
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Development of a mobile application to
explore financial options strategies

Supervisor

Prof. Alessandro FIORI

Candidate

Riccardo BALDASSA

October 2022

Abstract

The aim of this project is to design and develop a mobile application that meets the
requirements of a professional financial trader in the derivatives market, especially
with the goal of simulating options and futures strategies. A lot of data and
charts have to be displayed on a mobile device screen, so the design choices are
fundamental. The mobile application was developed using Flutter, a cross-platform
framework that enables the creation of a fluid high-performance application like
a native one. The application allows the user to visualize a variety of data and
interactive charts thanks to a modern user interface. These data and charts are
essentially of two types: one type relates to the simulation and the performance of
the strategies implemented by the user while the other type relates to derivative
instruments, specifically options and futures, and their underlying. This latest type
of data is updated daily and covers the American and European markets.

i

Acknowledgements

Concluding this course of study is a great pride for me, I want to share it thanking
people who have been part of my journey in these years and have contributed to
make it special.

First of all, I thank my supervisor, Prof. Alessandro Fiori, for giving me the
opportunity to test myself by developing a project of my interest, correcting and
advising me in times of difficulty. Together with him I thank the professional trader
Marco Rossi for his tips and guidance.

I would like to thank my family for supporting and encouraging me in these
university years, especially in the most difficult moments.

Thank you Sara, your constant support was indispensable. Thank you for giving
me joy all these years and for what you will give me in the years to come, choosing
to walk this wonderful path together.

I am grateful to my friends, especially Daniele, Lorenzo, Luca and Riccardo for
being there and for sharing important moments with me, making all these years
full of happiness. Thanks also to all the other people I met and who have, each in
their own way, shared with me a piece of their journey.

ii

Table of Contents

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Structure of the thesis . 2

2 Finance 3
2.1 Trading . 3
2.2 Financial markets . 4
2.3 Exchanges . 5
2.4 Derivatives . 6
2.5 Options . 6

2.5.1 Option contract specifications 7
2.5.2 Call options . 9
2.5.3 Put options . 11
2.5.4 Other options strategies . 16
2.5.5 Greeks . 20

2.6 Futures . 21

3 Data sources and technologies 22
3.1 Data sources . 22
3.2 Technologies . 24

3.2.1 Django . 24
3.2.2 MongoDB . 26
3.2.3 Celery . 27
3.2.4 Docker . 28
3.2.5 Nginx . 28
3.2.6 Flutter . 29

iv

4 Architecture 34
4.1 Client-server model . 34
4.2 Database . 35
4.3 Asynchronous tasks . 43
4.4 REST APIs . 44

4.4.1 User . 44
4.4.2 Market . 46
4.4.3 Chain . 46

5 Mobile application 48
5.1 Data management . 48
5.2 User interface . 50

5.2.1 Markets . 51
5.2.2 Strategies . 55
5.2.3 Portfolio . 56

6 Use cases 57
6.1 Analysis of a position . 57
6.2 Exploration of a strategy . 59
6.3 Exploration of the composition of portfolio 60

7 Conclusions and future works 63

Bibliography 64

v

List of Tables

4.1 User document description . 36
4.2 Market document description . 37
4.3 Market expiration document description 37
4.4 Chain document description . 38
4.5 Strike document description . 38
4.6 Option document description . 39
4.7 Future document description . 39
4.8 Group document description . 40
4.9 Strategy document description . 40
4.10 Position document description . 41
4.11 Portfolio document description . 42
4.12 Market history document description 42
4.13 Chain history document description 43

vi

List of Figures

2.1 Long Call Payoff Diagram [1] . 10
2.2 Short Call Payoff Diagram [2] . 12
2.3 Long Put Payoff Diagram [3] . 14
2.4 Short Put Payoff Diagram [4] . 15
2.5 Covered Call Payoff Diagram [5] . 17
2.6 Covered Put Payoff Diagram [6] . 18
2.7 Protective Put Payoff Diagram [7] 20

3.1 Model-View-Template architecture [10] 25
3.2 Docker architecture [16] . 29
3.3 Flutter architecture [20] . 30

4.1 Client-server model [21] . 35
4.2 Web application - Markets page . 36

5.1 Login page . 49
5.2 Navigation drawer . 49
5.3 Example of how the app works . 50
5.4 Markets page . 51
5.5 Stocks page . 51
5.6 Price history chart . 52
5.7 Positions page . 52
5.8 Futures page . 53
5.9 Chains page . 53
5.10 Strategies page . 54
5.11 Strategy information . 54
5.12 Strategy chart . 55
5.13 Portfolio information . 55
5.14 Portfolio performance . 56
5.15 Portfolio strategies . 56

6.1 AMZN Oct Long Call strategy . 59

vii

6.2 AMZN Oct Long Call payoff diagram 61
6.3 AMZN Oct Long Call share function 61
6.4 Portfolio performance . 62
6.5 Portfolio performance . 62

viii

Chapter 1

Introduction

Nowadays, trade financial instruments has become easier and more accessible to
everyone, allowing people to execute market orders in a very simple way and at a
very low cost. This is possible thanks to the new upgrades of the banks and the
online brokers. Despite the increasing of the usage of this tools, especially for the
derivative instruments like options and futures, it is difficult for the persons to
analyze and study the data and statistics about them. The reason of this problem
is that banks and online brokers do not provide a lot of data and charts, so if
people want to understand better the world of derivative instruments, they have to
use external platforms but these platforms are often expensive and hard to use for
a beginner trader. In response to this necessity, the idea of design and development
a platform which respect the requirements suggested by a professional trader was
born and a web platform was created.

As a following stage, we desired to extend this platform also for mobile devices.
The work of this thesis consists in fact in the design and development of a mobile
application. The reason is that even more functionalities and activities that before
was performed only on desktop device, now are performed on the mobile devices.
In this way the user can access to the application in every moment and in a very
simple way. However, the mobile application does not substitute completely the
web application because these two versions are complementary. The main purpose
of the app is to provide to the user a consultative instrument. All the data and
charts that are available in the web applications are also displayed in the mobile
app, obviously they have been adapted to be usable on a much smaller screen.
Instead, the functionalities of creation and deletion of strategies are maintained
only for the web application because these operations need to display a lot of data
and the mobile screen is clearly not suitable for this situation. But, in addition to
the consultation function, the app implements social activities. The user has the
possibility to share charts and data about markets and strategies through external
social apps.

1

Introduction

1.1 Structure of the thesis
This thesis is divided in chapters where each of them describe in detail one specific
argument which is part of the whole project. The Chapter 2 explains in a exhaustive
way all the financial knowledge that is necessary as background to clearly understand
the functions of the application. Specifically, there is a complete description of the
options, the most important derivative instrument. In addition to the theory part,
different options strategies that the user can implement are also presented.

After seeing the financial part, we move to the part of design and development
of the application, in the Chapter 3 you will find the information about the data
sources and technologies adopted. The data sources chosen are listed and for each
of them it is indicated how the data necessary for the application are retrieve while
for the technologies there is an overview of them where all the technologies used in
this project are presented, justifying its choice.

The Chapter 4 contains the explanation of the whole architecture of the platform,
in particular it is presented in a precisely way how the data are stored in the database,
which are the asynchronous tasks used to retrieve the financial information and
which are the APIs made available for the user with a proper description.

The complete mobile application is introduced in the Chapter 5. The data
management, the user interface and the various implemented functionalities are
here explained from a technical point of view.

Finally, in the Chapter 6, three different use cases are presented, they include
the most common operations that the user can perform with a complete functional
description.

2

Chapter 2

Finance

In this chapter, we are going to see an overview about the financial instruments
and main actors regarding options trading which build the core argument of the
mobile application.

2.1 Trading
Trading consist of buying and selling different types of financial instruments, such
as stocks, bonds, currencies, commodities and derivatives. Trading should not be
confused with investing, which instead suggests a buy-and-hold strategy. The aim
of trading is to be profitable over time and this depends on the trader’s ability. In
particular, in this work, the focus is on options trading. With this instrument, we
are going to discover and understand how to trade in the options markets using a
wide range of options strategies.

Some terms and metrics about trading which are necessary to know before go
ahead are presented below.

Payoff diagram: is a graphical representation of the potential outcomes of a
strategy. The vertical axis of the diagram represents the profit or the loss of the
strategy while the horizontal axis represents the underlying asset price.

Volume: is the amount of security that is traded over certain period of time
(usually during the course of a day). Securities with more volume are more liquid
which represents an important indicator in technical analysis.

Open interest: is the total number of derivative contracts that are still open and
change with the new opening or closing positions. This metric is uses very often
in options markets, and it provides an accurate picture of the derivatives trading
activity.

3

Finance

Open price - close price: are the respective price at which a security first trades
when an exchange opens on a trading day and the price of the last transacted
security before the market closes on a trading day. High price - Low price: are
the respective highest price at which a security is traded during the course of a
trading day and the lower price at which a security is traded during the course of a
trading day.

Last price: theoretically it corresponds to the closing price but it is not always like
this. The true last trade may be posted anywhere from 30 seconds to 30 minutes
after the market close. This because a few minutes are required to process the
orders and determine which among the trades actually was the last trade.

Bid-ask spread: is the difference between the ask price and the bid price for an
asset in the market. The bid price corresponds to the highest price that a buyer is
willing to pay for an asset while the ask price is the lowest price that a seller is
willing to accept.

Profit: is calculated as the revenue less the cost of a certain strategy.

2.2 Financial markets
As we said before, there are different types of financial instruments and, for each of
them, there is a specific market that allows their trading. The principal markets are
the following: stock market, index market, bond market, money market, derivatives
market, forex market and commodities market.

Stock market: in this market, buyers and sellers meet to exchange equity shares of
public corporations. Investors will own company shares in the expectation that
share value will increase or that will get dividend payments or both.

Index market: indexes measure the performance of a group of securities with the aim
to replicate a certain area of the market. So, the calculation of the index value comes
from the prices of the underlying holdings. The securities belonging to an index,
can be weighted in a different ways, the most common is the market-cap-weighting.

Bond market: in this market, investors buy debt securities that are brought to the
market by either corporations or governmental entities. These last use the earnings
from bonds to finance infrastructural improvements and pay down debts. Bonds
are usually fixed-income instruments because paid a fixed interest rate to debt
holders at the maturity date.

4

Finance

Money market: this market is characterized by a high degree of safety and relatively
low rates of return. An investor can purchase a money market mutual fund,
short-term certificates of deposit (CDs) or opening a money market account at a
bank.

Derivatives market: derivatives are financial contracts, set between two or more
parties where the value derives from an underlying asset. Prices of derivatives come
from fluctuations in the underlying asset and can be trade on exchanges. The most
common derivatives are options and future contracts.

Forex market: is the market the establishes the exchange rate for currencies around
the world. It is possible to buy, sell, exchange, and speculate on the relative
exchange rates of various currency pairs.

Commodities market: is the market where is possible to buy, sell, and trade raw
materials or primary products like oil, gold, or sugar. Natural resources are called
hard commodities while livestock or agricultural goods are call soft commodities.

2.3 Exchanges
An exchange is a marketplace where stocks, bonds, currencies, commodities, deriva-
tives and other financial instruments are traded. Exchanges guarantee fair and
orderly trading giving a efficient diffusion about price information for the instru-
ments traded. Each exchange trades only certain types of financial instruments.
Since we are interested on options trading, we will focus on exchanges which trade
these instruments, in particular: CBOE, CME and EUREX.

