.1 Supervised Learning Performance Metrics
Performance metrics are a powerful tool required for comparing the different
methods in machine learning. Below are reported some of the most used metrics.
Accuracy score in supervised learning is a fundamental parameter to judge a
model, but alone it is not a clear indicator of the performance. It is the number
of correctly predicted data points out of all the data points. Mathematically, it is
computed as the number of true negatives and true positives divided by the number
of true negatives, true positives, false negatives, and false positives. A true positive
(TP) or true negative (TN) is a data point that the algorithm correctly classified
as true or false, respectively. A false positive (FP) or false negative (FN), on the
other hand, is a data point that the algorithm incorrectly classified. Accuracy is
calculated with the formula:

TP + TN

TP + FP + TN + FN
(4.1)

Another metric is the Precision, which indicates the percentage of positive instances
out of the total predicted positive instances. In other words, it indicates how much
the model is right when it says it is right.

TP

TP + FP
(4.2)

The Recall, or True Positive Rate express the percentage of positive values out
of the total actual positives values. It can be explained with the sentence how
much right values the model missed showing the right values.

TP

TP + FN
(4.3)
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The Specificity is the percentage of negative instances out of the total actual
negative instances. It is a measure of how much false values the model missed
showing the false values.

TN

FP + TN
(4.4)

The F1 score is the harmonic mean of precision and recall, hence it takes the
contribution of both values.

2
1

precision
+ 1

recall

= 2 ∗ precision ∗ recall

precision + recall
(4.5)

The parameters described before can be found in the Confusion Matrix, which
is a 2 ∗ 2 matrix that suitably arranges the number of samples that fall in the four
possibilities (TP, FP, FN, TN).

Figure 4.1: Confusion Matrix
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Finally there is the ROC curve, that stands for receiver operating characteristic
and the graph is plotted against True Positive Rate (TPR or recall) and False
Positive Rate (FPR or 1 − specificity) for various threshold values. Decreasing
the threshold of the classification marks more items as positive, therefore increasing
both False Positives and True Positives. A typical ROC curve is represented
below. To compute the points in an ROC curve, it’s possible to evaluate a logistic
regression model many times with different classification thresholds, but this would
be inefficient. Fortunately, there’s an efficient, sorting-based algorithm that can
provide this information, called AUC.

Figure 4.2: ROC curve: TPR vs FPR

AUC stands for "Area under the ROC Curve." That is, AUC measures the
entire two-dimensional area underneath the entire ROC curve (integral calculus)
from [0,0] to [1,1].

23



Supervised learning

Figure 4.3: AUC curve

An excellent model has AUC near to the 1 which means it has a good measure
of separability. A bad model has a value of AUC near 0 which indicates it has the
worst measure of separability. Actually, it implies it is reciprocating the result,
predicting exactly the opposite. When AUC is 0.5, it means the model has no class
separation capacity whatsoever. [13] [14] [15] AUC is desirable for the following
two reasons:

• AUC is scale invariant. It measures how well predictions are ranked, rather
than their absolute values.

• AUC is classification threshold invariant. It indicates the goodness of the
model’s predictions no matter of what classification threshold is chosen.

In conclusion, there are several metrics for evaluating performance. However,
the choice depends heavily on the task to accomplish. Some metrics are more useful
than others in certain situations, depending on the type of data to predict.
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4.2 Principal Component Analysis
Dataset are sometimes large and with many features and entries; this could be
cause of hurdles in machine learning tasks. The Principal Component Analysis
(PCA) is a technique for reducing the dimensionality of such datasets, increasing
interpretability but at the same time minimizing information loss. This is made by
creating new uncorrelated variables that consecutively maximize variance. PCA
finds “principal components” (PCs), i.e. orthogonal directions of maximal variance.
PCs are computed via Eigen Value Decomposition (EVD) of covariance matrix or
alternatively, PCs can be found directly via Singular Value Decomposition (SVD)
of (centered) data matrix.

Figure 4.4: Example of a PCA transformation

Let X ∈ Rn×d denote a dataset with n samples and d attributes. For convenience,
let also assume that X has zero mean (otherwise, one should center the data by
extracting its mean). With the purpose of reducing the dimensionality of X from d
to r-dimensional samples, the goal in PCA is to find a projection matrix U ∈ Rd×r

such that the projected data XU are uncorrelated and retain as much information
from X as possible. A typical solution of PCA is obtained by tackling the following
optimization problem:

min
U

...X − XUUT
...2

F

s.t. UT U = I
, (4.6)

where RX(U) =
...X − XUUT

...2

F
represents the overall reconstruction error, ∥·∥F

is the Frobenius norm and UT U = I, where I is the identity matrix, ensures
that U is orthogonal. It is easy to show that minimizing

...X − XUUT
...2

F
is

equivalent to maximize tr
1
XXT

2
− tr

1
UT XT XU

2
(or maximize tr

1
UT CXU

2
,
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where CX = 1
n
XT X is the covariance matrix of X, since tr

1
XXT

2
is a constant).

