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Introduction

1.1 TFETs

Making transistors smaller is a process called transistor scaling and it has been
the most important factor in increasing a computer’s computational power, speed,
and memory. Indeed, the smaller transistors are, the more they can be integrated
into a chip, which will feature more complex functions.
This has been clear since the beginning of electronics, the reason why great efforts
have been made on miniaturization. This idea led Gordon Moore, a co-founder
of Intel, to predict in 1975 that the number of transistors in a dense integrated
circuit (IC) would double every two years. This prediction, driven by transistors
size reduction, has come true ever since it was made, so it became the so-called
Moore’s law.
Indeed, starting from 1970, miniaturization led to an increase in the number of
transistors per chip by more than seven orders of magnitude, see Fig. 1.1, moving
from 103 to 1010, enabling remarkable technological progress. For instance, as of
today, the largest microprocessors have more than 100 billion transistors.
However, the miniaturization process is now reaching its limits due to the increasing
difficulties of silicon and voltage supply scaling. Most advanced transistors indeed
have a gate only 3 nm long, which is astonishing if one compares that with a strand
of human DNA which is 2.5 nanometers wide, or with the silicon’s atomic size,
which is 0.2 nm. Not only that, but transistors’ gates are so small that they are
comparable to or even smaller than the De-Broglie wavelength. Therefore quantum
effects like quantum confinement and quantum tunneling arise.
Scaling proceeded steadily until the mid-2000s, when the physical parameters

1



Introduction

Figure 1.1: Transistor count vs year in which the microchip was first introduced.
It can be seen how the number transistors per chip has increased more than seven
orders of magnitude, from 103 to 5 × 1010.

reduction experienced a slowdown, and the Dennard scaling, which stated that
the power consumption per unit area would remain constant, was abandoned.
Nowadays, transistors are still getting faster generation-to-generation but not at
the same rate as was achieved in the 90s, since the primary emphasis in transistor
design has shifted from speed to limiting power consumption. That’s because it
has become increasingly difficult to dissipate the power generated by integrated
circuits running at high speed, and the more transistors are packed into a chip, the
greater the power density that must be dissipated.
A crucial path in reducing power consumption is reducing the supply voltage VDD

since

• the dynamic power consumption of a transistor is given by Pdynamic = fCLV
2

DD

where f is the frequency of operation and CL is the capacitive load

• the power dissipated by a transistor in the off state is Pdissipated = IOF FVDD,
where IOF F = ID for VG = 0 and VD = VDD

At the same time, the overdrive factor (VDD − VT H) must remain high to achieve a
sufficient ION , which poses constraints on VT H , that must be lowered. But the VT H

2



Introduction

Figure 1.2: Transfer characteristic of a MOSFET. The figure shows how scaling of
the same amount VDD and VT H , thus keeping the same overdrive VDD −VT H , yields
the same performance (ION), but at the same time IOF F increases exponentially.

reduction means an exponential increase of IOF F , see Fig.1.2, which is unacceptable.
One way to overcome these problems is to use devices with small subthreshold
swings (S), allowing current to decrease rapidly as the gate voltage is lowered,
providing smaller IOF F .
The subthreshold swing, strongly related to the subthreshold slope, is a figure of
merit of the quality of the transistor turn-off, and it must be minimized. It can be
expressed as :

S =
A
∂ log10 ID

∂VGS

B−1

= ∂VGS

∂ΨS

∂ΨS

∂ log10(ID) (1.1)

where ID is the drain current and ΨS is the surface potential in the channel. A
device with a steep slope, which means having a small S, can operate with low
VDD and low VT H , while still retaining a low IOF F , which is paramount in today’s

3



Introduction

nanoelectronics.
One of the most promising devices proposed to solve the above mentioned problems
are TFETs which have two strengths:

• Steep turn-off slopes which allow scaling of (VDD) well below 0.5 V

• Extremely low IOF F current

TFETs should then be studied to investigate their prospective and possible applica-
tions. One way to do that is through the physical realization of TFETs, the other
is through computer models and simulators. Each of them has its pros and cons.
However, device simulation has become nowadays an essential step in the design of
any electronic device, allowing device optimization and circuit design in a fast and
economic way, the reason why this approach has been chosen in this thesis.
More in detail, this work is focused on the study and comparison of double
gate TFETs (DG TFETs) with two different simulation approaches: one is semi-
analytical, implemented in Matlab, and the other is numerical and is carried out
with the commercial TCAD simulator Synopsys Sentaurus Device.
The semi-analytical approach computes the current with the Landauer-Büttiker
formula, adapted to tunneling processes. The Landauer-Büttiker formula in fact,
was initially developed for devices with ballistic conduction, when charge carriers
flow without being subject to scattering events.
One of the main ingredients of the Landauer-Büttiker formula is the transmission
probability T that gives the probability of having quantum tunneling of electrons
and holes between the bands of a TFET. T is expressed by a semi-classical WKB
(Wentzel, Kramers, Brillouin) approximation. In the first part of this work, and
within the WKB approximation, tunneling is modeled only at one side of the TFET
with one-band E(k) relations. In the second part instead, two-band E(k) relations
are employed to model tunneling at both sides of the TFETs.
Concerning the numerical model, the dynamic nonlocal path band-to-band tunneling
model is used, which has proven to provide the best results in TFET. The TCAD
is based on a completely different approach, since the contribution of tunneling to
the current is expressed in terms of electrons and holes generation-recombination
rates.
Since the two models deal with tunneling with different approaches and formulas,

4



Introduction

a rigorous calibration of the typical parameters of the models is required.
In this work, TFETs based both on direct and indirect tunneling mechanisms are
studied, and the calibration procedures of the fitting parameters of the numerical
and semi-analytical models are reported.
The semi-analytic approach is able to model the TFET with both gate voltage
polarities, and it takes into account several physical phenomena, such that accurate
comparisons can be made with the TCAD.

1.2 Thesis structure

The first chapter is devoted to a general overview of TFETs: their structures,
geometries, physics and working principles are presented. Later, a brief overview on
the TFET band-to-band tunneling current and how to compute it is reported. Next
are described a couple of unwanted effects, namely de-biasing and the ambipolarity.
Then, their the pros and cons are listed, and finally, a brief overview on the TFETs
state of the art and on TFETs applications is presented.
The second chapter starts with a theoretical introduction on modeling: strengths
and flaws of the most common simulator techniques are discussed. Next the
two models used in this work are described. One is semi-analytical and it was
implemented in Matlab, while the other is numerical and it was carried out with
the Sentaurus Synopsys TCAD [1]. In this thesis, TCAD always refers to this
simulator. An accurate description of the semi-analytical model, how to compute
the band diagram first, and the current later is provided. The last part of the
second chapter is devoted to the description of the numerical model and its fitting
parameters.
In the third chapter, the results of the two models, namely the band diagram
and the current, are compared and reported for two case studies: a silicon and a
GaSb-InAs double gate TFET, which are based on indirect and direct tunneling,
respectively.
The forth chapter does a step further in the comparison. Indeed, the drain
degeneracy and the ambipolar current were implemented in the semi-analytical
approach, enlarging the range of possible working operation comparison. The
ability of the semi-analytical model to describe the TFET ambipolarity and the
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comparison with TCAD is reported.
The fifth chapter is dedicated to pros and cons of the semi-analytical model
compared to Sentaurus, and its main limitations are presented.
Finally, the conclusions are drawn.

1.3 Overview on TFET

The subthreshold swing is defined as the amount of gate voltage required to rise
or reduce the drain current in the subthreshold regime by a factor of 10, and it is
generally reported in mV/dec.
In a MOSFET, the drain current is obtained through a thermionic emission process
over a barrier. For instance, in a nMOSFET, see Fig.1.3, the electrons with energies
higher than the barrier which is given by the top of the channel conduction band,
are injected from the source via thermionic emission. Therefore, increasing VG

lowers the barrier and the current increases, while decreasing VG the opposite
happens. In such case, the subthreshold swing is

S ≈
A

1 + Cd

Cox

B
kT

q
ln 10 = m

kT

q
ln 10 ≈ 60 mV/decade (1.2)

where kT/q is the thermal voltage, Cd and Cox are the depletion and the oxide
capacitances respectively, m is a factor that expresses the control of the gate voltage
on the semiconductor surface potential and it is ideally 1.
For a MOSFET device the subthreshold swing cannot go below 60 mV/decade
at room temperature since it is constrained by the conduction mechanism. This
can be better understood by looking once again at Fig. 1.3. The figure shows the
electron probability occupation in the source as a function of energy. Because of
the tail, there will be a non-zero probability of having electrons with energy higher
than the channel’s barrier which will flow from the source to the drain contributing
to the current, having a strong impact on the IOF F . In conclusion, due to the
electron tail, the subthreshold swing for a thermal conduction mechanism cannot
be less than 60 mV/decade at room temperature.
The tunnel field-effect transistor instead is a device that exploits quantum tunneling
through a barrier instead of thermionic emission, to achieve a steep slopes, which
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Figure 1.3: MOSFET band diagram showing three different energy levels in
the channel according to three different gate voltages applied. Also reported in
the figure is a qualitative Fermi-Dirac distribution function showing the electron
probability occupation in the source. Reproduced from [2]

enable a faster switching between the ON and the OFF state, see Fig. 1.4. The
barrier through which tunneling occurs is that between the valence and conduction
band of the TFET, and for this reason is called band-to-band tunneling.
The TFET current is obtained through tunneling which selects the electrons that
can tunnel through a barrier as a function of their energy in a completely different
way (tunneling probability) with respect to thermionic emission. In detail, in a
TFET, which in normal operation is basically a gated heavily doped p+ − i − n+

junction reverse biased, inter-band tunneling occurs from the valence band of the
source to the conduction band of the drain. This tunneling mechanisms, known by
Zener [3] since 1934, is controlled by the voltage applied to the gate which can shift
the energy band in the channel abruptly. In Fig.1.5 is shown a possible structure of
a Double-Gate Tunnel-FET (DG-TFET): it is very similar to that of a MOSFET,
but in this case the source and drain have opposite doping. There are n-TFET
and p-TFET:
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Figure 1.4: Qualitative comparison of the subthreshold swing of a typical MOS-
FET and a TFET. TFETs, owing to the smaller S, are generally characterized by
lower IOF F , which is beneficial, but by lower ION as well, which is unwanted.

Figure 1.5: n-DG-TFET: ti and ts are the dielectric and semiconductor thickness,
respectively.

• n-TFET have in normal operation VDS > 0, VGS > 0, the source is p+ doped
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while the drain is n+ doped (see Fig. 1.6).

• p-TFET have in normal operation VDS < 0, VGS < 0, the source is n+ doped
while the drain is p+ doped (see Fig. 1.6).

Figure 1.6: n-TFET (right) and p-TFET (left). Vg > 0, Vd > 0 (Vg < 0, Vd < 0)
for the n-TFET (p-TFET). Adapted from [4]

The channel is generally not doped (intrinsic), while the heavy doping in the source
is used to place the Fermi level just below the valence band. In the OFF state,
taking into account that the energy during tunneling must be conserved, and
looking at Fig. 1.7:

• tunneling from source to drain is suppressed by the long distance between
them, and, as shown later, tunneling has a negative exponential dependence
on the distance to run across

• tunneling from source to channel is suppressed since there are no available
states in the band gap, hence high energy electrons cannot go there.

In the ON state instead, see Fig. 1.7, the bands in the channel are lowered and
electron tunneling from the p+ side into the channel conduction band can occur by
the so-called band-to-band-tunneling (BTBT). Having the Fermi level of the source
below the valence band is essential because it allows to start the conduction with a
big electron population, in this way it like having "cooled" the device, thus the S is
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Figure 1.7: Energy band diagram along the channel of a n-DG-TFET with
superimposed Fermi-Dirac distribution function at the source Fermi level.

not thermally limited, and moreover the IOF F can be significantly less than that of
a MOSFET.

In Fig. 1.8 are shown three possible solutions for n-DG-TFET

• homojunction, such as silicon TFET, which is attractive from the standpoint
of compatibility with industry standards, but not very efficient from the BTBT
point of view due to the large band gap (Eg = 1.12 eV)

• heterojunction, where the Eg,eff , proportional to the ION , can be fine-tuned
by choosing the appropriate materials

• broken-gap heterojunction which are the best choice in terms of ION and IOF F ,
even if they are the most challenging from the technological point of view.

10



Introduction

Figure 1.8: Three qualitative representations of possible TFET band diagrams.
On the left: the homojunction, where source, channel and drain are made by the
same semiconductor material. Center: heterojunction, where the source is made
up of a semiconductor other than that of channel & drain. In this case ∆EC and
∆EV are present because of different Eg and workfunctions. Eg,eff is defined as
the conduction and valence band difference at the source-channel junction. Right:
broken-gap heterojunction, where the combination of source and channel-drain
materials generates a very low effective band gap material.

1.4 Tunnel-FET modeling

1.4.1 TFET current

As already stated, the conduction mechanism in TFETs (tunneling) is entirely
non-classic: as a result it is not possible to employ the drift-diffusion approach, and
a new method is required. Indeed, tunneling, allows wavefunctions to propagate
through barriers, such that carrier can pass through a potential barrier even if they
don’t have the amount of energy required by classical mechanics.
To overcome this problem, a viable solution to compute the current can be found
in the Landauer theory, originally developed to describe the conductance in a
quantum channel, where ballistic conduction occurs. Ballistic transport happens
when charge carriers (usually electrons) flow over a certain distance without being
scattered by impurities, defects, or any other source of scattering. In the Landauer
approach, proposed in 1957 [5], the drain current is given by electron free flights
between the "reservoirs", treated in a classical manner, placed at the source and at
the drain. Electrons are treated as "stand-alone" and the conduction can be viewed
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as a transmission problem.
The resulting TFET current stems from the availability of carriers at source and
drain at a specific energy times the tunneling probability T(E), and in the 1D limit
the current in given by the Landauer-Büttiker formula [6]

Jtunn = 2q
ℏ

CÚ ∆Φ 1
fF D,S(E) − fF D,D(E)

2
T (E)dE

D
(1.3)

where

• fF D,S and fF D,D are the source and drain Fermi-Dirac function, respectively,
and they provide the probability that the energy state E at temperature T is
occupied by an electron. They are given by

fF DS,D
(E) =

 1
1 + E−EF DS,D

kBT

 (1.4)

where kB is the Boltzmann constant.

• ∆Φ is the energy window, see Fig. 1.6, and it consists in the integration limits

• T(E) is the tunneling probability.

T(E) is generally found from the solution of the Schrödinger equation, however,
a simplified solution can be found via the so-called WKB (Wentzel, Kramers,
Brillouin) approximation, which is a method for finding approximate solutions
to linear differential equations with spatially varying coefficients. If applied in
a barrier-line potential, the wavefunction is recast as an exponential function,
semiclassically expanded, and then it is assumed that the potential varies slowly.
According to this approach

TW KB(E) = exp
3

−2
Ú

|kx(x)|dx
4

(1.5)

where k(x) =
ñ

2m∗
R(Ex − U(x))/ℏ is the wave vector, m∗

R =
!
1/m∗

E + 1/m∗
E

"−1

is the reduced effective mass, averaging the electron m∗
E and the hole m∗

H effective
masses and U(x) is the potential energy profile. Ex = ℏ2k2

x/2m∗
R is the energy
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along the tunneling direction and it is part of the total energy E = Ex +E⊥ where
E⊥ = ℏ2(k2

y + k2
z)/2m∗

R is the transverse energy, which is conserved during the
process.

Figure 1.9: Energy band diagram along the channel of a n-DG-TFET with
superimposed schematic representation of the triangular potential barrier seen by
electrons at energy EF S tunneling from the source in the channel. The red circle
at the source-channel interface stands for the electron which must tunnel over the
distance λ to contribute to the ON current. Also reported in a light blue is the
energy window ∆Φ where tunneling actually happens, that is, between the source
valence band and the channel conduction band.

