

Politecnico di Torino

Master Degree in Communication and Computer Networks Engineering

Master’s Degree Thesis

Integrating DevOps checklist and pilot sample project

Supervisor: Candidate:

Prof. Maurizio Morisio

Co-Supervisors:
Daniele Sabetta
Matteo Ricardo Bonfanti

OCTOBER 2022

Klementin Hasani

i

Table of Contents

Acknowledgment ___ vi

Chapter 1 ___ 1

1. Introduction __ 1

1.1 Thesis Objective ___ 1

Chapter 2 ___ 3

2. DevOps __ 3

2.1 How DevOps Developed ___ 3

2.2 The nine Key Stages __ 5

2.3 DevOps Pipeline ___ 6

2.3.1 Components of a DevOps pipeline ___ 6

2.3.2 Solutions for DevOps practices ___ 7

2.4 Automation in DevOps __ 7

2.4.1 Software for DevOps automation ___ 8

2.5 Tools Ecosystem ___ 9

2.6 Companies Worldwide __ 9

Chapter 3 __ 15

3. Azure DevOps __ 15

3.1 Azure Boards __ 15

3.2 Azure Pipelines ___ 16

3.3 Azure Repos ___ 17

3.4 Azure Test Plans __ 17

3.5 Azure Artifacts ___ 18

3.6 Azure DevTest Labs ___ 18

3.7 Application Insights ___ 18

3.8 Application Life Cycle with Azure ___ 20

Chapter 4 __ 22

4. Agile Manifesto __ 22

4.1. The 4 Agile Values __ 22

ii

4.1.1 The 12 Agile Principles ___ 24

4.2. Scrum __ 24

4.3. Work Item Process __ 27

Chapter 5 __ 29

5. Integrated Infrastructure ___ 29

5.1 The key to IT Success __ 29

5.2 Achieving Infrastructure Integration __ 29

Chapter 6 __ 30

6. Cloud adoption ___ 30

6.1 Kubernetes __ 33

6.2 Kubernetes & Docker __ 36

Chapter 7 __ 37

7. Git ___ 37

7.1 Git Flow __ 38

7.2 Trunk based development __ 39

7.3 GitHub, GitLab, One Flow __ 40

7.4 Top Git Hosting Services for 2022 __ 40

Chapter 8 __ 43

8. To DevOps OR NOT to DevOps? __ 43

Chapter 9 __ 44

9. Introduction ___ 44

9.1 Building process ___ 45

9.1.1 Qualification ___ 45

9.2 Shopping Project Overview ___ 48

9.2.1 Microservices 1 – Shopping MVC Client Application __ 49

9.2.2 Microservices 2 – Shopping API Application __ 53

9.2.3 Microservices 3 – MongoDb Database __ 55

9.2.4 Azure Kubernetes Services deployment __ 65

iii

List of Figures

Figure 1: DevOps Lifestyle ___ 1
Figure 2: DevOps __ 3
Figure 3: “10+ Deploys per Day: Dev and Ops Cooperation at Flickr” presentation & John
Allspaw (right person) and Paul Hammond (left person) _______________________________ 4
Figure 4: DevOps Stages __ 6
Figure 5: DevOps Tools Ecosystem 2021 __ 9
Figure 6: HP platform ___ 11
Figure 7: Etsy’s strategy ___ 11
Figure 8: Benefits of Netflix after cloud migration ____________________________________ 13
Figure 9: Benefits of Hackerone __ 14
Figure 10: Azure DevOps ___ 15
Figure 11: Final Step of Pipeline creation __ 16
Figure 12: Overview of the selected application _____________________________________ 19
Figure 13: Application lifecycle management _______________________________________ 20
Figure 14: Agile __ 22
Figure 15: Agile Principles __ 24
Figure 16: Scrum Methodology __ 25
Figure 17: Work Item Process ___ 28
Figure 18: Cloud & Devops ___ 30
Figure 19: Cloud Computing __ 31
Figure 20: Biggest Cloud Computing Provider _______________________________________ 32
Figure 21: Serverless Computing Architecture _______________________________________ 33
Figure 22: Kubernetes ___ 33
Figure 23: Kubernetes 6 Levels __ 34
Figure 24: Kubernetes Cluster ___ 35
Figure 25: Docker Architecture __ 37
Figure 26: Combining Docker and Kubernetes _______________________________________ 37
Figure 27: Git __ 38
Figure 28: Top Git Hosting 2022 ___ 41
Figure 29: DevOps & NoOps __ 43
Figure 30: Orbyta logo ___ 45
Figure 31: Orbyta List Projects ___ 46
Figure 32: Project creation ___ 46
Figure 33: Web Application Structure ___ 48
Figure 34: Shopping project structure ___ 49
Figure 35: GitHub repository __ 50

iv

Figure 36: Solution Explore ___ 50
Figure 37: Dockerfile code __ 51
Figure 38: DockerHub push ___ 52
Figure 39: shoppingapp-web service __ 53
Figure 40: Update github ___ 53
Figure 41: Shopping.API Swagger __ 54
Figure 42: Shopping.Client Website ___ 54
Figure 43: MongoDb.Driver ___ 55
Figure 44: MongoDb added ___ 56
Figure 45: docker-compose-override.yml & docker-compose.yml ________________________ 57
Figure 46: PowerShell – docker ps & docker images __________________________________ 58
Figure 47: PowerShell – docker images __ 60
Figure 48: shoppingapi repositories – push successfully _______________________________ 61
Figure 49: shoppingclient repositories – push successfully _____________________________ 61
Figure 50: PowerShell – kubectl get pod ___ 64
Figure 51: Step of the process from local to cloud ____________________________________ 65
Figure 52: Structure of ACR DevOps Pipeline __ 65
Figure 53: Creation of resource group - command line ________________________________ 66
Figure 54: Azure Container Registry __ 66
Figure 55: tag image containers ___ 67
Figure 56: ACR repository __ 67
Figure 57: Azure Kubernetes Service creation – command line __________________________ 68
Figure 58: Pull-Secret image __ 68
Figure 59: shopping.client & shopping.api deployment section _________________________ 69
Figure 60: : shopping.api & shopping.client service section ____________________________ 69
Figure 61: : Kubernetes resource: PODs, Services, Deployments, Replica Sets ______________ 70
Figure 62: shopping.client webpage – External IP ____________________________________ 70
Figure 63: shopping.client webpage – Update V2 ____________________________________ 71
Figure 64: Automate scenario process __ 72
Figure 65: Shopping API - pipeline __ 75
Figure 66: Shopping Client – pipeline ___ 78
Figure 67: Services on AKS __ 78
Figure 68: Shopping Client webpage – The last update ________________________________ 79

v

List of Tables

Table 1: Six Scrum principles __ 26

Table 2: Scrum Guide __ 27

Table 3: Kubernetes Components __ 35

Table 4: The best host Git Repository ___ 41

Table 5: Fill up the project __ 47

Table 6: Configure Pipeline shoppingapi ___ 74

Table 7: Configure Pipeline shoppingclient ___ 77

vi

Acknowledgment

I would like to acknowledge and give my warmest thanks to my supervisor Prof. Maurizio Morisio
who made this work possible. His advice carried me through the final stage of writing my project.
I would also like to thank my co-supervisors Daniele Sabetta and Matteo Bonfati for their
precious guidance and support throughout the whole process. I have benefited greatly from
their incredible expertise and experiences, and I am confident that what I have learned from
them at this time will be very helpful to me in my future career.

My sincere gratitude also goes to all of the other Orbyta company employees for their
outstanding contributions and cooperation over the length of the six months.

Last but not least, I want to express my gratitude to my parents and my girlfriend for their
unwavering love and support during every phase of my Master's degree pursuit, from the
beginning to the final.

1

Chapter 1
1. Introduction

DevOps is a trending topic that is popular for increasing company productivity, no matter your
industry. Every day more companies work to bring this disruptive model to their organizations.
DevOps has one primary goal to achieve: continuous integration to continuous delivery.

Figure 1: DevOps Lifestyle

So, the development and operations processes become faster and more resource friendly.
Companies can save money while producing more high-quality software products for customer
consumption or internal use. Ultimately, a DevOps engineer brings a software solution from
inception to completion by seeing the big picture and helping everyone involved in the project
work together.

1.1 Thesis Objective

This thesis was developed at ORBYTA Tech company.

ORBYTA Tech is the ORBYTA group company that is specialized in IT consulting in the software
applications and IT systems field. With a staff of about 200 technicians and experts in IT, it realizes
highly complex projects with the most modern technologies and exploitshi most innovative
methodologies. The company fully manages the life cycle of software products, from the design,
implementation, delivery, integration and application maintenance phases of complex software
and hardware systems. Thanks to the experience and the vast know-how of the business units,

2

the company offers a 360 ° consultancy from UX / UI to database development, with everything
you can meet in between.

In the context of current technological trends, ORBYTA is undergoing a process of continuous
evolution and adoption of the most modern means to pursue a high level of automation (hyper-
automation) of processes, both internal and at the service of customers.

Hyper automation is an approach with which business activities identify, control and automate
processes, exploiting cutting-edge and intelligent technologies. It is used to manage a large
number of processes with speed and is essential to orchestrate different resources, tools and
platforms. The aim is to drastically reduce operating costs and effectively lead companies towards
a conscious digitalization.

Similarly, in software development, automation has always been the key driving factor. There have
always been efforts to automate mundane and repetitive tasks across SDLC. It has both a human
and business perspectives to it. Smart IT engineers do not find it intriguing to spend hours doing a
manual code review or test an application manually, rather they would find interesting ways to
automate these monotonous and routine tasks. Even from business perspective, it improves the
efficiency and hence speeds to market.

As technologies advanced and the pace of DevOps adoption picked up, it started becoming evident
that it’s not possible for one technology to automate a complete process that a single human can
do. There are multiple disparate system interfaces and human interventions that are needed.
Thus, the idea to combine different tools that will enable automating tasks which couldn’t
otherwise be automated earlier came into play. Hyper automation became mainstream after it
got it’s mention in Gartner Top 10 Strategic Technology Trends starting from 2020.

At ORBYTA Tech, DevOps must become an approach to culture, automation, and platform design
designed to deliver greater value and responsiveness to your business through efficient, high-
quality service delivery. The methodology put in place brings together members of the operations
and development teams into a single distributed team. This allows you to take ideas and projects
from development to production more quickly and efficiently. The methodology involves more
frequent code changes and more dynamic use of infrastructure than traditional manual
management strategies.

The aim of the thesis is to describe the DevOps software process development and management
in place and to create a shared standard to spread DevOps knowledge and best-practices for all
ORBYTA Tech business units.

In the following sections we will explain the basic concepts of DevOps, including how we got here,
best practices, key topologies, and the most common benefits of a DevOps environment and how
ORBYTA Tech is implementing the methodology in its process and within the organization.

3

Chapter 2
2. DevOps

Figure 2: DevOps

DevOps is a new philosophy that can help software organizations innovate faster and be more
responsive to business needs. It promotes collaboration between developers and operations,
which improves quality of software deployments and more frequent software releases.

Adopting the DevOps philosophy requires a new mindset, new tools and new skills. Collaboration
is a tenet of DevOps practice and philosophy. DevOps is not a software or programming
language. It is also about collaboration between DevOps and other parts of the business.

On DevOps, there are three overarching stages executed in a logical order:

 Build
 Test
 Deploy

From the code that is build, we go to test it and if everything goes well, deploy it. It is important
to understand the lifecycle stages, which will create efficiency, reliability, speed, and agility.

2.1 How DevOps Developed

4

Before the year 2000, most IT industries adopted the classical waterfall model, a linear approach
for software development.

 Developers had to spend a lot of time developing and integrating heavy pieces of code.
 QA engineers and operations teams, who worked in silos, spent more time testing the

code.

And at the end of day, the result was a large, sometimes years-long gap between software
releases, with frequent bug fixes and software patches deployed between each release. With the
establishment of the Agile software methodology, IT industries moved on to developing software
iteratively and frequently released them into production. Continuous Integration and Continuous
Delivery are among the major techniques adapted in this model for the rapid delivery of
software. DevOps consequently promoted the smooth collaboration between development and
operations teams at each step of cycle. So, we can safely say that DevOps has its roots in the
Agile methodology. The concept of DevOps emerged out during an Agile conference held in
Torino, Canada. A man by the name of Andrew Shafer tried to put together a meetup session
entitled “Agile Infrastructure.” When Patrick showed up for the session, he was the only one
there. Andrew had received so much negative feedback from his posting that not even he
showed up to his own session. However, Patrick was so excited to learn of a like-minded person
that he hunted him down at the conference and that talk in the hallway. They formed a
discussion group for other people to post their ideas for how to solve this divide between
development and operations later that year.