CBOE Exchange: originally known as the Chicago Board Options Exchange, is
the world’s largest options exchange, it offers options on over 2,200 companies, 22
stock indices, and 140 exchange-traded funds (ETFs). CBOE is the creator of the
CBOE Volatility Index (VIX) that is the most widely used instrument to measure
market volatility.

CME Exchange: the Chicago Mercantile Exchange is a global derivatives market-
places based in Chicago. CME especially trades options concern the following
sectors: agriculture, energy, stock indices, foreign exchange, interest rates, metals
and real estate.

EUREX Exchange: one of the largest futures and options markets in the world.
Mainly operates with European-based derivatives but provide also the possibility
through electronic access to traders to connect from more than 700 locations around
the world.

5

Finance

2.4 Derivatives
The focus of this work concerns derivative instruments, so we are going to understand
them in detail. A derivative is a financial contract whose value is derived from
another entity which is also known as the underlying, which include for example
stocks, bonds, commodities, currencies and financial indicators such as interest
rates, market indexes.

There are two main activities that can be done by using derivative products:
hedging and speculation. Hedging consists of use derivatives to remove the risk of
losses to their holdings that are caused by fluctuations in the value of underlying.
Instead speculation, taking advantage of the high leverage of derivatives, use them
to increase the profit arising if the value of the underlying mover in the direction
they expect.

Different types of derivatives exist and the most common are: options, futures,
forward contracts, and contracts for the difference (CFD). Specifically we will see in
details the first two types. It is also possible to combine different basic derivatives
to create more complex derivatives.

2.5 Options
An option is a contract between two parties, the option buyer purchases the right
(but not the obligation) to buy/sell (depending by the option) a certain quantity
of an underlying at a predetermined price from/to the option seller within a fixed
period of time. The option buyer is also called holder while the option seller is also
called writer. Options holders are said to have long positions while writers are said
to have short positions. We can distinguish two different types of options trading
strategies: bullish and bearish: bullish strategies (e.g. Long Call) indicates that
the options trader expects the increase of the price of the underlying while bearish
strategies (e.g. Long Put) indicates that the options trader expects the decrease of
the price of the underlying.

Moneyness: is a term which describes the relationship between the strike price
of an option and the current trading price of its underlying. The moneyness is
shown in the following terms: in-the-money (ITM), at-the-money (ATM) and
out-of-the-money (OTM).

ITM options cost more than ATP and OTM because their premiums consist of
significant intrinsic value. Call options are defined as ITM when their strike price
are below the current trading price of the underlying while put options when their
strike price is above the current trading price of the underlying.

ATM options have a strike price that is equal to the market price of the
underlying. They have no intrinsic value but only time value.

6

Finance

OTM options are less expensive than ITM and ATP because, like ATP, they
do not have intrinsic value and therefore the premium is only made up of the
time value. Call options are defined as OTM when their strike price are above the
market price of the underlying while put options when their strike price are below
the market price of the underlying.

Exercise and assignment: the holder of an option can execute the right to buy
or sell (depending if is a call option or a put option) the underlying at the strike
price. Two different types of exercise style exist: American and European. With
the American style, options may be exercised at any time before the expiry date
whereas with the European style, options may only be exercised on the expiry date.

The options writer has a duty to provide the terms of the options when the
written option is exercised by the options holder. If the call option is assigned, the
writer must sell the required amount of the underlying at the strike price. Instead,
in the event of an assignment of a put option, the writer will have to buy the
obligated quantity of the underlying at the strike price.

Implied volatility (IV): is the market’s prediction of the volatility of the under-
lying value of the option. It is calculated through an option pricing model where
a mathematical relation between the volatility of the underlying security and the
price of its options has been established. When buy or sell options, one should take
note of the IV of the underlying because, generally, when the IV is high, options
are more expensive while they are less expensive when it is low.

Options chains: display the call and put options available for various strike prices
for a specific underlying and expiration date. In-the-money options are typically
highlighted to differentiate between out-of-the-money options.

Break-Even Point: in options trading, is the market price that the underlying
asset needs to reach in order for an options buyer to avoid a loss by exercising the
option.

2.5.1 Option contract specifications
In an option contract, several terms are specified and it is important to be aware
of their meaning.

Option type: option can be of type put or type call. Call is the option that gives
the buyer the right to buy the underlying whereas put is the option that gives the
buyer the right to sell it.

7

Finance

Strike price: is the price at which the underlying asset must be purchased (in case
of call options) or sold (in case of a put options) by the holder when the option is
exercised. It is a decisive factor of the option’s premium: in the case of call options,
the higher is the strike price, the cheaper is the option while in the case of put
options, the higher is the strike price, the more expensive is the option. The price
distance between the strike prices is dependent on the market price and the type
of the asset of the underlying. The lowest values are typically 1, 2 and 2.5 points
and the highest are typically 5 and 10 points.

Premium: is the price paid by the holder to purchase the option. The premium is
dependent not only on the strike price but also on the volatility of the underlying
and on the remaining time to expiration. It consists of two parts: intrinsic value
and time value. Only in-the-money options have intrinsic value, for call options
it can be calculated as the difference between the current trading price and the
strike price while for the put options it can be calculated as the difference between
the strike price and the current trading price. The time value is dependent on
three factors: the time left to exercise the option, the moneyness and the volatility
of the underlying asset. The time value diminishes when its expiry date arrives
and becomes worthless after the date. For in-the-money options, the time value
can be calculated as the difference between the option premium and the intrinsic
value whereas for out-of-the-money options the time value is equal to the option
premium. In general, higher volatility will result in higher time value.

Expiration date: refers to the date when an option contract becomes invalid and
the right to exercise it ceases to exists. The expiration month is defined for each
option contract. The expiration date depends on the type of options, for stock
options the date falls on the third Friday of the expiration month.

Option style: as seen before, the option contract can be either American style or
European style, this style determines the different manner in which the options
can be exercised.

Underlying asset: is the security that the holder can buy (in case of call options)
or sell (in case of put options) from the writer in the moment in which the option
is exercised. The most commonly used types of securities are stocks, currencies,
indexes and commodities.

Contract multiplier: specifies the amount of the underlying which must be sent
when the option is exercised. For instance, for stock options, every contract refers
to 100 shares.

8

Finance

2.5.2 Call options
A call option is an option contract in which the buyer has the right to purchase
a specified amount of the underlying at a strike price up to its expiration date.
Rather, the seller of a call option is obligated to sell the underlying at the strike
price if the option is exercised. The call option writer receives a premium to take
the risk of the obligation.

Long Call

The easiest way of to trade call options is to buy them, in addition to their simplicity
there is also the opportunity to generate a great profit from successful trades (Figure
2.1).

• Leverage: compared to buying the underlying shares themselves, the buyer
of call options is able to leverage as lower-priced call options appreciate in
value more quickly as a percentage for each point increase in the price of the
underlying share. However, call options have a limited lifespan. If the price of
the underlying share does not exceed the strike price before the option expires,
the call option will expire worthless.

• Unlimited profit potential: since there is no limit to how high the stock
price can be at expiration date, there is also no limit to the maximum profit
possible when implementing the long call option strategy. There is a profit
when the price of underlying moves above the sum of strike price of long call
and premium paid, in this case the profit is computed in this way: profit =
price of underlying - (strike price of long call + premium paid).

• Limited loss potential: the risk for the long call option strategy is limited
to the price paid for the call option, regardless of how much low the stock
price is trading on the expiration date. The maximum loss occurs when the
price of the underlying is less or equal than the strike price of long call, in this
case the loss is equal to the premium paid.

• Break-Even Point: the underlying price at which the Break-Even Point
is achieved for the long call position can be calculated using the following
formula: Break-Even Point = strike price of long call + premium paid.

A simple example: let’s assume that the stock of a certain company is trading for
$100. A call option contract with a strike price of $100 expiring within a month is
priced at $5. You are confident that this stock will increase significantly over the
next few weeks. So, you paid $500 to purchase a single $100 call option covering
100 shares of this stock. Let’s say you were correct and the price of the stock
reaches to $110 when the option expires. With underlying stock price at $110, if

9

Finance

you exercise your call option, you invoke your right to buy 100 shares of the stock
at $100 each and can sell them immediately in the open market to $110 a shares,
the total amount you will receive from the exercise is $1000. Given that you paid
$500 to buy the call option, so your net profit for the whole transaction is $500.
However, the underlying stock must exceed $105 (Break-Even Point) at expiration
to make a profit. If you were wrong in your forecast and the stock price had instead
dived to $90, your call option will expire worthless and your total loss will be the
$500 that you paid to buy the option.

Figure 2.1: Long Call Payoff Diagram [1]

Short Call
Rather than buying call options, one can also sell them for a profit (Figure 2.2).
Call options writers, sell call options in the hope that they expire with no value so
that they can earn the premiums. Selling calls is more risky, but can also be highly
profitable if done in a proper way. The calls sold may be of two different types:
covered calls or naked (uncovered) calls.

Covered calls mean that the call option seller holds the required amount of the
underlying securities. The covered call is a popular option strategy that allows
a stock holder to generate additional income from their securities by selling call
options on a periodic basis.

10

Finance

Instead naked call means that the call option seller does not have the mandatory
amount of the underlying security, this option strategy is very risky.

The primary purpose of writing naked calls is to collect the premiums when the
options expire with no value. For instance, one would write an out-of-the-money
naked call every month and if the stock price remains stable or decreases, the
premiums are collected and the process is repeated while the perception of the
market situation remains the same.

• Limited profit potential: maximum earnings are limited and reflect the
premium received for the sale of call options. The maximum profit is obtained
when the price of the underlying is less than or equal to the strike price of the
short call.

• Unlimited loss potential: if the stock price rises significantly on expiry,
the naked call writer will need to meet the option requirements to sell the
obligated stock to the option holder at the lower strike price by buying the
stock from the open market at the higher market price. As there is no limit
to how high the stock price may be at expiry, the maximum potential loss for
writing naked calls is theoretically limitless. A loss occurs when the price of
the underlying is higher than the strike price of short call plus the premium
received. The formula for determining the loss is: loss = price of underlying -
(strike price of the short call + premium received).

• Break-Even Point: the underlying price at which Break-Even Point is
reached for the naked call position can be calculated using the following
formula: Break-Even Point = strike price of the short call + premium received.

A simple example: a certain stock is currently negotiated for $100. An options
trader chooses to write a naked call option with a strike price of $100 expiring
within a month at price of $5. Therefore, he gets $500 to write the call option. At
the expiry date, the stock had increased to $110. Since the strike price of $100 for
the call option is below than the actual negotiating price, the call is assigned and
the writer buys the shares for $11000 and sell it to the option holder at $10000,
resulting in a loss of $1000. However, as a result of receiving $500 earlier on, his net
loss is $500. Instead, if the stock price were decreased to $90, for example, the call
expires without value and the writer of the naked call retains the $500 in premiums
received as profit. While the stock price remains at $105 (the Break-Even Point
value) or less, there will be no loss to the naked call writer.

2.5.3 Put options
A put option is an option contract in which the buyer has the right to sell la
specified quantity of an asset at a specified strike price until its expiration date. For

11

Finance

Figure 2.2: Short Call Payoff Diagram [2]

the seller of the put option, this means an obligation to purchase the underlying
asset at the strike price in case of exercise of the option. The writer of the put
option receives a premium to assume the risk related to the obligation.