Moreover, since tr
1
UT XT XU

2
= ∥XU∥2

F = qr
j=1 uT

j XT Xuj, minimizing the
reconstruction error is also equivalent to maximize the total variance of the projected
data. It is also known in the literature that the solution of PCA is achieved by
setting the columns of U as the eigenvectors of CX associated with its highest
eigenvalues. [16] [17] [18]
Finally, in simple terms, PCA is a method that brings together:

• A measure of how each variable is associated with one another. (Covariance
matrix.)

• The directions in which our data are dispersed. (Eigenvectors.)

• The relative importance of these different directions. (Eigenvalues.)

4.3 Gaussian Naive Bayes Classifier

The first attempt to accomplish the classification was made realizing a Gaussian
Naive Bayes Classifier. The code was implemented on a Jupiter Notebook using
Google Colab. Initially all the necessary imports are performed, such as pandas,
numpy, sklearn, matplotlib. Then the labeled dataset is loaded from a CSV file
and converted into a dataframe. After that the dataset is randomly shuffled,
divided in two parts, about 80% for the training and 20% for the testing, and then
the dataframe values are normalized. Next a Principal Components Analysis is
performed and the dimensionality is reduced to two. Finally the model is fitted on
the dataset and next tested on the test dataframe.
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Figure 4.5: Gaussian Naive Bayes graph

In the graph above is represented the data in the test phase. The semi-transparent
points are the ones used to test the algorithm, while the points used during the
training are opaque. Then the mean accuracy on the given test data and labels
returned was about 93%.

4.4 First version: PyTorch classifier

The first version of the classifier was implemented with PyTorch, one of the most
used open source framework for machine learning. The initial part of the notebook
imports the necessary modules for the process, i.e. torch, matplotlib, csv, numpy
and pandas. Then the dataset, saved as a csv file, is read from Google Drive and
opened with the pandas specific function. Then the features and the relative labels
are split and loaded into two different torch tensors. After that, a linear classifier
model class is being defined, with a layer which applies a linear transformation
y = xAT + b. Finally, a torch optimizer is introduced, which takes the parameters
to update, the learning rate to use (and possibly many other parameters as well)
and performs the updates through its step() method. The next phase is the
training one, divided in 100 epochs while monitoring training and test accuracy. In
the end the loss and accuracy plot are printed, as shown below.
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Figure 4.6: Pytorch loss

Figure 4.7: Pytorch accuracy

28



Supervised learning

4.5 Second Version: Tensorflow classifier

A second version of the system was instead implemented with Tensorflow, which is
another free and open-source software library for machine learning and artificial
intelligence. Just as before, the first operations of the script are importing the
necessary modules and opening the dataset to use, which is the same in order to do a
right comparison between the two versions. Then the dataset values are normalized,
this is the process of converting an actual range of values into a standard range of
values, typically -1 to +1 or 0 to 1. The code normalizes datasets by converting each
raw value. The code normalizes datasets by converting each raw value (including
the label) to its Z-score. A Z-score is the number of standard deviations from the
mean for a particular raw value to its Z-score. With this different configuration,
the results achieved are more regular and overfit less than the previous version, as
can be seen from the following images. [19]

Figure 4.8: TensorFlow classifier loss
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Figure 4.9: TensorFlow classifier accuracy

Figure 4.10: TensorFlow classifier precision and recall
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Figure 4.11: TensorFlow classifier AUC
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4.6 Comments
The two versions give slightly different outputs; in this particular case, considering
that the results are highly related to the dataset, it is possible to say that the
TensorFlow version behavior is more appropriate. The training dataset used, as
said before, was made specifying the application status in each detection interval. A
further important improvement is making the classifier understand the application
status without a manually labeled dataset, e.g. realizing an unsupervised learning,
which will be discussed in the next chapter.
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Unsupervised learning

5.1 Clustering the data

A clustering approach is chosen in order to make the system recognize the app
status autonomously. In particular, due to the nature of the values populating the
dataset in the presence of an error, it is possible to implement and compare different
clustering algorithms with good results. The dataset features are five, and the label
to assign is a boolean value, that indicates the application state. The clustering
algorithms are written into jupiter notebooks and developed using scikit-learn,
which is a free software machine learning library for the Python programming
language.