Sometimes it is convenient to treat the barrier as a triangular barrier (see Fig.1.9)
because it gets easy to express the transmission probability. Indeed, in such cases,
for a bulk direct semiconductor with isotropic bands, the WKB approximation
applied to the Schrödinger equation gives [7],[8]

TW KB ≈ exp
A

−2
Ú λ

0
|kx(x)|dx

B
≈ exp

−
4λ

√
2m∗

ñ
E3

g

3qℏ(Eg + ∆Φ)

 (1.6)

where m∗ is the carrier effective mass, λ is the tunneling distance, Eg is the
energy band gap, ∆Φ is the energy window where tunneling actually happens, that
is between the source valence band and the channel conduction band, see Fig. 1.9,
and ℏ is the reduced Planck constant.
From eq. 1.6 it can be seen how a small Eg, small m∗

R and a small λ are required
to achieve a high TW KB, which is proportional to ION . Not only that, but too high
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a Eg causes IOF F to increase, reason why heterostructures can be very helpful in
the TFET optimization since Eg,eff can be tuned.
Above has been reported the T(E) expression for a very specific case: an electron
with a given energy and tunneling distance in a triangular energy barrier system.
T(E) generalized as a function of a generic potential energy profile V (x) instead
reads as

T (E) ≈ exp
C
−2m∗

ℏ

Ú l

0

ñ
qV (x) + E dx

D
(1.7)

where l is the new tunneling distance, function of the energy E and of the position x,
see Fig. 1.9. To compute analytically T(E) as a function of the TFET band diagram,
this approach must be used, in fact, this has been done in the semi-analytical
model, which will be described later on.

1.4.2 Ambipolarity

Figure 1.10: Band diagram (left) and drain current (right) of a silicon n-DG-
TFET biased with a negative gate voltage Vg. It is the same device studied in
section 3.1 later on. The band diagram was obtained applying a Vg = −0.1V
(dashed lines), and Vg = −0.8V (for continuous lines), while VD = 0.8V. The
current characteristic was obtained through Sentaurus.

One of the main feature of TFETs is the low IOF F , because shifting upwards
the channel valence and conduction band hinders the band-to-band tunneling at
the source. However, if a big (in magnitude) negative voltage is applied to the gate,
and a positive voltage is applied to the drain, tunneling will eventually occur at
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the drain side. Both an increase in Vd and in (the negative) Vg causes an increase
of the tunneling current, as it can be seen from Fig. 1.10. Applying a negative Vg

opens indeed a new energy window for tunneling at the drain by means of hole
conduction, and this causes the OFF current to increase. This effect is a natural
result of the TFET design, and it can be either desired or unwanted.
Ampipolarity is especially present in TFETs with a highly doped drain, short
channel, and low band gap channel-drain, since they cause strong bending at the
drain. Hence, ambipolarity can be mitigated with large drain band gap materials
and low drain doping, increasing the tunneling distance seen at the drain.
If it’s true that ambipolarity can be a positive or negative effect, it is a major
problem in III-V TFETs since they are featured by low channel-drain band gap,
and this means that the devices cannot be turned off since at a certain point, while
lowering Vg, the current instead of decrease will start to increase, and obviously
this is not good, since a low IOF F is desired. To achieve a low IOF F it is usually
employed a asymmetric source/drain doping profile, as will be shown in chapter 4.

1.4.3 De-biasing

During the turn ON of the TFET, Vgs must be increased to push down the
bands in the channel and allow tunneling from the source to drain. As long as
the channel is fully depleted, the gate voltage will efficiently control the channel
potential.
However, when Vgs approaches Vds, the electron Fermi level in the channel goes
above the conduction band. This causes the channel to stop being depleted, and
a channel inversion charge appears. This inversion charge screens Vgs, such that
the efficiency of the gate voltage in lowering the channel bands decreases. This
situation is called de-biasing, because of the reduced ability of the gate to bias and
control the channel.

1.5 TFET state of the art

Even if tunneling has been observed since 1934 by C.M. Zener in a reversely bi-
ased p-n junction [3], it wasn’t until 2004 when IBM realized the first sub-thermionic
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TFET made by a carbon nanotube FET [9], that researchers became really inter-
ested in TFET. Since that, a plethora of different materials and geometries have
been explored in order to achieve the best S and the best ION .
Among all the geometries, it is possible to identify three main categories: mesa-like,
lateral and vertical TFETs[4]. Concerning the materials, initially the research was
mainly focused around group-IV materials such as Si [10], strained SiGe [11], Si/Ge
[12], and strained Ge [13]. Then nanowire III-V TFETs have been realized, such as
the InP/GaAS heterojunction [14] which showed S = 30 mV/dec at 1 pA/µm.
Always referring to III-V materials, which are, as already said, the best choice for
now, experiments proved that it is possible to achieve a higher ION at lower Vg

with a InGaAs TFET than with a Si TFET [15] [16]. In particular Zhao et al [16]
obtained an ION of 50 µA/µm with an S of around 90 mV per decade, though still
higher than the thermal limit of MOSFETs. Once again, parasitic tunneling due
to traps in the source is thought as the main responsible of the subthreshold swing
degradation.
Heterostructures are regarded as the best way to improve the current characteristic,
and several of them have been experimentally realized [17] [18], generally, III-V
heterojunctions are exploited for this purpose. A possible III-V heterojunction
TFET is the one made with a source of InAs and GaAsSb and with a channel of
AlGaSb and InGaAs as they can be lattice-matched grown.
Other possibilities lie in making TFETs from nanowires, which have recently at-
tracted a lot of interest thank to their epitaxial growth via metal-organic chemical
vapour deposition directly on Si [19].
Gate all around (GAA) configurations are another way to improve the overall
TFET behavior as they are characterized by a strongly reduced tunneling length
λ (see Fig. 1.9), up to 1/3 or 1/4 of the original λ of a single gate [20]. In GAA
configurations, the metal gate surrounds the cylindrical nanowire channel enabling
the best electrostatic control achievable, and consequent λ reduction.
Carbon-based TFETs, that is, carbon nanotubes and graphene nanoribbons have
attracted a lot of interest as well [21] for their small effective masses, small and
direct band gap, and huge electrostatic control of the gate voltage over the channel.
It was not by chance indeed that early in the 2004 Appenzeller et al[9] realized
the first carbon nanotube TFET able to achieve a S smaller than 60 mV/dec, and

16



Introduction

even if there has not been much experimental work, theoretical studies [22] showed
that a lot of potential lies in carbon TFETs.
However, so far, the experimental results are far worse than simulated device
characteristics. In detail, TFETs are limited by two main problems:

• The S < 60 mV/dec occurs only over a small range of voltages and at no
useful current levels

• ION is too small

Unfortunately, the use of III-V materials, which have smaller effective mass, and
the use of small effective band gap geometries increases ION but has a negative
effect on S.
Trap assisted Shockley-Read-Hall (SRH) [23] [24] and spontaneous and Auger
generation [25] occurring in the depleted region are commonly regarded as the main
TFET’s problems. These problems are particularly present in new materials such
as III-V’s, which however seem to be the best choice from simulations overall.

1.6 TFET possible applications

From a theoretical point of view, the TFET can be used in place of the MOSFET
for complementary logic technology in a Boolean logic architecture, since it has
voltage gain, current gain, and input-output isolation.
Not only that, TFET is highly compatible with standard CMOS process flow,
meaning that a lot of the silicon and classic MOSFETs’ technological know-how
can be exploited for TFETs. In this context of TFET-MOSFET comparison, for
instance, Intel[26] showed how TFET technology outperforms silicon MOSFETs,
with TFETs using 50% less energy than MOSFETs owing to the S of 53 mV/dec.
Another study [27] focused on the main characteristics of inverter cells, which are
the basic elements of a circuit, and it compared inverter cells performance made
by 65-nm CMOS transistors with those made by 50-nm C-TFET in both silicon
and Ge/InAs, given the same supply voltage. The study found that the Ge/InAs
C-TFET inverter requires less switching energy at small clock frequencies than
standard CMOS, since they have a steeper transition from the logic state 1 to the
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Figure 1.11: Left: Comparison of VOUT − VIN of inverters made by different
materials. Ge/InAs C-TFET turns out to provide the biggest differential gain
dVOUT/dVIN and best noise margins. Right: power supply voltage VDD and
switching energy U versus clock frequency. Adapted from [27]

logic state 0 owing to the smaller S, see Fig. 1.11. Moreover, the study [27] also
found that Ge/InAs C-TFET provides the biggest differential gain dVOUT/dVIN and
best noise margins. There is a downside, though, that is the transient response of
the Ge/InAs C-TFET inverter is worse than that of the CMOS at VDD = 1V. The
reason why the prospective of TFET is to be investigated at low power since it is
commonly thought that there is room for TFETs for low-standby-power applications
[21].
Not only that, but TFETs keep their superb switching also at high T, since BTBT
is hardly affected by temperature variations.
Fulde et al [28] demonstrated how TFETs can be exploited in analog integrated
ciruits like ultralow-power voltage controlled oscillators. Least but not last, TFETs
can be highly beneficial in static random access memory (SRAM) for static leakage
power savings, as it was demonstrated a 700-fold improvement in leakage reduction
over CMOS technology with a VDD = 0.3V in the silicon TFET SRAM [29].
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Description of tunnel-FET mod-
els

2.1 General introduction to modeling

Computer-aided simulation has always been a fast and economical tool to inves-
tigate prototypes and look for the best parameters to maximize device performance
in the semiconductor industry. Therefore, device simulation has become an essen-
tial step in the design of any electronic device. Modeling transistors gives device
physicists and engineers powerful insight into the intrinsic performance of a specific
designs and enables them to study the possible source of degradation.
Among all the models, it is possible to identify three main types of modeling
technologies:

• Atomistic simulation. It is the most accurate and sophisticated simulation.
For TFET atomistic simulations are based on the solution of the atomistic
full-band tight-binding band calculation, and then tunneling is computed with
the non-equilibrium Green’s function method (NEGF).
Even if it is the most reliable simulation, such that it is used to validate the
other models, it is also the simulation requiring more computational power
and simulation time.

• TCAD (Technology Computer-Aided Design) simulations. Several commercial
TCAD simulators are present on the market, like Sentaurus [1] and Silvaco
[30]. They are a good compromise between the precision of the results and
the computational time/power. They are very accurate for non-nanometric
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devices, and, in the case of nanometric devices, TCADs rely on parameters
fitted by atomistic simulations.
TCADs are generally based on numerical models, which don’t allow closed-
form solutions and exploit algorithms to find approximate solutions to a set of
equations to be solved rather than the exact ones. For instance, the calculation
of the drain current, which is generally the ultimate goal of a MOSFET (and
also TFET) analysis, involves dealing with differential equations, for example
Poisson’s equation, which for a DG-MOSFET/TFET as the one of Fig. 1.5
reads like

∂2φ

∂2x
+ ∂2φ

∂2y
= −ρ

ϵ
(2.1)

where φ is the electrostatic potential, ρ is the space charge and ϵ is the
dielectric constant. In numerical analysis, differential equations are solved by
discretizing the equation.
Numerical models gained popularity starting from the last century when
computers began to acquire significant computing power.

• Compact modeling for circuit simulations. This type of modeling is the fastest
approach but also the one dealing less with the actual physics of the device.
Compact modeling is highly efficient in circuit simulations to study real-world
applications and build prototype circuits.
Compact models are generally based on analytic or semi-analytic models.
They are mathematical models that have a closed form solution, that is, the
solution of the equation used to describe changes in a system can be expressed
as a mathematical analytic function. Analytic models usually require less
computing power than numerical models and provide a more accessible and
readable solution, but often with the trade-off of having more approximations
introduced in order to simplify the problem. Moreover, they often include
fitting parameters that have little or no physical meaning.
Semi-analytic models are called this way, and not analytic, because they
sometimes use simple numerical algorithms, for instance, to find solutions to
nonlinear equations.

In this thesis, a comparison between numerical vs semi-analytical (compact)
approaches is reported. Indeed, a semi-analytical model has been implemented
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in Matlab, and it provides the TFET band diagram and drain current. The
semi-analytical has been developed using as reference the work of professor Yuan
Taur and his team, University of California at San Diego, [31] [32] [33] [34]. The
numerical method instead has been carried out with Synopsys Sentaurus, which is
a TCAD simulator based on numerical models [1].
In this thesis, the device under study is always a double gate tunnel-FET, see
Fig. 2.1, where the gate voltage is applied to both gates (top and bottom), and
the drain voltage is applied to the respective contact. Geometrical parameters are
shown in Fig. 2.1 as well. In the following, the description of the semi-analytical

Figure 2.1: Schematic illustration of a typical n-DG-TFET’s structure

and numerical models is reported.

2.2 Semi-Analytic model (Matlab)

2.2.1 Band diagram

The ultimate goal of the TFET study in DC is the drain current ID, since it
dictates how well the transistor will work.
To obtain ID, as stated in section 1.4.1, it is convenient to use the Landauer-Büttiker
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formula, which is a function of fF D,S and fF D,D and of the transmission probability.
T(E) in its turn is a function of the band diagram, the reason why the latter must
be computed before anything else.
To obtain the band diagram of a TFET, it is convenient to use the solution of the
2-D potential for a DG MOSFET in the absence of mobile charges [31] [35] [36]
and tailoring it to TFETs changing the source boundary condition from n+ to p+.
By doing so, it is assumed that the 2-D analytic potential in a DG TFET can be
expressed as a series of eigenfunctions with discrete eigenvalues λn:

ψ(x, y) = Vg −∆χ+
∞Ø

n=1

bn sinh[π(L− x)/λn] + cn sinh(πx/λn)
sinh(πL/λn) · sin

A
nπ

2 + πy

λn

B
(2.2)

where y is oriented along the depth direction, with y = 0 at the center of the TFET,
see Fig. 2.1, ∆χ is the gate work function and L is the TFET channel length. The
cn series originates from the boundary condition at the drain, while the bn series is
required due to the boundary condition at the source (both cn and bn are constants
depending on the boundary conditions and the semiconductor thickness) [36] [34].
The eigenvalues λn must satisfy

tan πti
λn

tan πts
2λn

= εi

εs

(2.3)

since only the odd-order eigenfunctions are present in a symmetric DG TFET.
Here, ti and ts are the dielectric and semiconductor thicknesses, respectively, as
shown in Fig. 2.1, while εi and εs are the dielectric permittivities, respectively. It
is possible to gain some physical understanding of the previous formula (eq. 2.3)
by considering the case where εi = εs. In these circumstances, the solutions to eq.
2.3 are

λn = ts + 2 ti, (ts + 2 ti)/3, (ts + 2 ti)/5, . . . (2.4)

The first solution
λ = ts + 2 ti (2.5)

which is called the scale length, is the height of the TFET including the insulators,
that is, the semiconductor thickness plus the insulator thicknesses. It can be noticed
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that when using high-k dielectrics, eq. 2.3 gives λ ≈ ts, this will be important when
doing the comparison with TCAD since λ can be though as a fitting parameter.
From eq. 2.2 it is possible to obtain an approximated formula using only n = 1

Figure 2.2: Schematic band diagram of a staggered heterojunction TFET turned
ON. Figure obtained with the semi-analytical model

factors and choosing the bn and cn coefficients which satisfy the boundary conditions
at source and drain, that are:

V (0) = Eg,eff − ∆1 V (L) = −Vdrn = −qVDS − EF S − EF D (2.6)

where the top of the valence band has been set as the zero energy reference. By
doing so:

EC,CHN(x) = V0
sinh

1
πL−x

λ

2
sinh (πL

λ
)

− V0 + Eg,eff − ∆1+

−(Vdrn − V0 + Eg,eff − ∆1)
sinh

1
π x

λ

2
sinh πL

λ

(2.7)

23



Description of tunnel-FET models

where EF S and EF D are the source and drain Fermi energies, respectively,
computed from

F1/2(EF S/kT ) = (π1/2/2)(Na/Nv) F1/2(EF D/kT ) = (π1/2/2)(Nd/Nc) (2.8)

where F1/2 are the Fermi integrals of order 1/2, V0, Vdrn, ∆1 and Eg,eff are the
quantities reported in Fig.2.2, Na is the source acceptor doping, Nd is the drain
donor doping, Nv is the effective density of states of the source valence band and
Nc is the effective density of state of the drain conduction band. The three terms
appearing in eq. 2.7 are the contributions to the potential from the source, gate
and drain. EC,CHN(x) is the channel conduction band and it can be seen in Fig.
2.2, where is reported the band diagram of a staggered heterojunction TFET. In
Fig. 2.2 also appears EV,SRC(x), the valence band in the source, that is obtained
exploiting the depletion approximation

EV,SRC(x) = −q2Na

2ϵs

(x+ wd1)2 (2.9)

where wd1 is the depletion width in the source:

wd1 =
A

2ϵs∆1

q2Na

B1/2

(2.10)

and ∆1 is the band banding at the source-channel interface.
By applying the condition that the field is continuous from one side of the hetero-
junction to the other (assuming no change of permittivity), it turns out that:

1
q

-----d(EC,CHN)
dx

-----
x=0

=
A
π

qλ

B
V0 cosh(πL/λ) + (Vdrn − V0 + Eg,eff − ∆1)

sinh(πL/λ) =

1
q

-----d(EV,SRC)
dx

-----
x=0

=
ó

2Na(qVgs − V0 + Eg,eff )
εs

=
ó

2Na∆1

εs

= 2∆1

qWd

(2.11)

with
qVgs = −(−V0 + Eg,eff − ∆1) (2.12)

since it has been imposed that Vgs = 0 when qVgs = V0 − (Eg,eff − ∆1), that is the
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Figure 2.3: Example of a band diagram obtained with the semi-analytical model.
Parameters are Na = 1020, Nd = 1020, Nv = 3.1046 × 1019, Nc = 2.8567 × 1019

cm−1, Eg2 = 1.121416 eV, Eg,eff = 1.121416 eV, Vd = 0.5 V, λ = 9 nm, ts = 5 nm,
L = 20 nm, mc = 0.0199m0, mv = 0.0208m0, ϵ = 22ϵ0.

condition when the channel conduction band and source valence band are aligned,
and the tunneling window starts to open. Therefore, from eq. 2.11 one can find V0

for any given Vgs.
The downside of this choice is that the gate work function which should be used is
dependent on the specific combination of materials and related parameters, which
makes the comparison with Sentaurus very time consuming, since the gate work
function must be carefully tailored each time a new device is studied.
An example of the band diagram obtained with the semi-analytical model is shown
in Fig. 2.3. It is the band diagram of the same device studied later on in section
3.1.
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2.2.2 Current

So far, it has been explained how to compute the band diagram. To obtain the
current instead, it is necessary to go a step further: to do that, the just found band
diagram is used to find the transmission probability as shown in eq. 1.7, and then
T(E) is used to obtain the current with the Landauer-Büttiker. For this reason,
formulas relating T(E) with the band diagram are required.
In the first part of this work, tunneling is modeled and assumed to occur only in
the source valence band and in the channel conduction band. By doing this, there
is the implicit assumption that the source and channel band gap are wide enough
to have negligible tunneling at the source conduction band and channel valence
band, and therefore they are not considered in T(E).
Considering tunneling at energy −E (E > 0), for energies between the channel
conduction band and the source valence band at the interface (see Fig. 2.4),
according to the WKB approach, tunneling is given by

T (E) = exp
5
−2

Ú
|k(E)| dx

6
= exp

−2
√

2m
ℏ

Ú ñ
ϕB(E) dx

 (2.13)

where k is the imaginary wave vector and ϕB = ℏ2|k2|/2m is the barrier height.
In this case, the tunneling probability at source and channel can be expressed as a
function of one-band E(k) relations such that

ksrc(E,E⊥v) =
√

2mv

ℏ

ñ
−(E − E⊥V ) − EV,SRC(x) (2.14)

and
kchn(E,E⊥v) =

√
2mv

ℏ
=
ñ
E + E⊥C + EC,CHN(x) (2.15)
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giving

T (E,E⊥v) = exp
−2

CÚ 0

l0
ksrc(E,E⊥v) dx+

Ú l2

0
kchn(E,E⊥v) dx

D =

exp
−2

√
2m
ℏ

CÚ 0

l0

ñ
−(E − E⊥V ) − EV,SRC(x) dx+

Ú l2

0

ñ
EC,CHN(x) + (E + E⊥C) dx

D
(2.16)

where l0 is found from the intercept of −E + E⊥v with EV,SRC(x) and l2 is found

Figure 2.4: Magnified view of tunneling region at the source-channel interface of
Fig. 2.2. E⊥v and E⊥c are the carrier kinetic energies in the direction perpendicular
to the tunneling path. For electrons with energy between −(Eg,eff −∆1) < E < ∆1,
(E > 0), the process consists of hole tunneling to the left of the heterojunction and
electron tunneling to the right of the heterojunction. In the figure, the tunneling
lengths l0 and l2 are shown as well. They are found by the intersection of the
tunneling energies and the band profiles.

from the intercept of of −E − E⊥c with EC,CHN(x). The tunneling lengths l0 and
l2 are shown in Fig. 2.4 as well, and the smaller they are, the bigger will be the
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tunneling probability, and in turn the higher will be the current. In eq. 2.16 appear
mv and mc which are the tunneling masses of holes and electrons, respectively.
Tunneling requires the conservation of perpendicular momentum, that is, mvE⊥v =
mcE⊥c; however in this work, when studying TFETs based on direct semiconductors
it has been imposed for simplicity mv = mc such that E⊥v = E⊥c.
Eq. 2.16 takes into account the contribution of hole tunneling to the left of the
source-channel junction (first term of eq. 2.16) and electron tunneling to the right
of the source-channel junction (second term of eq. 2.16), however, for energies
below −∆ − E⊥v (E > ∆ + E⊥v) the process consists only of electron tunneling.
The first integral of eq. 2.16 can be obtained analytically and it is

Ú 0

l0
ksrc(E,E⊥v) dx =

√
ϵsmv

qℏ
√
Na

ñ∆1(∆1 − E + E⊥v) − (E − E⊥v)×
ó ∆1

E − E⊥v

+
ó

∆1

E − E⊥v

− 1
 (2.17)

while the second integral kchn(E,E⊥v) must be evaluated numerically.
Finally, the current for a 3-D TFET is [6]

j = qmv

2π2ℏ3

Ú Vdrn

0
(fF DS

− fF DD
)
CÚ E⊥m

0
T (E,E⊥v dE⊥v

D
dE (2.18)

where fF DS,D
are the Fermi-Dirac functions of source and drain, respectively, while

E⊥m is the smaller of E and (mc/mv)(Vdrn − E). An example of the Id − Vg

characteristic obtained with the semi-analytical model is shown in Fig. 2.5.
In section 1.4.3 it has been explained that, when Vgs approaches Vds +EF S,D during
the turn ON of the TFET, an inversion charge appears which screens Vg. This
causes the channel potential to anchor to a specific value, such that any further
increase in Vg has little or no effect.
To model this phenomenon, the gate bias used in eq. 2.11 is not Vgs as it is, but
rather Vgs −Qinv/Cox, where Qinv/Cox is the voltage drop across the insulator. In
its turn, Qinv is computed, for each Vgs and Vds, from the continuous, analytic
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Figure 2.5: Example of Id − Vg characteristic obtained with the semi-analytical
model. Parameters are the same as in Fig. 2.3.

solution of Poisson’s equation with mobile charge for DG MOSFET [37]

Qinv = 4kTϵs

qts
β tan β (2.19)

where β is obtained from

q(Vgs − Vds − EF SS
)

2kT − ln
 2
ts

ó
2ϵskT

q2Nc

 = ln β − ln(cos β) + 2ϵsti
ϵsts

β tan β (2.20)

2.3 Sentaurus tunneling model

The semi-analytic model implemented in Matlab has been compared and val-
idated through numerical simulations performed on TCAD Synopsys Sentaurus
[1], which provides several BTBT (band-to-band-tunneling) models [38]: Schenk
model, Hurkx model, Kane model, and the nonlocal dynamic path model. Among
them, the nonlocal BTBT model turns out to be the most accurate to simulate
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tunneling in TFETs [39] [40], and for this reason it has been chosen to use it.
Sentaurus Device is the tool actually used to perform the numerical simulation,
based on the solution of the drift-diffusion transport model.
In the standard operation of a TFET, which is similar to a reverse gated pn
junction, an electron in the source valence band tunnels through the band gap to
the conduction band, leaving behind a hole. This results in the generation of holes
on the p-side and the generation of electrons on the n-side. Band-to-band tunneling
is thus connected to generation or recombination of carriers, and for this reason,
Sentaurus Device computes a band-to-band tunneling generation-recombination
rate which is added to the carrier continuity equation.
The nonlocal dynamic path band-to-band model computes the tunneling generation-
recombination rate by integrating over the tunneling path, therefore, it takes into
account the energy band profile as well as the spatial transport of carriers.
In detail, Sentaurus Device is provided with two nonlocal band-to-band tunneling
models: 1)band-to-band tunneling model based on nonlocal mesh and 2) dynamic
nonlocal path band-to-band tunneling model.
In this work, the dynamic nonlocal path band-to-band tunneling model is used [1],
and in the following , when referring to the model, it will given for granted that we
are talking of this dynamic non local path band-to-band tunneling model.
In the model, holes and electrons are generated nonlocally at the end of the tunnel-
ing path [1], and the tunneling path itself is determined dynamically based on the
energy band profile.
To activate the model one needs to write the following lines of command in the
Physics section of sdevice_des.cmd:

Physics {

Recombination (

Band2Band (Model = NonlocalPath ))

}

The actual formulas used by Sentaurus are pretty long and complicated and they
differ depending on the tunneling type (direct or phonon-assisted). For these
reasons only one of them is reported below, namely the one for direct band-to-band
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tunneling processes Rd
net

Rd
net =

--∇EV (0)
--Cd exp

A
−2

Ú l

0
κdc

B
×

exp
A
ε− EF,n(l)
kT (l) + 1

B−1

−
A

exp ε− EF,p(0)
kT (0)

B−1


(2.21)

To find the other equations used for indirect tunneling and all the details, the
reader is referred to the Sentaurus device manual [1].
Instead, the Kane and Keldysh models in the uniform electric-field limit [6] are
much more readable and they provide meaningful physical information, and they
are useful since the "tricky" equations like eq. 2.21 reduce to eq. 2.22 for the case
of a uniform electric field

Rnet = A

A
F

F0

BP

exp
A

−B

F

B
(2.22)

where Rnet is the net recombination rate, F is the junction electric field, F0 is equal
to 1 V/cm, P = 2 for direct tunneling process, and = 2.5 for the phonon-assisted
tunneling process, and A and B are material dependent input parameters, in
particular they are related to the band gap and reduced effective mass.
In the case of uniform electric field the BTBT current is computed as

IBT BT = qV Rnet (2.23)

where V is the volume between planes at l0 and l2 of Fig. 2.4, i.e. the region of
space where tunneling happens. Eq. 2.23 is motivated by the assumption of the
uniform generation rate (given by eq. 2.22) in the volume V.
The expressions for A and B for the direct tunneling process are [6]

A = gπm1/2
r (qF0)2

9h2
è
Eg(300K) + ∆c + ∆v

é1/2 (2.24)

B =
π2m

1/2
R

è
Eg(300K) + ∆c + ∆v

é3/2

hq
(2.25)
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and for the phonon-assisted tunneling process, A and B are [6]

A =
g(mvmc)3/2(1 + 2Nop)D2

op(qF0)5/2

221/4h5/2m
5/4
r ρεop[Eg(300K) + ∆c + ∆V ]7/4

(2.26)

B = 27/2πm1/2
r [Eg(300K) + ∆c + ∆V ]3/2

3qh (2.27)

where

• h is the Planck’s constant

• g is the degeneracy factor. It is given by g = 2 · gc · gv where gc and gv are the
conduction and valence band valley degeneracy, and the factor 2 comes from
spin degeneracy of the electrons [41]

• ∆C is the conduction band offset. It is required only if one is simulating
tunneling processes involving band valleys other than the smallest band gap.
Indeed ∆C > 0 increases the effective band gap.

• ∆V is the valence band offset

• κ is the magnitude of the imaginary wavevector obtained from the Kane
two-band dispersion relation

κ = 1
h

ñ
mrEg,tun(1 − α2) (2.28)

1
mr

= 1
mV

+ 1
mC

(2.29)

Moreover, according to the Kane two-band dispersion relation [6]:

1
mC

= 1
2mr

+ 1
m0

(2.30)

1
mV

= 1
2mr

− 1
m0

(2.31)

where mC and mV are the effective mass in the conduction and valence band,
respectively
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• Dop and εop are the deformation potential and energy of optical phonons

• Nop is the number of transverse optical (TO) phonons

Nop =
è
exp(εop/kT ) − 1

é−1
(2.32)

where εop is the phonons energy, T is the temperature, and k is the Boltzmann
constant

• ρ is the mass density of the semiconductor under study

Even if the A and B parameters only enter into the recombination rate expression
for the uniform field case, they are used as input parameters for the general case in
order to determine the reduced effective mass and valley degeneracy, which in their
turn enter in the "long and tricky" equations actually used by the Sentaurus (e.g.
eq. 2.21).
These parameters are specified in the material.par file, where material is the
name of the semiconductor used for the TFET (e.g. silicon.par). A set of
specified parameters looks like:

Band2BandTunneling {

Apath = 1e19 #[1/ cm ^3/ sec]

Bpath = 1.46 e7 #[V/cm]

Dpath = 0.00e+00 #[eV]

Ppath = 0.00e+00 #[eV]

Rpath = 0.00e+00 #[1]

MaxTunnelLength = 1.000e -05 #[cm]

}

The default values and the meaning of the parameters specified in the sdevice.par
listed above can be seen in Table 2.1

It is worth mentioning that Ppath determines whether the tunneling will be direct
or phonon-assisted: in detail, Ppath = 0 sets the tunneling to be direct, Ppath /= 0
indicates that the tunneling will be phonon-assisted, and the actual value used is
57.6 meV [41] [42], which is the phonon energy of TO phonons. As one can see
from Table 2.1, there are several parameters that one can choose from, however
Sentaurus allows two input parameters sets in the Band2BandTunneling section:
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Symbol Parameter name Defaul value Unit
A Apath 4 × 1014 cm−3s−1

B Bpath 1.9 × 107 V cm−1
gDop/ρ Cpath 0 J2cm kg−1

g degeneracy 0 1
∆C Dcpath 0 eV
∆V Dvpath 0 eV
mC m_c 0 m0
mV m_v 0 m0
ϵop Ppath 0.037 eV

mV /mC Rpath 0 1

Table 2.1: Default parameters for nonlocal path band-to-band tunneling model
and corresponding parameters name

• (mC , mV , g, ∆C , ∆V ) for direct tunneling and (mC , mV , εop, ∆C , ∆V , g D2
op/ρ)

for indirect tunneling

• (A, B, mV /mC , ∆C , ∆V ) for direct tunneling and (A, B, mV /mC , εop, ∆C ,
∆V ) for indirect tunneling

In this work, for the silicon case study, where tunneling is indirect, since the
electron-hole transition across the bands must be phonon-assisted, the second set
of parameters was chosen. Indeed the parameters A and B specified in the second
set can be somehow related to the physics as explained before, and for this reason
they are more commonly studied and reported in the literature.
For GaSb/InAs instead, where direct tunneling occurs, the first set of parameters
was chosen because it allows a faster and easier calibration between Sentaurus and
the semi-analytical model.
The fitting procedure adopted to have an accurate comparison between the semi-
analytic model and Sentaurus is reported in section 3.1 and section 3.2. However,
both TFETs were simulated in Sentaurus with the following procedure:

• First, the structure, geometry, and materials were specified in the sde tool.
In this step, the mesh and the source, drain and gate contacts were defined as
well. The result of this step can be seen in Fig. 2.6.

• Next, the tunneling parameters of the BTBT section, the electrons and holes

34



Description of tunnel-FET models

density of state, and other parameters like the dielectric constant, have been
calibrated in the material.par files following the procedure described in
chapter 3. An example of sdevice.par file is reported in Appendix B.3.

• Then, by means of the sdevice tool, the band diagram, transfer and output
characteristics, and other important figures of merit like the electrons and holes
band-to-band generations were simulated, see Fig. 2.7. The sdevice_des.cmd
is reported in Appendix B.2.

Figure 2.6: Silicon TFET structure. Snapshot of the Sentaurus sde tool

Fig. 2.7 (top) shows the band diagram of a silicon DG-TFET for Vg = Vd = 0.5 V.
More information on the parameters are reported in section 3.1. In the same figure
are reported, in a linear scale, the electrons and hole band-to-band generations
(cm−3s−1), which are important figures of merit when studying TFET. They are
indeed related to Rnet and thus to the BTBT current by eq 2.23. It can be seen
how holes are generated to the left of the source-channel junction, and electrons to
the right, in agreement with what has been said so far.
Fig. 2.7 (bottom) instead shows the transfer characteristic (current vs gate voltage)
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Figure 2.7: Top: band diagram, with electrons and holes band-to-band generation,
and with holes and electrons quasi-Fermi levels EF p and EF n, respectively, of a
silicon TFET. Vg = 0.5V, Vd = 0.5V, other parameters are those reported in Table
3.2. Bottom: transfer characteristic of the same silicon TFET.

of the TFET. It can be noticed how the current increases from less than 10−11 to
10−5 A/µm in a gate bias range of 0.7 V.
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results

In the following are reported the results of the calibration procedure and the
comparison of the TCAD and semi-analytical approaches applied to a silicon and
GaSb-InAs TFET.
The purpose of the calibration procedure was to relate the parameters of the two
models as to be able to simulate the exact same device in both methods. After
having created the same device in the two approaches, one can compare their results
and see how well the semi-analytical model behaves with respect to Sentaurus
which is assumed to be correct.