Long Put

The long put option strategy is a basic strategy in options trading in which the
investor purchases put options with the conviction that the price of the underlying
will be substantially lower than the strike price before the expiry date (Figure 2.3).

• Put buying vs. short selling: in comparison to short selling the stock, it
is more convenient to bet against a stock by buying put options, since the
investor does not need borrow the stock. Moreover, the risk is capped at the
premium paid for the put options, as opposed to unlimited risk during the
short of the underlying stock. But put options have a finite lifetime, if the
price of the underlying stock does not fall below the strike price before the
option expires, the put option will expire without value.

• Unlimited profit potential: since stock price in may theoretically reach
zero on the expiration date, the maximum possible profit from using the long

12

Finance

put strategy is only limited to the strike price of the purchased put minus the
price paid for the option.

• Limited loss potential: the implementation risk of the long put strategy is
limited to the price paid for the put option, regardless of how high the stock
price trades on the expiration date. The maximum loss occurs when the price
of the underlying is more than or equal to than the strike price of the long
put, this maximum loss is equal to the premium paid.

• Break-Even Point: the underlying price at which Break-Even Point is
achieved for the long put position can be calculated using the following
formula: Break-Even Point = strike price of the long put - premium paid.

A simple example: let’s assume that the stock of a certain company trades for
$100. A put option contract with a strike price of $100 that expires in one month
is priced at $5. You think the stock is going to drop sharply in the next few weeks
and so you paid $500 to buy a single $100 stock put option covering 100 shares. If
you were correct and the price of the stock falls to $90 when the option expires.
The put option will now be in-the-money with a $1000 intrinsic value and you may
sell it for that amount. Since you had paid $500 to buy the put option, your net
profit for the whole trade is $500. However, if you were wrong in your evaluation
and the stock price had rather gone up to $110, your put option will expire with
no value and your total loss will be the $500 that you paid for the option.

Short Put
Rather than buying options, it is also possible to sell them for a profit (Figure
2.4). Put options writers, sell the put options hoping that they expire worthless
so that they can earn the premiums. Sale puts options is more risky, but may be
profitable if done correctly. The puts sold can be of two different types: covered
puts or naked (uncovered) puts.

Covered puts mean that the put option writer is also short the required amount
of the underlying.

Rather, naked puts mean that the put option writer has not short the required
amount of the underlying when the put option is sold.

Naked put write is an option strategy executed to earn a consistent profits through
continuous premium collection.

• Limited profit potential: the profit from the uncovered put write is limited
to the premiums received for the options sold and contrary to the cover put
write, since the uncovered put writer is not short on the underlying, he does
not have to handle a loss if the price of the security increases at expiration.
The maximum profit is reached when the price of the underlying is higher

13

Finance

Figure 2.3: Long Put Payoff Diagram [3]

than or equal to the strike price of the short put, and it is equivalent to the
premium received.

• Unlimited loss potential: whereas the premium received may amortize a
slight decline in stock price, the loss resulting from a catastrophic fall in stock
price of the underlying can be enormous when implementing the uncovered
put write strategy. A loss arises when the price of the underlying is lower
than the difference between the strike price of the short put and the premium
received. The formula to calculate the loss is the following: loss = strike price
of short put - (price of underlying + premium received).

• Break-Even Point: the underlying price at which Break-Even Point is
reached for the uncovered put write position may be computed with the
following formula: Break-Even Point = strike price of short put - premium
received.

• Writing naked puts to purchase stocks: the greatest risk that must by
faced by the writer of uncovered put is that if the price of the underlying falls
below the put strike price, he has to purchase the shares at the put strike
price. However, for a long-term investor who seeks to go long on the stock at

14

Finance

a discounted price, writing naked puts can be a great way to purchase stock.
This can be done by writing uncovered puts with a strike price at or close
to its target entry price. If the stock price goes down below the put strike
and the puts gets assigned, he gets to make the stock purchase at the desired
price. In addition, he receives a further discount in the form of the premium
earned through the sale of put options. Even if the put strike price has not
been reached and the stock has not been purchased, he still gets to keep the
premiums.

A simple example: let’s say that certain stock is trading at $100. An options trader
chooses to write an put option with a strike price of $100 expiring within a month
at price for $5, resulting in a $500 of premium. If the stock remains at $100 when it
expires, the put expires worthless and the trader gets to keep the $500 in premium
as profit. This is also its maximum profit and is reached as long as the stock trades
over $100 at the option expiry date. If instead the stock falls to $90 on expiration,
then the put expires in-the-money with $1000 in intrinsic value. The put must be
bought back for $1000 and subtracting the initial credit of $500 taken, resulting in
a net loss of $500.

Figure 2.4: Short Put Payoff Diagram [4]

15

Finance

2.5.4 Other options strategies
Some of the other most common and used strategies:

Covered call
Using the covered call option strategy (Figure 2.5), the investor gains a premium
writing calls while appreciating all the advantages of the underlying stock share-
holding, such as dividends, unless a notice of exercise is given to him in the course
of the written call and is obliged to sell the shares. However, the profit potential of
selling covered call options is limited.

• Limited profit potential: other than the premium received for writing the
call, the profit of the OTM covered call strategy also includes a gain if the
underlying stock price increases until the strike price of the call option sold.
The maximum profit is reached when the price of the underlying is greater
than or equal to the strike price of short call. The calculation of the profit is
as follows: maximum profit = premium received + strike price of short call -
purchase price of underlying.

• Unlimited loss potential: potential loss to this strategy may be very
significant and occurs as the price of the underlying security drops. However,
this risk is no different than the risk to which the common stock owner is
exposed. In fact, the loss of the covered call writer is slightly amortized by
the premiums received for writing the calls. The loss arises when the price
of the underlying is below the difference between the purchase price of the
underlying and the premium received. It can be computed as follows: loss =
purchase price of the underlying - premium received.

• Break-Even Point: the underlying price at which the Break-Even Point
is reached for the covered call (OTM) position may be computed using the
following formula: Break-Even Point = purchase price of underlying - premium
received.

A simple example: an options trader buys 100 shares of certain stock trading at
$100 and writes a call with a strike price of $105 expiring within a month at price
for $5. Thus, he pays $5000 for the 100 shares of the stock and receives $500 to
write the call option resulting in a total investment of $4500. At the time of expiry,
the stock had risen to $105. Since the strike price of $105 for the call option is
equal to the current negotiating price, the call is assigned and the writer sells the
shares for a $500 profit. This brings his total profit to $1000 after gain $500 in
premiums received for writing call. Instead, if the stock price had fallen by 5 points
to $95, the call writer would incur $500 loss for holding the 100 shares of the stock.
However, his loss is amortized by the $500 in premiums received, which makes the
whole trading operation without loss.

16

Finance

Figure 2.5: Covered Call Payoff Diagram [5]

Covered put

Writing covered put (Figure 2.6) is an options trading strategy that includes the
writing of put options while shorting the obligated shares of the underlying.

• Limited profit potential: profit for the covered put option strategy is
limited and the maximum gain is equal to the premiums received for the
options sold. The maximum profit is reached if the price of the underlying is
below or equal to the strike price of short put.

• Unlimited loss potential: theoretically, the maximum loss for the covered
put options strategy is unlimited since there is no limit to how high the stock
price may be at expiry. A loss arises when the price of the underlying is
greater than or equal to the strike price in addition to the premium received.
The formula for determining the loss is as follows: loss = price of the the
underlying - (strike price + premium received).

• Break-Even Point: the underlying price at which Break-Even Point is
achieved for the covered put position can be calculated using the following
formula: Break-Even Point = strike price + premium received.

17

Finance

A simple example: let’s assume that a certain stock is trades at $100. An options
trader writes a put with a strike price of $95 expiring within a month at price for
$10 while shorting 100 shares of the stock. The net credit taken to get into the
position is $1000, which is also its maximum possible profit. On expiration, the
stock is trading at $95. The put expires with no value while the trader covers his
short position without loss. In the end, he gets to keep the whole credit taken
as profit. If instead the stock falls to less than $95 at expiry, the short put will
expire ITM with a some loss which is compensated with the gain on the short stock
position. So the profit is still the initial credit of $1000 taken on entry into the
trade. However, if the stock price goes above the Break-Even Point of $105 on
expiration, there will be significant loss.

Figure 2.6: Covered Put Payoff Diagram [6]

Protective Put

Investors also purchase put options in order to protect an existing long stock
position. Put options used in this way are also referred to protective puts.

• Unlimited profit potential: there is no limit on the profit which can be
make with this strategy. The profit is realized when the price of the underlying
is higher than the buying price of the underlying plus the premium paid,

18

Finance

the formula for calculating it is as follows: profit = price of the underlying -
(purchase price of the underlying + premium paid).

• Limited loss potential: the maximum loss for this strategy is limited and
represents the premium paid for the purchase of the put option. The maximum
loss arises when the price of the underlying is lower than or equal to the strike
price of the long put, it can be achieved using the following formula: maximum
loss = premium paid + purchase price of the underlying - strike price.

• Break-Even Point: the underlying price at which the Break-Even Point is
achieved for the protective put position can be computed using the following
formula: Break-Even Point = purchase price of the underlying + premium
paid.

A simple example: an options trader holds 100 shares of a certain stock which
trades for $100. He implements a protective put strategy by buying a put option
with a strike price of $95 expiring within a month for $1000 to secure his long
stock position against a potential crash. The maximum loss occurs when the stock
price is $95 or less on expiry and is equal to $1000. There is no limit to the profit
that can be reached if the stock price rises. Assuming that the stock price rises to
$125, his long stock position will earn $1500. Excluding the the $1000 paid for the
protective put, his net profit is $500.

Options spreads
Options spreads are options trading strategies where an equal number of options
of the same class on the same underlying are purchased and sold simultaneously,
but with different strike price and/or expiration date. A spread which is composed
by using call options is named call spread while a spread which is composed by
using put options is named put spread. There are three basic classes of spreads:
vertical spread, horizontal spread an diagonal spread.

Vertical spreads: made up of options with the same expiration date but different
strike price.

Horizontal spreads: made up of options with the same strike price but with different
expiration date.

Diagonal spreads: made up of options with different expiration date and also
different strike price.

There are also different possibilities to combine several options strategies: purchasing
and/or selling of both call and put options on the same underlying asset. Some of
the options combinations are: option straddle, option strangle, option strip and
option strap.

19

Finance

Figure 2.7: Protective Put Payoff Diagram [7]

2.5.5 Greeks
In options trading, you may note the use of some Greek alphabets when describing
the risks associated with different positions. They are known under the name of
"Greeks" and the following is a brief description of the four most widely used.

Delta: is the rate at which the option price changes relative to the price of its
underlying value. Option delta is a value between 0 and 1 for calls options (0 and
-1 for put options) and reflects the rise or fall in the price of the option in response
to a 1 point move in the price of the underlying asset. For instance, deep ITM
options have delta near to 1 while deep OTM options have delta near to 0.

Gamma: is a measure of the velocity of variation of the option delta. It is expressed
in percent and reflects the delta variation in response to a movement of one point
in the price of the underlying. Like the delta, the gamma is in constant evolution,
even with minute movements of the price of the underlying. It is typically at
its peak value when the stock price is close to the strike price of the option and
diminishes as the option comes deeper ITM or OTM. For example, options which
are very deep ITM or OTM have gamma value near to 0.

