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Abstract

Optical devices based on Quantum Dot (QD) structures have gained growing
attention in recent years due to their expected superior properties with respect
to their bulk counterparts, thus increasing the need for efficient modeling tools to
analyze and predict their performances. Mode locked QD lasers are a common
example of devices relying on zero-dimensional confinement with a large number of
applications, ranging from the biomedical world to communication systems, with
pulse repetition frequencies reaching tens or even hundreds of gigahertz. They
can also be employed in the realization of compact RF signal sources generating
ultra-short optical pulses at high repetition rates, providing appealing features in
terms of size, power consumption and bandwidth from a sub-terahertz transmission
system perspective. This represents a key research topic in Telecommunications,
given the growing interest in high frequency bandwidth and 5G or 6G systems.

In this Thesis, a numerical analysis of quantum dot based edge emitting and ring
lasers sources for RF applications is carried out with an efficient and reliable Multi-
Section Delayed Differential Equation (MS-DDE) model. Passive and harmonic
mode locking techniques can be used to generate high-quality ultra-short pulses
with high repetition rates from different types of lasers, and such model allows to
perform simulations of edge-emitting and ring devices by partitioning the total
cavity length into slices, where a set of rate equations are solved through a DDE
approach. An existing version of the MATLAB program implementing the MS-DDE
model has been rewritten in order to improve its computational efficiency, with
simulation times reduced of almost one order of magnitude. Most efforts have then
been aimed at the identification of a working set of parameters allowing to achieve
a stable harmonic mode locking regime in the sub-terahertz range, subsequently
characterizing the final devices with some key performance indicators extracted
from the simulations. This fulfills the initial goal of providing a practical tool for
the feasibility assessment of QD based laser sources working in passive or harmonic
mode locking regimes: the model can be exploited in the early stages of a design
process for these types of devices, providing accurate results with a reduced time
overhead when compared to other approaches that makes it suitable for extensive
parametric simulations as a function of external bias and/or structural parameters.
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Chapter 1

Introduction

1.1 Theoretical background
In this section, the main features on which this Thesis is centered upon are briefly
outlined in order to provide a preliminary overall framework. Further details are
then introduced in the following, with a more thorough analysis that allows a full
description of the proposed model.

1.1.1 Reduced dimensionality structures in semiconductor
lasers

The basic principle of a semiconductor laser1, also referred to as laser diode, is to
exploit carrier injection in a p-n junction for light generation and amplification.
This idea dates back to the 1950s, while the first working prototypes (based on
GaAs) have been realized in the following decade [2]. In general, three elements
are required to create a laser:

• an electrical or optical pump, to achieve carrier inversion in the device;

• an active material providing the required amplification (a semiconductor in
the case of laser diodes);

• a cavity in which the power is trapped, thus creating a resonance, while a
small portion of it is extracted and fed externally.

Laser diodes show several advantages that make them more attractive with
respect to other types of sources. One of the main reasons behind this success

1Acronym for Light Amplification by Stimulated Emission of Radiation, proposed by Gordon
Gould in 1959 [1].
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is clearly the comparatively low cost, since they can be produced exploiting
well-assessed semiconductor industry processes on a rather large scale. Moreover,
the net size of these devices is in the range of square millimeters, orders of
magnitude lower than solid-state or fiber-based counterparts, thus enabling a
higher degree of integration and the possibility to implement several functions
with a small footprint. Finally, laser diodes can provide better performances in
terms of reliability and useful lifetime (hundreds of years), as well as a higher
efficiency (around 50%) with respect to alternative solutions.

The realization of laser diodes has been relying on bulk material only, i.e.
homostructures, until the 1980s. However, the presence of large losses with this
choice represents a bottleneck for the device efficiency, also reducing the possible
optimizations that can be introduced. In order to overcome these limitations, double
heterostructures (DHS) have been introduced in semiconductor lasers thanks to the
technological advancements at the end of the XX century [3]. If the heterostructure
is properly designed, it allows for both carrier and photon confinement:

• the central portion of the device, called active layer, is characterized by a
smaller bandgap with respect to the surrounding material, causing electrons
and holes confinement thanks to the conduction band minimum EC and valence
band maximum EV discontinuities;

• the refractive index n of the active layer is larger than that of the external
regions, hence it acts as the core of a conventional waveguide providing photon
confinement due to this discontinuity.

Figure 1.1 shows the basic principle of a DHS, with carriers and photon confine-
ment along the growth direction denoted as x. Such confinement can be achieved in
more than one dimension, thus leading to different types of reduced dimension-
ality structures according to the number of confined directions. Starting from
the 3D bulk material, if a single dimension is confined a 2D structure is obtained,
referred to as Quantum Well (QW). 1D structures are characterized by two
confined directions (Quantum Wires), whereas in the case of Quantum Dots
(QD) the material is said to be 0D due to the fact that all the three dimensions
are confined. Most laser structures that are currently employed, including the ones
presented in this Thesis, rely on separate confinement heterostructures (SCH). This
represents an upgrade with respect to the DHS, since carriers are localized in the
thin active layer embedded in a wider optical confinement layer.

Overall, the performances of laser diodes based on reduced dimensionality
structures significantly improve with respect to their bulk counterpart. This
becomes rather evident when considering the decrease of the threshold current, i.e.
the bias current required to achieve the lasing condition. Clearly, this represents
an advantage in terms of energy efficiency, since the power consumption is strongly
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reduced. However, other peculiar properties of such structures can be exploited in
optoelectronic applications, as presented in the following.

Holes

Photons

Electrons

Figure 1.1: Energy (top) and refractive index (bottom) in the material growth
direction of a double heterostructure.

1.1.2 Mode locking in semiconductor lasers
Mode locking (ML) is a technique that is currently employed to enable the gener-
ation of micrometer- and millimeter-wave signals in several types of lasers, chosen
according to the final application. When compared to conventional solid-state
lasers used for femtosecond optical pulses generation, monolithic ML semiconductor
lasers offer significant improvements in terms of size, efficiency and cost.

Since a train of pulses (ideally Dirac’s delta functions) in the time domain
corresponds to a similar function in the frequency domain, the laser must be
multimode: several longitudinal modes are therefore resonating in the cavity,
separated in frequency by the free spectral range (FSR) of the device. In general,
two conditions must be ensured in order to achieve mode locking.

1. The phase difference between adjacent modes must be constant in time,
otherwise the output power would be almost constant and without the required
pulses. The term mode locking actually refers to this feature, inducing the
laser source to produce a train of ultra-short pulses that are phase-coherent
with each other2 rather than a constant wavelength output beam.

2Gain switching is another technique that allows the generation of narrow pulses, but the
phase coherence is not maintained with such approach.
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2. The amplitude of the cavity modes should be as constant in time as possible,
so as to obtain a stable output signal.

Different types of ML are possible, with specific features and requirements that
should be taken into account when designing ultra-fast pulse sources based on this
technique.

• Active: the coupling between adjacent modes is achieved by modulating the
current injection in the laser. Usually, the external signal drives an electro-
optic modulator placed inside the cavity, thus causing a modulation in the net
modal gain experienced by the field within the cavity. This clearly requires
an external sinusoidal signal at the characteristic cavity round trip frequency.

• Passive: the phase locking is obtained exploiting the nonlinear absorption in a
specific section, called saturable absorber (SA), which is biased with a constant
negative voltage in monolithic semiconductor lasers. In this way, the pulses
circulating inside the cavity are reshaped at each round trip when crossing
the aforementioned section, due to the strong absorption that is saturated (i.e.
reduced, or bleached) in correspondence of the central part of the pulse only.

• Harmonic: if the SA section is placed at the center of an edge-emitting laser
cavity, the absorption can be saturated for both propagating and counter-
propagating pulses, traveling in opposite directions and colliding in the ab-
sorber (colliding pulse ML). In this case, the repetition rate is twice the round
trip frequency of the device. Higher repetition frequencies can be obtained
by inserting in the cavity more than one SA section, also in the case of ring
structures as presented in the following.

• Hybrid: this represents an intermediate approach, in which both negatively
biased SA section and modulating input current at the fundamental repetition
rate are present.

Once the longitudinal modes have been successfully locked, the required output RF
signal is generated upon optical-to-electrical conversion. This can be done either
by means of a high-speed photodetector or, more conveniently, directly extracting
the electrical signal from the saturable absorber section of the monolithic device.

The growing interest in ML lasers based on Quantum Dot materials is due to their
expected superior properties with respect to bulk 3D or 2D counterparts. However,
the limited frequency tunability of such devices may pose some restrictions to their
applicability. More details on mode locking in semiconductor lasers are presented
in the following of this document, with a specific focus on the advantages obtained
thanks to the insertion of QDs in traditional edge-emitting or ring structures.
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1.2 Aim of this Thesis
Being able to achieve femtosecond optical pulses has enabled several improvements
in a wide range of applications, from communication systems to sensing and real-
time monitoring devices. The main purpose of this Thesis is the generation of
high-frequency pulses for Telecommunications. However, the devices presented in
the following may also be employed in different fields by simply tuning some of
their parameters, making them suitable for other application-specific constraints.

Moreover, simulation represents a crucial step in any design activity, since it
allows to evaluate and predict the performance of a device before proceeding with
the actual production and characterization. This clearly reduces the expenses and
the risks of such process, and the model efficiency directly affects the time required
for this phase.

1.2.1 Optical generation of sub-THz signals
The realization of compact on-chip RF signal sources is a key research topic
in Telecommunications, given the growing interest in high frequency bandwidth
and beyond 5G applications [4]. In particular, carrier frequencies in wireless
communication systems have been pushed towards higher values, with data rates
that are becoming comparable with those of optical fiber-based communications.
Figure 1.2 shows the historical and expected evolution of mobile systems data rate,
with a steeper trend for wireless communications that are eventually expected to
match wired ones at the end of this decade [5].

From this perspective, the sub-terahertz and terahertz range (between
90 GHz and 300 GHz) is rather attractive, since it provides a set of advantages
when compared with other wireless communication links [6].

• With respect to microwave communications, THz ones intrinsically provide
a sufficiently wide bandwidth for the transmission of ultra-broadband data,
hence achieving an increased capacity. Moreover, THz communications are less
affected by free-space diffraction phenomena, thus resulting in more directional
waves.

• When compared to higher frequency bands (e.g. Infra-Red), lower atmospheric
losses under poor weather conditions are ensured by THz networks. In addition
to this, scintillation effects due to time-varying fluctuations in the refractive
index of the atmospheric path are also reduced, allowing the realization of
longer links [7].

• THz communications can also be implemented as “secure links” with protec-
tions against channel jamming attacks [8], and they represent a viable solution
for first- and last-mile applications [9].
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Figure 1.2: Data rate evolution in wired and wireless communication systems [5].

The generation of high-quality short pulses with high repetition rates is of
paramount importance for a wide range of applications. However, developing
electronic devices (e.g. mixers, amplifiers, antennae) able to work at sub-THz or
even THz frequencies with reasonable costs and energy efficiency is one of the
key obstacles to this innovation process. In this scenario, the optical approach
represents the most immediate and straightforward solution, as well as the most
convenient one. Several devices working at tens of gigahertz can already be found
on the market, with low-losses and low-dispersion features that make them more
attractive than conventional electronic ones [10].

Commercial systems for broadband THz generation are usually based on fem-
tosecond pulse sources [11] and photoconductive switches [12]. However, due to
their drawbacks in terms of cost, power consumption and large footprint, recently
most research efforts have been shifted towards other solutions. In particular, het-
erodyning two optical sources with different wavelengths by means of a photomixer
seems to be a more effective approach: it allows the user to obtain an output signal
whose frequency is equal to the difference between the input signals frequencies,
consistently with conventional RF mixers [13]. Figure 1.3 shows an example of
long-range, high capacity wireless communication link at THz frequencies, with a
Photonic transmitter based on optical heterodyning for the carrier generation and
a more traditional electronic receiver on the other side.

Mode locking (ML) and gain switching are two techniques that can be exploited
for ultra-short pulse generation [14–16], with several possible configurations that
have to be properly chosen taking into account the application-specific requirements.
The introduction of Quantum Dot materials to enhance their properties has been
thoroughly investigated in recent years, due to the expected superior properties
with respect to higher dimensionality solutions.
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Figure 1.3: Application scenario for a wireless communication link working at
THz frequencies [17].

1.2.2 Simulation and DDE model

Having a reliable numerical model for ML lasers represents a crucial element in the
spread of such technology, which is not commonly available on the market yet. In
particular, the parametric simulation of monolithic semiconductor lasers employed
at this purpose can be considered of paramount importance not only for a deeper
comprehension of the underlying physical mechanisms, but also for their practical
exploitation.

In the following, a set of dynamic phenomena taking place during the pulse
propagation inside the laser cavity is presented. Clearly, the time scales associated
to each of these effects are rather heterogeneous, with an overall range that goes from
few picoseconds (or even fractions of picoseconds) up to tens of nanoseconds. This
introduces an important trade-off between accuracy, necessary to properly describe
the semiconductor nonlinear effects on a short time scale, and computational
efficiency, required for design and optimization when simulating long time intervals.

A first possible approach for the numerical simulation of ML lasers is the Time-
Domain Traveling-Wave model, based on the solution of the traveling wave equations
inside the cavity via a finite difference scheme [18]. With this choice, an accurate
description of both the optical response of the material and the spatio-temporal
evolution of the field within the cavity can be obtained. It is rather straightforward
that the main drawback of such model is related to its high computational cost,
becoming critical in the case of long simulated intervals.
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On the other hand, a simplified description of the field dynamics in the device can
be introduced in order to reduce the simulation times. In this sense, an alternative
approach based on the solution of simple Delayed Differential Equations (DDE)
results in reduced computational costs at the price of a lower accuracy level [19].

1.2.3 Thesis organization
In the following, monolithic lasers based on QD materials and exploited in passive
or harmonic ML regime for pulse generation are considered. At first, the theoretical
background required to model QD-based lasers is presented in Chapter 2, where a
physical-level analysis is carried out to derive the set of rate equations at the basis of
the simulations. Then, mode locking is analyzed more in depth in Chapter 3, with a
specific focus on the peculiarities introduced by QD materials. A thorough state of
the art analysis is presented in the same chapter, including recent achievements in
terms of standalone devices, modeling techniques, and complete Telecommunications
applications. In addition to this, the Multi-Section Delayed Differential Equations
model is fully described. Finally, Chapter 4 includes the main results that have
been obtained during this research activity, with a comparison between different
types of structures in an application-oriented analysis, whereas some concluding
remarks and possible future steps are reported in Chapter 5.
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Chapter 2

Quantum Dot Lasers

2.1 Quantum Dot basic features
The main optical properties of Quantum Dot materials that can be exploited in
lasers are presented in the following, starting from the description of energy band
structure and interband transition mechanisms at the basis of their macroscopic
properties. In order to understand some discrepancies with respect to the ideal
case, few hints on the fabrication process are also provided, since a set of physical
parameters related to this first phase can play a major role in the final behavior of
the device.

2.1.1 Fabrication process
In order to achieve carrier confinement, the semiconductor material size in the
confined direction should be lower than (or at most comparable to) the de Broglie
wavelength λB of the considered particle. This quantity is obtained as

λB = h

p
= h

mv
, (2.1)

where h = 4.1357 × 10−15 eV s is the Planck constant, and p is the particle mo-
mentum defined as the product of its mass m and velocity v. In the case of
III-V compound semiconductors, this wavelength is in the order of few tens of
nanometers.

In Quantum Dots, all the three dimensions are confined, meaning that the
semiconductor material has to be manufactured at the nanoscale. The realization
of such structures has been enabled by relatively recent technological advancement,
in particular concerning epitaxial growth techniques. III-V QDs fabrication mainly
relies on Molecular Beam Epitaxy (MBE). This technique, which is currently
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employed in deeply-scaled transistor technology too, consists of a controlled evap-
oration onto a target crystalline material, usually referred to as the substrate,
performed in tightly constrained environmental conditions. In particular, the
deposition occurs layer by layer : this allows an outstanding control of the process
(in the nanometer or even angstrom range), clearly paid in terms of extremely low
throughput and high cost.

Conventional epitaxial techniques are performed between lattice-matched mate-
rials, meaning that the lattice constant of the deposited material is equal to that
of the substrate, or with a small lattice mismatch between the two components.
Under specified growth conditions, though, two highly mismatched materials can
be employed to achieve nanometric islands of semiconductor in a self-assembly
procedure known as the Stranski-Krastanov process [20, 21]. As an example,
InAs can be grown on a GaAs substrate with this technique, and the relative lattice
mismatch between the two materials is around 7%. InAs tends to match to GaAs
forming a strained layer that is referred to as wetting layer (WL); when the
amount of deposited material exceeds a threshold value, strain relaxation leads
to the formation of islands without creating dislocations. Typically, pyramidal
structures are obtained with the following features [22]:

• in-plane diameter in the range (15 ÷ 30) nm;

• height equal to (3 ÷ 5) nm;

• QD surface density in the order of (1010 ÷ 1011) cm−2.

Notice that these and other parameters strongly depend on the process conditions,
such as temperature, pressure, reactant concentration and deposition rate. For
instance, the diameter of InAs/InGaAs QDs increases when the growth rate is
lower, or the temperature inside the reaction chamber is higher [23]. This has a
direct effect on the emission wavelength of the QD, which is higher (i.e. the output
frequency is lower) in the presence of larger dots.

In addition to this, the presence of a capping layer in which QD structures are
embedded is commonly employed to further tune the output frequency of the device.
In particular, Dots-in-a-Well (DWELL) structures present an external Quantum
Well layer whose physical properties (e.g. composition, thickness) may introduce a
shift in the final emission wavelength.

Figure 2.1 shows a schematic representation of a device with stacked QD layers
in its active region. This stacking is introduced to increase the coupling of the
active medium with the electromagnetic field, with spacing and thicknesses that
can be tuned according to the specifics. The active region is then surrounded
by a cladding, with wider energy gap and lower refractive index to guarantee
both carrier and photon confinement. Finally, a p-doped substrate and a n-doped

10
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contact are present, forming the conventional p-i-n junction for carrier injection in
semiconductor lasers.

p+ doped
region 400nm

Al0.25Ga0.7As
P-Cladding
region
1775nm

Spacer
layers
45nm

p++ doped
region 1275nm

Be Doped Si Doped

Al0.25Ga0.7As
N-Cladding
region
2825nm

GaAs p++ cap
300nm

n++ doped
region 2825nm

6 x In.15Ga.85As
DWELL (Qdot)

n-type superlattice
grade

p-type superlattice
grade

Qdot
Active

Figure 2.1: Example of heterostructure containing stacked QD layers [24].

The presence of process variations has to be considered carefully in the
mathematical model, due to the direct effect that the aforementioned parameters
have on the main properties of a QD-based device. In order to model the presence
of shifts in the emission wavelength, the concept of inhomogeneous broadening that
will be presented in the following is introduced.

2.1.2 Electronic structure
Electrons and holes in a Quantum Dot are confined in all the three dimensions,
meaning that such a structure can be ideally represented as a cubic box in which
carriers are trapped. From a practical point of view, this condition is achieved in
the case of a semiconductor material with nanometric size along each direction in
the 3D space, as mentioned previously. Carriers in a QD can occupy a discrete set
of energy levels1 due to the peculiar energy-momentum relations in the confined
directions. As a consequence, the density of states (DOS) is not continuous
as in bulk material, but quantized: in the ideal case, the dot energy levels are
represented by Dirac’s delta functions.

1A similar behavior is experienced by electrons in an atom, hence QDs are also referred to as
artificial atoms.
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Figure 2.2 shows the first two allowed energy levels for electrons, located above
the conduction band minimum EC, namely the ground state (GS) EGS and the
first excited state (ES) EES1. The subscript e0 in the graph highlights that the
considered case is ideal. A dual condition can be found below the valence band
maximum EV for holes: depending on whether a perfect symmetry with respect to
the bandgap is assumed or not, the excitonic or non-excitonic approach is followed.

Figure 2.2: Ideal density of states for electrons confined in a Quantum Dot.

From a laser diode application perspective, some of the advantages provided by
QD-based devices can already be grasped from these considerations.

• In principle, the emitted radiation should be monochromatic, i.e. single-
frequency. This can be explained by recalling the well-known relation between
photon energy and frequency

Eph = hν = h
c

λ
, (2.2)

where Eph is the photon energy, while ν and λ are its frequency and wavelength,
respectively, related by an inverse proportionality with the speed of light
in vacuum c = 2.99792458 × 108 m/s. Intuitively, a single wavelength (or
frequency) corresponds to a unique energy value, hence the radiation is
monochromatic if a unique level of the ideal DOS is considered.

• The number of carriers required to fill the available states is lower with respect
to bulk devices, so the inversion of population condition is achieved at lower
bias values, thus implying a reduced threshold current Ith for the device. This
clearly contributes to an overall efficiency enhancement.

• The temperature sensitivity of Ith is lower in reduced dimensionality structures
with respect to bulk counterparts, and in particular it should ideally be null
when Quantum Dots are employed.

12
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Simplified computation of the QD energy levels

Self-assembled Quantum Dots as the ones described in the previous sections
are said to be mesoscopic structures, i.e. their size is significantly larger than
the semiconductor material unit cell. In these conditions, the effective mass
approximation can be adopted, assuming a parabolic band dispersion in the k-space
to compute the eigenstates of single particles inside the QD.

Electron and hole wavefunctions can be written as [25]

Ψλ(k, r) = ϕλ(r) uλ(k ≈ 0, r), λ = e, h. (2.3)

• Ψ(k, r) is the particle wavefunction, expressed as a function of the wave vector
k and the position r inside the material.

• λ is the band index, highlighting whether electrons in conduction band (CB)
or holes in valence band (VB) are considered.

• ϕ(r) represents a set of slowly-varying envelope functions, usually consisting
of quantized standing waves in the case of reduced dimensionality structures.
Notice that the main assumption at the basis of the effective mass approx-
imation is that these envelope functions do not vary much in the unit cell,
characterized by sub-nanometric dimensions.

