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Summary

Globalisation, never-ending economic growth and natural resources exploitation
have effects all over the world and in multiple fields. Some of them include climate
crisis and geo-political tensions. These two phenomenons, with natural resources
exploitation, have directly or indirectly consequences to the energy paradigm, with
all of the actors involved, from energy producers, transporters, sellers and final
consumers. It’s clear how the energy paradigm is changing: energy transition and
geo-political tensions are some of the causes of all the plans and responses that
are putting into practice governments, companies and more in general the actors
involved in the energy sector. Energy demand aggregation and flexibility recently
have become a more and more reality in order to overcome all the problems that
we may face in the following years, like reliable demand-response, which can handle
big spikes in demand, mostly when energy is produced with renewable sources, and
so it is more uncertain and difficult to handle. I had the opportunity to write this
thesis at Bamboo Energy, a very young Spanish tech start-up that operates in this
field. The purpose of this work is to illustrate how, after having understood the
needs of the company in terms of data engineering, and end-to-end use case of data
engineering can be built, covering four different areas of interest: data extraction
transform, loading and aggregation pipelines, processes Orchestration and Alerting.
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Chapter 1

Introduction

In recent years it has been very clear how great impact have had the consequences
of a never stopping industrial, production and consumption growth. Since the
industrial revolution huger and huger natural sources have been exploited to produce
energy and to feed the mechanisms of a fast-growing world in terms of industrial
production, technology, scientific growth and globalisation. It is undeniable that all
this brought some incredible great advantages like medical progress, technological
and knowledge access and general improvement of life conditions but clearly there
is also the other side of the coin, which is more and more visible in the recent times.
Despite some countries leaders continue to negate climate crisis facts there are
fortunately a great scientific community and literature that agree [1] to the climate
change crisis that is going on and continue to publish scientific articles and papers
and to warn people that actions must be taken in order to reduce what seems
a too big problem to resolve, especially in short times. Thanks to the scientific
community, people, especially the young, have begun to externalize interest in this
topic, like Fridays for future movement, and so have politicians and organizations
which are now trying to plan politics and concrete actions.
The United Nations seriously started to reflect on this problem in 2015 with the
adoption of the so-called Sustainable Development Goals (SDGs) whose purpose
is "to end poverty, protect the planet and ensure that by 2030 all people enjoy
peace and prosperity" [2]. Among the seventeen different SDGs, four of them are
particularly significant concerning the scope of the working environment where this
thesis work has been made, Bamboo Energy, a Spanish start-up involved in the
sector of software products for energy assets management:

• Goal 7: Affordable and Clean Energy

• Goal 9: Industry, Innovation and Infrastructure

• Goal 12: Responsible Consumption and Production
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• Goal 13: Climate Action

The Agenda 2030 and the SDGs are a good starting point for trying to resolve
a global problem that can only be solved with great effort, unity, communion of
interests of all the countries despite the great challenges and the differences among
nations in terms of life quality, welfare level, industrial production, presence of
resources and law system.
Focusing on European Union, climate change is a priority as its effects are particu-
larly visible: it is already enough to say that 2020 was the warmest year recorded
in Europe [3]. The majority of evidence indicates that this is due to the rise of
greenhouse gas emissions (GHG) produced by human activity. In addition, the
average temperature today is 0.95 to 1.20 °C higher than on the and of 19th. An
increase of 2°C, with respect to pre-industrial revolution temperatures, is considered
by international scientists as a threshold with dangerous and catastrophic conse-
quences for climate and the environment: that’s why the international community
agrees that global warming must not exceed this threshold. The effects of climate
change in Europe are multiple: lack of water, temperature increasing, forest fires,
decreasing crop fields, biodiversity loss and people’s health problems. Summing all
this with the fact that the EU is the third biggest greenhouse gases emitter after
China and the US, the EU is involved in international climate negotiations and,
Under the Paris agreement, the EU committed in 2015 to cutting greenhouse gas
emissions in the EU by at least 40 % below 1990 levels by 2030. In 2021, the target
was changed to at least 55 % reduction by 2030 and climate neutrality by 2050.
The Green Deal is the concrete answer, the EU roadmap to achieve the goal of
climate neutrality, or zero net emissions, by 2050, and it’s legally binding in the
EU.
In this scenario, where there are very evident climate change problems, countries
starting to take concrete steps and economic crisis with goods and energy prices
keeping to increase, the wise use of technology can provide several and maybe
small solutions that, if combined together, can really lead to problems solving or
at least to mitigate the destructive consequences that already we are witnessing.
And it is particularly in this scenario that Bamboo Energy, a brand new Spanish
start-up set in Barcelona, is operating building software products that provide,
with the use of Machine Learning, solutions to energy assets management with a
data-driven approach. The idea behind this work is to focus on data engineering
aspects of Bamboo Energy and propose improvements for a platform that is grow-
ing fast, resulting in a circular, from start to end, data cycle use case: ingesting
data from IoT sources, ETL, computational pipelines and orchestration. The goal
is to describe high-level processes of the start-up, make a snapshot of the data
engineering situation when I joined the company, in November 2021, and to propose
improvements according to product and business requirements.
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1.1 Bamboo Energy Platform
Bamboo Energy is a brand new start-up born in the Spring 2021 as a side project of
IREC, Fundación Instituto de Investigación de la Energía de Cataluña, founded by
Mattia Barbero, Cristina Corchero and Manel Sanmartì. It is a tech start up which
provides data-driven solutions to different actors involved in the energy sector. As
climate change has been targeted as a priority problem in the EU and concrete
actions have been taken, like for example energy transition acceleration, there is a
lot of work to do and a lot of strategies to explore to provide solutions in order
to improve how energy is managed. This is a tough aspect because the energy
sector is very complex and a lot of different actors are involved: companies that
produce energy, that transport it, energy retailers company and final consumers.
Technology can lead to products that can help provide solutions to these problems
and it is here that Bamboo Energy is investigating and proposing data-driven
solutions: Bamboo Energy Platform.

1.1.1 High level process overview
The energy transition is a reality and the EU is investing a lot in this kind of
project and is allocating funding. Climate change, concrete actions to respect EU
directives, energy markets volatility, electric net instability, technology evolution
and more consciousness are modifying the paradigm of energy systems. The current
changes in Spain and in the rest of Europe are creating a electronic system more
open and with the opportunity to offer new services. We can define four tendencies
of the energy sector of the future:

• Climate change:

– Energy transition
– Great penetration of renewable energies

• Electric system decentralization :

– Self-consumption
– Local generation and conservation

• Active consume:

– Energy communities and local markets
– New legislation

• Digitization :

3
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– Smart nets
– Internet of Things

Climate change makes the weather more unpredictable and consequently, with the
great penetration of renewable energies for the energy transition which depends a lot
on the weather, electric reds are more unstable and also the energy market become
more volatile. The paradigm is also changing, going to be decentralized, because
consumers are now beginning to self-consume and conserve energy: more and more
buildings are adopting photovoltaic panels and batteries to store energy, making
the consumer more conscious and more active in the energy market. New legislation
and formations of energy communities and local energy markets are changing the
relationship in this sector and making the electric consumers more active and
more participated, from a passive perspective of a consumer that just consumes
electricity and nothing else. Digitization and technology in general are creating
smarter nets and smarter buildings whose assets connectivity and management are
becoming easier due to the Internet of Things sector that is expanding. Combining
the Sustainable Development Goals and the tendencies of the energetic future,
Bamboo Energy has three main objectives:

• Accelerating energy transition

• Make demand aggregation a reality

• Positioning the consumer at the centre of energetic system

Bamboo Energy mainly provides, among other things, three core services: baseline
forecast, flexibility forecast and bidding optimization. Let’s imagine a modern
building with different energy assets. Baseline forecast is, briefly, the service that
makes forecast of the amount of energy a certain asset will consume at a certain
time: the asset can be anything from heating, to ventilation to air conditioning,
from battery to photovoltaic panels and industrial machines in general. Flexibility
forecast is the service that makes forecast of how much a certain type of asset can
increase or decrease its energy consumption without affecting the overall process
like for example the capacity of an air conditioner to increase or decrease its electric
consumption respecting temperature constraints and keeping the environment chill.
Bidding optimization is the third step that combines all the previous forecasts and
translates them, solving optimization problems, into optimized buying and selling
energy with the participation in different energy markets.
Accelerating energy transition is one of the objectives of Bamboo in fact, due to
the fact that renewable energies depend more on the weather and so it is more
difficult to forecast making the electric net more unstable, flexibility forecast is a
good answer to the issues coming from a net that is more unstable: the capacity of
increase and decrease consumption, always respecting constraints and thresholds,
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is a good weapon and a good tool in order to be flexible, to avoid energy waste, to
optimize energy flows and to adapt in a more unstable world.
To this purpose, another goal of Bamboo is making demand aggregation a reality.
Demand aggregation is the aggregation of different clients inside the electric system
like consumers, suppliers, prosumers so that they act as a single entity when
they participate in energy markets on when services to system operators are sold.
In other words is the aggregation of different clients like consumers, retailers,
distributors(DSO) and transporters(TSO) and suppliers so that they participate in
energy markets in order to gain a common benefit. Flexibility is strictly connected
to demand aggregation: with aggregated energetic needs of different actors involved
it is easier to manage energy flows and energy buying/selling and the participants
of this aggregation can vary in certain moments their consumes and productions
for economic retribution. This is made easier and more flexible when assets like
batteries and photovoltaic panels are installed. Demand aggregation, flexibility,
self-energy generation and conservation are moving the passive figure of an energy
consumer of the past, who just connected his assets to the net and consume energy,
to an active actor that does not just consume energy, but can vary its electric
consumption up and down and can inject to the net energy generated or saved.
The consumer is now becoming a prosumer and is more conscious and active in the
energy market. The new figure that is coming out from the new energy paradigm,
despite the consumer who is more active, is the demand aggregator: this new figure
can have a big role in the new energy paradigm and has a good potential in relation
of the Sustainable Development Goals and the Green Deal. Bamboo Energy offers
a platform that manages the aggregations of different actors in the energy market,
and it’s specialized in demand aggregation of energy retailer companies, managing
the flexibility of their portfolios.

Figure 1.1: Bamboo positioning in energy sector

The following section focus more in details on the core services provided.
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1.1.2 Baseline Forecast
Baseline forecast module makes forecast of baseline consumption of the different
assets, which is the consumption that these installations have if there aren’t any
flexibility activation, utilizing Kernel Regression o KNN Regressor. Let’s imagine
a building with different devices installed: baseline module can be used to predict
the baseline of the different installations like heaters, ventilators and air condition
(HVAC), PV generations and battery baseline. This module can also make the
meter forecast, which represents the expected energy injected or absorbed from
the grid. This amount of energy in the one that the System Operator measures
and how much the final costumers pay. The meter forecast is difficult to predict by
himself, since it depend on different factors, such as the total consumption of the
site, the on-site generation behind the meter (self-consumption strategy) and the
battery usage. For this reason, Bamboo calculates in a second phase the expected
meter consumption using the following logic:

Figure 1.2: meter forecast

The baseline forecast module can be run or in day-ahead mode (da) or in
intraday mode (id). The day-ahead mode makes a prediction in the day D for the
24 hours (or 96 quarter of hour) of the next day D+1. The intraday mode makes a
prediction of the consumption in the day D for the next x hours of the same day
D, where x is a customized parameter. Different source of data are used to feed
these algorithms and the most important ones are:
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• Historical consumption of the installation: power measures

• Weather forecast of the weather station close to the site

The target data to predict with Kernel regression or KNN regressor are of course
power measures of the device of interest in the period of interest. This module is
the foundation part of Bamboo process because it makes forecasts about how much
energy a certain asset will consume not thinking about flexibility that will be use
to make flexibility forecast.

1.1.3 Flexibility Forecast
The flexibility forecast module is used to estimate the flexibility available of
the different installations, which means their capacity to change their baseline
consumption if needed.The flexibility forecast module can be run or in Day ahead
mode (da) or in Intraday mode (id). The day ahead mode makes a prediction in
the day D for the 24 hours (or 96 quarter of hour) of the next day D+1. The
intraday mode makes a prediction in the day D for the next hours of the same
day D. Flexibility forecast module is the core part of demand aggregation making
customers evolve from a passive condition to a more active and aware. Flexibility
forecast are made solving optimization problems, making use of RC model which
abstracts a physical building with its constraints. The module functionality is
divided into training and forecast: in the training phase, whose source of data,
among others are, building microgrid information, weather and assets measurements,
physical parameters are estimated. After that, during the forecast phase, the model
makes use of the before estimated physical parameters to compute the flexibility
forecast of a particular device, which is often a device belonging to the HVAC
category (Heating, Ventiltion, Air conditioning), using as input source data, among
others, weather data and assets measures. Flexibility forecast are divided into two
category:

• Flexibility Ramp-up: It is the amount of energy consumption to decrease
over a time period

• Flexibility Ramp-down: Amount of energy consumption to increase over a
time period.

1.1.4 Bidding optimization
Bidding Optimization module is in development phase and condenses baseline
forecast, flexibility forecast modules and market prices to guide flexumers into
concrete actions, in terms of decreasing or increasing particular assets consumption

7
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Figure 1.3: Flexibility up/down graph of a Data Center building

in a clever way in order to well participate in the different flexibility markets,
especially tertiary markets, in order save energy, save money but without affecting
industrial process constraints. .

1.2 Goals, motivation and methodology
This thesis work is intended as a practical case study in the field of Data Engineering
related to young start-up operating in the Energy-Tech sector. The goal is to create
an end-to-end data engineering cycle, from data extracting, transform, loading
and data architecture planning to processes analysis, orchestration, monitoring
and notifications, that fits Bamboo current and future needs. In order to have the
instruments to carry on this thesis, the work can be subdivided into three phases:

• Understanding: first step is to deeply study and understand Bamboo data
engineering environment, how it is structured, which technologies are used and
for which purpose, which are the features implemented and the one planned
or missing.

• Exploration: once information has been collected and needs, strengths and
weaknesses identified, multiple paths are open to be explored in order to
provide reliable ad hoc solutions

• Implementation: once technologies are compared and path chosen, solutions
are practically implemented.

The motivation behind the choice of this particular field and case study can
be found in the point of conjunction of two topics I’m interested in: engineering
and environment. More specifically I’m interested in real worldly spread problems
and how possible solutions could be found. Nowadays there are a lot of technology
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companies who put a lot of effort in scientific/technological research achieving
incredible results providing surprising products with great AI/ML applications, but
to many times these efforts are strictly business oriented in fields that compared to
others, result a little silly and superficial. I think as human beings we are crossing
a line for which, conscious of the incredible instruments available, it would be great
to see more coordination of companies,governments,organizations efforts to provide
reliable solutions to worldly spread problem that are becoming more and more
relevant. Bamboo Energy is an attempt to provide reliable solutions especially for
energy demand aggregation and also for the consequences and implications of this
topic and energy management optimization in general. I’ve been lucky to have
the opportunity to apply concepts learned during the Msc in Data Science and
Engineering and to study, explore and implement interesting new technologies for
a start-up operating in a field in which I find motivation.
Regarding the methodology used to carry on this thesis work a statement must
be made: this thesis is not intended as a pure theoretical research work, but
instead a very practical one, touching different topics, each once of them has its
own characteristics, state of arts technologies and standards. Thus, regarding the
three conceptual phases, understanding, exploration and implementation, way of
thinking and solutions research, comparison and implementation, have been made
taking into account firstly that Bamboo Energy is new start-up that is growing
and in phase of construction, where a lot of things change very fast. This work
is not a specific field research study where a personal method is compared with
specific state of art where there are precise and well defined metrics to be compared
but, instead, a multi-topic research whose purpose is tho build a working, scalable
and reliable end-end data engineering architecture implemented taken into account
business needs and constraints, compatibility with already built products, the ones
planned or in phase of development, current, future clients, cloud environment and
platform architecture, and cost of implementation and scalability.

