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Abstract

Background: Breast cancer is the second most common cause of death from
cancer in women in the United States after lung cancer. Thanks to early detection
and treatment improvements, the mortality rate has been steadily decreasing in the
last decades. Therefore, there is an increasing interest in finding new methodologies
for improving the current state of the art. Several works validated the efficiency of
Artificial Intelligence (AI) algorithms for cancer detection and diagnosis, but the
application of uncertainty-based models, which have potential to enhance result
interpretability and therefore clinical translation, remains to be investigated in
depth.

Project: This thesis aims to develop and validate Deep Learning algorithms for
tumor classification and segmentation in 3D contrast-enhanced breast computed to-
mographic (CE-BCT) scans, exploring the mass-level uncertainty of the predictions
through the Monte Carlo Dropout.

Methods: 542 biopsy-proven breast masses (181 benign, 343 malignant) from
409 patients were imaged with a clinical Breast CT system after iodinated contrast
medium administration. A 3D volume of interest (VOI) of 3.5cm per side was
placed around each mass, and all masses were manually annotated in 3D by a
board-certified breast radiologist. The mass VOIs and respective binary anno-
tations were used to train (n = 262) and fine-tune (n = 88) a two-channel 3D
Dense Convolutional Network and a 3D Residual UNet for mass classification and
segmentation, respectively. Both networks were tested on an independent dataset
of 192 biopsy-proven breast masses (89 benign, 103 malignant). The classification
algorithm was evaluated with the area under the receiver operating characteristics
curve (AUC), with 95% confidence interval (C.I.) calculated with bootstrapping
(2,000 bootstraps) whereas the segmentation architecture was evaluated with the
Dice score. Finally, multiple mass-level uncertainty metrics were tested in both
classification and segmentation Monte Carlo outcomes, analyzing the performance
improvement obtained by rejecting the predictions at different uncertainty and
sensitivity thresholds.

Results: On the independent test set, the two-channels 3D Dense Convolutional
Network achieved an AUC of 0.84 (95% CI 0.78-0.90). Then, the 3D Residual
UNet achieved an average DICE score of 0.79 ± 0.2. Finally, low-performance
classification was found to be correlated with high variance, increasing the accuracy
by 8% when 57 test masses with the highest prediction uncertainty were excluded.



Moreover, the uncertainty was also found to be correlated with the segmentation
performances, observing linear correlation coefficients (ρ) of 0.76 and 0.58 for
the Intersection over Unions (IoUs) and the average Dice score over Monte Carlo
samples, respectively. This allowed to increase the Dice score by 12% in both cases
by removing 57 test masses, based on their relative uncertainty metric.

Conclusions: The AI methods developed and validated for this study achieved
satisfactory performances and the evaluation of the uncertainty for the exclusion
of the masses might enhance the performances. This could possibly be valuable for
facilitating the translation of AI into clinics.
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Chapter 1

Introduction

1.1 Breast cancer

1.1.1 Epidemiology
After lung cancer, breast cancer is the second-leading cause of cancer-related death
in women in the United States [1]. As you can see in Figure 1.1, thanks to early
detection and treatment improvements, in Austria the mortality rate has been
steady decreasing from 1989 to 2017 whereas the five- and ten-years survival rates
have been almost linearly increasing from 1983 [2]. Even though these trends are
definitely positive, the forecasting data are not so encouraging. In fact, based on
the current available data, it is expected that approximately 13% of American
women will be affected by breast cancer at some point of their life [3].

Figure 1.1: Overview of the overall incidence, breast cancer five- and ten-year
survival and breast cancer mortality in women in Austria, from 1983 to 2017 [2].
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Introduction

1.1.2 Characteristics of tumors
A tumor is a neoformation of undifferentiated cells (i.e. not specialized cells) that
gradually grows inside a tissue. On the basis of several specific characteristics like
shape, growth, and spread, it can be categorized as benign or malignant.

A benign tumor does not spread to neighbouring tissues or other sections of the
body since it grows very slowly and stays in its initial tissue. Moreover, it normally
has defined, smooth, and uniform borders. As it is possible to notice from its name,
this is not extremely dangerous. In fact, surgery can be used to treat it with the
intention of eliminating the tumor masses before they become malignant or squeeze
nearby tissues [4].

On the other hand, a malignant tumor, also called cancer, tends to have irregular
borders and it grows much faster than a benign one, invading the surrounding
tissues. The spread of the cells is called metastasis, and it develops when the cancer
cells break away from the primary location and they enter in the bloodstream or
the lymphatic system that carry fluids around all the body, giving the possibility to
the cancer cells to grow far away. This is of course harder to treat, and based on the
initial location of the cancer and its spread, the treatment can consist on surgery,
chemotherapy, immunotherapy, radiotherapy or a combination of the previous ones
[4].

Breast cancer, therefore, is referred to a malignant tumor primary developed in the
breast tissue. The genetic abnormality as of now is considered its main cause and
it happens due to aging (85 − 90%) or due to an hereditary trait (5 − 10%) [3].

Figure 1.2: Benign and malignant tumor. Image retrieved from [5].
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Introduction

1.2 X-ray Breast Imaging
Breast cancer diagnostic starts with the acquisition of images of both breasts. Over
the years, many imaging systems have been developed and validated, each one
with its own strengths and weaknesses. Digital Mammography is considered the
golden standard of breast cancer screening whereas Dedicated Breast Computed
Tomosynthesis (DBCT), a fairly new imaging system, has been proved to obtain
interesting results too.

Cancer screening aims to find the disease before the person manifest symptoms in
order to tackle it at its earliest stages, when it is easier to treat and to beat. The
American Cancer Society guidelines for average-risk women [6] states that: women
with age from 40 to 44 may start the screening process, then, from 45 to 54 should
get mammograms every year, and finally from 55 the patients should continue the
screening process every one or two years.

Once a patient has been recalled from the screening, she is requested to do more
accurate (and invasive) tests, like biopsy. The biopsy is a medical procedure that
removes a small sample of body tissue in order to examine it on a microscope.
Obviously this is the most accurate method, but it will cause more pain to the
patients.

1.2.1 Mammography
The most widely used screening test at the time of writing is the mammography.
A mammogram is an x-ray picture of the breast, captured from a dedicated x-ray
machine. As shown in Figure 1.3, the breast is placed on a plastic plate whereas
a second plate presses it from above. This will be repeated from a side view,
and again for the other breast, collecting four x-ray images in total. Thankfully,
mammography screening heavily contributed in the reduction of deaths due to
breast cancer from about 15% to 25% [7]. However, most of the women report
a significant discomfort during the image acquisition due to the breast pressure.
Moreover, three other main limitations have to be considered.

• Recalled women will receive cancer treatments even though there is no certainty
that it will help them to survive longer (overdiagnosis).

• Mammography tends to have an high False Positive Rate (FPR), in fact three
out of four (75%) biopsies are negative [8]. Therefore, many women will be
subject to invasive tests, without a real need.

• The cancer is not well detected with on women with a really dense breast
tissue.

3



Introduction

Figure 1.3: Overview of the acquisition of a mammogram. The breast is be placed
on a plastic plate whereas a second plate presses it from above and two images per
breast are collected. Image retrieved from [9]

The former limitation is probably the most significant one. In fact, women with
dense breasts may be called back for follow-up tests more often than women
with fatty breasts. According to Melissa Durad [10], Associate Professor at Yale
Cancer Center, conventional mammography is heavily affected from highly dense
breast tissues, reducing its sensitivity from 98% (on fatty tissues) to 30%. As a
consequence, women with very dense breast tissues are more likely to perform
additional tests such as Ultrasound Mammography and/or MRI.

Figure 1.4: Four breast density categories are shown: (A) Fatty, (B) Scattered,
(C) Heterogeneously Dense and (D) Extremely Dense
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1.2.2 Digital Breast Tomosynthesis
Digital Breast Tomosynthesis (DBT), also known as 3D mammography, reconstructs
a pseudo 3D image of the breast with a series of 2D images, collected within a range
of 15◦ − 60◦ [11]. It received the Food and Drug Administration (FDA) approval in
2011, and it is considered as a potential substitute of the mammography, especially
for women with dense breast. It was proven to improve the detection of cancer
and to reduce the False Positive Rate [12], reducing the need for biopsies, that we
know it was one of the main drawbacks of Digital Mammography. The reduction
of the False Positive Rate was also much more significant of women with a really
dense breast, from 40.4% to 25.0% [12].

Figure 1.5: Overview of the Digital Breast Tomosynthesis reconstruction principle.
Multiple adjacent 2D images are collected within angles of 15◦ − 60◦ and then they
are used to reconstruct a pseudo-3D image of the breast. Images retrieved from
[13]
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1.2.3 Dedicated Breast CT
Dedicated breast computed tomography (DB-CT) is a fairly recent technology
developed for breast cancer imaging. It provides 3D images of the breast with
a relative low radiation dose, partially solving the tissue overlap highlighted in
mammography.

As reported in [14], In 2011, the United States government finally approved the
use of the first commercial BDT system (Selenia Dimensions), and according to
subsequent studies, the usage of both imaging methods improved mass detection
[15], increased cancer detection and decreased recall states [15, 16].

Contrary to a mammography, during the image acquisition the patient lies prone,
placing the breast inside a hole. Therefore the breast will be pendent and no
pressure is applied. Once the breast lies on the hole, 500 projection images are
collected along 360◦ at 30 FPS (frames per second) [17]. Therefore it is possible
to obtain a fully 3D reconstruction of the breast. A clinical study conducted in
2004 [17] asked to rate the comfort of a breast CT compared to a mammography.
Most of the women involved in the screening found out a dedicated breast CT
significantly more comfortable than screenfilm mammography.

The radiation dose applied to the breast is the comparable to the one received in
2D mammography. However, in mammography, women with larger and denser
breasts will receive a greater radiation dose, whereas in a breast CT the technique
factors will be increased as well for in order to maintain to a reasonable level the
x-ray quantum noise [17].

Figure 1.6: DB-CT scan [18]. The patient lies prone, placing the breast inside a
hole and 500 projection images will be acquired along 360◦ at around 30 frames
per second.
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In the research, there is an increasing interest towards the usage of DB-CT for
conventional screening, therefore many studies are focused on its performances,
compared to the current golden standard (Digital Mammography). In 2008, Lindfors
et al. [17] showed that there were no significant differences for the visualization
of benign or malignant masses compared to a mammography, but the Breast
CT appeared to be significantly better for the visualization of the lesions, even
though the mammography outperformed the breast CT for the visualization of
microcalcifications.

In order to think about a potential adoption of DB-CT for screening purposes, it is
necessary to outperform the mammography performances in every possible aspect.
However, the usage of intravenous contrast material with breast CT has proven to be
effective for the visualization of the malignant masses [19]. The authors showed that
malignant lesions are significantly more conspicuous at contrast-enhanced breast
CT when compared with un-enhanced breast CT or mammography. Moreover, the
conspicuity of malignant calcifications is also improved compared to what stated
before, achieving comparable performances of mammography.

Multiple clinical studies were performed on Dedicated Breast CT [20, 21, 22], and
it turned out to have the potential to be superior to conventional mammography.
Even so, at the time of writing only three companies build DB-CT scan (Koning,
Izotropic corporation and Advanced Breast CT GmbH) but only Koning has the
Food and Drug Administration (FDA) approval. This lack of availability affects the
presence of standardized processes and documentations, and of course, an adequate
quantity of data for study purposes.