20

Finance

Theta: is a measure of the temporal decline of the option. It measures the rate at
which options drop in value, particularly the time value, as the expiration date
approaches. Typically expressed as a negative number, the theta of an option
reflects how much the value of the option will decline each day.

Vega: is a measurement of the impact of variations in underlying volatility on the
price of options. In particular, it expresses the variation in the option price for
each percentage point variation in the underlying volatility.

2.6 Futures
A future contract is a standard contract which requires delivery of a specific amount
of a specific product at a certain point in the future at a predetermined price. Future
contracts are negotiated all over the world and cover a broad range of commodities
such as agricultural products, stock farming, energy, metals and financial products
such as market indexes, interest rates and currencies. The main goal of the futures
market is to enable those who want to manage price risk (hedgers) to shift this
risk to those who are prepared to take that risk (speculators) in exchange for a
profit opportunity.

Hedging: companies use a long hedge to lock in the price of a commodity they
want to buy in the future. Instead, companies use a short hedge if they want to
lock a selling price for a commodity for sale in the future.

Speculation: futures speculators take a long futures position when they expect
the price of the underlying is going to increase. Instead, they adopt a short futures
position when they think that the price of the underlying is going to decrease.

21

Chapter 3

Data sources and
technologies

Before start to develop a mobile application, it is necessary to do a several number
of choices about data sources and technologies. These choices will determinate the
result of the final application.

3.1 Data sources
The data sources chosen to retrieve the data needed for the application are web
services: a services running on a computer device which are listening for request
at a particular port over a network, serving web documents like JSON1 files and
creating web application services. Especially, through the usage of the REST2

APIs3, the access to data exposed by web services is become more easily. The data
that the application need, are about the information of finance summary, stocks,
quotes and options.

As we said in section 2.3, we are interested in CBOE, CME and EUREX
exchanges, so we are going to use the web services provided by them.

CBOE web services

CBOE provides different services through its official website that gives us a lot of
information about US stocks, indexes options and other market. This information

1JavaScript Object Notation
2REpresentational State Transfer
3Application Programming Interface

22

Data sources and technologies

are updated any 10-15 minutes. The two public REST APIs useful for the the
application are the following:

• GET /symbol_book/option-roots.json: permits to download all options
catalogue info. The response is an array of JSON objects, using the option-
root (the identifier) of the objects is possible to download further information
through the other web service.

• GET /options/option-root.json: permits to download the information
about a single option-root. The response includes information about the price
of the underlying and about the options contract.

The first API is useful to have a list of the markets handled by CBOE. The second
API provides all information (like options prices for all expiration) about a single
market performing only one call. This operation is done every 15 minutes.

CME web services

CME provides information about options and futures contracts of the most impor-
tant indexes (S&P 500, Nasdaq, Russell 2000, etc.) and its website makes them
publicly available. The APIs useful for our purpose are the following:

• GET /services/product-slate: allows to download the list of the products
or underlying. Each elements contains the information of the product and the
product_id (its identifier) that through the others APIs permits to obtain
futures and options related to the product.

• GET /Quotes/Future/product_id/G: allows to download the futures
contract related to a particular product for each available expiry date.

• GET /Quotes/Option/product_id/G/expiration_id : allows to down-
load the options contract related to a particular product and expiration date.

• GET /Volumes/Details/product_type/product_id/last_trade_d
ate/P/: allows to download the statistics data about volumes and open
interest of the future or option contract.

The first API is used to download the CME product catalog and initialize the
catalog of the application. The other three APIs are called at a regular intervals
of 15 minutes during the trading hours for updating markets, futures and options
data.

23

Data sources and technologies

EUREX web services

Different from the other two exchanges, EUREX does not provides details about
options and futures, it only offers the access to this information through their
dedicated HTML4 pages that require an extraction of the data that are needed.
Computing this extraction is possible to obtain information about options and
futures contracts of the European indexes like EuroStoxx50 and DAX.

3.2 Technologies
The technologies selected are mainly divided into three different areas. Django
framework is used for the server-side, MongoDB is used for database management
and Flutter framework is used for client-side.

3.2.1 Django
Django[8] is a free and open-source, Python-based web framework with the main
goal of ease the creation of complex, database-driven websites. The framework
underlines reusability and pluggability of components which lead to write less code
and to a rapid development.

Python[9] is a high-level, general-purpose and very popular programming lan-
guage. It is used in different fields like web development and Machine Learning
and it is very indicated both for beginners and advanced programmers. Python is
widely diffused and allows object orientation programming. The strongest point in
favour of Python is the fact that has a huge collection of standard libraries which
can be used for several purposes.

Django is based on MVT (Model-View-Template) architecture (Figure 3.1):

• Model: act as the interface of the data (it is represented by a database) and is
responsible for maintaining them.

• View: is the user interface, it handle the user interaction.

• Template: composed by static parts of the HTML output and by some syntax
describing how dynamic content will be inserted.

In addition to Django, there are other available frameworks which have different
characteristics. Two of the possible alternatives are Flask and Web2py.

4HyperText Markup Language

24

Data sources and technologies

Figure 3.1: Model-View-Template architecture [10]

Flask: a micro web application framework written in Python. The classification as
micro framework means that it does not need any tools or libraries. It is built using
the Werkzeug WSGI5(a standard for Python web application development) toolkit
and Jinja2 template engine. The first implements requests, response objects, and
other utility operations while the second renders dynamic web pages by combining
a template with a specific data source. Simple web applications are best created
using Flask, however more complex ones can be sent more quickly with Django
because its modules are already set up to provide speedy application development
and layout.

Web2py: a full-stack web application framework written in Python. The classifica-
tion as full-stack means that it contains all the components which are necessary to
build a complete web applications. Its focus is on agile development and security.
It is easy to run, it requires no installation and no configuration. Web2py follows
MVC6 design and is based on Python which is fast and scalable. Web2py was also
influenced by Django and shares many of Django’s features, including the ability
to create forms from database tables and a large number of validators. Due to its
smaller size, simpler learning curve, and lack of project-level configuration files,

5Web Server Gateway Interface
6Model View Controller

25

Data sources and technologies

web2py differs from Django. Web2py is ideal for a beginning coder or new to web
development while Django would be a better choice for a proficient Python user
and you have a short timeline.

3.2.2 MongoDB
MongoDB[11] is the most popular NoSQL7 DBMS8. The NoSQL notation means
non-relational, so it is not based on the table-like relational database but use
a different mechanism for storing and retrieving data. MongoDB also supports
ACID9 properties. PyMongo[12] is a Python distribution which contains tools for
interacting with MongoDB databases from Python and it is very useful for our
purpose.

MongoDB has several characteristic features. It is document-oriented, the
data are stored in BSON10 format that is similar to JSON format and it uses
indexing for efficient searching with huge volumes of data in very short time. It
scales horizontally through partitioning data across several server (this operation
is called sharding). It increases the availability of data creating more copies of
data on different server, so leveraging the redundancy, it protects the database
from hardware failures. Aggregation operations handle data records and return the
calculated outcomes.

There are relevant differences between SQL11 databases and NoSQL databases.
• SQL databases have a typical schema showing the tables and the relationships

between them while NoSQL databases does not have any type of schema, it is
document-oriented.

• Complex join operations are not available in NoSQL databases.

• NoSQL databases allows a flexible and scalable document structure.

• NoSQL databases are faster than SQL databases thanks to the use of indexing
technique.

• The terms Table, Tuple and Column of SQL databases are respectively related
with the terms Collection, Document and Field of NoSQL databases.

Three possible alternatives of MongoDB are Cassandra, PostgreSQL and MySQL.

7Non-relational Structured Query Language
8DataBase Management System
9Atomicity, Consistency, Isolation, Durability

10Binary JSON
11Structured Query Language

26

Data sources and technologies

Cassandra: an open source NoSQL distributed database developed by Apache
that enables operational simplicity and support replication across data centers.
Distributed databases are a key feature of the Cassandra system. Both technological
and commercial benefits result from that. When an application is under a lot of
pressure, Cassandra databases scale readily, and the distribution also shields data
from being lost when a datacenter’s hardware fails. A distributed architecture also
offers technological advantages, such as the ability for developers to individually
adjust the read and write query performance. Cassandra is a popularly used wide-
column store created for specific use cases where the majority of operations are
written using a single primary key while MongoDB is a general-purpose database
that, because to its adaptable document format, extensive aggregate language, can
handle a variety of use cases.

PostgreSQL: a widely popular open source object-relational database management
system developed by Oracle, its main characteristics are reliability, data integrity,
functionality and scalability. It uses the SQL language and extends it with many
functionalities. PostegreSQL runs on all main operating systems and it supports
ACID properties. Numerous functions in PostgreSQL are designed to support
developers in creating applications, administrators in safeguarding data integrity
and creating fault-tolerant systems, and in managing data regardless of the size
of the dataset. PostgreSQL has a large ecosystem of SQL skills and tools for a
relational data model but MongoDB, if the developer have data that needs to be
provided at scale, allows to control the schema with a document database.

MySQL: a open source relational database management system which organizes
data into tables which can be in relation each other. SQL is the language used
to create, modify and get data from the relational databases. MySQL is quick,
scalable, and simple. It was first created to easily work with big datasets. MySQL
offers a comprehensive and practical collection of features. Connecting databases
via the internet is a task that MySQL is well suited for due to its quickness, and
safety. Compared to MySQL, MongoDB makes it possible to construct applications
more quickly, manage many types of data, and scale applications extremely well.
Also, the intricate ORM12 layer that converts objects in code to relational tables is
removed while using MongoDB.

3.2.3 Celery
Celery[13] is an open source asynchronous task queue (used as a mechanism to
distribute work across threads or machines). There is a continuous process that

12Object-Relational Mapping

27

Data sources and technologies

monitor task queues for new work to perform, these works are called tasks. Celery
communicates via messages through the usage of a broker that allows to mediate
between clients and workers. For our goal a recommended broker is used: Redis[14].

Celery does not need any configuration files and it is easy to use and maintain.
When a connection loss or failure occurs, workers and clients will automatically
retry to communicate. It permits to process millions of tasks by a single process
only in a minute. Practically each component in Celery can be extended or used
on its own.

3.2.4 Docker
Docker [15] is an open platform for developing and running applications, it allows
to separate applications from infrastructure. Docker uses containers to build, share
and run applications. A container is a isolated environment where the applications
are packaged and run inside. These containers are very lightweight and have all
that is need to run the application. Due to their architecture (isolated and secure),
many containers can be run simultaneously on the same host.

Docker utilizes a client-server architecture (Figure 3.2): the Docker client
communicate with the Docker daemon using a REST API. Docker daemon is
responsible of building, running and distributing the Docker containers. Hosts
contain images and containers: the difference is that the first are read-only template
with instructions for creating a container while the second are a runnable instance
of the images and they can be created, started, stopped, moved or deleted.

To work with applications composed of a set of containers, another Docker client
is needed: Docker Compose.

3.2.5 Nginx
Nginx [17] is free and open-source software, it is a web server that can also be used
as a reverse proxy, load balancer, mail proxy and HTTP cache. Nginx has an
approach of asynchronous event-driven type to handling the requests. Due to this
type of architecture it can provide very good performance under high loads.

Nginx was created with the express intention of surpassing the Apache web
server. In fact, Nginx uses significantly less memory than Apache, and can han-
dle approximately four times more requests per second. But, this increase in
performance results at the price of reduce the flexibility.