9



Chapter 2

Bamboo Data Engineering
snapshot

This section is an overview of the Data Engineering situation at the time of my
arrival in the start-up (November 2021), basically focusing on Data Architecture,
Platform Architecture, ETL pipelines, processes Orchestration and Cloud Environ-
ment. Lots of aspects have changed from that point: the following chapters describe
some modifications and new paths explored to improve already implemented pro-
cesses some processes and brand-new ad-hoc solutions to address specific product
or business requirements.
This section is the starting point of all this thesis work: it is necessary to well
understand the company processes, data infrastructure, data flows, ETL pipelines,
Cloud environment, platform architecture, product requirements and difficulties in
order to correctly propose improvements or new solutions.
Moving between high quality company documentation, meetings with the product
team, studying of processes and focus sessions I have been able to get a deep
overview of Bamboo Data Engineering situation and to build a solid base to make
the following steps.

2.1 Data architecture

This section focuses on Bamboo Energy Platform data infrastructure, more specifi-
cally on the kind of databases chosen to address a specific question in relation of
the different types of data that need to be stored.

10
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2.1.1 Time series Database: InfluxDB

In terms of data types, time-series data are the most important for Bamboo Energy:
they are the core of everything, the main sources for baseline, flexibility forecasts
and bidding provision algorithms. Under this group we can identify three main
time-series data: power measurements coming from flexumers assets, baseline or
flexibility power forecasts, energy market prices data and weather forecast data.
The database chosen for handle and storage these time-series data is of course a
time series database (TSDB), which is a particular kind of database, optimized for
storage and querying time series data in relation to time and values.
The database chosen for this purpose is InfluxDB, developed by InfluxData. It
is a non relational, no SQL database, written in Go and it is well optimized for
storing in a high-performing engine millions of data per seconds coming from the
most different sources and for making high-availability query with different level
of aggregation. Is has its own query language, called Flux, specifically built for
time-series data, and its SQL-like alternative, FluxQL, is s SQL version of Flux. It
is also possible to used these two languages to query SQL traditional databases.
In order to have an overview of the data-types managed in InfluxDB, the followings
are snippets from the database and some concrete query examples, more specifically
related to devices measurements which come from an IoT source, baseline/flexibility
forecasts and market prices, which are among the most important times-series data
for Bamboo.
The following is a typical sample of query result through Bamboo REST API,
encoded as a Json file, of measurements of a particular device of a site, coming from
an Iot source: we can identify the fields that identify the site and the device and in
the "measurements" field it is actually included the measurements time series of
power, with the field "quality" indicating the goodness of the sent data.

Listing 2.1: time-series data: measurements sample
1 [ {
2 " s i t e_ id " : 10038 ,
3 " device_type " : " meters " ,
4 " device_name " : " meter " ,
5 " measurements " : [
6 {
7 " time " : " 2022−05−01T00 :00 :00+00 :00 " ,
8 " q u a l i t y " : true ,
9 " power " : 24

10 } ,
11 {
12 " time " : " 2022−05−01T00 :15 :00+00 :00 " ,
13 " q u a l i t y " : true ,
14 " power " : 12
15 } ,

11
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16 {
17 " time " : " 2022−05−01T00 :30 :00+00 :00 " ,
18 " q u a l i t y " : true ,
19 " power " : 12
20 } ,
21 } ]

A typical queried time-series of baseline forecast of a particular device of a site
looks like the following snippet, the fields are just two and indicate the timestamp
and the power forecast.

Listing 2.2: time-series data: baseline forecast sample
1 [
2 {
3 " time " : " 2022−05−29T14 :30 :00+00 :00 " ,
4 " power " : 11 .262
5 } ,
6 {
7 " time " : " 2022−05−29T14 :45 :00+00 :00 " ,
8 " power " : 6 .92
9 } ,

10 {
11 " time " : " 2022−05−29T15 :00 :00+00 :00 " ,
12 " power " : 13 .692
13 } ,
14 } ]

In order to fuse baseline and flexibility forecasts to make good bidding offers and to
make the flexumers be able to well participate in flexibility markets, the time-series
related to market price are another important source of data. A typical query of
market data time-series looks like the following snippet.

Listing 2.3: time-series data: market price sample
1 [
2 {
3 " time " : " 2021−05−01T00 :00 :00+00 :00 " ,
4 " energy_price " : 0 .84
5 } ,
6 {
7 " time " : " 2021−05−01T01 :00 :00+00 :00 " ,
8 " energy_price " : 0 .72
9 }

10 ]

One of the data sources of baseline forecast algorithms is weather forecast data.
Instead of showing the result of the query through the API, the following image
in a snapshot of the UI of InfluxDB showing a sample humidity time series of a
weather station in Malaga:
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Figure 2.1: Bamboo positioning in energy sector

2.1.2 Relational Database: PostgreSQL
On the other side, where there is no need to use time-series specific databases,
a traditional relational database is mounted to store data related to flexumers,
their assets, the markets in which they participate and other relational information.
Once the data model related to flexumers has been built the solution for this
implementation currently used is PostgreSQL, which is an open-source object-
relational ACID-compliant database. It is one of the most popular and widely used
relational database and extends the SQL language combined with many features
that safely store and scale the most complicated data workloads.

2.2 High level architecture overview
The following section is an overview of the Bamboo Energy Platform architecture,
a snapshot of the modular structure at the time when I joined the company, briefly
describing what functions and services the different modules address, where they
are hosted and how they are connected.

2.2.1 Bamboo REST API
The Bamboo REST API is one of the core parts of Bamboo Energy Platform and
it is used both by flexumers and Bamboo team for lots of different purposes. Its
main function, as REST API, is to add an abstraction layer for writing and reading
operations to and from the relational and time-series database: in this way all
the modules, which are hosted in different Google Cloud Platform products, do
not read or write directly from and to the databases but use Bamboo API as a
standardization layer in order to be sure to make write and read operation in the
same, well defined way. It has the central role of the architecture and it has been
first part of the platform to be built. It has applications in every aspect of the
overall processes of Bamboo Energy: through API requests, Bamboo provided
services can be executed and general read/write operations can be performed, from
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baseline and flexibility forecast, from energy market data to weather forecast, from
bidding optimization to flexumers specific information and many more.

It provides access to flexibility assets managed by Bamboo Energy and to a
lot of different services: for example through the API it is possible to create and
list flexibility sites and assets, obtain activation for specific assets, post and get
measurements for specific assets or make asset devices baseline and flexibility
forecasts. In order to give users and flexumers a unified tool to interact with the
API, a python client has been developed and it is available on pypi: it’s widely
used both internally for modules developing and externally by flexumers.

2.2.2 Cloud Environment
Nowadays more and more companies, especially start-ups, build their architecture
or have in plan to migrate the ones already built to the cloud for a lot of different
reasons and Bamboo Energy is not an exception: with the usage of cloud tech-
nologies it is faster to develop products and services and also it is cheaper and
easier to maintain respect to physical servers. The Cloud infrastructure market is
split between three major actors which provide a lot of different services related to
Big Data, computation, data managements a lots more: Amazon AWS, Microsoft
Azure and Google Cloud Platform. Bamboo Energy Platform is totally hosted
on Google Cloud Platform (GCP) and satisfying specific constraints has access to
credit to be spent on GCP products. A lot has changed in the cloud architecture
from the time of my arrival in the company: the following subsections make a
snapshot on the GCP products used at that time.

Cloud Run

Following the definition given by Google in its official documentation [4], Cloud
Run is a managed compute platform that enables users to run containers that are
invocable via requests or events. It takes a Docker container image and runs it in a
stateless, autoscaling HTTP service allowing to run arbitrary applications serving
multiple endpoints, not just small functions with a specific interface like the ones
that could be developed through Cloud Function, a tool described in the following
sections. Cloud Run allows users to write their script in the programming language
they want and then to push it and package it as a container with Cloud Build.
It’s able to be be configured to support multiple concurrent requests on a single
container instance.
Combining the great strength of Docker, which is to building software in pack-
ages called containers, separating application from infrastructure using OS-level
virtualization, and the solidity of Cloud Run it is very useful and flexible to build
applications through this tool. The resources needed to run a Cloud Run instance
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are provided just in the moment when the request is made: after they shut down.
The mounted Cloud Run instances are the following:

• backend: it’s the container of Bamboo Flexibility API which provides access
to flexibility assets managed by Bamboo Energy allows to make requests for
a lot different purposes like for example create and list flexibility sites and
assets, obtain activation for specific assets, post and get measurements for
specific assets, list energy market prices and manage portfolios.

• baseline: it’s the container of the Bamboo Flexibility API module related
to baseline whose endpoints are used to train baseline assets models and to
make baseline forecast for a specific asset.

• flexibility: it’s the container of Bamboo Flexibility API module related to
flexibility allowing to train flexibility thermal zones and to make flexibility
forecast of thermal zones, batteries and shiftable load.

Cloud Function

Reporting the definition provided by Google in the official documentation [5], Cloud
Functions is a scalable, pay-as-you-go functions as a service (Faas) product to help
users build and connect event driven services with simple, single, purpose code. It’s
a server-less platform that supports individual services and can be called via HTTP
request of can be triggered based on background events. The code requires to be
packaged as a function and the cloud function component handles the packaging,
deployment and execution of the code. It can only handle one request at time for
each instance. The resources needed to run a Cloud Function are provided just in
the moment when the function is called: after they shut down.
The mounted Cloud Function instances are the following:

• mvp-market-prices: it’s the function used to make request to ESIOS API
to download energy prices of the different energy market of interest. A more
detailed explanation of this process is explained in the following sections.

• mvp-weather-forecast: it’s the function used to download weather forecast
data from tomorrow io API releted to the weather stations of interest

Cloud Storage

According to the definition provided in the official documentation [6], Cloud Storage
is a service for storing objects in GCP. An object is an immutable piece of data
consisting of a file of any format. Users store objects in containers called buckets.
All buckets are associated with a project and projects can be grouped under an
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organization. It is mainly used for storage ordinary data which are not main source
of the algorithms, models build after training phase and generic tests result.

Compute Engine

According to the definition provided in the official documentation [7], Compute
Engine is a computing and hosting service that lets users create and run virtual
machines on Google infrastructure. Compute Engine offers scale, performance, and
value that lets users easily launch large compute clusters on Google’s infrastruc-
ture. Resources provided for the usage of a Compute Engine are always running,
differently from Cloud Run and Cloud Functions.
The mounted Compute engine instances are the following:

• influxdb: this is an instance of Time Series database InfluxDB used to store
the multi-type time series data describer at the beginning of the chapter.

Cloud SQL

According to the definition provided in the official documentation [8], Cloud SQL
provides a cloud-based alternative to local MySQL, PostgresSQL, and SQL Server
databases. It’s a product built to allow users to spend lees time managing the the
database and more using it. A lot of applications running on Compute Engine, App
Engine and others services in Google Cloud use Cloud SQL for database storage.
The mounted Cloud SQL instances are the following:

• postgres: this instance of PostgreSQL is used as relational database for every
data that is not a time series and can be modeled with the relational traditional
model

Cloud Scheduler

According to the definition provided in the official documentation [9], Cloud
Scheduler allows users do create cron jobs that are units of work whose execution
can be scheduled at defined times or regular intervals. Each cron job created is
sent to a target according to a specified schedule, where the work for the task is
accomplished. The target must be one of the following types:

• Publicly available HTTP/S endpoints

• Pub/Sub topics

• App Engine HTTP/S applications
The mounted jobs are related to tests of baseline and flexibility algorithms on

concrete sites or invented (for testing purposes), and to the automatic scheduling
of the downloads weather and market data.
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2.3 Dataflows and ETL
This sections focuses on the different data flows passing through the platform,
the ETL pipelines already implemented and the automation of processes with
orchestration tools.

2.3.1 Pilot projects: measurements data
As explained in the introduction the most important dataflows are the ones asso-
ciated with the devices consumption measurements, which are supposed to flow
every day with frequency that can be very high, depending on the specific device
and the service of interest. The correct ingestion, processing and usage of these
data, according to other external data sources and the choice of the algorithms of
interest, could give Bamboo Energy a great competitive advantage. Data flows of
asset devices measurements should be solid and reliable as they represent the core
data source of Bamboo forecast algorithms. These data, which are time-series of
energy or power measurements, are ingested in InfluxDB, the database chosen for
time-series data storage, as described in the previous section. The following section
focuses in a deeper way on how is handled and managed the current active asset
devices measurements dataflows.
Bamboo start-up is very young, was born during Covid-19 pandemic in Barcelona
and, at the time of writing, has not yet a huge production environment: product
team is currently working day by day to construct and improve the platform. The
minimum viable product currently built is active and used in synergy with some
energy demand aggregators, energy sales companies, (comercializadoras) having
great interests in energy demand aggregation, baseline forecast and flexibility, and
some of their big clients who are basically industries to which comercializadoras
sell energy and so they have too a strong interest in flexibility, both in terms of
energy and money saving.
Currently, at the time of writing, there are two mounted pilot projects which are
sending data of building devices. These pilot projects are made in synergy with
European project whose purpose is to is establish different collaboration schemes
between transmission system operators (TSOs), distribution system operators
(DSOs) and consumers to contribute to the development of a smart, secure and
more resilient energy system and, and an energy retailer company and one of its
clients.

Extraction

The ingestion of the data flows consists of the following steps: when there is a
new device measurement, a Bamboo API call is made. More specifically, a PUT
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request stores new raw device measurement data in InfluxDB. Currently the only
way to communicate between customer-side and Bamboo-side is through Bamboo
API: this is the only available bridge to ingest data, and this approach brings
some advantages but also some disadvantages, as explained later. Thinking about
ETL pipeline concept, the two steps, which actually are just one API call, can
be considered as single phase where Extract and Load steps are fused in a single
API call: device measure is “extracted” and directly loaded to the database. In
this sense, there is no actually a Transform phase between Extraction and Loading
and moreover, there is no currently a Database, or a section of it, where clean
data are actually stored, but data, when requested for some algorithms usage, are
cleaned and processed “on demand” for the purpose of interest: clean data are not
stored persistently anywhere, they are "thrown away" after having been loaded and
processed for a specific usage (E.g: a ML algorithm launch) through other Bamboo
API calls. Having explained how data is extracted and loaded in the Database,
how is the process of extraction of these raw data in order to make them available
for processing and future usage? When data is requested to InfluxDB, a GET
request is made through Bamboo API asking the database to make a query in Flux
language, enabling to specify start and end date of the data interval interested,
with some other filters, selections and aggregation options available. After the Flux
query is made, data is returned with the correct time interval but it is still raw,
with no control or cleaning processing before persistent storage in the Database.

Transform and loading

How does Bamboo currently deal with cleaning and processing data to feed to his
algorithms when they are requested ? As said, when a Bamboo API call is made,
for example, for launching some ML algorithms, data requested from InfluxDB is
returned as a result of a Flux query, computed within the InfluxDB database. In
order to handle in a better and more manageable way and to perform cleaning
processing on data, this returned Flux object is converted to a Pandas dataframe
in order to have more flexibility and precision in data processing. The cleaning and
processing phase consists of basically three steps: outlier detection, interpolation
and up/down sampling This approach can be defined as an on demand batch
processing whose final outcome is not stored anywhere after usage. The following
paragraphs focus more deeply on the cleaning and processing techniques used.

Outlier detection Given a returned time series we are interested in understand-
ing if any measurement could potentially be an outlier and how to deal with these
found outliers. A value is flagged as an outlier if its Z-score has a value greater
than a certain threshold; a common threshold value for data based on a normal
distribution is 3. This approach evaluating Z-score as a metric for detecting outliers
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can obviously be done only in batch processing. Values marked as outliers are
replaced with Nan in order to be interpolated later, if it is the case. The purpose of
this is to detect an outlier in batch and convert it to a Nan for future interpolation
if it is needed.