5.1.1 The clustering algorithms

K-means

The first algorithm chosen is based on k-means. The first section of the notebook
deals with the import of the various modules, i.e. pandas, numpy and scikit-learn.
Then the dataset (in csv format) is opened through pandas and the eventual null
values are replaced with the mean value of the variable. After this step, the number
of cluster is defined and in this case it is equal to two, for the possible application
states: OK and KO. Finally, the k-means algorithm splits autonomously the data
points in the two clusters, returning a label indicating the cluster in a csv file and
the relative features.
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Figure 5.1: K-means clustering results

The k-means clustering returned the results represented in the graph above.

Hierarchical Clustering

The second algorithm is an Agglomerative Hierarchical Clustering Technique.
It is performed using a library called scipy and using the same data in order to
make a comparison. The procedure is pretty similar, first the notebook imports
the various modules, then it reads the (obviously unlabeled) dataset, reduces its
dimensionality to two and makes clusters. The results are then appended as labels
in the original dataset in a csv file and plotted. The results are very similar to the
previous ones: in fact the clusters detected are practically the same.
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Figure 5.2: Hierarchical clustering results

Spectral clustering

Spectral clustering is the third type of clustering used in this scenario. It is
implemented into a Jupiter notebook as the others and using the same datasets. It
makes use of a library called scipy, and the procedure of the script is pretty similar
to the others: first the modules are imported, then the unlabeled dataset is being
read and its dimensionality is reduced using PCA. The results are then plotted and
saved to a csv file.
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Figure 5.3: Spectral clustering results

At first glance, this type of clustering proved to be the worst of the three, showing
very different clusters on the plot. In the next considerations the performances
index of the three will be discussed more deeply.

5.1.2 Performance evaluation
Clustering is a type of unsupervised learning, so it is not possible to compare the
results with labels like in supervised learning problems; hence other techniques are
used to evaluate the results. Therefore evaluating the performance of a clustering
algorithm is not as trivial as counting the number of errors or the precision and
recall of a supervised classification algorithm. Clusters are evaluated on some
similarity or dissimilarity measure such as the distance between cluster points.
If the clustering algorithm separates dissimilar observations apart and similar
observations together, then it has performed well. [20]

Silhouette Score

One of the most used performance metrics is the Silhouette score. The Silhouette
Score and Silhouette Plot are used to measure the separation distance between
clusters. It displays a measure of how close each point in a cluster is to points in
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the neighboring clusters. This measure has a range of [−1, 1] and is a great tool to
visually inspect the similarities within clusters and differences across clusters. The
coefficient can be calculated as:

n − i

max(i, n) (5.1)

Where:

• n is the distance between each sample and the nearest cluster that the sample
is not belonging

• i is the mean distance within each cluster.

Source:

The higher the Silhouette Coefficients (the closer to +1), the further away
the cluster’s samples are from the neighboring clusters samples. A value of 0
indicates that the sample is on or very close to the decision boundary between two
neighboring clusters. Negative values, instead, indicate that those samples might
have been assigned to the wrong cluster. Averaging the Silhouette Coefficients, it’s
possible to get to a global Silhouette Score which can be used to describe the entire
population’s performance with a single value. [21]

Rand Index

Another metric taken into account for evaluating the results can be the Rand
Index, a measure of the similarity between two data clusterings. It is equal to one
if all the pairs fall into the same cluster of both the estimated and the theoretical
grouping. The index decreases and tends to zero as the pairs are allocated in
different clusters in the two groupings. Rand index R is:

R = a + b

a + b + c + d
= a + b1

n
2

2 (5.2)

Where, given a set of n elements in S = {o1, · · · , on} and two partitions of S to
compare, X = {X1, · · · , Xn}, a partition of S into r subsets, and Y = {Y1, · · · , Ys}
a partition of S into s subsets and:

• a is the number of pairs of elements in S that are in the same subset in X
and in the same subset in Y

• b is the number of pairs of elements in S that are in different subsets in X
and in different subsets in Y
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• c is the number of pairs of elements in S that are in the same subset in X
and in in different subsets in Y

• d is the number of pairs of elements in S that are in different subsets in X
and in the same subset in Y

Calinski-Harabasz Index

The Calinski-Harabasz Index is another clustering performance metrics, based
on the degree of dispersion between clusters and clusters. It is also known as
the Variance Ratio Criterion, and it is calculated as a ratio of the sum of inter-
cluster dispersion and the sum of intra-cluster dispersion for all clusters (where the
dispersion is the sum of squared distances). Theoretically, higher the CH index is,
better the clustering is, since observations in each cluster are denser (closer), while
clusters are further away from each other, and so well separated.
In order to calculate the CH Index, it is needed to calculate the inter-cluster
dispersion or the between group sum of squares (BGSS), that measures the
weighted sum of squared distances between the centroids of a clusters and the
centroid of the whole dataset (barycenter):