• u(k ≈ 0, r) are the Bloch functions evaluated close to the considered band
edge in the k space (k ≈ 0), periodic in space as the Bravais lattice.

Assuming a parabolic band dispersion, the envelope functions satisfy the effective
mass equation A

− ℏ2

2m∗
λ

∇2 + Vλ(r)
B

ϕλ(r) = Eλϕλ(r), (2.4)

where ℏ = h/2π is the normalized Planck constant, m∗ is the particle effective
mass (allowing to describe it as if it were in free space), while ∇2 is the Laplacian
operator, defined as

∇2(x, y, z) = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . (2.5)

Moreover, V (r) is the 3D confinement potential for carriers in the Quantum Dot,
and E represents the eigenvalues of this differential problem.

Determining the confinement potential in a QD is not trivial, especially when
considering variations due to shape, size and strain distributions in a self-assembled
structure, hence a rigorous approach would require complex numerical methods
for the description of wavefunctions and energy levels. However, an analytical
solution can be derived by introducing some approximations. As an example, in
the case of QDs with base radius significantly larger than their height, a weak
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confinement with 2D harmonic potential can be assumed in the (y, z) in-plane
dimension, whereas carriers are strongly confined in the growth direction x with
an infinitely high potential well [26].

It is convenient to introduce a cylindrical coordinates system, replacing the
Cartesian one:

(x, y, z) −→ (x, r, θ), (2.6)
where x remains the vertical direction, r represents the radial coordinate in the
former (y, z) plane, and θ is the azimuthal angle with respect to the original y axis
(Figure 2.3). In this new reference system, the Laplacian operator becomes

∇2(x, r, θ) = ∂2

∂x2 + ∂2

∂r2 + 1
r

∂

∂r
+ 1

r2
∂2

∂θ2 , (2.7)

while the 3D confinement potential can be rewritten according to the aforementioned
approximation as

Vλ(x, r, θ) = Vx,λ(x) + 1
2m∗

λω2
λr2. (2.8)

The term ω is the characteristic frequency modeling the strength of the parabolic
in-plane potential, while Vx(x) is the infinite potential well profile along the growth
direction, defined as

Vx(x) =
I

0 x < |hw/2|
∞ x ≥ |hw/2|

, (2.9)

where hw is the well width, assumed to be centered in x = 0. The envelope functions
expression can then be factorized into transverse and in-plane components:

ϕλ(x, r, θ) = ξλ(x)φλ(r, θ). (2.10)

Figure 2.3: Cartesian and cylindrical coordinate systems.

Equation 2.4 can therefore be rewritten as a set of two independent equations
for the transverse and in-plane wavefunctions, solved separately in the following.
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• Transverse direction. The effective mass equation simplifies asA
− ℏ2

2m∗
λ

d2

dx2 + Vx,λ(x)
B

ξλ(x) = Eλ,nξλ(x), (2.11)

corresponding to the 1D Schrödinger equation describing the “particle in a
box” model. In the case of an infinitely high symmetric well, centered in
x = 0 and whose width is equal to hw, and introducing the principal quantum
number n, the solution of this equation is simply given by

ξλ(x) =
ó

2
hw

sin
3

n
π

hw
x
4

, (2.12)

with eigenvalues
Eλ,n = n2 ℏ2π2

2m∗
λh2

w
, n = 1, 2, . . . (2.13)

Since the QD height has been assumed to be much smaller than the in-plane
radius, only the fundamental transverse eigenstate (corresponding to n = 1)
contributes effectively to the energy band structure of the dot, hence in the
following higher order terms will be neglected.

• In-plane direction. The effective mass equation becomesC
− ℏ2

2m∗
λ

A
∂2

∂r2 + 1
r

∂

∂r
+ 1

r2
∂2

∂θ2

B
+ 1

2m∗
λω2

λr2
D

φλ(r, θ) = (Eλ − Eλ,n) φλ(r, θ).

(2.14)
The solution for this equation is less immediate, given by the Fock-Darwin
eigenstates, and it is not reported here for simplicity. However, the corre-
sponding eigenvalues can be expressed in a simple form by introducing two
additional integer numbers, namely the angular momentum quantum number
m = 0, ±1, ±2, . . . and the radial quantum number p = 0, 1, 2, . . . , obtaining

Eλ,(n,p,m) = Eλ,n + ℏωλ(p + |m| + 1). (2.15)

In conclusion, considering the approximation due to strong quantization along
the x axis, the eigenvalues of the complete system can be written as

Eλ,(p,m) = Eλ,1 + ℏωλ(p + |m| + 1). (2.16)

A schematic view of the obtained characteristic energy levels for electrons in CB is
proposed in Figure 2.4 alongside the associated degeneracy:

• the electron ground state is characterized by quantum numbers (p = 0, m = 0),
and it is two-fold degenerate due to spin degeneracy, not considered in the
previous computations;
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• the first excited state has quantum numbers (p = 0, m = ±1), and it is
therefore four-fold degenerate;

• the second excited state is instead characterized by the couples (p = 0, m = ±2)
and (p = 1, m = 0), hence its degeneracy is equal to six.

Figure 2.4: First three energy levels for confined electrons in the QD, with
associated quantum numbers.

Clearly, this is a simplified picture that allows to describe the quantized energy
levels in a QD structure as the ones reported in Figure 2.5, and it will be used
in the next steps of this analysis. In more realistic scenarios, a uniform spacing
between energy levels cannot be assumed, since they tend to become closer due to a
weaker localization of the high-order eigenfunctions. Further increasing the energy,
a transition to a continuum of the delocalized states belonging to the wetting layer
occurs, up to the final 3D bulk states distribution of the SCH.

Figure 2.5: Energy levels of the whole structure.
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Concerning the holes, their wavefunctions turn out to be much less confined,
corresponding to a characteristic frequency ωh ≪ ωe. The spacing between hole
energy levels is therefore reduced. Moreover, light and heavy holes degeneracy
should also be taken into account for a more realistic description of the QD
behavior. Figure 2.6 reports two examples of energy band structures belonging
to InAs/GaAs and InAs/In0.15Ga0.85As DWELL layers, which are in line with the
proposed qualitative explanation.

(a) (b)

(c) (d)

Figure 2.6: Schematics of the energy band structure for (a,b) InAs/GaAs and
(c,d) InAs/In0.15Ga0.85As DWELL layers.

2.1.3 Broadening contributions
The fabrication of Quantum Dot structures is not ideal, with possible process
variations leading to quite wide fluctuations in dimensions and shape. In practice,
a Gaussian distribution describes the dot sizes obtained with the self-assembly
process, but it results in a non-Gaussian distribution in the energy levels due to the
strongly nonlinear dependence of the levels positions with respect to the dot size.

However, such size dependency can be assumed to be linear if the energy
distribution is narrow enough, and the actual DOS is then characterized by Gaussian-
like allowed states. As an example, the ground state level for an electron Ee,GS
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differs from the ideal value Ee0,GS by a quantity whose distribution function is [27]

Dinh
e

1
Ee,GS

2
= 1√

π∆Einh
e,GS

exp
−

A
Ee,GS − Ee0,GS

∆Einh
e,GS

B2
 , (2.17)

where the electron level broadening term ∆Einh
e,GS, depending on the dot size, strain

and shape, must be small for this approximation to hold, while the sample should
be sufficiently large (i.e. containing a large number of dots). A similar relation
holds for hole levels, hence in terms of electron-hole energy separation (e − h):

Dinh
(e−h)

1
E(e−h),GS

2
= 1√

π∆Einh
GS

exp
−

A
E(e−h),GS − E(e0−h0),GS

∆Einh
GS

B2
 , (2.18)

where the broadening term for transitions ∆Einh
GS is due to both carrier types

broadening contributions and equal to

∆Einh
GS = ∆Einh

e,GS + ∆Einh
h,GS, (2.19)

given that the two terms are narrow enough for the approximation to hold. Typical
full width at half maximum (FWHM) values of this parameter for the ground state
are in the range (30 ÷ 90) meV, strongly influencing the material gain.

This non-ideality, known as the inhomogeneous broadening, does not allow
for monochromatic emission in real devices. However, it can actually be exploited
in high-speed applications, such as the generation and amplification of ultra-short
pulses, thanks to the advanced control in the QD growth parameters. Figure 2.7
reports an example of more realistic DOS for an electron confined in a QD consid-
ering inhomogeneous broadening: the two ideal Dirac’s delta functions, centered in
Ee0,GS and Ee0,ES respectively, are replaced by two Gaussian distributions whose
queues overlap in the energy range between the two considered levels.

Figure 2.7: More realistic DOS for electrons in a QD.
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Another effect that should be taken into account, more related to individual
dots rather than their ensemble, is the homogeneous broadening of a radiative
transition. This can be caused by the interaction of an exciton (electron-hole pair)
in the dot with phonons and/or other carriers, either localized inside the QD or
external to it. These events may break the quantum coherence of the electron-hole
pair, leading to a Lorentzian line broadening shape in the form

Dhom
(e−h)

1
Eph, E(e−h),GS

2
= 1

π

∆Ehom
GS1

Eph − E(e−h),GS
22

+
1
∆Ehom

GS

22 . (2.20)

The term E(e−h),GS represents again the energy separation between electron and
hole GS levels, whereas Eph = ℏω is the photon energy. The homogeneous broad-
ening width ∆Ehom

GS is usually more difficult to estimate experimentally than the
inhomogeneous one, with typical values in the range (1 ÷ 10) meV (FWHM value,
approximately 1 order of magnitude smaller with respect to the inhomogeneous
width). The impact of this broadening mechanism is analyzed more in details in
Section 3.5.

2.2 QD dynamic analysis
In order to model devices based on self-assembled QDs, the dynamic behavior
of carriers within the confined states has to be analyzed. In particular, the time
evolution of electrons and holes can be described by means of a system of rate
equations, presented in this section. A theoretical justification of the equations
describing how QD materials behave in the presence of an externally applied
electromagnetic field relies on the density matrix approach, enabling the analysis
of carriers and polarization evolution in these semiconductor media. Several
phenomena are then introduced in the following, as well as possible approximations
with respect to non-idealities that allow to achieve a more efficient computation.

2.2.1 Density matrix formalism
The optical response of a Quantum Dot to an incoming electromagnetic field
can be described according to the density matrix theory, which allows to
introduce phenomenological scattering rates describing population and polarization
dynamics. This approach is typically employed in Quantum Mechanics problems
in the presence of mixed states, providing a generalization with respect to the
wavefunction approach (valid for pure states only) [28].

The computations presented in this Section have been carried out considering
pure states only, in order to keep the notation as simple and readable as possible.
However, the generalization to mixed states is immediate, as presented at the end
of the discussion.
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Optical dipole matrix element

The starting point of this approach is to consider a pure state, which can be
described in terms of wavefunctions. In this case, the state vectors |λ, k⟩ are
the eigenstates of the unperturbed Hamiltonian H0, hence the stationary
Schrödinger equation yields

H0 |λ, k⟩ = Eλ,k |λ, k⟩ = ℏελ,k |λ, k⟩ , (2.21)

where Eλ,k = ℏελ,k are the associated eigenvalues. The subscript λ = e, h is the
band index identifying the type of carrier considered, while k = (p, m) represents
the wave vector, which reduces to the in-plane quantum numbers couple within
the approximation introduced to evaluate the eigenvalues. Notice that according
to Dirac notation [29], the Schrödinger wavefunction Ψλ(k, r) for the state |λ, k⟩ is
given by the scalar product

Ψλ(k, r) = ⟨r|λ, k⟩ . (2.22)

The state vectors obey the completeness relationØ
λ,k

|λ, k⟩ ⟨λ, k| = 1 (2.23)

and the orthogonality relation

⟨λ′, k′|λ, k⟩ = δλ′,λδk′,k, (2.24)

where δij is the Kronecker delta, defined as

δij =
I

1 i = j

0 i /= j
. (2.25)

The unperturbed Hamiltonian can then be rewritten in its diagonal representation
exploiting these two properties:

H0 =
Ø
λ′,k′

|λ′, k′⟩ ⟨λ′, k′| H0
Ø
λ,k

|λ, k⟩ ⟨λ, k| =
Ø
λ,k

ℏελ,k |λ, k⟩ ⟨λ, k| . (2.26)

The action of the Hamiltonian on an arbitrary wavefunction can be explained
as follows: the “bra” vector ⟨λ, k| projects out the part containing a state with
quantum numbers λ, k represented by the “ket” vector |λ, k⟩.

An externally applied time-varying electric field E(t) can interact with the
trapped carriers in a QD structure, inducing a variation in the wavefunction. Such
interaction can be described by means of the interaction Hamiltonian operator
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HI(t). Being d(r) = qr the electric dipole moment, this Hamiltonian can be
expressed as

HI(t) = −d(r) · E(t) = −

 Ø
λ,λ′,k,k′

dλ′,λ(k′, k) |λ′, k′⟩ ⟨λ, k|

E(t). (2.27)

The term dλ′,λ(k′, k) is the dipole matrix element, defined as

dλ′,λ(k′, k) = q ⟨λ′, k′| r |λ, k⟩ . (2.28)

Interband transitions and selection rules

The general relations derived before can be simplified by introducing a set of
assumptions, presented in the following.

• Only interband transitions can occur, whereas intraband ones are neglected.
In these conditions, the only non-null dipole matrix elements are

dλ′,λ(k′, k) /= 0 ⇐⇒ λ /= λ′, (2.29)

and the expression to evaluate them can be written as [28]

dλ′,λ(k′, k) = q
j

m0(ελ,k − ελ′,k′) ⟨λ′, k′| p |λ, k⟩ , (2.30)

where m0 = 9.1 × 10−31 kg is the electron rest mass and p = −jℏ∇ is the
momentum operator.

• The left-hand side term in Equation 2.30 can be explicitated as

⟨λ′, k′| p |λ, k⟩ = 1
Ω

Ú
Ω

Ψ∗
λ′(k′, r) p Ψλ′(k′, r) dx dy dz, (2.31)

exploiting the fact that the momentum operator is diagonal in the r space.
The integration is carried out over the lattice unit cell, identified as Ω.

• Consider again the QD wavefunctions, expressed as the product between
enveleope (ϕλ) and Bloch (uλ) functions, presented in Equation 2.3. The
former ones are said to be slowly-varying, hence they can be considered almost
constant within a unit lattice cell, whereas Bloch functions have the same
periodicity in space as the Bravais lattice. Consequently, the integral term in
Equation 2.31 can be rewritten asÚ

Ω
Ψ∗

λ′(k′, r) p Ψλ′(k′, r) dx dy dz =

= −jℏ
Ú

Ω
ϕ∗

λ′(r)ϕλ(r) dx dy dz ×
Ú

Ω
u∗

λ′(k′ ≈ 0, r)∇uλ(k ≈ 0, r) dx dy dz.

(2.32)
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The dipole matrix element relation then becomes

dλ′,λ(k′, k) = q
ℏ

m0(ελ,k − ελ′,k′)
1
Ω

Ú
Ω

ϕ∗
λ′(r)ϕλ(r) dx dy dz×

×
Ú

Ω
u∗

λ′(k′ ≈ 0, r)∇uλ(k ≈ 0, r) dx dy dz.

(2.33)

• Electron and hole envelope functions are characterized by the same spatial
dependence, while their absolute value can be different according to the carrier
confinement potential. This implies that an even or odd wavefunction in
the radial direction has the same symmetry for both types of carriers: as an
example, electrons and holes in the GS are characterized by in-plane quantum
numbers k = (0,0), corresponding to an even symmetry in the x and y direction
(s-type orbitals), whereas an odd symmetry (p-type) is obtained for the first
ES with k = (0, ±1). Consider the first integral of Equation 2.33:

– if the in-plane quantum numbers k and k′ are the same, the product of
the two envelope functions is even in the x and y directions, hence the
integral can be significantly different from zero;

– on the other hand, when k /= k′ the product is an odd function along x
and y, thus leading to a null 3D integral.

These considerations are known as selection rules, and they allow to state
that the non-negligible dipole matrix elements are characterized by

dλ′,λ(k′, k) /= 0 ⇐⇒ k′ = k. (2.34)

Notice also that in these conditions the interaction Hamiltonian can be rewrit-
ten by performing the summation on the band indexes only (Equation 2.27),
yielding

HI(t) = −d(r) · E(t) = −

 Ø
λ,λ′,k

dλ′,λ(k, k) |λ′, k⟩ ⟨λ, k|

E(t) =

= −
CØ

k

1
dλ′,λ |λ′, k⟩ ⟨λ, k| + d∗

λ′,λ |λ, k⟩ ⟨λ′, k|
2D

E(t) =

=
Ø

k
HI,k(t),

(2.35)

where the identity d∗
λ′,λ = dλ,λ′ has been used, and λ′ /= λ according to

previous considerations.

• In addition to this, the heavy hole-light hole band degeneracy is lifted in QD
systems, whose hole wavefunctions are characterized by a predominant HH
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behavior. While light hole Bloch functions are odd in all the space directions,
HH ones are even along the growth direction x. Since electron Bloch functions
are even in all the directions, and the derivative changes their symmetry to
an odd one, the product inside the second integral term of Equation 2.33 is
an odd function in the x direction only. Consequently, the x component of
the dipole matrix element vanishes, i.e. dλ′,λ(k, k) · x̂ = 0, thus justifying the
fact that QDs interact mainly with TE polarized fields [30, 31].

Density matrix and Liouville-Von Neumann equation

Considering the QD eigenstates |λ, k⟩ as a complete basis set, and recalling that
k′ = k according to the selection rules, the single-state density operator for the
corresponding pure state can be obtained as

ρk(t) =
Ø
λ,λ′

ρλ′,λ(k, t) |λ′, k⟩ ⟨λ, k| , (2.36)

expressing the relation between two carriers of type λ and λ′, characterized by the
same in-plane quantum numbers k = (p, m). The complete density matrix is then
obtained by simply performing a summation over all the considered states:

ρ(t) =
Ø

k
ρk(t). (2.37)

The time evolution of the wavefunction is described by means of the time-
dependent Schrödinger equation

jℏ ∂

∂t
|λ, k⟩ = Ĥ |λ, k⟩ , (2.38)

where Ĥ = H0 + HI(t) is the Hamiltonian of the system. Notice that for the
wavefunction complex conjugate this relation becomes

−jℏ ∂

∂t
⟨λ, k| = ⟨λ, k| Ĥ. (2.39)

Thus, the time evolution of the density operator can be computed applying the
derivative rules for composite functions as

∂

∂t
ρ(t) = ∂

∂t

1
|λ, k⟩ ⟨λ, k|

2
=

= 1
jℏĤ |λ, k⟩ ⟨λ, k| + 1

−jℏ |λ, k⟩ ⟨λ, k| Ĥ =

= − j
ℏ

A
Ĥ |λ, k⟩ ⟨λ, k| − |λ, k⟩ ⟨λ, k| Ĥ

B
=

= − j
ℏ
è
Ĥ, ρ(t)

é
,

(2.40)
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where the double commutator property [A, B] = AB − BA has been used.
Equation 2.40 can be rewritten by explicitating the Hamiltonian form for a

material subject to an external electric field, and including also an additional
phenomenological term describing relaxation effects due to incoherent scattering
processes, for instance following electron-phonon or electron-electron interactions.
In this way, the complete Liouville-Von Neumann equation [22, 28] is obtained:

∂

∂t
ρ(t) = − j

ℏ
è
H0 + HI(t), ρ(t)

é
+
A

∂

∂t
ρ(t)

B
rel

. (2.41)

2.2.2 Population and polarization dynamics
The considerations carried out for the dipole matrix element should be taken into
account in order to derive a set of kinetic equations for the density matrix, since
they allow to identify its non-zero elements.

• The diagonal elements ρλ,λ(k, t) give the probability to find an electron or a
hole in the state |λ, k⟩, i.e. they correspond to the population distribution in
band λ. In the following, these occupation probabilities are identified asI

fe,k(t) = ρe,e(k, t) λ = e
fh,k(t) = 1 − ρh,h(k, t) λ = h

. (2.42)

• Also off-diagonal elements characterized by different band indexes but same
quantum numbers, ρλ′,λ(k, t), can be non-null. These are proportional to the
microscopic interband polarization, and they will be referred to as

pk(t) = ρe,h(k, t) = ρ∗
h,e(k, t). (2.43)

Moreover, the Hamiltonian operator is rewritten in its interaction representation,
so the term HI,k(t) obtained in Equation 2.35 becomes

Hint
I,k(t) = exp

3 j
ℏ

H0t
4

HI,k(t) exp
3

− j
ℏ

H0t
4

=

= −
è
ej(εe,k−εh,k)tde,h |e, k⟩ ⟨h, k| + e−j(εe,k−εh,k)td∗

e,h |h, k⟩ ⟨e, k|
é

E(t).
(2.44)

Similarly, the density operator ρk(t) presented in Equation 2.36 is rewritten as

ρint
k (t) = exp

3 j
ℏ

H0t
4

ρk(t) exp
3

− j
ℏ

H0t
4

=

= exp
3 j
ℏ

H0t
4Ø

λ,λ′
ρint

λ′,λ(k, t) |λ′, k⟩ ⟨λ, k|

 exp
3

− j
ℏ

H0t
4

.
(2.45)
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Coherent regime approximation

The two types of elements, diagonal and off-diagonal ones, are coupled to each other
and therefore the kinetic equations describing their time evolution contain both.
By neglecting at first incoherent scattering processes, the Liouville-Von Neumann
equation in the interaction representation becomes

∂

∂t
ρint

k (t) = − j
ℏ
è
HI,k(t), ρint

k (t)
é

= − j
ℏ
è
HI,k(t)ρint

k (t) − ρint
k (t)HI,k(t)

é
=

= j
ℏ

E(t)
Ø
λ,λ′

ρint
λ′,λ(k, t)×

×
C
ej(εe,k−εh,k)tde,h

1
|e, k⟩ ⟨h, k|λ′, k⟩ ⟨λ, k| − |λ′, k⟩ ⟨λ, k|e, k⟩ ⟨h, k|

2
+

+ e−j(εe,k−εh,k)td∗
e,h

1
|h, k⟩ ⟨e, k|λ′, k⟩ ⟨λ, k| − |λ′, k⟩ ⟨λ, k|h, k⟩ ⟨e, k|

2D
.