There are two different distributions of Nginx: Nginx Open Source and Nginx
Plus. As the name suggests, Nginx Open Source is the free and open-source version.
Instead, Nginx Plus offers additional features with the payment of a subscription,
some of them are: active health checks, session persistence based on cookies and
DNS-service-discovery integration.

28

Data sources and technologies

Figure 3.2: Docker architecture [16]

3.2.6 Flutter
Flutter [18] is a cross-platform UI13 toolkit created by Google that is designed to
allow code reuse across several OS14 such as iOS, Android, macOS, Windows,
Linux, and the web. Its goal is to give the possibility to developers to create
high-performance apps on different platforms that seem fluid as native applications
while sharing the largest possible portion of code. Flutter, during development,
provides a very useful instrument: a stateful hot reload of changes that non required
a full recompilation of the code.

Dart[19] is a client-optimized language developed by Google for rapid application
development across any platform prioritizing both development and high-quality
production experiences through a wide range of compilation targets like web, mobile
and desktop. It is a type safe language: it checks that the value of the variables
always match their static type and it has also sound null safety property: the
variables can not have a null value except if you indicate that they can have. Dart
offers a large set of core libraries and many useful supplementary packages provided
by the Dart team but there is also the possibility to use others packages from
third-party publishers and the vast community.

Architectural layers
Flutter is structured as a series of layers where each of them depends on the

13User Interface
14Operating System

29

Data sources and technologies

underlying layer (Figure 3.3). Developers manage the interaction with Flutter

Figure 3.3: Flutter architecture [20]

through the usage of the Flutter framework: a modern and reactive framework
written in Dart. Visualizing this architecture composition from the bottom to the
top, we found:

• Foundational classes and basic services like animation, painting and gestures.

• Rendering layer : provides an abstraction to manage the layout.

• Widgets layer : the layer at which the reactive programming model is intro-
duced.

• Material and Cupertino libraries allow the implementation of the Material or
iOS design languages.

The core of Flutter is composed by the Flutter engine: written mainly in C++,
it supports the primitives necessary to all Flutter applications. Flutter engine is
exposed to the Flutter framework through the library dart:ui.

30

Data sources and technologies

A platform-specific Flutter embedder gives an entrypoint and coordinates the
access to services with the platform. Flutter applications are packaged as the
native applications for the several platforms. The embedder is written in different
languages depending for the different OS:

• Android: Java and C++.

• iOS and macOS: Objective-C/Objective-C++.

• Windows and Linux: C++.

Reactive user interfaces

In Flutter the developers gives a mapping from the application state to the interface
state, the framework updates the interface at runtime when the application state
changes. This working logic consist in changing several traditional design principles
and takes inspiration from React framework. Usually, the initial state of the
interface is declared once and then is updated by the user code at runtime as
a response to events. But, if the complexity of the application increases, the
developers have to know how state changes in a consequently way over the entire
user interface. To address this problem, Flutter split the UI from its state. The
developers only create the user interface description and the framework manages
one configuration to either create and update the UI.

Widgets

Widgets are the constitutive elements of the UI of Flutter applications. They create
a hierarchy based on composition: each of them nests inside its parent and can
receive context from the parent. At the top of the structure there is the root widget:
the container of the Flutter application. As a consequence of a user interaction,
applications update their UI by telling the framework, for example, to replace a
widget with another widget.

Flutter has its own implementation for each user interface control and does
not utilize those given by the system. Flutter allows unlimited extensibility, the
developers can create own variations of the widgets without the limitation of the
OS. It also creates the entire scene at once avoiding major performance bottleneck
and split application behavior from the operating system dependencies so that the
applications seems the same on all versions of the OS.

Possible alternatives to Flutter in mobile app development are React Native,
Cordova, Xamarin and Ionic.

31

Data sources and technologies

React Native: a popular open-source JavaScript-based cross-platform mobile frame-
work developed by Meta which allow to build true native apps for both Android
and iOS platforms via a single codebase only. It has the same design as React and
enables you to build an advanced mobile user interface with declarative components
which are the same as in standard iOS and Android applications. React components
encapsulate pre-existing native code and communicate with native APIs using
JavaScript and the declarative UI paradigm of React. The fast refresh feature of
React Native, thanks to the power of JavaScript, makes possible to see changes as
soon as you save. Both Flutter and React Native are top cross-platform mobile
application development frameworks, and they share many features. The primary
distinction, however, is between the two programming languages: Flutter utilizes
Dart while React Native uses JavaScript.

Cordova: a useful application development framework developed by Apache which
allows to build hybrid applications using CSS15, HTML and JavaScript. Hybrid
applications means that they are neither completely web-based nor native. These
applications are packaged as mobile apps with the possibility to use the native
devices’ APIs. Cordova is useful to mix native application components with a
WebView (special browser window) or to create a plugin interface between native
and WebView components. Cordova is a mature cross-platform framework, it is
easy to learn and useful for quick prototyping and creating simple apps but it does
not provides very high performance and the UI does not look as native. Instead,
Flutter can be used for any cross-platforms with higher performance, especially if
there are animations and graphics.

Xamarin: a open-source C#-based framework provided by Microsoft with the
aim to build cross-platform applications for iOS, Android, and Windows with
.NET. The use of C# language to develop apps distinguishes Xamarin from the
other frameworks. Its applications can be authored on a PC or a Mac and then
compiled into native app packages. Developers can write the code in a single
language and obtain applications with performance, appearance and feel as the
native ones. Xamarin is based on .NET which manages some jobs like memory
allocation, garbage collection and interoperability with underlying platforms. The
two important differences between Xamarin and Flutter are the programming
languages utilized and how the UI is rendered. The user interface in Xamarin is
created using XAML with C# support while in Flutter, Dart language is used to
handle both logic and the full user interface.

Ionic: a open-source user interface toolkit created for easier cross-platform appli-
cation development with high-performance and high-quality using HTML, CSS

15Cascading Style Sheets

32

Data sources and technologies

and JavaScript. It is a front-end SDK16 framework that permits to develop mobile
applications for iOS, Android and Windows, developers can create once and run
everywhere. It has integration with popular frameworks like Angular, React and
Vue. Ionic has the focus on the user interface: controls, interactions, gestures and
animations. It implements techniques like hardware accelerated transitions and
touch-optimized gestures to reach great performance on the latest mobile devices.
Both Flutter and Ionic are great mobile frameworks, Ionic is very good for web
developers that want to build hybrid mobile apps while Flutter guarantee higher
performance results.

16Software Development Kit

33

Chapter 4

Architecture

To organize the technologies used in the applications, an appropriated architecture
which permits them to communicate to each other in a proper way is needed. The
choice of the architecture is crucial for guarantee the best interaction between
the various technologies adopted. Especially because the back-end has to works
with different kinds of front-end which operate in a different way, in our case the
architecture has to support a web application and a mobile application.

A detailed discussion about the implementation of the back-end of the application
is offered in this chapter. Specifically, the topics covered are: the data models used,
the asynchronous tasks for retrieve all the financial data need by the application
and the APIs provided for the clients.

4.1 Client-server model
In the client-server architecture (Figure 4.1), the server provides services to one
or many clients. The clients can be of different type (web, mobile, desktop) and
can communicate with the same server which responds at the requests done by the
clients through specific network protocols like HTTP1. This architecture is very
common and recommended thanks to its efficient operation through the use of the
internet.

The REST API guidelines are followed to make the operations easier: each
resource is identified with a unique URL2 and the HTTP request method has to
be specified to indicate the type of operation that you want to do on the resource.
The four most utilize HTTP methods are:

1HyperText Transfer Protocol
2Uniform Resource Locator

34

Architecture

• GET: used to read or retrieve a resource.

• POST: used to create a new resource.

• PUT: used to modify a resource.

• DELETE: used to delete a resource.

Docker containers are used for the development of the server side, they are very
useful because they carry all their dependencies with them. Due to this type of
architecture two different types of clients have been developed which works with
the same single server: the web application and the mobile application.

The web application (Figure 4.2) was developed using React framework, it
permits the users to interact with the data and charts related to markets and user
strategies. In addition of these operations, the users through the web application
can also create, modify and delete the strategies.

In particular, this work has consisted in the development of the mobile application
and the next chapter is entirely dedicated to explore it (Chapter 5).

Figure 4.1: Client-server model [21]

4.2 Database
To take advantage of the flexibility of the non-relational databases of MongoDB,
the information about the users and the financial data are stored in a collections

35

Architecture

Figure 4.2: Web application - Markets page

through the use of JSON dictionaries. A detailed description of the collections
used is provided below.

User
Collection which contains all information about the users of the application. There
are both the information to identify the users and some information about the
operations of the users. The structure of the documents is shown in the Table 4.1.

Fields Description Type
id Unique identifier of the user Number

email/username Unique identifier for the authentication String
password Password for the authentication String

first_name Name of the user String
last_name Surname of the user String

is_superuser Authorization to be superuser Boolean
is_active Enabled to operate with the application Boolean
last_login Last time the user logged in the application Date

date_joined Date in which the user joined the application Date

Table 4.1: User document description

Market
All the markets’ data and the relationships with options and futures are included
in this collection, the structure of the documents in this collection is shown in the

36

Architecture

Table 4.2. The field expiration of the documents is an array of documents with a
structure that can be seen in the Table 4.3.

Fields Description Type
id Identifier of the market String

groupId Identifier of market group String
symbol Symbol of the market String
label Name of the market String

exchange Symbol of the exchange String
to which the market belongs

country Symbol of the country String
to which the market belongs

currency Currency of the market String
template Type of the market String

exposition Exposition value for related financial options Number
dividendYield Dividend yield value of the market Number

expirations Array of the expiration documents Array
underlying Information about the underlying of the market Object

Table 4.2: Market document description

Fields Description Type
symbol Symbol of the expiration String
label Label of the expiration String
dates Array of the dates Array

Table 4.3: Market expiration document description

Chain
Collection that provides all relevant data on the chains of options, each chain refers
to the same market and expiration date (Table 4.4). The chains are identified by
combining the fields: symbol, expiration and date, for instance the values can be:
DAX, EOM and 2022-12-16. Each chain document contains an array of objects
with all information about call and put options related to the same strike price
(Table 4.5). Each single option is identified by its contract field which is formed by
combining: exchange symbol, market symbol, expiration symbol, expiration date,
option type and strike price (Table 4.6).

37

Architecture

Fields Description Type
exchange Symbol of the exchange String
symbol Symbol of the market String

expiration Symbol of the expiration String
date Date of the expiration Date

options Array of options Array

Table 4.4: Chain document description

Fields Description Type
strike Value of the strike price Number
put Option object of type put Object
call Option object of type call Object

Table 4.5: Strike document description

Future

All futures-related data is included in this collection, each document refers to a
specific market and expiration date. To identify the futures the field contract is
used, it is composed by: exchange symbol, market symbol, expiration symbol and
expiration date, for instance these values can be equal to: EUREX, DAX, EOM
and 2022-12-16 To maintain the same format as the options contract it is added
the values of the type and the strike in the field contract, but these values are
always equal to FUTURE and 0. This structure of the documents can be seen in
the Table 4.7.

Group

Collection of data containing every markets groups information, the groups consist
of markets with a common reference. For instance, the markets E-mini Russell
2000 and Micro E-mini Russell 2000 refer to the same Russell 2000 index. This
organizations of the markets is useful for users that want to operate with markets
of the same group. In the Table 4.8 the structure of the group documents is shown.