Interpolation Once outliers are detected and replaced with Nan what is the
approach used in order to deal with these gaps in data ? Interpolation is performed
only for gaps with a timespan less than an interpolation threshold, while it is not
performed for those gaps with a timespan bigger than a threshold. The interpolation
technique used internally is the one provided by Pandas Dataframe class with
method ‘linear’. The purpose of this process is to fill little gaps with Nan value with
plausible and close to reality data, interpolated with the close ones. This, related
also to outlier question, is a tough question especially regarding time series data.
When measures arrive as outliers or as NaNs a trade-off between interpolation, and
so "invent" data and use the real available data must be made.

Up/down sampling Once a time series has been processed in order to have
outliers detected, substituted, and with gaps interpolated, we are interested in
knowing if the time series could be up or down sampled in order to handle and
use these data with a lower or greater granularity. With this purpose some checks
are performed in order to verify if the pre-processed Dataframe could be up or
down sampled. This up/down sampling could be also performed in the Flux query,
but doing it in Pandas gives more control and reliability to the final processed
Dataframe because it is not so unusual that during the conversion from Flux object
to Pandas Dataframe some additional NaNs are returned in the Dataframe and
so interpolation should be re-performed again, following this way. The purpose of
doing this up/down sampling it to give more freedom on the granularity requested
when forecast algorithms are performed. For example, let suppose that we want to
forecast the baseline consumption of the devices of a particular building, for the
next day, every quarter of hour: the data loaded for training the ML models are
requested with this frequency and so raw data queried are up or down sampled for
this purpose.

2.3.2 Weather data flow
Weather data are a very important data source for Bamboo Energy Platform, used
to make baseline and, consequently flexibility Ml algorithms. Weather forecast data
of the stations of interest are downloaded from TomorrowIO Weather API, which
provides reliable and accurate weather data. The stations of interest are the ones
in proximity of the flexumers. Weather forecast of a particular weather station are
downloaded through a Cloud Functions instance which takes as input parameters
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data about the weather station, time frequency, start time and end time of the
period of interest and stores in InfluxDB the following weather data forecast:

• temperature

• dewPoint

• humidity

• pressure

• irradiance

• windspeed

The usage of TomorrowIO API has some constraints, for example cannot be made
requests of weather forecasts with a start date of more than six hours in the past,
with certain frequencies the period of interest has a maximum length and there is
a limited number of request that can be done in a certain time. This constraints
are related of the free version of TomorrowIO API, whose use is experimental. As
data from TomorrrowIO are accurate there is no preprocessing of data downloaded:
they are stored directly in InfluxDB through the use of Bamboo REST API, with
a Cloud Functions instance.

2.3.3 Market data flow
Market data are another important data source for Bamboo Energy Platform,
whose usage is related to flexibility and bidding services. Prices of different energy
or flexibility markets are downloaded from ESIOS API, which is API to use to
download data related to the processes of the operations in the electric system who
are responsibilities of the Red Eléctrica de España, the Spanish national electrical
net. There is actually no preprocessing of the downloaded data: as weather data,
they are stored in InfluxDB through Bamboo REST API, with a Cloud Functions
instance that receives as input parameters data about the market, the particular
price series, start and end time.
The market prices are related to different market:

• daily energy market

• intra-daily energy market

• intra-daily continous energy market

• secundary reserve flexibility market

• terciary reserve flexibility market
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2.3.4 Orchestration
Orchestration is very important in Data Engineering. Making reliable data pipelines,
that start and stop in an automatic and scheduled way and, furthermore, being able
to collect good and precise logs data about the pipelines in order to rapidly and
efficiently inspect their behaviors and functioning, making easier problems handling,
is one of the keys of success of every data-driven company: having the complete
control and freedom of scheduling what and when and at which conditions.
There are not scheduled and orchestrated data pipelines, in the sense that there
are not scheduled ETL data jobs which regularly perform some actions on data
sources, for the reasons explained above: the approach is on demand, there is
nothing scheduled in time in this sense.
What is scheduled at precise times or specified intervals are Cloud Functions
instances, like for weather forecast or market prices, or others Bamboo API modules
like baseline or flexibility forecast with the usage of Google Scheduler.
To illustrate the Orchestration overview let’s make an example of a very small
baseline forecast use case. Let’s suppose for a given building, that has three devices,
that the baseline forecasts must be done with respect to every device, every day at
a certain hour. The approach used is making scheduled baseline forecasts Bamboo
API calls for every device at the given time and date with Google scheduler: every
API call is scheduled in a different Google scheduler job, with its own trigger
frequency. To summarize this approach, connected to what is said in the previous
sections about ETL pipelines, this is what happens when for example the baseline
forecast module is launched for the different devices of a given site. Let’s assume
that dummy site has four devices for which the baseline forecast module must be
requested through Bamboo API:

• load (overall electric load of the building)

• hvac1 (thermal load)

• hvac2 (thermal load)

• battery

These devices have different dependencies:

• load, hvac1, hvac2 baseline forecasts can be launched in parallel, at the same
time

• battery baseline forecast must be launched after load, hvac1, hvac2 forecasts

Four Google Scheduler jobs are created, one for each device:

• load, hvac1, hvac2 have the same trigger scheduling time in order to launch
these forecast in parallel
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• battery has ten minutes later trigger scheduling time in order to be launched
after load, hvac1, hvac2 devices

Every time a baseline forecast module endpoint is triggered through Google Sched-
uler, and some data loading is requested for the algorithms, it is performed all
the data processing described in the above sections: data is loaded and processed
on the demand just for the usage and cleaned and processed data is not stored
anywhere. The issue of storing or not processed data and how, in the DB or in
other solutions, is a tough question in this particular sector in which Bamboo
Energy operates. Obviously it is a good idea to store clean data, but everything
depends on the kind of preprocessing, if the data sources are bacth or streaming,
if it is the case of ingesting raw data and than doing preprocessing in a second
moment, the amount of data, how many times these data are needed, how fast data
become obsolete, the cost of the cost of the ingesting, processing and querying..
The pros of the usage of Google Scheduler is that it is integrated in Google Cloud
Platform, making communication with other components of the platform very
easy, like Cloud Run or Cloud Functions in this case. The principal con is that it
does not provide the feature to make dependencies between jobs and trigger rules
like “run this job even if that other job has failed” or “do not run this job if this
other job has been successfully launched”. Another is that there is not a clear and
intuitive logs inspecting feature: logs about jobs can be inspected but it is not so
well made for processes having multiple scheduled jobs which should have more or
less strict dependencies and trigger rules between them.
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Chapter 3

ETL, Data Aggregation
pipelines, Orchestration and
Alerting solutions
exploration

After having deeply examined Bamboo Energy ways of handling extraction, trans-
form, loading pipelines, orchestration management and alerting processes, this
chapter focuses on the exploration of possible solutions that could improve already
existing features or add new ones. The suggestion of possible paths to implement
is outcome of the comparison of different technologies and programming models.
Following the methodology criteria explained in the introduction, for every field
of interest, after having identified features needs and improvements points, as
the outcome of comparison, a specific technology and programming model has
been identified in order to respect product constraints and requirements, exploring
different approaches and taking suggestions from [10] and [11].

3.1 ETL
This section is intended to be the starting point to the research part related to
data ingestion, transformation and loading especially for data sources coming from
industry assets, basically power measurements.
In order to clarify, all the research work related to this topic covers all the data
flows and processing from the point of ingress in Bamboo environment: the data
flow of from the physical asset to Bamboo, which falls under the topic of IOT
connectivity and often is carried on by the client itself or a thir-part company is

23



ETL, Data Aggregation pipelines, Orchestration and Alerting solutions exploration

outer the scope of this thesis.
First, let resume the current approach used to carry on ETL processes: currently
the only way way to communicate and send data to Bamboo is through Bamboo
API, which was built, among other reasons, to have a standard to write and read
data. With a POST HTTP Bamboo API call a raw asset measure is stored in
InfluxDB: the specific module that needs data will again utilize Bamboo API
to read data and to perform the specific processing requested for launching the
algorithm. This approach has some strengths, that can be summarized as the
follows:

• Standard way to write and read data through Bamboo API

• Real-time data ingesting

• As data are stored raw, each module can custom processing methods

This approach works well, especially in a limited production environment, but
could have some limits and issues taking into consideration API load, scalability
and compatibility. As before three main strengths have been identified, let’s figure
out what can be the weak perspectives of this approach:

• with a lot of assets sending data, Bamboo API can be overloaded and suffer a
big production environment, carrying on ingestion and processing every time
data are requested, even if the Cloud Run instance hosting Bamboo backend
can obviously can be vertically scaled.

• Clients can only communicate through HTTP

• Processed clean data are not persistently stored anywhere

This analysis lays the foundation to the exploration phase: pilot projects data
flows and processing gave the possibility to highlight the pros and cons of the
current implementation. The main idea behind laying the foundations of possible
new solutions is to keep the current strengths as the core part on top of which
build something new and reliable, like for example the usage of Bamboo API as
validation layer for writing data and for reading when some data are requested
by some algorithm, and to try to mitigate the negative implications of the actual
architecture, like the absence of clean data storage, the HTTP locking effect and
the usage of Bamboo API for everything related to ingestion and ETL.
Before identifying the correct technology and programming model, able to satisfying
requested special needs, the key features of the ETL pipeline of interest, related to
assets measurements, must be correctly identified in order to not go out of scope
and to have well defined constraints and requirements to follow.
After having taken into consideration the strengths and the weakness points of the
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Figure 3.1: data ingestion and loading current implementation

actual implemented processes, and thought about possible future improvements,
the following are the key-features taken into consideration for the exploration of
different possible to paths to implement:

• Real-time data ingestion

• Store clean data

• Process data outside the API (but keeping API as a validation layer for writing
data)

• Go beyond HTTP protocol to allow different communication protocols

• Good scalability

• Fault and delay tolerance

3.1.1 Technologies comparison
In order to propose reliable solutions, different technologies and programming
models are compared. After the comparison the most promising one, with some
suggestions from, the one that specific fits requirements is selected to be imple-
mented. The first step has been searching in the vast offer of built-in products in
Google Cloud Platform if there were some tools that could have been useful to
implement ETL processes. After a first scan, two products were identify to make a
comparison between them and their corresponding programming models:
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• Google Dataflow and Google Dataproc

• Apache Beam and Apache Spark

Both Dataflow and Dataproc can be used to implement ETL solutions but they
several differences. Let briefly make an overview of both tools, highlighting the
main features.

Dataproc

As written in the Google official documentation [12], Dataproc "Dataproc is a
fully managed and highly scalable service for running Apache Spark, Apache Flink,
Presto, and 30+ open source tools and framework". It is a managed service that
supports big data processing including ETL and machine learning.
With Dataproc on premise clusters can be moved to the cloud to maximize efficiency
and enable scale. Dataproc automation helps users create clusters quickly, manage
them easily, and save money by turning clusters off when are not needed. With less
time and money spent on administration, users can focus on jobs and data. Once
clusters are provided, for example Hadoop or Spark clusters, jobs can be submitted
to Hadoop-ecosystem tools, like Apache Pig, Hive, and Spark for example. Clusters
can be scaled up ow down even during the jobs execution, and prices are calculated
in relation of used resources. Resuming, making use of four categories which are
used for comparison with Dataflow in the next paragraphs, its key features can be
identified as the followings:

• Velocity: on-premises clusters creation can be very time and resources con-
suming. Dataproc clusters are very quick to start, scale and shutdown.

• Integration: Dataproc has built-in integration with other Google Cloud Plat-
form services, such as BigQuery, Cloud Storage, Cloud Bigtable, Cloud Log-
ging, and Cloud Monitoring, facilitating jobs that make use of different GCP
products

• Management: users can easily interact with clusters and Spark and Hadoop
jobs through Dataproc REST API, Google Cloud Console or Cloud SDK
without the assistance of a special cluster administrator o software. When
a cluster turns to be problematic can simply be shut down and change with
another one: data loss is avoided because of GCP built-in compatibility with
products like Cloud Storage for example.

• Portability: even if there multiple tools where jobs can be submitted, the job
code in bounded to the kind of runner and how it works, for example in the
submitting of Spark job, that is bounded to the Spark runner and its logic
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After a first analysis, Dataproc is an interesting tool that has features that can
address Bamboo requirements like ETL but it is too bound to Spark and Hadoop
systems where the starting point is the necessity to build a cluster, which probably
goes out of scope of Bamboo needs.

Dataflow

As written in the Google official documentation [13], Dataflow is "Unified stream
and batch data processing that’s serverless, fast, and cost-effective." is a serverless
data processing service that runs jobs written using the Apache Beam libraries.
When a job runned on Cloud Dataflow, it automatically spins up a cluster of virtual
machines, distributes the tasks in the job to the VMs, and dynamically scales the
cluster based on how the job is performing: users do not need to address common
aspects of running jobs on a cluster for example balancing work, or scaling the
number of workers for a job; by default, this is automatically managed, and applies
to both batch and streaming.
Dataflow also offers the ability to create jobs based on "templates," which can
help simplify common tasks where the differences are parameter values. Dataflow
core strength is linked to the usage of Apache Beam programming model which
is intended to completely separate jobs native code, which is Beam with Python,
Java or Go, from the runner: Beam jobs are portable across different runners like
Dataflow, Flink or Spark.
Making use of the same categories used to highlight Dataproc characteristics, the
following are identified as Dataflow key features:

• Velocity: Support environment is automatically and instantly built behind
the scenes when a job is submitted to the Dataflow runner.

• Integration: Dataflow has built-in integration with other Google Cloud Plat-
form services, such as BigQuery, Cloud Storage, Cloud Bigtable, Cloud Logging,
and Cloud Monitoring, facilitating jobs that make use of different GCP prod-
ucts: multiple I/O connectors related to Google Cloud and other external
products are available and many others are in development.

• Management: users do not need to spend time to environment management:
it is guaranteed the automated provisioning and management of processing
resources and the horizontal autoscaling of worker resources to maximize
resource utilization.

• Portability: as said before Beam provides a clear separation between processing
logic and the underlying execution engine. This helps with portability across
different execution engines that support the Beam runtime: the same pipeline
code can run seamlessly on either Dataflow, Spark or Flink.
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After this first analysis, Dataflow is supposed to be a very interesting tool,
especially looking at its underlying programming model, Beam. The first sensation
is that Dataflow can be preferred instead of Dataproc to implement pipelines but
let’s make a more detailed comparison.