Figure 1.7: (A) Precontrast coronal view vs (B) postcontrast coronal view [19]
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1.3 Computer-Aided Diagnosis
Computer-Aided Diagnosis (CADx) systems have been proposed over the years
for various applications in clinical routines with the main goal of increasing the
efficiency and reducing the human errors. The first statistical-based approach was
proposed in the early 1960s [23] whereas some computer-based tools appeared
for the first time in the 1980s [24]. Nowadays, a complete independence from a
radiologist is not yet considered, but the latest research results showed that CADx
systems could be an effective support tool, considering the machine outcome at
the same level of the human one [25].

The literature explored two main types of CADx systems. The old-fashion way
requires the segmentation of the lesion that will be leveraged for the extraction
of radiomic features, used for a final classification task carried out from state of
the art Machine Learning models. The second one leverages Convolutional Neural
Networks (CNNs), that are able to automatically detect the most relevant features
and patterns from image data. Thanks to modern CNNs it it possible to perform
the final classification task in a simpler - and most of the times in a more effective -
way. CNNs showed outstanding performances in medical imaging but they typically
lack for explainability, as most of Deep Learning approaches. On the other hand,
despite the lower performances of feature-based Machine Learning approaches,
sometimes they are still preferred for a better explainability of the results.

Further progress may be made toward the deployment of CADx systems and other
tools that work in concert with radiologists thanks to the exponential expansion of
processing power, radiological data, and research emphasis. However, despite their
recent advancements, many challenges still need to be addressed. First, clinical
data has been rarely curated in the past, imposing a big obstacle for any data
pipeline. Moreover, ethical issues cover an important aspect too. May patient data
be at risk? Who would be liable for a wrong decision made by an algorithm? These
are some of the most argued questions that have no answers, yet.

1.4 Uncertainty
Artificial intelligence algorithms typically provide predictions without taking into ac-
count their certainty or uncertainty. However, while dealing with delicate outcomes
like benign or malignant tumors, it is important to provide only certain outcomes.
Modern algorithms achieved great results on medical imaging applications, but
again, this is not strictly correlated with a lower model uncertainty. Ideally, we
aim to have an AI that achieves great performances but at the same time it should
be able to seek for a human supervision whenever it is not confident enough.
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1.5 Thesis objective
The objective of this thesis is to develop a Computer-Aided Diagnosis (CADx)
system for breast cancer lesions in Dedicated Breast CT images using Deep Learning
algorithms, taking into account valuate the system uncertainty.

The clinical goal of this research is to reduce the amount of unneeded biopsies,
which at the time of writing account for around 75% of all procedures. With the
intention of assisting radiologists in their judgments, we proposed a novel Deep
Learning framework for tumor segmentation and classification on 3D Dedicated
Breast CT images.

1.6 Thesis structure
This thesis resumes the work accomplished at the Advanced X-ray Tomographic
Imaging (AXTI) Laboratory (Nijmegen, NL), between March and August 2022,
under the supervision of Marco Caballo. The proposed document is structured as
follows:

• Chapter 1, Introduction, introduces to the reader the preliminary information
required for understanding the proposed work. In particular, it covers the
definition of breast cancer, the most common X-ray breast imaging tools and
further advancements in the field of Computer Aided Diagnosis tools (CADx).

• Chapter 2, Deep Learning background, introduces the preliminary Deep Learn-
ing theoretical concepts necessary for a complete understanding of the following
experiments.

• Chapter 3, Material and methods, explains the data involved under our study,
the tested Convolutional Neural Networks, the uncertainty definition through
Monte Carlo Dropout and all the proposed evaluation metrics.

• Chapter 4, Results, reports all the results obtained on the classification and
segmentation architecture, together with their relative uncertainty evaluations.
Finally, an ablation study is reported, testing the best pipeline under a more
complex and generalizable data scenario.

• Chapter 5, Conclusions and future work, illustrates the achieved results and
compares them with the current state of the art, highlighting the limitation of
this work and potential further improvements.
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Chapter 2

Deep Learning background

2.1 Artificial Intelligence
The founding father of Artificial Intelligence, Alan Turing, defines this discipline as:
"the science and engineering of making intelligent machines, especially intelligent
computer programs". Seventy years later this is not changed, in fact the main
purpose of modern artificial intelligence is still to leverage computers and machines
to mimic the problem-solving and decision-making capabilities of the human mind.
Virtual and physical artificial intelligence are the two primary subfields in medical
AI-applications [26]. The virtual branch makes use of computational methods to
regulate patient health and give medical professionals advice on how to proceed
with treatments. The physical branch, on the other hand, might be represented by
all the tangible aids employed by early patients or surgeons. Nowadays we often
hear about Machine Learning, a subfield of Artificial Intelligence which leverages
data and algorithms to imitate the way that humans learn. Going down through
the hierarchy we also have Deep Learning, that is a subfield of Machine Learning,
based on Artificial Neural Networks.

Figure 2.1: Relationship between Artificial Intelligence, Machine Learning and
Deep Learning.
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2.2 Artificial Neural Networks
Artificial Neural Networks (ANNs) are computational analytical tools that were
developed in the spirit of the human brain and replicate the communication between
organic neurons. So, to put it simply, we might say that a mathematical model of
a biological neuron serves as the basis for an artificial neuron.

• Through a network of tiny fibers known as dendrites, a biological neuron
receives input messages from other neurons. An artificial neuron (called
perceptron) similarly receives information from input neurons.

• The connections between input and perceptrons are known as weights, which
measure the significance of the current input, while the connections between
dendrites and biological neurons are known as synapses.

• In a biological neuron, the dendrites’ signals are used by the nucleus to generate
an output signal. In contrast, a perceptron’s nucleus does calculations based
on input values and generates an output.

• Finally, in a biological neuron, the axon carries the output signal away, whereas
the output value of a perceptron is supplied to other perceptrons.

Figure 2.2: Comparison between a biological neuron and an artificial neuron (also
called perceptron). Left image retrieved from [27].
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The previously described artificial neuron is the basic element of an Artificial Neural
Networks. More in general, an Artificial Neural Network is made by three main
node layers: an input layer, one or more hidden layers and an output layer. Each
layer is composed by more neurons, each one representing a single node in the
architecture. As illustrated before, each node receives signals (i.e. real numbers)
that will be processed and will produce an output that be again sent to further
nodes. Each node and edge is associated with weights and biases and these values
are updated at every training iteration in order to adjust and improve the learning
procedure.

Figure 2.3: Artificial Neural Network. Image retrieved from [28].

2.2.1 Learning
The Neural Network training allows any Neural Network to actively learn from
its input data. It is an iterative process that will run for a fixed number of
epochs, or under some specific circumstances, it may stop it before. Each epoch is
characterized by two different steps:

• Feed-forwarding: also known as forward propagation, it requires the computa-
tion of the network’s output given its input. Therefore, the input is supplied to
the first layer, which then activates its nodes as well as those of the subsequent
layers until it reaches an output that is utilized to calculate the loss.

• Back-propagation: it efficiently calculates the gradient of the loss function with
respect to the weights of the network for a single input. Due to its effectiveness,
it is possible to train multilayer networks using gradient techniques, updating
weights to reduce the loss function. Gradient descent or its variations are
frequently employed. To calculate the gradient of the loss function with respect
to each weight using the chain rule, the backpropagation method does so one
layer at a time, estimating the gradient by iterating backward from the last
layer to prevent the chain rule’s intermediate terms from being calculated
twice.
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2.3 Convolutional Neural Networks

Another class of Deep Learning models that draws its inspiration from the way the
visual brain is organized, is the convolutional neural networks (CNNs). According
to the design, each neuron will have a narrow receptive field that corresponds to a
portion of the entire visual field, as it happens on our visual cortex. As illustrated in
Figure 2.3, any Neural Networks is made up by an input layer, one or more hidden
layers and a final output layer. In Convolutional Neural Networks, the hidden
layers usually consists of convolutional layers, pooling layers and fully connected
layers.

2.3.1 Convolutional layer

The convolutional layer is the core element of Convolutional Neural Network and
its main goal is to extract high level features from the input images. At the early
hidden layers we aim to detect low-level features like edges and intensity variations,
whereas at the deepest layers we aim to detect high-level features of our interests.
The input image therefore is convolved with a kernel (or filter). This is typically
smaller than the input dimension and it slides all over the image, producing an
activation map, describing the locations and the strength of a given feature in an
input.

Figure 2.4: Convolutional layer. Image retrieved from [29].
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2.3.2 Pooling layer

The pooling layer is used to decrease the spatial size of the feature maps by
summarizing its content. As a side effect, the model will not require to learn
features on specific positions, determining the translation invariance of CNNs. The
two most common policies are the max pooling and average pooling, summarizing
the content of a patch with their maximum value or their average, respectively.

Figure 2.5: Pooling layer. Image retrieved from [30].

2.3.3 Fully connected layer

The fully connected layer is typically used at last layers of the CNNs in order to
learn non-linear combinations of these feature produced by the convolutional layers.
Due to its nature, it requires that the output is flattened.

Figure 2.6: Convolutional Neural Network. Image retreved from [31].

14



Deep Learning background

2.3.4 Activation function
The activation function, another essential element, is used after each convolutional
layer to aid the model in learning complicated structures from the data. To do
this, we extend our network with a non-linear function. Both hidden layers and
output layers requires different kind of activation functions, and the current golden
standards are:

• Rectified Linear Unit (ReLU): it is used for the hidden layers and it is defined
as a(x) = max(0, x). It solves the saturation of the gradients that affected
the sigmoid activation function, its predecessor.

• Sigmoid: this activation function is used on the output layers for binary
classification problems because of its computational effectiveness. In fact, it is
defined as σ(x) = 1

1+e−x , squeezing the values between 0 and 1.

• Softmax: this activation function is used gain on the output layer but for
multiclass classification problems, in fact this is considered as the generalization
of the sigmoid for multiclass scenarios. This is defined as a(x)i = exiqn

j=1 exj ,
where i is the current class and j = 1..n represents all the possible classes.

Figure 2.7: Activation functions.
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2.4 Parameters and hyperparameters
Beside the previously described main components, every architecture has a lot
of learnable parameters and a few hyperaparameters. The model parameters are
learned and adjusted automatically during training whereas the model hyperpa-
rameters are manually set in order to "guide" the learning process. Therefore, it is
important to set the proper hyperparameters for the task at hand. The ones that
have an higher impact on training are:

• Epochs: an epoch means training the neural network with all the training
data for one cycle. Therefore, in one epoch we use all the available data once.
A common but expansive practice is to keep the number of epochs as large
as possible, and use the error on the training and validation set as an escape
metric.

• Batch size: it defines the number of samples that will be propagated through
the network. The main benefit of using a batch size smaller than the number
of all samples is that it requires less memory, and this is fundamental while
dealing with enormous collections of data, typical of deep learning frameworks.

• Loss function: it is the function that calculates the separation between the
algorithm’s current output and its desired output. The model aims to minimize
this function, which is also known as the cost function. Therefore the learning
problem is converted to an optimization problem, optimizing the algorithm to
minimize the loss function.

• Optimizer : it is an algorithm used to minimize an error function (loss func-
tion). In mathematical terms, it is a function dependent on model’s learnable
parameters (weights and biases). Moreover, it helps to know to slightly change
the weights and the learning rate in order to reduce the loss. The amount
of data and the dimension of the micro batches are often used to determine
which optimizer is best. However, the Adam optimizer [32] has been proved
to be successful most of the times and therefore it is often selected by default.