Initially, the interest was pretty tame and not a whole lot came of it. In June of 2009, John
Allspaw and Paul Hammond gave a talk “10+ Deploys a Day: Dev and Ops Cooperation at Flickr.”

Figure 3: “10+ Deploys per Day: Dev and Ops Cooperation at Flickr” presentation & John

Allspaw (right person) and Paul Hammond (left person)

Our friend, Patrick happened to watch the streaming video of that presentation, and it instantly
resonated with him. He realized this was exactly the solution for which he had been looking. He
put out a call to have a gathering of developers and system administrators to get together and

5

discuss the best ways to start bridging the gap between the two disparate fields. In October
2009, the event DevOps Days named by him, garnered a fair amount of attention from experts in
both fields and sparked lively debates over Twitter. It was not long before some of the smaller
tech enterprises were attempting to put together DevOps practices as well as tools built to aid
these newly forming teams. Better communication and understanding would also help teams to
recognize the priorities of each other. And all of these benefits would mean growing productivity
and high-speed delivery. DevOps is that one logical change the IT industry needed badly.

2.2 The nine Key Stages

a) Plan is the stage of DevOps that create a product roadmap. This will help the team
organize resources and make priorities for the upcoming stages.

b) Create is the first stage where you start to code, run tests (CI) and deploys a new version
of the application (CD). This is one of the keys to improve velocity because multiple
developers can act at the same code base.

c) Verify is the stage focused on code quality, security testing, parallel execution and
automation. The possibilities that developers find and fix errors while they are developing
has proven to be more cost-effective and efficient.

d) Package stage happens to be after code has been designed and tested. It stores the
software in a state where it can be reused later.

e) Release is the moment when DevOps deploys the software to end users.
f) Configure is the stage where DevOps manages infrastructure and software platforms.

Automated configuration management is created to take care of these complex
environments, networks and storage systems.

g) Monitor is an important stage as the DevOps sees the impact of the software on
infrastructure and users. It also provides data to respond to incidents which this
increases security, agility and reliability.

h) Protect is about securing your applications and the infrastructure that software is running
from interferences.

i) Manage stage close the loop and is about feedback and control across your end to end
software development lifecycle.

6

Figure 4: DevOps Stages

The benefit of a united platform is the ability to manage and control the entire software
development lifecycle from one place. The security is part of every stage of the process.

2.3 DevOps Pipeline

A DevOps Pipeline is a set of automated processes and tools that allows developers and
operations professionals to work cohesively to build and deploy code to a production
environment. Since there is not one standard DevOps pipeline, an organization’s design and
implementation of a DevOps pipeline depends on its technology stack, a DevOps engineer’s level
of experience, budget, and more. A DevOps engineer should have a wide-ranging knowledge of
both development and operations, including coding, infrastructure management, system
administration, and DevOps toolchains.

2.3.1 Components of a DevOps pipeline

C integration/C delivery (CI is the step that enables iteration by committing changes to a shared
source code. It is all about efficiency. / The release of newer or modified code into production is
automated by CD.)

Continuous testing (incorporates automated, prescheduled, continued code tests as application
code is being written or updated Version Control system allows developers to record changes in
the files and share them.)

Agile planning development (Like version-control mechanisms. Organizes work in short iterations
to increase the number of releases. This allows for flexibility and pivots once the ideas are tested
on an early product increment. Engineers commit code in small chunks multiple times a day for it
to be easily tested.)

Infrastructure as code (Allows operations teams to monitor environment configurations, track
changes, and simplify the rollback of configurations. Kubernetes/ open shift /docker)

7

Configuration management (Define the state of each system. CM is most described as the
automation, management and maintenance of configurations at each state.)

Continuous monitoring (monitoring both the code in OPS and the underlying infrastructure.
Issues makes its way to back to development.)

2.3.2 Solutions for DevOps practices

 CI/CD: Define a pipeline and manage releases with multiple environments with
Azure Pipelines. Automate with GitHub Actions. Extend or simplify CI/CD with
Jenkins plug-ins. Target any service including Azure Kubernetes Service on Azure.
Create fast and repeatable deployments with Spinnaker.

 Agile: Manage projects with GitHub and use Azure Boards to define, assign, track
work items or manage backlogs. Also get advanced analytics and reporting.

 Version Control: Manage git repositories, share and collaborate with GitHub.
 IaC: Define cloud resources with Azure Blueprints and use open-source tools such

as HashiCorp Terraform and Ansible.
 Configuration management: Manage resource configuration with Ansible, Chef,

Puppet and Azure Automation.
 Monitoring: Monitor infrastructure health and integrate into existing dashboards

in Grafana, Kibana or Azure portal with Azure Monitor. Use built in container
monitoring for AKS.

The above practices allow team members to create a DevOps environment based on a
collaborative structure. A DevOps environment leads to an increase in visibility and a decrease in
the risk of uncertainty. As a result, the increase in visibility not only improves communication
between teams, but also increases time-to-market. A DevOps environment not only increases
visibility and reduces uncertainty, but also improves the process of detecting and addressing
errors, bugs and other issues. There are no more divisions or barriers; instead, each issue, bug
and business requirement is everyone’s responsibility. This environment can also help reduce
bottlenecks and eliminate waste in the development process. It is estimated that by 2019, 1 in 3
organizations could have a DevOps practice. This means that, today many organizations are in
the process of building one.

2.4 Automation in DevOps

With the rapid growth of technology sector software, development teams are under constants
pressure to meet the increased customer expectations for business applications. DevOps and
automation are two key components that help organizations streamline the development
process. Automation, which cuts time and money spent on repetitive tasks and eliminates
human errors, streamlines the whole DevOps process. DevOps teams are increasingly looking to

8

automate processes throughout the development and deployment lifecycle. This promotes
speed and increases deliveries, and deployments. There is no need to worry about the
importance of human because in fact automation minimizes dependency on humans from
managing a lot of tasks. This automation results in several key improvements:

 Removes manual errors
 Dependency removed
 Latency removed
 Increases number of deliveries
 Reduces the lead time
 Provides faster feedback
 Team members are empowered
 Enables speed, reliability and consistency

2.4.1 Software for DevOps automation

Plenty of software options are available. Both open-source and licensed tools support end-to-
end automation of a DevOps pipeline. Among them, CI/CD tools are the most common type of
tools.

Puppet and Chef are solid cross-platform configuration management tools. These tools deal with
infrastructure management, automating the configuration, deployment, and management of
infrastructure.

Jenkins, TeamCity, and Bamboo are CI/CD software that automates tasks starting from
development pipeline to deployment.

Specialized software and tools focus on a single function that is a crucial part of the DevOps
pipeline, for example:

 Source code management: Git, CVS, Subversion.
 Infrastructure provisioning: Ansible, Terraform, Vagrant.
 Application monitoring: SonarQube, Nagios.
 Containerized applications: Docker, Kubernetes.
 Log management: Splunk, Datadog, SolarWinds Log Analyzer.
 Security monitoring: Snort, Splunk.

You can combine all these tools to create a comprehensive automated DevOps lifecycle.

9

2.5 Tools Ecosystem

Figure 5: DevOps Tools Ecosystem 2021

2.6 Companies Worldwide

Companies using DevOps are undergoing a serious culture shift. The following list of Companies
using DevOps have seen triumph:

 United Airlines, Inc. is a major American airline. This company changed its traditional method
of testing to continuous testing using DevOps which helped the company to save $500,000. It
also increased its coverage of code by 85%.

10

 Facebook helped change the way we think about software development. Many of the tenets
it adopted early on, including code ownership, incremental changes, automation, and
continuous improvement, were DevOps in all but name. Its approach has matured over the
years, and it recently migrated its entire infrastructure and back-end IT to the Chef
configuration management platform. Facebook’s accelerated development lifecycle to
reshape consumers expectations of software. Its recently announced bi-weekly app updates
effectively served notice that constant, rapid refreshes for mobile apps are the new normal,
and any company that cannot keep up risks getting left behind.

 HP company faced a problem regarding testing their software. Here bugs are detected using
manual testing after six weeks of writing code and if there are any bugs found it would take
one week to fix them. So to overcome this issue they integrated the Continuous Integration
and Continuous Deployment pipeline. As you can see in the given figure below, their first step
was to create a common platform to support all the products and models. This was called
continuous integration which eliminated toil caused by the integration of different code
branches.

11

Figure 6: HP platform

They also built a set of automated unit tests running against the trunk, which reduced the
6 weeks manual test time, thereby improving product quality and inducing faster feedback.
Within these automated tests, HP uses a tool called “Stopped the line” that alarms the
developer when code breaks any of the unit tests or builds. These DevOps practices-led
around 100 to 150 code commits and 75.000 to 1,00,000 lines of code changes in a single
day.

 Etsy is one of the earliest Companies Using DevOps. It is and American e-commerce website
focused on selling handmade and vintage supplies. Initially, Etsy struggled with the
development of their organization because they adopted monolithic architecture. Their
deployment rate was about two times a week resulting in the isolation of departments, so it
had to find a way out of this traditional system. The new Chief Technology Officer brought in
a team to adopt DevOps practices. The CI/CD pipeline helped in deploying services about 50
to 100 times a day. In code deployment, Etsy uses Deployinator a tool that offers one click-
deployments. They also use Amazon Web Services to perform their DevOps operations.

Figure 7: Etsy’s strategy

12

The entire testing phase can thus be automated with the help of a very famous
Continuous Integration tool called Jenkins. Jenkins now executes more than 14,000 test
suits per day.

 Back when Amazon was still run-on dedicated servers, it was a constant challenge to predict
how much equipment to buy to meet traffic demands and pad estimates to accommodate
for unforeseen traffic spikes. As a result, about 40 percent of Amazon’s server capacity was
wasted. Once the online retailer moved to the Amazon Web Services cloud, it allowed
engineers to scale capacity up or down incrementally. But it also spurred a transition to a
continuous deployment process that allows any developer to deploy their own code to
whichever servers they need, whenever they want. Within a year of Amazon’s move to AWS,
engineers were deploying code every 11.7 seconds, on average. The agile approach also
reduced the number and duration of outages.

 When Netflix evolved its business model from shipping DVDs to streaming video over the
web, it waded into uncharted waters. There were not any commercial tools available to keep
the company’s massive cloud infrastructure running smoothly, so it turned to opensource
solutions. After many suggestions from developers, it created the Simian Army, a suite of
automated tools that stress test Netflix’s infrastructure and allow the company to proactively
identify and resolve vulnerabilities before they impact customers. It prompted Netflix to
move to the cloud and give their infrastructure a complete makeover. Netflix chose AWS as
its cloud partner and took nearly seven years to complete its cloud migration. They decided
to rewrite the entire application in the cloud to become truly cloud-native, which
fundamentally changed the way the company operated. As a significant part of their
transformation, Netflix converted its monolithic, data center-based Java application into
cloud-based Java microservices architecture. As a result, it helped Netflix accelerate
innovation and stumble upon the DevOps culture. After completing their cloud migration to
AWS by 2016:

13

Figure 8: Benefits of Netflix after cloud migration

 Adobe’s DevOps transformation began five years ago when the company moved from
packaged software to a cloud services model and was suddenly faced with making a
continuous series of software updates rather than big, semi-annual releases. Adobe uses Cloud
Munch’s end-to-end DevOps platform to automate and manage its deployments. Because it
integrates with a variety of software, developers can continue to use their preferred tools, and
its multi-project view allows them to see how a change to any one Adobe product affects the
others. The move has enabled faster delivery and better product management.

14

 In 2015, Adidas released the first of its Yeezy sneakers, which were designed in collaboration
with Kaney West. Demand for the original shoe was enormous and was great for business, but
it presented a huge challenge for IT. The site crashed when new Yeezy were announced. Inside
the company, developers moaned that they were helpless to fix things and that it could take
up to a week to get a simple virtual machine spun up. Adidas underwent a massive
transformation that embraced cloud-native architecture, Kubernetes, and DevOps and that
involved a wholesale cultural shift. Today, you can find Adidas’ DevOps Maturity Framework
on GitHub.