Strategy

Collection that is filled with the details regarding users’ strategies. Users can create
more strategies and each of them is related with a specific group of markets. Within
the strategy document (Table 4.9) there is the list of market positions, each market

38

Architecture

Fields Description Type
price Price of the option Number
last Last price of the option Number
open Open price of the option Number
close Close price of the option Number
settle Settlement price of the option Number
low Low price of the option Number
high High price of the option Number

volume Volume value of the option Number
openInterest Open interest value of the option Number

type Type of the option String
state State of the option String

contract Contract identifier of the option String

Table 4.6: Option document description

Fields Description Type
exchange Symbol of the exchange String
symbol Symbol of the market String

expiration Symbol of the expiration String
date Expiration date Date
price Price of the future Number
last Last price of the future Number
open Open price of the future Number
close Close price of the future Number
settle Settlement price of the future Number
low Low price of the future Number
high High price of the future Number

volume Volume value of the future Number
openInterest Open interest value of the future Number

type Type of the future String
contract Contract identifier of the future String

Table 4.7: Future document description

39

Architecture

Fields Description Type
type Type of the group of markets String

symbol Symbol of the group of markets String
name Name of the group of markets String

currency Currency symbol of the group of markets String

Table 4.8: Group document description

position (Table 4.10) is related to a specific option or future, it is indicated if the
position has been opened or closed and it is also specified the amount of contracts
opened and in which state it is, it can be open, close or temporary. Temporary
state means that the position has no effect on portfolio of the user but permits to
see the impact of the position on the performance of the selected strategy. The
position with a temporary status can be opened, disabled or deleted in any moment.
An open position has effect on portfolio and the only operation that can be done is
the closing.

The market positions are identified by the field contract that is composed by:
exchange symbol, market symbol, expiration symbol, expiration date, option type
and strike price, and timestamp of the opening position. For instance, the values
can be: EUREX, DAX, EOM, 20221216, CALL, 0015250000 and 1630622983463.
This data structure allows to open several positions in different moments in the
same contract. The field whatif is an object that contains values of parameters
which can be used to simulate the performance of the strategy in a certain scenario.

Fields Description Type
userId Identifier of the user String

groupId symbol of the group of markets String
name Name of the strategy String

positions Array of position objects Array
created Creation date Date
disabled Disabled from the view in portfolio Boolean
closed No more open positions Boolean
whatif Object with the information Object

about the simulation

Table 4.9: Strategy document description

40

Architecture

Fields Description Type
id Identifier of the position String

contract Contract identifier of the option or future String
active If the position is active Boolean
status Status of the position String

quantity Number of contract bought or sold Number
exchange Symbol of the exchange String
symbol Symbol of the market String

expiration Symbol of the expiration String
date Date of the expiration Date
type Type of the contract String
strike Strike price Number
price Current price of the contract Number

whatif Object with the information Object
about the simulation

startDate Date of position opening Number
startPrice Price on the position opening date Date
endDate Date of position closing Date
endPrice Price on the position closing date Number

Table 4.10: Position document description

Portfolio
All the data regarding each user’s portfolio is contained in this collection, the
portfolio is a virtual account that starts with an initial value of €100,00. The
balance of the portfolio is computed using the performance of the strategies of the
user. The users can have only one portfolio and the structure of the document is
visible in the Table 4.11.

Market History
Collection that includes all available market pricing data per each day relating to
the last two years (Table 4.12). These data are saved in an array where each object
corresponds to a different day.

Chain History
Collection that contains all relevant data on the chains of options per each day
relating to the last month (Table 4.13). The documents are identified by the fields:

41

Architecture

Fields Description Type
userId Username of the user String
name Name of the portfolio String
value Total balance of the portfolio Number

currency Currency used for the portfolio String
created Date of creation Date

strategies Array of strategies included in the portfolio Array

Table 4.11: Portfolio document description

Fields Description Type
exchange Symbol of the exchange String
symbol Symbol of the market String
days Array of objects that refers to a specific date Array

Table 4.12: Market history document description

exchange, symbol and date, and contains an array where each object corresponds to
a different day.

42

Architecture

Fields Description Type
exchange Symbol of the exchange String
symbol Symbol of the market String

expiration Symbol of the expiration String
date Expiration date Date
days Array of objects that refers to a specific date Array

Table 4.13: Chain history document description

4.3 Asynchronous tasks
To retrieve the information about the financial markets, several asynchronous tasks
are used. In particular, there is one asynchronous task for each different selected
exchange. In this way each of them fetch the daily information about the markets
that are part of that specific exchange every 15 minutes. The information retrieved
concerned: prices, volumes, open interests, futures and chains of options; and are
saved in the database. At the end of the day one asynchronous task is used to
aggregate the latest information in unique documents divided per each market,
futures and chains of options.

update_cboe

The asynchronous task update_cboe permits to retrieve the financial data about the
CBOE Exchange. This task extract the list of all the markets that are contained in
CBOE and calls for each of them the related public API. The markets information
collected is about the prices, futures and options with all the available expiration
dates. After the processing of the information, the data is stored in the database.

update_cme

The CME Exchange’s financial information may be retrieved thanks to the asyn-
chronous task update_cme. This task call four different APIs for each market
contained in CME and are used to dowload the information about: options prices,
futures prices, volumes and open interests. After the processing of the information,
the data is stored in the database.

update_eurex

Financial data about the EUREX Exchange are retrieved with the help of the
asynchronous task update_eurex. Unlike the other two exchanges, EUREX does
not provided any REST API, so the method used as alternative is the web scraping.
Starting from the website it is possible to recognize two different path for retrieving

43

Architecture

information about futures and options, this pattern is repeated for each market
and each available expiration date. After the processing of the HTML files, the
data is stored in the database.

update_history
The update_history, is the asynchronous task which talks with the database at the
end of the day to create collections composed by the updated data collected by
market and option chains.

4.4 REST APIs
The user, through the client application, can perform various actions with the
financial data retrieved from the exchanges. These actions are made possible by
specifically created web services. These web services follow the REST guidelines
and each of them is characterized by an unique URL and a specific HTTP method.
The APIs are divided in three different groups: user, market and chain, and are
described below.

4.4.1 User
Before seeing the APIs concerning the users, the explanation of the authentication
phase is provided.

Authentication
To allow the authentication of the user in the mobile client application, the
TokenAuthentication[22] provided by Django REST framework is used. It makes
use of a straightforward token-based HTTP authentication method. For client-server
architectures, including native desktop and mobile clients, token authentication
is an appropriate choice. The authentication phase is composed by the following
steps:

• 1 - The user indicates its username and password in the login page, creating
an HTTP request to the server.

• 2 - The server search in the database the username received and using hashing
techniques checks if the password corresponds.

• 3 - If the login data is not correct the server responses to the client with a
denied permission through an HTTP 401 Unauthorized error. Instead, if the
login data is correct the server will return a JSON response which has the key
token and a corresponding value that is the unique token associated to that
user.

44

Architecture

• 4 - For all the following request of the user, the token will be automatically
send and will permits the server to identify the user.

Knowing the functioning of the authentication, we are going to see the APIs concern
the information about the user and all the other things that are related to him like
his portfolio and his strategies.

api/users/

Called with the HTTP GET method returns the information about the logged-in
user. Django maintains the information of the user after the login thanks to a
unique token and until the user does not logout or close the application, this
information is available for the HTTP calls.

api/users/portfolio/

The information about the logged-in user’s portfolio is returned when it is call with
the HTTP GET method. The information regards the performance of the portfolio
over the time and the details about the strategies of the user that composed the
portfolio.

api/users/strategies/

The list of the user’s strategies and some information about them are returned
when the HTTP GET method is used to call it. Instead, called with the HTTP
POST method, a new strategy can be created by the logged-in user. Before create
the new strategy, the server checks if the groupId and name values passed through
the body of the request are valid and if they are acceptable the new strategy is
created.

api/users/strategies/:id/

The information about the user’s single strategy that has the id parameter taken
in input is returned when the HTTP GET method is used to call it. The response
of the server contains all the data that are needed to show to the logged-in user in
the client application like all the information about the positions opened in that
strategy. Instead, called with the HTTP POST method allows to modify an existed
strategy of logged-in user. It is possible to change the name of the strategy, change
the whatif values and insert, modify or delete one or more positions of the strategy.
The server checks if the option or future contracts for which a position is opened
belongs to the same group of markets of the strategy.

45

Architecture

api/users/strategies/:id/:chart-id/
The data required to build the strategy charts associated with the strategy for
which the id was provided as a parameter is returned when called with the HTTP
GET method. The parameter chart-id can assume the value profit or greeks and
respectively returns the data for the payoff diagram and for the greeks charts.
This information is contained in an array of JSON objects with the data per each
different price that the market can assume.

4.4.2 Market
These APIs are related to market information, they are used to display the data
like prices, volumes, open interest and the charts like historical volatility, open
interest by maturity, price history in the client application.

api/markets/
Called with the HTTP GET method returns the list of the markets with the relative
details per each of them.

api/markets/:symbol/
The information about the market matching to the symbol parameter provided
is returned when the HTTP GET method is called. The information regards the
market characteristics, market prices and expiration dates for options and futures.

api/markets/:symbol/futures/
The list of market-related futures matching to the symbol parameter entered as
input for all maturities is returned when the HTTP GET method is called.

api/markets/:symbol/:chart-id/
The data required to build the market charts associated with the market matching
to the symbol argument entered is returned when called with the HTTP GET
method. The parameter chart-id can assume the values: history, volatility or
open-interest. The first is a chart about the values assumed by the market during
the past, the second is chart about the volatility per each option for the next two
expiration chains and the third is a chart about the open interests per each chain
expiration. This data is returned in an array of JSON objects with the data per
each different price that the market can assume.

4.4.3 Chain
These APIs relate to the chains’ information and contain the data to show like the
list of options and the data needed to create the charts like the open interest for
strikes, breakdowns or pressure in the client application.

46

Architecture

api/chains/:symbol/:expiration/:date/
Called with the HTTP GET method returns the data of a single chain where the
related market, the expiration type and the expiration date correspond to the
symbol, expiration and date parameters taken in input. In the body of the response
there is the data about the characteristics of the chain, the list of the options and
the index which indicate the position of the ITM options within the list.

api/chains/:symbol/:expiration/:date/:chart-id/
The data required to construct the charts relating to the single chain are returned
when the HTTP GET method is called where the related market, the expiration type
and the expiration date correspond to the symbol, expiration and date parameters
taken in input. The parameter chart-id can assume the values: volatility/variation,
open-interest or open-interest/cumulative. The first is a chart about the volatility
variation per each option contract for the last two days, the second is a chart about
the open interests and the third is a chart about the variation of the last two days
of the open interests. This data is returned in an array of JSON objects with the
data per each different price that the market can assume.

47

Chapter 5

Mobile application

In this chapter, we are going to explore the data management and the UI of the
mobile app with the various available functionalities from a technical point of view.

5.1 Data management
The data management of the app is based on several Flutter libraries and different
data structure. The first step that is required to the user is the login in the
application to permits the server to authenticate him, allowing to visualize certain
data and perform different operations. When the application is started, the first
page that appears is the login page as shown in Figure 5.1, where the user has to
insert his email and password and then pressing the Sign in button he can send
his data to the server through an HTTP POST request. This operation is done
thanks to the http[23] library, developed by the official Dart Team, which permits
to make HTTP requests.