Dataproc-Dataflow comparison

Taken into consideration the key-features of both products, the final comparison can
be made analyzing four factors: ETL logic, environment management, integration
and compatibility. Taking into consideration data processing mechanics logic, we
can say that both Dataproc and Dataflow can address the same kinds of data
processing tasks: even if, of course, there are some differences between Beam and
Spark, for example, like the fact that Baam is a more unified programming model
in relation to batch/streaming, they can carry on basically the same ETL processes.
Equally, thinking about integration, both have a great built-in compatibility with
other Google Cloud Platform products or not Google ones, like fore example with
InfluxDB through the Beam Influx I/O connector for example.
Taking into consideration instead environment management and portability we can
notice grate differences. From one hand there a code/runner strict correlation in
Dataproc, and on the other hand a complete separation in Dataflow: this makes
the second one more flexible and not strictly bound to specific type of runner
enabling portability and mobility to basically computing engine that supports
Beam compatibility. In relation to environment management we can say that
the first thing to say is understand if there is the necessity to use and maintain
Hadoop/Spark clusters or to migrate on-premises Hadoop/Spark clusters to the
cloud. Even if Dataproc provides many resources and automation the the setting
up of clusters, it in needed a certain Hadoop-ecosystem familiarity and a certain
DevOps approach, while with Dataflow users can completely forget about building,
managing and maintaining the under-laying infrastructure and just focus on jobs.
After this comparison, Dataflow is chosen to be the tool to study in deep in order
suggest and implement alternative ETL approaches. After this choice, searching in
the GCP documentation, a flowchart helping suggesting when it is the case to opt
for a tool instead of the other, has been found mirroring this decision process:

3.1.2 Dataflow/Beam focus
After the decision of making use of the Dataflow/Beam paradigm to implement ETL
pipelines, this section is intended to be a general overview of this GCP product, in
particular to give more details about Apache Beam programming model. Previously
it has been said that Dataflow is distributed processing backend: when a pipeline
is runned with the Cloud Dataflow service, the runner uploads the executable code
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Figure 3.2: Dataproc/Dataflow choice flow-chart

and dependencies to a Google Cloud Storage bucket and creates a Cloud Dataflow
job, which executes the pipeline on managed resources in Google Cloud Platform.
This service handles very well large scale, continuous jobs providing provide a fully
managed service, autoscaling of the number of workers throughout the lifetime of
the job and dynamic work rebalancing. Once having understood Dataflow features,
expecially the fact that is completely managed serverless service, we can just focus
on pipelines developing with the Beam model.
Apache Beam is an open source unified programming model for both batch and
streaming data-parallel processing pipelines [14]. A pipeline logic can be pro-
grammed making use of three different SDK:

• Apache Beam Java SDK

• Apache Beam Python SDK

• Apache Beam Go SDK

Jobs can be coded alsp through Scio, that is a Scala API for Apache Beam and
Google Cloud Dataflow inspired by Apache Spark and Scalding. the coded job can
be submitted to one of the compatibles distributed processing back-ends, which
are:

• Direct Runner
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• Apache Flink Ruuner

• Apache Nemo Runner

• Apache Spark Runner

• Google Cloud Dataflow Runne

• Hazelcast Jet Runner

• Twister2 Runner

In order to illustrate Beam programming, main concepts and abstraction definitions
must be made.
The core concept is Pipeline: it contains all the data processing logic, from I/O to
data transforms. It can be defined as a directed acyclic graph of all data processing
tasks coded in the job. Foundations concepts of Pipelines are PCollection and
PTransform.
To correctly define what is a PCollection, the official words can be useful: "A
PCollection is an unordered bag of elements. Each PCollection is a potentially
distributed, homogeneous data set or data stream, and is owned by the specific
Pipeline object for which it is created. Multiple pipelines cannot share a PCollection.
Beam pipelines process PCollections, and the runner is responsible for storing these
elements". To make a parallelism, it is similar to the Resilient Distributed Database
in the Spark model. PCollection can be bounded or unbounded. A bounded
Pcollection is dataset with fixed o never growing in time size that can be processed
in batch pipelines. An unbounded PCollection instead is a dataset that grows over
time, and the elements are processed as they arrive. Unbounded data must be
processed by streaming pipelines.
As it is defined in the documentation [14], "a Ptransform represents a data processing
operation, or a step, in your pipeline. A transform is applied to zero or more
PCollection objects, and produces zero or more PCollection objects." The processing
transformation logic is provided in the job in the form of user-defined function and
is applied to every element of one or more input PCollection. There are different
kinds of transformations:

• Source transformations: they are used to read from data sources, like Tex-
tIO.Read and Create for example. A source transform conceptually has no
input.

• Processing and conversion transformation: they are used to make trans-
formations from input PCollections. Examples are ParDo, GroupByKey,
CoGroupByKey, Combine, and Count. ParDo in a general user customizable
logic that is processed in parallel
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• Outputting transforms: they are used to write to data sinks, like TextIO.Write.

• User-defined transforms: they are used to code application-specific composite
transforms.

There a lot of concepts more to be mentioned here in this section, like Windowing,
which is the features of assign PCollection elements of time logic windows or
Triggering, which is the feature of emitting aggregated results before the end of
Window, but this section is intended to give a general overview focus on Apache
Beam programming model.

3.1.3 Data ingestion
This section focuses on the explored solutions related to data ingestion. After
having identified the key-features and the characteristics of the new ETL pipeline
and usage of Dataflow, basically two different approaches have been taken into
consideration.

Approach 1: original implementation + datalake + streaming ingestion

The first proposed solution is closer to the original one in order to try to improve
the original implementation without too many modifications. The following figure
resume the dataflow. Basically the original steps are maintained:

• Asset device datasource makes a POST Bamboo API call when there is a new
measurement: API is used as validation layer to write data

• the API writes data without processing to a data sink, that in the original
implentation is InfluxDB, the database used for production.

At this point begins the first proposed solution. The idea is not to write directly
raw data to the time series Database without actual processing, but to write data
to a datalake that for example could be InfluxDB itself or a Cloud Storage bucket.
Then it is implemented a streaming pipeline coded in Beam and runned in Dataflow
to make some processing and ingest data basically in real time in the database
using Bamboo API as a last validation layer. This approach is not so different
from the original one except from the writing of data in temporal location where
a Dataflow pipeline can make some processing and load data to InfluxDB. The
major advantages can be found thinking about the minimal changes to be made to
implement this approach: changing the data sink in the API endopoint, that is
called from the datasource when a new measurement is made, to load data in the
datalake, means a null integration cost on the client side. Then it is implemented
the streaming Dataflow pipeline that reads form the datalake, performs some

31



ETL, Data Aggregation pipelines, Orchestration and Alerting solutions exploration

Figure 3.3: Approach 1: original implementation + datalake + streaming ingestion

processing and and loads data almost in real time to InfluxDB with Bamboo API.
So basically the difference is the presence a of datalake where raw data are processed
through Dataflow and loaded into the DB. This approach does not add anything
new in terms of scalability and mostly delay and fault tolerance as the first step of
the dataflow, from the asset device, is the same.

Approach 2: routing data sources to an asynchronous messaging service
+ ingetion through the API

This approach differs more from the original one, introducing the usage of an
asynchronous messaging service as a middle-ware between datasource and processing
and loading steps identified in Google Cloud Pub/Sub, a GCP built-in product
with great integration compatibility with Dataflow. The reason behind this idea
is the amount of documentation and use cases that associate a messaging service
middle-ware with streaming ingestion pipelines: the usage in synergy of Pub/Sub
and Dataflow guarantees data completeness and exactly one processing because of
its low and high watermarks accuracy and efficient deduplication, handling very
well late data management, data loss and scalability in general.
The figure illustrates the ingestion approach proposed. Basically the usage of
Pub/Sub and Dataflow is the following: the asset device sends a data measurement
to a Pub/Sub topic, which is the main Pub/Sub object used of asynchronous
messaging where a specific subscription waits for messages to arrive. Connected
to this subscription, in Dataflow it is active a streaming job that listens from the
Pub/Sub subscription and process data and uploads them to InfluxDB utilizing
Bamboo API as data writing validation layer. The idea is to split the data writing
into two different location: store the raw data measurement in InfluxDB in a
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Figure 3.4: Approach 2: routing data sources to an asynchronous messaging
service + ingestion through the API

section used for back-up data which has temporal memory policy and in parallel
performing the data process and load the clean data in the main InfluxDB database.
Resuming, this approach introduces something new but also makes use of original
implementation:

• Pub/Sub: the introduction of this tool brings great advantages in terms of
reliability as described before

• The way of writing data remains the same as the original approach making
use of Bamboo API, but this time data is sent to to different locations.

Thinking into consideration the integration cost for customers-side, this approach is
less soft that the first as the asset device has to publish to the Pub/Sub topic instead
to make Bamboo API calls. A solution to that is to give the possibility to customers
to publish directly to the topic if they are able to make this implementation,
otherwise a new API endpoint is implemented to publish to the topic, without
connecting directly the asset device and Pub/Sub.
Comparing these two approach, the second one seems the most interesting for the
advantages brought by the introduction of Pub/Sub and the implementation cost
that is not traumatic both for customers side and for Bamboo side. This kind one
pipeline is selected to be implemented: more details are given in the next chapter.

3.1.4 Data cleaning and processing
after having understood where insert data ingestion in the pipeline, this section
explain the proposed solutions related to data cleaning and processing. The most
important question to answer, in relation to the processing steps described in the
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previous chapters, it to decide what kind of processing is done in Dataflow, in the
API and in which part of the pipeline. As baseline, flexibility and bidding module
need have similarities and some differences in terms of types of datasources and
kinds of preprocessing tasks needed it has been decided to leave preprocessing steps
that are made in batch like outlier detection, up/down sampling and interpolation
inside the API backend when some data are requested to be fed into some particular
algorithms. The idea is to maintain the already implemented methods discussed in
the previous chapter and to add some controls before ingesting the data trough the
API in order to have a standard of data cleaning for every asset device typology
before data loading into the database. In particular for every device different
preprocessing policies are defined:

• Out-of bounds values: threshold values are queried and use to detect out-of-
bounds measurements

• Fixed sign policy:sign policy is implemented: power consumption has positive
real values, energy generation has negative real values

• Invalid measurements: Nan or None measurements are not stored in the clean
database

With this approach, some cleaning rules are applied before ingesting the data
and backend is not loaded with more computation, as this steps are performed
in Dataflow: although these steps might seem very basic, and in fact they are,
thinking about a grate production environment where there are a lot of sites with
a lot of devices sending measurements with high frequency, the solution proposed
so far in relation of data ingestion and cleaning is a good starting point to have a
solid, reliable and scalable architecture. With this approach clean data are stored
in the database, the different modules have a common clean database from which
loading data and conducting particular additional preprocessing steps.
So the proposed solution that will be implemented, whose details are discussed in
the next chapter is the following, to resume: before the API call to load data into
the DB, common cleaning tasks are coded in Beam and performed in Dataflow
Runner while special module specific tasks, that can also be in common between
two different modules, are performed in the backend when data are requested for
module usage. Resuming these are general preprocessing tasks computed in batch
and streaming:

• common tasks performed in the streaming Beam pipeline runned in Dataflow:

– Out-of bounds values
– Fixed sign policy
– Invalid measurement
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• module specific tasks performed in batch in the backend:

– Outlier detection
– Up/Down sampling
– Interpolation

3.2 Aggregation data pipelines
Analyzing Bamboo Energy processes the absence of data aggregation pipelines,
especially related to baseline and flexibility forecast, has been detected and so, as
a good starting point, aggregation pipelines solutions to compute KPIs related to
baseline forecasts are explored.

3.2.1 KPIs
First, in order to inspect the pureness of baseline forecast module the correct
KPIs must be identified and then the considerations about the architecture are
made. A asset device baseline forecast is a regression task, among all the possible
ones, the following have been selected to be the kpis computed for each device
of the corresponding site taken into consideration, where y are predictions and x
measurements:

• coefficient of variation of the Round-Mean-Square- (CV-RMSD) Deviation :qD
i=1

(yi−xi)2

x̂

• Mean absolute error: qD
i=1 |yi − xi|

• bias: qD
i=1 yi − xi

• max error among the bias

3.2.2 Technologies comparison
This section focuses on the technologies taken into account to implement KPIs
aggregation pipelines, which can be divided into two categories:

• Architecture where batch aggregation pipeline takes place (Beam vs Cloud
Function vs Cloud run)

• Database in which KPIs are stored (Big Query vs Bigtable)
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Architecture

In order to select the correct tool to build the kpis computation architecture
different solutions have been taken into consideration:

• Cloud Function

• Cloud Run

• Dataflow

Taking into consideration Cloud Run as host of kpis module the question is to decide
if add backend endpoint to compute kpis for the devices of specific site as backend
in hosted on Cloud Run, or to create a new instance. As it has decided to implement
kpis computation outside the backend, for purpose to make a separable and more
quick to modify module, the idea of mountain a new instance has been taken into
consideration. Thinking about the not so great complexity in terms environment
settings and dependencies and the not so heavy load in terms of computational
complexity of the kpis module, this is idea is discarded as the strength in terms of
scalability and resources provision of Cloud Run are too much respect to actual
needs. The same reasoning can be applied to Dataflow: the parallel processing
technologies are not need in this case, especially if the computation has time
frequency not high. A good solid solution to build kpis module is represented by
Cloud Function whose key features as described in the previous chapter.

Storage Database

InfluxDB is intended to be the main time series database. Even if in a certain sense
kpis can be considerated time series, it has been decided to find another storage
alternative, in ones offered in Google Cloud Platform. In particular, as the kpis
implementation is finalized to kpis analysis, a good solution could be represented
by a database with a low price writing cost and possibly with the possibility of
easily and at low price making queries and analysis. In order to find a suitable and
reliable solutions the following GCP built -in products are compared:

• Cloud Storage: its key features have been described in the previous chapter.
Its a general Storage products without the possibility of making queries.

• Big Table: it is a NO-SQL columnar database running on HDSF, suitable
for high throughput applications. It performs well for application with huge
read/write operations or general very frequent data ingestion because it has
low latency. It is highly scalable and has a great compatibility with BigTable.
Three key factors must be taken into consideration in relation to pricing: Big
Table instance and the total number of nodes, the amount of storage anf of
network bandit [15] . To summarize, it is more used as a OLTP database.
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• Big Query: it is a immutable database where new records can only be appended
but its strength is that it is more like a Query Engine as it is optimized to
run SQL queries on very large Dataset so it is intened to be a more OLAP
database. It is very scalable and has great compatibility with other GCP built-
in products like Dataflow. There are town componentes to be considerated in
relation to pricing: storage and analytics, which is the more expensive [16].

Comparing these three different products, as Cloud Storage does not have analytics
support, Big Table resources are too much in comparison to the ones needed by the
kpis module, Big Query is selected to the the storage database, taking advantage of
its query optimization, low storage cost and also low query cost as the Kpis dataset
will not be huge as kpis data are results of aggregation pipelines, condensating a
lot of data in very few numbers.

3.3 Orchestration
In the previous chapter it has been described what is and how and for which purpose
Cloud Scheduler it used. Resuiming, it basically a managed Cron service that
allows to schedule in time processes in a very easy and intuitive way: baseline and
flexibility forecast, market and weather data download are examples of processes
whose execution scheduling can be automated in time. The great ease of use of
Cloud Scheduler hides some limitations that can be identified as the followings:

• limited offer of triggering possibilities: public available HTTP/S endpoints or
built-in GCP resources.

• lack of processing dependencies

• poor processes retry policies

• scheduling options limited to Cron based jobs

As Bamboo Platform is the day by day growing in complexity, the Orchestration
tool is intended to very very reliable and to give great flexibility and freedom
in processes automation. Once having clearly identified actual implementation
limitations, this section focuses on finding a better substitute of Google Scheduler
to bring to Bamboo Platform to the Orchestration level needed: as the platforms
grows in complexity, new modules are developed, more an more baseline, flexibility
and bidding optimization algorithms are launched more and more frequently, the
Orchestration tool must be the last layer that makes everything works in synergy,
the last actor that is able to bring infrastructure to higher quality standard levels
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3.3.1 Technologies comparison
Having discarded the option of making use of Cloud Scheduler, some reliable
alternative solutions are compared. The first option has been to consider Apache
Airflow, an open source project of Orchestration for its increasing popularity: its
great offer of customizable scheduling and the multiple ways of usage made it the
industry standard cite [17]. As seems very promising, and taking suggestions from
[18], Airflow is chosen to be the Orchestration tool to be used to schedule processes,
from data processing to modules launching.
Collecting information and studying Airflow complex architecture and programming
model, whose details are given in next section, the thing to consider at this point is
to decide to opt for a standard, manually built and maintained Airflow version or
for managed one. This point is tough: where a tool as a complex infrastructure to
build, maintain and monitor often there are companies that build on top a service
to make the usage of the original tool easier and more user-friendly especially to
novice users. It is the case for example of Google, who built its managed Airflow
product, called Google Cloud Composer or the case of Astronomer, a company
that basically did the same. Basically a trade-off must be made between the issues
related to build and maintain an Airflow instance, the high cost for using managed
services and the actual needs and requirements of the production environment: as
Bamboo environment is small but it is growing day by day, it has been chosen to
try both the approaches, as described in the following chapter.

3.3.2 Orchestration requirements definitions
The section focuses on the features that Bamboo products need to find in Airflow,
the Orchestration tool selected. ETL Pipelines, forecasts algorithms, bidding
optimization, data download are some examples of which kind of processes need a
reliable and solid scheduling policies. The followings are identified as the features
that need to be add to Bamboo process and that could be find in Airflow:

• temporary scheduling: go beyond the Cron based limitation, a process execu-
tion should be triggered on only by time policy but also by other process in
relation of its outcome

• intra-jobs dependencies: two tasks, in the same processes, having logic depen-
dencies have to be scheduled modelling this dependencies and just not using
time based job

• retry policies: go beyond poor standard task retries policies, adding some
action triggering in relation of the outcome of the task.