 This company gives organizations access to the largest community of hackers on the planet,
with a presence in more than 70 global locations. They adopted GitLab to eliminate disparate
toolchains and shift security left. Hacker One achieves 5x faster deployments with GitLab’s
integrated security. The benefits of company:

Figure 9: Benefits of Hackerone

Also: Cost Saving, Improved trust in software, single source of truth and less context switching.

15

Chapter 3
3. Azure DevOps

Figure 10: Azure DevOps

Azure DevOps is a Software as a service platform from Microsoft that provides an end-to-end
DevOps toolchain for developing and deploying software. It comprises a range of services
covering the full development life cycle.

At the time of writing these are:

Figure 11: Azure services

3.1 Azure Boards

Azure Boards is a service for managing the work for your software projects. It provides a variety
of choices for planning and managing work. Example:

o Each project comes with a pre-configured Kanban board perfect for managing the
flow of your work. Boards allow you to add the columns you need for each team
and project, support swim lanes, card customization, conditional formatting,
filtering and even WIP limits.

o Backlogs help you keep things in order of priority, and to understand the
relationship between your work. Drag and drop items to adjust the order, or
quickly assign work to an upcoming sprint.

16

o Sprints give you the ability to create increments of work for your team to
accomplish together. Each sprint comes equipped with a backlog, task board,
burndown chart, and capacity planning view to help you and your team deliver your
work on time.

o Dashboards: Azure Boards comes complete with a rich canvas for creating
dashboards. Add widgets as needed to track progress and direction.

o Queries let you tailor exactly what you are tracking, creating easy to monitor KPIs.
It is one of the most powerful features of Azure Boards.

3.2 Azure Pipelines

Azure Pipelines is an automated set of processes that helps developers to compile, build and
deploy codes on other computation platforms. The goal of this pipeline is that there is no manual
intervention, all the changes are automatically executed in the project. A pipeline is normally
broken down into categories:

a. Source Control
b. Build Tools
c. Package creation
d. Configuration management
e. Monitoring

 Steps of Creating a Build Pipeline

Creating a team project with sample .NET code repository.
Created build and release pipelines to compile, test and deploy the application. A release
pipeline is a process by which we take committed code into production.
Created Azure Web App and Azure SQL database in Azure.

Figure 11: Final Step of Pipeline creation

17

3.3 Azure Repos

Azure Repos is a set of version control tools that you can use to manage your code. Azure Repos
provides two types of version control: Git and TFVC. Free for first 5 users with unlimited private
repositories. The concepts of Azure Repos:

o Repository is the location for our code.
o Branch is a lightweight reference that keeps a history of commits and provides a way to

isolate changes for a feature/bug fix from our main branch.
o Branch policies is an essential part of the Git workflow. Protect the critical branches in

our development.
o Pull and Clone: Create a local copy of an existing Git repo by cloning it.
o Push and Commit: We can share these changes (commit) to the remote repository by

pushing.
o Fork: It is a complete copy of repository, including all file commits, and branches.
o Git: It is a distributed version control system.
o Notification: Using notification, we will receive an email whenever any changes occur to

work items, code reviews, source control files, pull requests and builds.
o Projects: A project provides a place where a group of people can plan, track progress, and

collaborate on building software solutions.
o Teams: A team corresponds to a selected set of project members.

3.4 Azure Test Plans

Azure Test Plans is a service which provides a browser-based test management solution for
exploratory, planned manual, and user acceptance testing. It also provides a browser extension
for exploratory testing and gathering feedback from stakeholders. Now Azure DevOps Test Plans
can be used for both Automated and Manual testing. In modern software development
processes, everybody in the team contributes to or own quality. Let’s take a look:

o Testing is integral to DevOps and Agile teams: Based on tests of user stories,
features, or scenarios that are managed on a Kanban board as in Azure Boards. A
team can leverage manual testing right from within their Kanban board. This
provides end-to-end traceability. Developers and testers can use this capability to
maximize quality within their teams.

o Quality is a team sport through exploratory testing: Exploratory testing is an
approach to software testing that is described as simultaneous learning, test
design and test execution. The Test and Feedback extension enables exploratory

18

testing techniques in Azure Test Plans. It helps you to spend more time finding
issues, and less time filling them.

o Planned manual testing for larger teams: it lets you organize tests into test plans
and test suites. Test suites can be dynamic to help you understand the quality of
associated requirements under development, or static to help you cover
regression tests. Testers execute tests assigned to them using a runner to test
your app(s), in a browser or as a client on your desktop. To track overall process
and outcomes, leverage lightweight charts, which can be pinned to your
dashboard for easy monitoring.

3.5 Azure Artifacts

Azure Artifacts is a package management solution integrated into Azure DevOps that allows you
to create and share Maven, npm, and NuGet packages via feeds that can be both public and
private to an organization with teams of any size. It enables developers to consume and publish
different types of packages to Artifacts feeds and public registries. An alternative to build your
own solution path would be to leverage a SaaS solution such as Azure Artifacts which is included
in Azure DevOps.

3.6 Azure DevTest Labs

Azure DevTest Labs is a service that Microsoft Azure provides functionally for managing
environments that contain Azure Virtual Machines. It enables you to manage costs by setting
things like maximum number of VMs per lab and per user, allowed VM sizes and VM auto-
startup and auto-shutdown times. The main reason for a developer to use DevTest Labs is that it
provides self-service. You can create the VMs that you need, provision and de-provision them
and have everything ready to develop and perform tests on. No more waiting on IT operations.

3.7 Application Insights

Application Insights is an application performance management service for web applications that
enables you to do all the monitoring of your website performance in Azure. Developers and
DevOps can use Application Insights to:

o Help diagnose issues by using powerful analytics tool.
o Automatically detect performance anomalies.
o See what users actually do with apps.

19

o Help continuously improve app performance and usability.

How Application Insights works is you insert a small package to your application and set up the
Application Insights resource with Azure, thus sending the telemetry data to Azure to collect
information. The web app is monitored and it sends data to the Insight portal. You can pull in
your host environmental data, allowing you to look at performance logs, Azure diagnostics and
container logs, giving you a full look at what is going on inside the application, as well as in the
environment where it lives. You can set up periodic web test that will allow you to send requests
to the web server to ensure that it is responding properly and that the website is working the
way it is supposed to.

Some of things you can track or collect are:

Figure 12: Overview of the selected application

o Performance and host diagnostics, which gives you a complete picture of what is
happening in your application.

o Trace logs for correlating trace events with requests to help you get a deeper insight into
the data and dig deeper into the diagnostics to improve performance.

o You check the most popular webpages in your application, at what times of day and
where users are.

o Also check the exactly time and the source position that traffic is coming.
o Exceptions for both server and browser information, as well as page views and load

performance from the end user side.

Response times and failure rates to find out if there is an external service that is causing
performance issues on your app.

20

3.8 Application Life Cycle with Azure

Figure 13: Application lifecycle management

Application lifecycle management is the product lifecycle management of computer
programs. It encompasses requirements management, software architecture, computer
programming, software testing, software maintenance change management, continuous
integration, project management, and release management. In the beginning of the
project or product it starts with an idea or some business requirement and after going
through multiple steps it takes shape of a usable product. To be more specific, it goes on
like this:

1. Customer comes with requirements.

2. Business analysts/ Product owner analyses the requirement and starts
documenting them in the Azure Boards. They start creating Epic, Feature and
user stories.

3. Engineering team then starts estimating the work and plan those user stories
for sprint. In parallel test engineers starts for Test planning in Test Plans based
on the acceptance criteria of the user stories.

4. Once sprint kicked in – developers start picking user stories from the backlogs
created at step 2 and starts implementing them.

21

5. Once developers are done with the development they create a pull request
and sends for code review. Upon satisfaction of the code reviewer, developer
commits the code in the Azure Repos.

6. A build gets triggered in the Build Pipeline as soon as the code gets committed
in the Azure Repos using continuous integration (CI). A CI build gets the latest
code from the repos, builds them in the build agents, restores any private
packages from the feed setup in the Azure Artifacts. It runs unit tests,
generates code coverage result and finally generates the build output for
deployment. If any one of the steps configured in the build pipeline fails then
whole commit gets rejected and developers gets a build failure notification.
Developer fixes the build and commits one more time and CI build triggers
automatically.

7. Build output needs to be moved to the deployment environment. In a Release
Pipeline source of the build artifacts is the output of the CI build of previous
step 6, destination will be the servers where these artifacts need to be
deployed. In this example it is deploying the artifacts to the Azure Cloud App
Services and Azure SQL databases for a TESTING environment (step 7.1). A
gate or approval mechanism can be set before the deployment happens, this
gives control to the approvers to pick and choose which build to be deploy.

8. Now that build is deployed in TESTING environment, test engineers start
testing and verifying the build quality. They run a set of manual, automated
and load tests as planned during the planning phase (step 3.1) in Azure Test
Plans. If they observe any defects then they log then in Azure Boards backlog
and creates a new bug/issue/observation. Developer picks these defects once
these are planned and fed back to the sprint, fixes the defects and commits to
the Azure Repos which eventually triggers CI/CD in Azure Pipelines.

9. If test engineers are satisfied with the build quality and functionality delivered,
then this build gets promoted to the upper environment (step 9.1). In this
example it is UAT environment for business users to test.

10. Business users now gets a new build in UAT environment with all the features
planned for the current sprint. Business user starts verifying the build and
functionality in UAT environment.

11. If business users find any defect then they log them into the Azure
Boards backlogs as bug/observation. Development and build cycle continue
once these defects are planned and fed back to the sprint.

12. If business users are satisfied with the functionality and the build quality then
the build gets promoted to the PRODUCTION environment (step 12.1). Once
this is released to production, end users start using the system. If any issue

22

occurs in the production then it again gets logged in the Azure Boards backlog
as an Incident/ Bug/ Issue.

Chapter 4
4. Agile Manifesto

Figure 14: Agile

Agile is an iterative product-development methodology. Teams work in brief, incremental
°sprints°, frequently regrouping to review the work and make changes. The Agile method
encourages frequent feedback. Team split out long-term plans into discrete phases for
execution. In February 2001, 17 software development practitioners published the Agile
Manifesto. It is a brief document built on 4 values and 12 principles for Agile software
development.

4.1. The 4 Agile Values

1. Individuals and interactions over processes and tools:

It is the team you work with and the way you work together more valuable than the
processes they follow or the tools. You should put a smart, motivated team.

2. Working Software Over Comprehensive Documentation

23

Under the agile philosophy, getting software in the hands of customers is the highest
priority. After all, we should get feedback from real users, to improve on the best way
our product.

3. Customer collaboration over contract negotiation

Under the agile philosophy, customer collaboration begins early in the development
process and happens frequently throughout. When you talk to customers often and
build feedback into your development process, you reduce risk and eliminate
guesswork. No doubt that the contracts will always be important but the real
communication with customers is vital.

4. Responding to change over following a plan

An important benefit of the agile is that it encourages frequent reviewing and
retooling of current plans based on new information that the team is continually
gathering and analyzing. The team does not get stuck in an outdated plan simply
because it has committed to seeing it through.

24

4.1.1 The 12 Agile Principles

Figure 15: Agile Principles

The Agile Manifesto does not outline any specific processes, procedures, or best practices for
agile. The creators created a philosophical mindset for software development.
In theory, the way agile teams work is collaboratively determined by the team members
themselves, based on the agile values and principles. Among the common agile approaches
are Scrum, Extreme Programming, Kanban, disciplined agile delivery and large-scale
derivatives like scaled agile framework (SAFe).

4.2. Scrum

Scum is the most popular agile framework. It is a lightweight framework that helps people,
teams and organizations generate value through adaptive solutions for complex problems.

25

Figure 16: Scrum Methodology

It introduces 3 different roles:

o The product owner is responsible for representing the customer’s best interest, This
person has the ultimate authority over the final product.

o The self-organizing development team with 3-9 members
o The Scrum master: The person who leads the team guiding them to comply with the rules

and processes of the methodology. The Scrum Master is in charge of keeping Scrum up to
date, providing coaching, mentoring and training to the teams in case it needs it.