3.1 Case study 1: Silicon (indirect tunneling)

This section is devoted to the study of a silicon TFET.
The TFET structure can be seen in Fig. 3.1, and the other parameters are reported
in Table 3.2. The TFET has a 20 nm long and 5 nm thick channel, source and
drain contacts widths are 25 nm, and the insulator thickness is 2 nm. Due do
the silicon high DOS (density of states) Nv and Nc, to have significant tunneling
heavy doping is required. Indeed, high a doping will provide strong band bending,
bringing the source and valence bands close to each other at the source-channel
junction, fostering tunneling. This is accomplished by doping both source and drain
with a dopant concentration of 1020 cm−3. The channel and insulator thicknesses
add up together to give λ = 9 nm, according to eq. 2.5.
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Figure 3.1: Sentaurus snapshot of the silicon TFET created through the Sentaurus
sde tool.

In order to have a fair comparison between the semi-analytical method and Sen-
taurus, one has to specify the same input parameters in both methods. However,
the semi-analytical approach allows one to specify only tunneling masses mC , mV ,
hence it is required to somehow relate the tunneling masses to the sets of parameters
that can be specified in Sentaurus.
It is possible to choose either of the two sets independently and the results will be
the same.

• The first way to do it is to use the second set of parameters and to compute
the tunneling masses mC , mV (to insert in Matlab) starting from Bpath, which
is specified in Sentaurus, while Apath is obtained by fitting the currents.
In practice this is done by specifying an arbitrary and reasonable Bpath value
and then using eq. 2.27 to get the reduced mass mr:

mR =
C

3qhBpath

27/2π(Eg +Dpath)3/2

D2

(3.1)

Next, using eq. 2.30 and 2.31 mC and mV are computed. The resulting
parameter set specified in the silicon.par file in the TCAD is the following:
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Band2BandTunneling {

Apath = 8e16 #[1/ cm ^3/ sec]

Bpath = 8.2 e6 #[V/cm]

Dpath = 0.00e+00 #[eV]

Ppath = 0.057e+00 #[eV]

Rpath = 0.00e+00 #[1]

MaxTunnelLength = 1.000e -05 #[cm]

}

Where the value assigned to Bpath was chosen according to [40]. The resulting
mC , mV values are 0.0199 and 0.0208, respectively, having used Eg = 1.121416
eV at 300 K.

• If instead one chooses to use the first set of parameters shown in paragraph
2.3, the procedure consists in using the Bpath value found in [40] to obtain
mC , mV , and using the Apath value found previously to find gD2

op/ρ with

gD2
op/ρ = 221/4h5/4m

5/4
R εop(Eg +Dpath)7/4Apath

(mCmV )3/2(1 + 2Nop)(q F0)5/4 (3.2)

obtained by isolating gD2
op/ρ from eq. 2.26 whereas Nop is computed from eq.

2.32.

The parameters used in the comparison are summarized in the following table 3.1
The electron affinity of the silicon was fixed at qχ = 4.0727 eV in the silicon.par

Symbol Value Unit
A 8 × 1016 cm−3s−1

B 8.2 × 106 V cm−1
gDop/ρ 5.61e-13 J2cm kg−1

∆C 0 eV
∆V 0 eV
mC 0.0199 m0
mV 0.0208 m0
ϵop 0.0576 eV
ρ 2329 kg/m3

Table 3.1: Table summarizing the parameters obtained and used in the comparison
of the silicon TFET
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file. Next, it is required to find the the metal work function to be used in Sentaurus
which provides the best comparison with the semi-analytical model. This was done
by finely tuning the band diagram at equilibrium in TCAD, so as to have the
source valence band and channel conduction band aligned just like in Matlab, as
already mentioned in section 2.1. It turns out, that taking into consideration all
the parameters, the best metal work function for the comparison is qϕm = 4.10 eV,
which is a relatively low value work function yet still possible (TiN for example
has a work function of 4.1 eV). This alignment will guarantee that the variation of
the channel conduction and valence band as a function of Vg will be the same in
both approaches.
It should be noticed that this work function value is necessary only to allow the
sync of Sentaurus with the semi-analytical current. Indeed it depends on very way
the semi-analytical model is defined. In reality the work function value simply shifts
to lower or higher gate voltage the current, and so it chosen according to the circuit
requirements. In Fig. 3.2 is shown the band diagram at equilibrium obtained with

Figure 3.2: Band diagram comparison between Sentaurus and Matlab for the
Silicon TFET at equilibrium (Vg = Vd = 0)

the two different models, and it can be appreciated how good the agreement is. To
get this comparison, the λ parameter has been scaled times a so-called λcoeff = 0.9.
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Indeed, λ can be considered as a fitting parameter as reported in [34]. Therefore,
λ = λ0 · λcoeff , where λ0 = ts + 2ti.

Figure 3.3: Drain current ID comparison between Sentaurus and semi-analytic
model for the Silicon TFET, log scale (up) and linear scale (down).

In Fig. 3.3 are reported the comparison of the current in linear and logarithmic
scales and once again it is possible to appreciate the close match between the two
approaches. In Fig. 3.3 (top) is also reported the subthreshold swing S = 60
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mV/dec, that is, the limiting S for devices based on thermionic emission. From the
figure, it is possible to notice how this TFET is not able to overcome the thermionic
subthreshold swing: indeed the S of this specific silicon TFET is slightly higher
than the thermionic limit, and this is not good.
The maximum ION is not so high, since it is ION(Vg = 1V ) = 5.56 × 10−5 A/µm,
which is not the best for logic circuits or for ultra-low-power applications. Indeed,
logic circuits generally require IONto be in the mA/µm range. These features can
be ascribed to the very low tunneling masses mc and mv, which don’t allow the
IOF F to decrease as it should, and to the very high Eg,eff = Eg = 1.121416 which
strongly limits the ON current.
In Fig. 3.4 the band diagrams for different gate biases are reported: Vg =
−0.1V, Vg = 0V, and Vg = 0.5V, ; in every plot the drain bias is Vd = 0.5V.
It can be observed how the bands computed with the two models are perfectly
aligned at the contacts, and how well aligned are in the source and channel as well.
The small difference present at the channel-drain interface is not so relevant because

Figure 3.4: Band diagram comparison of silicon TFET for several Vg. Continuous
lines are obtained with the semi-analytical model, while dashed data is computed
with Sentaurus. Vd = 0.5V for all of them. In the figures is also reported the energy
at which maximum transmission

s
T (E) dE occurs for each specific Vg (see also

Fig. 3.5).
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1) tunneling is computed only at the source-channel interface, and 2) the maximum
transmission occurs at energies smaller than ≈ 0.5 eV where the matching becomes
not perfect. This can be seen in Fig. 3.5, where it is reported the

s
T (E) dE in

the plots to the left, the Fermi occupation probabilities difference in the centre,
and the product of the former and the latter to the right. From these graphs it is
possible to notice that

• The transmission probability exponentially increases with Vg

• T(E) shifts to higher energies E with Vg

• Since T(E) shifts to higher energies E with Vg, its product with the (fF DS
−

fF DD
) increases, since the difference of the Fermi functions is low at small

energies and maximum at E ≈ 0.25 eV

Table 3.2 summarizes the parameters used in this silicon TFET.

A (1/cm3/s) B (V/cm) mC (m0) mV (m0) λcoeff Eg (eV)
9e6 8.2e16 0.0199 0.0208 0.9 1.121416

Nv (1/cm3) Nc
(1/cm3)

Nd
(1/cm3) Na (1/cm3) L (nm) ϵs = 22ϵ0

(F/m)
3.1046e19 2.8567e19 1e20 1e20 20 22

Table 3.2: Parameters of silicon TFET
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Figure 3.5: Figures of merit for silicon TFET. Transmission probability (left),
fF DS

−fF DD
(centre),

s
T (E) dE× (fF DS

−fF DD
) (right). Drain current is directly

proportional to the integral of
s
T (E) dE × (fF DS

− fF DD
), therefore the higher

this term, the higher ID. fF DS
− fF DD

is the same for every Vg since it depends
only on Vd and on the Fermi levels. Vd = 0.5 V.
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3.2 Case study 2: GaSb/InAs (direct tunneling)

Up to now, a homojunction TFET made of an indirect semiconductor was studied.
In the following instead, a heterojunction TFET made of direct semiconductors
will be analyzed.
Heterojunctions in fact allow to decouple the ION from the IOF F , increasing the
former and reducing the latter. This is because in heterojunction it is possible to
tune the band edge alignment at the tunnel junction. The alignment is determined
to a first approximation by the electron affinity of the two constituents materials,
meaning that the effective band gap will be given by the band alignment and not
by the band gap of the individual materials.
A heterojunction TFET can therefore combine a very small effective band gap at
the source-channel junction, resulting in a high ION , with a large band gap at the
channel-drain junction, maintaining a low IOF F . The source material should be
chosen as one with a large DOS (density of states), associated with a large band
gap, to limit the source doping degeneracy, hence reducing the tunneling distance
λ and increasing ION .

Figure 3.6: GaSb-InAs TFET
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In this context, in 2017, Memisevic E et al [43] showed how through band engineering
a GaSb-InAs vertical nanowire TFET, hence realizing a broken band gap device,
they were able to outperform state-of-the-art Si FETs at VDD = 0.3V. This was
achieved thanks to a S well below 60 mV/dec at technically relevant currents,
obtaining ION = 10µA/µm and IOF F = 1 nA/µm. Many other studies[4] [44] [45]
[46] focused on the GaSb-InAs material combination for TFET, reason why, in the
following, a GaSb-InAs DG-TFET is studied.
Its structure is shown in Fig. 3.6, which is a snapshot of the Sentaurus Visual
tool. The device is the same reported in [47], which corresponds to the structure
simulated in [48]. The TFET has a gate length of 20 nm, ultra-thin body of 5
nm, high-k dielectric thickness (HfO2) of 2 nm with the source/drain doping of
4 × 1019 cm−3 (p+) and 6 × 1017 cm−3 (n+), respectively. The band gap and the
semiconductor affinities were taken from [47] as well.
Since this device is made of direct semiconductors, direct tunneling occurs. For
this reason, even if normally the parameters specified in Sentaurus are A and B,
because they are easier to relate to the recombination-generation rate Rnet used in
Sentaurus to compute the current, as it has been previously done in 3.1, in this
case, the (mC , mV , g, ∆C , ∆V ) parameters set was chosen. Indeed, this set of
parameters allows a more direct and easier comparison with the semi-analytical
approach, since there one sets the tunneling masses mC and mV . The tunneling
masses have been set to mC = mV = 0.1, following what has been done in [31] [34].

Eg,1 (eV) Eg,2 (eV) mC (m0) mV (m0) λcoeff Eg,eff (eV)
0.845 0.4 0.1 0.1 0.95 0.12
Nv

(1/cm3)
Nc

(1/cm3)
Nd

(1/cm3)
Na

(1/cm3) L (nm) ϵs = 22ϵ0 (F/m)

2e19 1e17 2e17 4e19 20 22
qχ source

(eV)
qχ drain

(eV) g qϕM (eV) ∆C ∆V

4.035 4.78 1 4.812 0 0

Table 3.3: Parameters of GaSb-InAs TFET
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With this set of parameters (g,mc,mv, Eg,1, Eg,2) the resulting A and B coeffi-
cients in units of cm−3s−1 and Vcm−1, respectively, are

A = 1.7162 · 1020 B = 3.215 · 106

for the InAs and
A = 1.1808 · 1020 B = 9.8719 · 106

for the GaSb, in agreement with those reported in the literature [40] [41].
After having defined the semiconductor doping concentrations, band gap and affini-
ties, it was necessary to tune the metal work function to specify in the TCAD,
to obtain the source valence band and channel conduction band alignment at
equilibrium. It turns out, that with the combination of parameters which are
reported in details in Table 3.3, the best fitted metal work function is qϕM = 4.812
eV.

Figure 3.7: Schematic energy diagram (left) and Band diagram at equilibrium
of the GaSb-InAs TFET (right). Notice that the electrons and holes quasi-Fermi
levels, EF n and EF p, respectively, computed with the two methods, are perfectly
overlapped. The parameters used are reported in Table 3.3.

The combination of Eg, χ and ϕM gives in the TCAD an effective band gap at the
source-channel interface of Eg,eff = 0.12 eV, therefore this value has been inserted
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in the semi-analytical method for the comparison, together with the semiconductor
doping and DOS. The best results of the calibration procedure between the two
methods are obtained setting λcoeff = 0.95. The results are shown in Fig. 3.7,
Fig. 3.8 and Fig. 3.9. In particular, in Fig. 3.7 is shown the band diagram at

Figure 3.8: Band diagram comparison of GaSb-InAs TFET for several Vg. Vd =
0.5 V, always. Continuous lines are obtained with the semi-analytical model, while
dashed lines are obtained from Sentaurus. In red are reported the conduction band,
while in blue the valence band. The parameters used to obtain these figures are
reported in Table 3.3.

equilibrium. The band are perfectly aligned at the source and channel, and so are
the electrons and holes quasi-Fermi levels, EF n and EF p, respectively. At the drain
instead, the bands are different between the two methods. This happens because
in the semi-analytical method, as for now, the drain is not considered, and the
conduction band value at x = L is EC(L) = Vd + EF n + EF p due to the boundary
equation. According to the TCAD instead, the bands profiles are much smoother,
and this is due to the depletion region present in the drain, due to the very low
drain doping (2 × 1017 cm−3).
The same problem is present in Fig. 3.8, where the band diagrams out of equi-
librium are shown. Once again it can be noticed how the bands are very similar
between the two approaches in the source and channel, even for Vg = 0.5 V. The
misalignment at the drain end does not affect the ON current however, because
tunneling in the ON state happens at the source-channel junction, where the bands
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agreement is great. The current is finally shown in Fig. 3.9 in logarithmic (top)

Figure 3.9: Drain current ID comparison between Sentaurus and semi-analytical
model for the GaSb-InAs TFET, log scale (up) and linear scale (down).

and linear (bottom) scales.
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Figure 3.10:
s
T (E) dE (left), fF DS

− fF DD
(centre),

s
T (E) dE × (fF DS

− fF DD
)

(right) in logarithmic (top) and linear (bottom) scales for several Vg in the range
[0, 0.1] V, i.e. during the turn ON of the TFET. In the bottom figures the energy
range E has been limited to [0, 0.15] eV to better see

s
T (E) dE. Drain current is

directly proportional to the integral of
s
T (E) dE × (fF DS

− fF DD
) (figures to the

right). Vd = 0.5 V.
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The matching is stunning for positive gate bias: the currents are almost su-
perimposable. In the figure in logarithmic scale is shown the thermal S limit of
60 mv/dec as well: in this case the TFET is able to significantly overcome this
limit, showing the potential of TFETs. Notice also how ION ≈ 5 · 10−4 A/µm, a
significant improvement over the silicon TFET.
Fig. 3.10 shows the transmission probability during the TFET turn ON in the
[0, 0.1]V Vg range. In particular, from the linear plots, it is possible to see hows
T (E) dE increases exponentially with Vg.

Notice also the shift of the T(E) profile to bigger energies as Vg increases: the T (E)
maximum occurs where the bands at the source-channel are closer i.e. when the
distance between the bands is smaller. Indeed, tunneling depends exponentially
with distance, and as shown in Fig. 3.8, the smallest distance between the bands
at the tunneling junction shifts to higher energies as Vg increases, since the channel
conduction band is pushed down by positive Vg.
Referring to Fig. 3.9 (top), it is clearly visible how the current computed with
TCAD begins to rise for Vg < 0. This is the ambipolarity phenomenon, which hap-
pens when tunneling starts to occur at the channel-drain junction. The ambipolar
current is not taken into account by the semi-analytical model right now, which
considers only the source-channel junction to compute the tunneling current.
To have a more accurate comparison, the ambipolar current in the semi-analytical
method will be implemented later in chapter 4.
Finally, Fig. 3.11 shows the comparison of the Id −Vd characteristics obtained with
the two models in linear scale. The matching is better for small Vg, and worse for
high Vg. However, notice that the comparison is in linear scale, therefore differences
are more clearly visible. Moreover, notice that differences are present between
the two models when moving from Vg = 0.5 V to Vg = 0.4. Indeed, the current
computed with Sentaurus at Vg = 0.5 V and Vd ≈ 0.1 V is less than the one for
Vg = 0.4 V and Vd ≈ 0.1 V. This may be due to the fact that for Vg = 0.5, the
channel conduction band goes below the drain conduction band and therefore a
potential barrier is present for electrons that must travel from channel to drain.
The opposite happens in the semi-analytical model, and this difference might be
ascribed to the de-biasing model implemented.
Fig. 3.11 also shows that for Vg = 0.4 V, the saturation of the currents happens
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Figure 3.11: Id − Vd characteristics comparison for several Vg. Continuous lines
are obtained with the semi-analytic model, dashed lines with Sentaurus. Vg is
expressed in V.

already for Vd = 0.3 V, confirming what has been said at the beginning of this
work, that is, TFETs can be powered by low Vd, leading to a reduction in energy
consumption and a reduction in the heat produced.
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4.1 Theoretical introduction

Up to now, the drain depletion and tunneling at the drain side were ignored
because they hardly affect the ON current. Indeed, tunneling was modeled only at
the source-channel interface using one-band E(k) relations (eq. 2.14 and eq. 2.15).
However, drain depletion and tunneling at the drain come into play for close to
zero Vg in devices with a heavily doped drain, small channel length or a small
channel-drain band gap, fostering the ambipolar current.
Fig. 4.1 for example shows the band diagram and electrons-holes generation-
recombination rates for a negative Vg and a positive Vd in a silicon TFET. The high
generation-recombination rates present at the channel-drain junction clearly shows
how significant tunneling is happening, suggesting a large ambipolar current. For
these reasons, the last part of this work has been devoted to the implementation
of the ambipolar current (IAMB) in the semi-analytical method. To do that, it
was first required to model the drain depletion in the band diagram, and then to
implement a new set of E(k) relations to model tunneling at the drain side to get
the current.