• log monitoring: have a solid monitoring of tasks logs in order to quick know
the particular reasons behind failures
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Having selected Airflow as Orchestration, for its popularity and great functionality
appearance, and having identified the key requirements of the process scheduling
that go beyond Scheduler limitations, Airflow architecture and programming model
is deeply studied.

3.4 Airflow focus
Airflow is an open source platform to programmatically author, schedule and
monitor workflows. These workflows are defined as Directed Acyclic Graph (DAG)
and contain individual pieces of work called Tasks, arranged with dependencies. In
a Dag can be specified the characteristics that make Airflow such a powerful tool:
inter-tasks dependencies, the order in which to execute them, the number of retries
if some tasks fail and many more. In the Tasks it is defined what to do: fetching
data, making a connection, calling an endpoint, triggering a service and so on.
Airflow is an Orchestrator allowing you to execute tasks and more generally data
pipelines at the right time, in the right order, in the right way ensuring great
reliability and monitoring. These are some of the key benefits:

• dynamicity: basically everything that can be done in python can be done in
airflow data pipelines

• scalability: automatic distributed task processing depending on the workload
and the set available resources brings great efficiency

• user interface: Airflow brings its user interface making DAGs visualization,
triggering, testing, monitoring very user friendly and clear

• extensibility: plug-ins can be added to provide custom ad hoc solutions

Architecture

Airflow has its particular architecture, which is different among the single node
and the multi-nodes architecture versions, but these are the key components of the
general Airflow architecture.

• Web Server: it’s a flask server run using gunicorn and it’s responsible for
serving the UI Dashboard with http. It’s useful to get an overview of the
overall health of different Dags and also to help visualize different components
and states of each DAG. The Web Server also provides the ability to trigger
and test DAGs and to manage users, roles, and different configurations for
the Airflow setup like connections and variables
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Figure 3.5: Airflow architecture diagram [18]

• Scheduler: it’s the most important part of Airflow, which orchestrates DAGs
and their tasks, taking care of their interdependencies. It’s responsible for
turning the Python files contained in the DAGs folder into DAG objects that
contain tasks to be scheduled. It’s a daemon, built with python-daemon
library, in charge of scheduling workflows, tasks, and pipelines. A workflow
script consists of several components which the scheduler interprets and stores
in the metastore.

• Metastore: a database where Web Server, Scheduler and Executor store meta-
data states. The metadata database stores configurations, such as variables
and connections. It also stores user information, roles, and policies. The
Scheduler parses all the DAGs and stores relevant metadata such as schedule
intervals, statistics from each run, and their tasks. Everything that happens in
Airflow is registered in the metastore. All database operations are performed
with SQLAlchemy, a Python ORM framework.

• Executor: it’s the actual entity handling running tasks. In the default instal-
lation this runs everything inside the scheduler but most production-suitable
executors actually push tasks execution out to workers the executor has. There
can be different types of executors, divided in Local and Remote. Airflow can
have only one executor configured at a time.

• Worker: process/subprocess executing tasks that listen to, and process, queues
containing workflow tasks.
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Airflow programming model concepts

Airflow is written in Python, and workflows are created through Python scripts.
Beside Python logic, the following paragraphs are intended to be an overview of
the core concepts of Airflow programming model

DAG A Dag is the core entity of Airflow and is made of tasks organized together
with dependencies and relationships to say how they should run. A DAG is stored
in the dags folder of the Airflow environment and the Scheduler parses the DAGs
code, which is a Python file, in order to make them visible and usable in the Web
Server.

Task A task is the basic unit of execution in Airflow. Tasks are arranged into
DAGs with their interdependencies set in order to express the order they should
run in. There are three basic kinds of Tasks:

• Operators: predefined task templates that can be chained together to build
most core parts of DAGs

• Sensors: a special subclass of Operators which are entirely about waiting for
an external event to happen

• TaskFlow-decorated @task: a custom Python function packaged up as a Task

They are all subclasses of Airflow’s BaseOperator and Tasks and Operator concepts
are interchangeable but it’s useful to think of Operators and Sensors as templates,
which become Tasks when they are called and built in a Dag. The strength of
Tasks is declaring their inter-dependencies, once Tasks are declared.

Operator An Operator is conceptually a template for a Task that are defined
inside a Dag. Some examples of Operators are:

• BashOperator: executes a bash command

• PythonOperator. calls an arbitrary Python function

• EmailOperator: sends an email

• SimpleHttpOperator: calls an HTTP endpoint

Users can also override BaseOperators class in order to write customized Operator
in relation to special needs.
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Figure 3.6: Airflow schedule interval[17]

Schedule Interval Users can define when Airflow runs a DAG with three
parameters:

• start_date: date from which Airflow starts to run the dag

• schedule_interval: Trigger DAG frequency

• end_date (optional): last date of DAG triggering

In this interval-based representation of time, a DAG is executed for a given interval
as soon as the time-slot of that interval has passed. In Airflow, the execution date
of a DAG is defined as the start time of the corresponding schedule interval rather
than the time at which the DAG is executed (which is typically the end of the
interval). As such, the value of execution_date points to the start of the current
interval, while the previous_execution_date and next_execution_date parameters
point to the start of the previous and next schedule intervals, respectively. The
current interval can be derived from a combination of the execution_date and the
next_execution_date, which signifies the start of the next interval and thus the
end of the current one.

XCom Data transfer between different tasks is not direct and intuitive as it
might seem. Different tasks do not directly communicate because of the Airflow
architecture, as by definition tasks are entirely isolated and may be running on
entirely different workers. To address this issue, XCom, which stands for "cross-
communications", makes possible data transfers between different tasks of the same
DAG run. Xcoms are sort of variable, but they are only related in the specific
DAG run and are not globally available to other DAGS as Airflow Variable are.
XComs are suited for small amount of data that can be serializable. Through the
usage of xcom_push and xcom_pull on the Task instasnces, XComs are explicitly
send and returned from their storage. There are some Operators that by default
push their outcome to XCom, like the BashOperator.
A broader focus on architecture and programming model is given to Airflow as it
has a central role in the developing of this thesis: it’s the actor that orchestrates all
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the processes examinated so far and makes possible also the Alerting ones described
in the following sections.

3.5 Alerting
In a data-drive company it is very important being aware in very quick times
when some process or job is failing in order to behave accordingly and be prepared.
Nevertheless, when cloud architecture are modular and complex it is always a good
practice to have a well defined Alerting policy, in order to monitor processes in tidy
and precise way, centralizing in the same channel the notifications of the same type.
This section focuses on Alerting, on the features requested and the technologies
compared to plan an alerting policy which is composed of internal and external
alerts policy. Before working on these topics, it is crucial to correctly identify the
kind of events that are must be detected in order to trigger internal and external
alert policies

3.5.1 Technologies comparison
The purpose to implement internal or external Alert policies is to notify to Bamboo
team or to customers some kind of event through some medium. Basically, both
of internal and external purposes, the comparison is made between the following
technologies:

• Google Error Reporting

• Slack Notifications

• Email service provider

Google Error Reporting

One of the great benefits of having a cloud-based architecture, especially in GCP,
is the great integration and compatibility between different products. Google Error
Reporting is a key products on which a lot of other GCP built-in product can send
logs of operations [19]. During the building of application running in Google Cloud
App Engine, Cloud Function, Cloud Engine it is possible to enable the automatic
send of processes logs to Error Reporting, otherwise utilizing Error Reporting API.
This feature is already implemented in Bamboo platform modules: whenever a
service is called, the response is logged directly into Error Reporting, making it
a good location in which store error logs and ding monitoring. Despite this fact,
which makes Error Reporting a good place to store error logs it cat not alone be
used for alerting purposes as there must be a person continuously monitoring Error
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Reporting user interface in order to detect certain events and to accordingly set
notifications, both in case of internal or external ones.

Slack Notification

Slack is the tool used for Bamboo internal communication. Apart from direct
communication between developers and other employees, there is the possibility to
create channels in which more users can participate and where Slack messages can
be sent making use of Slack api [19]. This is a interesting tool to route internal
notifications for example, in the form of Slack messages.

Email provider

Another tool that can be used when a certain event is detected to send the
corresponding notification is a generic Email provider. An account can be provided
and services can be created to send emails of the same kind from the same account.
users can subscribe to these services and receive emails notifying the occurrence of
a particular event. This is an interesting medium in particular for external alerting
purposes.

Taken into consideration both the internal and external alerting policies it is
decided not to centralize all notifications in the same medium or location but to use
an hybrid approach with all the three combined for internal notifications and just
emails for external alerting: this is due to the nature of events that are presented
in the next section.

3.5.2 Alert policies
This section talks about the features requested for building an alert policy, both
for internal and external purposes, the events that are detected, how and with
which technologies are detected. It is decided, as design choice, that every external
notification has a internal correspondent.
The first thing taken into consideration has been to decide to maintain the current
implementation of making use of Error Reporting when services, hosted in GCP
products, are requested. This serves as a central repository where services responses
can be inspected.
Secondly, as Slack is used for internal communication and constantly during working
hours it is decided to open a dedicated notification channel where are routed logs
of failed services and other events.
Regarding customers, when certain kinds of events are detected a mail is sent
to customers. This is in developing phase and the infrastructure building goes
out of scope of this thesis work. A corresponding mail in sent internally and a
correspondent Slack notification is sent to the dedicated channel. Now it is the
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time to describe the particular kind of events that are detected and if they are
intended for internal or both internal and external purposes:

• a device has stopped or re-stared sending data (internal and external notifica-
tions)

• a device has sent a measurements that is above or below a certain thresh-
old, both for power or temperature measurements (internal and external
notifications)

• market data download failed (internal notifications)

• weather data forecast failed (internal notifications)

• baseline and flexibility forecast training (internal notifications)

• baseline and flexibility forecast fail (internal notifications)

• kpis computation failed (internal notifications)

These kinds of events are selected taking into consideration the level of production
environment, the state of development of some modules and some customers need
and are intended to be a starting point in order to build solid and reliable events
detection and alerting policies environment.
In relation of the technology used to detect the events it has been decided to maintain
Error Reporting for modules calls failures, to implement detection of events related
to devices measurements with Apache Beam and Dataflow as represent perfect
use cases for streaming pipelines. In addiction, it has been decided to use a great
Airflow feature, called callback function, to implement internal Slack notification
in case of modules call failures as it is described in the next chapter.
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ETL, Aggregation Data
pipelines, Orchestration and
Alerting implementations

Chapter 2 served as overview of Bamboo processes and understanding of the already
built implementations related to this different areas of Data Engineering in order
to correctly identify strengths and weaknesses to lay solid foundations to next step.
In the last chapter instead, multiple alternative solutions, related to every Data
Engineering field inspected, both in terms of implementations logic and architecture
design, have been proposed and some comparison have been made in order to select
the most reliable and promising ones to be actually implemented.
In this chapter this Data Engineering journey, after understanding and exploration
phases, goes to an end. Intended to be the conjunction point between chapter 2
and 3, the following sections focus on the practical implementations of the proposed
and selected possible solutions to address some specific tasks related to the fields
inspected.

4.1 ETL and data aggregation pipelines

It has been decided to include in this section both ETL and data aggregation
pipelines: in particular, the new approach to address data cleaning and ingestion,
making use of Pub Sub and Dataflow, and the baseline kpis module implementation
are described.
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4.1.1 Data pipelines definitions
ETL: Data cleaning and ingestion pipeline

In order to improve the currently implemented ETL processes, as an outcome of the
previous chapters, the solution chosen to be implemented to address data cleaning
and ingestion is a streaming pipeline built with Apache Beam (Python SDK) and
executed in Google Dataflow. To conduct tests on this particular use case, some
considerations and assumptions must be made in relation to the preliminary steps
needed to put in in practice this pipeline before putting it into production.
In order not to make changes on the customers side to route measurements data to
a Pub Sub topic, resulting in possible production issues, the processing of ingesting
data sent from IoT sources has been simulated. The followings are the assumptions
of this particular use case:

• Assets random measures generation: a Cloud Function has been built in order
to simulate random measures of particular assets.

• PubSub topic: a specific topic for this use case has been created.

The Cloud function, coded in Python and making use of Numpy and Google Cloud
PubSub libraries, takes as input the following information data about a specific
asset:

• site name

• asset name

• threshold values

and generates a random asset measurement giving a certain probability associated
to a particular event in order to simulate all possible real cases scenarios:

• correct value range measurement

• correct value range measurement but with sign inverted

• Nan measurement

• out-of-bounds measurement

Following general requirements explained in section 3.1 and making use of the
Cloud Function to simulate asset measurements and a PubSub topic to ingest them,
a Beam streaming pipeline has been implemented: its logic details are explained in
the next section.
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Data aggregation pipeline: baseline kpis computation

In the previous chapter different solutions of possible baseline kpis computation
have been explored: the goal is to build a light-weight and manageable tool to
periodically compute kpis and and kpis analysis. The following, as explained are
the kpis to be implemented:

• coefficient of variation of the Round-Mean-Square- (CV-RMSD) Deviation :qD
i=1

(yi−xi)2

x̂

• Mean absolute error: qD
i=1 |yi − xi| (MAE)

• bias: qD
i=1 yi − xi

• max error among the bias

In particular, among pretty well known and common metrics, CV-RMSD, being
normalized, is an interesting ad useful metric as can be used as unified criterion to
inspect baseline forecast pureness among different devices, which have very different
orders of magnitude.
As in this specific use case we do not need the strength of cloud parallel computing
and great scalability offered by the Dataflow Engine, it has been decided to mount
a light-weight Cloud function to have a very handy tool to compute batch kpis
pipeline.

Figure 4.1: Baseline kpis cloud function general information

To easily inspect and analyze devices kpis results it has been decided to use
BigQuery as database as it fits our requirements and has a built-in SQl Engine to
rapidly make queries in an optimized way. A dedicated database has been created
hosting the baseline kpis table, with a defined schema.
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Figure 4.2: Baseline kpis table schema

4.1.2 Data pipelines implementations
This section is intended to be an overview of the streaming pipeline used to carry
one ETL processes, made with Apache Beam and executed in Dataflow, and the
batch processing used to compute kpis, built with a Cloud Function: for every
pipeline, architectural and programming logic details are explained.

ETL: Data cleaning and ingestion pipeline

To execute this pipeline some steps must be made in order to build this use-case. As
said in the previous chapter three components have been built to lay the foundation
of the experiment.

• PubSub topic: a specific topic has been created in order to route simulated
measurements. The topic has been created with a Pull subscription mode.

• Dummy fake measurement generation: a Cloud Function has been built. Its
entry-point receives information about the site, the specific device to simulate,
like device name and threshold values for example, and with the usage of
Numpy and random packages generates a random measurement, among the
four possible scenarios describe in the previous section. After the measure is
generated, it is ingested to the PubSub topic through the usage of the pubsub
client of the Google Cloud package.

• Simulated measurements periodic generation: in order to automatically and
periodically generate a random measure an Airflow DAG has been created to
trigger the Cloud Function with a custom schedule interval.

Once built these three components, we have these simulated assets that periodically
send measurements to our PubSub topic. Let’s now inspect the streaming pipeline
that cleans and stores data, listening from the topic. The pipeline basically listens
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Figure 4.3: Cloud functions generating random measurements metrics

Figure 4.4: Airflow triggering random measurements Cloud Function

to the flow of the topic and when a message is published in the topic by the cloud
function processes it and stores it in InfluxDB making use of the BambooAPI
Client. The streaming pipeline makes use of two different input, defined as follows:

• main input: measurements PubSub messages read from the topic through the
Beam IO PubSub connector

• side input: specific devices thresholds queried from the backend through
Bamboo API client in order to cache these values to detect out-of-bounds
values.