Ideally, the team applies Scrum processes based on a set of principles and values that must be
acknowledged during the software development life cycle. It is the Scrum master’s responsibility
to uphold Scrum principles and values. Here are the six Scrum principles:

Control over the empirical process There are three main ideas to empirical
process control: transparency, inspection,
and adaptation.

Self-organization Each team members should manage their
own tasks, sole problems independently,
and are responsible to themselves and
each other.

26

Collaboration Daily standup meetings are an
opportunity to collaborate and problem-
solve.

Time boxing It is a practice where a fixed amount of
time is allocated for certain activities or
objectives, with the goal of eliminating
wasted time and delays.

Value-based prioritization

It involves organizing and prioritizing tasks
based on their value and how they need
to be completed.

Iterative development The objectives in product development
are consistently reviewed and updated to
create the best quality product and
delivery process.

Table 1: Six Scrum principles

If you are applying Scrum in your workplace, you will be known with the cycle and each of its
artifacts. Artifacts are pieces of information and tools that keep the project on-track:

o Product Backlog includes the necessary features and functionalities that need to be
added to the software. It is continuously updated throughout the project lifecycle as new
information comes in, achievements are made and obstacles are overcome.

o Sprint Backlog is where teams go through the product backlog to figure out how to
achieve the most important objectives. A successful sprint backlog will allow everyone to
see which task is being worked on, and by whom, and will reinforce the shared sprint
goal.

o The product increment is the sum of all the tasks, use cases, user stories, product
backlogs and any element that was developed during the sprint and that will be made
available to the end user in the form of Software.

According to the Scrum Guide, each of the three artifacts contains a commitment that is used to
measure success:

1. Product Backlog Product Goal

2. Sprint Backlog Sprint Goal

27

3. Product Increment Definition of the JOB.

Table 2: Scrum Guide

Scrum provides benefits to organizations, product development teams, and individuals. Here are
some of the benefits of Scrum:

o Timely prediction: You can estimate the average speed of the team and it is possible to
estimate when a certain feature in the product backlog will be delivered.

o Improved team morale: Being part of a self-organizing team enables people to be
proactive, innovative, and focused.

o Better quality product: The working method and the need to obtain a functional version
after each iteration, helps to obtain a higher quality software.

o Time to Market reduction: The client can start using the most important functionalities of
the project before the product is completely ready.

o Flexible to changes: The methodology is designed to adapt to the changing requirements
that complex projects entail.

o Compliance of expectations: The product owner verifies that the requirements have been
met and transmits feedback to the team.

Each of the Scrum events help on adaptation of some of the aspects of the process, the product,
progress or relationships. The events are:

o Sprint is the basic unit of work for a Scrum Team, that makes the difference between
Scrum and other models for agile.

o Sprint Planning: The goal of that is to define what is going to do in the Sprint and hos it is
going to be done.

o Daily Scrum: The objective is to evaluate the progress and trend until the end of the
Sprint. It is a brief meeting that takes place daily during the Sprint period.

o Sprint review: Here we show what work has been reached with regards to the product
backlog for future deliveries.

o Sprint Retrospective: It is the phase that the team make a report after the completed
goals of the finished sprint. This serves to implement improvements from the point of
view of the development process.

In summary, the Scrum methodology is a learning and disciplinary process that enables the
Scrum team to identify ways to improve and deliver the best quality product to the end-user.

4.3. Work Item Process

28

Track various types of work using the default work item types – such as user stories, bugs,
features, and epics. Or, customize these types or create your own. Each work item form provides
a standard set of system fields and controls. The Deployment, Development, and Related Work
controls support tracking when code is released or changed, and relationships between work
items. Azure Boards is designed to support software development processes through the default
process models selected for a project.

Figure 17: Work Item Process

Epic is a large story that cannot be simply achieved in a single sprint. It takes months to
accomplish an epic. They are meant to be split into multiple, smaller stories called user stories.
User Stories answers the “who”, “what” and “why” of a project in a simple language. Below each
epic is a more detailed set of user stories and for those stories to turn into workable
components, the Scrum team has to identify and sort Tasks. Tasks can range from a few hours to
several hours and are assigned to team members who have the skills or expertise to do them.
A feature represents a shippable software component and reflects a service that fulfills some
critical stakeholder needs. Issues are used to track events that may block progress or shipping a
user story. Bugs are used to track code defects.

The difference between Agile and Scrum items are the switch of “user story” with “product
backlog item” and “issue” with “impediment”. The first is that a bug is now managed with
requirements instead of with tasks, means that a bug gets a separate card on the board and is
visible in the backlog. Also, impediments are not shown on the board or on the backlog.

29

Chapter 5
5. Integrated Infrastructure
By integrated infrastructure, we mean infrastructure that seamlessly connects with the entire
ecosystem of tools you use to deploy and manage applications. At first glance, your IT
infrastructure might seem like your house’s basement. It supports everything, but you do not
pay much attention to it or spend much time or energy trying to make it beautiful. The fact is
that infrastructure is not so simple and generic.

5.1 The key to IT Success

The way you design your infrastructure, as well as your ability to integrate it with the ever-
changing set of tools that you need to keep workloads running efficiently, plays a critical role
in defining overall business success. Some examples of how infrastructure interfaces with
tools:

o CI/CD pipeline needs to be able to integrate effectively with the infrastructure that hosts
CI servers, testing tools and build tools.

o Security and access-control tools must be able to apply security policies and restrictions
to host infrastructure to help keep applications secure.

o Monitoring and performance optimization tools need to work easily with whichever
infrastructure hosts your workloads.

o Release automation software must be able to deploy seamlessly to the infrastructure
that will host live applications.

There is more, but the idea is that an integrated infrastructure is one that can easily interface
with all of the tools you use.

5.2 Achieving Infrastructure Integration

The strategy is to identifying a toolset that offers the best of both worlds: rich features and tight
integration, and designing your infrastructure around them. Before you go and migrate all of
your workloads to one public cloud or another, identify the various tools you depend on and
evaluate how well each of them integrates with the clouds (or other infrastructure solutions)
available to you. You may find that you should choose an infrastructure strategy built on multi-
cloud or hybrid cloud to achieve better integration with your toolsets. This type of approach will
make infrastructure architecture more complex, but it enables better infrastructure integration,
which delivers more value in the long run, even if the tools you use probably will change in
future. It is important to know that the tools you use today can, and probably will, change in the
future. Thus, you want to ensure that your strategy enables tight infrastructure integration over
the long term.

Here again, a multi-cloud or hybrid cloud strategy is probably the best approach for maximizing
flexibility and integrability, although you will need to assess your specific needs by looking at

30

your tool first, and then plan an infrastructure strategy that will accommodate them as they
evolve and grow.

Chapter 6
6. Cloud adoption

Figure 18: Cloud & Devops

DevOps is about the improvement process, while cloud is about technology and services. They
are a powerhouse. While each offers greater effectiveness and business impact, together they
are able to drive meaningful IT transformation that directly impacts business goals. DevOps won
not have much value without the cloud and vice-versa.

 Cloud computing

31

Figure 19: Cloud Computing

Cloud computing advances IT transformation and it can enable companies to double down
on their work to streamline and embed DevOps processes for greater efficiencies that are
truly transformative. It can play a role here, as it can help codify and automate new
processes. Reasons:

o Cost effective, Speed, Global Scale, Productivity which eliminate a lot of “old” tasks
o Performance where reduce latency and high efficient computing hardware
o Reliability: Backup & Recovery and easier continuity – also less expensive
o High security with automated, repeatable processes and most importantly, develop

security controls from the very beginning.

Type of Cloud computing: Public (Microsoft Azure) / Private (Physically located on the
company’s datacenter) / Hybrid (Mix of them)

Types of Cloud Services: IaaS (Servers, VMs, storage, operating systems), PaaS(Refers to
Cloud Computing: easier for developers to create web or mobile apps), Serverless(building
app functionality) and SaaS (method for delivering software app over the Internet)

32

Figure 20: Biggest Cloud Computing Provider

 Serverless Computing

Serverless computing enables developers to build applications faster by eliminating the need
for them to manage infrastructure. So, the cloud provider automatically provisions, scales
and manages the infrastructure required to run the code. This approach will give the
advantage to developers to increase their productivity and bring products faster for the
market, and it allows to optimize much better resources.

o Functions (Execute code: written in the language of your choice)
o Kubernetes (Developers bring their own containers to fully managed, Kubernetes-

orchestrated clusters that can automatically scale up and down with sudden changes)
o Workflows (Developers can integrate different services without coding those

interactions, having to maintain glue code or learning new APIs or specifications)
o App environments (The back and front end are hosted on fully managed services that

handle scaling, security and compliance requirements.)
o API gateway (A fully managed and centralized API gateway enables developers to publish,

manage, secure and analyse them at global scale)

33

Figure 21: Serverless Computing Architecture

To conclude, cloud computing is gaining popularity today. It contributes to the improvement of
various types of businesses. Even though there are some issues people may face using it, the
advantages outweigh the drawbacks. Thus, more and more companies are interested in how to
implement such solutions and save their money. Serverless architecture is also on-demand
nowadays. It lets companies focus on their services and products. They do not worry about the
infrastructure and save money as they pay only for the things they use.

The main difference is the second option is cheaper and lets you focus more on the services
rather than on the infrastructure.

6.1 Kubernetes

Figure 22: Kubernetes

34

Kubernetes is open-source orchestration software which it is great for deploying and managing
reliable applications, scalable applications without effecting the end-users.
BUILD – DELIVER – SCALE faster with K8s. Through K8s, you have workloads portable. You define
complex containerized applications and deploy them across multiple clusters. Build more
extensions and plugins that add capabilities such as security, monitoring and management to
Kubernetes. Every K8s version support APIs that make it easier to use them.

o Deliver code faster with CI/CD (Azure Pipelines)
o Manage resources effectively with infrastructure as code
o Accelerate the feedback loop with constant monitoring
o Balance speed and security with DevOps (DevSecOps)

Figure 23: Kubernetes 6 Levels

Deployments create and manage Replica Sets, which create and manage Pods, which run on
Nodes, which have a container runtime, which run the app code you put in your Docker image.

 Kubernetes Architecture

35

Figure 24: Kubernetes Cluster

Table 3: Kubernetes Components

 Kubernetes Components Functions
Master It manages, plans, schedules and monitors nodes.

Node It hosts the application as the container. It could be a physical or
virtual server

Pods It is made up of one or more containers

API Server It is responsible for orchestrating all operations within the
cluster

Scheduler It is responsible for scheduling applications or containers on
Nodes

Controller Manager Controllers available that take care of different areas

36

ETCD It is a database that stores information about the cluster, in a
key-value format

Kubelet It ensures that the necessary rules are in place on the worker
nodes to allow the containers running on them to reach each
other

Kube Proxy It ensures that the necessary rules are in place on the worker
nodes to allow the containers running on them to reach each
other

6.2 Kubernetes & Docker

As we talk before for Kubernetes, which is an open-source system for automating the
deployment, scaling and management of containerized applications, we should know that
Docker is an open platform for developing, shipping and running applications. It is important to
start with the foundational technology that ties them together: containers.

Container solve a critical issue of portability allowing you to separate code from the underlying
infrastructure it is running on. Developers could package up their application, including all of the
bins and libraries it needs to run correctly, into a small container image. In production that
container can be run on any computer that has a containerization platform. Let’s make a
compare with Virtual Machine (VM). Both are based on virtualization technologies, but while a
container virtualizes an OS, a VM leverages a hypervisor (a lightweight software layer between
the VM and a computer’s hardware) to virtualize physical hardware. The absence of a guest host
significantly reduces the size of a container, making it fast, and portable.

The portability of containers eliminates many of the conflicts that come from differences in tools
and software between functional teams, which makes them particularly well-suited for DevOps
workflows, easing the way for developers and IT operations to work together across
environments.

To rephrase it, Docker is a toolkit that makes it easier, safer and faster for developers to build,
deploy and manage containers. Only one process can run in each container, so an application is
able to run continuously while one part of it is undergoing and update or being repaired. Docker
image act as a set of instructions to build a Docker container. While, Docker containers can run
across any data center or cloud environment.

37

Figure 25: Docker Architecture

Although Kubernetes and Docker are distinct technologies, they are highly complementary and
make a powerful combination. Docker provides the containerization piece, enabling developers
to easily package applications into small, isolated containers via the command line. When
demand surges, Kubernetes provides orchestration of Docker containers, scheduling and
automatically deploying them across IT environments to ensure high availability. Later versions
of Docker have built-in integration with Kubernetes, which enables development teams to more
effectively automate and manage all the containerized applications that Docker helped them
build.