4.1.1 Drain depletion modeling

In order to take into account drain depletion, the previous equations describing
the conduction and valence band must be modified. The new profiles, following
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Figure 4.1: Band diagram, electrons and holes quasi-Fermi levels, and electrons
and holes band to band generation computed with Sentaurus. Vg = −0.8V and
Vd = 0.5V. The device is the same TFET studied in section 3.1.

the paper "Reduction of TFET OFF-Current and Subthreshold Swing by Lightly
Doped Drain" [33], are given by

EC,CHN = V0
sinh

#
π(L− x)/λ

$
sinh(π L/λ − V0 + Eg,eff − ∆1+

− (VDRN − V0 + Eg,eff − ∆1 − ∆2)
sinh(πx/λ)
sinh(πL/λ) (0 ≤ x ≤ L)

(4.1)

V BDRN = − ∆1

w2
d1

(x+ wd1)2 (x ≤ 0) (4.2)

EC,SRC = −VDRN + ∆2

(wd2)2 (x− L− wd2)2 (x ≥ L) (4.3)

where ∆2 and wd2 are the band bending and the depletion width at the drain,
respectively, as it can be seen from Fig. 4.2. The drain depletion width wd2 is
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Figure 4.2: Schematic illustration of heterojunction DG-TFET’s structure with
drain depletion. ∆2 is the banding of the conduction band from x = L up to the
drain end, wd2 is the underlying region. Figure obtained with the semi-analytical
model after having implemented the drain depletion.

computed in a similar manner with respect to wd1:

wd2 =
A

2ϵs∆2

q2Nd

B1/2

(4.4)

where Nd is the n-type doping at the drain side. Thus, it was assumed that
the dependence of conduction and valence band on the position have the typical
parabolic behavior. The band bending ∆1 and ∆2 are solved from the following
system of equations

π
qλ

× (q Vgs−∆1+Eg,eff ) cosh(π L/λ)+(VDRN −q Vgs−∆2)
sinh(π L/λ) =

ñ
2Na∆1

ϵs

π
qλ

× (q Vgs−∆1+Eg,eff )+(VDRN −q Vgs−∆2) cosh(π L/λ)
sinh(π L/λ) =

ñ
2Nd∆2

ϵs

(4.5)

found imposing the field continuity at the source and drain, that is,

d(EC,CHN)/dx|x=0 = d(EV,SRC)/dx|x=0
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and
d(EC,CHN)/dx|x=L = d(EC,DRN)/dx|x=L

4.1.2 Ambipolar current modeling

At this point, the updated band diagram is computed, and it remains to
implement tunneling at the drain side between the channel valence band and drain
conduction band, see Fig. 4.3.
The updated band-to-band tunneling probability is

T (E,E⊥v) =

exp
−2

CÚ 0

l0
ksrc(E,E⊥v) dx+

Ú l2

l1
kchn(E,E⊥v) dx+

Ú l3

L
kdrn(E,E⊥v) dx

D
(4.6)

where ksrc hasn’t changed and it is the one previously defined in eq. 2.17, the last
two terms are the contribution from channel and drain, respectively. Basically, eq.
4.6 is a way to compute the transmission probability in a piece-wise fashion in the
three regions of the TFET. T(E) is obtained by adding the source contribution
(ksrc), the channel contribution(kchn), and the drain contribution (kdrn) which are
computed independently as a function of their respective band diagram regions.
In details, ksrc determines the probability of having electron tunneling from the
distance l0 (which is computed for every combination of (E,E⊥,V ) up the source-
channel junction. Then, kchn determines the probability of having electron tunneling
from the source-channel junction up to the distance l2 (therefore ending in the
channel conduction band), and at the same time it also determines the probability
of electron tunneling from the distance l1 up to the channel-drain junction, see
Fig. 4.2 and Fig. 4.3. Finally, kdrn determines the probability of having electron
tunneling from the channel-drain junction up to the distance l3 ending in the drain
conduction band. Eq. 4.6 is therefore a way to obtain the whole T(E) of the TFET
by dividing it into three simpler and distinct contributions.
A two-band E(k) relation in the channel is needed, because, as aforementioned,
tunneling occurs both in the channel conduction band (with the source) and in the
channel valence band (with the drain), see Fig. 4.2.
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Figure 4.3: Magnified tunneling view of the band diagram at the channel-drain
interface for a negative Vgs. When the valence and conduction band are close to
each other, significant tunneling can occur at the drain side.

Several two-band E(k) relations for band-to-band tunneling have been proposed in
the past: there are those proposed by Franz [49], Kane[50], Flietner[51] for example,
which are by the way continuous functions, and a piecewise model is available as
well [52]. However, for all of them, the starting point is the same and it is eq. 2.13.
In this work, the Franz’s two-band model was used.
According to Franz’s model, the mass×barrier height (mϕB) for electrons having
energy E in the band gap is

[mϕB](Franz) =
C

1
mc(Ec − E) + 1

mv(E − Ev)

D−1

(4.7)
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As a result:

kchn(E,E⊥v) = (4.8)
√

2
ℏ

A
1

mv[Eg,2 − EC,chn(x) − E + E⊥v] + 1
mc[EC,chn(x) + E + E⊥c]

B−1/2

(4.9)

Finally, kdrn is modeled with a one-band E(k) model, just like it was done at the
source:

kdrn =
√

2mc

ℏ

ñ
EC,DRN(x) + E + E⊥c (4.10)

Eq. 4.10 can be solved analytically by substituting in EC,DRN , eq.4.3, which yields

Ú ó
E + E⊥c − VDRN + ∆2

w2
d2

(x− L− wd2)2 =

− 1
2(L+ wd2 − x)

öõõô∆2(L+ wd2 − x)2

w2
d2

+ E + E⊥c − VDRN+

− 1
2
√

∆2
wd2(E + E⊥c − VDRN)×

log

ñ∆2 wd2

öõõô∆2(L+ wd2 − x)2

w2
d2

+ E + E⊥c − VDRN + ∆2(L+ wd2 − x)


(4.11)

which must be computed between x = l3 and x = L.
The newly defined tunneling lengths l1 and l3 are shown in Fig. 4.3. They are
found from the intercepts of −E+E⊥v with EC,CHN −Eg,2 and from the intercepts
of −E − E⊥c with EC,DRN , respectively. In Table 4.1 is summarized how to find
the various tunneling lengths. However, the drain contribution must be considered

Tunneling length Intercept
l0 −E + E⊥v with EV,SRC

l1 −E + E⊥v with EC,CHN − Eg,2
l2 −E − E⊥c with EC,CHN

l3 −E − E⊥c with EC,DRN

Table 4.1: Method to find the tunneling lengths
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only for E ≥ VDRN − ∆2 − E⊥c, and also this must be taken in consideration with
the help of another reflection coefficient.
In Table 4.2 are summarized the various reflection coefficients (called "mask" in
Appendix A) which must be used on the three different contribution (source,
channel, and drain) when computing T (E).

RCHN E ≥ ∆1 − Eg,eff − (mv/mc)E⊥,v

RSRC E ≥ VDRN − ∆2 − (mv/mc)E⊥,v

RDRN E ≤ ∆1 + E⊥v

Table 4.2: Reflection coefficients for the channel, source, and drain (from top to
bottom in the table, respectively) contribution to the tunneling current.

4.2 Results of the semi-analytical model

Figure 4.4: Example of Ids − Vgs characteristic computed with (black continuous
line) and without (gray dashed line) the ambipolarity implemented in the semi-
analytical model. Parameters are: Na = 3.5 × 1019, Nv = 2 × 1019, Nc = 1017,
Nd = 4 × 1018 cm−1, Eg2 = 0.4 eV, Eg,eff = 0.145 eV, Vd = 0.5 V, λ = 7 nm, ts = 3
nm, mc = mv = 0.1m0, ϵ = 14.6ϵ0.

An example of Ids − Vgs characteristics obtained with and without having
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implemented the ambipolarity in the semi-analytical model are shown in Fig. 4.4.
The figure is obtained from a custom device, whose parameters are in the range
of a GaSb-InAs TFET, used just for the sake of showing the differences after the
ambipolarity implementation, and the parameters of the device are reported in the
caption of the same figure.
Notice that the current with the ambipolarity implemented, while decreasing the
gate voltage, for Vg ≈ 0.03 V, the current begins to rise instead of decreasing,
which in turn causes IOF F to increase. The current without ambipolarity modeled
instead decreases monotonically as Vg is lowered, and the IOF F difference between
the two cases is huge. Notice also that the ON current is hardly changed.
Fig. 4.5 shows the tunneling probability versus energy for several Vg near zero
for the same device as in Fig. 4.4. It can be seen how for Vg = 0.02 V, T(E)
is maximum at very low energies (E ≈ 0.01 eV) because tunneling is happening
mostly at the source-channel junction where the source valence band and channel
conduction band are closer, as it can be seen from Fig. 4.6 (right). Decreasing Vg

moves away the bands at the source-channel junction and brings the band at the
channel-drain junction closer, the reason why a second peak of T(E) appears at
E ≈ 0.4 eV, that is, the energy for which the bands are closer at the drain side.
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Figure 4.5: Data obtained with the semi-analytical model and ambipolarity
implemented. Tunneling probability (left), fF DS

− fF DD
(centre), tunneling

probability×(fF DS
− fF DD

) (right) for several Vg. Drain current is directly propor-
tional to the integral of

s
T (E) dE × (fF DS

− fF DD
) (figures to the right). Vd = 0.5

V. Parameters are the same as in Fig. 4.4. Tunneling at channel-drain (E ≈ 0.4
eV) increases as Vg is lowered.
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Figure 4.6: Band diagram obtained with the semi-analytical model for Vg = −0.1
V (left) and Vg = 0 V (right).Vd = 0.5 V. Parameters are the same as in Fig. 4.4.
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4.3 Comparison with the literature

Figure 4.7: IDS − VGS characteristics comparison between the semi-analytical
(bottom) model and the reference (top), adapted from [32]. Parameters are:
Na = Nv = 5 × 1018 , Nc = 1018, Nd = 3 × 1019 cm−1, Eg2 = 1 eV, Eg,eff = 0,
Vd = 0.5 V, λ = 9 nm, ts = 5 nm, mc = mv = 0.1m0, ϵ = 14.6ϵ0

In the previous chapter the comparison was made with two specific TFETs case
studies, one in silicon and the other in GaSb-InAs. In this chapter instead, the
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comparison is carried out not with a specific device, but rather with a plethora of
devices, in order to see what most influences the ambipolarity and how it can be
mitigated.

Figure 4.8: IDS − VGS characteristics comparison between the semi-analytical
(bottom) model and the reference (top), adapted from [32]. Parameters are:
Eg,eff = 0.1 eV, VDRN = 0.5. The rest of the parameters are the same as in Fig.
4.7.

Before doing the comparison with the TCAD, the semi-analytical model has
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been validated with another approach present in the literature, that is, the one
developed by professor Yuan Taur (University of California at San Diego, USA)
and his group [31] [34] [32].
About this, in the following are reported the comparisons of the in-house built
semi-analytical model with the reference after having carefully set in the former
same parameters reported in the latter.
Fig. 4.7 studies the ambipolar phenomenon for a varying channel length with
a channel-drain band gap of Eg2 = 1 eV, and a drain doping of Nd = 3 × 1019

(the other parameters are reported in the caption of the figure). First, it can be
noticed that the results are exactly the same across the two models for this set of
parameters, validating the semi-analytical model. Second, it can be seen that the
channel length has a strong effect on the OFF current: the shorter the channel the
higher IOF F . It can also be noticed how the ON current instead is independent on
Lchn.

Next, Fig. 4.8 shows the ambipolar current as a function of the channel-drain
band gap. Once again, the results of the two models are the same, which is good.
IAMB turns out to be highly affected by Eg2. Small Eg2 lead to unacceptable
ambipolar current, for example for Eg2 = 0.3 eV the ID minimum (ID,min ≈ 10−5

A/µm) is reached at VGS ≈ 0.1 V, and after that the current starts to increase,
making impossible to turn OFF the TFET. The larger Eg2 the better, since it
reduces tunneling at the drain and therefore the ambipolar current.
Fig. 4.9 investigates IAMB as a function of the drain doping. Notice the perfect
match between the semi-analytical model and the literature. Having said that, Nd

turns out to be a very effective way to mitigate the ambipolarity. Indeed, a lightly
doped drain increases the tunneling distance at drain as shown in Fig. 4.10, which
in turn results in a lower T(E) and lower IAMB.
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Figure 4.9: IDS − VGS characteristics comparison between the semi-analytical
(bottom) model and the reference (top), adapted from [33]. Parameters are:
Na = 3.5 × 1019, Nv = 2 × 1019, Nc = 1017 cm−1, Eg2 = 0.4 eV, Eg,eff = 0.15 eV,
Vd = 0.5 V, λ = 9 nm, ts = 5 nm, mc = mv = 0.1m0, ϵ = 14.6ϵ0.
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Figure 4.10: Band diagram comparison for two different Nd (cm−3) obtained with
the semi-analytical model. The rest of the parameters are the same as in Fig. 4.9.
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4.4 Comparison with TCAD

After having validated the semi-analytical model with the literature reference,
the model has been compared with Sentaurus.
Once again it was chosen to investigate and compare several TFETs rather than a
single one to study the ambipolarity and to find pros and cons of the semi-analytical
model.
Since IAMB depends mainly on three factors, channel length, drain doping and
channel-drain band gap, studies of IAMB as a function of these three parameters
fixing the other parameters, have been carried out and reported below.

4.4.1 Varying channel length

Fig. 4.11 plots the comparison of the semi-analytical (continuous lines) and
TCAD (dashed lines) Ids − Vgs characteristics for several channel lengths. The
parameters used in the simulations are similar to those of an AlGaAsSb source
and InGaAs channel. It can be seen how the ON current is always the same
for both models and it is independent of Lchn, since ION stems mainly from the
source-channel junction which is not affected by Lchn.
The agreement between the models is better for Lchn = 20 nm and worse for
smaller/bigger channel lengths. Therefore, though the behavior is very similar,
differences between the models begin to appear. In table 4.3 are reported the
parameters used in Sentaurus to obtain Fig. 4.11.

qχ source
(eV)

qχ drain
(eV) g qϕM (eV) ∆C ∆V

4.035 4.78 1 4.8099 0 0

Table 4.3: Sentaurus parameters of Fig. 4.11. The rest of the parameters are
reported in the description of the previously mentioned figure.

4.4.2 Varying drain doping

Fig. 4.11 is obtained with Eg2 = 1 eV, and in this case IOF F is still acceptable
for Lchn = 15 nm. If Eg2 is smaller instead, IAMB increases significantly.
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Figure 4.11: IDS − VGS characteristics comparison for varying channel lengths.
Continuous lines are obtained with the semi-analytical model, dashed lines with
Sentaurus. Parameters are: Na = 3.5 × 1019, Nd = 3 × 1019 Nv = 2 × 1019,
Nc = 1017 cm−1, Eg2 = 1 eV, Eg,eff = 0.145 eV, Vd = 0.5 V, λ = 9 nm, ts = 5 nm,
mc = mv = 0.1m0, ϵ = 14.6ϵ0.