In order to give more details about the pipeline, in relation of both side and main
inputs every step performed is described. Starting from side input, the first step is
to create a custom PCollection from in-memory device categories data making use
of Create transform. The available device categories are the following, passed as
input parameters to the Create transform:

• meters

• shiftable loads

• batteries
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• pv systems

• ev chargers

• thermal loads

• thermal comfort devices

At this point, we have a first PCollection to be processed. The second step is to
create a custom DoFn executed inside the ParDo transform in order to be processed
in parallel. The logic of this custom DoFn is the following: for each element of
the input PCollection, and so for each available device category, through Bamboo
API client a call to the backend is made in order get specific devices thresholds,
outputting the specific device and its thresholds. In other words, it is a sort of
Flat Map because for each device category one or more devices can be outputted,
with the corresponding thresholds. The output results in a PCollection where each
element is a tuple with the specific device name and its threshold.
Having queried and cached devices name and thresholds, the focus is to correct
read and process PubSub messages. This pipeline consists in four steps:

• Read from Pub/Sub topic: through the usage of Beam io library, more precisely
of PTransorm ReadFromPubSUB which allows to read utf-8 string payloads
from Cloud Pub/Sub, the pipeline is able ingest PubSub messages from a
PubSub source, which in this case is a topic as the specific topic to carry on
the simulation is specified in the input parameter of the PCollection.

• Covert bytes to dictionary: making use of the classical Map PTransform, each
incoming record is decoded to a dictionary from utf-8 encoding, through the
usage of a simple lambda function.

• Map for Bamboo API requirements: each decoded element is mapped again
in order to be processed and to be ingested respecting API requirements.
From each decoded message some information are extracted such as site name,
device name and measurement and a tuple is emitted as output.

• Out-of-bounds detection and Loading: a custom DoFn is created to be applied
to each incoming measure and takes as input the side input with devices names
and thresholds. For each measurement, the specif device thresholds are found
in the side input in order to decide what to do with the incoming message:

– out-of-bounds value: it is not stored and an internal log is emitted
– Nan value: it is not stored and an internal log is emitted
– in-bounds value: it is stored through the Bamboo API client and an

internal log is emitted
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– in-bounds value with sign inverted: the sign is changed, stored through
the Bamboo API client and an internal log is emitted

At this points, having explained the general pipeline loigc, some others key
features are inspected.This streaming pipeline makes use of default Global
Window policy: when a new message coming from the topic is read the
PTransform are immediately applied and the record is processed. So, it
created a PCollection of one element every time a new message is read and
it is processed. This design choice is because we are interested in loading
data to database as they are are ingested in the topic and so Fixed Windows
policies have been discarded. During the construction of the pipeline object
the Streaming flag is set in order to use specific streaming resources, like the
PubSub source for example, and also the "save_main_session" in order to use
globally imported modules in the different DoFn as they might be executed in
different workers in the Dataflow Engine.

Two main improvements are identified for this pipeline:

• specify an existing subscription and not a topic in the input parameters of the
ReadFromPubSub PTransform: in this way it is guaranteed no data loss when
the pipeline is stopped as the subscription remains active ingesting messages

• cyclically update the side input thresholds query from backend with the usage
of Periodic Impulse PTransform in order to correctly reflect in the pipeline
when new devices are added to a site microgrid or when thresholds change.

In the next figure some results and details of execution in the Dataflow Runner
and exposed.

Figure 4.5: Cleaning and loading pipeline throughput
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Data aggregation pipeline: baseline kpis computation

Having illustrated baseline kpis definitions in the previous section, this subsection
gives more details on the actual implementation. As explained before, the chosen
architecture to build this module is a Cloud Function. On the other hand the
storage solution is BigQuery. A corresponding dataset, entitled "kpis" is created
and a child table to store baseline kpis is created, with a specified schema. The
core libraries imported are Scikit-Learn, Pandas and Bamboo APi client. The
main entrypoint of the Cloud Function receives as input parameters the site id,
the device name, start and end time of the corresponding time period of interest,
and the type of baseline forecast, Day-ahead or Intra-day. The main steps of the
computation of baseline kpis are the following:

• Data loading: through the usage of Bamboo API client, measurements and
forecasts of the corresponding device are queried from InfluxDB, in relation
to specified start and end times

• Preprocessing: the measurementes and forecast pandas dataframe loaded are
concatenad and some check to find Nans in made

• Kpis computing: the four, before cited, kpis are computed making use of
metrics module of sklearn.

• Kpis loading: through the usage of BigQuery client, kpis computed are loaded
to the corresponding database, respecting the specific BigQuery table schema.

Figure 4.6: Baseline kpis cloud funtion general information

One of the purposes of the kpis pipeline is to be is to periodically scheduled so
an Airflow DAG, whose details are in the following sections, has been built to
automate the execution. So once the cloud function has been locally tested, a
DAG periodically every week, launched the kpis batch computation on a specific
site. The pipeline correctly computes and store results in BigQuey. In order to
make some data analysis some basic queries have been made to inspect aggregated
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results. The queries have been made in the SQL query engine built-in in BigQuery,
a very handleable and fast way to make queries and inspect results. Some results
of these queries are illustrated in the two following tables.

site_name device_name forecast_type start_time end_time cv_rmse mae bias max_err
site_name_1 load day-ahead 2022-05-01 00:00:00.000000 UTC 2022-05-28 00:00:00.000000 UTC 0.277 0.545 -0.419 2.671
site_name_1 load day-ahead 2022-05-13 15:06:27.000000 UTC 2022-06-10 15:06:27.000000 UTC 0.305 0.567 -0.489 2.671
site_name_1 load day-ahead 2022-05-14 22:05:31.000000 UTC 2022-06-11 22:05:31.000000 UTC 0.309 0.621 -0.542 2.671
site_name_1 load day-ahead 2022-05-21 22:15:47.000000 UTC 2022-06-18 22:15:47.000000 UTC 0.531 1.317 -1.247 5.768
site_name_1 load day-ahead 2022-05-28 22:05:54.000000 UTC 2022-06-25 22:05:54.000000 UTC 0.468 1.104 -0.937 5.768
site_name_1 load day-ahead 2022-06-04 22:01:05.000000 UTC 2022-07-02 22:01:05.000000 UTC 0.439 1.018 -0.786 5.768
site_name_1 load day-ahead 2022-06-11 22:05:43.000000 UTC 2022-07-09 22:05:43.000000 UTC 0.427 0.966 -0.647 5.768
site_name_1 load day-ahead 2022-06-18 22:05:40.000000 UTC 2022-07-16 22:05:40.000000 UTC 0.343 0.854 -0.495 4.907
site_name_1 load day-ahead 2022-06-21 13:50:44.000000 UTC 2022-07-19 13:50:44.000000 UTC 0.315 0.783 -0.415 4.203
site_name_1 load day-ahead 2022-06-21 14:23:00.000000 UTC 2022-07-19 14:23:00.000000 UTC 0.315 0.782 -0.415 4.203
site_name_1 load day-ahead 2022-06-26 00:06:03.000000 UTC 2022-07-24 00:06:03.000000 UTC 0.279 0.76 -0.417 3.863
site_name_1 load day-ahead 2022-07-03 00:00:25.000000 UTC 2022-07-31 00:00:25.000000 UTC 0.233 0.679 -0.364 3.842
site_name_1 load day-ahead 2022-07-10 00:00:32.000000 UTC 2022-08-07 00:00:32.000000 UTC 0.22 0.695 -0.386 3.842
site_name_1 load day-ahead 2022-07-17 00:02:05.000000 UTC 2022-08-14 00:02:05.000000 UTC 0.24 0.748 -0.133 3.764
site_name_1 load day-ahead 2022-07-24 00:06:20.000000 UTC 2022-08-21 00:06:20.000000 UTC 0.4 0.91 0.3 6.179
site_name_1 load day-ahead 2022-07-31 00:07:22.000000 UTC 2022-08-28 00:07:22.000000 UTC 0.45 0.982 0.201 6.179
site_name_1 load day-ahead 2022-08-07 00:00:50.000000 UTC 2022-09-04 00:00:50.000000 UTC 0.479 0.964 0.21 6.179
site_name_1 load day-ahead 2022-08-14 00:02:24.000000 UTC 2022-09-11 00:02:24.000000 UTC 0.556 0.951 0.134 6.179
site_name_1 load day-ahead 2022-08-21 00:02:03.000000 UTC 2022-09-18 00:02:03.000000 UTC 0.345 0.724 -0.494 5.499
site_name_1 load day-ahead 2022-08-28 00:01:01.000000 UTC 2022-09-25 00:01:01.000000 UTC 0.159 0.431 0.019 1.449
site_name_1 chiller1 day-ahead 2022-05-13 15:06:06.000000 UTC 2022-06-10 15:06:06.000000 UTC 0.507 0.186 -0.164 0.798
site_name_1 chiller1 day-ahead 2022-05-14 22:00:22.000000 UTC 2022-06-11 22:00:22.000000 UTC 0.512 0.218 -0.199 0.798
site_name_1 chiller1 day-ahead 2022-05-21 22:10:34.000000 UTC 2022-06-18 22:10:34.000000 UTC 0.938 1.042 -1.009 4.674
site_name_1 chiller1 day-ahead 2022-05-28 22:11:06.000000 UTC 2022-06-25 22:11:06.000000 UTC 0.878 0.833 -0.74 4.674
site_name_1 chiller1 day-ahead 2022-06-04 22:05:26.000000 UTC 2022-07-02 22:05:26.000000 UTC 0.865 0.789 -0.654 4.674
site_name_1 chiller1 day-ahead 2022-06-11 22:05:40.000000 UTC 2022-07-09 22:05:40.000000 UTC 0.862 0.758 -0.547 4.674
site_name_1 chiller1 day-ahead 2022-06-18 22:05:38.000000 UTC 2022-07-16 22:05:38.000000 UTC 0.723 0.744 -0.497 3.218
site_name_1 chiller1 day-ahead 2022-06-21 13:50:45.000000 UTC 2022-07-19 13:50:45.000000 UTC 0.684 0.716 -0.466 3.218
site_name_1 chiller1 day-ahead 2022-06-21 14:23:00.000000 UTC 2022-07-19 14:23:00.000000 UTC 0.683 0.718 -0.468 3.218
site_name_1 chiller1 day-ahead 2022-06-26 00:06:04.000000 UTC 2022-07-24 00:06:04.000000 UTC 0.607 0.742 -0.498 3.218
site_name_1 chiller1 day-ahead 2022-07-03 00:05:58.000000 UTC 2022-07-31 00:05:58.000000 UTC 0.518 0.696 -0.451 3.218
site_name_1 chiller1 day-ahead 2022-07-10 00:06:04.000000 UTC 2022-08-07 00:06:04.000000 UTC 0.487 0.728 -0.458 3.201
site_name_1 chiller1 day-ahead 2022-07-17 00:11:42.000000 UTC 2022-08-14 00:11:42.000000 UTC 0.513 0.74 -0.204 3.446
site_name_1 chiller1 day-ahead 2022-07-24 00:06:43.000000 UTC 2022-08-21 00:06:43.000000 UTC 0.646 0.772 0.109 3.446
site_name_1 chiller1 day-ahead 2022-07-31 00:02:03.000000 UTC 2022-08-28 00:02:03.000000 UTC 0.658 0.738 0.151 3.446
site_name_1 chiller1 day-ahead 2022-08-07 00:00:51.000000 UTC 2022-09-04 00:00:51.000000 UTC 0.68 0.688 0.152 3.446
site_name_1 chiller1 day-ahead 2022-08-14 00:02:34.000000 UTC 2022-09-11 00:02:34.000000 UTC 0.637 0.54 0.135 3.38
site_name_1 chiller1 day-ahead 2022-08-21 00:02:24.000000 UTC 2022-09-18 00:02:24.000000 UTC 0.371 0.394 -0.134 2.428
site_name_1 chiller1 day-ahead 2022-08-28 00:00:45.000000 UTC 2022-09-25 00:00:45.000000 UTC 0.339 0.32 0.007 1.995
site_name_2 load day-ahead 2022-05-01 00:00:00.000000 UTC 2022-05-28 00:00:00.000000 UTC 0.311 2716.61 938.892 18308.885
site_name_2 load day-ahead 2022-05-13 15:11:19.000000 UTC 2022-06-10 15:11:19.000000 UTC 0.349 565.82 -158.447 5713.279
site_name_2 load day-ahead 2022-05-14 22:05:36.000000 UTC 2022-06-11 22:05:36.000000 UTC 0.55 301.883 -91.839 5482.746
site_name_2 load day-ahead 2022-05-21 22:10:50.000000 UTC 2022-06-18 22:10:50.000000 UTC 0.707 8449.044 -7273.821 50564.253
site_name_2 load day-ahead 2022-05-28 22:05:41.000000 UTC 2022-06-25 22:05:41.000000 UTC 0.684 8154.865 -6878.915 50564.253
site_name_2 load day-ahead 2022-06-04 22:01:08.000000 UTC 2022-07-02 22:01:08.000000 UTC 0.641 7398.687 -5742.884 50564.253
site_name_2 load day-ahead 2022-06-11 22:00:44.000000 UTC 2022-07-09 22:00:44.000000 UTC 0.627 6811.457 -5240.647 50564.253
site_name_2 load day-ahead 2022-06-18 22:05:40.000000 UTC 2022-07-16 22:05:40.000000 UTC 0.532 5769.332 -4016.01 37378.661
site_name_2 load day-ahead 2022-06-21 14:22:11.000000 UTC 2022-07-19 14:22:11.000000 UTC 0.475 5084.019 -3303.914 36826.235
site_name_2 load day-ahead 2022-06-26 00:03:17.000000 UTC 2022-07-24 00:03:17.000000 UTC 0.431 4823.2 -2896.853 36826.235
site_name_2 load day-ahead 2022-07-03 00:05:57.000000 UTC 2022-07-31 00:05:57.000000 UTC 0.384 4647.466 -2399.683 36826.235
site_name_2 load day-ahead 2022-07-10 00:07:02.000000 UTC 2022-08-07 00:07:02.000000 UTC 0.41 4779.497 -953.797 28735.185
site_name_2 load day-ahead 2022-07-17 00:01:31.000000 UTC 2022-08-14 00:01:31.000000 UTC 0.434 4341.915 62.945 28735.185
site_name_2 load day-ahead 2022-07-24 00:07:52.000000 UTC 2022-08-21 00:07:52.000000 UTC 0.476 3950.83 1607.243 28735.185
site_name_2 load day-ahead 2022-07-31 00:02:52.000000 UTC 2022-08-28 00:02:52.000000 UTC 0.476 3188.969 1921.496 28735.185
site_name_2 load day-ahead 2022-08-07 00:07:16.000000 UTC 2022-09-04 00:07:16.000000 UTC 0.363 2554.521 931.169 26625.338
site_name_2 load day-ahead 2022-08-14 00:07:11.000000 UTC 2022-09-11 00:07:11.000000 UTC 0.391 2658.885 701.368 26625.338
site_name_2 load day-ahead 2022-08-21 00:00:54.000000 UTC 2022-09-18 00:00:54.000000 UTC 0.275 2222.475 -571.287 15850.478
site_name_2 load day-ahead 2022-08-28 00:02:49.000000 UTC 2022-09-25 00:02:49.000000 UTC 0.256 1822.179 -1267.963 15850.478
site_name_2 hvacpbd day-ahead 2022-05-13 15:11:19.000000 UTC 2022-06-10 15:11:19.000000 UTC 1.625 143.62 -106.654 3114.44