Figure 26: Combining Docker and Kubernetes

Chapter 7
7. Git

Git is a DevOps tool used for source code management. It is an open-source version control
system used to handle small to very large projects efficiently. With Git, we can track changes in
the source code. It allows multiple developers to work together and supports non-linear
development through its thousands of parallel branches. A branching strategy helps define how

38

the delivery team functions and how each feature, improvement, or bug fix is handled. It also
reduces the complexity of the delivery pipeline by allowing developers to focus on developments
and deployments only on the related branches without affecting the entire product.

Figure 27: Git

The biggest advantage of a Git branch is that it is ‘lightweight’, meaning that data consists of a
series of snapshots so with every commit you make, Git takes a picture of what your files look
like at that moment and stores a reference to that snapshot.

 Git key concepts

o Version Control System: Git helps maintain various versions of the codebase at different
stages of the development lifecycle. It is called a source code manager.

o Commit: When a developer makes code changes, the changes are saved in the local
repository. Every commit saves a copy of the changed/added files within Git.

o Push: This sends the recent commits from developer’s local repository to a remote server
like GitHub, GitLab, or Bit Bucket.

o Pull: This downloads any changes made from the remote Git repository and merges them
into the developer’s local repository.

o SHA (Secure Hash Algorithm): This is a unique ID given to each commit.

o Branch: When you diverge from the mainline of software development and continue to
work/code without messing with the main/master development line.

There are two main branching strategies: Git Flow and Trunk based development and other 3
less important: GitHub, GitLab, One Flow.

7.1 Git Flow

The main idea of Git Flow is to isolate your work into different types of branches. There are five
branch types in total:

a. Master is where the most recently released code that is in the user’s hands lives.

39

b. Develop is the branch where all development going into the next release lives.
c. Feature is the branch that helps developers to work on different features in isolation and

makes possible the ability to merge their features back into the develop branch which is
the active development version of the applications.

d. Release is a branch that is based on the develop branch. Once develop has acquired
enough features for a release, you fork a release branch off of develop. You can only fix
bug or documentation generation on this branch.

e. Hot Fix branches are necessary to act immediately upon an undesired status of master. It
is like release and feature branches except they are based on master instead of develop.

 The benefits of Git Flow:

1. You can organize your work easily because of the various types of
branches.

2. Release branches allows you to support multiple versions of
production code, continuously.

3. The systematic development process allows for more effective
testing.

 The challenges of Git Flow:

1. It is now able to support Continuous Delivery or Integration.

2. On the cases where the complexity of the product is higher, the Git
Flow model could overcomplicate and slow the development
process and release cycle.

7.2 Trunk based development

In the trunk-based development model, all developers work on a single branch with open access
to it. It is much simpler, just code and run it. We only have the master branch that we need to
think about. At the most cases, developers that work in such style should be experienced so that
you know they won not lower source code quality. The only way to review code in such an
approach is to do full source code review. It is also recommended to use this model on small
teams, trying to get their app to the users as fast as possible.

 The benefits of Trunk-based development

1. When you are working on your minimum viable product by using this
method, you get maximum development speed with minimum
formality.

40

2. On cases where the customers want something different and to use
this method to pivot into a new direction. There will be a change to
your product as fast as possible.

3. There is no place for uncertainty if the majority of your staff are senior
Devs. Let them carry out their duties with the independence they
require to produce a flawless result.

 The challenges of Trunk-based development

1. The Trunk method, it is not good when you run an open source
project. After all, anyone can contribute, including online trolls.

2. It is probably impossible for large teams or new engineers to maintain
strict control over what is happening with a well-known product worth
millions of dollars.

7.3 GitHub, GitLab, One Flow

o GitHub Flow is a way simpler workflow. We do not have “releases” because we deploy to
production every day or several times a day. It is not recommended when multiple
versions in production are needed.

o GitLab Flow offers a transparent and effective way between the code and issue tracker.

Any change to the code should start with an issue that describe the goal. You should work
with release branches only if you need to release software to the outside world. So, each
branch contains a minor version. It is more complex than the GitHub Flow, on the same
level as Git Flow.

o The One Flow’s purpose is to have one eternal branch in your repository. So, every new

production release is based on the previous release. Here we cannot find the DEVELOP
branch. It is not recommended for projects with Continuous Delivery.

7.4 Top Git Hosting Services for 2022

41

Figure 28: Top Git Hosting 2022

A web hosting service is a type of Internet hosting service that hosts websites for clients. It offers
the facilities required for them to create and maintain a site and makes it accessible on the
World Wide Web. “Hosting” means that as users we have access to what is offered to us. A
definite plus is the lack of the need to create your own infrastructure, taking care of safety and
operating time. On the downside, of course, there is the cost and dependence on a given service
provider.

 Here is the list of the best host Git Repository online

Table 4: The best host Git Repository

 GitHub

It is the most used web-based Git repository
hosting service because it provides many
useful features and is in many cases free.

Code review and other collaboration features
work great here. GitHub supports not.

GitLab

In terms of basic functionality, it is very
similar to GitHub. Git Lab is an open-source
end-to-end software development platform
with built-in version control, issue tracking,

code review, CI/CD, and more. Self-host
GitLab on your own servers, in a container, or

on a cloud provider.

Bitbucket

One of the giants in the industry. The biggest
advantage of Bitbucket Server is certainly that

it comes from Atlassian – the company that
develops highly popular products like Jira and
Confluence. Bitbucket gives teams one place

to plan projects, collaborate on code, test and

42

deploy. Free for 5 users and you can get
unlimited number of free private repositories.

Azure DevOps °Repos°

It offers code hosting, CI/CD, and planning
tool. It is a platform for any development
stack and is addressed to business users

rather than private ones.

AWS Code Commit

Amazon’s AWS platform includes hosting for
Git repositories. It also comes with features

that facilitate collaboration, such as code
review and access control. It only offers

private repos and it is free for up to 5 active
Users. AWS Code Commit fasten the

development lifecycle. You can easily transfer
incremental changes instead of the entire

application.

43

Chapter 8
8. To DevOps OR NOT to DevOps?

Nowadays. DevOps is deeply integrated into the DNA of all cloud-first organizations and is today
more of a norm than a rarity. Cloud applications demand agility, and DevOps delivers it. Cloud
service providers are also investing heavily in their automation ecosystem. You can easily
provision your application components using automation templates or just a few API calls,
meaning minimal to no human intervention. This leads us to NoOps, which means that an IT
environment can become so automated and abstracted from the underlying infrastructure that
there is no need for a dedicated team to manage software in-house. No Ops aims to improve
productivity and deliver results much faster than DevOps.

Figure 29: DevOps & NoOps

 The benefits of NoOps:

o Use the full power of the cloud. Microservices and API-based application
architectures fit the bill perfectly, as they offer precise modularity along with
automation. The current increase in database/container/function -as-a-service
options in the cloud favor NoOps.

o More automation, less headcount. The idea to focus to services that are

deployable by design without manual intervention. They essentially seek to
eliminate the manpower required to support the ecosystem for your code.

44

o Shift from operations to business results. NoOps ideally eliminates any
dependency on the operations team, which further reduces time to market.

 The challenges of NoOps:

o The need of Ops is still on, because expecting developers to take care of this
would nullify the benefits of NoOps and take away their focus from delivering
business outcomes. It is also not a practical approach, considering that developers
do not necessarily have the required skill sets to address operational issues.

o The importance of Security: Automated deployments aligned with security best

practices will not completely eliminate the need for you to take care of security.
The operations team works to enforce controls that protect applications from
threats and vulnerabilities, together with the security team. Reducing, or
eliminating, the operations team could result in you needing to increase your
investment in a security team to ensure to ensure the security and compliance of
your environments.

o Considering that not all environments can transition to NoOps. Hybrid

deployments and legacy infrastructures would pose a bottleneck. Automation is
still possible, but human intervention cannot be entirely eliminated in these
cases.

In conclusion, DevOps emphasizes continual improvement, and NoOps is the next step in
DevOps' progression. DevOps engineers' roles also alter as a result of the chance to master the
new techniques and procedures needed for NoOps. Service providers provide development
teams with the necessary cloud infrastructure, patching, backups, and resources so they can
operate independently rather than together. NoOps focuses more on a change in culture and
procedure, and this change won't take place overnight.

Chapter 9
9. Introduction

In this chapter, proof-of-concept implementation of DevOps environment for a small-scale web
application project will be present. The goal is Deploying .Net Microservices with Kubernetes,
move cloud Azure Kubernetes Services, automating with Azure DevOps. This is a project named
Shopping, suggested by the Orbyta Tech through a course on Udemy.

45

Figure 30: Orbyta logo

We are going to explain how to deploy .Net Microservices into Kubernetes and moving
deployments to the cloud Azure Kubernetes Services with using Azure Container Registry. In the
end we also gone automate with CI/CD pipelines of Azure DevOps and GitHub. Additionally, we'll
use the Docker environment to containerize our microservices, upload images to the Docker
Hub, and establish our microservices on Kubernetes. With the same setup, we will move our
Azure Kubernetes Service deployment to the cloud using Azure Container Registry.

9.1 Building process

The process requires that there is a company directory of projects and that there is a
standardization of the process itself. A brief architecture document is requested for opening the
project that allows the DevOps team to define the guidelines for a possible development
environment. Once the development environment has been defined, the DevOps team takes
care of updating the architecture documents with details of the DevOps/Pipeline/Azure
environment and costs.

9.1.1 Qualification

At the address https://orbytait.sharepoint.com/Lists/IT%20Projects.xxx there is the list of
projects which is update and maintained by tech leads.

46

Figure 31: Orbyta List Projects

At the opening project, we must be qualified by entering:

Figure 32: Project creation

47

Table 5: Fill up the project

 Client name

 Title project

 Description (synthetic)

 Responsible

 Teams: Yes/No (If it will be created by team infra)

 Teams: Name/URL

 MS DevOps: Yes/No (If you need a DevOps, it is created by the team Infra and
access to resources is given. The architecture document is updated.)

 DevOps: URL (if MS DevOps was insert by team infra, if not another URL)

 Azure DevOps: Yes/No

 Architecture document: The architecture document is checked (or drawn up if
it does not exist) and the project is better defined.

 Status: Open/Close/In qualifying

 Attach files that helps on project.

To conclude, we are going to fill the last procedures:

o Test environment: If you need an Orbyta test environment, it will be created on Azure by
the DevOps team. It is given access to the team’s resources. The architecture document
is updated, again. The guide line:

 Create RG ad Hoc, the developers job.
 Create the resource following the architecture document

o Cost Monitor: A spending limit is set and the indicative spending on SharePoint Online, is
assigned.

o Set Up & define Repository: The Infra team creates the DevOps environment by defining
the process type (Agile/Scrum), qualifies the team. Be careful who has a Visual Studio
subscription to activate it. With the project team, it defines the repositories and the type
of pipeline (Build & Deploy).

48

9.2 Shopping Project Overview

Firstly, we must build, test and deploy an application. It will have a typical web application
structure.

Figure 33: Web Application Structure

In the project, we will have 3 microservices which we are going to develop and deploy together.

49

Figure 34: Shopping project structure

9.2.1 Microservices 1 – Shopping MVC Client Application

We are going to develop Shopping.Client MVC Application for consuming API Resource. The
project includes own data inside it, as a standalone Web application. Then we will add container
support, push docker images to Docker Hub and see the deployment options like “Azure Web
App for Container” resources for one web application.

 Firstly, we will clone our repository and after that we will start the project. From the
github page, where we have our repository run-devops, we will clone it at Visual
Studio 2022 app. After that we will create our project named “Shopping”.

50

Figure 35: GitHub repository

Under the Shopping project, we are going to create a new project design. The
template will be ASP.NET Core Web Application (Model-View-Controller) and the
project name is Shopping.Client.

Figure 36: Solution Explore

We are going to develop shopping client MVC data model and context objects. Now,
we add model class inside Model folder. Create a model class name Product.cs and its
code is as below.

51

After that we will do some changes in code at Index.cshtml and HomeController.cs, to
list the products into the index page. Index page operation are handled from the
home controller class.