This can be seen in fig. 4.12 which shows the semi-analytical and TCAD Ids − Vgs

characteristics for several drain doping.
A lightly doped drain turns out to be very effective in reducing the ambipolar
current, whereas a high drain doping causes unacceptable IAMB. The ON current
is once again the same in both approaches, but differences arise when Nd ≥ 1018

cm−3. Indeed, the figure clearly shows how though the qualitative behavior is
similar, the same cannot be said from the quantitative point of view.
Parameters used in Sentaurus to obtain Fig. 4.12 are the same as those reported in
Table 4.3, since the drain doping doesn’t affect the band alignment between source
and channel, therefore the same metal work function was used.
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Figure 4.12: IDS − VGS characteristics comparison for varying drain doping.
Continuous lines are obtained with the semi-analytical model, dashed lines with
Sentaurus. Parameters are: Na = 3.5 × 1019, Nv = 2 × 1019, Nc = 1017 cm−1,
Eg2 = 1 eV, Eg,eff = 0.145 eV, Vd = 0.5 V, λ = 7 nm, ts = 3 nm, Lchn = 20 nm,
mc = mv = 0.1m0, ϵ = 14.6ϵ0.

4.4.3 Varying channel-drain band gap

The last parameter affecting the ambipolarity to be investigated is Eg2. About
this, Fig. 4.13 shows how a big channel-drain band gap is beneficial for TFETs,
strongly limiting the ambipolar current. Eg2 has no effect on ION but allows to
decrease IAMB by several orders of magnitude.
In this case, the comparison between the semi-analytical model and Sentaurus is
remarkable. For every Eg2 the agreement of the IDS − VGS characteristics is pretty
accurate. In Table 4.4 are reported the parameters used in Sentaurus to obtain
Fig. 4.12, and in this case, since a different Nv and Na were used for the source,
a new metal work function had to be found to achieve the source-channel band
alignment.
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Figure 4.13: IDS − VGS characteristics comparison for varying channel-drain
band gap. Continuous lines are obtained with the semi-analytical model, dashed
lines with Sentaurus. Parameters are: Na = 5 × 1018, Nv = 5 × 1018, Nc = 1017,
Nd = 2×1018 cm−1, Eg,eff = 0.145 eV, Vd = 0.5 V, λ = 9 nm, ts = 5 nm, Lchn = 20
nm, mc = mv = 0.1m0, ϵ = 14.6ϵ0.

qχ source
(eV)

qχ drain
(eV) g qϕM (eV) ∆C ∆V

4.035 4.78 1 4.742 0 0

Table 4.4: Sentaurus parameters of Fig. 4.13. The rest of the parameters are
reported in the description of the previously mentioned figure.
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analytical model

In this work, very similar results were presented between the semi-analytical
and numerical models. However, it must be said that the comparisons were made
and reported only under the conditions for which the semi-analytical model could
be used, the reason why the model has several limitations.
For example, the semi-analytical model doesn’t take into account transport phenom-
ena or scattering events. It doesn’t take into account trap-assisted-tunneling (TAT),
Shockley-Read-Hall and spontaneous emission occurring in the depleted region
which are commonly regarded as the main TFET’s problems, strongly limiting the
ON current and degrading the steep slope. It assumes a fully depleted region with
a parabolic potential behavior, which generally underestimates the depleted region
both in source and drain. This in turn, causes a not exact band diagram which in
its turn will change the current. The semi-analytical model can be applied only
to double-gate or nanowire TFET, with no possibility of simulating other TFETs
geometries. It can be applied only to n-TFETs, with no possibility of simulating
p-TFETs It can be applied only to n-TFETs with an intrinsic channel It gives
results not always accurate in the ambipolar condition It is worth explaining the
last point. Fig. 4.11 and Fig. 4.12 show how the comparison in the ambipolar
regime between the semi-analytical model and Sentaurus is not so accurate, and a
significant difference is present for small Vg. Not only that, but for TFET with
bigger band gap, for example silicon, the result of the semi-analytical model cannot
be compared at all with TCAD because they differ by more than one order of
magnitude. This indicates that the semi-analytical model should be used with
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caution, always comparing and validating the results with TCAD.
Moreover, to obtain Fig. 4.12 the semiconductor thickness was decreased from 5 to
3 nm, since in this conditions the results between the two approaches were more
similar. It was noticed that decreasing ts gives more similar results, however, this
will also cause a decrease of the current, the reason why there is no point in doing
these simulations, but only to have a closer match between the results.
Nonetheless, it should be noticed that the semi-analytical model is able to compute
the I − V characteristic in less than 10 seconds, whereas Sentaurus needs 2-3
minutes. Therefore, the former is much faster than the latter, the reason why it
could be used in a circuit model.
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Device simulations are nowadays an essential step in the design of any electronic
device. They provide a fast and economical way to investigate prototypes and
look for the best configurations without the try and error procedure of physical
fabrication processes. In this work, device simulations have been performed on
TFETs.
Indeed, TFETs are promising candidates to solve some of the problems which
strongly affect modern electronics. They could be very beneficial for the reduction
of power consumption and for heating issues, since they can be operated with a
low supply voltage thanks to their steep slopes and low OFF currents.
The conduction mechanism in TFETs is band-to-band-tunneling and it has been
modeled and studied with two different approaches, one of which is semi-analytical
and the other is numerical. The geometry of the TFET studied has always been
that of a double gate n-TFET.
The numerical model has been carried out with the Sentaurus Synopsys TCAD,
where the contribution of tunneling to the current is expressed in terms of electrons-
holes generation-recombination rates.
The analytical model instead, implemented in Matlab, is based on the Landauer-
Büttiker formula to compute the current, and it exploits the WKB approximation
to obtain the transmission probability. Starting from the reference papers [31] [32]
[34], a new Matlab code has been derived with personal contributions in overall
implementation, and in particular in the ambipolarity regime where the code has
been written from scratch, and whose results are identical to those of the literature
[33].
Since tunneling is modeled with different physical mechanism and equations in the
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two models (non-local generations vs WKB approximation), an accurate calibration
procedure for the parameters of the Sentaurus non-local model and for those of the
semi-analytical model was required. This guaranteed the study and simulation of
the same device in the two approaches, in order to compare the results.
The calibration procedure was different in TFETs based on indirect tunneling (like
silicon) and in those based on direct tunneling (like GaSb-InAs), and it has been
accurately reported in both cases.
After having performed the calibrations, the results of the two approaches turned
out to be quite similar. Indeed, a remarkable matching was found both in the band
diagrams and in the ID −VG characteristics. The matching of the results was found
both in the silicon and in the GaSb-InAs TFETs. TFETs based on GaSb-InAs
showed their potential to overcome the S thermal limit of typical MOSFETs thanks
to their steep slopes, paving a new way for low and ultra-low power applications.
The semi-analytical model provided band diagrams very similar to those of TCAD
in every situation, that is, for positive and negative gate bias, and for a range of
drain voltages. Moreover, with the semi-analytical model it has been possible to
show the maximum tunneling probability as a function of the energy for each set
of VG, VD.
A crucial aspect in TFETs is the ambipolarity. Ambipolarity arises for close to zero
or negative Vg, and it is a problem in the most promising TFETs which are based
on III-V materials, since it hinders the device turn OFF due to an increased off
current. This phenomenon has been implemented in the semi-analytical model and
several comparisons, depending on channel length, drain doping and channel-drain
band gap have been performed.
While the semi-analytical model generally agrees with Sentaurus, there are some
conditions under which the results differ slightly. These problems may be ascribed
to some intrinsic limitations of the semi-analytical model, like the parabolic ap-
proximation for the potential in the depleted region or the approximation used for
the potential in the channel.
Still, the semi-analytical provides very similar results to those of the Sentaurus
TCAD, not mentioning the fact that ad-hoc changes could be introduced to improve
the model. Therefore, the semi-analytical approach is a reliable solution that could
be implemented in the compact models.
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Moreover, the semi-analytical model is generally 10 times faster than the TCAD,
with the former requiring only 10 seconds to compute the I − V and band dia-
grams, while the latter requires 2-3 minutes. Not only that, but simulations in the
semi-analytical model require far fewer parameters than those needed in Sentaurus,
so that a large range of simulations can be performed in no time.
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c l e a r
c l o s e a l l
c l c
t i c
cm = 1e −2; % mult ip ly to convert from cm to m
um = 1e −6; % mult ip ly to convert from um to m
nm = 1e −9; % mult ip ly to convert from nm to m
eV = 1.6021766208 e −019; % mult ip ly to convert from eV to J
q = 1.6021766208 e −019; % elementary charge (C)
m0 = 9.10938291 e −31; % e l e c t r o n mass ( kg )
kB = 1.3806488 e −23; % Boltzmann constant ( J/K)
h = 6.626070040 e −34; % Planck constant ( J∗ s )
hbar = h/(2∗ p i ) ; % reduced Planck constant ( J∗ s )
c_l ight = 2.99792458 e8 ; % speed o f l i g h t (m/ s )
mu0 = 4∗ pi ∗1e −7; % magnetic p e r m e a b i l i t y (H/m)
eps0 = 1/(mu0∗ c_l ight ^2) ; % d i e l e c t r i c p e r m i t t i v i t y (F/m)

% Input parameters o f the model
VGSvet = − 0 . 1 : 0 . 0 2 5 : 0 . 5 ; % gate−source b i a s v o l t a g e s (V)
VDSvet = 0 . 5 ; % drain−source b i a s v o l t a g e s (V)

Vg_vect = [ −0.1 0 0 .5 0 . 5 ] ;
Temp = 300 ; % temperature (K)
Nevet = 71 ;

two_bands_relation_flag = 0 ; % I f t h i s f l a g i s s e t to zero : the t r a n s m i s s i o n i s
computed

% only with two terms : source and channel , and f o r the
% channel a one−band E( k ) r e l a t i o n i s used .
% I f t h i s f l a g i s s e t to == 1 , the t r a n s m i s s i o n i s computed
% with three terms : source channel and dra in . One−band E( k )
% i s used f o r the drain , whi l e a two−band E( k ) r e l a t i o n ( the
% Franz ’ s model ) i s used f o r the channel

deb ia s ingF lag = 1 ;
Transmis s ion_f igures_f lag = 0 ; % I f Transmis s ion_f igures_f lag == 1 , i t p lo t s , f o r

every Vg , the t r a n s m i s s i o n
% T(E) i n t e g r a t e d in energy , the d i f f e r e n c e o f the Fermi
% p r o b a b i l i t y occupat ion at source and drain , and the product
% o f the former and l a t t e r p l o t t e d q u a n t i t i e s

% Geometry parameters
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L_chn = 20∗nm; % channel l ength (m)
L = L_chn ;
L_contact = 100∗nm; % contact l e n g t h s (m)

%S i l i c o n
% Na_SRC = 1 e20 ∗(1/cm^3) ; % source p−doping (1/m^3)
% Nd_DRN = 1 e20 ∗(1/cm^3) ; % dra in n−type doping (1/m^3)
% Nv_SRC = 3.1046 e19 ∗(1/cm^3) ; % source e f f e c t i v e conduct ion band DoS (1/m^3)
% Nc_DRN = 2.8567 e19 ∗(1/cm^3) ; % dra in e f f e c t i v e conduct ion band DoS (1/m^3)
% mc_tun = 0.0199∗m0; % conduct ion band tunne l ing mass ( kg )
% mv_tun = 0.0208∗m0; % va lence band tunne l ing mass ( kg )
% Eg_eff = 1 . 1 2 1 4 1 6 ;
% Eg2 = 1 . 1 2 1 4 1 6 ;
% Eg1 = 1 . 1 2 1 4 1 6 ;

% mat e r i a l parameters
t_ox = 2∗nm; % t h i c k n e s s o f the oxide (m)
eps_ox = 22∗ eps0 ; % d i e l e c t r i c p e r m i t t i v i t y o f the oxide (F/m)
eps_f in = 22∗ eps0 ; % d i e l e c t r i c p e r m i t t i v i t y o f the f i n (F/m)
t_f in = 5∗nm; % t h i c k n e s s o f the f i n (m)

%GaSb−InAs
Nv_SRC = 2 e19 ∗(1/cm^3) ; % source e f f e c t i v e conduct ion band DoS (1/m^3)
Nc_DRN = 1 e17 ∗(1/cm^3) ; % dra in e f f e c t i v e conduct ion band DoS (1/m^3)
Na_SRC = 4 e19 ∗(1/cm^3) ; % source p−doping (1/m^3)
Nd_DRN = 2 e18 ∗(1/cm^3) ; % dra in n−type doping (1/m^3)
mc_tun = 0.1∗m0; % conduct ion band tunne l ing mass ( kg )
mv_tun = 0.1∗m0; % va lence band tunne l ing mass ( kg )
Eg_eff = 0 . 1 2 ;
Eg2 = 0 . 4 ;
Eg1 = 0 . 8 4 5 ;

% other / f i t t i n g parameters
lambda_coeff = 0 . 9 5 ;
lambda = ( t_f in+2∗t_ox ) ∗ lambda_coeff ; % s c a l e l ength : t_f in+2∗ t s i (m)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Pre l iminary c a l c u l a t i o n s
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Cox = eps_ox/t_ox ; % oxide capac i tance (F/cm^2)

d_SRC = i n v f e r d r (Na_SRC/Nv_SRC, 1 e −12)∗kB∗Temp/eV ;
d_DRN = i n v f e r d r (Nd_DRN/Nc_DRN, 1 e −12)∗kB∗Temp/eV ;
d1 = d_SRC;
d2 = d_DRN;

z_SRC = l i n s p a c e (−L_contact , 0 , 1 0 0 1 ) ;
z_chn = l i n s p a c e (0 , L_chn , 1 0 0 1 ) ;
z_DRN = l i n s p a c e (L_chn , L_chn+L_contact , 1 0 0 1 ) ;
n_chn = length ( z_chn ) ;

f o r indDS = 1 : l ength (VDSvet )
VDS = VDSvet ( indDS ) ;

f o r indGS = 1 : l ength (VGSvet )
VGS_ND = VGSvet ( indGS ) ;
Tau_vec = z e r o s ( Nevet , 1 ) ; %To p l o t the t r a n s m i s s i o n p r o b a b i l i t y l a t e r on
fermi_l_d_vec = z e r o s ( Nevet , 1 ) ; %Used f o r the %d i f f e r e n c e o f the
Fermi p r o b a b i l i t y occupat ion l a t e r on

i f ( deb ia s ingF lag == 1) % d e b i a s i n g e f f e c t : s o l v i n g the SPE

78



Matlab Code

LHS_SPE = (VGS_ND−VDS−d_SRC) /2/(kB∗Temp/eV) − log (2/ t_f in ∗ s q r t . . .
(2∗ eps_f in ∗kB∗Temp/eV/( q∗Nc_DRN) ) ) ;
r_SPE = @( beta ) l og ( beta )−log ( cos ( beta ) )+2∗eps_f in ∗t_ox/eps_ox / . . .
t_f in ∗ beta ∗ tan ( beta )−LHS_SPE;
beta = f z e r o (@( beta ) r_SPE( beta ) , [ p i /1 e12 p i/2−pi /1 e12 ] ) ;
Qinv = eps_f in ∗2∗kB∗Temp/eV∗2∗ beta / t_f in ∗ tan ( beta ) ;
VGS = VGS_ND − Qinv/Cox ;

e l s e % no d e b i a s i n g e f f e c t
VGS = VGS_ND;

end

EC_R = VDS + d_SRC + d_DRN; % conduct ion band at dra in
V2 = EC_R;
% So lv ing the boundary equat ion o f the p o t e n t i a l to f i n d the band bending
Delta1 and Delta 2
Delta1_smt = optimvar ( ’ Delta1_smt ’ , 2 ) ;
l s 1 = fcn2optimexpr (@( Delta1_smt ) s q r t (max ( 0 , . . .
2∗Na_SRC∗q∗Delta1_smt (1) / eps_f in ) ) , Delta1_smt ) ;
l s 2 = fcn2optimexpr (@( Delta1_smt ) s q r t (max ( 0 , . . .
2∗Nd_DRN∗q∗Delta1_smt (2) / eps_f in ) ) , Delta1_smt ) ;
eq1 = l s 1 == ( pi /( q∗lambda ) ) ∗( q ∗(VGS−Delta1_smt (1 )+Eg_eff ) ∗ cosh . . .
( p i ∗L_chn/lambda )+q ∗(V2−VGS−Delta1_smt (2 ) ) ) /( s inh ( p i ∗L_chn/lambda ) ) ;
eq2 = l s 2 == ( pi /( q∗lambda ) ) ∗( q ∗(VGS−Delta1_smt (1 )+Eg_eff )+cosh . . .
( p i ∗L_chn/lambda ) ∗q ∗(V2−VGS−Delta1_smt (2 ) ) ) / ( s inh ( p i ∗L_chn/lambda ) ) ;

prob = eqnproblem ;
prob . Equations . eq1 = eq1 ;
prob . Equations . eq2 = eq2 ;
Delta1_smt0 . Delta1_smt = [ 0 . 3 0 . 1 ] ;
opts=opt imopt ions ( @fsolve , ’ Display ’ , ’ o f f ’ , ’ MaxIterat ions ’ ,1000) ;