Table 4.1: Day-ahead baseline kpis query: load and chiller1 devices of Alamos site
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site_name device_name forecast_type AVG_cv_rmase MIN_cv_rmse MAX_cv_rmse AVG_mae MIN_mae MAX_mae AVG_bias MIN_bias MAX_bias AVG_max_err MIN_max_err MAX_max_err
site_name load day-ahead 0.35 0.16 0.56 0.82 0.43 1.32 -0.37 -1.25 0.3 4.57 1.45 6.18
site_name chiller1 day-ahead 0.64 0.34 0.94 0.65 0.19 1.04 -0.31 -1.01 0.15 3.22 0.8 4.67
site_name load day-ahead 0.46 0.26 0.71 4223.24 301.88 8449.04 -1822.79 -7273.82 1921.5 30500.61 5482.75 50564.25
site_name hvacpbd day-ahead 1.64 0.81 4.14 1011.07 143.62 1819.04 -279.6 -1798.57 1003.99 5974.06 3114.44 8271.31
site_name hvacpbi day-ahead 1.56 0.78 3.76 959.74 164.21 1882.68 -384.68 -1728.39 597.04 8655.49 1963.59 12100.63
site_name hvacp12d day-ahead 7.35 4.89 12.95 0.53 0.09 0.85 -0.47 -0.85 -0.04 39.08 8.0 68.42
site_name hvacp12i day-ahead 1.38 1.1 1.86 431.05 30.95 557.43 -318.97 -540.36 -30.38 3761.96 1276.0 4398.6
site_name hvacp34d day-ahead 0.93 0.41 1.28 347.6 184.61 558.88 -237.94 -549.66 -93.75 2628.53 804.35 3929.09
site_name hvacp34i day-ahead 2.25 1.84 2.9 359.49 212.47 608.17 -135.72 -521.86 121.75 6284.66 1717.08 9039.68
site_name hvacp12cd day-ahead 6.67 4.33 8.61 1.23 0.36 2.01 -0.54 -1.28 0.23 68.56 9.0 107.52
site_name hvacp12ci day-ahead 4.9 3.36 7.1 1.76 0.5 3.18 -1.43 -3.18 -0.07 66.63 15.59 90.92
site_name hvacp34cd day-ahead 3.09 0.04 8.91 1113.64 4.39 2021.62 -417.56 -2010.77 845.83 6463.33 11.74 9285.7
site_name hvacp34ci day-ahead 2.25 1.25 5.13 461.68 47.96 808.81 -84.27 -808.42 381.85 3554.05 805.58 6284.0

Table 4.2: Day-ahead baseline kpis aggregation query: kpis average, maximum
and minimum, grouped by device and site

4.2 Orchestration
This is a core section as are exposed all the implementations related to Orchestration,
the point where every module is scheduled and automated in order precisely carry
on reliable production tasks. As a result of the previous chapter, Airflow has been
chosen to be the Orchestration tool. Before focusing on DAGs implementations,
multiple ways or Airflow installation are illustrated as they all have been tried, for
different reasons. The history the the reasons behind different kind of installations
are provided:

• Google Could Composer (Managed Airflow)

• Airflow installed in a virtual machine hosted on Google Compute Engine

• Airflow Dockerized container

As a powerful and production Airflow installation can be hard, not so much to build
but instead to maintain due to its complex architecture, especially in case of failures,
and this can not happen when there are production DAGs which schedule several
important services. The first choice made about of Airflow mounting has been
to making use of Google Cloud Composer, the managed Airflow built-in product
of GCP, in which users can create an Airflow instance specifying environment
resources, the kind of Scheduler, of Metastore and basically everything that is
configurable. The main pro of this installation is that once the Airflow environment
is created, users can forget everything about maintenance and architecture as
everything is carried on by Google and, for this experience, we can say that it has
worked very well. The main disadvantage is that is not cheap: a relatively small
airflow instance might cost 350/400 $/month and comparing actual orchestration
needs, even if free GCP credit has been used, after a while this option was discarded
and Composer has been shut down.
After having discarded Composer, Airflow has been manually installed in a virtual
machine hosted on Google Compute Engine. The main, which are available in
the code snippets section, include virtual environment creation, dependencies
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installation, Executor changed from Sequential to Local, PostGres setting as
backend Metastore, and custom configurable options such as number of task retries.
In order to make the webserver and the scheduler run when the terminal of the VMs,
used to launch these services, are closed, webserver and scheduler are executed
as daemons. This installation is very cheap but does not give many stability
guarantees: in one month the environment stopped working, and so the instance
has been installed again from scratch.
The third installation evolution has been made through Docker. First, a Dockerfile
of an Airflow academic environment has been created, the image built and the
container activated. Then, in coordination with the DevOps engineer, a more
sophisticated and production-oriented Dockerized version has been mount, and it
is the one the is currently in usage, hosted in Google Compute Engine. The main
advantages of this installation approach are the ones related to all the benefits
derived from Docker containers, such portability and fast deployment, the fact
that is cheap, that for testing or developing purposes the Airflow container can be
launched in local making experiments without affecting the production environment.

4.2.1 Orchestration processes definitions
Having identified the correct tool to address Orchestration, the Airflow features to be
applied and to be exploited such as temporary scheduling, intra-jobs dependencies,
retry policies and log monitoring, this section focuses on the different Airflow DAGs
definitions related to different data and processes. The services that need to be
scheduled and automated are the following:

• Baseline and Flexibility Forecast

• KPIs

• Weather data

• Market data

Regarding forecasts temporary scheduling, for every site of interest, for every
corresponding device, baseline forecasts have to be scheduled according to the
baseline forecast mode: in Day-ahead, once a day, otherwise,in Intra-day mode,
every hour. In relation of intra-jobs dependencies, some forecasts can be done in
parallel at the same time and other that have to be done in a second phase, such
as batteries or meters. Regarding retry policies we are interested in retry a forecast
task three times more in case of retry state of the task, in the case it definitely
fails to send an internal notification, es explained in the next section. Regarding
flexibility forecasts temporary scheduling, the follow the same scheduling of baseline
forecasts in relation to Day-ahead on Intra-day mode but have logic dependencies
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from the baseline forecast device from which they depend and so they have to made
after: for example, the thermal zone 1 and 2 depend on the thermal load 0, and so
their flexibility forecast must be done after and in case of success of the baseline
forecast of the thermal load 0.
Baseline forecast kpis, for design choices, are scheduled once a week and compute
the kpis on the past 28 days, both for Day-ahead and Intra-day mode. In this case
there are not particular logic dependencies and the task retries policy is set in the
same way as baseline and flexibility forecasts DAGs.
Weather forecast service is scheduled four times a day and downloads data for the
following week: in this way every six hours weather forecast data are updated in
order to have more reliable data to be used for baseline and consequently flexibility
forecasts. There are no particular logic dependencies and the task retires policy is
set in the same way as before.
Market data DAGs follow a scheduling in relation of the time of publication: they
are triggered before the maximum delay that can happen when a market prices
time series is publish by Esios, the web where a lot of data regarding different
actors involved in energy paradigm are published. There are not particular logic
dependencies dependencies and the task retires policy is set in the same way as
before.
Once that the general services DAGs definitions are set, before moving to the actual
implementation it is important to define Backfill and Callback policies.
Backfill is the Airflow feature that allows to re-launch DAGs runs in the past.
It is available through the Airflow CLI and in the Web Interface in the re-run
options. For our particular requirements, the input time parameters of the scheduled
services, such as baseline, flexibility forecasts, kpis, market and weather data must
be coherent to the specific DAG run date and not to the date and time when they
are actually triggered. For this reason, every input time parameter that is fed for
the scheduled services is computed from the specif DAG run logic data in order
to make a run in the past, in case of failure, with the correct input parameters
without make modifications in the DAG code.
Callback is an important feature that allows to call a specific function in relation
of the particular state of the task, that can be success, retry, failure, or service
level agreement missing. For every Bamboo service triggered, a callback function is
called in the case of failure in order to send an internal notification as explained in
the next section.

4.2.2 Orchestration processes implementations
This section is intended to give an overview of the actual implementations of the
Airflow DAGS and their features. For every kind of services a particular concrete
example among the production DAGS is illustrated. For every Dag, every kind of
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Operator used and its purposes are explained, ass well logic dependencies and data
transfer between different tasks.

Baseline and Flexibility Forecast DAG

Among baseline and flexibility forecast DAGs, a particular site has been chosen
(whose name is not specified for privacy reasons), which has not not many devices
and so fits well for graphical representation, in which dependencies are clearly
visible. There are two different DAGs addressing this particular service, one for
Day-ahead mode and one for Intra-day mode, as they have different schedule
intervals, respectively once a day and every hour. In this particular DAG we can
find three different main jobs that are needed to carry on forecasts:

• Authentication: as Cloud Run instances of baseline and flexibility forecast
backends are private the user of the module must authenticated. There are
multiple way to address this issue in Airflow without hard-coding tokens
and passwords. As a design choice, it has been to make an on-demand
authentication through the usage of the GCP CLI

• Time input parameters extraction: in order to correctly being able to exploit
backfill Airflow feature, time input parameters for the modules triggering must
be computed from the logic the of the specific DAG run

• Baseline and Flexibility modules triggering: to make a forecast for a specific
device, an HTTP endpoint call to the corresponding API must be made.

In order to implement these tasks, different kind of Operators are used:

• BashOperator (Authentication): as to utilize the token to authenticate to the
corresponding module a bash command with the usage of the Google Cloud
CLI, the operator use is the Bashoperator as it serves for launching bash
commands. The value of the output of the gcloud auth command, which is
the token, is automatically pushed through XCom

• PythonOperator (Time input parameters extraction): as we interested to
correctly compute time input parameters from the logic date of the DAG run,
and so to compute some Python preprocessing, the PythonOperator addresses
this kind of task. The parametes include_context is set to True in order to
have available some variables related to the specif DAG run, such the logic
date, in the task instance.

• SimpleHttpOperator (Baseline and Flexibility modules triggering): this Oper-
ator is made to make HTTP endpoints call and this is exactly what is needed
to perform the forecast. To use this operator in the http_conn_id parameter
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must be specified the id of the connection where it is stored the URL or the
module. In the endpoint parameter it is specified the particular endpoint to call
with all its path parameters. Some data input parameters regarding particular
forecast features are passed to the request in the data. Some of them are
hard-coded, others, such as start-time and end-time of the forecast are pulled
from XCom. The same stands of token pueel from the BashOperator instance
and passed to the headers parameters. All this pull XCom values are passed
to parameters through the usage of JinJa templating as all these Operator
parameters are templated fields. In the on_failure_callback parameter it is
specified the function to be called in case of task failure and it is how we send
an internal notification as it is described in the next section

Before getting the token for authentication purposes and start making the forecast,
an API call is made to be sure that the baseline forecast module is active, through
the usage of a SimpleHttpOperator. This is the starting point of these Dags. Once
all Operator task instances are defined, logic dependencies are defined:

• Baseline API availability –> Baseline Authentication

• Extract time input parameters –> Baseline Forecast, Flexibility Forecast

• Baseline Authentication –> Baseline Forecast

• Flexibility Authentication –> Flexibility Forecast

• Baseline –> Flexibility logic dependencies.

The graph view is inserted to give a graphical representation.

Figure 4.7: specific site Day-Ahead baseline and flexibility forecast DAG
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Kpis DAG

Among baseline kpis DAGs, a particular one is chosen to be the illustrated one.
Both kpis DAGs of Day-ahead baseline and Intra-day mode are scheduled once a
week. Two main jobs can be identified to execute this DAG:

• Authentication: as Cloud Function instances of baseline kpis are private the
user of the module must authenticated. As a design choice, it has been to
make an on-demand authentication through the usage of the GCP CLI

• Time input parameters extraction: in order to correctly being able to exploit
backfill Airflow feature, time input parameters for the moduls triggering must
be computed from the logic the of the specific DAG run

• Baseline kpis: to make a forecast for a specific device, an HTTP endpoint call
to the corresponding Cloud Function must be made.

In order to implement these tasks, different kind of Operators are used:

• BashOperator (Authentication): as to utilize the token to authenticate to the
corresponding module a bash command with the usage of the Google Cloud
CLI, the operator use is the Bashoperator as it serves for launching bash
commands. The value of the output of the gcloud auth command, which is
the token, is automatically pushed through XCom

• PythonOperator (Time input parameters extraction): as we interested to
correctly compute time input parameters from the logic date of the DAG run,
and so to compute some Python preprocessing, the PythonOperator addresses
this kind of task. The parametes include_context is set to True in order to
have available some variables related to the specif DAG run, such the logic
date, in the task instance.

• SimpleHttpOperator (Baseline kpis): this Operator is made to make HTTP
endpoints call and this is exactly what is needed to perform the forecast. To
use this operator in the http_conn_id parameter must be specified the id of
the connection where it is stored the URL or the module. Some data input
parameters regarding particular kpis module requirements such as site id and
device name are passed to the request in the data. Some of them are hard-coded,
others, such as start-time and end-time of the kpis computation are pulled
from XCom. The same stands of token pulled from the BashOperator instance
and passed to the headers parameters. All this pulled XCom values are passed
to parameters through the usage of JinJa templating as all these Operator
parameters are templated fields. In the on_failure_callback parameter it is
specified the function to be called in case of task failure and it is how we send
an internal notification as it is described in the next section
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. Once all Operator task instances are defined, logic dependencies are defined:

• Authentication -> Extract time input parameters

• Extract time input parameters -> Kpis computation

Market prices DAG

Among all several market prices DAGs, which have different schedule intervals due
to different publication times, the Spain Spot market is chosen as a sample. This
series is published once a day and consists of the following day energy prices for
the retailers companies in the Spain market. Apart the different schedule intervals,
the programming logic is very similar to the kpis DAG as market prices module
is a Cloud Function and the authentication process follow the same logic. In
order to not be too repetitive, is is omitted the description of the jobs and the
operators used as they are the same of the previously exposed DAGs: BashOperator.
PythonOperator and SimpleHTTPOperator. The graph view is inserted to give a
graphical representation.

Figure 4.8: market prices DAG

Weather forecast DAG

There is only one weather forecast DAG, which is scheduled every six hour. Apart
the schedule intervals, the programming logic is very similar to the kpis DAG and
market prices DAG as weather forecast module is a Cloud Function and the authen-
tication process follow the same logic. In order to not be too repetitive, is is omitted
the description of the jobs and the operators used as they are the same of the previ-
ously exposed DAGs: BashOperator. PythonOperator and SimpleHTTPOperator.
The graph view is inserted to give a graphical representation.
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4.3 Alerting
As a result of of the previous chapter, in this section the Alerting policies definitions
and implementations are described. From one hand, some events related to devices
are detected and alerts sent internally or externally, through the implementations
of Beam pipelines, on the other hand, modules executions, which are managed
by Airflow, are monitored making use of callback functions, sending internal
notifications.

4.3.1 Alerting policies definitions
This section focuses in the technologies used for internal notifications, which is
a mixed approach with Google Error Reporting and Slack notification API. The
external notifications are planned with the usage of an email provider but currently
are not yet implemented: the simulation is carried only by internal logging detection.

Devices measurements and execution events events

Two main events have been identified to implement policies, for both internal and
external notifications:

• A devices sends a out-of-bounds measurements

• A devices has stopped or restarted sending data

As we have planned to utilize PubSub and Beam/Dataflow to manage data cleaning
and loading, it has been decided to include in this architecture these two events
detection as we are interested in scalable environment, almost real-time notification
in streaming mode as we approach data ingestion in streaming. The processes
execution monitored are all the services whose execution is managed by Airflow:

• market data download failed (internal notifications)

• weather data forecast failed (internal notifications)

• baseline and flexibility forecast training (internal notifications)

• baseline and flexibility forecast fail (internal notifications)

• kpis computation failed (internal notifications)

After the retries attempts of Task, when its state is set to failure by the Scheduler,
a callback function is triggered sending and internal notification as explained in
the next section.
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4.3.2 Alerting policies implementations
In this section are described the actual implementations of internal notifications,
making use of Google Error reporting and Slack notifications API in callback
functions of Airflow tasks, and external notification, whose goal is to implement an
Email service to which flexumers subscribe: this feature is in development phase
and for these experiments the correspondent events are detected and internally
logged to implement a solid logic for event detection and lay the foundations to
future developments and improvements.