(2.46)

This complex relation can be simplified by considering separately the diagonal and
off-diagonal matrix elements.

• ρint
e,e(k, t) yields the variation of electron distribution in CB:

∂

∂t
ρint

e,e(k, t) = j
ℏ

E(t)
C
ej(εe,k−εh,k)tde,hρint

h,e(k, t) − e−j(εe,k−εh,k)td∗
e,hρint

e,h(k, t)
D
,

(2.47)
which adopting the new notation becomes

d
dt

fe,k(t) = j
ℏ

E(t)
è
de,h(k)p∗

k(t) − d∗
e,h(k)pk(t)

é
. (2.48)

• ρint
h,h(k, t) has the same meaning for holes in VB:

∂

∂t
ρint

h,h(k, t) = j
ℏ

E(t)
C
ej(εh,k−εe,k)td∗

e,hρint
e,h(k, t) − e−j(εh,k−εe,k)tde,hρint

h,e(k, t)
D

=

= − ∂

∂t
ρint

e,e(k, t),
(2.49)

or equivalently

d
dt

fh,k(t) = j
ℏ

E(t)
è
de,h(k)p∗

k(t) − d∗
e,h(k)pk(t)

é
=

= d
dt

fe,k(t).
(2.50)
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• ρint
e,h(k, t) is instead associated to the interband polarization:

∂

∂t
ρint

e,h(k, t) = j
ℏ

E(t)
C
ej(εh,k−εe,k)tde,h(k)

1
ρint

h,h(k, t) − ρint
e,e(k, t)

2D
, (2.51)

which can be rewritten as

d
dt

pk(t) = − j
ℏ

E(t)de,h(k)
è
fe,k(t) + fh,k(t) − 1

é
. (2.52)

Incoherent regime and scattering rates

In real systems, the quantum coherence is lost due to dissipative and dephasing
processes, occurring on a rather short time scale (in the order of femtoseconds),
caused by the interaction of carriers among themselves or with phonons. The
physical description of such interactions is complex and it is not analyzed in this
Thesis. However, thanks to the density matrix approach, a set of phenomenological
scattering rates can be inserted in the dynamic equations derived before, thus allow-
ing to describe in a more immediate way the behavior of occupation probabilities
and polarization [28].

• The CB occupation probability rate equation becomes:

d
dt

fe,k(t) = j
ℏ

E(t)
è
de,h(k)p∗

k(t) − d∗
e,h(k)pk(t)

é
+

+
Ø
k′

è
Re,k′→k(fe,k, fe,k′) − Re,k→k′(fe,k, fe,k′)

é
+

− Rrec
e,k(fe,k, fh,k).

(2.53)

– The relaxation rate Re,k′→k(fe,k, fe,k′) describes intraband phenomena
leading to an increment in the number of carriers in the state k, hence it
is characterized by a positive sign. This rate must obey Pauli exclusion
principle, and it explicitly depends on the occupation probabilities of the
two states involved in the transition:

Re,k′→k(fe,k, fe,k′) =
fe,k′(t)

è
1 − fe,k(t)

é
τe,k′→k

, (2.54)

where τe,k′→k is a phenomenological time constant describing the strength
of the scattering process.

– On the other hand, a negative sign is associated to any intraband process
which reduces the population in the state k, with electrons that are moving
towards a different state k′ as denoted by the term Re,k→k′(fe,k, fe,k′). Also
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in this case, the rate can be expressed exploiting a phenomenological time
constant:

Re,k→k′(fe,k, fe,k′) =
fe,k(t)

è
1 − fe,k′(t)

é
τe,k→k′

. (2.55)

In the absence of external perturbations, electrons in CB tend to a quasi-
equilibrium distribution (with quasi-Fermi levels for each type of carrier),
and this must be ensured by imposing

τe,k→k′

τe,k′→k
= exp

3
Eλ,k′ − Eλ,k

kBT

4
, (2.56)

where kB = 8.617 × 10−5 eV K−1 is the Boltzmann constant and T is the
absolute temperature.

– Concerning interband recombination phenomena, the rate Rrec
e,k(fe,k, fh,k)

ensures that the system is able to reach the equilibrium condition in the
absence of external excitations, corresponding to a common Fermi level for
electrons and holes placed within the material bandgap. Several processes
can contribute to this rate, which can be evaluated as

Rrec
e,k(fe,k, fh,k) = Rsp

k (fe,k, fh,k) + Rnr
e,k(fe,k) + RAug

e,k (fe,k, fh,k). (2.57)

The first contribution is related to spontaneous emission, involving the
recombination of an electron-hole pair leading to the emission of a photon,
whose rate is expressed with the time constant approach as

Rsp
k (fe,k, fh,k) = 1

τ sp
k

fe,kfh,k. (2.58)

Due to the presence of traps within the material bandgap, non-radiative
recombination processes can also occur, described by the rate

Rnr
e,k(fe,k) = 1

τnr
e,k

fe,k. (2.59)

Finally, Auger recombination causes the loss of an electron-hole pair while
promoting another carrier to a higher energy state, thus guaranteeing the
energy conservation. Several possible approaches have been proposed to
model Auger processes, and the one presented in [32] has been adopted
here, yielding2

RAug
e,k (fe,k, fh,k) = 1

τAug
e,k

C1
fe,k

22
fh,k + 1

2fe,k
1
fh,k

22
D
. (2.60)

2With this approach, it has been assumed that the carrier that is promoted to an excited level
belongs to the same initial state k, but with opposite spin.
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• Concerning holes, the VB occupation probability rate equation is obtained
similarly:

d
dt

fh,k(t) = j
ℏ

E(t)
è
de,h(k)p∗

k(t) − d∗
e,h(k)pk(t)

é
+

+
Ø
k′

è
Rh,k′→k(fh,k, fh,k′) − Rh,k→k′(fh,k, fh,k′)

é
+

− Rrec
h,k(fh,k, fh,k).

(2.61)

The same considerations carried out for the CB analysis can be considered
valid here, clearly using hole levels instead of electron ones. The only difference
to be reported concerns the Auger recombination rate, which becomes

RAug
h,k (fe,k, fh,k) = 1

τAug
h,k

C1
fh,k

22
fe,k + 1

2fh,k
1
fe,k

22
D
. (2.62)

• The microscopic interband polarization rate equation is completed as follows:C
d
dt

+ j(εe,k − εh,k) + γp

D
pk(t) = − j

ℏ
E(t)de,h(k)

è
fe,k(t) + fh,k(t) − 1

é
, (2.63)

where εe,k − εh,k is called the frequency detuning, expressing the frequency
difference between the two bands, whereas γp represents an additional damping
rate for the interband polarization.

The equations presented in this analysis represent the theoretical basis for a
model describing the interaction between QD materials and external electromagnetic
fields. In particular, light propagating along a QD-based laser diode cavity triggers
the effects introduced before, which must be taken into account when characterizing
such devices.

2.2.3 Rate equations under current injection
Starting from the set of equations derived in the previous steps, a complete system
of rate equations governing the carrier dynamics in self-assembled QD structures
under current injection can be obtained. Some assumptions are listed here, and
they will be maintained in the following analysis.

• Three discrete energy levels are considered in the QD material, corresponding
to the ones depicted in Figure 2.4 and Figure 2.5. As mentioned before
the ground state is characterized by a degeneracy DGS = 2, while the first
and second excited states have DES1 = 4 and DES2 = 6, respectively. Such
behavior comes from the presence of both in-plane quantum numbers and spin
degeneracies.
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• The index k = (p, m) introduced previously runs over all the possible eigen-
states of the unperturbed Hamiltonian. However, it is reasonable to assume
that degenerate states behave in the same way with respect to an incoming
electromagnetic field, hence the population dynamics should be identical. In
this way, such index will be referred to the considered QD discrete energy
levels, i.e. k = (GS, ES1, ES2).

• Carrier capture and escape processes occurring between high-energy QW
states and quantized QD levels are assumed to be cascade phenomena, hence
involving scattering effects among adjacent states only [33]. As an example,
a direct electron capture from the wetting layer to the ground state is not
possible, and it is described as a series of capture steps involving the two
excited states, too.

• As stated at the end of the energy levels evaluation, 2D Quantum Well
delocalized states are characterized by a transition to a continuum, which
finally leads to the 3D bulk states distribution of the SCH.

• A forward bias provided by an applied current causes the injection of carriers
at high energies, i.e. within the SCH barrier states. Then, a set of dissipative
scattering processes allows the capture of electrons and holes into the QW
wetting layer, subsequently reaching the QD states. Overall, the system is out
of equilibrium, but in order to simplify the model SCH and WL are assumed to
remain in a quasi-equilibrium condition, meaning that carriers in CB and VB
are characterized by two distributions with quasi-Fermi levels: consequently,
the occupation probabilities for SCH and WL are considered almost null in
the following. Such assumption is valid if scattering processes leading these
two subsystems to a Fermi distribution occur in a rather short time scale, in
the order of few tens of fs [34].

• The total number of carriers per unit length in the considered state is denoted as
nλ,k, where electrons and holes are identified by means of the usual band index
λ = e, h. Notice that this quantity is related to the occupation probabilities
introduced in the previous computations as

nλ,k(z, t) = WNlNDDkfλ,k(z, t), (2.64)

where z is the electromagnetic wave propagation direction, W is the device
width, Nl and ND are the number of stacked DWELL layers and the QD surface
density in each of them, Dk is the state degeneracy and fλ,k represents the
occupation probability averaged over the transverse directions of the device.

The dynamic behavior is presented separately for each allowed energy state, in
order to construct the set of differential equations describing the device response
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for both types of carriers. This is initially carried out in forward bias conditions,
meaning that current injection is considered while no bias voltage is applied. The
overall behavior of the material is reported in Figure 2.8, where only electron levels
in CB are represented.

Figure 2.8: Electrons transitions between allowed states in conduction band,
under forward bias conditions.

Separate Confinement Heterostructure

The SCH carriers evolution in time is described by the rate equations

∂

∂t
nλ,SCH = ηi

J

q
W + nλ,WL

τλ,WL→SCH
− nλ,SCH

τλ,SCH→WL
+

− BSCH

WhSCH
nλ,SCHnλ′,SCH − nλ,SCH

τnr
λ,SCH

.
(2.65)

• Carriers are pumped into the SCH by means of the externally applied bias
current I = JW , similarly to any semiconductor laser. The internal quan-
tum efficiency ηi determines the percentage of current which is effectively
transformed into carriers.
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• The escape rate Rλ,QW→SCH from the QW wetting layer towards the SCH
states is proportional to the number of carriers available in the initial state, and
its strength is evaluated through the time constant τλ,QW→SCH = τ e

λ,QW→SCH.
The sign of this rate is positive, since it tends to increment the number of
carriers in the considered state.

• The opposite process, corresponding to the capture rate Rλ,SCH→QW, is char-
acterized by a negative sign due to the fact that carriers are leaving the SCH
states to move towards the WL ones. Notice that in this case an additional
time constant related to carrier diffusion in the SCH region should be included,
thus obtaining τλ,SCH→QW = τ c

λ,SCH→QW + τdif
λ,SCH→QW. This characteristic time

can be computed as [35]

τdif
λ,SCH→QW = L2

dif
2Dλ

=
A

hSCH

2

B2
q

2µλkBT
, (2.66)

where Ldif is the diffusion length, assumed to be equal to half the barrier
height hSCH, while the carrier diffusion coefficient Dλ is evaluated by means
of Einstein relations from the mobility µλ and the voltage equivalent of
temperature kBT/q.

• The characteristic time constants must satisfy the balance condition presented
in Equation 2.56, hence it must be

τλ,WL→SCH

τλ,SCH→WL
= DWL

DSCH
exp

3
Eλ,SCH − Eλ,WL

KBT

4
, (2.67)

where the effective densities of states for SCH and WL can be evaluated as
[27]

DSCH = 2
hSCH

2πm∗
λ,SCHkBT

ℏ2 , DWL = Nl

hWL

m∗
λ,WLkBT

πℏ2 . (2.68)

• Among the interband processes, the spontaneous emission contribution is
taken into account in the SCH rate equation. The coefficient BSCH, normalized
by the barrier area, expresses the recombination process strength between
electrons and holes belonging to the SCH. Spontaneous emission is a second-
order phenomenon (Rsp

k ∝ n2
k), as highlighted by the product between two

different populations.

• Finally, non-radiative recombination is also considered and modeled through
the characteristic time constant τnr

λ,SCH, whereas Auger recombination is ne-
glected in this state.
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Wetting layer.

Concerning the Quantum Well WL, the carrier rate equations yield

∂

∂t
nλ,WL = nλ,SCH

τλ,SCH→WL
− nλ,WL

τλ,WL→SCH
+ nλ,ES2

τλ,ES2→WL
−

nλ,WL
1
1 − fλ,ES2

2
τλ,WL→ES2

+

− BWL

WhWL
nλ,WLnλ′,WL − nλ,WL

τnr
λ,WL

.

(2.69)

• The same escape and capture rates introduced in the case of the SCH are
present in this relation, clearly with an opposite sign related to the reversed
transition direction.

• Similarly, a couple of scattering processes from (escape) and towards (capture)
the second excited state is introduced. Notice that no occupation probability
for the WL is present concerning the escape mechanism, which depends only on
the ES2 population nλ,ES2 and on the characteristic time constant τλ,ES2→WL,
due to the assumption of quasi-equilibrium in the well states. On the other
hand, in order for a carrier to be captured into the ES2 level, this must not
be completely filled, hence the additional factor (1 − fλ,ES2) is introduced. In
this case the balance condition yields

τλ,ES2→WL

τλ,WL→ES2
= DES2ND

DWL
exp

3
Eλ,WL − Eλ,ES2

KBT

4
, (2.70)

where the effective density of states for the second excited state is substituted
by its degeneracy, multiplied by the dot surface density ND.

• As in the previous case, spontaneous emission (with strength BWL) and non-
radiative (time constant τnr

λ,WL) recombination processes are considered as the
only interband phenomena, whereas Auger recombination is neglected.

Second excited state.

The highest QD level considered in this analysis is the second excited state,
characterized by population rate equations yielding

∂

∂t
nλ,ES2 =

nλ,WL
1
1 − fλ,ES2

2
τλ,WL→ES2

− nλ,ES2

τλ,ES2→WL
+

+
nλ,ES1

1
1 − fλ,ES2

2
τλ,ES1→ES2

−
nλ,ES2

1
1 − fλ,ES1

2
τλ,ES2→ES1

+

−
nλ,ES2fλ′,ES2

τ sp
ES2

− nλ,ES2

τnr
λ,ES2

−
fλ,ES2fλ′,ES2

1
nλ,ES2 + nλ′,ES2/2

2
τAug

λ,ES2
− Rst

ES2.

(2.71)
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• Capture and escape rates between ES2 and WL are the same presented before,
with opposite sign.

• The scattering phenomena causing carriers to move towards (escape, positive
sign) or from (capture, negative sign) ES2 from/towards the lower excited state
depend on the two population densities and on the occupation probabilities of
these two states. Moreover, they satisfy the balance relation

τλ,ES1→ES2

τλ,ES2→ES1
= DES1

DES2
exp

3
Eλ,ES2 − Eλ,ES1

KBT

4
, (2.72)

where the two degeneracies have been used as effective densities of states for
the considered energy levels.

• Among the interband processes, spontaneous emission (second order, time
constant τ sp

ES2), non-radiative scattering phenomena (first order, with charac-
teristic time τnr

λ,ES2), and Auger recombination (third order, phenomenological
time constant τAug

λ,ES2) have been introduced in these rate equations.

• Furthermore, an additional term has been added to include the possibility
of having stimulated emission recombination in ES2. From a carrier rate
perspective, this phenomenon is apparently the same as spontaneous emission,
but it actually occurs in the presence of an electromagnetic radiation: photons
that are emitted thanks to electron-hole pairs recombination in these conditions
are said to be coherent, i.e. they are characterized by the same wavelength
(or frequency) as the impinging wave. The value of Rst

k can be computed by
considering additional elements related to the waveguide structure, as will be
presented in Chapter 3.

First excited state.

The rate equations for ES1 yield

∂

∂t
nλ,ES1 =

nλ,ES2
1
1 − fλ,ES1

2
τλ,ES2→ES1

−
nλ,ES1

1
1 − fλ,ES2

2
τλ,ES1→ES2

+

+
nλ,GS

1
1 − fλ,ES1

2
τλ,GS→ES1

−
nλ,ES1

1
1 − fλ,GS

2
τλ,ES1→GS

+

−
nλ,ES1fλ′,ES1

τ sp
ES1

− nλ,ES1

τnr
λ,ES1

−
fλ,ES1fλ′,ES1

1
nλ,ES1 + nλ′,ES1/2

2
τAug

λ,ES1
− Rst

ES1.

(2.73)

The same considerations as before can be carried out concerning both intraband
and interband processes. Transitions between ES1 and GS obey the balance relation

τλ,GS→ES1

τλ,ES1→GS
= DGS

DES1
exp

3
Eλ,ES1 − Eλ,GS

KBT

4
. (2.74)
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Ground state.

Finally, the populations in the ground state evolve as

∂

∂t
nλ,GS =

nλ,ES1
1
1 − fλ,GS

2
τλ,ES1→GS

−
nλ,GS

1
1 − fλ,ES1

2
τλ,GS→ES1

+

−
nλ,GSfλ′,GS

τ sp
GS

− nλ,GS

τnr
λ,GS

−
fλ,GSfλ′,GS

1
nλ,GS + nλ′,GS/2

2
τAug

λ,GS
− Rst

GS.

(2.75)

GS is the lowest QD energy level, hence no transition to and from states below it
is possible.

Excitonic model

When charge neutrality is assumed for each state of the structure, the rate equations
describing the dynamic behavior of the device are significantly simplified. In
particular, this widespread approach is known as the excitonic3 approximation
[36], and it implies that electron and hole dynamics must be coincident to ensure
neutrality.

The complete correlation between CB and VB populations allows to state that:
ne,k = nh,k = nk

f e,k = fh,k = fk

τe,k↔k′ = τh,k↔k′ = τk↔k′

. (2.76)

According to these simplifications, rate equations for one population only can be
solved, and they can be rewritten as follows.

• Separate Confinement Heterostructure:
∂

∂t
nSCH = ηi

J

q
W + nWL

τWL→SCH
− nSCH

τSCH→WL
+

− BSCH

WhSCH
n2

SCH − nSCH

τnr
SCH

.

(2.77)

• Wetting layer:

∂

∂t
nWL = nSCH

τSCH→WL
− nWL

τWL→SCH
+ nES2

τES2→WL
−

nWL
1
1 − fES2

2
τWL→ES2

+

− BWL

WhWL
n2

WL − nWL

τnr
WL

.

(2.78)

3An exciton is a weakly-bounded electron-hole pair, hence the name of this approximation
refers to the fact that the two types of carriers are considered to evolve in the same way.
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• Second excited state:

∂

∂t
nES2 =

nWL
1
1 − fES2

2
τWL→ES2

− nES2

τES2→WL
+

+
nES1

1
1 − fES2

2
τES1→ES2

−
nES2

1
1 − fES1

2
τES2→ES1

+

− nES2fES2
τ sp

ES2
− nES2

τnr
ES2

− nES2f
2
ES2

τAug
ES2

− Rst
ES2.

(2.79)

• First excited state:

∂

∂t
nES1 =

nES2
1
1 − fES1

2
τES2→ES1

−
nES1

1
1 − fES2

2
τES1→ES2

+

+
nGS

1
1 − fES1

2
τGS→ES1

−
nES1

1
1 − fGS

2
τES1→GS

+

− nES1fES1
τ sp

ES1
− nES1

τnr
ES1

− nES1f
2
ES1

τAug
ES1

− Rst
ES1.

(2.80)

• Ground state:

∂

∂t
nGS =

nES1
1
1 − fGS

2
τES1→GS

−
nGS

1
1 − fES1

2
τGS→ES1

+

− nGSfGS
τ sp

GS
− nGS

τnr
GS

− nGSf
2
GS

τAug
GS

− Rst
GS.

(2.81)

2.2.4 Rate equations under reverse bias voltage
Passively mode-locked lasers are characterized by the presence of a reversely biased
region (see Chapter 3), hence the QD material behavior in the presence of an
external static electric field perpendicular to the stacked layers (i.e. in the x
direction) should also be analyzed. The total electric field is given by

Fx = V + Vbi

hSCH
, (2.82)

where V is the applied voltage and Vbi is the built-in potential of the junction.
An applied electric field modifies the QD wavefunctions due to its effect on the

3D confinement potential: this is known as Quantum-Confined Stark Effect (QCSE),
initially found in QWs and subsequently reported in Quantum Dot systems too
[37, 38]. As a consequence, a downwards shift in the characteristic electron and
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hole energy levels has been reported, thus leading to smaller interband transition
energies for the QD states and therefore inducing a shift of the absorption spectrum
towards lower frequencies [39]. However, such effect turned out to be negligible in
QD structures, hence it will not be included in the model.

On the other hand, the effect of an externally applied static electric field on
intraband carrier dynamics is relevant in this discussion. The band structure is
“tilted” in the presence of such field along the growth direction, and tunneling
processes towards SCH from lower energy levels are also possible [40]. Figure 2.9
shows the usual band structure of the device, modified due to the presence of
an external electric field in the x direction. In order to introduce an additional
term for the tunneling escape rates from QD and WL levels towards the SCH, the
Wentzel-Kremer-Brillouin approximation for a triangular well can be used [40, 41]:

Rtun
λ,WL = ℏπ

2m∗
λ,WLh2

WL
exp

−4
3

ñ
2m∗

λ,SCH

1
Eλ,SCH − Eλ,WL

23/2

qℏFx

nλ,WL, (2.83)

Rtun
λ,k = ℏπ

2m∗
λ,kh2

QD
exp

−4
3

ñ
2m∗

λ,SCH

1
Eλ,SCH − Eλ,k

23/2

qℏFx

nλ,k, (2.84)

Furthermore, due to a reduction in the confinement potential barrier, thermionic
escape mechanisms from QW and QD (only ES2) states are enhanced. The induced
reduction is linear, and the escape characteristic times of these levels are modified
by introducing a field-dependent component:

τλ,WL→SCH(Fx) = τλ,WL→SCH(0) exp
A

qFxhWL

kBT

B
, (2.85)

τλ,ES2→WL(Fx) = τλ,ES2→WL(0) exp
A

qFxhQD

kBT

B
, (2.86)

where τλ,WL→SCH(0) and τλ,ES2→WL(0) are the characteristic time constants evalu-
ated in the absence of an applied electric field, i.e. with Fx = 0.