• Learning rate: it determines the step size at each iteration while moving
toward a local minimum of the loss function (Figure 2.8). In other words, it
can be considered as the amount by which the weights are updated during
training. Therefore, a smaller learning rate requires more training epochs
due to the tiny progressive improvements, whereas a bigger learning rate as a
consequence will require less training epochs, causing divergent behaviours.

• Learning rate decay: it is a technique for which the initial learning rate is
decayed over the epochs, based on a selected criteria and it was proven to
improve the learning process [33].
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Figure 2.8: Learning rate scenarios. Image retrieved from [34].

2.4.1 Hyperparameters tuning
It is essential to select the proper collection of hyperparameters, thus, it is vital to
employ the proper method for identifying them. Two main methods are typically
employed, namely Random Search [35] and Grid Search, both answering to different
needs.

• Random search defines a search space as a bounded domain of hyperparameter
values and randomly sample points in that domain.

• Grid search defines a search space as a grid of hyperparameter values and
evaluate every position in the grid.

The former is typically preferred in Deep Learning due to the long training time
requested for each trial.

Figure 2.9: Random Search and Grid Search. Image retrieved from [35].
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2.5 Learning categories
Once described how Convolutional Neural Networks work, it is crucial to distinguish
between the various learning paradigms. In fact, any artificial intelligence algorithm
is primary categorized based on the data it receives and on the way it learns. There
are several categories and notations, but the three most common possibilities are:

• Supervised learning: the training data contains the annotations (i.e. the
desired outputs), therefore the weights will be adjusted in order to minimize
the training errors.

• Unsupervised learning: the training data does not contain annotations, and
the weights will be updated based on the features extracted from the data.

• Reinforcement learning: this is a more recent paradigm, whose goal is to
mimic how humans learn. The annotations are known and they are leveraged
in order to provide feedbacks to the model. If it makes correct predictions, it
will receive a reward, otherwise it will receive a penalty.

This study is focused on two supervised learning tasks, namely semantic segmen-
tation and classification. Our primary objective is to classify whether a lesion
is benign or malignant, receiving the raw 3D image provided from a Dedicated
Breast-CT scan. However, the classification task may benefit from further infor-
mation. Hence, we decided to provide the annotation of the lesions as a second
input. To do so, we employed a semantic segmentation pipeline, whose goal is
to label each pixel (or voxel, in 3D) of an image with its corresponding class. In
order to clearly understand the underlying pipelines, they are both explained in
the following sections.
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2.6 Semantic segmentation
Semantic segmentation is the process of assigning to each pixel (or voxel, in 3D)
in a given image, a class label. Therefore, in order to segment medical images,
region of interests (ROIs), or volume of interests (in 3D) from image data must first
be extracted, and then possible sections of the anatomy needed for the proposed
study must be identified. This task is time and resource consuming, and many
improvements have been made over the years. This is an essential task in breast
cancer imaging because it allows to extract the annotation of the lesion in an
automatic or semiautomatic way. Other than tumor segmentation, this task can
be also used in more complex scenarios like the segmentation of organs, that has
to deal with more labels and tighter borders.

Figure 2.10: Segmentation pipeline. The 3D images acquired by a Dedicated
Breast CT scan will be given as input to a semantic segmentation architecture,
whose goal is to find the lesion mask.

The simplest scenario requires a binary segmentation towards a 2D image, whereas
for example it is required to segment the presence or the absence of tumoral mass.
This achieved state of the art results over years. However, just a few studies
have been published on three-dimensional images like DB-CT scans. Obviously,
it appears clear that introducing one more dimension introduces more room for
errors as well, because the more voxels there are in the image, the more potential
misclassifications we may have. Despite this preliminary observation, another
limitation is given by modern model capabilities of segmenting 3D images. From
Deep Learning theory we know that the bigger is the dimensional space, the more
images the model will require in order to generalize on unseen data. This constraint
is even more important in medical applications, whereas on average the available
datasets contains just hundreds of training examples. For this reason, multiple
workarounds have been proposed in order to deal with 3D segmentations. The first
one decompose a 3D segmentation into multiple stacked 2D segmentations. For
example Zhang Q. et al [36] considers for each slice all three anatomical planes and
use them to train 2D CNNs. Finally, the segmentation outputs from the different
views are stacked in order to obtain one final 2.5D output.
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Figure 2.11: Overview of 2.5D segmentation proposed in [36].

Alternatively, if the segmentation is just an intermediate step of a classification
pipeline, it would be possible to neglect the 3D information and to leverage it
just for creating a bigger 2D dataset. In particular, the "9-views" approach [37]
converts the whole 3D dataset into a 2D one by extracting nine 2D patches from
each CT-image, each one parallel to one of the nine symmetry planes of an ideal
cube.

Figure 2.12: Overview of the 9-views approach for shifting from a 3D dataset to
a 2D one. Image retrieved from [37].
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2.7 Classification
In Machine Learning, classification is the process of predicting a discrete variable
(e.g. disease, no disease) given a set of labeled observations, called training data.
Therefore, the algorithm will detect and learn patterns from the labeled data
that will leverage to make inference on unseen one. Considering a simple binary
classification problem, we can mathematically formalize it as follows: given a set of
n training observations D

D = {(x1, y1), ..., (xn, yn)} yi ∈ {0,1} ∀i ∈ [1, n] (2.1)

we aim to compute the probability of yt being one of the possible choices (0,1)
and picking the highest probability for unseen data. In simple terms, we aim to
label new observations with their most likely classes, based on what the algorithm
learned during training.

A classification problem can be approached in many ways. A significant distinction
could be given from the underlying input data. In fact, in medical imaging, starting
from the same input image, we can proceed in three different ways:

• Tabular data. In medical imaging, tabular data is often associated with
radiomics, describing the extraction of mineable features from medical images
through data-characterisation algorithms [38]. Typically we seek for shape,
texture and radial features. These features will be then used to fed a Machine
Learning algorithm that will predict whether the tumor is benign or malignant.
This was the traditional approach before the advent of Deep Learning, but
despite its simplicity it is still widely used because of its explainability of the
results.

Figure 2.13: Overview of the radiomics pipeline.
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• Image data. In Deep Learning we are able to deal directly with raw images.
The algorithm will then extract and automatically learn some features that
will be used to infer future predictions. Therefore, the idea is quite similar
but here we are not forcing the algorithm to learn some predefined features.

• Tabular data and image data. It is not uncommon in Machine Learning
to learn from different input sources. There are many ways for combining
them. A possible approach may stack the features automatically extracted
from the image with the manually extracted ones - typically at the last fully
connected layer. Therefore, the algorithm will learn from all the proposed
features. Alternatively, based on the manually extracted features, it would be
possible to train a set of different classifiers and finally average their positive
probabilities. This technique is called ensemble and it also allows to weight
the importance of the independent predictions.

In this study the second approach has been chosen, hence, the proposed classification
algorithm received as input only image data, collected from the Dedicated Breast
CT scans. A graphical representation is reported Figure 2.14.

Figure 2.14: Overview of selected classification pipeline. The classification
architecture relies only on image data. In particular, the raw images of the breast
will be acquired from a Dedicated Breast-CT scan, and optionally, the classification
architecture may benefit from the tumor masks. They can be either produced by a
board-certified breast radiologists or automatically generated by a segmentation
architecture.
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2.8 Uncertainty in Deep Learning
Uncertainty in Deep Learning represents one of the major obstacles during the
development. The uncertainty may arise from the observations and they may
be reflected on the subsequent model predictions. Fields like biology, physics or
healthcare have a very little tolerance, therefore there is a special need for dealing
with uncertain predictions.
Starting from the definition, we may first distinguish two kinds of uncertainty:
aleatoric and epistemic [39]. The intrinsic stochasticity of the data is referred to
as the aleatoric uncertainty, and it is obvious that it cannot be minimized. On
the other side, the inappropriateness of the training observations is referred to as
epistemic uncertainty. Simply put, the lack of data and understanding is reflected
in the epistemic uncertainty, which may be reduced by including additional training
examples. A visual representation of both uncertainty measures are reported in
Figure 2.15. This uncertainty that comes from the observations will be of course
reflected to our models that need to learn from them. Here we talk about model
uncertainty, and this is what we aim to leverage.

Figure 2.15: Overview of aleatoric and epistemic uncertainty. The former reflects
the stochasticity of the data whereas the latter refers its incompleteness. Image
retrieved from [40].

The epistemic uncertainty also accounts for the model uncertainty, because this
is a type of uncertainty that can be explained if we do not have enough data.
Well established methods for the evaluation of the model uncertainty rely on
Bayesian Neural Networks [41], where each weight is represented by means of
prior distributions other than single values. Going backwards, Bayesian statistics’
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capacity to genuinely quantify uncertainty is a key characteristic. As a result, rather
than focusing on parameter point estimates, it specifies a probability distribution
across the parameters. The hypothesis on the value of each parameter is represented
by this distribution, known as posterior distribution. The Bayes’ Theorem is used
to compute it:

p(w|D) = p(D|w)p(w)
p(D) (2.2)

where, p(w|D) represents the posterior distribution, p(D|w) is the likelihood,
p(w) is the prior distribution (hence, our prior belief) and p(D) is the evidence.
Leveraging the training data we will update the numerator by multiplying our prior
belief with what we observed (likelihood). Therefore, the more data we have, the
less importance will have the prior belief and vice versa. A reliable and accurate
posterior distribution is obtained thanks to the normalizing constant (denominator).
This is referred to as "evidence" or "marginal likelihood."

p(D) =
Ú

p(D|w)p(w)dw (2.3)

In Bayesian Networks, the goal is find a predictive posterior distribution, that
slightly differs from the posterior distribution. In fact, the posterior distribution
can be represented as the distribution of an unknown quantity (treated as a random
variable), whereas the predictive posterior distribution is the distribution for future
predictive data based on the observed ones. This is formalized as:

p(y|D, x) =
Ú

p(y|w, x)p(w|D)dw (2.4)

The previous equation formalizes the so called Bayesian Model Average (BMA) [41].
This allows to obtain a clear measure of uncertainty of the predictions. In fact,
rather than relying only on a single hypothesis (single setting of parameters), we
use all settings of parameters, weighted with their probabilities. However, despite
the robustness of its uncertainty evaluation, this formulation comes out with a
prohibitive cost, therefore this framework is almost never applied on deep networks
with millions or even billions of parameters. In 2015, Gal et al [42] proposed the
Monte Carlo dropout, an approximation of the Bayesian Inference. This paper
demonstrated that dropout applied before every weight layer is mathematically
equivalent to a Bayesian approximation of the Gaussian process. Therefore it can
be considered as a cheap but still effective alternative to the Bayesian Inference.
This will be explained more in detail in Chapter 2.
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Chapter 3

Materials and methods

3.1 Datasets
A total of 542 biopsy-proven breast masses (181 benign, 343 malignant) were
imaged from 409 women with an average of 50 years, and organized into five
independent datasets (Table 3.1), acquired from different institutions. The images
were collected with a clinical Breast CT system, following the CBBCT protocol
described in [43]. The ANT200200 power injector was used to administer 90ml
of Iohexol intravenously to the patients. Based on the density and volume of the
tissue, the scans were taken 120 seconds after the injection using an X-ray voltage
of 49kV p and current ranging from 50 to 80mA. Patients may receive radiation
doses averaging between 11.46 and 14.68mGy, while larger doses may be given for
areas with exceptionally thick tissue. Finally, an isotropic reconstructed volume
with voxel sizes of 0.2733mm was used to generate the 3D reconstruction of the
breast.