 We have arrived at the moment to create Docker container for our Shopping.Client.
We will have Dockerfile, which his purpose is when we ask the docker to extract the
image of our project, it will search for a file which name is the file Dockerfile in the
project. So this will make our application work accordingly to the settings in our file
into the docker.

Figure 37: Dockerfile code

Basically, the file consists two main parts: the building application and the publishing
and running application. To run docker, it is important to have install it on computer.
After build the docker, we will have Shopping.Client container and images. We can
check that through docker ps and docker images. The last thing to do, it is to create

namespace Shopping.Client.Models
{

public class Product
{

public string Id { get; set; }
public string Name { get; set; }
public string Category { get; set; }
public string Description { get; set; }
public string ImageFile { get; set; }
public decimal Price { get; set; }

} }

52

the repository at docker hub and tag docker image with repository name. Once we
have it, we push our image to docker hub. The code is as below:

docker login

docker tag [image id] 7991575001/shoppingapp

Figure 38: DockerHub push

 Finally, we are going to automate build using GitHub and Docker Hub. At Build option
of Docker Hub, we will connect it with Git Hub and accept it from Git. Save all the
procedure and go to Visual Studio to commit all and push, by adding a comment
“docker added”. Meanwhile, on Azure we will create a Web App.

53

Figure 39: shoppingapp-web service

 Once the image is built in Docker Hub, Azure will capture the docker image and

deploy the application. There is the URL web application. This is the one container
deployment process.

Figure 40: Update github

9.2.2 Microservices 2 – Shopping API Application

After that we are going to develop Shopping.API Microservice with MongoDb and compose all
docker containers. This API project will have Products data, which Shopping Client will consume.
We will containerize API application with creating Dockerfile and push images to Azure Container
Registry.

 As before with ShoppingClient, we will create the Shopping.API project, instead this
time ASP.NET Core Web API template is the chosen one. We add the Product.cs inside

54

Models folder, ProductController.cs inside Controllers folder and the
ProductContext.cs inside Data folder. Now we have everything, that is needed to
make project works. Through Swagger, we will have the output of project that will be
like below. To remember that Swagger allows you to describe the structure of your
APIs.

Figure 41: Shopping.API Swagger

Figure 42: Shopping.Client Website

Through the code below, we make possible that Client application consume from
Shopping.API. We are using HTTP client and giving product suffix.

public async Task<IActionResult> Index()

{
 var response = await _httpClient.GetAsync("/product");
 var content = await response.Content.ReadAsStringAsync();

var productList = JsonConvert.DeserializeObject<IEnumerable<Product>>(content);

 return View(productList);

}

55

9.2.3 Microservices 3 – MongoDb Database

Now it is time to create a real database which is No-SQL Mongodb. As a definition, MongoDB is
an open-source database that uses a document-oriented data model and a non-structured query
language. This best-in-class automation and established practices offer to deploy fully managed
MongoDB across AWS, Google Cloud, and Azure.

Back on project, we will pull Mongodb docker image from docker hub and create connection
with our API project. At Shopping.API, we are going to install MongoDB.Driver to provide
connection with Mongo.

Figure 43: MongoDb.Driver

The package reference MongoDB.Driver is included in our project. After that, we add Database
Settings which include Connection String and Database Name/Collection Name, at
appsettings.json file.

{
 "DatabaseSettings": {
 "ConnectionString": "mongodb://shoppingdb:27017",
 "DatabaseName": "ProductDb",
 "CollectionName": "Products"
 }

56

It remains to make the connection available for Mongo docker container from Shopping.API. So
once the context is created, this will create Mongo connection and see the database. After that
the whole application uses existing configurations.

Figure 44: MongoDb added

We should register these contexts object, so we add: “services.AddScoped<ProductContext>();”
at ConfigureService method of Startup.cs. This is mandatory step for creating objects from
ASP.NET Core.

 The last step to update our code, it will be at ProductController.cs, where we are going to
implement Index Get method with calling/products api from shopping.api project.

We will get the official images of Mongo on docker hub and we will use the suggested
code to pull Mongo image in our local computer:

docker pull mongo

Then we run the existing image from my local and create a container, indicating the same
port number:

public async Task<IActionResult> Index()

 {
 var response = await _httpClient.GetAsync(“/ product”);
 var content = await response.Content.ReadAsStringAsync();
 var productList = JsonConvert.DeserializeObject<IEnumerable<Product>>(content);

 return View(productList);
 }

57

docker run -d -p 27017:27017 --name shopping-mongo mongo

 Currently, we are in the phase where we will use Docker Compose to multi-containerize
all Microservices You can create several container definitions in a single file using Docker
Compose, and you can execute the application by bringing up all the prerequisites that it
requires. For Shopping.API, we must first construct a DockerFile, but this time, we also
require orchestration with Client-API and MongoDB, thus we must also create docker
compose. A docker-compose.yml and override file are created by Visual Studio and
placed in the solution's docker-compose node. All the services that will be deployed in a
Docker environment are defined in the Docker Compose file.

Figure 45: docker-compose-override.yml & docker-compose.yml

In our case we have also Shopping.Client application, where we do the same procedure.
Now both services are included. One more left as we will add Mongodb database. We are
going to run docker-compose and we have shoppingclient on port 8001, shoppingapi on
port 8000, mongo on port 27017.

58

Figure 46: PowerShell – docker ps & docker images

o Test the application, where we will see API and Client pages:

http://localhost:8000/swagger/index.html
http://localhost:8001/product

As we can see at Figure 46: PowerShell – docker ps & docker images, we have created
docker images for our microservices and we compose docker container. So now, we are
going to deploy these docker container images on Kubernetes clusters. We are going to
install and run Kubernetes on local environment. On Kubernetes section that we find at
Docker Settings, we will enable Kubernetes.

 We are going to use Visual Studio Code, to create our yaml files. First, we create the folder
k8s and inside it, mongo.yaml that will have this structure:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mongo-deployment
 labels:
 app: mongodb
spec:
 replicas: 1
 selector:
 matchLabels:
 app: mongodb
 template:
 metadata:
 labels:
 app: mongodb
 spec:

59

 containers:
 - name: mongodb
 image: mongo
 ports:
 - containerPort: 27017
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"
 env:
 - name: MONGO_INITDB_ROOT_USERNAME
 valueFrom:
 secretKeyRef:
 name: mongo-secret
 key: mongo-root-username
 - name: MONGO_INITDB_ROOT_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mongo-secret
 key: mongo-root-password

apiVersion: v1
kind: Service
metadata:
 name: mongo-service
spec:
 selector:
 app: mongodb
 ports:
 - protocol: TCP
 port: 27017
 targetPort: 27017

As you can see that we have used valueFrom and secretKeyRef in order to access secret
data. K8s manage our data with these definitions. It includes the Deployment and
Service.

 Now, we are going to create mongo-secret.yaml and mongo-configmap.yaml file, that it
looks like below:

apiVersion: v1
kind: Secret
metadata:

60

 name: mongo-secret
type: Opaque
data:
 mongo-root-username: dXNlcm5hbWU=
 mongo-root-password: cGFzc3dvcmQ=

apiVersion: v1
kind: ConfigMap
metadata:
 name: mongo-configmap
data:
 connection_string: mongodb://username:password@mongo-service:27017

Through the code:

kubectl apply -f .\mongo.yaml, we will have a mongo secret definition and we apply the
yaml file into our local Kubernetes.
kubectl apply -f .\mongo-configmap.yaml, this file will store mongo connection string
information.

 We are going to build Shopping Docker Images, tag and push to docker hub. By this way,
Kubernetes retrieves images from the docker hub. For mongodb, k8s pull the official
mongo docker hub image. I am going to run docker compose command.

docker-compose -f docker-compose.yml -f docker-compose.override.yml up -d

Now, I have a shopping database, API and client. To stop and remove the container, we
will write the code:
docker-compose -f docker-compose.yml -f docker-compose.override.yml down.

Next step is to tag and push to docker hub. Start with both images, shoppingapi and
shoppingclient.

docker tag f5cd1c0f8307 7991575001/shoppingapi
docker tag 2416f3a6f243 7991575001/shoppingclient

Figure 47: PowerShell – docker images

61

These two are our public repositories, where we going to push our images.

docker login
docker push 7991575001/shoppingapi
docker push 7991575001/shoppingclient

Figure 48: shoppingapi repositories – push successfully

Figure 49: shoppingclient repositories – push successfully

 We are going to create shopping.API Kubernetes Deployment and Service yaml file, under
Kubernetes folder.

apiVersion: apps/v1
kind: Deployment
metadata:
 name: shoppingapi-deployment
 labels:

62

 app: shoppingapi
spec:
 replicas: 1
 selector:
 matchLabels:
 app: shoppingapi
 template:
 metadata:
 labels:
 app: shoppingapi
 spec:
 containers:
 - name: shoppingapi
 image: 7991575001/shoppingapi:latest
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 80
 env:
 - name: ASPNETCORE_ENVIRONMENT
 value: Development
 - name: DatabaseSettings__ConnectionString
 valueFrom:
 configMapKeyRef:
 name: mongo-configmap
 key: connection_string
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"

apiVersion: v1
kind: Service
metadata:
 name: shoppingapi-service
spec:
 type: NodePort
 selector:
 app: shoppingapi
 ports:
 - protocol: TCP
 port: 8000
 targetPort: 80

63

 nodePort: 31000

In order to add test our API, we set the service as a nodeport. So we can run our
shoppingapi yaml file on k8s. The shopping.API deployment works with configmap, so
together with Mongo project are running on K8s cluster, successfully.

 We are going to create shopping.client Kubernetes deployment and service yaml file,
under Kubernetes folder. Also we are going to create shoppingapi-configmap.yaml file,
the same way with mongo-configmap.yaml, for storing shopping.API url.

apiVersion: v1
kind: ConfigMap
metadata:
 name: shoppingapi-configmap
data:
 shoppingapi_url: http://shoppingapi-service:8000

apiVersion: apps/v1
kind: Deployment
metadata:
 name: shoppingclient-deployment
 labels:
 app: shoppingclient
spec:
 replicas: 1
 selector:
 matchLabels:
 app: shoppingclient
 template:
 metadata:
 labels:
 app: shoppingclient
 spec:
 containers:
 - name: shoppingclient
 image: 7991575001/shoppingclient:latest
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 80
 env:
 - name: ASPNETCORE_ENVIRONMENT
 value: Development

64

 - name: ShoppingAPIUrl
 valueFrom:
 configMapKeyRef:
 name: shoppingapi-configmap
 key: shoppingapi_url
 resources:
 requests:
 memory: "64Mi"
 cpu: "250m"
 limits:
 memory: "128Mi"
 cpu: "500m"

apiVersion: v1
kind: Service
metadata:
 name: shoppingclient-service
spec:
 type: NodePort
 selector:
 app: shoppingclient
 ports:
 - protocol: TCP
 port: 8001
 targetPort: 80
 nodePort: 30000

We are defining the NodePort because we would like to call from external system, in our
case local environment. As you can see that, we have finally deployed our microservices
into local Kubernetes environment.

kubectl apply -f .\shoppingapi-configmap.yaml
kubectl apply -f .\shoppingclient.yaml

o Shoppingclient => http://localhost:30000
o ShoppingApi => http://localhost:31000

Figure 50: PowerShell – kubectl get pod

65

9.2.4 Azure Kubernetes Services deployment

In this section, we will deploy shopping microservices into Cloud Azure Kubernetes Service with
using Azure Container Registry. So far, we have docker and Kubernetes deployment on local
environment also test it. Now, it is time to move Kubernetes to the cloud on which is Azure
Kubernetes Service.

Figure 51: Step of the process from local to cloud

As you can see at the picture, we have already finished our local development, dockerize all
images and push the docker hub. But this time, we will push image to Azure Container Registry
(ACR), and deploy our current Kubernetes configurations into the Azure Kubernetes Service (AKS)
with pull images from ACR.

Figure 52: Structure of ACR DevOps Pipeline

66

Example use of ACR DevOps Pipeline
 We are going to deploy an ACR instance and push a container image to it. Firstly, we

should download and install Azure CLI. You can check if it is installed: az –version.
Then we login on Azure and need to create a resource group to make possible the
creation of ACR. Azure resource group is a logical container into which Azure resources
are deployed and managed. Code below for the creation of resource group:

Figure 53: Creation of resource group - command line

Now, we go for the creation of Azure Container Registry instance with the command:

az acr create --resource-group myResourceGroup --name shoppingacrorbyta --sku Basic

and we must provide our own registry name, which must be global unique. We can verify
that we created ACR correctly, through the Microsoft Azure portal.