Finally, carriers in the SCH region are accelerated by the static electric field,
creating a drift current which reduces the population in this state. Such term can
be expressed as

Idrift
λ,SCH(Fx) = µλ,SCHFxnλ,SCH. (2.87)

In conclusion, the SCH rate equation in the presence of a reverse bias voltage
becomes

∂

∂t
nλ,SCH = −µλ,SCHFxnλ,SCH + nλ,WL

τλ,WL→SCH(Fx) − nλ,SCH

τλ,SCH→WL
+

− BSCH

WhSCH
nλ,SCHnλ′,SCH − nλ,SCH

τnr
λ,SCH

+ +Rtun
λ,WL +

Ø
k

Rtun
λ,k.

(2.88)
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The rate equations for WL and QD energy levels are not reported here, since they
are simply modified by including the corresponding tunneling rate Rtun

λ,k with a
negative sign.

Fx

Figure 2.9: Electrons transitions between allowed states in conduction band, with
an applied static electric field.

2.2.5 Concluding remarks
As previously pointed out, an ensemble of self-assembled QDs is not uniform in terms
of size, composition and shape (Figure 2.10), thus leading to different characteristic
interband transition energies. The ensemble can therefore be subdivided into N
groups according to such transition energy, and Quantum Dots belonging to the
same group are assumed to be identical. In these conditions, the physical system
is said to be characterized by mixed states, since the N groups belonging to the
ensemble are associated to different energy states.
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The equations that have been derived during the analysis of pure states can
immediately be generalized thanks to the adoption of the density matrix formalism,
which accounts statistically for the presence of multiple pure substates. With this
approach, the ith group is characterized in terms of:

• the unique wavefunction Ψi describing its associated trapped carriers;

• the probability pi for the carriers to belong to that specific group, satisfying
the relation

NØ
i=1

pi = 1. (2.89)

The density matrix for the complete mixed ensemble is then obtained by simply
averaging the pure states density matrices by their probabilities, leading to the
following generalization of Equation 2.37:

ρmix(t) =
NØ

i=1
piρ

i,pure(t) =
NØ

i=1

Ø
k

piρ
i,pure
k (t). (2.90)

In conclusion, it is rather straightforward that all the quantities described within
the pure state framework can be generalized to the mixed states case in a similar
way.

Figure 2.10: Atomic Force Microscopy image of InAs self-assembled QDs grown
on a GaAs (100) substrate [42].
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Chapter 3

Mode Locking in QD Lasers

3.1 General principle
As previously stated, the possibility to generate picosecond or sub-picosecond
optical pulses from a monolithic device is gaining growing interest for applications
in high-speed optical time division multiplexed (OTDM) and wavelength-division-
multiplexed (WDM) communications. Femtosecond optical pulses can be routinely
achieved in solid-state lasers based on titanium-doped sapphire material, exploiting
a ML technique called Kerr lens mode locking [43]. However, due to the presence
of a complex optical setup relying on lenses, such devices are bulky, expensive and
they provide a low efficiency.

For these reasons, research efforts have recently been shifted towards more
compact solutions involving monolithic semiconductor lasers that can be used
for the generation of ultrashort pulses at repetition rates of tens of GHz. Mode
locking in laser diodes is therefore presented in this section, starting from its general
principle and an overview of the techniques introduced in Chapter 1, all aimed at
the generation of micrometer- and millimeter-wave signals in lasers.

3.1.1 ML in a Fabry-Pérot cavity

In an edge-emitting laser with a Fabry-Pérot (FP) cavity, the electromagnetic field
is described with a set of longitudinal modes [44], each of them with frequency

ωm = m ωR = m
2π

TR
= m

2πvg

2L
m = 0, 1, . . . , (3.1)

where m is the mode index, ωR and TR are the round trip angular frequency and
time, respectively, vg is the group velocity of the medium and L is the cavity length.
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FP lasers are said to be multimode, meaning that the output field is given by
the superposition of all its longitudinal modes:

V (t) =
∞Ø

m=0
Vm exp [j (ωmt + ϕm)] , (3.2)

where Vm is the amplitude1 of the mth longitudinal mode and ϕm is its phase.
The latter is of great interest when considering ML operation, hence it has to be
analyzed carefully in the design phase of the device.

• In general, the phases ϕm are randomly distributed and depend on time,
meaning that the frequency of each longitudinal mode fluctuates around a
certain value. In these conditions, the output signal frequency cannot be
defined a priori.

• If the phases are still randomly distributed but do not depend on time (i.e.
they have a constant random value), then a periodicity in the output signal can
be retrieved. However, the time trace of the field intensity is still characterized
by many oscillations superimposed to the required time trace, which should
be a sequence of pulses with period TR. This can be seen in Figure 3.1a, in
which constant phase values randomly distributed in the range [0,2π] have
been associated to each longitudinal mode. In some cases, a constant output
signal with superimposed noise is also observed.

• When both the phase difference between adjacent modes ∆ϕ the individual
phase values ϕm are constant in time, the phase locking condition is achieved.
Consequently, the output signal consists of a pulse train with period TR and
much shorter duration, as it is shown in Figure 3.1b; this condition is called
amplitude modulation (AM) mode locking.

• The width of each pulse in the time trace depends on the number of locked
modes. Assuming to have N phase-locked modes all with the same amplitude
V0, the total field magnitude can be evaluated as

|V (t)| = |V0|
sin

è
2π(N + 1) ∆fτ

é
sin(2π∆fτ) , (3.3)

where ∆f is the constant frequency separation between adjacent modes and
τ = t/2 + π∆ϕ∆f . These pulses are then separated in the time domain by a

1Notice that the number of modes that contribute to the output field is limited by the gain
bandwidth of the semiconductor active material, which can work properly in a specific frequency
range only. For this reason, a finite number of modes is characterized by an amplitude Vm which
is significantly different from zero to actually play a role in the output field generation.
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constant step ∆t = 1/∆f , and their full width at half maximum is computed
as

FWHM ≈ 1
(2N + 1) ∆f

. (3.4)

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

frequency [a.u.]

A
m

pl
it

ud
e 

[a
.u

.]

−0.4 −0.2 0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

φ n
/(

2π
)

−200 −100 0 100 200
0

10

20

30

40

50

time [ps]

In
te

ns
it

y
(a) ϕm independent on time, but randomly distributed in the range (0 ÷ 2π)
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(b) Fixed phase ϕm = π for all the longitudinal modes

Figure 3.1: Optical spectrum and output field time trace of a multimode laser
without (a) and with (b) phase locking.

A formal description of the mode locking mechanism has been provided in [45],
with a model based on coupled rate equations for three cavity modes that allows to
study the time evolution of modes’ amplitudes and phases. The beating between
adjacent longitudinal modes causes a self-induced modulation of the carrier density
in the material at multiples of the frequency spacing between them. Such carrier
modulation causes the onset of dynamic refractive index and net gain variations
in the homogeneous cavity material, thus leading to a four-wave mixing (FWM).
Notice, however, that this type of modulation is due to interband phenomena that
are dominant for mode spacings up to 1 GHz, whereas intraband effects (spectral
hole burning, carrier heating) prevail for higher frequencies.

On top of this, the self-induced carrier pulsation also generates modulation
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sidebands, acting as optical injection signals for the longitudinal modes. Such
phenomenon can be seen in Figure 3.2, in which:

• the beating between modes E1 (at intrinsic frequency ωi
1) and E2 (ωi

2) generates
an injection component Einj,1 for the mode E3, moving it towards the final
frequency ω3;

• similarly, modes E2 and E3 (ωi
3) generate a component Einj,3, affecting the

mode E1 that is moved to frequency ω1.

This mechanism of mutual injection-locking reaches equilibrium when all the modes’
spacing frequencies are locked to the same value Ωsp: in these conditions, the power
distribution among modes is correct and the phases are locked, meaning that the
mismatch ∆ω = ωi

k − ωk is reduced to zero.
A critical value of the initial angular frequency mismatch exists, identified as

∆max
k , above which the mutual locking of the three adjacent modes can no longer

be guaranteed. Such limit value is usually lower when reducing the cavity length,
since this corresponds to a decrease in the modes separation leading to strong
higher-order beatings. Other parameters that should be taken into account in the
ML range analysis are the linewidth enhancement factor αH and the asymmetry
between the two external modes (E1 and E3 in Figure 3.2), both directly affecting
∆max

k .

Figure 3.2: Mutual injection between three cavity modes [45].

3.1.2 Types of mode locking
Several techniques have been proposed to achieve the locking mechanism described
before in real semiconductor lasers. The main ones are presented in the following,
with some relevant examples taken from the literature.
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Active ML

The coupling between modes can be achieved by modulating the injection current
at a frequency equal to the cavity round trip one, or at one of its harmonics. In
this way, the net modal gain (or equivalently the losses) experienced by the field is
modulated as shown in Figure 3.3, causing a coherent power transfer from the main
lasing mode to the adjacent ones. Phase locking between modes can therefore be
achieved, and in particular AM mode locking is established through the so-called
active mode locking (AML) technique.

The most straightforward approach to obtain AML is to insert an electro-optic
modulator (EOM) into the laser cavity, driven by an externally applied electrical
signal and producing a sinusoidal amplitude modulation of the light inside the
cavity. In time domain, the EOM acts as a light switch, blocking it when “closed”
and letting it pass through during the “open” periods. Notice that a rather low
modulation strength is sufficient to effectively achieve phase locking, since the same
pulse is attenuated in this way at each round trip: a steady state is reached after
thousands of round trips, when the shortening effect introduced by the modulated
losses is balanced by opposite pulse-broadening phenomena (e.g. limited gain
bandwidth, chromatic dispersion). An example of this choice can be found in [46],
yielding pulse widths in the range (6 ÷ 20) ps. while a more rigorous description
of the underlying physical mechanisms is provided in [47].

Figure 3.3: Losses modulation and pulse intensity in active mode locking [48].

Alternative approaches can also be followed in order to successfully achieve
active ML in laser diodes. For instance, an acousto-optic modulator (AOM) can
be inserted in the cavity instead of the more traditional EOM. This device is again
driven by an electrical signal, but it induces a sinusoidal variation in the light
frequency: for this reason, such mechanism relies on frequency modulation
(FM) rather than working on the signal amplitude. The limited gain bandwidth of
the material is exploited to filter out spectral components that are shifted above
and below its limits, while the required one remains stable. An example of AML
realized with this technique can be found in [49], with a pulse width around 2.7 ps.

Finally, a third possibility to achieve active mode locking is through external
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current modulation, at the basis of the so-called synchronous mode locking. In this
case, the pulses are directly obtained by turning on and off the laser by means of a
pump source which is often another mode-locked laser (similarly to gain switching).
An example relying on this approach is provided in [50]: pulse widths are lower
than the AOM-based case (around 2.4 ps), but a rather accurate matching between
external modulation frequency and ML laser cavity length is required.

Passive ML

A saturable absorber (SA) can be introduced at one end of the laser cavity to enable
the phase locking between modes. The behavior of such element, which is explained
more extensively in the following section, is strongly nonlinear: the circulating
pulse is reshaped when crossing the SA section [51], thus achieving narrow pulses
in the passive mode locking (PML) condition.

In general, a SA is a component whose losses are reduced at high optical
intensities. When the ML pulse reaches this region, its leading and trailing edges
are strongly absorbed, whereas the material losses are saturated (i.e. lower) facing
the central portion of the pulse. Figure 3.4 shows the losses modulation mechanism
in time domain explained before. The typical pulse width obtained with this
technique is shorter than the AML case, especially when considering QD active
materials allowing ultrafast recovery as in [40].

Figure 3.4: Losses modulation and pulse intensity in passive mode locking [48].

Harmonic ML

If the saturable absorber is placed at the center of a FP laser cavity, a pulse that
passes through it saturates the material absorption not only for itself, but also for
another one traveling in the opposite direction and simultaneously reaching the
SA. Two optical pulses are therefore present in the cavity, and they collide in the
absorber: the obtained repetition rate is consequently twice the fundamental one,
determined by the cavity length. For this reason, such technique is called colliding
pulse mode locking (CML), or harmonic mode locking.
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Notice that this technique allows to achieve stable pulse trains at higher frequen-
cies with respect to AML and PML, and it can be realized in both edge-emitting [52]
or ring-shaped devices [53]. Concerning the latter, two pulses traveling in the cavity
are always expected to collide in the SA section, which can therefore be placed at
any point of the structure. However, the possibility of having a unidirectional light
propagation along the structure should be considered, achievable with different
approaches as explained at the end of this Chapter. Harmonic ML can still be
achieved in these conditions, even though no pulses are colliding along the cavity.

Hybrid ML

In the hybrid mode locking (HML) technique, the presence of both current
modulation (typical of AML) and saturable absorber (inherited from PML) are
exploited to lock the modes’ phases. In this way, a higher degree of flexibility is
introduced, since both modulation and pulse shaping can be trimmed in order to
obtain the required performances. This clearly causes an increased complexity
when identifying the working regions, with specific methods presented in [54].

The RF modulation signal can also be applied to the absorber negative voltage,
while keeping the injected current constant in the active regions. Such choice often
yields better results due to the higher series resistance of the reverse biased SA
section with respect to the gain portions, in which current modulation is strongly
limited by the electrical RC bandwidth [55, 56].

Self ML

Mode locking has also been reported in single-section FP lasers with CW applied
current, and self mode locking (SML) is said to occur [57], also known as Optical
Frequency Comb (OFC) [58]. These devices are clearly less complex than the
ones required for the other techniques, with a single electrode necessary for the
external control; however, this simplicity is paid in terms of tunability, as well as
pulse quality and power management [59]. Moreover, small variations in the device
fabrication can lead to relevant changes in its behavior, thus highlighting a low
robustness with respect to process variations [60].

3.2 ML with saturable absorbers
In this section, an insight on mode-locked laser diodes relying on one or more
saturable absorber sections is presented, starting from the description of different
device structures that have been proposed in the literature. Then, a reference
structure is chosen to illustrate the complementary behavior of gain and SA sections,
followed by a more specific focus on the parameters that characterize the latter.
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3.2.1 Device configurations
Figure 3.5 reports some of the cavity configurations that have been proposed in
order to obtain the mode locking condition in laser diodes with a SA.

The first demonstrations of both active [61] and passive [62] ML in semiconductor
lasers have been achieved with a configuration similar to the one reported in
Figure 3.5a. Here, the laser is placed in an external cavity including both gain
(forward biased) and SA (reverse biased) sections, which can either be discrete or
monolithically integrated. The insertion of an external reflector realized through
diffraction grating (Figure 3.5b) allows to perform a frequency tuning of the emitted
radiation, thanks to its wavelength selectivity. However, this setup is bulky and
fragile: more recent devices rely on a single chip on which all the required functions
can be integrated [63].

Figure 3.5: Examples of ML laser diodes configurations with a saturable absorber
[52].

The simplest configuration for a monolithic cavity, similar to the one proposed
in [64], is reported in Figure 3.5c. This structure can be used for both passive and
hybrid mode locking, the latter relying on the electro-absorption effect of the SA
section when modulated with an AC voltage. As discussed before, harmonic mode
locking can also be achieved by placing the SA section in the center of the cavity
(Figure 3.5d), or exploiting a ring structure (Figure 3.5e).

Increasing the device complexity, a higher degree of tunability can be achieved.
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As an example, a passive waveguide can be integrated in the monolithic structure
in order to reduce the threshold current while improving the robustness to noise
(Figure 3.5f). A distributed Bragg reflector (DBR) can also be inserted to control
the emission wavelength of the pulses (Figure 3.5g). Finally, a more refined control
of the CML regime is possible by introducing a higher number of SA sections along
the cavity (Figure 3.5h), with an overall repetition rate that has to be determined
accordingly.

3.2.2 Pulse amplification and shaping
The basic structure that will be analyzed in the following is depicted in Figure 3.6.
Overall, a ridge waveguide can be identified in this schematic, with two electrically
isolated portions that represent the gain (with current injection) and absorption
(under reverse bias voltage) sections. Such device is taken as a reference in the
description of the phenomena leading to passive ML in semiconductor lasers, and
the same considerations can easily be extended to multi-section devices designed
to work in harmonic mode locking condition.

Figure 3.6: Reference structure for passive mode locking in QD lasers [18].

Pulse amplification in the active section

Injecting a current into a semiconductor material ensures the carrier inversion con-
dition in the biased region, thus leading to a net modal gain for the electromagnetic
wave propagating in the cavity. In particular, the following phenomena take place
when a high-energy pulse reaches the active section of a ML laser.

1. The leading edge of the pulse is amplified with a specific gain per unit length.

2. Due to stimulated emission processes, a large recombination is induced in the
energy states resonant with the pulse frequency, leading to a strong depletion
of these states.
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3. The aforementioned depletion may lead to a non-equilibrium distribution for
electrons and holes within the semiconductor material called spectral hole
burning, while for intense enough pulses a significant depletion of the total
carrier density in the active medium may take place.

4. As a consequence, the gain reduces and the following portions of the pulse
experience a gain compression, i.e. a reduced amplification.

5. The gain tends to recover its initial value with a characteristic time constant
that depends on the carriers intraband dynamics, hence the trailing edge
amplification is usually much larger than the central portion of the pulse.

Overall, a pulse traveling along a gain section is subject to a nonlinear amplifi-
cation, larger in its outermost regions and therefore causing a pulse broadening.
Notice that distortion phenomena may also arise in the case of highly energetic
pulses, causing the signal to be useless for the target application.

Pulse shaping in the saturable absorber

The coupling between longitudinal modes of a laser in passive or harmonic ML
regime is provided by the nonlinear absorption saturation in the reversely biased
section, referred to as the saturable absorber. A dual behavior with respect to the
gain section can be identified.

1. The leading edge of an incoming pulse is strongly absorbed, due to the
interaction with the biased material.

2. In the energy states resonant with the pulse, optical generation of electron-hole
pairs causes the carrier density to increase following this absorption.

3. The excess concentration of carriers tends to saturate the absorption mecha-
nism, again with a nonlinear dynamic, so in this case the central portion of
the pulse undergoes an absorption bleaching and it is less attenuated.

4. Photo-generated carriers are then leaving their energy levels due to thermionic
escape, tunneling and recombination processes.

5. The absorption tends to recover its initial unsaturated value (again with
a characteristic time constant), so the trailing edge of the optical pulse
experiences a higher absorption with respect to its central portion.

The nonlinear absorption of a pulse traveling along the SA section allows
to perform a pulse shaping, since its outermost portions undergo a stronger
attenuation with respect to the central one. Clearly, such pulse shaping must
compensate the broadening that takes place in the active section in order to achieve
a stable ML condition.
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3.2.3 SA parameters
Saturable absorbers can be realized in two different geometries. The most straight-
forward one is known as the waveguide saturable absorber, and it is directly realized
by reversely biasing a section of the laser structure. Thanks to its simplicity and
compactness, such choice is typical for integrated optical circuits and in-plane
semiconductor lasers, hence the devices presented in this Thesis rely on it.

A second possibility is to combine a stacked DBR structure with a stan-
dalone semiconductor SA, in the so-called semiconductor saturable absorber mirror
(SESAM) configuration. In this case, the reflectivity increases with the incoming
optical power, thanks to the loss saturation in the semiconductor material.

Irrespective of the chosen geometry, a set of parameters has to be considered
carefully when designing a saturable absorber, and the main ones are introduced
in the following.

• Modulation depth (or strength): it represents the difference between
saturated and unsaturated behavior of the absorber. When dealing with a
waveguide SA, it can be determined by simply considering the absorption
coefficient variation in the two cases, i.e.

αsat,abs = αuns,abs − αns,abs. (3.5)

In Equation 3.5, the saturated losses αsat,abs have been obtained by subtracting
the non-saturable ones αns,abs (introduced for instance by mirrors) from the
initial unsaturated value αuns,abs. Equivalently, the associated extinction ratio
can be expressed as

ERabs = exp
è
Γxy(αuns,abs − αns,abs)Labs

é
, (3.6)

where Γxy and Labs represent the waveguide confinement factor and the SA
section length, respectively.