BGSS =
KØ

k=1
nk × ||Ck˘C||2 (5.3)

where:

• nk is the number of observations in cluster k

• Ck is the centroid of cluster k

• C is the centroid of the dataset (barycenter)

• K is the number of clusters

Then the intra-cluster dispersion or the within group sum of squares (WGSS),
which indicates the sum of squared distances between each observation and the
centroid of the same cluster, is being calculated:

WGSSk =
nkØ
i=1

||Xik˘Ck||2 (5.4)

where:

• nk is the number of observations in cluster k

• Ck is the centroid of cluster k
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• Xik is the i-th observation of the cluster k

Then each individual within group sum of squares is summed:

WGSS =
KØ

k=1
WGSSk (5.5)

Finally, the Calinski-Harabasz Index is calculated as:

CH =
BGSS
K−1

W GSS
N−K

= BGSS

WGSS
× N − K

K − 1 (5.6)

where:

• BGSS is the between-group sum of squares (between-group dispersion)

• WGSS is the within-group sum of squares (within-group dispersion)

• N is the total number of observations

• K is the total number of clusters

Hence, the large values of Calinski-Harabasz index represent better clustering.

Figure 5.4: Cluster points
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Manual Comparison

In this particular case, the original labeled datasets are available for comparison,
so, to evaluate the performance of the clustering, several combinations of features
and dataset can be compared. The comparisons are made between the "clustered"
dataset and the original, manually labeled, dataset. Also the software to compare
the two files is made with python into a Jupiter notebook. A very accurate model
was obtained using k-means and only the features "ART" and "CPU", with a
correspondence of ≈ 99% for either the k-means and the Agglomerative Hierarchical
Clustering. The files were compared with a python script specially created to
mark the differences and evaluate the correspondence rate. Also the comparisons
made using the two principal components in the clustering phase returned high
correspondence, with a slightly smaller value.

5.2 Prediction with clustering
Despite k-means is an unsupervised learning algorithm, it offers a predict method.
Given some input data, it predicts the closest cluster each sample in X belongs
to. It is supposed to point out closest cluster for the unseen data, so it can be
used once the model is trained. The dataset realized before with the clustering
technique was then loaded in the classifier used for the supervised learning part.
With no surprise, being the dataset nearly identical to the previous one, the results
obtained were the same as the ones gotten with the manually labeled dataset.

5.3 Clustering final considerations
The employed clustering techniques, i.e. k-means, hierarchical and spectral cluster-
ing, returned different results, that were analyzed using the performance metrics
described before. In particular, it is to say that k-means gave the best overall
performance according to the silhouette score and and the Calinski-Harabasz Index,
although not very different from the hierarchical results. The spectral clustering
instead returned the worst results, as predictable from the plot, but the possibility
to improve by doing some tuning it is not to exclude. These results highlights
that there are several unsupervised algorithms and many performance metrics that
can be used, but it is essential to know well the data in order to fit the adequate
method. In fact, even if for this kind of datasets the best algorithms revealed to
be those, for different types of data are probably others, maybe determined using
different metrics in order to choose the most appropriate one.
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Conclusions

This thesis work tried to realize a Machine Learning algorithm capable of au-
tonomously identify and detect the application status monitored by the APM
organizational unit. To this end, two different approaches were adopted: Super-
vised and Unsupervised Learning. Both can be used in real use case scenarios,
depending on the type of monitoring required. A mathematical and theoretical
explanation of the various Machine Learning types was given, highlighting the
necessary characteristics to know in order to understand the work carried out.
The Supervised Learning consisted in the realization of a classifier (created in two
different libraries) able to distinguish the application state after being trained on a
manually exported dataset. Then the various performance metrics were measured
and compared, in order to tune and improve the network. The export, filtering
and choice of the dataset was not a trivial problem: in fact, this study highlighted
how the number of features and their correlation influenced the results. The initial
versions of the datasets brought to misleading results, when tried on classifiers
or other algorithms that performed well on other reference dataset. The datasets
quality was also reflected in the unsupervised learning phase, that, once the right
features and dataset settings were chosen, returned good results. In particular
three different types of clustering were tested: k-means, hierarchical and spectral.
Also in this case, the performance metrics were described from a mathematical
and theoretical point view, and then tested in a practical way. This system, after
building a stand-alone, deployable version, is capable to read in real time the data
delivered by the APM agents. The next evolution of the system could be also able
to identify and detect the causes of errors in the applications, but, in order to do
so, tens of months of data recording and labeling are required.
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