When the server receives the data, it takes the email and password and find a
match in the document of users saved in the database, the passwords of the users in
the document are encrypted and so an encryption technique is used to compare them.
If it finds a match, returns to the client the authentication token corresponded to
the user. The app through another library called flutter_secure_storage[24], stores
the token in a secure storage and will use it for all the following HTTP requests
by passing it in the header Authorization. In this way the user will be allowed to
navigate in the app and he is recognized in order to provide the data belonging to
him. After the login, the email of the user is stored using the shared_preferences[25]
library, by doing so the email is available for all the files of the app and they can
retrieve this value using the same library. In practice, the implemented class of
the navigation drawer menu, which consist of a Drawer widget of Flutter, read the
email of the user and display it in the welcome message (Figure 5.2).

48

Mobile application

Figure 5.1: Login page Figure 5.2: Navigation drawer

To manage better the HTTP requests, the DAO (Data Access Object) pattern
is implemented, a pattern that provides an abstract interface to the database.
Essentialy, there is a file which contains as many functions as there are different
requests, each of them corresponds with one of the APIs presented in Chapter 4.4.
All these functions have Future return type, it means that they return the result of
an asynchronous computation. An asynchronous computation may need to wait
for retrieving data which takes time. Instead of blocking all computations until the
result is available, the asynchronous computation immediately returns a Future
which will eventually "complete" with the result. The data retrieved from the APIs
are saved in structures of types List, an indexable collection of objects with a
length, and Map, a collection of key/value pairs, from which you retrieve a value
using its associated key. All the classes of the different pages of the application
import the DAO file and call only the functions that they need. The pages which
compute asynchronous tasks are StatefulWidget, a widget that has mutable state,

49

Mobile application

and implement the initState() and setState() functions, that are used to initialize
and notify the framework that the internal state of the object has changed. In this
way the user interface is rebuild when all the data is retrieved from the APIs. In
the Figure 5.3, one example of this mechanism is displayed.

Figure 5.3: Example of how the app works

5.2 User interface
The user interface is one of the most important elements of a mobile application.
In financial mobile applications, like in this case, the data and charts to show are
a lot and complicated. A detailed explanations of the different parts of the UI is
provided below.

The app maintains a common style within the different pages, for all of them
the Flutter widget parent is always a Scaffold. It will expand to fill the available
space that usually means that it will occupy its entire window or device screen.
This widget allows to insert an app bar to display at the top of it, so the AppBar
widget of Flutter is used to implement the app bar, it is always shown and change
the title based on the page. The AppBar widget allows also to implement some
actions, a list of widgets to display in a row after the title of the widget, these
widgets are IconButton and representing different operations and change based
on the page. One element which is always shown is the icon of the drawer menu,
located on the left of the app bar. The drawer used in our Scaffold is a customize

50

Mobile application

Drawer widget and as can be seen in the previously shown Figure 5.2, it allows the
user to navigate through the various sections of the app or to do the logout, from
each page of the application.

The navigation between the pages is managed with the Flutter widget Navigator,
it permits to move from one page to another. This pages, in reality, are customized
Flutter widgets which inside contain other widgets. This type of navigation allows
to send data from the starting page to the arrival page and it is very useful.

5.2.1 Markets
The first page that appears after the login is the Markets page (Figure 5.4), a
simple page composed by a Column widget which allows to insert more widgets
one under the other. In particular, there is a list of widget of type Card, each of
them indicate one of the different markets available. When one of these cards is
tapped, the Navigator widget will send the user to the Market page (Figure 5.5).

Figure 5.4: Markets page Figure 5.5: Stocks page

51

Mobile application

This new page, receive from the Navigator the type of the chosen market by
the user and consequently it demands to the server the corresponding data. It
is similar to the previous page but, the cards contain more information, in the
app bar is indicated the number of results and there is a new IconButton in the
actions of the app bar. This IconButton allows the user to search the items by the
name, this is possible thanks to the app_bar_with_search_switch[26] library which
modifies the standard AppBar implementing the search function. In addition, a
pagination technique is here implemented, thanks to a dedicated API the results
are gradually retrieved while the user scroll down.

Figure 5.6: Price history chart Figure 5.7: Positions page

Market page

In the same way as before, when one card of the page is tapped, the Navigator
widget send the user to another page and pass to it the data relative to the item
selected. This page is more complicated compared to the previous, so to navigate
internally is added a bottom navigation bar using the BottomNavigationBar widget.

52

Mobile application

There are four different tabs, all of them implement the share button, located on
the right of the app bar that allows the user to share the content of the page with
other applications. The library used to make this operation is called share_plus[27]
and it is implemented in different way according to the type of content to share.
In the case of charts, it do a screenshot of the page but removing the app bar and
the bottom navigation bar and save it as image. Instead, for the other tabs, where
the content is textual and contained in tables, the share button permits to take
the values in the tables and share it in a CSV1 file.

Figure 5.8: Futures page Figure 5.9: Chains page

In the Charts tab (Figure 5.6), different interactive graphs are shown, beside
the share button there is a button which allows to change the chart visualized
by choosing from a dropdown menu. The graphs are implemented using the
candlesticks[28] and syncfusion_flutter_charts[29] libraries.

1Comma-Separated Values

53

Mobile application

The Positions tab (Figure 5.7) is composed by a row where the user can
select different strategies through a dropdown menu implemented with the Drop-
downButton widget and a table below the row. This table is created using the
flutter_expandable_table[30] library because it give the possibility to maintain the
first column fixed on the left and scroll only on the other columns.

Similarly, in Futures tab (Figure 5.8), there is a table created with the same
library as before in a way that the first column can be fixed on the left.

The Chains tab (Figure 5.9), in addition to contains the table created with
the same library as before, includes also a row above the table with a dropdown
menu implemented with the DropdownButton widget and a ToggleButtons widget
composed by two buttons, enabling one button disables the other automatically.

Figure 5.10: Strategies page Figure 5.11: Strategy information

54

Mobile application

5.2.2 Strategies
The structure of the Strategies page is similar to that of the Markets page (Figure
5.10), a Column widget with inside many Card widgets. When a card is tapped,
the Navigator widget sends the user to the Strategy page passing the data of the
selected card.

Strategy page

This page implements the bottom navigation bar using the BottomNavigationBar
widget. The Information tab (Figure 5.11) is made up only by Text widgets.
Instead, the Chart tab (Figure 5.12) contains a interactive graph created with
the syncfusion_flutter_charts library and implement the share button using the
share_plus library. Finally, the Positions tab contains the same table shown in the
Positions tab of Market page (Figure 5.7).

Figure 5.12: Strategy chart Figure 5.13: Portfolio information

55

Mobile application

5.2.3 Portfolio
The structure of the Portfolio page is similar to that of the Strategy page, it
includes the bottom navigation bar using the BottomNavigationBar widget. The
Information tab (Figure 5.13) includes only Text widgets. The Performance
tab (Figure 5.14), instead, contains a interactive graph constructed using the
syncfusion_flutter_charts library. Lastly, the Strategies tab (Figure 5.15) contains
a table implement through the flutter_expandable_table library. In this way, the
first column is maintained fixed and the other scroll normally. The last column
contain IconButton widgets, the tap on them triggers an API call and change the
icon displayed.

Figure 5.14: Portfolio performance Figure 5.15: Portfolio strategies

56

Chapter 6

Use cases

Three use cases are provided in this chapter, they includes the most common
operations which the user can perform and are explained from a functional point
of view.

6.1 Analysis of a position
In this first use case, we are going to do an analysis of a position in relation to the
market of the underlying. In the meantime, we will discover the content of the
Markets and Market pages, and the available features provided.

Markets page

The markets page of the application shows the list of the available markets (Figure
5.4). By pressing one of them is possible to see the items that belong to that specific
market, for instance, pressing on the Stock market, will appear the list of stocks
available in the app (Figure 5.5). Under the name of the market it is displayed the
number of items that belong to it. This list of items is sorted alphabetically by
name and does not only provide the names but also other important information
like the exchange, the symbol and the most recent details about the price (last,
open, close, low and high). To avoid the overloading of the application and wasting
the time of the user, only a few results are initially downloaded, and when the user
scroll down within the list the other results are gradually retrieved. In addition of
this pagination technique, the user can directly search an item using the search
button located on the top right of the page. Selecting an item, the user can visualize
all the data and charts that concern that specific item, for example, if the user
select the Apple Inc. stock, a new Market page will appear.

57

Use cases

Market page

This new page has an internal tab menu which allows the user to internally navigate,
the tab menu is positioned in the bottom of the page and has four tabs: Charts,
Positions, Futures and Chains.

• Charts: this tab allows to visualize and interact with several charts that
shown different financial data. Each chart gives the possibility to zoom in
and out, scroll in horizontal and vertical way, and pressing on the screen the
information about that specific point will appear. To change the visualized
chart the button with three bars in the top-right of the screen has to be
pressed. Instead, pressing the button beside, it is possible to share the chart
as an image through the social applications installed in the smartphone like
WhatsApp, Telegram, Facebook and Twitter. For example the Figures 5.6
and shown the price history chart and what happens when the user press in
one point of the screen.

• Positions: in this second tab, the user can see his strategies on the selected
market (Figure 5.7). He can choose which to see through a drop-down menu
on the top of the page. At the right of the name of the strategy there is the
profit value of the strategy. In the center of the page there is a table where
each row corresponds to a different open position of the strategy, the column
of the strike price remain fixed on the left of the page while the other (quantity,
expiration date, open interest, last price, start price, cost and profit) can be
horizontally scrolled. The share button on the top right of the page permits
to share the strategy as a CSV file through other applications installed on the
smartphone like WhatsApp, Telegram and Gmail.

• Futures: as the name said, is the tab where there are all the available futures
related to the selected market. The first column is relative to the expiration
date and is blocked while on the other it is possible to horizontally scroll
(quantity, price, open price, close price, open interest and volume). Also in
this case, the button positioned in the top right of the page allows to share
the futures as a CSV file with other applications. The Figure 5.8 shows this
tab but of another market (VSTOXX Mini Futures) because the market Apple
Inc. does not have any futures available.

• Chains: the tab of the options, in the upper part of the page the user can
select the expiration date and the type of option (call or put) of the available
options. The column of the strike price is locked on the left and the value is
highlighted in yellow color if it is an ITM option, instead the other columns
(volume, open interest, bid-ask spread, average price) can be horizontally
scrolled. Also for the options it possible to share them as a CSV file using

58

Use cases

the button on the top right of the page. The Figures 5.9 and show the chains
page and what happens when the share button is pressed.

If the user want to analyze a position opened on the Amazon stock, he has to tap
on the Amazon card in Markets page and then go the the Positions tab and see
the available strategies. The AMZN Oct Long Call (Figure 6.1) adopts a long call
strategy and has a temporary positive profit, this because the price of the opened
positions has increased since it was bought.

Figure 6.1: AMZN Oct Long Call strategy

6.2 Exploration of a strategy
The second use case consist of explore a strategy to understand its performance,
in the specific we want to visualize the performance of the strategy seen in the
previous use case.

Strategies page

In the strategies page of the application, the user can visualize the list of the
strategies created by him. In addition of the name of the strategy, it is also
indicated the symbol of group markets of which the strategy belongs and the profit
(Figure 5.10). Selecting one strategy of the list, the user can see more information
about it, for example, if the user select the AAPL long call strategy, a new strategy
page will appear.