• Recovery time: it is the characteristic time needed for the SA to recover
from its saturated condition. From a physical perspective, the absorption
saturates when the number of photo-generated carriers is rather high, following
an increase in the optical intensity of the incoming ML pulse. In order to
restore its unsaturated properties, a massive depletion should therefore take
place, possibly enhanced by the presence of an applied negative bias voltage.
Clearly, the recovery time must be significantly shorter than the repetition
period, whereas its relationship with the pulse duration is less straightforward:
the SA is said to operate between two limit cases, known as slow and fast
saturable absorber regimes, depending on whether its characteristic time is
longer or shorter than the provided pulse width.
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• Saturation fluence: this parameter expresses how fast the SA is able to
saturate its absorption coefficient with the incoming light pulse. In the slow
SA case, the absorber saturation can be approximated as [27]

αabs(Fin) ≈ (αuns,abs − αns,abs) exp
3

− Fin

Fsat

4
+ αns,abs, (3.7)

where the incident light fluence Fin is determined as the integral of the incident
power normalized to the SA cross section:

Fin(t) = 1
Aabs

Ú t

−∞
Pin(τ) dτ. (3.8)

From Equation 3.7, the saturation fluence Fsat should be as low as possible
in order to have a responsive SA with respect to input light fluctuations.
However, assuming a constant value for this parameter is possible only in the
case of slow SA, while it can be affected by external parameters (such as pulse
duration and shape) when the recovery time approaches the ML pulse width.
On the other hand, the characterization of a fast absorber should rely on the
input saturation intensity Isat (power per unit area):

αabs(Iin) ≈ αuns,abs − αns,abs

1 + Iin/Isat
+ αns,abs. (3.9)

• Linewidth enhancement factor (LEF): this parameter allows to describe
the self-phase modulation and chirp introduced by the SA section and affecting
the ML pulse. A refractive index change causes a variation in the dynamic
properties of semiconductor lasers, modeled by means of the Henry parameter
[65] defined as

αH = −4π

λ

dnr/dn

dg/dn
. (3.10)

In Equation 3.10, which is valid at the emission wavelength λ, the variation of
both material refractive index nr and gain per unit length g with respect to the
carrier density n is considered. Notice that the Henry factor is rather similar to
the chirp parameter of a conventional electro-absorption modulator, given the
analogies between such structure and the SA introduced in this context, with
typical values in the range αH = (0 ÷ 1) . On the contrary, semiconductor
amplifiers and lasers based on QW material are generally characterized by
a higher linewidth enhancement factor, approximately αH = (2 ÷ 3) , thus
leading to stronger self-phase modulation and chirp phenomena. This effect is
automatically included in the model presented in the following by means of
Kramers-Krönig relations.
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3.3 ML in QD lasers
Semiconductor Quantum Dots have been extensively investigated in recent years as
active media for passively mode-locked laser diodes. The reason behind this growing
interest is related to a number of potential advantages and peculiar properties
enabled by the presence of nanometric features in the cavity [66]. An overview of
these properties is provided in this section, followed by a state of the art analysis
concerning QD-based lasers exploited in mode locking condition.

3.3.1 Typical characteristics
The introduction of QD materials in the SA and gain sections of a monolithically
integrated laser diode has brought a set of advantages and peculiar phenomena
that have been widely investigated in the literature. The main features reported in
the description of QD-based SA and active materials are briefly outlined.

Peculiar features of QD saturable absorbers

The basic principles at the basis of SA operation are the same in the case of bulk,
QW and QD materials. The latter, however, exhibit some characteristic traits that
may lead to possible improvements concerning different figures of merit of such
component.

• Absorption bandwidth: this is the main feature to describe the operation
of SA materials, since expressing the time required for the absorber to be effi-
ciently saturated. The absorption bandwidth is finite, and mainly determined
according to the inhomogeneous broadening, in the case of self-assembled QD
materials. This is in contrast with the semi-infinite bandwidth reported in bulk
and QW materials, in which any photon with energy higher than the material
bandgap can in principle be absorbed. Notice, however, that such bandwidth
cannot be efficiently saturated over its whole range: carrier-carrier interac-
tions lead to thermalization processes at the picosecond or sub-picosecond
scale, hence the slow absorption saturation mechanism is ensured in a narrow
spectral region near the absorption cut-off, whereas fast absorption saturation
(usually weak, due to spectral hole burning) prevails for higher-energy carri-
ers. On the other hand, carrier-carrier scattering phenomena are replaced by
slower capture and escape characteristic times in QD materials, leading to the
prevalence of slow absorption saturation in the whole band and consequently
to a broader range of tunability for the generation of ultrashort optical pulses.

• Absorption recovery: QD materials intrinsically exhibit ultrafast carrier
dynamics. This allows to exploit them for the realization of saturable ab-
sorbers in ML lasers working at rather high repetition rates, in which the
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absorption recovery must take place within the round trip time of the cavity.
Several research contributions can be found in the literature concerning this
characteristic time, which is not further investigated in this Thesis. As an
example, [67] reports a theoretical interpretation of this phenomena based on
a time constant approach.

• Saturation fluence: the optical power associated to each pulse traveling
along a ML laser cavity is usually rather small, especially when considering
high repetition rates. Thanks to the delta-like DOS of QD materials, the
saturation fluence Fsat is lower than in bulk or QW materials, and this allows
the self-starting of ML even at rather small pulse energies. Further details
concerning the physical processes behind the absorption saturation in QD
materials can be found in [27].

Other features

Quantum Dots usage is not limited to the SA section of ML lasers, strictly required
for passive, hybrid and harmonic mode locking: additional improvements in the
device performance can be obtained by exploiting QDs in the gain sections, too.

• Gain bandwidth: due to the non-uniform distribution of sizes in the self-
assembled QD ensemble, the gain spectrum experiences the inhomogeneous
broadening introduced in Subsection 2.1.3. Even though this may seem an
issue, it actually represents one of the main motivations for the insertion of
Quantum Dots in ML lasers, since allowing to achieve a broad gain bandwidth
that leads to the presence of many longitudinal modes in the cavity, and
therefore to the generation of ultra-short pulses with sub-picosecond widths.
The inhomogeneous nature of gain may also enable better performances in
terms of jitter and relative intensity noise between adjacent comb components.

• Reduced gain levels: increasing the dots inhomogeneity (and therefore the
gain-bandwidth) has a detrimental effect on the maximum net modal gain that
can be achieved from the QD GS transitions. Below a certain threshold, ES
transitions become predominant while GS ones are inhibited. At the moment,
the most promising results in terms of ML stability have been obtained with
GS lasing only, but the simultaneous presence of both ground and excited state
transitions may be useful in applications such as time-domain spectroscopy,
optical interconnects, wavelength-division multiplexing and ultrafast optical
processing [68, 69].

• Gain recovery: an ultrafast sub-picosecond gain recovery has been identified
experimentally in layers of self assembled InAs QDs [70, 71], conversely with
respect to the expected slow intraband carrier dynamics that could have

52



Mode Locking in QD Lasers

represented a limit in the applicability of QD active materials in sub-THz
devices. From a theoretical perspective, such ultrafast dynamics cannot
be attributed to electron-phonon scattering, but it has been explained by
the occurrence of efficient Auger electron-electron scattering processes [72].
However, the time scale of these relaxation processes is still longer than that
of Quantum Wells, due to the enhanced spectral hole burning non-linearities
found in zero-dimensional materials.

• Threshold current: in the presence of QD-based devices, the threshold
current required for lasing operation to start is rather low, and ML is usually
achieved for injection levels just above such lower limit. This clearly represents
an outstanding advantage with respect to bulk or QW devices, which require
higher bias values to operate correctly, thus incurring in lower efficiencies and
possibly increased optical noise due to amplified spontaneous emission.

• Temperature sensitivity: thanks to the discrete nature of the QD density
of states, the performance dependence with respect to temperature is strongly
reduced in devices relying on such technology. Also in this case, relevant
benefits in terms of cost and footprint are introduced, since thermo-electric
coolers or other temperature control systems are not strictly required.

• Linewidth enhancement factor: the possibility of achieving an ideally null
LEF, enabled by the gain spectrum symmetry in QD structures, is rather
appealing for a wide range of applications. Notice, however, that changes in
the refractive index due to the presence of carriers in the excited states lead
to an increase in the Henry parameter of the device, which can therefore be
considered to be small for bias current values close to the threshold [73].

3.3.2 State of the art analysis
In the following, some relevant examples of mode-locked QD-based laser diodes
taken from the literature are presented. A chronological order has been chosen for
this overview, starting from the oldest results (up to 2010) and then moving to
more recent ones. Relevant information related to ML type, emission wavelength,
repetition rate and pulse width or power are reported according to their availability
in the chosen references.

First results

One of the first demonstrations of passively mode-locked lasers based on QD
material dates back to 2001, and it is reported in [74]. The device has been realized
by exploiting MBE on a (001) n+-doped GaAs substrate, with an active region
consisting of two InAs DWELL layers and GS emission at λGS = 1278 nm.
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The authors present here a two-section laser diode with a repetition rate of
fR = 7.4 GHz (Figure 3.7a), with gain and SA lengths equal to Lgain = 4.73 mm
and Labs = 850 µm, respectively. The threshold current depends on the applied bias
voltage, and in general its value is in the range Ith = (30 ÷ 40) mA (Figure 3.7b).
The pulse width reported in this paper, measured through an autocorrelation
function assuming a hyperbolic secant-squared pulse, is ∆τ = 17 ps. This value
increases at higher injection current values, since the modulation depth of the
mode-locked pulse decreases (Figure 3.7c). Concerning the spectral properties, a
∆λ ≈ 1 nm has been reported, as it can be seen from Figure 3.7d.

(a) Power spectrum of the ML laser in the
optimal bias conditions

(b) Room temperature lasing and electrical
characteristic for different SA reverse bias
values

(c) Normalized intensity autocorrelation
traces for different injection currents, with
V = −4 V

(d) Optical spectrum of the ML laser in the
optimal bias conditions

Figure 3.7: Significant results reported by Huang et al. [74].

In [75] the first example of hybrid ML in QD-based devices has been reported,
three years later with respect to the previous reference. From the technological
perspective, three layers of self-assembled In0.5Ga0.5As have been grown epitaxially
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on a GaAs:Si substrate by means of metal organic chemical vapor deposition
(MOCVD), and embedded in a GaAs confinement layer.

A fundamental repetition rate fR ≈ 10 GHz has been obtained with a 3.9 mm
cavity length, divided into Lgain = 3.57 mm and Labs = 330 µm. Figure 3.8a reports
the power spectra for HML and PML, the former obtained with a 10 GHz, 12 dB
RF drive signal superimposed to the constant bias voltage of the SA section (equal
to V = 1.06 V in both cases). The pulse width has been estimated to be lower than
∆τ = 14.2 ps (the exact value is not reported due to instrumentation limitations),
while the FWHM of the optical spectrum is ∆λ ≈ 0.8 nm, as reported in Figure 3.8b.
Finally, the measured pulse peak power is also provided, equal to Pmax = 4 mW.

(a) Power spectra with hybrid and passive ML

(b) Pulse trace and optical spectrum with hybrid ML

Figure 3.8: Significant results reported by Thompson et al. [75].

The same research group [76] reported the results obtained for a passive ML
laser realized through MBE of a 10-layer stack of InAs QDs on GaAs:Si substrate,
emitting at GS wavelength λGS = 1290 nm.

The proposed device is shorter, with Lgain = 1.6 mm and Labs = 600 µm, hence
the fundamental repetition rate is higher and approximately equal to fR ≈ 18 GHz
(Figure 3.9a). In the time domain, a ∆τ = 10 ps pulse width has been obtained
by assuming again a squared hyperbolic secant pulse profile, whereas the spectral
bandwidth is reduced with respect to the previous cases, as it can be seen from
Figure 3.9b.
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(a) RF power spectrum (b) Autocorrelation trace and wavelength
spectrum

Figure 3.9: Significant results reported by Thompson et al. [76].

Some interesting results in terms of ultrashort, high power pulse generation in
a relatively broad spectral range are reported in [77]. The reference device has
been grown by means of MBE on a (100) GaAs substrate, with five self-assembled
In0.4Ga0.6As QD layers separated by GaAs barriers.

Apart from the relatively high repetition rate, equal to fR ≈ 21 GHz (lengths
Lgain = 1.8 mm, Labs = 300 µm), the most interesting results have been obtained
in terms of pulse duration (∆τ = 390 fs) and output peak power (Pmax ≈ 1 W,
with pulses 2 ps wide). Clearly, the required bias values to achieve these impressive
features ar rather high, thus implying larger power consumption that may represent
a strong limitation in the applicability of such device. The time trace and its
corresponding optical spectrum for I = 185 mA and V = −7.6 V are reported
in Figure 3.10a, whereas Figure 3.10b reports an interesting overview of the
optical spectrum evolution as a function of the bias current, with fixed SA voltage
V = −8 V.

The laser structure proposed in [78] for high-speed fiber communication links
has been again realized with MBE on a n+-doped GaAs substrate, with a repetition
rate of fR = 5.2 GHz due to the rather long cavity (Lgain = 6.8 mm, Labs = 1 mm).
The performances of this device have been then summarized in [79]: the measured
pulse width is equal to ∆τ = 5.7 ps (Figure 3.11a), whereas the maximum pulse
power reported is Pmax = 290 mW.

Complementary results have been reported in [80], where a similar device is char-
acterized in terms of temperature stability within the range T = (30 ÷ 60) °C (Fig-
ure 3.11b). Rather high ML peak power values, in the range Pmax = (0.9 ÷ 1.7) W,
have been obtained with pulse widths ∆τ = (3.2 ÷ 7) ps.
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(a) Measured autocorrelation and optical
spectrum

(b) Output spectra as a function of the gain
current

Figure 3.10: Significant results reported by Rafailov et al. [77].

(a) Autocorrelation trace [79] (b) Pulse width and peak power, with tem-
perature dependence [80]

Figure 3.11: Results referred to the device presented in [78].

A comparison between PML and HML has been proposed in [56]. The laser
source is characterized by an Al0.35Ga0.65As/GaAs structure incorporating a 10-layer
stack of InGaAs QDs emitting at λGS = 1.28 µm grown by MBE.

The total length of the cavity is varied in the range (500 ÷ 2000) µm, with a
9 : 1 gain-to-SA length ratio, thus obtaining repetition rates fR = (80 ÷ 20) GHz.
In the shortest device case, a relatively small gain current is required to achieve
PML (below 60 mA), while the bias voltage needs to be larger in absolute value
than −4 V to ensure the correct pulse shape. The main results in terms of ML
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map and pulse width (with minimum values around ∆τ = 1.5 ps) are reported in
Figure 3.12. Concerning HML, the resulting pulse width can be reduced to values
below 2 ps, clearly paying in terms of overall device complexity due to the presence
of an additional synchronizing mechanism to perform the correct modulation.

Figure 3.12: Significant results reported by Bimberg et al. [56].

The first example of colliding pulse ML has been reported in [81], obtained in a
3.9 mm long laser diode with three layers of InGaAs QDs emitting at λ = 1.1 µm,
and in which the SA section is placed at the center of the device with a tolerance
of ±0.5 µm (Figure 3.13a).

The fundamental frequency of this device is fR = 10 GHz, but the associated
component is strongly suppressed and below the noise floor of the RF spectrum.
On the other hand, the strongest peak in the spectrum is obtained as expected at
f = 2 × fR = 20 GHz, providing evidence of the colliding pulse mechanism at twice
the fundamental cavity frequency. Concerning the other figures of merit, the best
pulse width achieved is ∆τ = 7 ps (Figure 3.13b), with a reverse bias voltage in
the range (−1.2 ÷ 0) V to guarantee the stability of the CML.
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Figure 3.13: Significant results reported by Thompson et al. [81].
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In [82], a thorough analysis of a QD laser diode in passive ML regime is carried
out. This device is characterized by the presence of 15 self-organized InAs layers
embedded in InGaAs Quantum Wells, with an overall length of 1 mm (given by
the sum of Lgain = 900 µm and Labs = 100 µm) that corresponds to a fundamental
repetition rate fR = 40 GHz.

The Authors report several plots that allow to establish how the bias values
affect different device properties. For instance, the pulses FWHM clearly tends
to reduce when increasing the reverse bias voltage (Figure 3.14a), whereas their
average power decreases (Figure 3.14b). The locking range for the same device
operated in hybrid mode locking conditions is also reported: it is synchronized with
a 40 GHz, 14 dBm wave generator, yielding a maximum locking range of 30 MHz
that decreases at higher injection currents as shown in Figure 3.14c.

(a) Pulse width with passive ML (b) Average power with passive ML

(c) Locking range with hybrid ML

Figure 3.14: Significant results reported by Kuntz et al. [82].

Concerning self ML devices, the structure proposed in [83] allows to achieve it
with a dual-wavelength emission: one central wavelength of the laser is located in
the C-band (λC = 1543.7 nm), while the other is in the L-band (λL = 1571.7 nm).
Five InAs QD layers, grown with chemical beam epitaxy, are embedded in the
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InAs/InP laser structure, with a cavity length of 456 µm that leads to a 92.5 GHz
fundamental frequency. Notice that the pulse width is lower when considering only
emission at wavelength λL (∆τ = 930 fs, Figure 3.15a) with respect to the case
with both wavelengths (∆τ = 930 fs, Figure 3.15a). Finally, the average power at
injection current equal to 60 mA has been reported to be equal to 9 mW. Notice
that very similar results have been obtained separately for C-band [84] and L-band
[85], again relying on self ML to obtain the optical frequency comb.

(a) Autocorrelation trace for L-band only (b) Autocorrelation trace for both C-band
and L-band

Figure 3.15: Significant results reported by Liu et al. [83].

The main advancements in two-section PML QD lasers up to the year 2009
are summarized in [86], where a InGaAs DWELL structure grown on a GaAs
substrate through MBE is characterized in terms of gain and absorption spectra
(Figure 3.16a), ML map (Figure 3.16b), pulse duration ∆τ , time-bandwidth product
(TBP = ∆τ × ∆ν), spectral width ∆λ, central wavelength λGS, average and peak
power Pavg and Pmax. The main results are reported in Figure 3.16c in two different
cases, varying the bias voltage with a fixed current value (I = 66 mA) and vice
versa (V = −8 V).

In the same paper some relevant considerations concerning the pulse width
reduction and the enhancement of the output power are also proposed. Apart
from the trivial approach consisting of a fine tuning of gain and absorber sections
lengths, a solution relying on tapered waveguides is presented.

One of the first examples of possible application of PML semiconductor lasers
based on QDs is reported in [87]. The microwave signal generated inside the ML
device is extracted from its SA section, which behaves as a p-i-n photodetector:
when an optical pulse travels this section, an electrical pulse is generated at the
same repetition rate with a simple DC bias voltage. The proposed approach is
then to integrate the monolithic laser diode with a reconfigurable fractal antenna
as shown in Figure 3.17, acting as a compact RF signal generator.
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(a) Gain and absorption spectra (b) Mode locking regimes for different Lgain : Labs
ratios

(c) Device characterization for fixed current and volt-
age values

Figure 3.16: Significant results reported by Thompson et al. [86].
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Further details on the design procedure and device characterization can be
found in the mentioned paper. In particular, the Authors highlight that the design
strategy for microwave signal generation is different with respect to the one followed
for obtaining short pulse trains with similar ML QD lasers: the optical power is
not a concern in such applications, whereas here the electrical pulse extracted from
the SA section should be maximized without impairing the ML regime stability.

Figure 3.17: RF signal generator proposed by Lin et al. [87].

In order to improve the ML stability in two-section PML lasers, the insertion
of an external optical feedback (i.e. an additional cavity, Figure 3.18a) has been
proposed theoretically in [88] and verified in [89]. In the latter, a device based on
a six-stack InAs QD active region emitting at λGS = 1330 nm is characterized in
terms of RF linewidth both with and without the presence of an external fiber
loop providing optical stabilization. Figure 3.18b shows that the presence of this
feedback mechanism leads to a much narrower RF linewidth (reduced from 8 kHz
to 350 Hz), and this is paid in terms of complexity, size and final repetition rate.

(a) Basic schemes for FP and DBR lasers with
external optical feedback stabilization [88]

(b) RF linewidth with and without ex-
ternal cavity stabilization [89]

Figure 3.18: External optical feedback insertion to improve ML stability.
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Latest achievements

More recently, a growing interest towards self-generated frequency combs has been
developing, in particular for their application in data centers, Ethernet networks
and coherent communications systems. An InAs/InP QD SML laser operating in
the C-band (around 1.5 µm) with a fundamental repetition rate fR = 34.462 GHz
has been proposed in [90], representing a cheap but effective solution for coherent
networking systems using the data format 16-QAM at the data rate of 28 Gbps.

In the proposed configuration, the laser source (with a 1.225 mm long cavity)
and the control logic are embedded into an optical fiber pigtailed solution, as
reported in Figure 3.19a. Apart from the characterization in terms of average
output power (Pavg = 43 mW) and autocorrelation pulse width (∆τ = 29 ps), the
most interesting result has been obtained in terms of −3 dB optical spectrum
bandwidth, equal to 12 nm and providing 45 channels with a signal-to-noise ratio
over 40 dB (Figure 3.19b). Additional details on the proposed system have also
been provided by the same authors in [91].

(a) Optical schematic and pigtailed implementation

(b) RF linewidth with and without external cavity stabilization

Figure 3.19: Optical setup and spectral results reported in [90].

Many research efforts have lately been aimed at Silicon Photonics (SiP) solutions,
a fertile and promising field allowing to integrate photonic devices onto electronic
chips. Optical pulses generation from PML single-section lasers directly grown
on Ga/Si substrates has been investigated in [92], with a device operating at
fR = 31 GHz delivering pulse widths as low as ∆τ = 490 fs (Figure 3.20a).
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The same research group has also proposed in [93] a monolithic 9 GHz PML QD
laser diode grown on (100) Si, studying the effect of the SA-to-gain ratio in terms
of threshold current and output power. The main results for a passive section
length equal to 23% of the total cavity are reported in Figure 3.20b.
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Figure 3.20: RF spectrum and pulse width results for devices with Si substrate.

Further contributions can be found in the literature, aimed at a more complete
characterization of ML laser diodes to be included in Telecommunications applica-
tions. The main parameters considered in order to describe the device behavior in
an application-oriented scenario are: threshold current, noise, RF spectrum [94, 95],
temperature working range [96], linewidth enhancement factor [97]. Concerning
CML, [98] reports a thorough characterization in terms of power and comb efficiency,
whereas an example of simulation and some details on the adopted mathematical
model are provided in [99]. Finally, the spectral performances obtained when
increasing the number of stacked QD layers are shown in [100].

Final considerations

The proposed state of the art analysis is not meant to represent a complete
description of the literature concerning QD-based laser diodes in ML condition,
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since such a work would represent quite an intensive effort given the abundance
of material concerning this topic. However, the examples presented before should
provide an overall view of the fast and partially unexpected progress that these
devices have undergone, mainly due to the strong improvements in the fabrication
of nanometric features in semiconductor technology during the last 20 years.

From a practical perspective, the main parameters that could be used in the
design of a Telecommunications system based on QD ML lasers have been extracted
from the proposed articles. A comprehensive summary of them is presented in
Table 3.1, which may represent a useful tool to compare different technological
choices and implementations in terms of the aforementioned key performance
indicators considering the final target application.