Table 3.1: Overview of the available data.

Dataset Benign Malignant Total
A 41 79 120
B 89 53 142
C 27 111 138
D 0 93 93
E 24 25 49

Total 181 361 542
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A 3D volume of interest (VOI) of 3.5cm per side was placed around each mass,
covering the 95th percentile of all the masses. Moreover, they were all manually
annotated in 3D by board-certified breast radiologists. Some examples of available
masses within our datasets are reported in Figure 3.1.

Figure 3.1: Coronal views extracted from different DB-CT scans acquired on
different patients. (a) shows benign masses whereas (b) shows malignant masses.

(a) Benign (b) Malignant
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As described in Table 3.1, dataset D contains only 93 malignant masses, introducing
an heavy imbalance towards the malignant class, either in training and validation or
in testing. This imbalance heavily affects the classification task whereas it doesn’t
affect the segmentation since we are only interested on the tumor shapes. Usually,
the imbalance is mitigated by over-sampling the majority class through synthetic
images or by under-sampling the minority class. However, since the study is focused
on the uncertainty evaluation of the model outcomes, we decided to not inject
synthetic images and to not remove important samples. Therefore, this malignant
dataset (D) was chronologically halved, generating two smaller datasets (D1,D2) of
50 and 43 masses, respectively. Other than mitigating the imbalance, this choice
was made in order to produce a more robust study on the uncertainty measures,
evaluating the model behaviours on a consistent and less imbalanced number of
positive and negative samples. The data was then split in training, validation
and test set (Table 3.2). Four folds were chosen for training and validation (A, C,
D2, E) and two folds were chosen for testing (D1, B). In order to select the best
architecture and its hyperparameters, 88 masses were sampled without replacement
from the training folds, keeping the same malignant/benign training ratio.

Table 3.2: Data split used for all the following experiments. The training and
validation set contains 350 masses (92B,258M). The validation set was obtained
extracting 88 masses without replacement keeping the same malignant/benign
training ratio (23B,65M). The test set contains 192 masses (89B,103M).

.
Dataset Benign Malignant Total

Train and val A 41 79 120
C 27 111 138
D2 0 43 43
E 24 25 49

Test B 89 53 142
D1 0 50 50

Finally, once the best models and hyperparameters have been found, the perfor-
mances were compared with another data configuration. Starting from the five
independent datasets reported in Table 3.1, a five-fold cross validation approach
was used for making inference across all the patches. In this way, each indepen-
dent dataset was iteratively used for testing, while training on all the remaining
ones. This allows to evaluate the model performances on a more complex and
generalizable scenario.
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A peculiarity difference between benign and malignant masses is that on average
the malignant ones [44] are bigger than the benign ones. This is also motivated
by a more rapid growth in the malignant masses. We observed the same trend
while looking at our benign and malignant volume masses. This difference may
affect the semantic segmentation task, because small masses could be subject to
an high variance, obtaining less accurate predictions. In Table 3.3 it is possible
to observe the significant difference between benign masses whereas in Figure 3.2
it is reported their relative distribution, slightly affected by the higher number of
malignant masses (almost three times the number of benign ones).

Table 3.3: Numerical analysis of tumor volumes on both benign and malignant
training masses.

Benign [cm3] Malignant [cm3]
mean 1.40 4.11
std 2.91 6.75
min 0.02 0.03
25% 0.13 0.62
50% 0.28 1.57
75% 0.89 4.26
max 13.7 42.67

Figure 3.2: Distribution of tumor volume for benign and malignant training
masses.
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3.2 Data preprocessing
The initial VOIs of 3.5cm per side were first resized for computational reasons,
halving the final dimensions (1.7cm). Therefore, we shifted from an image of
128 × 128 × 128 voxels to 64 × 64 × 64 voxels. The voxel distribution examined on
a sample of 50 random training images is showed in Figure 4.9 and it highlights
a total range of [−1566,944] and a mean equal to −48.37 ± 216.31. These voxel
values represent Hounsfield units (HU), a dimensionless unit used for CT:

HU = 1000 × µ − µwater

µwater − µair

(3.1)

where µ is the measured linear attenuation and µwater and µair are the linear
attenuation coefficients of water and air, respectively. Values like −1000 or lower,
represents the radiodensity of the air, whereas on breast CT high values like 500
or higher, represents the radiodensity of foreign body (i.e. any object originating
outside the body). Therefore, based on the voxel value distribution reported below,
they were clipped in the range [−250,200]. Subsequently, each mass was normalized
in the range [0,1] to speed up and stabilize the neural network training.

Figure 3.3: Voxel distribution over a random sample of 50 training images. The
blue dashed lines represent the cut-off region ([−200,250]) considered during the
preprocessing step.
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Lastly, new synthetic masses were added to our dataset, obtained by randomly
shifting the centroid of each mass. This allows to double the dataset, making
the models more robust because of the inclusion of not-centered masses. Some
examples of masses and relative random shifts are reported in Figure 3.4.

Figure 3.4: Coronal view of four different masses and their relative random shifts.
The red dot aims to highlight the difference between the initial and the shifted
centroids of the masses. The first two columns show benign masses (A,B) whereas
the last two columns show malignant masses (C,D). The red dots represent the
centroids of the CT scan (above) and the centroid of the randomly shifted CT scan
(below).
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3.3 Semantic segmentation architectures
This section reports the evaluated architectures for the proposed semantic segmen-
tation task. In particular, two main architectures were tested: 3D UNet [45] and 3D
UNet++ [46]. Previous works on UNet and its variants show outstanding results
on mammograms [47], whereas just a few studies were performed on dedicated
breast CT scans [48, 49] and none of them used a fully 3D UNet architecture.

3.3.1 UNet
UNet [45] is a segmentation architecture proposed specifically for biomedical image
segmentation, and it soon became the most popular approach in the field. The
"U" states for its U-shaped structure, in fact this is a U-shaped encoder-decoder
architecture, with four encoders and four decoders connected via a bridge. In
contrast to the decoder path, which doubles the spatial dimension while halves
the number of filters, the encoder path reduces the spatial dimension by half
and increases the number of filters. The UNet architecture is considered as a
mere improvement of the previous Fully Convolutional Network [50]. This has
been modified in order to work effectively also with few training images, that is a
peculiar characteristic of medical imaging datasets. Using a series of downsampling
operations followed by a single upsampling layer, the Fully Convolutional Network
(Figure 3.5) classifies the picture at pixel level. It did this by removing all Fully
Connected Layers. The UNet’s initial proposal for improving this architecture
made use of the upsampling backbone. Since there are more feature channels in
this area, context information may be propagated to higher resolution layers.

Figure 3.5: Overview of the Fully Convolutional Network, the predecessor of
the UNet. It uses only convolutionanl layers and it is characterized by a set of
downsampling and one upsampling operations. Image retrieved from [50].
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The UNet architecture is illustrated in Figure 3.6. There are two main components:
a contractive path on the left (as in the FC Network) and an expansive path on
the right. The former consists of an iterative adoption of two 3 × 3 convolutions
followed by a ReLU and 2 × 2 max pooling for downsampling, while doubling the
channels. Each layer on the expansive path will upsample the previous feature
maps and will employ a 2 × 2 up-convolution that halves the feature channels and
concatenate the information of the relative contractive path, followed by two 3 × 3
convolutions and ReLU. The final layer is a 1 × 1 convolution in order to map each
component feature vector to the desired number of classes. In order to leverage the
Monte Carlo Dropout, two dropouts having probability 0.2 were introduced after
the bottleneck (lowest level) and after the final convolution.

Figure 3.6: Overview of UNet architecture. The expansion path is on the right,
while the extraction path is on the left. The grey operator completes the information
flow by acting as a bridge between the networks of encoders and decoders. Image
retrieved from [45].
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3.3.2 UNet++
The UNet++ [46] showed in Figure 3.7 is one of the many UNet variants proposed
over the years. Likewise UNet, it is an encoder-decoder based network. The novelty
is given by the set of nested and densely connected skip pathways, that connect
encoder and decoder. They aim to fill the semantic gap between the feature maps
produced on both encoder and decoder. Compared to a UNet [45], it is different
for three main reasons:

• Convolutions can be found on the skip paths. This enables the feature maps
of the encoder to be improved before being combined with the decoder layers.

• The dense skip connections on the pathways enhance the gradient flow.

• There is a deep supervision, enabling model pruning.

On the skip pathways, each convolution layer is preceded by a concatenation
layer that merges the output from the previous convolution layer of the same
dense block with the corresponding up-sampled output of the lower dense block,
likewise DenseNets. Despite the naive 3D implementation of the architecture, two
Dropout layers with probability of 0.2 were added after the bottleneck (between
downsampling and upsampling) and after the last layer. This is necessary, based
on the Monte Carlo approximation of the Bayesian inference.

Figure 3.7: Overview of UNet++ architecture. The left hand path is the extraction
path whereas the right one is the expansive path. The grey operator is a bridge
that connects the encoder and the decoder networks and completes the flow of
information. Image retrieved from [46].
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3.3.3 Hyperparameters
The first decision that had to be made related to the number of down-sampling
and up-sampling levels for both UNet and UNet++. It appears clear that a deeper
architecture may capture more information but the training time and the memory
requirements would increase exponentially. Based on our available computational
resources, we were able to fit our batches in memory with two and three layers.
Once selected the number of levels that maximized our memory consumption
(3), we were ready to look for the best combination of hyperparameters on the
validation set. The batch size was fixed to 2 in order to fill enough data in memory
without overlapping its maximum capacity. Due to the significant training time
required for this task, a random search approach [35] was selected in place of a grid
search approach. Therefore, rather than looking for every possible combination of
hyperparameters (i.e. exhaustive approach), we evaluated the model performances
just on some random combinations of hyperparameters, tweaking a bit more the
most relevant ones, like the learning rate and the learning rate decay. Once the
best configuration for the validation set was found, it was used to train again the
model on the whole training and validation set. This final model was then used to
make predictions on the selected test dataset, never encountered during training,
ensuring a completely unbiased model.
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3.4 Classification networks
This section reports the investigated architecture devoted to the classification task,
namely 3D Residual Networks (ResNets) and 3D Dense Convolutional Networks
(DenseNets). These architectures already achieved promising results on x-ray [51]
and CT images [52, 53]. Like we already mentioned for the segmentation task, also
for classification purposes the vast majority of available applications proposed are
focused on plain 2D pipelines, and just a few of them are focused on fully 3D ones.

3.4.1 Residual Networks
Deep convolutional neural networks extract features from low-level (at shallower
layers) to high-level (at deeper levels), therefore increasing the number of layers
seems to be the best way to improve performance. However, stacking too much
layers presents two side effects.

• Since the gradient must be back-propagated till the first layer, the chain of
multiplications could make the gradient value close to zero. This phenomenon
is called vanishing gradient and it was first partially solved through Highway
networks [54].

• It has been observed that as we increase the network depth, accuracy gets
saturated and therefore deeper networks lead to higher training error [55].