Devices measurements events detection

In this subsection are exposed the approaches to detect measurements events in the
Beam/Dataflow paradigm. For what concerns out-of-bounds values detection there
is no need to implement a new pipeline as this kind of event is already detected in
the cleaning and loading pipeline: as we are reading incoming PubSub messages
with a Global Window policy, and so processing is triggered as soon as a new
measurement is ingested, in the case of an out-of-bounds value the data is not
stored in the the DB but the event is internally log, to test this implementation,
and, when the the Email notification service is implemented, the corresponding
API endpoint to send external and internal notification will be called.

Figure 4.9: Cleaning, loading and out-of-bounds event detection logs

To detect when a particular device has stopped or restarted sending data a different
pipeline has been created as it makes use of different logic, like Sliding Windows
policy for example. It consists of a streaming pipeline that is listening for incoming
PubSub messages: in other words is a parallel streaming pipeline listing for the
same data as the cleaning and loading pipeline. Telemetry start and telemetry stop
are the names given to these events and are detected in the same pipeline.
In order to correctly implement this Telemetry pipeline, the sending data frequency
of the devices of a site is fundamental to reliably implement Sliding Window
policies. In the parsed input parameters, apart for general information needed
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for the pipeline itself to be executed in the Dataflow Engine, are also included
parameters to build the sliding windows:

• window size: the length in seconds of the window

• window period: the step of the slide of the window

• window split: the amount of seconds to split the windows in sub-windows.
Usually it is the half of window size, as in this experiment. However it is has
been left to be a custom parameter, as different sub-windows logic could be
implemented.

The telemetry pipeline consists of the following steps:

• Read from Pub/Sub topic: through the usage of Beam io library, more precisely
of PTransorm ReadFromPubSUB which allows to read utf-8 string payloads
from Cloud Pub/Sub, the pipeline is able ingest PubSub messages from a
PubSub source, which in this case is a topic as the specific topic to carry on
the simulation is specified in the input parameter of the PCollection

• Covert bytes to dictionary: making use of the classical Map PTransform, each
incoming record is decoded to a dictionary from utf-8 encoding, through the
usage of a simple lambda function.

• Map for events detection requirements: for each incoming massage, some
useful information are extracted and it is emitted a key-value pair whose key is
a tuple ,containing the start and end timestamp of the corresponding window,
site and device name, and value is a tuple with the timestamp associated to
the PubSub ingestion and the threshold timestamp of the specific window
in in order to correctly establish whether the measurement belongs to the
first-half sub-window or to the second one.

• Sliding window application: on the streaming flow is applied the Sliding
Window policy with the related parsed arguments as input parameters

• GroupbyKey: this classic transformation is applied to group all the elements
with the same key, and so all the same devices measurements arrived in a
specific window.

• Telemetry detection: a custom DoFn is created to be applied on the grouped
elements. Comparing values of the grouped elements, and so ingestion times-
tamp and threshold timestamp of the windows, are counted the elements
arrived respectively in the first or in second sub-half windows:
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– if the number of counted elements of the first sub-half window is positive
and there are not elements in the second half, the event Telemetry Stop
is detected and internally logged, and in the future the endpoints to send
the corresponding notification mail will be called

– if the number of counted elements of the second sub-half window is positive
and there are not elements in the first half, the event Telemetry Start is
detected and internally logged, and in the future the endpoints to send
the corresponding notification mail will be called

Figure 4.10: Telemetry pipeline throughput

Figure 4.11: Telemetry events logs

Modules execution failures detection

These kinds of events are detected in Airflow, as it is the Orchestrator of all the
services. A python script is coded and uploaded in the DAGs folder in order to
be globally imported by all the DAGs and used as callback function in case of
failure of the SimpleHttpOperator that calls a Bamboo module on GCP, which is
Cloud Function or a Cloud Run instance. This function makes use of two different
libraries to send internal notifications:
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• Google Error Reporting: this library is used to send the log the corresponding
exception of the failed task. As the corresponding module called, which is
hosted on GCP, has already the corresponding log of the failed module call.
we basically already have this failed event logged in Error Reporting, but it
has been decided to send alnso the corresponding information of the specific
task id, DAG id and DAG run to correctly isolate the event

• Slack library: this API is used to send the corresponding log of the specific
Airflow task failed in the dedicated Slack notification channel in order to
immediately receive a sound and visual alert everytime a module called
through Airflow task, after the retries option, it is definitively marked as
failed, to be able to be immediately be aware and understand the causes and
if, necessary, begin to debug and improve product features.
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Chapter 5

Conclusion

The idea behind this thesis work is to create an end-to-end Data Engineering
architecture for this particular use case for Bamboo Energy, a tech start-up operating
in the energy sector. The development of this work has been made possible first
doing an internship and then being included in the product team. The overall
research and implementation process can be conceptually divided in four different
phases. The first step consisted in the study of the high level processes of Bamboo
Energy, its main products and its features, its placement in the industry sector
and the figure involved in the energy paradigm. After, the focus has been moved
in topics related to Data Engineering, covering ETL and aggregation pipelines,
Orchestration and Alerting processes. The goal was to make a snapshot of Bamboo
Energy situation related to these fields, in order to identify strengths and weaknesses,
to have a base from which begin a research and exploration work. The third phase
can be identified in the pure exploration of possible new paths, comparing and
studying different technologies. Finally, among different solutions, some have
been chosen to be implemented, utilizing as methodology product and budget
constraints, platform and cloud environment compatibility. The outcome is a very
practical end-to-end use case covering all aspects from data sources ingestion to
transformation and aggregation pipelines, from processes Orchestration to Alerting
policies.
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Code Snippets

1 import j son
2 import l ogg ing
3 from datet ime import datetime , t imede l ta
4

5 from a i r f l o w . models import DAG
6 from a i r f l o w . ope ra to r s . bash import BashOperator
7 from a i r f l o w . ope ra to r s . python import PythonOperator
8 from a i r f l o w . p rov ide r s . http . ope ra to r s . http import SimpleHttpOperator
9 from a i r f l o w . p rov ide r s . http . s e n s o r s . http import HttpSensor

10 from a i r f l o w . u t i l s . task_group import TaskGroup
11

12 from dags . r epor t_er ro r import repor t_er ro r
13

14 import d a t e u t i l . t z as tz
15

16 de fau l t_args = { ’ start_date ’ : datet ime (2020 , 1 , 1) }
17

18

19 de f extract_date_parameter (∗∗ kwargs ) :
20 t s = kwargs [ ’ t s ’ ]
21 t i = kwargs [ ’ t i ’ ]
22 run_id = kwargs [ ’ run_id ’ ]
23 l o gg ing . i n f o ( f ’ run id : {run_id} ’ )
24 i f run_id . s t a r t s w i t h ( ’ scheduled ’ ) :
25 l o g i c a l_dat e = datet ime . s t rpt ime ( ts , ’%Y−%m−%dT%H:%M:%S%z ’ )
26 e l i f run_id . s t a r t s w i t h ( ’ manual ’ ) :
27 l o g i c a l_dat e = datet ime . s t rpt ime ( ts , ’%Y−%m−%dT%H:%M:%S.% f%z ’

)
28 l o g i c a l_dat e = log i c a l_da t e . r e p l a c e ( microsecond=0)
29 e l s e :
30 r a i s e NotImplementedError (
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31 ’ only scheduled and manual DAG runs are implemented ’
32 )
33 l og i ca l_date_loca l_t ime = log i ca l_dat e . ast imezone (
34 tz=tz . g e t t z ( ’ Europe/Madrid ’ )
35 )
36 # start_date_local_time = log ica l_date_loca l_t ime
37 i f run_id . s t a r t s w i t h ( ’ scheduled ’ ) :
38 i f 0 <= log ica l_date_loca l_t ime . hour <= 14 :
39 # t h i s cor responds to run scheduled at 20 :35 UTC
40 # t h i s i s a s i t u a t i o n where l o g i c a l data and s t a r t date

are
41 # in the same day as the schedu le i n t e r v a l i s twice a

day
42 start_date_local_time = log ica l_date_loca l_t ime . r e p l a c e (
43 hour=22, minute=0, second =0, microsecond=0
44 )
45 e l i f 15 <= log ica l_date_loca l_t ime . hour <= 22 :
46 # t h i s cor responds to run scheduled at 14 :35 UTC
47 # t h i s i s a s i t u a t i o n where l o g i c a l data and s t a r t date

have
48 # d i f f e r e n t ( cons e cu t i v e ) days as the schedu le i n t e r v a l

i s twice
49 # a day
50 start_date_local_time = log ica l_date_loca l_t ime +

t imede l ta ( days=1)
51 start_date_local_time = start_date_local_time . r e p l a c e (
52 hour=14, minute=0, second =0, microsecond=0
53 )
54 e l s e :
55 start_date_local_time = log ica l_date_loca l_t ime
56

57 start_date_utc = start_date_local_time . ast imezone (
58 tz=tz . g e t t z ( ’ utc ’ )
59 ) . s t r f t i m e ( ’%Y−%m−%dT%H:%M:%SZ ’ )
60 l o gg ing . i n f o (
61 f ’ s tart_date parameter o f b a s e l i n e f o r e c a s t ( l o c a l time ) : ’
62 f ’ { start_date_local_time } ’
63 )
64 l o gg ing . i n f o (
65 f ’ s tart_date parameter o f thermalzone f l e x i b i l i t y f o r e c a s t ’
66 f ’ ( l o c a l time ) : { start_date_local_time } ’
67 )
68

69 t i . xcom_push( key=’ start_date ’ , va lue=start_date_utc )
70

71 l o gg ing . i n f o (
72 f ’ s tart_date parameter o f b a s e l i n e f o r e c a s t (UTC) : {

start_date_utc } ’
73 )
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74 l o gg ing . i n f o (
75 f ’ s tart_date parameter o f thermalzone f l e x i b i l i t y f o r e c a s t ’
76 f ’ (UTC) : { start_date_utc } ’
77 )
78

79

80 with DAG(
81 ’ s i t e_examp le_da_base l i n e_f l ex ib i l i t y_fo r e ca s t ’ ,
82 de fau l t_args=default_args ,
83 s chedu l e_ in t e rva l=’ 35 12 ,20 ∗ ∗ ∗ ’ ,
84 catchup=False ,
85 tags =[
86 ’ b a s e l i n e _ f o r e c a s t ’ ,
87 ’ day−ahead ’ ,
88 ’ f l e x i b i l i t y _ f o r e c a s t ’ ,
89 ] ,
90 ) as dag :
91 b a s e l i n e _ t r a i n i n g _ s i t e s = {
92 ’ site_name ’ : ( ’ 1 ’ , [ ’ load ’ , ’ c h i l l e r 0 ’ , ’ pv1 ’ , ’ pv2 ’ ] ) ,
93 }
94

95 auth_basel ine_api = BashOperator (
96 task_id=’ auth_basel ine_api ’ ,
97 bash_command=(
98 ’ gc loud auth pr int −iden t i t y −token ’
99 ’"−−audiences=XXXX" ’

100 ) ,
101 )
102

103 token_base l ine = (
104 " {{ task_instance . xcom_pull ( task_ids =’ auth_basel ine_api ’ ) }} "
105 )
106

107 i s_base l i ne_ap i_ava i l ab l e = HttpSensor (
108 task_id=’ i s_base l i ne_ap i_ava i l ab l e ’ ,
109 http_conn_id=XXXXXX,
110 endpoint=’ / ping ’ ,
111 )
112

113 extract_date_parameter = PythonOperator (
114 task_id=’ extract_date_parameter ’ ,
115 python_cal lab le=extract_date_parameter ,
116 provide_context=True ,
117 )
118 a u t h _ f l e x i b i l i t y _ a p i = BashOperator (
119 task_id=’ a u t h _ f l e x i b i l i t y _ a p i ’ ,
120 bash_command=(
121 ’ gc loud auth pr int −iden t i t y −token ’
122 ’"−−audiences=XXXXXX’
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123 ) ,
124 )
125

126 t o k e n _ f l e x i b i l i t y = (
127 " {{ task_instance . xcom_pull ( task_ids =’ a u t h _ f l e x i b i l i t y _ a p i ’ )

}} "
128 )
129

130 f l e x i b i l i t y_the rma l_zone s = [
131 ’ camara1 ’ ,
132 ’ camara0 ’ ,
133 ’ camara4 ’ ,
134 ’ camara8 ’ ,
135 ’ congelado1 ’ ,
136 ’ congelado2 ’ ,
137 ]
138 s tart_date = (
139 " {{ task_instance . xcom_pull ( task_ids =’ extract_date_parameter

’ , "
140 " key=’ start_date ’ ) }} "
141 )
142 with TaskGroup ( ’ f l e x i b i l i t y _ f o r e c a s t _ b l o c k ’ ) as

f l e x i b i l i t y _ f o r e c a s t _ b l o c k :
143 f o r thermal_zone in f l e x i b i l i t y_the rma l_zone s :
144 data = {
145 ’ f o r ecas t_type ’ : ’ day−ahead ’ ,
146 ’ f r equency ’ : ’ quar te r ’ ,
147 ’ i n i _ p r e d i c t i o n ’ : start_date ,
148 }
149 current_task = SimpleHttpOperator (
150 task_id=f ’ { thermal_zone} _ f l e x i b i l i t y _ f o r e c a s t ’ ,
151 http_conn_id=’XXXXXX’ ,
152 endpoint=’XXXXXXXXX’ ,
153 method=’POST ’ ,
154 data=json . dumps( data ) ,
155 headers={ ’ Author i zat ion ’ : ’ Bearer ’ +

t o k e n _ f l e x i b i l i t y } ,
156 log_response=True ,
157 on_fa i lu re_ca l lback=report_error ,
158 )
159 with TaskGroup ( ’ base l ine_block ’ ) as base l ine_block :
160 f o r dev i c e in b a s e l i n e _ t r a i n i n g _ s i t e s [ ’ site_name ’ ] [ 1 ] :
161 i f dev i c e in ( ’ load ’ , ’ c h i l l e r 0 ’ ) :
162 data = {
163 ’ f r equency ’ : ’ quar te r ’ ,
164 ’ i n t e r po l a t i on _t h r e s ho ld ’ : 60 ,
165 ’ da_forecast_hor izon ’ : 1 ,
166 }
167 current_task = SimpleHttpOperator (
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168 task_id=f ’ { dev i ce } _da_forecast ’ ,
169 http_conn_id=’XXXXXX’ ,
170 endpoint=’XXXXXXXX’ ,
171 method=’POST ’ ,
172 data=json . dumps( data ) ,
173 headers={ ’ Author i zat ion ’ : ’ Bearer ’ +

token_base l ine } ,
174 log_response=True ,
175 execution_timeout=t imede l ta ( minutes =20) ,
176 on_fa i lu re_ca l lback=report_error ,
177 )
178 i f dev i c e == ’ c h i l l e r 0 ’ :
179 current_task >> f l e x i b i l i t y _ f o r e c a s t _ b l o c k
180 e l i f dev i c e in ( ’ pv1 ’ , ’ pv2 ’ ) :
181 data = { ’ f o r eca s t_f r equency ’ : ’ quar te r ’ }
182 current_task = SimpleHttpOperator (
183 task_id=f ’ { dev i ce } _da_forecast ’ ,
184 http_conn_id=’XXXXXXXX’ ,
185 endpoint=’XXXXXXXX’ ,
186 method=’POST ’ ,
187 data=json . dumps( data ) ,
188 headers={ ’ Author i zat ion ’ : ’ Bearer ’ +

token_base l ine } ,
189 log_response=True ,
190 execution_timeout=t imede l ta ( minutes =20) ,
191 on_fa i lu re_ca l lback=report_error ,
192 )
193

194 i s_base l i ne_ap i_ava i l ab l e >> auth_basel ine_api >> base l ine_block
195 a u t h _ f l e x i b i l i t y _ a p i >> f l e x i b i l i t y _ f o r e c a s t _ b l o c k
196 extract_date_parameter >> [ base l ine_block ,

f l e x i b i l i t y _ f o r e c a s t _ b l o c k ]
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