Ref. Year ML type λ (µm) fR (GHz) ∆τ (ps) Pmax (mW)
[74] 2001 P 1.3 7.4 17 –
[75] 2003 P, H 1.1 10 < 14 4
[76] 2004 P 1.3 18 10 2.5
[77] 2005 P 1.3 21 < 2 1100
[79] 2005 P 1.3 5.2 5.7 290
[80] 2005 P 1.3 5 (3.2 ÷ 7) < 1700
[56] 2006 P, H 1.3 (20 ÷ 80) (0.5 ÷ 2) –
[81] 2005 C 1.1 10 × 2 7 –
[82] 2007 P, H 1.3 40 2 –
[83] 2008 S 1.5 92.5 < 1 –
[84] 2008 S 1.5 45 0.312 –
[85] 2009 S 1.5 46 0.445 –
[86] 2009 P 1.3 20 1 105
[87] 2009 P 1.2 10 10 –
[89] 2010 P 1.3 5.1 – –
[90] 2018 S 1.5 34 29 –
[92] 2018 P 1.3 31 0.49 40
[93] 2018 P 1.3 < 9 1.3 –
[94] 2019 P 1.3 20 < 12 –
[96] 2020 P 1.3 25.5 <9 –
[95] 2021 P 1.5 23.5 – –
[97] 2021 P 1.3 20 – –
[100] 2021 P 1.3 81 < 1.85 –
[98] 2022 C 1.3 60 – –
[99] 2022 C 1.3 80 – < 10

Table 3.1: Main parameters extracted from the state of the art analysis.
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3.4 Light propagation in QD waveguides
In order to study the behavior of pulses traveling along the laser cavity, a brief
review of the electromagnetic field propagation in an optical waveguide is proposed,
since constituting the basis for the following analysis. Then, the results obtained in
Chapter 2 concerning the physical description of QD active materials are exploited
to analyze the field evolution in waveguides relying on reduced dimensionality
structures.

3.4.1 Traveling wave equations
The description of an electromagnetic field propagating in an active optical waveg-
uide relies on Maxwell equations for the electric (E) and magnetic (H) fields in
the frequency domain:

I
∇ × E = −jωµ0H
∇ × H = jωϵ0ϵr(ω, r) E + jωP(ω, r) + J(ω, r)

. (3.11)

• µ0 = 4π × 10−7 H m−1 is the magnetic permeability of the vacuum.

• ϵ0 = 8.84 × 10−12 F m−1 is the vacuum permittivity.

• ϵr = ϵr(ω, r) is the space- and frequency-dependent background dielectric
constant of the semiconductor medium, and in particular it varies along the
transverse directions (x, y) of the waveguide providing the optical confinement.

• P is the additional polarization induced by the semiconductor active medium,
which can be related to the electric field through the electronic susceptibility
as P(ω, r) = ϵ0χ(ω, r) E(ω, r) in the case of a linear2 material response.

• J is an additional stochastic current density modeling the spontaneous emission
noise from the active medium.

Each vector quantity can be expressed with its longitudinal (subscript z, indi-
cating the propagation direction) and transverse (subscript t) component as

A = At + Az ẑ A = E, H, P, J. (3.12)

2In general, the susceptibility χ(ω, r) is a non-diagonal matrix, accounting for possible
anisotropy in the optical response of the semiconductor medium.
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In this way, Maxwell equations can be rewritten in terms of transverse components of
the electric and magnetic field, obtaining the Marcuvitz-Schwinger [101] equations:

∂Et

∂z
= jωµ0

C
1 + c2

ω2 ∇t
1
ϵr

∇t

D 1
Ht × ẑ

2
− ∇t

3
Pz

ϵ0ϵr

4
− ∇t

A
Jz

jωϵ0ϵr

B
∂Ht

∂z
= jωϵ0ϵr

C
ϵr1 + c2

ω2 ∇t∇t

D 1
ẑ × Et

2
+ jω

1
ẑ × Pt

2
+ ẑ × Jt

. (3.13)

The longitudinal components of the two fields can then be obtained as:
jωϵ0ϵrEz = ∇t

1
Ht × ẑ

2
jωµ0Hz = ∇t

1
ẑ × Et

2 . (3.14)

Equation 3.13 and Equation 3.14 are fully equivalent to Maxwell equations
(Equation 3.11). However, for a ridge waveguide as the one presented in Figure 3.6,
the analytical solution of these equations cannot be obtained, unless a set of
assumptions and approximations is introduced.

1. Marcuvitz-Schwinger homogeneous equations (i.e. with P = 0, J = 0) are
solved at first, in order to determine the characteristic eigenmodes of the
system.

(a) Considering the piecewise constant value of ϵr = ϵr(ω, r) along the trans-
verse direction, two scalar Helmoltz equations are obtained and they can
be solved by enforcing proper boundary conditions (mainly continuity
conditions) at the interfaces between different materials.

(b) In the case of slab waveguides, ideal planar devices with no lateral con-
finement, the solution consists of a set of orthogonal modes, namely
Transverse Electric (TE) and Transverse Magnetic (TM) ones, obtained
analytically since the two Helmoltz equations are uncoupled.

(c) This is no longer true in ridge waveguides, but an analytical solution can
still be obtained by introducing the quasi-TE and quasi-TM modes, i.e.
assuming that the longitudinal magnetic or electric field component is
negligible with respect to the transverse one: this approximation can be
considered valid in multi-layered dielectric structures as the one taken as
a reference for this study.

2. The complete Marcuvitz-Schwinger equations can then be solved exploiting the
transverse modes obtained before and including two further approximations.

(a) The additional polarization induced by the semiconductor is usually
negligible with respect to the background dielectric polarization, hence
this term is treated as a perturbation.
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(b) Dipole moments related to the interband optical transitions in Quantum
Dots are negligible in the growth direction, meaning that both the addi-
tional polarization and the spontaneous emission along the x axis can be
considered null (Px ≈ 0, Jx ≈ 0). In this way, the optical susceptibility is
simplified as

χ(ω, r) ≈ χ(ω, x, y, z)

0 0 0
0 1 0
0 0 1

 . (3.15)

3. The optical power flow along the propagation direction z carried out by quasi-
TE and quasi-TM modes determined previously can be evaluated from the
z component of the Poynting vector, defined as the vector product between
electric and magnetic fields in the waveguide. The instantaneous power can
then be obtained by integrating along the transverse direction:

S(t, z) = 1
2 Re

;ÚÚ
(Et × H∗

t ) · ẑ dx dy
<

. (3.16)

From this relation, the mode amplitudes for guided modes can be obtained,
and since no terms related to the Quantum Dot optical response appear in
the equations for quasi-TM modes amplitude, it can be concluded that QDs
mainly interact with TE polarized fields as observed in [30, 31].

4. In order to further simplify the final equation for the modes amplitudes, the
slowly-varying envelope approximation is finally introduced by considering
that the second order derivative of the field in the longitudinal direction is
much lower than the first order one, i.e.----- ∂2

∂z2

----- ≪
----- ∂

∂z

----- . (3.17)

The field amplitude in time domain can then be expressed in terms of forward-
(V +) and backward-propagating (V −), slowly-varying components:

V (z, t) =
ó

2ω0µ0

β0

è
V +(z, t)e−jβ0z + V −(z, t)e+jβ0z

é
e−jω0t, (3.18)

where ω0 is the reference frequency and β0 = β(ω0) is the corresponding
propagation constant.

The outcome of the presented sequence of approximations is a simplified form
of the traveling wave equations, which consists of two independent, first order
time domain equations for the forward- and backward-propagating amplitudes:

±∂V ±(z, t)
∂z

+ 1
vg,0

∂V ±(z, t)
∂t

= −αi

2 V ±(z, t) − j ω0

2cϵ0nr,0
ΓxyP ±(z, t) + F ±(z, t).

(3.19)
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Equation 3.19 is valid at frequency ω = ω0, hence the frequency-dependent terms are
denoted with a subscript 0. In particular, the refractive index has been introduced
here, defined as

nr = nr(ω) =
ñ

ϵr(ω) =⇒ nr,0 = nr(ω0). (3.20)

The group velocity is linked to this quantity through the following relationship:

1
vg

= nr

c

A
1 + ω

nr

∂nr

∂ω

B
=⇒ vg,0 =

C
nr,0

c

A
1 + ω0

nr,0

∂nr

∂ω

-----
ω=ω0

BD−1

. (3.21)

The speed of light in vacuum c, the dielectric permittivity ϵ0 and the intrinsic
waveguide losses αi are constant term, the latter taking into account additional
losses in the device due to doped regions, contacts or unwanted defects. Conversely,
the forward and backward polarization P ± and spontaneous emission noise F ± are
assumed to be slowly-varying in time along the propagation direction z, i.e. they
change on a time scale much longer than the optical cycle TR = 2π/ω0.

Notice that Equation 3.19 requires a set of boundary conditions to be solved,
which in the case of a Fabry-Pérot cavity is given by the continuity equations
at the two facets. Indicating the two power reflectivities as R(z = 0) = R0 and
R(z = L) = RL, it is sufficient to impose for the field:

V +(z = 0, t) =
ñ

R0V
−(z = 0, t)

V +(z = L, t) =
ñ

RLV −(z = L, t)
. (3.22)

Equivalently, the instantaneous optical power (Poynting vector) can be expressed
in terms of mode amplitudes as the superposition of the two propagating and
counter-propagating waves:

S(z, t) = S+(z, t) − S−(z, t) =
---V +(z, t)

---2 −
---V −(z, t)

---2 . (3.23)

Boundary conditions then become:I
S+(z = 0, t) = R0S

−(z = 0, t)
S+(z = L, t) = RLS−(z = L, t)

. (3.24)

3.4.2 Waveguide theory and density matrix dynamics
The dynamic behavior of the microscopic interband polarization for a QD material
depends on the local electric field E(t), assumed to be independent of the spatial
coordinates in Chapter 2 since its wavelength (around 1 µm) is much longer than
the characteristic dot dimensions. When considering a complete waveguide device,
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though, such dependence cannot be ignored, and the electric field is in general a
function of both space and time E(x, y, z, t).

Following the procedure presented in this Section, the dependence on the
transverse coordinates (x, y) can be eliminated by considering the wave equations
projected on the TE mode. In addition to this, the slowly-varying envelope
approximation allows to obtain a simple form for the electric field, expressed in
terms of forward- and backward-propagating components in Equation 3.18. A
slowly-varying polarization can be written in a similar form by projecting the
microscopic polarization on the TE transverse direction, considering again the pure
states notation for the sake of simplicity:ÚÚ

pk(x, y, z, t) · ey(x, y) dx dy =
ó

2ω0µ0

β0

è
p+

k (z, t)e−jβ0z + p−
k (z, t)e+jβ0z

é
ejω0t.

(3.25)
The macroscopic polarization induced by the QD ensemble can be determined

as the expected value of the electric dipole moment per unit volume. In order
to relate it to the microscopic interband polarization evaluated previously, the
following density matrix property is exploited:

⟨d⟩ = tr [ρd] = tr [−dρ] , (3.26)
where ⟨d⟩ is the expected value of the electric dipole moment and tr represents the
trace3 operator. The macroscopic polarization can then be written as

P(t) = 1
VQD

tr [−dρ] =
Ø

k

DkND

hQD

è
d∗

e,h(k) pk(x, y, z, t) − de,h(k) p∗
k(x, y, z, t)

é
,

(3.27)
where VQD = ND/hQD is the dot volume and the factor Dk takes into account the
spin degeneracy. Exploiting the slowly-varying polarization defined previously, the
macroscopic forward- and backward-propagating terms appearing in Equation 3.19
are therefore:

ΓxyP ±(z, t) = Γxy

Ø
k

DkND

hQD

1
d∗

e,h(k) · ŷ
2
p±

k (z, t), (3.28)

where the scalar product d∗
e,h(k) · ŷ gives the y component of the dipole matrix

element. Concerning the dynamic behavior of the slowly-varying polarization, the
following relation can be obtained by integrating Equation 2.63 over the transverse
coordinates (x, y):

∂

∂t
p±

k (z, t) = −
è
j(εe,k − εh,k − ω0) + γp

é
p±

k (z, t)+

− j
ℏ

Γxy

1
d∗

e,h(k) · ŷ
2è

fe,k(z, t) + fh,k(z, t) − 1
é
V ±(z, t).

(3.29)

3This corresponds to performing a sum over the diagonal elements.
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This equation allows to establish a direct relation between the QD optical response
and the traveling wave equations describing the field propagation along the waveg-
uide. The optical confinement factor Γxy describes the incomplete overlap between
the TE mode and the stacked QD layers, whereas the characteristic interband tran-
sition frequency εe,k − εh,k is now shifted by the reference frequency ω0, introduced
in the slowly-varying approximation.

3.4.3 Quantum Dot susceptibility
The polarization dynamics represents the starting point to analyze the spectral
behavior of a QD ML laser, describing the physical phenomena at the basis of the
model. The Fourier transform of Equation 3.29 can be computed:

p±
k (z, Ω) = − 1

j
è
Ω − (εe,k − εh,k − ω0) + Γ

é j
ℏ

Γxy

1
d∗

e,h(k) · ŷ
2
×

×
Iè

fe,k(z, Ω) + fh,k(z, Ω) − 1
é

⊗ V ±(z, Ω)
J

=

= j
ℏΓLk(Ω)

1
de,h(k) · ŷ

2Iè
fe,k(z, Ω) + fh,k(z, Ω) − 1

é
⊗ V ±(z, Ω)

J
,

(3.30)

where Ω is the Fourier frequency and Γ is called the dephasing time of the microscopic
polarization. A complex Lorentzian function with FWHM 2Γ and centered in
εe,k − εh,k − ω0 has been introduced, defined as

Lk(Ω) = 1
1 + jΩ−(εe,k−εh,k−ω0)

Γ

. (3.31)

The impulse response of such function in the time domain is

Lk(t) = Γej(εe,k−εh,k−ω0)te−Γt. (3.32)

The macroscopic forward- and backward-propagating polarization, expressed as
functions of the microscopic one in Equation 3.28, can therefore be rewritten in
the frequency domain as

ΓxyP ±(z, Ω) = Γxy

Ø
k

DkND

hQD

j
ℏΓLk(Ω)

1
|de,h(k) · ŷ|2

2
×

×
Iè

fe,k(z, Ω) + fh,k(z, Ω) − 1
é

⊗ V ±(z, Ω)
J

.

(3.33)
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Equivalently, the time domain relation is obtained by anti-transforming the fre-
quency domain one:

ΓxyP ±(z, t) = Γxy

Ø
k

DkND

hQD

j
ℏΓ
1

|de,h(k) · ŷ|2
2
×

× Lk(t) ⊗
Iè

fe,k(z, t) + fh,k(z, t) − 1
é
V ±(z, t)

J
,

(3.34)

where the convolution product is given by

Lk(t) ⊗
Iè

fe,k(z, Ω) + fh,k(z, Ω) − 1
é
V ±(z, Ω)

J
=

= Γ
Ú t

−∞
ej(εe,k−εh,k−ω0)(t−τ)e−Γ(t−τ)

è
fe,k(z, τ) + fh,k(z, τ) − 1

é
V ±(z, τ) dτ.

(3.35)

In order to simplify the previous relation, the adiabatic approximation is
introduced. This consists in assuming a fast decaying time for the exponential term
e−Γ(t−τ) when τ → −∞, meaning that the polarization value at time t only depends
on the past evolution of occupation probabilities fλ,k(z, t) and field V ±(z, t) in a
short time interval given by the characteristic dephasing rate 1/Γ ≈ 100 fs. In
other words, the system has a memory limited to few hundreds of fs, and since the
occupation probabilities evolve on a much longer time scale they can be moved out
of the integral. Such assumption cannot be considered in general for the forward-
and backward-propagating fields, hence the simplified macroscopic polarization
relation yields

ΓxyP ±(z, t) = Γxy

Ø
k

DkND

hQD

j
ℏΓ
1

|de,h(k) · ŷ|2
2
×

×
è
fe,k(z, t) + fh,k(z, t) − 1

éî
Lk(t) ⊗ V ±(z, t)

ï
.

(3.36)

The slowly-varying traveling polarization terms appearing in the wave equations
can also be defined as

ϵ0χ(z, t) ⊗ V ±(z, t) = ϵ0

Ú t

−∞
χ(z, t − τ)V ±(z, τ) dτ, (3.37)

where the traveling susceptibility is given by

χ(z, t) = χ(z, t)e−jω0t. (3.38)

In the time domain, the following expression relating the susceptibility to the
Quantum Dot properties can be derived from the results obtained within the
adiabatic approximation:

χ(z, t) = 1
ϵ0

Ø
k

DkND

hQD

j
ℏΓ
1

|de,h(k) · ŷ|2
2è

fe,k(z, t) + fh,k(z, t) − 1
é
Lk(t). (3.39)
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Moving to the frequency domain, the time dependence remains due to the presence
of the occupation probabilities outside of the convolution integral in the adiabatic
approximation:

χ(z, t, Ω) = 1
ϵ0

Ø
k

DkND

hQD

j
ℏΓ
1

|de,h(k) · ŷ|2
2è

fe,k(z, t) + fh,k(z, t) − 1
é
Lk(t, Ω).

(3.40)
This result can be used in the following to analyze some additional phenomena
that can be described using the MS-DDE model.

Gain and refractive index spectra

The optical response of a QD active medium consists of an amplification (or
attenuation) term and a corresponding phase change induced by the incoming
electromagnetic radiation. The gain spectrum can be obtained from the imaginary
part of the QD susceptibility as

g(z, t, Ω) = ω0

cnr,0
Im
î
χ(z, t, Ω)

ï
=

=
Ø

k
g0,k

è
fe,k(z, t) + fh,k(z, t) − 1

é
Re
î
Lk(t, Ω)

ï
,

(3.41)

where the characteristic gain g0,k has been defined as

g0,k = ω0

cnr,0

1
ϵ0

DkND

hQD

1
ℏΓ
1

|de,h(k) · ŷ|2
2
. (3.42)

Similarly, the refractive index change spectrum is given by

∆nr(z, t, Ω) = 1
2nr,0

Re
î
χ(z, t, Ω)

ï
=

=
Ø

k

c

ω0
g0,k

è
fe,k(z, t) + fh,k(z, t) − 1

é
Im
î
Lk(t, Ω)

ï
.

(3.43)

Notice, however, that the effect of the electromagnetic field is not limited to
interband transitions between electron and hole confined states in the QD material.
When the carrier densities in the active region are sufficiently large, additional
contributions to absorption and refractive index spectra must be considered, caused
by intraband transitions involving electron and hole plasmas within WL and SCH
levels. An additional phenomenological loss term can be introduced in the traveling
wave equations, proportional to these carrier densities [102]:

αpl = Γxy

Ø
λ

kpl
λ,WL

nλ,WL

hWLNlW
+ Γxy

Ø
λ

kpl
λ,SCH

nλ,SCH

hSCHW
, (3.44)
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where kpl
λ,WL and kpl

λ,SCH are characteristic free carrier absorption coefficients, mea-
sured in cm2. Similarly, refractive index changes due to the same plasma phenomena
are modeled as [103]

∆npl
r = Γxy

Ø
λ

Kpl
λ,WL

nλ,WL

hWLNlW
+ Γxy

Ø
λ

Kpl
λ,SCH

nλ,SCH

hSCHW
. (3.45)

The coefficients Kpl
λ,WL and Kpl

λ,SCH describe the dependence of the refractive index
changes with respect to the WL and SCH carrier densities, and they can be obtained
according to the Drude formula for the optical response of a free plasma:

Kpl
λ,WL(ω) = − q2

2ϵ0nr,0m∗
WLω2 , Kpl

λ,SCH(ω) = − q2

2ϵ0nr,0m∗
SCHω2 , (3.46)

where ω is the EM field frequency.

Stimulated emission rate

The stimulated emission rate from each QD state introduced in Section 2.2 can be
computed starting from the microscopic polarization (satisfying Equation 2.63):

Rst
k = −1

ℏ
DkND

hQD

1
cnr,0ϵ0

Im
î1

de,h(k) · ŷ
2
p∗+

k (z, t)V +(z, t)+

+
1
de,h(k) · ŷ

2
p∗−

k (z, t)V −(z, t)
ï
.

(3.47)

The dependence with respect to the polarization terms can then be eliminated by
substituting the relation derived within the adiabatic approximation, obtaining

Rst
k = 1

ℏ
g0,k

ω0

è
fe,k(z, t) + fh,k(z, t) − 1

é
Re
î
V +(z, t)

è
Lk(Ω) ⊗ V +(z, t)

é∗
+

+ V −(z, t)
è
Lk(Ω) ⊗ V −(z, t)

é∗ï
.

(3.48)

This relation completes the set of rate equations required to fully describe the
dynamic behavior of a QD-based laser diode derived with the density matrix
approach.

Remarks on the inhomogeneous broadening

From the relations presented in this section, the filtering effect performed by the
QD material on the electromagnetic field can be clearly seen. In particular, a
Lorentzian filter is associated to an interband transition, weighted by the occu-
pation probabilities and with a FWHM proportional to the dephasing rate of the
microscopic polarization.
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In the case of a QD ensemble, each of the N groups is characterized by a
different interband transition energy, leading to a set of Lorentzian filters whose
effect is broadened with respect to the individual ones. Such broadening mechanism
of the optical interband transitions corresponds to the homogeneous broadening
phenomenon introduced in Chapter 2, and it causes the gain spectral bandwidth
to be much larger than the homogeneous linewidth of a single interband transition
due to such superposition of effects.

3.4.4 Spontaneous emission noise
From a physical perspective, spontaneous emission is one of the major recombination
processes occurring within QD layers. However, when considering semiconductor
waveguides, this also represents a distributed source of electromagnetic field along
the device appearing in the traveling wave equations: this comes from Maxwell
equations, which include a current density source J that leads to the term F ±(z, t)
in Equation 3.19.