Figure 54: Azure Container Registry

It will be good to enable admin user at portal because it will be needed when you deploy
a container image in the portal from the registry directly to Azure container registry or
azure web app for containers. Since we are going to deploy our images into Azure

67

Kubernetes service, so that is good to use the admin account in the Azure container
registry. You can do it through the code: az acr update -n shoppingacrorbyta --admin-
enabled true, or at Access keys section that you can find at Settings of the container.

 In order to use shopping containers image with ACR, the image needs to be tagged with
the login server address of your registry.

docker tag shoppingapi:latest shoppingacrorbyta.azurecr.io/shoppingapi:v1
docker tag shoppingclient:latest shoppingacrorbyta.azurecr.io/shoppingclient:v1

Figure 55: tag image containers

After we tagged successfully, the images are ready for pushing to the Azure Container
Registry.

docker push shoppingacrorbyta.azurecr.io/shoppingapi:v1
docker push shoppingacrorbyta.azurecr.io/shoppingclient:v1

Figure 56: ACR repository

We have pushed correctly our two microservice images into ACR. Finally, we have
finished to create ACR, enable admin account and push our shopping images to the ACR.

68

 Now, we are going to deploy a Kubernetes AKS cluster with attaching ACR. Install the
Kubernets CLI and configure kubectl to connect to our AKS cluster. It is a mandatory step
in order to connect to the cloud AKS. The code below, describe the process:

az aks create --resource-group myResourceGroup --name myAKSCluster --node-count 1 --
generate-ssh-keys --attach-acr shoppingacrorbyta

az aks install-cli

az aks get-credentials --resource-group myResourceGroup --name myAKSCluster

As you can see that we have created AKS and connect Kubernetes from our local
computer with using kubectl commands.

Figure 57: Azure Kubernetes Service creation – command line

 We need to create image pull secret, which is used by Kubernetes to store information
needed to authenticate to our registry.

Figure 58: Pull-Secret image

In order to use these image pull-secret, we should add the configuration. Once you have
created the image, you can use it creating Kubernetes pods and deployments. So, we
need to provide the name of the secret under the image pull-secret section in the
deployment files.

 After the creation of Azure Kubernetes Service and pull-secret, we are going to build and
deploy Shopping applications and services into an AKS cluster.

 First of all, we need to edit existing K8s manifest yaml files for deploying AKS. To
remember that AKS folder has the same file like at K8s folder, but with some
changes that we will make.

69

Figure 59: shopping.client & shopping.api deployment section

We have replaced image names and we edit image-pull secret configurations into
deployment container configurations, in order to allow to pulling image from AKS.

 Now we have to update service section and the images below shows us the new
look of service.

Figure 60: : shopping.api & shopping.client service section

We are going to deploy AKS on line cloud so we do not need to port-forwarding.
Every pod take new IP from Cloud AKS. We set the default port = 80 and we do
not have anymore targetPort.

 Now it is time to run configured K8s Manifest yaml files on AKS and deploy the
application.

Run the command: kubectl apply -f .\aks\

We can check, all k8s resource created successfully on the AKS. We have PODs, Services,
Deployments and Replica Sets.

70

Figure 61: : Kubernetes resource: PODs, Services, Deployments, Replica Sets

 We can test the application at our EXTERNAL-IP: http://20.103.202.190

Figure 62: shopping.client webpage – External IP

 We have a working Kubernetes cluster in AKS and we deployed the Shopping
microservices. The next step will be the autoscale of the pods in the shopping app. On
AKS folder, we create the new yaml file named shoppingautoscale. We will give a
minimum and maximum of replica count.

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: shoppingapi-hpa

71

spec:
 maxReplicas: 10 # define max replica count
 minReplicas: 2 # define min replica count
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: shoppingapi-deployment
 targetCPUUtilizationPercentage: 50 # target CPU utilization

apiVersion: autoscaling/v1
kind: HorizontalPodAutoscaler
metadata:
 name: shoppingclient-hpa
spec:
 maxReplicas: 10 # define max replica count
 minReplicas: 3 # define min replica count
 scaleTargetRef:
 apiVersion: apps/v1
 kind: Deployment
 name: shoppingclient-deployment
 targetCPUUtilizationPercentage: 50 # target CPU utilization

We will go to deploy v2 of shopping client microservices to AKS with zero downtime.
Firstly, we make a change at index client file and then we will update container image by
tagging and pushing the new client image v2. We start updating the code on client yaml
file by upgrading from one to two the version and then deploy microservices to AKS.

Figure 63: shopping.client webpage – Update V2

On http://20.103.202.190 , this is the updated view of the shopping client webpage. We
can get back by changing the version at shoppingclient.yaml .

72

 Our main target is to automate deployments of Shopping Microservices into AKS with
using Azure CI/CD Pipelines. This is the example scenario that that explain the process:

Figure 64: Automate scenario process

In order to work with Azure Pipelines we need to create an organization first and then the
project called “Shopping” inside of the organization. We create the folder pipeline at
Visual Studio and into that we added the shoppingapi-pipeline.yaml.

Deploy to Azure Kubernetes Service
Build and push image to Azure Container Registry; Deploy to Azure Kubernetes
Service
https://docs.microsoft.com/azure/devops/pipelines/languages/docker

trigger:
 branches:
 include:
 - main
 paths:
 include:
 - Shopping/Shopping.API/*
 - aks/shoppingapi.yaml

resources:
- repo: self

variables:

 # Container registry service connection established during pipeline creation
 dockerRegistryServiceConnection: 'f3961f5d-b552-46dc-b700-a86d951bc5a5'
 imageRepository: 'shoppingapi'

73

 containerRegistry: 'shoppingacrorbyta.azurecr.io'
 dockerfilePath: '**/Dockerfile'
 tag: '$(Build.BuildId)'
 imagePullSecret: 'shoppingacrorbyta1071d5af-auth'

 # Agent VM image name
 vmImageName: 'ubuntu-latest'

stages:
- stage: Build
 displayName: Build stage
 jobs:
 - job: Build
 displayName: Build
 pool:
 vmImage: $(vmImageName)
 steps:
 - task: Docker@2
 displayName: Build and push an image to container registry
 inputs:
 command: buildAndPush
 repository: $(imageRepository)
 dockerfile: $(dockerfilePath)
 containerRegistry: $(dockerRegistryServiceConnection)
 buildContext: $(Build.SourcesDirectory)/Shopping
 tags: |
 $(tag)

 - upload: aks
 artifact: aks

- stage: Deploy
 displayName: Deploy stage
 dependsOn: Build

 jobs:
 - deployment: Deploy
 displayName: Deploy
 pool:
 vmImage: $(vmImageName)
 environment: 'klementin277218rundevops.default'
 strategy:
 runOnce:
 deploy:

74

 steps:
 - task: KubernetesManifest@0
 displayName: Create imagePullSecret
 inputs:
 action: createSecret
 secretName: $(imagePullSecret)
 dockerRegistryEndpoint: $(dockerRegistryServiceConnection)

 - task: KubernetesManifest@0
 displayName: Deploy to Kubernetes cluster
 inputs:
 action: deploy
 manifests: |
 $(Pipeline.Workspace)/aks/shoppingapi.yaml

 imagePullSecrets: |
 $(imagePullSecret)
 containers: |
 $(containerRegistry)/$(imageRepository):$(tag)

Now, we are going to create our first pipeline for shoppingapi microservices. Go to
pipeline section and create it with these condictions:

Table 6: Configure Pipeline shoppingapi

CONFIGURE YOUR PIPELINE SELECTED TEMPLATE
Connect Github

Select a repository run-devops (private repository)

Configure your pipeline Existing Azure Pipelines Yaml file

Path /pipelines/shoppingapi-pipeline.yaml

Review your pipeline YAML Run

We have successfully build and deploy our shopping.api microservices with full
automation, with writing our pipelines yaml file.

75

Figure 65: Shopping API - pipeline

Shopping API pipeline will trigger automatically if only, in shopping API class will be any
change. As you can see, we should have separate pipelines for microservices, because we
developed multi-container microservices application.

 Into folder pipeline, we also create shoppingclient-pipeline.yaml, the same structure as
the shoppingapi-pipeline.yaml:

Deploy to Azure Kubernetes Service
Build and push image to Azure Container Registry; Deploy to Azure Kubernetes
Service
https://docs.microsoft.com/azure/devops/pipelines/languages/docker

trigger:
 branches:
 include:
 - main
 paths:
 include:
 - Shopping/Shopping.Client/*
 - aks/shoppingclient.yaml

resources:
- repo: self

variables:

76

 # Container registry service connection established during pipeline creation
 dockerRegistryServiceConnection: 'f3961f5d-b552-46dc-b700-a86d951bc5a5'
 imageRepository: 'shoppingclient'
 containerRegistry: 'shoppingacrorbyta.azurecr.io'
 dockerfilePath: 'Shopping/Shopping.Client/Dockerfile'
 tag: '$(Build.BuildId)'
 imagePullSecret: 'shoppingacrorbyta1071d5af-auth'

 # Agent VM image name
 vmImageName: 'ubuntu-latest'

stages:
- stage: Build
 displayName: Build stage
 jobs:
 - job: Build
 displayName: Build
 pool:
 vmImage: $(vmImageName)
 steps:
 - task: Docker@2
 displayName: Build and push an image to container registry
 inputs:
 command: buildAndPush
 repository: $(imageRepository)
 dockerfile: $(dockerfilePath)
 containerRegistry: $(dockerRegistryServiceConnection)
 buildContext: $(Build.SourcesDirectory)/Shopping
 tags: |
 $(tag)

 - upload: aks
 artifact: aks

- stage: Deploy
 displayName: Deploy stage
 dependsOn: Build

 jobs:
 - deployment: Deploy
 displayName: Deploy
 pool:
 vmImage: $(vmImageName)
 environment: 'klementin277218rundevops.default'

77

 strategy:
 runOnce:
 deploy:
 steps:
 - task: KubernetesManifest@0
 displayName: Create imagePullSecret
 inputs:
 action: createSecret
 secretName: $(imagePullSecret)
 dockerRegistryEndpoint: $(dockerRegistryServiceConnection)

 - task: KubernetesManifest@0
 displayName: Deploy to Kubernetes cluster
 inputs:
 action: deploy
 manifests: |
 $(Pipeline.Workspace)/aks/shoppingclient.yaml
 imagePullSecrets: |
 $(imagePullSecret)
 containers: |
 $(containerRegistry)/$(imageRepository):$(tag)

 Now, it is time to create the other pipeline for shoppingclient microservices.

Table 7: Configure Pipeline shoppingclient

CONFIGURE YOUR PIPELINE SELECTED TEMPLATE
Connect Github

Select a repository run-devops (private repository)

Configure your pipeline Existing Azure Pipelines Yaml file

Path /pipelines/shoppingclient-pipeline.yaml

Review your pipeline YAML Run

We have successfully build and deploy our shopping.client microservices with full
automation, with writing our pipelines yaml file.

78

Figure 66: Shopping Client – pipeline

 I would like to check our client application and in order to do that, we should go to
Services and ingresses of myAKSCluster. You can see the external IP of shoppingclient-
pipeline, which is generated from the Azure Kubernetes Services.

Figure 67: Services on AKS

79

The shoppingclient url is http://20.103.202.190 and the output of the webpage as we expected:

Figure 68: Shopping Client webpage – The last update

In this chapter, all microservices and deployment procedures were established gradually. We
were successful in automating CI/CD processes and launching multi-container microservices
apps. In conclusion, the application of the theoretical component was our primary objective. We
achieved to deploy our multi-container microservices applications with automating all
deployment process separately.