59

Use cases

Strategy page

The page just opened permits to navigate in three different tabs using a tab
menu, the tab menu is positioned in the bottom of the page and has three tabs:
Information, Chart and Positions.

• Information: in this first page, the general details about the strategy are
provided (Figure 5.11): the underlying asset, the price, the profit, the cost
and the number of positions.

• Chart: in the chart page there is the payoff diagram that represents the
potential outcomes of the strategy. In particular the are two payoff shown: at
now and at expiry, the payoff at expiry shows what the profit will be on the
contract expiration date while the payoff at now shows the trend of the profit
in each instant. The chart is interactive and the Figure 5.12 shown it.

• Positions: this last page provides the information about the position opened
in the strategy. The information is displayed using a table as in positions tab
of market page seen previously.

Viewing the chart displayed in Figure 6.2 it is possible to understand the profit of
the strategy depending on the variation of the price of the underlying. As can be
seen the loss of the strategy is equal to the cost of the opened position until the
underlying price does not reach the strike price. From this value he loss will begin
to decrease until it becomes a profit. If the user want to share this chart, he can
tap the share button on the top right of the screen, the screen that will display is
shown in Figure 6.3.

6.3 Exploration of the composition of portfolio
Explore the composition of the portfolio and visualize how the strategy seen in
previous use cases will change the performance of portfolio.

Portfolio page

The portfolio page provides the information about the portfolio of the logged-in
user, users have only one portfolio each and it is composed by the strategies owned
by them. The user may navigate in three different tabs in this page: Information,
Performance and Strategies.

• Information: in this page there are indicated the information about the balance
of the portfolio of the user (Figure 5.13).

60

Use cases

Figure 6.2: AMZN Oct Long Call pay-
off diagram

Figure 6.3: AMZN Oct Long Call share
function

• Performance: in the performance page the user can visualize the interactive
chart where he can see the different values that the portfolio has assumed over
the time (Figure 5.14).

• Strategies: this tab shows the list of all the strategies of the user that composed
the portfolio. The information are provided in a scrollable table which shows
the following details: name, creation date, markets group, number of positions,
cost, possible revenue, accounted revenue and profit. The name column
remains fixed on the left while the other columns can be horizontally scrolled.
At the end of each row there is an icon button which permits the user to
enable or disable that specific strategy in the visualization of the performance
in the chart (Figure 5.15).

The user, using the buttons implemented in the last column of the table that
contains all the strategies that are part of the portfolio, can enable and disable the

61

Use cases

corresponded strategy in the computation of the performance of the portfolio. For
instance, if the user enable the strategy AMZN Oct Long Call, the performance
of the portfolio change in the following way, before the enabling it was as in the
Figure 6.4 while after it is as in the Figure 6.5.

Figure 6.4: Portfolio performance Figure 6.5: Portfolio performance

62

Chapter 7

Conclusions and future
works

The mobile application created meets the requirements indicated by a professional
trader. All the functionalities previously described work in a proper way through
an user interface which allows the user to navigate within the application in a
simple and intuitive manner. As said in the introduction, the mobile app has the
main purpose of being a consultation tool, this is an important piece that will be
added to the great project that previously consisted only in the web application.
This allows the user to analyze and study data and statistics about options and
futures at any moment. In addition, the share function implemented in the mobile
app, which is available for market analysis data, charts and strategies, allows the
user to share the information that he considers useful with other people through
external social apps.

As mentioned before, this mobile app is part of a great project, the future works
that can be developed are several and different. One possibility, for example, can
be the implementation of an artificial intelligence system based on time series
of historical financial data that suggests to the user some strategies potentially
profitable. Another improvement which could be done regards the data retrieved
from the exchanges. At this moment data is retrieved through the public APIs that
provides it only 15 minutes, but in this way is not possible to perform intraday
trading. The solution of this problem is to adopt APIs which provides real-time
data for a fee. In parallel with this work, is being developed an extension of the
web application. This extension consist in the classification of the strategies, they
can be public or private and may be owned by a single user or a group. With this
classification, the user has the possibility to browse within the web application to
explore strategies of other users and groups. Subsequently, one future work could
be the implementation of this extension also in the mobile app.

63

Bibliography

[1] Option Alpha. Long Call. url: https://optionalpha.com/strategies/
long-call (visited on 11/10/2022) (cit. on p. 10).

[2] Option Alpha. Short Call. url: https://optionalpha.com/strategies/
short-call (visited on 11/10/2022) (cit. on p. 12).

[3] Option Alpha. Long Put. url: https://optionalpha.com/strategies/
long-put (visited on 11/10/2022) (cit. on p. 14).

[4] Option Alpha. Short Put. url: https://optionalpha.com/strategies/
short-put (visited on 11/10/2022) (cit. on p. 15).

[5] Option Alpha. Covered Call. url: https://optionalpha.com/strategies/
covered-call (visited on 11/10/2022) (cit. on p. 17).

[6] Option Alpha. Covered Put. url: https://optionalpha.com/strategies/
covered-put (visited on 11/10/2022) (cit. on p. 18).

[7] Option Alpha. Protective Put. url: https://optionalpha.com/strategie
s/protective-put (visited on 11/10/2022) (cit. on p. 20).

[8] Django Software Foundation. Django. url: https://www.djangoproject.
com/ (visited on 11/10/2022) (cit. on p. 24).

[9] Python Software Foundation. Python. url: https://www.python.org/
(visited on 11/10/2022) (cit. on p. 24).

[10] AskPython. Django MVT Architecture. url: https://www.askpython.com/
django/django-mvt-architecture (visited on 11/10/2022) (cit. on p. 25).

[11] MongoDB Inc. MongoDB. url: https://www.mongodb.com/ (visited on
11/10/2022) (cit. on p. 26).

[12] MongoDB Inc. Pymongo. url: https://pymongo.readthedocs.io/en/
stable/ (visited on 11/10/2022) (cit. on p. 26).

[13] Ask Solem and contributors. Celery. url: https://docs.celeryq.dev/
(visited on 11/10/2022) (cit. on p. 27).

[14] Redis Ltd. Redis. url: https://redis.io/ (visited on 11/10/2022) (cit. on
p. 28).

64

https://optionalpha.com/strategies/long-call
https://optionalpha.com/strategies/long-call
https://optionalpha.com/strategies/short-call
https://optionalpha.com/strategies/short-call
https://optionalpha.com/strategies/long-put
https://optionalpha.com/strategies/long-put
https://optionalpha.com/strategies/short-put
https://optionalpha.com/strategies/short-put
https://optionalpha.com/strategies/covered-call
https://optionalpha.com/strategies/covered-call
https://optionalpha.com/strategies/covered-put
https://optionalpha.com/strategies/covered-put
https://optionalpha.com/strategies/protective-put
https://optionalpha.com/strategies/protective-put
https://www.djangoproject.com/
https://www.djangoproject.com/
https://www.python.org/
https://www.askpython.com/django/django-mvt-architecture
https://www.askpython.com/django/django-mvt-architecture
https://www.mongodb.com/
https://pymongo.readthedocs.io/en/stable/
https://pymongo.readthedocs.io/en/stable/
https://docs.celeryq.dev/
https://redis.io/

BIBLIOGRAPHY

[15] Docker Inc. Docker. url: https://www.docker.com/ (visited on 11/10/2022)
(cit. on p. 28).

[16] Docker Inc. Docker overview. url: https://docs.docker.com/get-starte
d/overview/ (visited on 11/10/2022) (cit. on p. 29).

[17] Inc. F5. Nginx. url: https://www.nginx.com/ (visited on 11/10/2022)
(cit. on p. 28).

[18] Google and community. Flutter. url: https://flutter.dev/ (visited on
11/10/2022) (cit. on p. 29).

[19] Google. Dart. url: https://dart.dev/ (visited on 11/10/2022) (cit. on
p. 29).

[20] Google and community. Flutter architectural overview. url: https://docs.f
lutter.dev/resources/architectural-overview (visited on 11/10/2022)
(cit. on p. 30).

[21] Wikipedia. Client-server model. url: https://en.wikipedia.org/wiki/
Client-server_model (visited on 11/10/2022) (cit. on p. 35).

[22] Django Rest Framework. TokenAuthentication. url: https://www.django-
rest-framework.org/api-guide/authentication/#tokenauthenticati
on (visited on 11/10/2022) (cit. on p. 44).

[23] Dart.dev. Http. url: https : / / pub . dev / packages / http/ (visited on
11/10/2022) (cit. on p. 48).

[24] Steenbakker.dev. Flutter_secure_storage. url: https://pub.dev/packages/
flutter_secure_storage (visited on 11/10/2022) (cit. on p. 48).

[25] Flutter.dev. Shared_preferences. url: https://pub.dev/packages/shared_
preferences (visited on 11/10/2022) (cit. on p. 48).

[26] Unknown publisher. App_bar_with_search_switch. url: https://pub.dev/
packages/app_bar_with_search_switch (visited on 11/10/2022) (cit. on
p. 52).

[27] Fluttercommunity.dev. Share_plus. url: https://pub.dev/packages/
share_plus (visited on 11/10/2022) (cit. on p. 53).

[28] Rmzy.dev. Candlesticks. url: https://pub.dev/packages/candlesticks
(visited on 11/10/2022) (cit. on p. 53).

[29] Syncfusion.com. Syncfusion_flutter_charts. url: https://pub.dev/packag
es/syncfusion_flutter_charts (visited on 11/10/2022) (cit. on p. 53).

[30] Rcprogrammer.net. Flutter_expandable_table. url: https : / / pub . dev /
packages/flutter_expandable_table (visited on 11/10/2022) (cit. on
p. 54).

65

https://www.docker.com/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://www.nginx.com/
https://flutter.dev/
https://dart.dev/
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/resources/architectural-overview
https://en.wikipedia.org/wiki/Client-server_model
https://en.wikipedia.org/wiki/Client-server_model
https://www.django-rest-framework.org/api-guide/authentication/#tokenauthentication
https://www.django-rest-framework.org/api-guide/authentication/#tokenauthentication
https://www.django-rest-framework.org/api-guide/authentication/#tokenauthentication
https://pub.dev/packages/http/
https://pub.dev/packages/flutter_secure_storage
https://pub.dev/packages/flutter_secure_storage
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/shared_preferences
https://pub.dev/packages/app_bar_with_search_switch
https://pub.dev/packages/app_bar_with_search_switch
https://pub.dev/packages/share_plus
https://pub.dev/packages/share_plus
https://pub.dev/packages/candlesticks
https://pub.dev/packages/syncfusion_flutter_charts
https://pub.dev/packages/syncfusion_flutter_charts
https://pub.dev/packages/flutter_expandable_table
https://pub.dev/packages/flutter_expandable_table

	List of Tables
	List of Figures
	Introduction
	Structure of the thesis

	Finance
	Trading
	Financial markets
	Exchanges
	Derivatives
	Options
	Option contract specifications
	Call options
	Put options
	Other options strategies
	Greeks

	Futures

	Data sources and technologies
	Data sources
	Technologies
	Django
	MongoDB
	Celery
	Docker
	Nginx
	Flutter

	Architecture
	Client-server model
	Database
	Asynchronous tasks
	REST APIs
	User
	Market
	Chain

	Mobile application
	Data management
	User interface
	Markets
	Strategies
	Portfolio

	Use cases
	Analysis of a position
	Exploration of a strategy
	Exploration of the composition of portfolio

	Conclusions and future works
	Bibliography