Residual Networks were proposed in 2015 by He et al. [55] in order to solve
the previously described issues. The authors introduced an “identity shortcut
connection” that skips one or more layers, as showed in Figure 3.8.

Figure 3.8: (A) Degradation problem and (B) Residual Blocks. Image retrieved
from [55].
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The Residual block is defined as G(x) = F (X) + x, where x is the identity.
The benefit of including this kind of skip connection is that it will regularize
any layer that degrades the architectural performance. The authors claim that
because stacking identity mappings in the network won’t affect performance, deeper
designs should produce errors that are equivalent to those of their shallower
counterparts. The original paper propose different variants based on the number
of layers: ResNet18, ResNet50, ResNet101 and ResNet152, and they have been
all tested with our dataset except for the ResNet152 due to its computational
complexity. Moreover, a dropout with probability 0.2 was used after every layer of
the architecture in order to regularize the training procedure and to leverage the
Monte Carlo dropout.

3.4.2 Dense Convolutional Networks
Dense Convolutional Networks [56] were proposed for solving the vanishing gradient
and the performance degradation for deep architectures, like Residual Networks.
However, they bring some further improvements. ResNet uses an additive method
that merges the previous layer (identity) with the future layer, whereas DenseNet
concatenates the output of the previous layer with the future layers. This is
graphically summarized in Figure 3.9.

Figure 3.9: ResNet (above) vs DenseNet (below). Image retrieved from [57].
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In order to improve model compactness, the number of feature-maps is then
reduced at the so called "transition layers" (Figure 3.10), composed by convolution
and pooling layers. This is just a simple yet effective way for downsampling the
representations calculated by each dense block.

Figure 3.10: Introduction of transition layers between dense blocks. Image
retrieved from [57].

The paper claims that Dense Convolutional Networks bring four important im-
provements [56].

• The impact of the vanishing gradient can be reduced by immediately propa-
gating the error signal to earlier levels, obtaining therefore a stronger gradient
flow.

• Compared to a ResNet having C ×C parameters (C is the number of channels)
a DenseNet has a number of parameters proportional to l × k × k, where l is
the number of layers, k is the growth rate and it is much smaller than C.

• There is a more diversified set of features because each layer receives input
from all its previous layers.

• The classifier uses features of all complexity levels, obtaining smoother decision
boundaries.

The officially proposed DenseNets variants are DenseNet 121, 160, 201 and 264,
where the associated numbers represent the number of layers in the neural network.
For example, in a DenseNet121, the 121 comes from the following calculation:

5 + (6 + 12 + 24 + 16) × 2 = 121 (3.2)
where 5 is referred to the number of convolution and pooling layers, (6,12,24) are
for the three transition layers, 16 is for the final classification layers and 2 represents
the number of layers on each dense block (1 × 1 and 3 × 3, respectively).
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However, due to the heaviness of 3D classification architectures and the relatively
small dataset, some smaller variations (Table 3.4) were tested. Moreover, in order
to regularize the training procedure and to leverage the Monte Carlo dropout at
inference time, a dropout of 0.2 was added after every dense block.

Table 3.4: Overview of the DenseNet variants tested on our study.

Name Dense blocks and layers Grwoth rate
DenseNet15 (3,3) 16
DenseNet22 (3,3,3) 16
DenseNet28 (3,6,3) 16
DenseNet41 (3,6,6,3) 16

3.4.3 Hyperparameters
As for the previous experiments in the semantic segmentation task, a first train-
validation split was used in order to find the best architecture and hyperparameters.
First, with a fixed combination of hyperparameters we evaluated the baselines
of each architecture reported in the previous section. The one obtaining the
highest performances on the validation set was chosen and used as a reference
for selecting the best combination of hyperparameters. Therefore, for the same
motivations as before, a Random Search approach was chosen for computational
reasons, requiring less time for completing all the necessary experiments. Finally,
once the best architecture and relative hyperparameters were find, these are used to
train again the model across all the training and validation data and the final model
performance were evaluated on the test set, never encountered during training.
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3.5 Evaluation metrics
The main goal of any machine learning model is to sufficiently learn from the
training data and to generalize to some extent on unseen data. While analyzing
the model performances, it is important to consider both variance and bias of the
results. The variance shows the variability of the predictions, whereas the bias
is the difference between the average forecast of our model and the true values
that we are aiming to predict. Finding the adequate balance is an hot topic in the
literature and it is known as bias-variance trade-off.

This goes hand in hand with another trade-off: underfitting and overfitting. Over-
fitting happens when the models learn very well from the training set but they are
not able to generalize enough on unseen data, therefore a small variation on the
data will cause an high variation on the prediction (high variance). This is well
summarized in Figure 3.11. On the other way around, underfitting means that
the model is not even able to learn from the training set (high bias), therefore it
suggests to include more data (if possible) or to include additional features that
better reflect the underlying problem.

Figure 3.11: Visual representation of Overfitting and Underfitting in machine
learning models. The main goal is to balance between bias and variance in order
to guarantee satisfactory performances. Image retrieved from [58].
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3.5.1 Classification
Classification is the task of predicting a discrete variable. A binary classification
problem has to choose between two outcomes, typically positive and negative. We
aim to predict whether a tumor is benign (class 0) or malignant (class 1). Therefore,
based on the correctness of the predictions, we may distinguish between:

• True Positive (TP): the instance was predicted as positive (1) and it belongs
to that class.

• True Negative (TN): the instance was predicted as negative (0) and it belongs
to that class

• False Positive (FP): the instance was predicted as positive but it does not
belong to that class.

• False Negative (FN): the instance was predicted as negative but it does not
belong to that class.

Based on these previous definitions, four main metrics are used for binary classifi-
cation problems:

• Accuracy:

Accuracy = TP + TN

TP + TN + FP + FN
(3.3)

• Precision:

Precision = TP

TP + FP
(3.4)

• Recall:

Recall = TP

TP + FN
(3.5)

• F1-score:

F1-score = 2 × Precision × Recall
Precision + Recall (3.6)
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The four possible outcomes (TP,TN,FP,FN) are often associated with the represen-
tation of the confusion matrix - showed in Figure 3.12 - whose rows represent the
predicted values and the columns represent the actual ones. For a binary classifica-
tion problem this is a 2 × 2 matrix having only the elements 0,1 (i.e. the possible
classes). Based on the definition of the previously described evaluation metrics,
the accuracy is defined as the first diagonal over the total number of observations
whereas precision and recall are defined as the number of True Positives over the
values in the first row and first column, respectively. Obviously, the Confusion
Matrix could be extended to non-binary problems by simply having number of
rows and columns equals to the number of classes, and the described metrics will
still hold in the same way.

Figure 3.12: Confusion Matrix for a binary classification problem. The rows
represent the predicted values whereas the columns represent the actual ones

Predicting whether a tumor is malignant or benign is an extremely delicate task.
Ideally, the goal would be to maximize the recall (i.e. minimize the number of FNs),
in order to not let go home people with a potential dangerous cancer. On the other
hand, maximizing only the recall is often associated with a really low precision,
so with an higher number of FPs. This means that biopsies will be employed to
a lot of people that have no cancer. Therefore, it may be ideal to maximize the
F1-score, taking into account both precision and recall. The f1-score is preferred
while dealing with imbalanced datasets, because precision and recall take into
account both classes, whereas the accuracy only rely on the correct predictions.
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Another evaluation metric considered in this study is the Area Under the Receiver
Operating Characteristics Curve (AUROC), or simply AUC. The Receiver Op-
erating Characteristics is a probability curve and provides a measure of all the
classifier’s performances considering all the possible thresholds in the interval [0,1].
In order to compress all its partial results in a single value, we often refer to the
Area Under the Curve (AUC). Since both axis goes from 0 to 1, the area cannot
be greater than 1. The higher is the value of the AUC, the better will be the
model performances. The ideal scenario sees an AUC of 1, where both TPR and
FPR are 1, meaning that we are able to correctly classify each data point. Using
the Confusion Matrix (Figure 3.12) as a reference, the ROC curve is obtained by
plotting the True Positive Rate (Equation 3.7) against the False Positive Rate
(Equation 3.9):

True Positive Rate/Recall/Sensitivity = TP

TP + FN
(3.7)

Specificity = TN

TN + FP
(3.8)

False Positive Rate = 1 − Specificity = FP

TN + FP
(3.9)

Figure 3.13: Examples of AUC curves. An high AUC (close to 1) means good
separability of the classes. An AUC of 0.5 means no separability of the classes and
it is typically associated with a random classifier. A low AUC (close to 0.0) means
that the model is actually inverting the outcomes. Image retrieved from [59].
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As anticipated in Figure 3.13, the AUC is also interpreted as the "degree of
separability" for the two classes, assessing the model’s capacity to discriminate
between the two classes under consideration. An AUC of 0 therefore indicates that
all predictions are incorrect and that the classes are genuinely "inverted", whereas
an AUC of 1 indicates that all predictions are accurate and that the classifier is
fully capable of differentiating between the two classes. An AUC of 0.5, on the
other hand, indicates that there is no separability between the classes, leading to
the appearance of overlap. Anyway, the usage of a point-wise metric like Accuracy
et simila rather than the AUC is often argued for many reasons:

• Point-wise metrics are fairly more interpretable compared to the AUC, that
requires a bit more logic and understanding behind.

• Data imbalance affects accuracy, however it is much less noticeable when
using the F1-score. However, because it uses raw probability rather than just
forecasts in certain circumstances, the AUC may be chosen.

• Using raw probabilities, the AUC appears to be definitely more robust. In
fact, with point-wise metrics a probability of 0.51 will be directly translated
as class 1, whereas with AUC it will be equally weighted.

To conclude, they both have their pros and cons. If the explainability is a priority,
it would be ideal to use simple metrics. But if the priority is to have reliable and
robust outcomes, a model evaluation through the Area Under the Curve (AUC)
should be preferred. Our priority was a robust evaluation of the model performances,
therefore we chosen to maximize the AUC during all our classification tests.
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3.5.2 Semantic segmentation
Semantic segmentation is the task of classifying each voxel of the the given 3D
images, therefore its evaluation requires to deal with voxel-wise metrics. In partic-
ular, our study uses binary annotation for the tumor masks, having class 1 for the
tumor and class 0 for every other voxel (background). Some of the most widely
used performance metrics in medical image segmentation include the Dice score
and Jaccard index (also known as Intersection over Union) [60, 61, 62]. They both
compare the segmentation of a model’s output to the reference mask, ranging from
0 (poor segmentation) to 1 (perfect match). Mathematically, they are defined as:

DSC = 2|X ∩ Y |
|X| + |Y |

, Jccard = IoU = |X ∩ Y

|X ∪ U |
(3.10)

When applied to boolean data, using the definition of true positive (TP), false
positive (FP), and false negative (FN), they can be rewritten as:

DSC = 2TP

2TP + FP + FN
, Jccard = IoU = TP

TP + FP + FN
(3.11)

In Figure 3.14 there are reported three examples of Dice and IoU outcomes. The
main difference between the two metrics is that the IoU penalizes under- and over-
segmentation more than the DSC. Hence, the Dice score is prone to get something
like the average performances, while the IoU is more conservative and is closer to
the worst performances. For this reason, on our study we tried to maximize the
Dice score rather than the Jaccard Index.