80

References
[1] Microsoft, What is Azure DevOps? , https://docs.microsoft.com/en-us/azure/devops/user-
guide/what-is-azure-devops?view=azure-devops, Application Insights overview,
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview, What is
Azure Repos?, https://docs.microsoft.com/en-us/azure/devops/repos/get-started/what-is-
repos?view=azure-devops, What is Azure Boards?, https://docs.microsoft.com/en-
us/azure/devops/boards/get-started/what-is-azure-boards?view=azure-devops

[2] Crystal Bedell, DevOps Automation: Why It’s a Necessity for IoT,
https://www.iotworldtoday.com/2019/09/17/devops-automation-why-its-a-necessity-for-iot/ ,
17 September 2019

[3] Michiel Mulders, What Every Dev Company Needs to Know about NoOps Development,
https://www.sitepoint.com/noops-development/ , 13 August 2019

[4] Stephen Watts, A Brief History of DevOps, https://www.bmc.com/blogs/devops-history/ , 29
March 2019, Configuration Management in DevOps, https://www.bmc.com/blogs/devops-
configuration-
management/#:~:text=These%20include%20coding%2C%20building%2C%20testing,an%20organ
ization%20to%20increase%20agility, 8 March 2019, Deep dive into Azure Test Plans,
https://azure.microsoft.com/it-it/blog/deep-dive-into-azure-test-plans/, 19 September 2018

[5] Azure, DevOps tutorial-an introduction, https://azure.microsoft.com/en-in/solutions/devops/,

Serverless computing, https://azure.microsoft.com/en-gb/resources/cloud-computing-
dictionary/what-is-serverless-computing/

[6] Peter John, Building a DevOps pipeline for your App: Git Strategy,
https://proandroiddev.com/building-a-devops-pipeline-for-your-app-git-strategy-44f719230950
, 17 August 2019

[7] Patrick Porto, 4 branching workflows for Git, https://medium.com/@patrickporto/4-
branching-workflows-for-git-30d0aaee7bf , 27 Feb 2018

[8] Proandroiddev, building a devops pipeline for your app introduction,
https://medium.com/proandroiddev/building-a-devops-pipeline-for-your-app-introduction-3e35

[9] MuleSoft, Benefits of a DevOps Environment,
https://www.mulesoft.com/resources/api/devops-environment-benefits

[10] Daniele Fontani, DevOps is Dead, Long Live NoOps, https://betterprogramming.pub/devop-
noops-difference-504dfc4e9faa , 11 Nov 2019

[11] Rhubbit, Agile Manifesto: le basi da cui partire, https://www.rhubbit.it/agile-manifesto-le-
basi-da-cui-partire/

81

[12] TechWorld with Nana, DevOps Tutorial for Beginners,
https://www.youtube.com/watch?v=3c-iBn73dDE, Kubernetes Tutorial for Beginners,
https://www.youtube.com/watch?v=X48VuDVv0do

[13] Rowan Haddad, What are the best git branching strategies, https://www.flagship.io/git-
branching-strategies/, 8 March 2022

[14] GitLab, A guide to getting started in DevOps, https://page.gitlab.com/resources-ebook-
beginners-guide-devops.html, Introduction to GitLab Flow,
https://docs.gitlab.com/ee/topics/gitlab_flow.html

[15] Mehmet Ozkaya, Deploying .Net Microservices with K8s, AKS and Azure DevOps,
https://www.udemy.com/course/deploying-net-microservices-with-k8s-aks-and-azure-devops/,

Github Run-Devops, https://github.com/aspnetrun/run-devops

[16] Maribel Capuñay, And... What DevOps is? CI? CD? , https://www.linkedin.com/pulse/what-
devops-ci-cd-maribel-capuñay/ , 2 April 2021

[17] Beth Braccio Hering, DevOps Engineer Career: Salary, Job Description, and Skills,
https://www.flexjobs.com/blog/post/devops-engineer-career-job-description-salary/

[18] Harshit Agarwal, Roadmap to IT Revolution: History of DevOps,
https://www.appknox.com/blog/history-of-
devops#:~:text=The%20concept%20of%20DevOps%20emerged,it%20became%20quite%20a%2
0buzzword , 4 Oct 2019

[19] NetApp, What is DevOps ?, https://www.netapp.com/devops-solutions/what-is-devops/

[20] Kavya Tolety, Top 5 Companies using DevOps in 2021 – All you need to know,
https://www.edureka.co/blog/companies-using-devops/#hp, 16 December 2021

[21] Hiren Dhaduk, How Netflix Became A Master of DevOps? An Exclusive Case Study,
https://www.simform.com/blog/netflix-devops-case-study/, 24 February 2022

[22] Christopher Null, 10 companies killing it at DevOps in 2020,
https://content.microfocus.com/optimize-devops-tb/companies-killing-devops-
2020?lx=vm26kZ&utm_source=techbeacon&utm_medium=referral&utm_campaign=7014J0000
00dVOkQAM&_ga=2.18426169.1261138638.1654694337-1449737907.1654694325&xs=182762

, https://techbeacon.com/app-dev-testing/10-companies-killing-it-devops

[23] Jaymin Vyas, DevOps and Cloud: A Symbiotic Relationship, https://devops.com/devops-and-
cloud-a-symbiotic-relationship/, 7 November 2018

82

[24] Azure DevOps Labs, Create a CI/CD pipeline for .NET with the DevOps Starter Project,
https://www.azuredevopslabs.com/labs/vstsextend/azuredevopsprojectdotnet/, 21 January
2022

[25] JavaTpoint, Azure DevOps Repository, https://www.javatpoint.com/azure-devops-repository

[26] Troy Micka, All About Azure Artifacts, https://newsignature.com/articles/all-about-azure-
artifacts/#:~:text=What%20is%20Azure%20Artifacts%3F,with%20teams%20of%20any%20size,
27 February 2020

[27] Wrike, What is the scrum methodology?, https://www.wrike.com/scrum-guide/scrum-
methodology/ , What is Scrum in Agile? , https://www.wrike.com/project-management-
guide/faq/what-is-scrum-in-agile/

[28] The University of Arizona Global Campus, What is scrum? ,
https://www.uagc.edu/blog/what-is-scrum

[29] Digite, What is Scrum?, https://www.digite.com/agile/scrum-methodology/

[30] Chris Tozzi, Why Integrated Infrastructure is the key to IT Success, https://devops.com/why-
integrated-infrastructure-is-the-key-to-it-success/, 21 November 2019

[31] Ilon Adams, Serverless Computing vs Cloud Computing,
https://dzone.com/articles/serverless-computing-vs-cloud-
computing#:~:text=With%20cloud%20computing%2C%20clients%20run,manage%20the%20OS
%20or%20middleware, 24 Jun 2021

[32] Katie Lane, Kubernetes vs. Docker: What Does it Really Mean? ,
https://www.sumologic.com/blog/kubernetes-vs-docker/, 3 September 2020

[33] NovelVista, Git! An important DevOps Tool, https://www.sumologic.com/blog/kubernetes-
vs-docker/, 27 July 2021

[34] Tomasz Lisowski, Top Git hosting services for 2022, https://gitprotect.io/blog/top-git-
hosting-services-for-2022/, 8 December 2021

[35] Wahab Chetara, What is DevOps? New Engineering Insight, https://gofiha.com/what-is-
devops/, 17 Nov 2021

[36] Mahsa Tehrani, What exactly is a DevOps Pipeline?,
https://community.atlassian.com/t5/DevOps-discussions/Let-s-talk-about-DevOps-resources-for-
a-robust-secure-pipeline/td-p/1732879

[37] Hardeep Singh, Roadway to IT Revolution: The history of DevOps,
https://medium.com/appknox/roadway-to-it-revolution-the-history-of-devops-c6ca08104c1f

83

[38] Bibek Chatterjee, Legacy System Administration To Cloud Enabled DevOps Transformation
Journey - Part 2, https://www.linkedin.com/pulse/legacy-system-administration-cloud-enabled-
devops-part-chatterjee-1f/

[39] Muhammad Raza & Shanika Wickramasinghe, Automation In DevOps: Why & How To
Automate DevOps Practices, https://www.bmc.com/blogs/automation-in-
devops/#:~:text=DevOps%20automation%20is%20the%20practice,Software%20deployment%20
and%20release , 14 April 2021, What is DevOps? A Comprehensive Introduction,
https://www.bmc.com/blogs/devops-basics-introduction , 16 April 2021

[40] MuleSoft, How a DevOps environment transforms organizations,
https://www.mulesoft.com/resources/api/devops-environment-benefits

[41] Vineet Chaturvedi, DevOps Tutorial : Introduction To DevOps,
https://www.edureka.co/blog/devops-
tutorial#:~:text=United%20Airlines%3A,the%20company%20to%20save%20%24500%2C000 , 19
April 2022

[42] Bittu Kumar, What is DevOps and Azure DevOps? , https://www.linkedin.com/pulse/what-
devops-azure-bittu-kumar/ , 17 June 2021

[43] Aaron Bjork, Deep dive into Azure Boards, https://azure.microsoft.com/en-us/blog/deep-
dive-into-azure-boards/ , 13 September 2018

[44] Rafael Medeiros, Deploying to Azure Using Azure DevOps and Terraform,
https://rafaelmedeiros94.medium.com/deploying-to-azure-using-azure-devops-and-terraform-
57044407790c, 14 December 2021

[45] Ravi Shanker, Deep dive into Azure Test Plans, https://azure.microsoft.com/en-
in/blog/deep-dive-into-azure-test-plans/ , 19 September 2018

[46] ProfessionalDevOps, Azure Test Plan, https://www.professional-devops.com/azure-test-
plan.html

[47] Modern Requirements, Documenting Azure DevOps Test Plans,
https://www.modernrequirements.com/blogs/documenting-azure-devops-test-plans/

[48] ByWeeknd, What is Azure Artefacts?, https://byweeknd.com/109527/ , 4 December 2021

[49] Barry Luijbregts, Why you should be using Azure DevTest Labs,
https://www.azurebarry.com/why-you-should-be-using-azure-devtest-labs/ , 11 April 2017

[50] Zainab Ahmed, Azure Application Insights overview, https://www.alletec.com/blog/azure-
application-insights-overview/

[51] Chris Seferlis, What is Application Insights? , https://blog.pragmaticworks.com/what-is-
application-insights , 27 August 2018

84

[52] Subhankar Sarkar, Azure DevOps – Manage your application lifecycle in cloud,
https://subhankarsarkar.com/azure-devops-manage-your-application-lifecycle-in-cloud/

[53] ProductPlan, How Agile product managers can build better products,
http://assets.productplan.com/content/Ship-It-How-Agile-Product-Managers-Can-Build-Better-
Products-by-ProductPlan.pdf

[54] Ivan Porta, Azure Devops work items explained, https://faun.pub/azure-devops-work-items-
explained-10c4721c0880 , 29 September 2020

[55] Luis Gonçalves, What’s epic, user story and task in scrum work hierarchy,
https://adaptmethodology.com/epic-user-story-task/ , 23 August 2022

[56] Eplexity, Leveraging app patterns for AWS success, https://eplexity.com/wp-
content/uploads/2020/05/DevOps-Patterns-on-AWS-eBook.pdf

[57] Bilarasa, Serveless Computing in Azure Kubernetes Service Mit Keda,
https://bilarasa.com/serverless-computing-in-azure-kubernetes-service-mit-keda/ , 1 September
2022

[58] Prudhvi Keshav, Kubernetes Basics, https://prudhvikeshav.hashnode.dev/kubernetes-basics
, 11 May 2022

[59] IBM Cloud, Kubernetes vs. Docker: Why Not Both?,
https://www.ibm.com/cloud/blog/kubernetes-vs-docker , 13 June 2022

[60] Sayeda Haifa Perveez, What is Git: Features, Command and Workflow in Git,
https://www.simplilearn.com/tutorials/git-tutorial/what-is-git , 12 Jul 2022

[61] Mushmad Mannambeth, DevOps: Git for Beginners! ,
https://www.simplilearn.com/tutorials/git-tutorial/what-is-git , 28 Jul 2021

[62] Konrad Gadzinowski, Trunk-based Development vs. Git Flow,
https://www.toptal.com/software/trunk-based-development-git-flow

[63] Mantosh Singh, Top 10 best git hosting solutions and services in 2021,
https://docs.gitlab.com/ee/topics/gitlab_flow.html , 1 September 2021

[64] Narayan K, Top 10 Website to Host Git Repository Online,
https://www.scmgalaxy.com/tutorials/top-10-website-to-host-git-repository-online-2/ , 7 August
2021

[65] Kentaro Wakayama, NoOps: What does the future hold for DevOps Engineers?,
https://www.scmgalaxy.com/tutorials/top-10-website-to-host-git-repository-online-2/ , 11 July
2021