[ s o l ] = s o l v e ( prob , Delta1_smt0 , ’ Options ’ , opts ) ;
Delta1= s o l . Delta1_smt (1 ) ; %Band banding at the source
Delta2 = s o l . Delta1_smt (2 ) ; %Band banding at the dra in
% End o f the s o l v i n g Delta1 and Delta 2
V0 = VGS+Eg_eff−Delta1 ;
i f ( Delta1< 0)

Delta1= 0 ;
V0 = VGS + Eg_eff ;

end
i f Delta2 < 0

Delta2 = 0 ;
end

EC_chn = (V0. ∗ s inh ( p i . ∗ ( L_chn−z_chn ) . / lambda ) . / . . .
s inh ( p i . ∗ L_chn . / lambda )−V0+Eg_eff−Delta1 − (V2−V0+Eg_eff−Delta1−Delta2 ) . . .
. ∗ s inh ( p i . ∗ z_chn . / lambda ) . / s inh ( p i . ∗ L_chn . / lambda ) ) ; % [ eV ] E_C
% Source d e p e l t i o n width [m]
W_dep1 = ( eps_f in /( q∗Na_SRC) ) . ∗ s q r t (max(0 , (2∗Na_SRC∗q∗ Delta1 / eps_f in ) ) ) ;
%Source Valence Band [m]
EV_SRC = −q∗Na_SRC/(2∗ eps_f in ) . ∗ (z_SRC + W_dep1) . ^ 2 ;
% Drain d e p e l t i o n width [m]
W_dep2 = ( eps_f in /( q∗Nd_DRN) ) . ∗ s q r t (max(0 , (2∗Nd_DRN∗q∗ Delta2 / eps_f in ) ) ) ;
i f Delta2 == 0

W_x = −V2∗ ones (1 , l ength (z_DRN) ) ;
e l s e

W_x = −V2 + Delta2 /(W_dep2^2) ∗(z_DRN−L_chn−W_dep2) . ^ 2 ;
end
EC_DRN = W_x; %conduct ion band at the dra in
[ ~ , Index_U_dep ] = max(EV_SRC) ;
EV_SRC( 1 : Index_U_dep ) = 0 ;
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[ ~ , Index_U_dep ] = min (EC_DRN) ;
EC_DRN( Index_U_dep : end ) = EC_DRN( Index_U_dep ) ;
EC = [EV_SRC+Eg_eff , EC_chn ,EC_DRN] ;
zvet = [z_SRC, z_chn ,z_DRN ] ;
% Energy a x i s f o r Landauer−Butt iker formula : from the conduct ion band o f
% the dra in (V2) to the va l ence band o f the source (0 )
Evet = l i n s p a c e (0 ,EC_R, Nevet ) ;
Integrand_LB = z e r o s ( l ength ( Evet ) , 1 ) ;

f o r indE = 1 : l ength ( Evet )
% Total energy under study
E = Evet ( indE ) ;
% D e f i n i t i o n o f the t r a n s v e r s e energy range
Etr_lim = (mc_tun/mv_tun) ∗(EC_R−E) ;
Etr_max = min (E, Etr_lim ) ;
Etrvet = l i n s p a c e (0 , Etr_max , Nevet ) ;
n_tr = length ( Etrvet ) ;
% Source d e p l e t i o n c o n t r i b u t i o n to the i n t e g r a l
I_DPL = (−2/hbar ) . ∗ s q r t (2∗mv_tun) . ∗ s q r t ( eps_f in /2/Na_SRC) . ∗ . . .
( s q r t ( Delta1 . ∗ ( Delta1 −(E−Etrvet ) ) )−(E−Etrvet ) . ∗ l og ( s q r t . . .
( Delta1 . / (E−Etrvet ) )+s q r t ( ( Delta1 −(E−Etrvet ) ) . / (E−Etrvet ) ) ) ) ;
I_DPL( i snan (I_DPL) ) = 0 ;
I_DPL = reshape (I_DPL, n_tr , 1 ) ;

[ ~ , Index_EC_DRN_l3 ] = min (EC_DRN) ;
EC_DRN_l3 = EC_DRN( 1 : Index_EC_DRN_l3) ;
z_DRN_l3 = z_DRN( 1 : Index_EC_DRN_l3) ;
%Tunneling l ength l_3
l 3 = i n t e r p 1 (EC_DRN_l3, z_DRN_l3 , − (E + Etrvet ) , ’ l i n e a r ’ ) ;

i f i snan ( l 3 ( end ) ) && ~ isnan ( ( l 3 ( end−1) ) )
l 3 ( end ) = i n t e r p 1 (EC_DRN_l3, z_DRN_l3 , − (E + Etrvet ( end ) ) , . . .
’ l i n e a r ’ , ’ extrap ’ ) ;

end
l 3 ( i snan ( l 3 ) ) = L ;

c1 = E + Etrvet − V2 ;
f a c t 1 = −1/2∗(L+W_dep1−l 3 ) . ∗ . . .

s q r t ( ( Delta2 ∗(L+W_dep1−l 3 ) . ^ 2 ) / ( (W_dep1) ^2)+c1 ) −. . .
(1/(2∗ s q r t ( Delta2 ) ) ) ∗W_dep1∗ c1 . ∗ l og ( s q r t ( Delta2 ) ∗W_dep1 ∗ . . .
s q r t ( Delta2 ∗(L+W_dep1−l 3 ) . ^ 2 . / . . .
( (W_dep1) ^2)+c1 )+Delta2 ∗(L+W_dep1−l 3 ) ) ;

f a c t 1 = r e a l ( fact1 ’ ) ; % F i r s t term o f the i n t e g r a l

i f i snan ( f a c t 1 ( end ) )
v_vect = 1 : l ength ( f a c t 1 ) −1;
f a c t 1 ( end ) = i n t e r p 1 ( v_vect , f a c t 1 ( 1 : end−1) , . . .
v_vect ( end ) +1, ’ s p l i n e ’ , ’ extrap ’ ) ;

end

f a c t 2 = −1/2∗(L+W_dep1−L) . ∗ . . .
s q r t ( ( Delta2 ∗(L+W_dep1−L) . ^ 2 ) / ( (W_dep1) ^2)+c1 ) −. . .
(1/(2∗ s q r t ( Delta2 ) ) ) ∗W_dep1∗ c1 . ∗ l og ( s q r t ( Delta2 ) ∗W_dep1 ∗ . . .
s q r t ( Delta2 ∗(L+W_dep1−L) . ^ 2 . / . . .
( (W_dep1) ^2)+c1 )+Delta2 ∗(L+W_dep1−L) ) ;

f a c t 2 = fact2 ’ ; % Second term o f the i n t e g r a l
% Drain c o n t r i b u t i o n to the cur rent
I_DDPL = −2∗ s q r t (2∗mc_tun) /hbar ∗( fact1 −f a c t 2 ) ∗ s q r t ( q ) ;

% WKB i n t e g r a l : e f f i c i e n t e v a l u a t i o n through matrix a lgebra
% The f o l l o w i n g matr i ce s are d e f i n e d from the v e c t o r s eva luated in the

80



Matlab Code

% channel , r e p e a t i n g them f o r a number o f rows cor re spond ing to the
% number o f t r a n s v e r s e e n e r g i e s under study
z_int = ones ( n_tr , 1 ) ∗z_chn ;
EC_int = ones ( n_tr , 1 ) ∗EC_chn ;
% Lower l i m i t o f WKB i n t e g r a l f o r channel .
l 1 = i n t e r p 1 (EC_chn−Eg2 , z_chn,−E + Etrvet , ’ l i n e a r ’ ) . ’ ;
% z_pth i s the upper i n t e g r a t i o n bound corre spond ing to the end o f a
% tunne l ing path ( constant energy t r a n s i t i o n between EV and EC)
z_pth = i n t e r p 1 (EC_chn , z_chn , −(E + (mv_tun/mc_tun) . ∗ . . .
Etrvet ) , ’ l i n e a r ’ ) . ’ ;
l 2 = z_pth ;
z_pth_mat = z_pth∗ ones (1 , n_chn) ;
z_int ( z_int > z_pth_mat) = 0 ;
i f two_bands_relation_flag == 1

% Implementing the lower WKB l i m i t in z_int
z_pth_mat2 = l 1 ∗ ones (1 , n_chn) ;
z_int ( z_int < z_pth_mat2 ) = 0 ;

end
% Ad−hoc t r a p e z o i d a l method f o r WKB i n t e g r a l
l e = z_int ( : , 2 : end ) − z_int ( : , 1 : end−1) ;
dz = z e r o s ( s i z e ( z_int ) ) ;
dz ( : , 1 : end−1) = l e /2 ;
dz ( : , 2 : end ) = dz ( : , 2 : end ) + l e /2 ;
dz ( dz <0) = 0 ;
s ize_dz = s i z e ( dz ) ;
i f two_bands_relation_flag == 1

f o r i = 1 : s ize_dz (1 )
f o r j = 1 : s ize_dz (2 )

i f dz ( i , j ) > z_chn (2)−z_chn (1)
dz ( i , j ) = z_chn (2)−z_chn (1) ; %ad−hoc change

end
end

end
f o r i = 1 : s ize_dz (1 )

pos i t ion_found = 0 ;
myVector = dz ( i , : ) ;
pos i t ion_found = f i n d ( myVector , 1 , ’ f i r s t ’ ) ;
myVector ( pos i t ion_found ) = ( z_chn (2)−z_chn (1) ) /2 ;
dz ( i , : ) = myVector ;

end
end
% WKB integrand and i n t e g r a l
Etrmat = Etrvet . ’ ∗ ones (1 , n_chn) ;
i f two_bands_relation_flag == 1

Integrand_WKB = ( abs ( 1 . / ( mc_tun∗q ∗( EC_int+E+Etrmat ) ) . . .
+1./(mv_tun∗q ∗(Eg2−EC_int−E+Etrmat ) ) ) ) .^( −1/2) ;

e l s e
Integrand_WKB = ( abs ( ( mc_tun∗q ∗( EC_int+E) + . . .
mv_tun∗q∗Etrmat ) ) ) . ^ ( 1 / 2 ) ;

end
I_WKB = sum(Integrand_WKB . ∗ dz , 2 ) ;
% Evaluat ion o f the 2D r e f l e c t i o n c o e f f i c i e n t ( i n t e g r a t e d in Etr )
mask_WKB = (E >= Delta1−Eg_eff −(mv_tun/mc_tun) . ∗ Etrvet ) . ’ ;
mask_DPL = (E <= Delta1+Etrvet ) . ’ ;
mask_DDPL =(E >= V2 − Delta2 − (mv_tun/mc_tun) . ∗ Etrvet ) . ’ ;
i f two_bands_relation_flag == 1

T2D = exp(−2∗ s q r t (2 ) /hbar ∗ I_WKB. ∗mask_WKB + . . .
I_DPL. ∗mask_DPL + I_DDPL. ∗mask_DDPL) ;

e l s e
T2D = exp(−2∗ s q r t (2 ) /hbar ∗ I_WKB. ∗mask_WKB + . . .
I_DPL. ∗mask_DPL) ;
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end
% Transmiss ion c o e f f i c i e n t f o r t o t a l energy E
Tau = trapz ( q∗ Etrvet ,T2D) ;
Tau_vec ( indE ) = Tau ;
% Def in ing Fermi Level
EF_SRC = d_SRC; % Source Fermi Leve l (eV)
EF_DRN = VDS + d_SRC; % Drain Fermi Leve l (eV)
% Fermi−Dirac s t a t i s t i c s f o r Landauer−Butt iker formula
fFD_L = 1/(1+exp ( (EF_SRC−E) /(kB∗Temp/eV) ) ) ; % source
fFD_R = 1/(1+exp ( (EF_DRN−E) /(kB∗Temp/eV) ) ) ; % dra in
fermi_l_d = fFD_L−fFD_R;
fermi_l_d_vec ( indE ) = fermi_l_d ;
% Integrand o f the Landauer−Butt iker formula f o r t o t a l energy E
Integrand_LB ( indE ) = (fFD_L−fFD_R) . ∗ Tau ;

end
J = (mv_tun∗q ) . / ( 2 ∗ ( p i ^2) ∗( hbar ^3) ) . ∗ t rapz ( Evet∗q , Integrand_LB ) ;
I v e t ( indGS , indDS ) = J∗ t_f in /(1/um) ; % A/um
i f Transmis s ion_f igures_f lag == 1

f i g u r e ( )
subplot ( 1 , 3 , 1 )
p l o t ( Evet , Tau_vec/q , ’ LineWidth ’ , 2 ) ;
t o d i s p = [ ’Vg = ’ , num2str (VGS_ND) ] ;
l egend ( t o d i s p )
x l a b e l ( ’E (eV) ’ )
y l a b e l ( ’ \ i n t T(E) dE ’ )
s e t ( gca , ’ FontSize ’ ,15)
subplot ( 1 , 3 , 2 )
p l o t ( Evet , fermi_l_d_vec , ’ LineWidth ’ , 2 ) ;
y l a b e l ( ’ f_{FD_S}−f_{FD_D} ’ )
x l a b e l ( ’E (eV) ’ )
s e t ( gca , ’ FontSize ’ ,15)
subplot ( 1 , 3 , 3 )
p l o t ( Evet , Integrand_LB/q , ’ LineWidth ’ , 2 ) ;
x l a b e l ( ’E (eV) ’ )
y l a b e l ( ’ ( f_{FD_S}−f_{FD_D}) \ t imes \ i n t T(E) dE ’ )
s e t ( gca , ’ FontSize ’ ,15)

end
EC_plotting = [EV_SRC+Eg1 , EC_chn , EC_DRN] ;
EV_plotting = [EV_SRC, EC_chn−Eg2 , EC_DRN−Eg2 ] ;
z_plot t ing = [z_SRC, z_chn , z_DRN]∗1 e9 ;
f o r k = 1 :4

i f VGS_ND == Vg_vect ( k ) && VDS ~= 0
i f k == 1

f i g u r e
end
subplot (2 , 2 , k ) ;
p l o t ( z_plott ing , EV_plotting , ’b ’ , ’ LineWidth ’ , 2 ) ;%E_V
hold on ;
p l o t ( z_plott ing , EC_plotting , ’ c o l o r ’ , [ . 7 2 . 27 . 1 ] , ’ LineWidth ’ , 2 ) ;
%Source Fermi l e v e l
l i n e ([ −15 −5] ,[ −d1 −d1 ] , ’ Color ’ , ’ green ’ , ’ LineWidth ’ , 2 ) ;

%Drain Fermi l e v e l
l i n e ( [ L∗1 e9+15 L∗1 e9 +25 ] , [EC_DRN( end )+d2 EC_DRN( end )+d2 ] , . . .
’ Color ’ , ’ b lack ’ , ’ LineWidth ’ , 2 ) ;
p l o t ( [ 0 , 0 ] , [ EC_chn(1) EV_SRC( end )+Eg1 ] , ’ c o l o r ’ , . . .
[ . 7 2 . 27 . 1 ] , ’ LineWidth ’ , 2 )
p l o t ( [ 0 , 0 ] , [ EC_chn(1)−Eg2 , EV_SRC( end ) ] , ’ b ’ , ’ LineWidth ’ , 2 )
legend ( ’E_V’ , ’E_C’ , ’E_{Fp} ’ , ’E_{Fn} ’ )
t o d i s p = [ ’Vg = ’ , num2str (VGS_ND) , ’V & Vd = ’ , num2str (VDS) , . . .
’V ’ ] ;
t i t l e ( t o d i s p )
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g r i d on
s e t ( gca , ’ FontSize ’ ,15)

end
end

i f VGS_ND == 0 && VDS == 0
f i g u r e ( )
p l o t ( z_plott ing , EV_plotting , ’b ’ , ’ LineWidth ’ , 2 ) ; %E_V
hold on ;
p l o t ( z_plott ing , EC_plotting , ’ c o l o r ’ , [ . 7 2 . 27 . 1 ] , ’ LineWidth ’ , 2 ) ;%E_C
%Source Fermi l e v e l
l i n e ([ −15 −5] ,[ −d1 −d1 ] , ’ Color ’ , ’ green ’ , ’ LineWidth ’ , 2 ) ;