Figure 3.14: Examples of Dice scores and Jaccard Index (IoU). Image retrieved
from [63].
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3.6 Monte Carlo Dropout
Gal et al [42] proposed in 2015 the Monte Carlo dropout, an approximation of
the Bayesian Inference. The standard dropout [64] randomly inactivates neurons
in a given layer with probability p and this is usually applied during training in
order to reduce the overfitting and regularize the learning phase. The Monte Carlo
dropout, on the other hand, approximates the behaviour of Bayesian inference by
keeping the dropout activated also at inference time. It has been showed to be
equivalent to drawing samples from a posterior distribution, allowing therefore a
sort of Bayesian inference. In fact, for every dropout configuration Θt we have a
new sample from an approximate posterior distribution q(Θ|D). Therefore, the
model likelihood becomes:

p(y|x) ≃ 1
T

TØ
t=1

p(y|x, Θt) s.t. Θt ∼ q(Θ|D) (3.12)

where the likelihood of the model can be assumed for simplicity to follow a Gaussian
distribution:

p(y|x, Θ) = N (f(x, Θ), s2(x, Θ)) (3.13)

where f(x, Θ) represents the mean and s2(x, Θ) represents the variance.

Figure 3.15: Illustration of the Monte Carlo Dropout. A set of N inferences with
dropout activated provides N different model configurations and slightly different
outcomes. The uncertainty will be estimated afterwards through a statistical
analysis performed on the output, called Monte Carlo samples.
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Each dropout configuration yields a different output by randomly switching neurons
off (the ones with a red cross) with each forward propagation. Multiple forward
passes with different dropout configurations yield a predictive distribution over the
mean p(f(x, Θ)). As illustrated in Figure 3.15, once a set of N Monte Carlo samples
has been drawn for the same instance, a predictive distribution can be observed.
The variability of these predictions could be leveraged in order to quantify the
model uncertainty. In the following subsections there are explained the uncertainty
measures used for both classification and segmentation tasks.

3.6.1 Semantic segmentation
In 3D semantic segmentation problems we have to classify each voxel of our image,
expecting two classes, 0 (background) and 1 (tumor). As suggested by previous
works [65], a total of 15 inferences with dropout activated was used as approximation
of the Bayesian inference. This apparent low number was also justified by an higher
inference time required for the fully-3D segmentation. Finally, these 15 outcomes
for each test mass were leveraged in order to correlate the uncertainty with the
segmentation performances. This was fairly argued in the research and different
results were obtained over the years.

Figure 3.16: Illustration of the uncertainty pipeline for the semantic segmentation
task. Once the model is trained on the whole training and validation set, the
weights and biases are frozen and they are used to inference 15 times over the test
data, with dropout activated. This brings out 15 different model configurations
that will produce similar (and not exactly equal) outcomes. These outcomes will
be then leveraged for evaluating the uncertainty through mass-level ones metrics.
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The goal of this analysis is to prove that bad performances are correlated with an
high uncertainty. Therefore, in clinical settings, we should be able to remove these
uncertain predictions and to look for a human feedback. As a side effect, the model
performances increase and of course, it will be definitely more robust and reliable.
Steffen Czolbe et al. [66] claimed that using segmentation uncertainty estimates in
order to exclude uncertain masses did not outperform a random strategy. However,
Roy et al [65] proposed several mass-level uncertainty metrics that appeared to be
highly correlated with the accuracy, in deep whole-brain segmentation. Therefore,
we decided to measure their effectiveness also on breast-cancer segmentation. In
particular, we explored the correlation between the Dice score and three mass-level
uncertainty measures: Intersection over Unions (IoUs), mean Dice over pairs of
MC samples and sum of voxel-wise variance.

• Intersection over union (IoUMC
S ) across all MC samples S [65].

IoUS = |(S1 = s) ∩ (S2 = s) ∩ ... ∩ (S15 = s)|
|(S1 = s) ∪ (S2 = s) ∪ ... ∪ (S15 = s)| (3.14)

• Average Dice score (dMC
S ) over all pairs of MC samples si [65].

dMC
S = E[{Dice((Si = s), (Sj = s))}]i /=j (3.15)

• Sum of voxel-wise variance σ2
S

MC across all MC samples si.

σ2
S

MC =
Ø
i,j,k

σ2
ijk (3.16)

The previously described evaluation metrics are graphically represented in Figure
3.17, considering only three Monte Carlo samples. For the sake of completeness, the
results obtained with dropout deactivated were compared with the ones obtained on
the rounded average probabilities between all the Monte Carlo samples. Obviously
we expect to observe comparable performances, with a low variance. This is
because we only used two dropout on the proposed architecture with a relatively
low probability value (0.2), therefore the Monte Carlo model configurations will
not heavily differ among each other.
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Figure 3.17: Illustration of the mass-level uncertainty metrics for the semantic
segmentation task. They will be used against the Dice score in order to detect a
potential correlation.

3.6.2 Classification
For the given classification task, the model will produce the probabilities that a
given CT image presents a benign or malignant tumor, represented by classes 0
and 1, respectively. Therefore, for any test mass, the model will produce p0(x) and
p1(x). Since the total probability has to be 1, p0(x) can be also seen as 1 − p1(x)
and vice versa. Regarding the Monte Carlo pipeline, thanks to a low inference time
compared to the segmentation one, 100 inferences with dropout activated are used
in order to leverage the uncertainty information.
The aggregated predictions were considered as the rounded average of the positive
probabilities. Moreover, due to the limited outcome information obtained through
a classification task, the uncertainty was evaluated only through the variance (σ2)
of the positive probabilities, defined from the following equation:

σ2 =
q100

i=1(pi − p)
100 (3.17)

where pi represents the probability of the positive class for the ith Monte Carlo
sample and p is the average probability across the all Monte Carlo samples.
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Figure 3.18: Illustration of the uncertainty pipeline for the classification task.
Once the model is trained on the whole training and validation set, the weights
and biases are frozen and they are used to inference 100 times over the test data,
with dropout activated. This brings out 100 different model configurations that
will produce similar (and not exactly equal) outcomes. These outcomes will be
then leveraged for evaluating the uncertainty through their variance.

3.7 Pipeline
This section provides an overview of all the intermediate steps necessary to achieve
the desired results. The ideal architecture has been selected on a standard baseline
with a predefined set of hyperparameters for both the classification and regression
tasks. The architectures achieving the best validation performances, were then
improved using a Random Search technique to find the ideal set of hyperparameters.
They were both then retrained on the whole training and validation set (Table 3.2),
drawing conclusions from the independent set. Finally, in order to investigate the
uncertainty of models’ predictions, 100 and 15 inferences with dropout activated
were performed on the classification and segmentation task, respectively. The
results were subsequently used for inspecting the mass-level uncertainties with the
previously described metrics, and the default performances were compared to ones
obtained excluding potentially uncertain masses from the dataset.
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Results

This chapter reports all the most relevant results. The first two sections are focused
on the segmentation and classification experiments, respectively, following the
pipeline described in the previous chapter. In addition to what has been already
anticipated, the classification pipeline proposes three different benchmarks: one
having only the CT scans as inputs, one with both CT and manual annotation of the
lesion, and one with both CT and segmented mask obtained with the best semantic
segmentation architecture. The third section focuses on the evaluation of the model
uncertainty, where the main objective was to find a correlation between uncertainty
and bad performances, in order to exclude the uncertain masses at inference time
improving the final performances, and even more importantly, obtaining reliable
outcomes. Finally, the fourth and last section proposes an ablation study that
stressed the models performances on a completely independent, unbiased and more
generalizable scenario.

4.1 Semantic Segmentation
The first experiments are devoted to the semantic segmentation task. Two main
architectures were initially compared, namely UNet and UNet++. While dealing
with any UNet variant, the choice of the number of downsampling and upsampling
levels is crucial in terms of complexity and performances. A shallow architecture is
faster to train but less able to capture high level features, whereas a deeper archi-
tecture is better in terms of performances but definitely more resource consuming.
With a batch size of 2 we were able to run both UNet and UNet++ with at most
3 downsampling an upsampling layers. However, even with a lower batch size it
was not possible to fit in memory the UNet++ with four levels. Then, in order
to select the most appropriate number of downsampling and upsampling levels, a
fixed set of hyperparameters was used, and they are reported in Table 4.1.
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Table 4.1: Default hyperaparameters selected for the architectures’ baselines.

Hyperparameter Value
Epochs 30
Learning rate 0.001
Optimizer Adam
Loss Dice loss
Learning rate decay Constant

Figure 4.1: UNet and UNet++ performances for different downsampling and
upsampling levels. The UNet++ with 3 levels is the one achieving the highest
performances on the validation set.
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The three-levels UNet++ achieved the best results on the validation and therefore
it was chosen for the following steps. Through a random search approach, different
learning rates, learning rate decays, losses and optimizers were tested. The best
configuration (reported in Table 4.2) appeared to be close to one proposed as
default, confirming the state of the art optimizer and loss function for semantic
segmentation purposes in medical imaging.

Table 4.2: List of best hyperaparameters obtained for the three-levels UNet++
through a random search approach.

Hyperparameter Value
Epochs 30
Learning rate 0.0001
Optimizer Adam
Loss Dice loss
Learning rate decay 0.1 every 10 epochs

The final settings were used to train the model on the 350 training and validation
masses (92B,258M) achieving an average Dice score of 0.79 ± 0.20. In Figure 4.2 it
is possible to observe that the malignant masses are the ones achieving the highest
Dice scores and most bad segmented masses are benign. In fact, the performances
are slightly affected by 9 benign masses (Figure 4.4) having Dice score below 0.2.

Figure 4.2: Histplot of the Dice scores obtained on the segmented masses from
the independent test dataset.
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Focusing on these critical lesions, it is possible to notice from Figure 4.3 that all
of them are really small. However, there are also a lot of small masses having an
high Dice score, therefore this may suggest that the volume may be not strictly
correlated with the model performances.

Figure 4.3: Scatterplot of Dice score of predicted masks against the volume of
the true masks.

Figure 4.4: Coronal view and manual annotation (red line) of the 9 benign masses
having Dice score below 0.2.
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4.2 Classification
The second analysis is devoted to the classification task, whereas our objective
is to maximize the Area Under the Receiver Operating Point. Therefore, we
first evaluated a baseline between all the proposed architectures with a fixed set
of hyperparameters described in Table 4.4. The architectures involved in this
preliminary analysis are the ones fairly used in classification tasks for medical
imaging: DenseNet15, DenseNet22, DenseNet28, DenseNet41, ResNet18, ResNet34
and ResNet50. They where all trained including the preprocessed VOIs and their
relative random shifts in order to include not-centered masses, obtaining a more
robust model. The architecture used for the further hyperparameters tuning was
chosen according to the validation performances and the discrepancy with the ones
obtained on the training set (in order to avoid overfitting), both reported in Figure
4.5 and Figure 4.6. Hence, the best architecture according to the proposed baselines
was the DenseNet28, a DenseNet with three dense blocks, with (3,6,3) dense layers
each, respectively. Afterwards, the best combination of hyperparameters obtained
through a random search approach reflected the default ones. However, the Step
Learning Rate decay - reducing the learning rate by 0.1 every 10 epochs - slightly
improved the overall the performances on the validation set.

Table 4.3: List of hyperaparameters selected for the architectures’ baselines.

Hyperparameters Value
Epochs 50
Learning rate 0.001
Optimizer Adam
Loss Cross Entropy Loss
Learning rate decay Constant

Table 4.4: List of hyperaparameters selected for the architectures’ baselines.