Instead of following a rigorous approach to describe spontaneous emission in
semiconductor devices, it is convenient to derive a relation for the spontaneously
emitted power per unit length per unit bandwidth starting from the gain spectrum
presented in Equation 3.41. Following Einstein approach as suggested in [44], it is
possible to obtain:---F ±(z, Ω)

---2 = βsp

2 NDWNl
Ø

k
Dk

Γℏ(εe,k − εh,k)
π

Rsp
k (z, t)Re

î
Lk(Ω)

ï
. (3.49)

The spontaneous emission coupling factor βsp takes into account the fact that
only a small portion of the whole spontaneously emitted radiation couples with
the TE mode of the optical waveguide. This fact could also be seen from Equa-
tion 3.11, in which the current density term has been projected in the transverse
direction through an external product with the unit vector ẑ. Typical values for
βsp range from 10−3 to 10−4, further divided by 2 assuming that propagating and
counterpropagating spontaneously emitted waves are equally split in half.

Notice also that the spontaneous emission rate Rsp
k (z, t) appearing in the previous

relation has been evaluated through a phenomenological characteristic time constant
τ sp

k in Section 2.2, yielding

Rsp
k (fe,k, fh,k) = 1

τ sp
k

fe,kfh,k. (3.50)

Exploiting again Einstein approach, a direct relation between this spontaneous
emission time constant and the characteristic gain g0,k defined in Equation 3.42
can be found:

1
τ sp

k
= hQD

NDNlDk

n2
r,0(εe,k − εh,k)Γ

πc2 g0,k. (3.51)
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3.5 MS-DDE model

The mathematical model at the basis of the simulation activity performed in this
Thesis is now introduced. At first, a rapid overview of alternative approaches for
the analysis of QD ML laser diodes is provided. A more thorough analysis of the
model applicability is then carried out for the two types of laser structures that
can be simulated, namely the ring and the edge-emitting configurations.

3.5.1 Modeling mode-locked QD lasers

The description of passively mode-locked lasers relying on self-assembled QD active
media can be carried out exploiting Time-Domain Traveling-Wave (TDTW) models,
as the one proposed in [18]. Such approach consists in the solution via a finite
difference scheme of the traveling wave equations presented before, hence it provides
the most accurate and realistic simulation results. Moreover, these models can be
applied to a quite wide range of devices, with several commercial simulators of
laser diodes relying on them.

However, the main limitations of a traveling wave approach are related to
its computational requirements, both in terms of time and memory. In this
framework, time and space axes have to be discretized with steps ∆t and ∆z,
respectively: these quantities have to be sufficiently small in order to accurately
describe the electromagnetic radiation evolution in the device, and they are often
linked to each other. As an example, the time step should be shorter than the
time constant of the fastest physical phenomenon that has to be included in the
model (usually below 1 ps), whereas a thorough description of the propagating
and counter-propagating pulses along a laser diode cavity requires a fine spatial
discretization in the longitudinal direction (in the order of few µm).

Another approach, still performed in the time domain but limited to a small-
signal analysis, is the Self-Consistent Pulse profile model. This represents the
very first attempt to model mode locking in semiconductor lasers, and it has been
proposed in the pioneering works of New [104] and Haus [105]. It is based on the
assumption that the traveling pulse width is much smaller than the repetition
period TR, alongside the presence of lumped elements that represent the gain and
absorption sections of the device. Several studies have then pursued improved
version of this model [106, 107], simple but quite limited in terms of applicability.

An alternative way for studying ML laser diodes relies on the modal analysis
technique, which can be static or dynamic. In this case, a frequency domain
approach is chosen as the one presented in [108]. However, such technique is less
general with respect to the TDTW one, mainly due to some restrictive assumptions
in terms of low non-linearity and the presence of two time scales (slow and fast).
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Finally, a large-signal iterative model can represent a trade-off between accu-
racy and computational requirements. This is the case of the proposed Delayed
Differential Equation model, which allows to overcome the complexity of a TDTW
approach while maintaining the possibility to include physical phenomena occurring
on a rather short time scale. A more detailed analysis of this approach, including
a comparison with respect to previous DDE models proposed in the literature, is
carried out in the following sections.

3.5.2 Multi-Section Delayed Differential Equation model
description

Given the high complexity and computational requirements of the TDTW model,
as well as the limitations that affect other approaches presented in the previous
section, the proposed DDE model provides an alternative, computationally-efficient
solution enabling parametric analyses of QD laser diodes in ML conditions.

The analytical models proposed by New and Haus [104, 105] represent the
theoretical ground on which this approach is based. The original DDE model
formulation has been presented in [109], with a generalization of the aforementioned
works, whereas its application for QD ML lasers has been brought forward in [110].
Though conceived for the simulation of unidirectional ring lasers, the same approach
has also been extensively applied to Fabry-Pérot devices [111–113], with a qualitative
agreement in the results with respect to TDTW simulations [19, 114].

A detailed derivation of the model, carried out starting from the traveling wave
equations described in Equation 3.19, can be found in [109] and it is omitted
here. However, the assumptions on which such derivation is based are listed in the
following in order to make a significant comparison with the approach presented in
this Thesis.

1. Ring cavities with unidirectional lasing only are considered.

2. Such ring consists of two sections, i.e. gain and saturable absorber.

3. Lasing from the QD ground state only is assumed when analyzing Quantum
Dot-based devices [110].

4. Intrinsic waveguide losses, denoted with αi in the following, are modeled as a
lumped loss term in the reference section z = 0 of the device, as well as the
coupling losses.

5. The finite gain spectral bandwidth of the semiconductor material introduces
a filtering effect which is also modeled as a lumped element in the reference
section z = 0.

77



Mode Locking in QD Lasers

To sum up, in its original formulation the DDE model could be employed in the
analysis of either one of the two simple structures reported in Figure 3.21. In the
following, the gain region (with length Lgain) is associated to a green color, whereas
red is used to identify SA sections (length Labs). Clearly, the reference section
z = 0 mentioned before coincides with the one reached at the end of a round trip,
i.e. z = L. This is the only point at which the device can be fully characterized by
exploiting this approach.

Figure 3.21: Ring structures correctly analyzed with the original DDE model
formulation [109, 110].

The multi-section approach allows to lift the second assumption listed previously:
the laser cavity is now assumed to be composed of an arbitrary number of electrically
isolated sections that can be biased independently, thus adding the possibility of
including many gain and/or SA section in the device. Moreover, a non-saturable loss
term is introduced at the interface between each adjacent section, enabling a more
accurate description of the intrinsic waveguide losses and granting the possibility
to extract the internal signal at any of these interfaces (properly including the
associated coupling losses). Hence, the fourth assumption introduced in the original
model can be partially mitigated.

In addition to this, both ground and first excited state lasing can be treated
with this generalized model, so that dual-wavelength devices can also be studied
(assumption 3 extended to two energy levels). Finally, edge-emitting cavities are
automatically converted into ring structures by considering the optical path inside
the active material during a complete round trip: the coupling losses are associated
to the power reflectivity of a facet, whereas the other one is modeled as a lumped loss
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element localized at half the round trip. Notice, however, that the unidirectionality
of the lasing mode is still assumed, as well as the presence of a lumped filtering
effect at section z = 0 due to the finite material gain spectral bandwidth.

The simplest FP structure that can be analyzed with the MS-DDE approach is
presented in Figure 3.22, which also shows the equivalent ring device corresponding
to it. The main model elements are presented with references to this basic structure
for the sake of simplicity, even though more complex devices can also be studied
and will be presented in the following of this document.

2

Figure 3.22: Basic FP and equivalent ring structures analyzed with the proposed
MS-DDE model.

As stated before, the delayed differential equations governing the field evolution
can be directly derived from the traveling wave ones (Equation 3.19). In particular,
the following coordinate change in the time domain is introduced:

t −→ τ = t − z

vg
, (3.52)

where z is the longitudinal coordinate (which remains unchanged) while vg = c/nr
is the group velocity. In this reference framework, the DDEs for the field at both
Ground State and first Excited State wavelengths yield

dVi(τ)
dt

= −Γ Vi(τ) + Γ Ri(τ − TR) Vi(τ − TR), (3.53)
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where the index i = GS, ES1 represents the energy level considered. The physical
meaning of each term introduced in the previous equation is now explained in more
details.

Spectral filtering and ML condition

Equation 3.53 can be rewritten as

1
Γ

dVi(τ)
dt

= −Vi(τ) + Ri(τ − TR) Vi(τ − TR), (3.54)

where the term 2Γ is the FWHM of the Lorentzian filter introduced in the previous
Section, causing inhomogeneous gain broadening. A steady-state analysis can be
carried out by neglecting the derivative term, or equivalently assuming the absence
of spectral filtering due to the finite gain bandwidth (i.e. Γ → ∞). In these
conditions, the previous equation reduces to

Vi(τ) = Ri(τ − TR) Vi(τ − TR). (3.55)

From the physical perspective, Equation 3.55 states that a pulse at section z = 0 at
time τ , Vi(τ), is equal to the one crossing the same section at the previous round
trip, Vi(τ − TR), that has experienced a round trip gain Ri(τ − TR) during the
subsequent propagation along the cavity. To achieve a stable mode locking regime
in the absence of spectral filtering, the ML pulse must not change in successive
round trips, and such condition can be expressed as

Vi(τ) = Vi(τ − TR) ⇐⇒
I

Ri(τ − TR) = Ri(τ) = 1, Vi(τ) /= 0
Ri(τ − TR) = Ri(τ) < 1, Vi(τ) = 0

. (3.56)

Notice that the second condition in Equation 3.56 is introduced to avoid the onset
of instabilities due to spontaneous emission noise when the ML pulse power is zero.

When the limited gain bandwidth of the QD ensemble is taken into account,
meaning that Γ is finite, the derivative term can no longer be neglected. In this
case, a Lorentzian bandwidth limiting element is introduced in the device model,
lumped in the reference section z = 0 and acting on the pulse at each round trip.
Such filtering effect is represented by the derivative term in Equation 3.53, which
can be rewritten as a convolution product to highlight it:

Vi(τ) =
è
Γ exp(−Γτ)

é
⊗
è
Ri(τ − TR) Vi(τ − TR)

é
. (3.57)

Round trip gain

The reference structure for this analysis is the two-section ring reported in Fig-
ure 3.23. Both the gain and SA sections are further subdivided into F isolated
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slices: the carriers evolution is computed in each of these regions, at the boundaries
of which the non-saturable losses are localized. The total cavity length is given by
the sum of the F sections lengths, i.e.

L =
FØ

k=1
Lk, (3.58)

from which the cold-cavity round trip time can be determined as

TR = L

vg
. (3.59)

Figure 3.23: Two-section ring structure, subdivided into F electrically isolated
slices.

The term R introduced in Equation 3.53 represents the round trip gain expe-
rienced by the pulse during the propagation along forward and reversely biased
sections of the cavity. It depends on the nonlinear gain and absorption dynamics
induced by the pulse circulating within the cavity, and it can be computed as

Ri(τ) =
FÙ

k=1
Bi,k(τ) Mk, (3.60)

where i = GS, ES1 refers again to the considered energy level. Mk describes the
non-saturable losses localized between the kth and the (k + 1)th sections, including

81



Mode Locking in QD Lasers

intrinsic waveguide losses experienced by the field when traveling across the kth

section and output coupling losses localized at the interface:

Mk =
ñ

Kk exp
3

−αi

2 Lk

4
. (3.61)

The term Bi,k(τ) represents instead the amplification (or attenuation) and the
phase change experienced by the field when traveling across the kth section, and
its value is different according to the analyzed wavelength:

BGS,k(τ) = exp
1
ΓxygGS,k(τ)Lk

2
× exp

1
jβΓxygES1,k(τ)Lk

2
BES1,k(τ) = exp

1
ΓxygES1,k(τ)Lk

2
× exp

1
−jβΓxygGS,k(τ)Lk

2 . (3.62)

In Equation 3.62, the average gain/absorption introduced by the QD GS or ES1 in
the kth section is given by

gi,k(τ) = g0,i

1
2f i,k(τ) − 1

2
, (3.63)

where g0,i is the characteristic material gain for the dot energy level introduced in
Equation 3.42, while f i,k(τ) represents the occupation probability in the ith QD
state averaged over the kth section. The temporal dynamics of this occupation
function in each section of the ring cavity are given by a system of rate equations:

df i,k(τ)
dτ

= R
in
i,k(τ) − R

out
i,k (τ) − R

st
i,k(τ). (3.64)

The first two rates reported in Equation 3.64 are computed according to the
equations presented in Section 2.2, while the stimulated emission rate in this case
is evaluated as

R
st
i,k(τ) =

1
|Bi,k(τ)|2 − 1

2A k−1Ù
m=1

|Bi,m(τ)|2 M2
m

B
|Vi(τ)|2

ℏ(εe,i − εh,i)Lk

. (3.65)

Finally, the output power after a full round trip (i.e. at the end of the F th section)
is given by

P out
i (τ) = 1 − KF

KF

|Vi(τ)|2 , (3.66)

where KF corresponds to the output coupling factor of the ring laser.
Equation 3.65 can be derived by following a similar approach to that proposed

in [109], and it has a clear physical meaning in the DDE model framework. In
particular, the total power lost at time τ due to electron-hole pairs recombination
in the active material (at emission wavelength i and in section k) is

P st
i,k(τ) = ℏ(εe,i − εh,i)R

st
i,k(τ) Lk. (3.67)
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This quantity can be evaluated as the difference between instantaneous output and
input power values from the considered kth section:

P st
i,k(τ) =

kÙ
m=1

|Bi,m(τ)|2 M2
m |Vi(τ)|2ü ûú ý

P out
i,k

−
k−1Ù
m=1

|Bi,m(τ)|2 M2
m |Vi(τ)|2ü ûú ý

P in
i,k

. (3.68)

Such equation guarantees the energy conservation in the active material, and it
is valid when no additional non-saturable losses are distributed along the section,
hence it can be exploited when considering them lumped at the interface between
adjacent sections as assumed in the MS-DDE model.

3.5.3 Effects included in the model
Several additional effects should be taken into account when analyzing the behavior
of semiconductor ML lasers. Some of them have been included in the proposed
MS-DDE model, and they are presented in the following with a basic description
of the physical mechanisms that may cause their presence.

Self-Phase Modulation

The gain (or absorption) spectrum induced by the QD semiconductor active
medium and the associated changes in the refractive index have been determined
in Section 3.4, with an explicit dependence on the imaginary and real part of the
optical susceptibility, respectively. These two quantities are related through the
Kramers-Krönig relations [28]:

Re
î
χ(z, t, Ω)

ï
= 1

π
P
Ú +∞

−∞

Im
î
χ(z, t, Ω′)

ï
Ω′ − Ω dΩ′, (3.69)

Im
î
χ(z, t, Ω)

ï
= − 1

π
P
Ú +∞

−∞

Re
î
χ(z, t, Ω′)

ï
Ω′ − Ω dΩ′, (3.70)

where P is the Cauchy principal value of the integral [115].
Refractive index changes are due to both interband transitions (Equation 3.43)

and intraband free carrier absorption (Equation 3.45). From these relations, it
clearly appears that a variation in electron and hole populations leads not only
to a nonlinear gain dynamics, but also to a nonlinear behavior of the refractive
index. Hence, alongside a variation in the envelope, a phase shift is induced in the
optical pulse traveling along the QD active medium. Such nonlinear phase change
is commonly referred to as self-phase modulation (SPM), and the pulse is said
to be chirped since its carrier frequency varies in time.
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An unchirped ML pulse is characterized by a time-independent carrier frequency,
corresponding to a constant phase over the whole bandwidth in the frequency
domain. In this case, assuming a Gaussian envelope, a precise relation between the
pulse duration in time ∆τ (FWHM) and the −3 dB bandwidth ∆ν of its optical
power spectrum holds [116]:

TBP = ∆τ∆ν = 2 log 2
π

≈ 0.44. (3.71)

This represents the theoretical lower bound for the time-bandwidth product, and the
pulse is said to be transform limited. On the other hand, a linear carrier frequency
chirp in time causes the power spectral density of the pulse to be broader with
respect to the unchirped case, hence the TBP increases (TBP = ∆τ∆ν > 0.44).

Notice that the minimum value of the TBP depends on the exact pulse shape:
Gaussian envelopes are characterized by a TBP > 0.44, whereas squared hyperbolic
secant ones have TBP > 0.32. In many applications, though, determining the pulse
shape is not immediate, and different approaches can be followed.

• The most rigorous approach relies on the Frequency Resolved Optical Gating
(FROG) technique [117].

• A Gaussian shape for the ML pulse envelope can be assumed, without further
investigation of time- and frequency-domain behavior.

• The intensity autocorrelation can be characterized with common instruments,
both in terms of time duration (commercial autocorrelator) and spectrum
(optical spectrum analyzer), then the TBP is used to infer the pulse shape
and to quantify the amount of chirp in the ML pulse.

Gain and refractive index dispersion

Due to its limited bandwidth, the gain spectrum in the forward biased sections of
the device acts as a filter on the pulse. Clearly, a wide gain bandwidth allows to
increase the number of longitudinal lasing modes that can contribute to the ML
pulse formation, thus leading to a shorter pulse width.

In addition, also the refractive index of the cavity has a frequency dependent
behavior, with an overall spectrum identified as nr(ω). This comes from both the
frequency dependence of the effective index of waveguide modes and the spectral
behavior of the semiconductor active medium. Recall that the group velocity
is inversely proportional to the refractive index derivative with respect to the
frequency (Equation 3.21). If the second derivative ∂2nr(ω)/∂ω2 is not null around
the pulse carrier frequency, different spectral components propagate at different
group velocities, and the material is said to be dispersive. This may lead to
broadening and distortion phenomena in the ML pulses, especially in the case of
ultrashort ones (characterized by a broad spectrum).
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ML self-starting

The possibility for the mode locking regime to start autonomously represents an
additional feature of QD ML lasers that need to be investigated.

1. When increasing the pump current in the active sections of the device, still
remaining below threshold, random field oscillations are caused by spontaneous
emission processes within the cavity.

2. If the current is gradually increased, a first threshold is reached where the
unsaturated linear modal gain equals the total losses in the cavity, given by
mirrors and SA section (both unsaturated).

3. Spontaneous emission noise tends to excite a large number of longitudinal
cavity modes, with stochastic amplitudes and phases, leading to the presence
of random noise spikes in the time domain signal which can be amplified along
the device.

4. Further increasing the current, a second threshold is reached where a single
noise spike becomes intense enough to cause absorption saturation in the SA
section: in this way, such spike can be amplified and reshaped over successive
round trips, leading to the formation of a single pulse circulating along the
waveguide.

The same phenomenon can be explained from the frequency domain perspective.
The initial noise spike is the result of a phase locking between different adjacent
modes in a certain time interval, according to the basic description provided in
Section 3.1. This phase relation is then preserved by the absorption saturation,
leading to the onset of a stable ML regime.

Optical losses

The electromagnetic radiation is not completely restricted by the ridge waveguide
section, since a portion of it falls out of the device boundaries as reported in
Figure 3.24a. This phenomenon can also be inferred from the 2D simulation results
reported in [118], where a modal analysis on single-mode waveguides has been
carried out (Figure 3.24b).

Apart from the saturable and unsaturable loss terms that have been presented
in the previous Sections, then, an additional contribution to the overall device
losses can be associated to the ridge waveguide structure. The presence of these
queues can be accounted for in the proposed MS-DDE model in order to provide a
more complete description of the QD ML laser behavior.
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(a) Ridge waveguide schematic (b) 2D simulation

Figure 3.24: Structure and simulation results presented in [118].

Ring unidirectionality

Some further considerations can be provided concerning ring unidirectionality,
which has been assumed for both previous and current versions of the DDE model.
A basic ring structure would however result in bidirectional lasing, due to the
rotational symmetry between propagating and counter-propagating modes along the
cavity. In order to break such symmetry, different techniques have been presented
in the literature, and two significant examples are reported in the following.

By introducing in the device a S-shaped waveguide within the ring resonator
as the one shown in Figure 3.25, an asymmetric behavior for clockwise (CW) and
counterclockwise (CCW) beams is obtained [119].

• The CW wave is launched from point A, and it propagates unchanged up
to the coupling region B1. Here, part of it is evanescently coupled to the
S structure, generating two waves that move towards C1 (radiated out of
the device) and B2. The same coupling occurs at the opposite end of the S
waveguide, with a portion of the latter wave that is joint again to the main
CW one inside the ring.

• Similarly, a part of the CCW signal launched from point A is evanescently
coupled to the S-shaped element in B2, but the portion that propagates along
it and is coupled back into the ring racetrack is transformed into CW moving
at section B1.

In this way, the field propagating along the unwanted direction is partially converted
into the preferred one through a double evanescent coupling mechanism. Overall,
the field intensity is reduced (significant losses are introduced), but the desired
mode prevails after a certain number of round trips along the cavity.
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Figure 3.25: S-shaped waveguide embedded into the ring device [119].

An alternative approach presented in [120] exploits instead the presence of defects
in the QD-based waveguide to tune the propagation direction in ring lasers. When
a traveling wave encounters a defect in the active material, reflection phenomena
may occur, thus leading to the presence of counterpropagating ML pulses. By
means of defect engineering, such features can be tailored making the unwanted
propagation direction less favorable than the wanted one, finally obtaining a unique
ML pulse train prevailing. Notice also that this technique can be employed in
order to tune the spacing between adjacent modes of harmonic frequency combs,
providing a further “knob” to trim the device performance.
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Chapter 4

Simulation Results

4.1 Unidirectional ring lasers
The main purpose of this Thesis has been to improve a pre-existing MS-DDE
MATLAB program in terms of computational efficiency (with simulation times
reduced of almost one order of magnitude) and generality, exploring the possibility
of modeling harmonic ML too. In this way, the model represents a fast and
reliable simulation tool that can be employed in the design phase of mode-locked
semiconductor lasers. In particular, the starting point is always a set of known
constraints and requirements, both technological (related to the device fabrication
process) and fixed by the target application. For this reason, the following approach
has been chosen in order to provide useful information during the preliminary stages
of a design activity involving the presence of ML ring lasers.