%Drain Fermi l e v e l
l i n e ( [ L∗1 e9+15 L∗1 e9 +25 ] , [EC_DRN( end )+d2 EC_DRN( end )+d2 ] , . . .
’ Color ’ , ’ b lack ’ , ’ LineWidth ’ , 2 ) ;
p l o t ( [ 0 , 0 ] , [ EC_chn(1) EV_SRC( end )+Eg1 ] , ’ c o l o r ’ , [ . 7 2 . 27 . 1 ] , . . .
’ LineWidth ’ , 2 ) %red v e r t i c a l l i n e f o r CB
p l o t ( [ 0 , 0 ] , [ EC_chn(1)−Eg2 , EV_SRC( end ) ] , ’ b ’ , . . .
’ LineWidth ’ , 2 )
legend ( ’E_V’ , ’E_C’ , ’E_{Fp} ’ , ’E_{Fn} ’ )
t i t l e ( ’Vg & Vd = 0 V ’ )
g r i d on
s e t ( gca , ’ FontSize ’ ,15)
re turn

end
end

end

f i g u r e ;
semi logy (VGSvet , Ivet , ’ k ’ , ’ LineWidth ’ , 2 )
g r i d on
x l a b e l ( ’ Gate−source v o l t a g e V_{GS} (V) ’ )
y l a b e l ( ’ Drain cur rent dens i ty I_D (A/\mum) ’ )
t o d i s p = [ ’N_d = ’ , num2str (Nd_DRN∗(cm^3) ) , ’ 1/cm3 , E_{g2} = ’ , num2str ( Eg2 ) , ’ ,

\lambda_{ c o e f f } = ’ , num2str ( lambda_coeff ) ] ;
s e t ( gca , ’ FontSize ’ ,16)
legend ( t o d i s p )
xlim ( [ VGSvet (1 ) ,VGSvet ( end ) ] )
toc
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B.1 SDEditor file

( sde : c l e a r )
( sdegeo : set −de fau l t −boolean "ABA" ) ; new overwr i t e o ld r e g i o n s
( s e t ! process −up−d i r e c t i o n "+z " )
;−−−−−Def ine parameters
( d e f i n e X 0.002 ) ;# Channel l ength
( d e f i n e Y 0 .0025) ;# Hal f body t h i c k n e s s
( d e f i n e XSD 0 . 0 2 ) ;# Source and dra in l ength
( d e f i n e NSource 4 e19 ) ;# Source doping c on c e n t r a t i o n
( d e f i n e NDrain 2 e17 ) ;# Drain doping c on c e nt r a t i o n
( d e f i n e NChannel 0) ;#Channel doping c o n c en t r a t i o n
( d e f i n e GateL 0 . 0 2 ) ;# Gate l ength
( d e f i n e Tox 0 . 0 0 2 ) ;# Phys i ca l ox ide t h i c k n e s s
;−−−−−Create r e g i o n s
;−−−−−Source Drain and Channel
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n (∗ −1 XSD) (∗ −1 Y) 0) ( p o s i t i o n 0 Y 0) "GaSb"

" region_1 " ) ;# Source r e g i o n
( sdegeo : set −de fau l t −boolean "ABA" )
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n X (∗ −1 Y) 0) ( p o s i t i o n 0 Y 0) " InAs " " region_2

" ) ;# Channel r e g i o n
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n X (∗ −1 Y) 0) ( p o s i t i o n (+ XSD X) Y 0) " InAs " "

region_3 " ) ;# Drain r e g i o n
;−−−−−I n s u l a t o r s
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n 0 (+ (∗ 1 Y) @t_ox@) 0) ( p o s i t i o n (∗ 1 X) (∗ 1

Y) 0) "HfO2" " region_4 " )
( sdegeo : c reate −r e c t a n g l e ( p o s i t i o n 0 (− (∗ −1 Y) @t_ox@) 0) ( p o s i t i o n (∗ 1 X) (∗

−1 Y) 0) "HfO2" " region_4 " ) ;# Oxide
;−−−−−Doping
( sdedr : de f ine −constant−p r o f i l e " region_1_doping " " BoronActiveConcentrat ion "

NSource ) ; Source
( sdedr : de f ine −constant−p r o f i l e −r e g i o n " region_1_doping_ " " region_1_doping " "

region_1 " )
( sdedr : de f ine −constant−p r o f i l e " region_2_doping " " Arsen icAct iveConcentrat ion "

NChannel ) ; Channel
( sdedr : de f ine −constant−p r o f i l e −r e g i o n " region_2_doping_ " " region_2_doping " "

region_2 " )
( sdedr : de f ine −constant−p r o f i l e " region_3_doping " " Arsen icAct iveConcentrat ion "

NDrain ) ; Drain
( sdedr : de f ine −constant−p r o f i l e −r e g i o n " region_3_doping_ " " region_3_doping " "

region_3 " )
;−−−−− Meshing
( sdedr : de f ine −ref inement −s i z e " fine_mesh " 0 .002 0 .002 1 0 .001 0 .001 1 )

84



Sentaurus Code

( sdedr : de f ine −ref inement −s i z e " f iner_mesh " 0 .0005 0 .0005 1 0 .0001 0 .0001 1 )
( sdedr : de f ine −ref inement −s i z e " channel_mesh " 0 .001 0 .001 1 0 .0004 0 .0004 1 )
;−−−−−Plac ing the f i n e r mesh in the dra in and in the source :
( sdedr : de f ine −r e f e v a l −window " dra in_reg ion " " Rectangle " ( p o s i t i o n X (∗ −1 Y) 0) (

p o s i t i o n (+ XSD X) Y 0) ) ; dra in
( sdedr : de f ine −r e f e v a l −window " source_reg ion " " Rectangle " ( p o s i t i o n (∗ −1 XSD) (∗

−1 Y) 0) ( p o s i t i o n 0 Y 0) ) ; source
( sdedr : de f ine −ref inement −placement " Ref_drain " " fine_mesh " " dra in_reg ion " )
( sdedr : de f ine −ref inement −placement " Ref_source " " fine_mesh " " source_reg ion " )
;−−−−−Plac ing the mesh in the channel
( sdedr : de f ine −r e f e v a l −window " chan_region " " Rectangle " ( p o s i t i o n X (∗ −1 Y) 0) (

p o s i t i o n 0 Y 0) ) ; channel
( sdedr : de f ine −ref inement −placement " Ref_channel " " channel_mesh " " chan_region " )
;−−−−−Plac ing the mesh in the i n s u l t o r s
( sdedr : de f ine −r e f e v a l −window " insul_region_1 " " Rectangle " ( p o s i t i o n 0 (+ (∗ 1 Y)

@t_ox@) 0) ( p o s i t i o n (∗ 1 X) (∗ 1 Y) 0) ) ; i n s
( sdedr : de f ine −r e f e v a l −window " insul_region_2 " " Rectangle " ( p o s i t i o n 0 (− (∗ −1 Y)

@t_ox@) 0) ( p o s i t i o n (∗ 1 X) (∗ −1 Y) 0) ) ; i n s
( sdedr : de f ine −ref inement −placement " Ref_ins_1 " " fine_mesh " " insul_region_1 " )
( sdedr : de f ine −ref inement −placement " Ref_ins_2 " " fine_mesh " " insul_region_2 " )
;−−−−−Plac ing a re f inement mesh in the r e g i o n s c l o s e to the source and the dra in
( d e f i n e ADD 0.0025) ;# width o f f i n e r mesh
( sdedr : de f ine −r e f e v a l −window " dra in_reg ion_f iner " " Rectangle " ( p o s i t i o n (− X ADD)

(∗ −1 Y) 0) ( p o s i t i o n (+ ADD X) Y 0) ) ; dra in
( sdedr : de f ine −r e f e v a l −window " source_reg ion_f iner " " Rectangle " ( p o s i t i o n (∗ −1 ADD

) (∗ −1 Y) 0) ( p o s i t i o n ADD Y 0) ) ; source
( sdedr : de f ine −ref inement −placement " Ref_drain_finer " " f iner_mesh " "

dra in_reg ion_f iner " )
( sdedr : de f ine −ref inement −placement " Ref_source_f iner " " f iner_mesh " "

source_reg ion_f iner " )
( sdedr : de f ine −ref inement −window " Ref . Win" " Rectangle " ( p o s i t i o n −0.05 −0.1 0 . 0 ) (

p o s i t i o n 0 .5 0 .5 0 . 0 ) )
( sdedr : de f ine −ref inement −s i z e " Ref . Def1 " 0 .008 0 .008 1 0 .001 0 .001 1)
( sdedr : de f ine −ref inement −placement " Doping . Pl " " Ref . Def1 " " Ref . Win" )
( sdedr : de f ine −ref inement −f u n c t i o n " Refinement_Definit ion_1 " " MaxLenInt " " Al l " " Al l

" 0 .0001 1 . 4 )
;−−−−−Contacts
;−−−−−Gate contact
( sdegeo : de f ine −contact−s e t " Gate " 4 ( c o l o r : rgb 1 0 0 ) "##" )
( sdegeo : set −current −contact−s e t " Gate " )
( sdegeo : set −contact ( f ind −edge−id ( p o s i t i o n (/ GateL 2) Ytox 0) ) " Gate " )
( sdegeo : set −contact ( f ind −edge−id ( p o s i t i o n (/ GateL 2) (− Ytox ) 0) ) " Gate " )
;−−−−−Source contact
( sdegeo : de f ine −contact−s e t " Source " 4 ( c o l o r : rgb 1 1 0 ) "##" )
( sdegeo : set −current −contact−s e t " Source " )
( sdegeo : set −contact ( f ind −edge−id ( p o s i t i o n (∗ −1 XSD) (∗ 0 Y) 0) ) " Source " )
;−−−−−Drain contact
( sdegeo : de f ine −contact−s e t " Drain " 4 ( c o l o r : rgb 1 0 1 ) "##" )
( sdegeo : set −current −contact−s e t " Drain " )
( sdegeo : set −contact ( f ind −edge−id ( p o s i t i o n (+ XSD X) (∗ 0 Y) 0) ) " Drain " )
;−−−−−Saving
( sde : bui ld −mesh " snmesh " "−R" "n_1_msh" )

B.2 SDevice command file
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F i l e {
Grid= "@tdr@"
Parameter="@parameter@ "
Plot= " @tdrdat@ "
Current= " @plot@ "
Output = " @log@ "

}

Elec t rode {
{ Name="Source " Voltage=0 }
{ Name="Drain " Voltage=0 }
{ Name="Gate " Voltage=0 Workfunction =4.812}

}

Phys ics {
Fermi
Recombination (
Band2Band ( Model= NonlocalPath )

)
E f f e c t i v e I n t r i n s i c D e n s i t y ( NoBandGapNarrowing )
}

Plot {
eDensity hDensity eCurrent hCurrent TotalCurrent TotalCurrentDensity
eBand2BandGeneration hBand2BandGeneration Doping DonorConcentration

AcceptorConcentrat ion
ConductionBand ValenceBand eQuasiFermi hQuasiFermi P o t e n t i a l E l e c t r i c F i e l d / Vector
BandGap EffectiveBandGap SemiconductorGradValenceBand / Vector D i e l e c t r i c C o n s t a n t

E l e c t r o n A f f i n i t y
e E f f e c t i v e S t a t e D e n s i t y h E f f e c t i v e S t a t e D e n s i t y
hRe la t i veE f f e c t i veMass e R e l a t i v e E f f e c t i v e M a s s
SpaceCharge

}

Math{
Extrapo late
D e r i v a t i v e s
RelErrControl
I t e r a t i o n s =100
NotDamped=8
D i g i t s =14

}

Solve { #Equi l ibr ium
Coupled { Poisson }
Plot ( f i l e p r e f i x ="n@node@_Equil " )
Coupled { Poisson Elect ron Hole }
Plot ( f i l e p r e f i x ="n@node@_Equil_all " )
save ( F i l e P r e f i x = " e q u i l " )

#Ramping on Vd
NewCurrentPrefix = "IDVD_vd0d5_"
Quas iStat ionary ( I n i t i a l S t e p =0.01 MaxStep=0.05 MinStep =0.0001

Goal{name="Drain " v o l ta g e =0.5})
{ Coupled { Poisson Elect ron Hole } }
Plot ( f i l e p r e f i x ="n@node@_Vd_0d5 " )

#b r ing ing Vg to −0.1V
NewCurrentPrefix = "IDVG_m_Vg0d1_"
Quas iStat ionary ( I n i t i a l S t e p =0.2 MaxStep=0.2 MinStep =0.0001

Goal{name="Gate " v o l t a g e =−0.1})
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{ Coupled { Poisson Elect ron Hole } }
Plot ( f i l e p r e f i x ="n@node@_Vg_minus_0d1_ " )

#b r ing ing Vg to = 0 .5
NewCurrentPrefix = "IDVG_Vg0d5_"
Quas iStat ionary ( I n i t i a l S t e p =0.25 MaxStep=0.25 MinStep= 0.0001

Goal{name="Gate " v o l t a g e = 0 . 5 } )
{ Coupled { Poisson Elect ron Hole }
CurrentPlot ( Time = ( range = (0 1) i n t e r v a l s = 90) )

}
Plot ( f i l e p r e f i x ="n@node@_Vg0d5V_" )

}

B.3 sdevice.par file

Mater ia l ="GaSb" {

Eps i lon {
e p s i l o n = 22

}

Bandgap { ∗ Eg = Eg0 + alpha Tpar^2 / ( beta + Tpar ) − alpha T^2 / ( beta + T)
∗ Parameter ’ Tpar ’ s p e c i f i e s the value o f l a t t i c e
∗ temperature , at which parameters below are d e f i n e d
∗ Chi0 i s e l e c t r o n a f f i n i t y .

Chi0 = 4.035 # [ eV ]
Bgn2Chi = 0 .5 # [ 1 ]
Eg0 = 0.845 # [ eV ]
alpha = 3.7800 e−04 # [ eV K^−1]
beta = 9.4000 e+01 # [K]
alpha2 = 0.0000 e+00 # [ eV K^−1]
beta2 = 0.0000 e+00 # [K]
EgMin = 1.0000 e−01 # [ eV ]
dEgMin = 0.0000 e+00 # [ eV ]
Tpar = 3.0000 e+02 # [K]

}
Band2BandTunneling{

Ppath1 = 0.0000 e+00 # [ eV ]
MaxTunnelLength = 30 .0 e−7 # [ cm ]
degeneracy = 1
m_c = 0 .1
m_v = 0.1

}
hDOSMass {

Formula = 2
Nv300 = 2e+19 # [ cm−3]

}
}

Mater ia l ="InAs " {
Eps i lon {

e p s i l o n = 22
}

Bandgap { ∗ Eg = Eg0 + alpha Tpar^2 / ( beta + Tpar ) − alpha T^2 / ( beta + T)
∗ Parameter ’ Tpar ’ s p e c i f i e s the value o f l a t t i c e
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∗ temperature , at which parameters below are d e f i n e d
∗ Chi0 i s e l e c t r o n a f f i n i t y .

Chi0 = 4.78 # [ eV ] # [05Ada , pp . 195 −198]
Bgn2Chi = 0 .5 # [ 1 ]
Eg0 = 0 .4 # [ eV ] # [01 Vur ]
alpha = 2.7600 e−04 # [ eV K^−1] # [01 Vur ]
beta = 9.3000 e+01 # [K] # [01 Vur ]

alpha2 = 0.0000 e+00 # [ eV K^−1]
beta2 = 0.0000 e+00 # [K]
EgMin = 1.5000 e−01 # [ eV ]
dEgMin = 0.0000 e+00 # [ eV ]
Tpar = 3.0000 e+02 # [K]

}
Band2BandTunneling {

Ppath1 = 0.0000 e+00 # [ eV ]
MaxTunnelLength = 30 .0 e−7 # [ cm ]

degeneracy = 1
m_c = 0 .1
m_v = 0.1

}
eDOSMass

{
Formula = 2
Nc300 = 1e+17 # [ cm−3]

}
}

Mater ia l ="HfO2" {
Eps i lon {

e p s i l o n = 22
}

Bandgap { ∗ Eg = Eg0 + alpha Tpar^2 / ( beta + Tpar ) − alpha T^2 / ( beta + T)
∗ Parameter ’ Tpar ’ s p e c i f i e s the value o f l a t t i c e
∗ temperature , at which parameters below are d e f i n e d
∗ Chi0 i s e l e c t r o n a f f i n i t y .
Chi0 = 2.05 # [ eV ]
Eg0 = 5 .9 # [ eV ]
alpha = 0.0000 e+00 # [ eV K^−1]
beta = 0.0000 e+00 # [K]
alpha2 = 0.0000 e+00 # [ eV K^−1]
beta2 = 0.0000 e+00 # [K]
EgMin = −1.0000 e+01 # [ eV ]
dEgMin = 0.0000 e+00 # [ eV ]
Tpar = 300 # [K]

}
}
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