Hyperparameters Value
Epochs 30
Learning rate 0.001
Optimizer Adam
Loss Cross Entropy Loss
Learning rate decay 0.1 every 10 epochs
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Figure 4.5: DenseNets baselines.

55



Results

Figure 4.6: ResNets baselines.
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Finally, the latter configuration was trained for 30 epochs over the all 350 training
and validation masses (92B,258M) and their random shifts. Starting from these
settings, three benchamarks were performed, in order to evaluate the performance
improvement obtained while adding new information.

4.2.1 One channel DenseNet28
The first benchmark leveraged as input only the pre-processed VOIs, obtaining
an AUC of 0.80, with a 95% confidence interval of [0.74,0.87], calculated with
bootstrapping on 2,000 bootstraps.

4.2.2 Two channels DenseNet28 with manual annotations
Using the previously described architecture and parameter settings, we included
the manual annotation of the lesions. This may act as a sort of "attention" for
the proposed algorithm, guiding it towards the extractions of the features within
the lesions, that are not always well recognizable. As expected, the performance
improved, obtaining an AUC of 0.84, (95% CI 0.78 − 0.90).

4.2.3 Two channels DenseNet28 with segmentations
Finally, thinking about a fully-automated pipeline, we evaluated the model perfor-
mances of the two-channels DenseNet28 with the previously obtained segmentations.
With segmentations performances of of 0.79 ± 0.2, the final classification pipeline
obtained an AUC of 0.81 (95% CI 0.75 − 0.87).

Figure 4.7: Overview of the two-channel 3D DenseNet28.
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4.2.4 Statistical difference

The obtained AUCs were graphically reported in Figure 4.8 and their difference
was evaluated through the DeLong test [67], whose null hypothesis is their equality.
According to the results and the p-values showed in Table 4.5, the proposed AUCs
are different, but taking into account the p-values, their difference is not statistically
significant. Therefore the highlighted difference may be due to causality. Obviously,
a bigger test set may provide stronger results.

Figure 4.8: Results obtained on the independent test set obtained the two
channels 3D DenseNet28 with manual annotations (4.8a) and benchmarks with
three different channel configurations of the same architecture (4.8b).

(a) Two-channels 3D DenseNet28, with true
annotations.

(b) Benchmarks of 3D DenseNets on different
channel configurations.

Table 4.5: The results of the DeLong test show that the reference AUCs are
different, but their difference is not statistically significant.

Model A Model B DeLong Z p-value
Two channels

with true masks One channel 1.21 0.13

Two channels
with true masks

Two channels with
segmentations 1.52 0.23
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4.3 Uncertainty evaluation
The third analysis is devoted to the uncertainty evaluation, whose objective is to
find a correlation between uncertainty and performances.

4.3.1 Semantic segmentation
The most performing semantic segmentation architecture was used for making
inference 15 times over the test set with dropout activated, as it is necessary for the
Monte Carlo dropout. Therefore, for each mass there will be 15 different predictions
(not yet binary) that slightly differ thanks to the different model configuration
obtained through the dropout activated. First, the rounded average voxel-wise
across the 15 stochastic predictions was used to evaluate the performances with
respect to the ones obtained without Dropout. As expected, the average Dice
scores is 0.79 ± 0.2, as the one obtained without Dropout.

Figure 4.9: Monte Carlo Dropout pipeline for the semantic segmentation task.

The aggregation of these Monte Carlo samples aims to find a correlation the Dice
coefficient, our reference evaluation metric for the segmentation task.
As illustrated in the previous chapter, three uncertainty metrics were compared
with respect to the Dice scores obtained on the deterministic outcomes (dropout
off). Their linear correlation coefficients and slopes are reported in Table 4.6.
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Table 4.6: Correlation between mass-level uncertainty and Dice score.

Mass-level
Uncertainty

Linear correlation
coefficient (ρ) slope

Intersection over Unions 0.76 0.13
Mean DICE over MC samples 0.58 0.23

Sum of voxel wise variance -0.12 -28.43

The above results show that the Intersection over Unions (IoUs) and the mean
Dice over MC samples could be leveraged for rejecting samples with a lower dice.
Of course, there is no a perfect linear correlation, therefore, some well segmented
mass may be rejected too. All these metrics were used to evaluate the model
performances while removing fixed percentages of uncertain masses. The IoU and
the average dice score significantly outperformed 500 random strategies of exclusion
(Figure 4.10) whereas the sum of voxel-wise variance achieved comparable results.
Both metrics, in fact, allowed to improve by 12% the Dice score while removing
only 57 masses. Interestingly, the number of rejected benign masses in Figure 4.10a
and 4.10b is constantly higher compared to the malignant ones, that we recall from
Figure 4.2 that achieved on average a lower Dice score.
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Figure 4.10: Uncertainty results obtained with 15 inferences with Dropout
activated. The IoUs (4.10a) and the Mean Dice (4.10b) show a significant correlation
and a consequent improvement on performances by removing the masses considered
uncertain. However, the voxel-wise sum of the variance (4.10c) does not report any
meaningful correlation.

(a) Intersection over Unions (IoUs) between Monte Carlo samples

(b) Mean Dice between Monte Carlo samples

(c) Sum of voxel-wise variance between Monte Carlo samples
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Based on the results showed above, the IoUs appears to be the most correlated
mass-level uncertainty with respect to the Dice score obtained on our independent
test set. In Figure 4.10a it is possible to observe that most of the masses follow the
correct trend but there are still some outliers. In order to have a clear overview of
the outputs, it is possible to divide the first graph in four regions, highlighting all
the four possible outcomes: low uncertainty/low dice, low uncertainty/high dice,
high uncertainty/high dice, high uncertainty/low dice. The ideal regions are the
second one and the fourth one, whereas the other masses laying on the remaining
ones could be considered outliers. The selected thresholds for Dice and IoU are 0.5
and 0.65 respectively, and four examples per region are reported in Figure 4.11.

Figure 4.11: Overview of the relationship between Dice score and Intersection
over Union. Four regions are obtained using 0.5 and 0.65 as thresholds for Dice
and IoUs, respectively.
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4.3.2 Classification
The two-channels 3D DenseNet28 was chosen for evaluating the model uncertainty
under Monte Carlo dropout. In particular, at the end of each layer a Dropout of
0.2 was used during training and then it was kept activated over 100 inferences.
Therefore, for each mass, a total of 100 positive probabilities were drawn. The
average class was obtained rounding the average probability, obtaining an AUC of
0.83 (0.76 − 0.88 95% CI), comparable to the one obtained before.

Figure 4.12: Monte Carlo Dropout pipeline for the classification task.

Due to the limited information evaluable from a classification task, the variance of
the malignant probability was taken into account for measuring the uncertainty
with respect to the accuracy. Thanks to the two examples of high and low variance
reported in Figure 4.13 it is possible to clearly understand the goal of this analysis.
Our hope is that these masses with an high variance (i.e. uncertain) are correlated
with low classification performances, therefore removing the uncertain masses masses
from the test set, may provide in output only better and stronger performances.

Figure 4.13: Examples of one benign mass 4.13a having a very high variance and
one malignant mass 4.13b having a very low variance.

(a) Maximum variance (b) Minimum variance
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In Figure 4.14 it is possible to observe the performance improvement (by means of
the accuracy) while removing fixed thresholds of uncertain masses. A point-wise
metric was preferred to the AUC because with fewer and fewer test cases (due
to the removal) the AUC starts loosing its meaning. Therefore we selected the
accuracy as a reference metric. There was no particular need to maximize the
recall or the F1-score because the test set was initially balanced and the number of
excluded test samples per class is comparable. With that to be said, it is possible
to observe that the removal of the masses produces a strong improvement on the
performances, outperforming 500 random exclusion criteria. For example, removing
57 test masses, the accuracy increases by 8%.

Figure 4.14: Performance improvements for an increasing number of removed
cases based on their mass-level uncertainty.

However, the main goal of screening is to achieve an ideal sensitivity of 100%,
which means to reduce to 0 the number of False Negatives, in order to not let go
home any sick patient. Therefore, in Figure 4.15 we decided to inspect the relative
False Positive Rate at five different fixed sensitivity thresholds (from 95% to 100%)
while slightly increasing the percentage of dropped cases, based on their uncertainty
measures. It can be clearly noticed that for all the selected sensitivity thresholds
that the False Positive Rate steadily decreases if we start dropping uncertain masses
until we reject around 65%. Obviously, removing 70% or more masses from the
dataset means that we only have lesions with a really low uncertainty measure,
that might also be quite similar among each other, therefore the removal and the
consequent False Positive Rate may appear a bit random.
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Figure 4.15: False Positive Rate at five ideal sensitivity thresholds for an increasing
number of removed cases based on their mass-level uncertainty.
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4.4 Ablation study
The five available datasets (Table 3.1) involved for the former study were split into
training, validation and test set (Table 3.2). However, since one of the five dataset
contained only malignant masses, it was chronologically halved. Both smaller
datasets were used in training and test. This choice was necessary in order to cope
with the heavy imbalance introduced within this malignant dataset that strongly
affects the classification task. In fact, since the focus of the work was mainly on
the uncertainty evaluation of model outcomes, dealing with synthetic images for
mitigating the imbalance would have introduced some sort of bias on our outcomes.
Therefore, the chronological and at patient-level split that we performed for all our
previous tests ensured anyway the unbiasedness of our models.
In spite of that, we decided to evaluate the selected architecture on a new dataset-
setting. We decided to evaluate the model performances through a five-fold cross
validation approach. Hence, we trained on four datasets and tested on the remaining
one, repeating the process until each single dataset was used for testing. As a
consequence, the models will be tested on every available image in a completely
unbiased, independent and more generalizable scenario. However, before starting
the evaluation process, we confirmed the previously identified hyperparameters
through a random search approach on the previous dataset split (Table 3.2), for
computational reasons. Unlike the previous pipeline, only 40 validation masses were
randomly extracted from the training set, because they will be then completely
discarded during the effective tests in cross validation, otherwise they would have
been used in both training and testing. As a consequence, this approach neglects
any form of data imbalance or any other consideration on the data, acting as in
clinical settings.

Table 4.7: Number of masses involved on the proposed ablation study. From all
the available data, 40 images were used as a validation set and removed from the
training set before starting the evaluation process.

Dataset Benign Malignant Total
A 39 75 114
B 81 47 128
C 27 100 127
D 0 87 87
E 21 25 46

Total 168 334 502
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4.4.1 Semantic Segmentation
The data imbalance does not affect the semantic segmentation task, as it only
requires to identify the volume of the tumor, without taking into account if it is
benign or malignant. Therefore, this part of the study aims to confirm the robustness
of the model, evaluating its performances on 502 tumor masses, compared to the
192 inspected before. As expected, stacking all the partial predictions, the model
achieved an average Dice score of 0.79 ± 0.2 with dropout deactivated, exactly the
same obtained before.

Table 4.8: Dice score obtained on each independent dataset through a k-fold
cross validation approach. The final average Dice score of 0.79 ± 0.2 was obtained
stacking all the predictions.

Dataset Dice score
A 0.80 ± 0.17
B 0.75 ± 0.23
C 0.79 ± 0.21
D 0.84 ± 0.14
E 0.74 ± 0.23

Moreover, the Dice distribution obtained before (Figure 4.2) was also confirmed
for the most recent experiment (Figure 4.16). In fact, despite the higher number
of malignant masses, they are mostly placed on the right side of the graph (i.e.
satisfactory Dice) whereas the benign ones having a low dice are approximately as
the bad malignant ones.
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Figure 4.16: Histplot of the Dice scores obtained on the segmented masses from
the the whole dataset under cross validation settings.

Regarding the evaluation of the uncertainty with respect to the Dice score, we
proceeded as before. We made 15 inferences across each of the five datasets with the
relative models trained on the remaining four. Now, with a bigger datasets we have
slightly different linear correlation coefficients, but they confirm the same positive
trend and as a consequence they still confirm the effectiveness of these mass-level
uncertainty metrics. In particular, the mean intersection over union (IoUs) and the
mean dice between pairs of Monte Carlo samples are both approximately linearly
correlated with the Dice score. For a better understanding, the results are reported
in Table 4.9 and in Figure 4.17.

Table 4.9: Correlation between mass-level uncertainty and Dice score.

Mass-level
Uncertainty

Linear correlation
coefficient (ρ) slope

Intersection over Unions 0.72 0.37
Mean DICE over MC samples 0.47 0.14

Sum of voxel wise variance -0.23 -44.48
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Figure 4.17: Uncertainty results obtained with 15 inferences with Dropout
activated. The IoUs (4.17a) and the Mean Dice (4.17b) show a significant correlation
and a consequent improvement on performances by removing the masses considered
uncertain. However, the voxel-wise sum of the variance (4.17c) do not report any
meaningful correlation.

(a) Intersection over Unions (IoUs) between Monte Carlo samples

(b) Mean Dice between pairs of Monte Carlo samples

(c) Sum of voxel-wise variance
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4.4.2 Classification
This ablation study was mainly performed in order to stress the classification
performances on a very complex task, because as mentioned before, imbalanced
datasets heavily affect classification problems. As for the previous experiment, we
stacked all predictions obtained for each fold in order to evaluate the performances
across all available lesions. The first benchmark was performed with dropout
deactivated, obtaining an AUC of 0.77 (0.72 − 0.81 95% CI), compared to the 0.84
(0.78 − 0.90 95% CI) obtained on the previous test set. The partial results for each
fold are reported in Table 4.10 and a graphical comparison between the current
and previous tests is showed in Figure 4.18.

Table 4.10: AUC and F1-score obtained on each independent dataset through
the proposed k-fold cross validation approach. The final AUC of 0.77 was obtained
stacking all the positive probabilities of each dataset. Notice that the AUC of
dataset D is not applicable because it has no benign masses (class 0).

AUC Dice score F1-score
A 0.73 0.79
B 0.84 0.73
C 0.86 0.83
D − 0.86
E 0.83 0.72

Figure 4.18: Comparison between all the classification experiments with dropout
deactivated. The proposed five-fold cross validation suffers from the data imbalance,
dropping the performances by approximately 8%.
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As expected, also the performances with dropout activated are lower than the ones
obtained before. However, they are slightly above the ones obtained with dropout
deactivated. In particular, this obtained an AUC of 0.80 (0.75 − 0.84 95% CI),
compared to the AUC of 0.83 (0.76 − 0.88 95% CI) obtained without five-fold cross
validation. Nevertheless, our focus still relies on the correlation between variance
and performances, and this confirms the same trend discovered before, without
cross validation. In fact, also in this case they appears to be well-correlated and
the performance constantly improve while removing uncertain masses, significantly
outperforming 500 random trials. From Figure 4.19 it is possible to observe that the
performance improvement is approximately monotonic non decreasing, therefore
the more masses we remove through our defined uncertainty criteria, the better
will be the final performances. Based on the class of removed masses, despite
the significantly higher number of malignant masses, the most uncertain ones are
benign. In fact, from the figure we see that most of the benign uncertain masses
are removed between the first 20 − 30% of removed masses.

Figure 4.19: Performance improvements for an increasing number of removed cases
based on their mass-level uncertainty under a five-fold cross validation approach.

Moreover, as we did in the previous experiments, we investigated the False Positive
Rate values for different fixed sensitivity thresholds (from 95% to 100%) while
removing uncertain masses. Ideally we aim to be as close as possible to 100%
sensitivity, reducing to 0 the number of False Negatives. On the previous experiment
(Figure 4.15) we observed an initial drop in the False Positive Rate and a subsequent
increasing from after 60% of the masses were removed.
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Now, as it can be clearly seen from Figure 4.20, it slightly decreases until 40% of
masses are removed, converging to a False Positive Rate of approximately 0.65.
Then, it steadily increases, reaching a False Positive Rate of 1 at 80% of removed
masses.

Figure 4.20: False Positive Rate variations at five ideal fixed sensitivity thresholds
for an increasing number of removed cases based on their mass-level uncertainty
under a five-fold cross validation approach.
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Chapter 5

Conclusions and future work

In 2021, breast cancer accounted for 12% of all kind of cancers worldwide, and
the early diagnostic was proven to be effective, reducing its mortality rate over
the years [2]. Today, the gold standard for screening purposes is still the digital
mammography, despite its limitations with dense breast tissues. Therefore, the goal
of this study was to design a Computer-Aided Diagnosis (CADx) system for breast
tumor classification and segmentation in Dedicated Breast CT images through Deep
Neural Networks. Moreover, since one of the main pitfalls on Deep Neural Networks
is that their output probabilities do not reflect their prediction uncertainty, we
investigated this phenomenon by approximating the Bayesian inference through the
Monte Carlo Dropout in order to reject uncertain cases from the test set, producing
as output only the considered "certain" (or less uncertain) predictions. In a clinical
application, ideally, a radiologist should be able to click on the center of the mass
from a breast CT image, and the proposed CADx system should be able to correctly
segment the mass and finally classify that as benign or not, taking into account
the uncertainty of the prediction.

Therefore, the first part of our study was devoted to the segmentation of the masses.
The highest segmentation performances were obtained with a 3D UNet++ with
three downsampling and upsampling layers, achieving a Dice score of 0.79 ± 0.20.
This is still lower compared to actual the state of the art on unenhanced dedicated
breast CT proposed by Caballo et al. [68] that achieved 0.93 ± 0.3. However, the
latter result was obtained on 2D segmentations, converting the 3D images into 2D
images through the 9-views approach, obtaining a definitely bigger and simpler
dataset for any deep learning model. Therefore, this is not entirely comparable,
especially considering differences in approach, dataset, and validation. To the best
of our knowledge, this is the first fully 3D segmentation pipeline on dedicated
breast CT, and the results were comparable with a fully 3D study on MRI [69],
which are known to be less cost-effective and more invasive compared to CT.
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The second part of our study was focused on the lesion classification. Therefore,
given a raw CT scan and eventually its segmented or manually annotated mask,
the CADx system has to predict whether the tumor is benign or malignant. The
highest classification performances were obtained from a 3D DenseNet28, achieving
an AUC of 0.84 (95% CI 0.78 − 0.90) using the manual annotations as a second
channel, while the performances slightly dropped to 0.81 (95% CI 0.75 − 0.87) with
the 3D segmented masses obtained during the previous step. Without any manual
annotation (i.e. 1 channel 3D DenseNet28), the performances dropped by 5%,
achieving an AUC of 0.80 (95% CI 0.74 − 0.87). This suggests that using the real
annotation improves the final performances, but indeed we are not yet ready to use
the segmented masks for such a significant improvement. Again, there is no prior
work on fully 3D classification on contrast enhanced dedicated breast CT scans,
therefore the comparison is still only available with dynamic contrast-enhanced
magnetic resonance imaging (CE-MRI) [70, 71], where the proposed results are
comparable with ours.

The very last analysis of this work relied on the uncertainty evaluation devoted to
the rejection of cases at inference time. Therefore, we investigated some mass-level
uncertainty metrics and their potential correlation with the model performances. In
simple terms, we aimed to observe a low uncertainty for good predictions and high
uncertainty for incorrect predictions (i.e. wrongly classified or badly segmented
masses). Consequently, being able to detect the uncertainty of the model, we may
consider to reject those masses and to ask for a human intervention (i.e. from
a radiologist), given a selected uncertainty threshold. In semantic segmentation,
prior work on brain MRI scans [72] proved a significant correlation between the
Intersection over Unions and mean dice between Monte Carlo samples. These two
metrics were confirmed to be correlated with the Dice score also on our 3D contrast
enhanced dedicated breast CT scans, achieving a linear correlation coefficient
of 0.76 and 0.58, respectively. Therefore, this uncertainty estimation could be
leveraged for removing the uncertain masses from our test set, improving the overall
performances and providing mainly certain outcomes. On the other hand, also for
our classification pipeline we proved the impact of the uncertainty evaluations by
means of the variance of the probability predictions. Moreover, in both classification
and segmentation evaluations, our uncertainty-based removal criteria significantly
outperformed 500 random exclusion criteria each.

All our tests were then repeated on a five-fold cross validation approach. Therefore,
we used all the datasets to our disposal as training and test, in an independent and
unbiased way. This allowed to evaluate the model performances on a significantly
higher number of masses (502 compared to the initial 192) and in a more complex
and generalizable scenario. As expected, the semantic segmentation analysis
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confirmed the results obtained before, in terms of both Dice score and uncertainty
correlation. In fact, the Dice score was again equal to 0.79 ± 0.2, and the selected
uncertainty metrics still confirmed their correlation trend, even though they have
lost some decimals on their linear correlation coefficients. Beside the segmentation
task, the classification one was more sensitive to the new dataset settings, because
it needed to cope with the data imbalance, that was drastically introduced from
Dataset D, containing only 93 malignant classes. In fact, the overall AUC dropped
from 0.84 to 0.77, rising up to 0.79 by averaging across 100 Monte Carlo inferences.
Anyway, the interesting results were given by the uncertainty evaluations. As
before, the variance of the predictions appeared to be strongly correlated with the
model performances. In fact, removing an increasing number of uncertain test
masses monotonically increased the model performances.

The main limitation of this study was given by the relatively small dataset used in
3D settings. In fact, despite the number of available lesions was enough to obtain
significant findings, they are still probably not enough for fully-3D approaches,
especially for semantic segmentation. In fact, it would be beneficial to train our
selected models with more data and to evaluate its robustness on further external
test sets. Alternatively, it could be interesting to evaluate the impact of synthetic
training examples generated through Generative Adversarial Networks [73]. Other
than simply increasing the dimension of the dataset, it may also mitigate the class
imbalance, that we proved it affected the classification performances. Regarding the
segmentation architecture, however, there are just a few 3D alternative architectures
that may be evaluated, even though they are all variations of the classical UNet [45],
obtaining comparable results one another. Therefore, further analysis may involve
the data preprocessing and data augmentation stages of the pipeline, investigating
more in depth their role and their impact within the final performances. Lastly,
the proposed study of uncertainty at was employed just at prediction time, but
these uncertainty estimations may be leveraged as additional inputs of our Deep
Learning Models, in order to weight the loss function and to force and improve the
learning for uncertain masses.

The experimental results demonstrated that the proposed CADx system can be
used as a tool for automatic segmentation and classification for breast cancer
in contrast enhanced dedicated breast CT. Overall, the results are comparable
to the ones obtained on dynamic MRI, making them even more promising and
interesting due to a significant lower price of a DB-CT scan compared to an MRI
one. Therefore, future implementations aim to become available in clinical settings,
trying to reduce the number of biopsies for women that have no cancer.
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