1. At first, the main requirements in terms of repetition rate, bias range and size
are introduced to mimic a real-life scenario.

2. Then, a suitable set of physical and technological parameters allowing to satisfy
the initial constraints is identified. Notice that several quantities involved
in the model depend on the material or the fabrication process, hence they
cannot be exploited to tune the device properties. On the other hand, a
certain degree of flexibility is still granted by the presence of other “knobs”
through which the requirements can be fulfilled.

3. Once the obtained simulation results are compliant with the specifications, the
parameters set is fixed and the number of sections constituting the device is
varied. In this way, a direct comparison in terms of footprint, operating range
and power consumption is carried out: the designer can then choose among
different implementations according to other application-specific constraints.

88



Simulation Results

In the following, an 8-section device working at a repetition rate equal to 75 GHz
is designed, and then alternatives relying on a different number of sections are
introduced. Before this analysis, though, few additional details concerning the
application of the MS-DDE model to this specific type of device are provided.

4.1.1 MS-DDE modeling of ring structures
Consider again the reference 2-section ring structure, composed of a single gain-SA
couple whose length is sliced into F electrically isolated subsections in order to
perform the simulation with the MS-DDE model (Figure 4.1). A uniform current
injection is assumed in the whole gain section, subdivided uniformly, hence all the
forward biased slices are characterized by the same current density. On the other
hand, the SA slices (again uniform among themselves, but in general characterized
by a different length with respect to the gain ones) are reversely biased with an
external negative voltage.

Concerning the output signal, it is assumed to be extracted in the middle of
the gain section, i.e. at z = 0. Such extraction implies the presence of an output
coupling mechanism, localized in the chosen reference section and modeled through
a power transmission coefficient K which is lower than 100% from the internal field
perspective. As an example, a 10% power extraction at section z = 0 corresponds
to the following set of coupling losses:

Kk =
I

1 k = 1, 2, . . . , F − 1
0.9 k = F

, (4.1)

meaning that 90% of the power is staying inside the cavity. In terms of traveling
wave equations, the field boundary condition at the end of each round trip then
becomes

Vi(t,0) =
ñ

KF Vi(t, L), (4.2)
where L is the total ring cavity length and the subscript i = GS, ES1 refers to the
considered energy level.

The simulation of ring structures relies on the equations presented in Section 3.5,
but some additional considerations have to be introduced in order to study the
properties of such devices. In particular, the ML stability is investigated by
considering the round trip gain experienced by the traveling pulses in the cavity,
which can be rewritten in a different form with respect to Equation 3.60 as

|Ri(τ)| = exp
è1

Gi(τ) − Ai(τ)
2
L
é
. (4.3)

The term Gi(τ), expressed in cm−1, represents the overall amplification in the gain
section, computed as

Gi(τ) = 1
L

Ø
k∈G

ln
1

|Bi,k(τ)|
2
. (4.4)
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On the other hand, Ai(τ) (again in cm−1) expresses the overall saturable and
non-saturable losses experienced by the ML pulse over a round trip, given by

Ai(τ) = αi

2 + 1
L

 Ø
k∈SA

ln
1

|Bi,k(τ)|
2

+
FØ

k=1
ln
A

1√
Kk

B . (4.5)

The ultrafast recovery of the ground state population after the pulse trailing
edge, due to the presence of fast ES to GS transitions in the QD active material,
leads to a steep increase of the gain term GGS(τ). According to Equation 4.3, this
corresponds to a window of net gain RGS(τ) > 1 which can cause a trailing edge
instability in the presence of spontaneous emission noise. Such instability is usually
prominent for bias currents just above threshold, whereas it becomes negligible
increasing the applied current (since the positive net gain region tends to vanish).

Figure 4.1: Two-section ring structure, divided into F electrically isolated slices.

4.1.2 Design and simulation of an 8-section device
As previously stated, the first step in the design process of a semiconductor ML
laser is the identification of the main constraints and requirements dictated by both
target application and technology. Concerning the final performance of the device,
a repetition rate equal to f = 75 GHz is required in this study (GS emission),
working at temperature T = 298 K. In order to limit the total power consumption,
the bias range should be limited to:I

I = (100 ÷ 400) mA z ∈ G
V = (−7.5 ÷ −2.5) V z ∈ SA

. (4.6)
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Table 4.1 reports instead a list of the main physical parameters used in the
simulation, which will be maintained in the different implementations presented in
the following of this analysis.

Symbol Description Value
d Ridge waveguide width 6 µm
αi Intrinsic waveguide losses 1.5 cm−1

Γy Transversal confinement factor 75%
Γx Vertical confinement factor 10%
nr Refractive index 3.66
ηi Internal quantum efficiency 85%

hSCH SCH height 180 nm
hQW QW height 7 nm
hQD QD height 5 nm
Nl QD layers 12
ND QD surface density 2.85 × 1010 cm2

RQD QD radius 15.5 nm
∆Einh FWHM inhomogeneous broadening 34 meV

E(e−h),GS GS interband transition energy 0.9904 eV
E(e−h),ES1 ES1 interband transition energy 1.0597 eV

τc,GS GS capture time 0.3 ps
τc,ES1 ES1 capture time 0.3 ps
Vbi Built-in potential 0.8 V

Table 4.1: Main physical parameters used in the simulation [18].

Once these constraints have been fixed, the device performances are tuned by
means of few remaining free parameters. From a preliminary analysis, the role of
the output coupling coefficient has turned out to be crucial in the achievement of
a stable harmonic ML. In particular, a high transmission value in the reference
section1 z = 0 allows to reach the locking condition for rather lower values of the
bias current, hence a 10% signal extraction is considered (i.e. KF = 90%).

Given the interest in colliding pulse ML mechanisms in semiconductor QD lasers,
the number of gain sections has been fixed to 4 (Figure 4.2), thus leading to an
expected output frequency f corresponding to the fourth harmonic with respect

1Recall that by using the MS-DDE model the output signal can be extracted at any interface
between adjacent slices of the device, both in the gain and SA regions. The choice presented
here is arbitrary, simply allowing a clearer description in terms of round trip gain for the field
evolution inside the cavity.
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to the fundamental one (fR). Recall that the latter depends on the total cavity
length as

fR = 1
TR

= vg

L
= c

nrL
. (4.7)

By imposing the required repetition rate, f = 75 GHz, the ring length is then
determined:

fR = f

4 = 18.75 GHz ⇐⇒ L = 4380 µm. (4.8)

Assuming a uniform division into slices of both gain and SA sections, it can be
stated that

Lgain + Labs = L

4 = 1095 µm, (4.9)

where Lgain and Labs are the lengths of each section composing the device. The
chosen length for gain sections is Lgain = 840 µm, whereas the SA regions represent
approximately the 30% of the total cavity length. This is actually a rather
large percentage when compared to standard devices working at the fundamental
frequency, and it is justified by the high requirements in terms of pulse shaping
when multiple pulses are present within a round trip period.

Finally, the number of slices has been set to F = 40, representing a trade-off
between spatial resolution and computational efficiency. Spontaneous emission
noise and plasma effects have not been considered in this preliminary design phase,
whereas the contribution of self-phase modulation and additional waveguide losses
due to boundary effects are included in the simulation. A portion of the MATLAB
code corresponding to the described structure is reported in Section A.1.

Figure 4.2: 8-section ring structure.
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Repetition rate and stability

The device behavior has been analyzed in the active region current - reverse bias
voltage plane, verifying for each couple of values if optical pulses are generated,
extracting the repetition frequency from their RF spectrum and observing if they
are stable or suffering from leading/trailing edge instabilities. The main simulation
results for the 8-section ring structure presented before are reported in Figure 4.3,
from which the device working boundaries can be established.

• The colormap allows to evaluate the achieved oscillation frequency with respect
to the fundamental one, depending on the chosen bias values. In this case, the
region of interest is the green one, corresponding to a harmonic mode locking
at f = 4 × fR = 75 GHz as required.

• Superimposed on this map, the instability regions are highlighted by oblique
black lines, determined according to Haus’ criterion [105]. In particular, the
net gain in the active material must become negative immediately after the ML
pulse has passed, otherwise spontaneous emission noise may be amplified by a
net gain window following the pulse trailing edge and leading to instability.

A B

Figure 4.3: Map of the repetition rate with respect to the fundamental one, with
highlighted unstable regions.

In the design phase of the whole system, the bias values have to be chosen
according to the previous considerations in order to obtain a stable pulse train. An
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exemplary comparison between stable and unstable points of the map is reported
here, considering points A (I = 260 mA, V = −5 V) and B (I = 260 mA, V = −6 V)
identified in the map.

• Point A. This point is characterized by the desired frequency, and consequently
four pulses can be identified within a round trip period TR = 53.5 ps, as
shown in Figure 4.4a. Notice that this can also be checked in the frequency
domain, since the peak of the RF spectrum is located at the aforementioned
frequency. This type of oscillation can be considered stable, meaning that the
ML condition is achieved at the steady state and there are no net gain windows
outside the pulses boundaries that may amplify the spontaneous emission
noise. The pulse width has also been computed, exploiting the autocorrelation
function of the pulses and assuming a Gaussian shape for them; a pulse width
of 3.84 ps has been obtained.

• Point B. Conversely, point B cannot be considered acceptable for harmonic
ML operation. Despite being characterized by the correct output frequency,
the pulses turn out to be distorted, and in particular characterized by a strong
trailing edge instability that can be seen in Figure 4.4b. In these conditions,
the oscillation is not stable, and generally the amplitudes of the pulses evolve
without reaching a regular steady-state pulse generation.

(a) Point A, stable pulses (b) Point B, unstable pulses

Figure 4.4: Pulses in the time domain within a round trip period.

As it was previously stated, the repetition rate obtained for each point of the
map is determined by analyzing the RF spectrum of the device, and in particular it
corresponds to the frequency associated to the spectral maximum. The two spectra
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obtained for points A and B and the corresponding maxima (both at f = 4 × fR,
identified by red markers) are reported in Figure 4.5a and Figure 4.5b, respectively.
From these graphs, it can be inferred that:

• the obtained output signals cannot be perfectly sinusoidal due to the presence
of several spectral lines at integer multiples of the fundamental frequency;

• stronger high-frequency components allow shorter pulses to be achieved;

• in the case of unstable configurations, low-frequency components are more
spread around the multiples of fR.

(a) Point A (b) Point B

Figure 4.5: RF spectra for the two considered cases.

Photocurrent and output power

Other figures of merit have been obtained from the simulation. The average
photocurrent extracted from the SA regions of the device has been computed as

Iph = qV µn

h2
SCH

nSCH, (4.10)

where q is the elementary electron charge, V is the applied reverse bias voltage,
µn is the electron mobility in the conduction band, while hSCH and nSCH are the
SCH height and average carrier density, respectively. The results obtained with
this approach are 101.6 mA for point A and 152.3 mA for point B, in line with the
expectations since the latter is characterized by a larger bias voltage.
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The photocurrent represents one of the key performance indicators when con-
sidering the possible usage of mode-locked QD lasers in RF applications, since
it corresponds to the actual high-frequency electrical signal extracted from the
saturable absorber. From an energy efficiency standpoint, its average value is useful
to evaluate the conversion between input bias current and output photocurrent,
around 40% for point A. However, in the case of RF signal generators as the one
presented in Figure 4.6, the bandwidth-limiting effect due to additional electrical
components (bias tee and antenna) can be taken into account by introducing a
band-pass filter (BPF) in the model. Figure 4.7a reports the amplitude response of
the chosen BPF, with a 10 GHz wide passband (highlighed by red dashed lines)
centered at the chosen harmonic component f = 75 GHz. As a result, the extracted
photocurrent becomes an almost perfectly sinusoidal signal (Figure 4.7b).

Figure 4.6: RF signal generator proposed by Lin et al. [87].

(a) BPF amplitude response (b) Original and filtered photocurrent

Figure 4.7: Filtering effect of external electrical components on the photocurrent.
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Concerning the extracted pulse average and peak power (with a 10% output
coupling coefficient), the former is expected to be smaller in a pulse train, since the
light intensity should be nearly zero for large portions of the round trip period. This
has been confirmed by analyzing the results for point A, yielding Pavg = 1.27 mW
and Pmax = 4.88 mW. On the other hand, point B is characterized by lower peak
values (Pmax = 3.56 mW) due to the instability of this operating conditions: the
optical power is spread on a wider pulse, hence reducing its maximum value,
whereas the average one is almost unchanged (Pavg = 1.24 mW).

An overview of these two quantities in the whole bias map is reported in
Figure 4.8. Both average and peak power appear to be higher for high current and
low voltage values, i.e. approaching the top left corner of the two graphs. This
can be easily explained by considering the repetition rate map (Figure 4.3): in the
presence of a lower number of pulses circulating in the cavity, the power is more
concentrated in each of them and therefore Pmax is higher. Moreover, the pulse
width increases when reducing the reverse voltage to the SA section, eventually
causing leading edge instability, hence a larger average power is also obtained.
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Figure 4.8: Average and peak power values in the considered bias range for the
8-section device.

4.1.3 Comparison with alternative structures
Once the reference 8-section device has been completely characterized, the number
of gain-SA sections couples is varied to compare several possible design choices.
The simulation results obtained in this phase of the study are presented in the
following.
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6-section

The number of sections is initially reduced to 6 without varying their individual
lengths. Consequently, the total ring cavity length becomes

L = 3 (Lgain + Labs) = 3285 µm, (4.11)

corresponding to a fundamental repetition rate fR = 25 GHz.
Figure 4.9 shows the repetition rate achieved with this device in the same bias

range as the 8-section one. Here the target frequency is f = 3 × fR = 75 GHz,
corresponding to the green color in the map. The stability analysis shows that a
larger portion of the map is not suffering from leading/trailing edge instabilities
with respect to the previous case: this may be convenient when a precise control of
the bias quantities is not possible.

Figure 4.9: Repetition rate and stability, 6-section device. The marker highlights
the chosen point for the following analysis.

A single bias point has been chosen on the map to make an explicit comparison
between 6- and 8-section devices, characterized by I = 220 mA and V = −5 V.
The correct locking frequency is confirmed by both the RF spectrum (Figure 4.10a)
and the presence of three pulses in the round trip temporal window, which in this
case is equal to TR = 40 ps. These pulses appear to be stable (Figure 4.10b), but
their width is higher with respect to the previous case (4.09 ps).
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(a) RF spectrum (b) Pulses

Figure 4.10: Frequency and time domain behavior for the chosen bias values for
the 6-section device.

Having chosen the same bias voltage as a reference, the photocurrent is almost
equal to the one obtained with the 8-section device (Iph = 101.1 mA). On the
other hand, both average (Pavg = 1.68 mW) and peak power (Pmax = 6.97 mW) are
higher in this case, and this consideration is valid for the whole considered range
as expected in the presence of fewer but wider pulses (Figure 4.11).
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Figure 4.11: Average and peak power values in the considered bias range for the
6-section device.
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4-section

The number of sections has then been reduced to 4, with a cavity length equal to

L = 2 (Lgain + Labs) = 2190 µm. (4.12)

The fundamental repetition rate for this laser diode is fR = 37.5 GHz, and the
required frequency f = 2 × fR = 75 GHz is obtained with a 2-pulse harmonic mode
locking.

The stable area in the repetition rate map is strongly reduced in this case when
compared to the previous ones (Figure 4.12), with rather few points satisfying Haus’
stability criterion at a ML frequency equal to twice the fundamental one. Clearly,
moving away from the initial total ring length would require different considerations
in terms of bias current and single sections lengths, but these quantities have been
constrained as explained before to highlight these differences.

Figure 4.12: Repetition rate and stability, 4-section device. The marker highlights
the chosen point for the following analysis.

The same point as in the 6-section case (I = 220 mA, V = −5 V) has been
chosen as a reference for the pulse analysis, yielding a peak in the RF spectrum
at twice the fundamental frequency as expected (Figure 4.13a). Notice, however,
that such current value implies a higher gain in the active sections of the device,
leading to the presence of very thin net gain windows at the boundaries of the
pulse that may cause it to become wider. This is confirmed by studying the two
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pulses reported in Figure 4.13b, which are characterized by a wider shape (4.98 ps)
that preludes to a trailing edge instability, too.

(a) RF spectrum (b) Pulses

Figure 4.13: Frequency and time domain behavior for the chosen bias values.

The measured photocurrent for this 4-section device is higher than the ones
obtained before (Iph = 101.1 mA), as well as both average (Pavg = 3.96 mW) and
peak power (Pmax = 9.60 mW) as reported in Figure 4.14.
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Figure 4.14: Average and peak power values in the considered bias range for the
4-section device.
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2-section

Finally, the number of sections has been reduced to 2, thus implying a simple
passive ML with no colliding pulses in the cavity. The target frequency is therefore
the fundamental one, equal to f = fR = 75 GHz and identified by the green regions
in Figure 4.15. Here, two stable areas can be identified, with a low-voltage one that
may be interesting for applications with tightly constrained reverse bias values.

Figure 4.15: Repetition rate and stability, 2-section device. The marker highlights
the chosen point for the following analysis.

The considerations on the bias values proposed when analyzing the 4-section
devices remain valid, since the total cavity length is now 1/4 of the original one
and therefore lower injection currents should be employed. Given the presence of
the aforementioned stable region at low voltages, a reference point in this portion
of the map has been chosen for the pulse analysis (I = 180 mA, V = −3 V), with a
peak in the RF frequency at fR (Figure 4.16a) and a single stable pulse in a round
trip period, approximately 5.10 ps wide (Figure 4.16b).

Concerning the photocurrent, its value is lower than in the previous cases due
to the choice of a smaller bias voltage (Iph = 77.1 mA). On the contrary, average
(Pavg = 8.62 mW) and peak power (Pmax = 30.50 mW) have the highest values as
expected, and their map is shown in Figure 4.17.
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(a) RF spectrum (b) Pulses

Figure 4.16: Frequency and time domain behavior for the chosen bias values.
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Figure 4.17: Average and peak power values in the considered bias range for the
2-section device.

10-section

The number of sections of which the device is composed is now increased to 10,
hence reaching a total ring cavity length determined as

L = 5 (Lgain + Labs) = 5475 µm. (4.13)

The fundamental repetition rate for this laser diode is fR = 15 GHz, and the fifth
harmonic has to be considered in order to obey the frequency requirement.
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Differently from the previous cases, in which the cavity length has been decreased,
a longer device would require higher injection current values to work properly. This
can be clearly seen from Figure 4.18: the minimum current value for which the
10-section device reaches ML condition is approximately 240 mA. A rather wide
bias range still allows to achieve a repetition rate at the fifth harmonic of the
fundamental, as required.

Figure 4.18: Repetition rate and stability, 10-section device. The marker high-
lights the chosen point for the following analysis.

The number of pulses in a single round trip period is correct, equal to 5 as
expected from the RF spectrum peak (Figure 4.19a), and their differences in terms
of peak value are due to the asymmetries in the simulated structure (Figure 4.19b)
for the chosen bias values I = 320 mA, V = −5 V. Nevertheless, the result can be
considered acceptable since no evident instability is visible, and the pulse width is
quite narrow (3.57 ps).

To complete the characterization, the average photocurrent extracted from the
SA sections is equal to Iph = 131.7 mA for this bias value, while average and
maximum power are equal to Pavg = 1.31 mW and Pmax = 7.68 mW, respectively.
The complete power map for this device is reported in Figure 4.20.

12-section

Finally, a 12-section device has been simulated, with length

L = 6 (Lgain + Labs) = 6570 µm. (4.14)
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(a) RF spectrum (b) Pulses

Figure 4.19: Frequency and time domain behavior for the chosen bias values.
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Figure 4.20: Average and peak power values in the considered bias range for the
10-section device.

This corresponds to a fundamental repetition rate fR = 12.5 GHz, and the injection
current required to achieve a harmonic mode locking at the sixth harmonic is rather
large, as clearly visible in Figure 4.21.

A slightly higher bias voltage for the SA sections is required in order to obtain
pulses narrow enough to be considered valid, whereas the current value is consis-
tently larger than the previous cases. For these reasons, the pulses analysis has
been performed in the case with I = 350 mA and V = −5.25 V. Six pulses are
visible in Figure 4.22b, with width limited to 3.43 ps.
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Figure 4.21: Repetition rate and stability, 12-section device. The marker high-
lights the chosen point for the following analysis.

(a) RF spectrum (b) Pulses

Figure 4.22: Frequency and time domain behavior for the chosen bias values.

The average photocurrent at the chosen bias point for the 12-section device is
equal to Iph = 124.0 mA. Concerning the power, both average (Pavg = 0.94 mW)
and maximum power (Pmax = 5.45 mW) are lower with respect to the previous
cases (Figure 4.23).
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Figure 4.23: Average and peak power values in the considered bias range for the
12-section device.

4.1.4 8-section at higher repetition rate
If the number and length ratio of gain/SA couples is maintained as the original
device, but the overall cavity length is reduced, a higher repetition rate can be
achieved. In order to provide an example in this sense, a further structure has been
simulated: it consists again of 8 sections, but their lengths are such that

L′
gain + L′

abs = L′

4 = 730 µm, (4.15)

again with a 23% Labs : L ratio. Since no other parameters have been modified,
the expected repetition rate is

f = 4 × fR = 4 × 28 GHz = 112 GHz. (4.16)

The usual characterization has been carried out for this ring structure, with the
main results in terms of frequency and ML stability reported in Figure 4.24. A
rather wide tunability range can be identified at the desired output frequency, in
particular at lower injection current levels with respect to the originally designed
8-section device due to the reduced length of the cavity in this case.

The reference point chosen for the pulses analysis is I = 220 mA, V = −5 V.
From Figure 4.25 it can be noticed that 4 pulses are still present in the round trip
period temporal window, but their width is clearly increasing (estimated to be
around 4.28 ps) with respect to the original device. Such trend is actually typical
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Figure 4.24: Repetition rate with respect to the fundamental one, with highlighted
unstable regions.

when increasing the final repetition rate while keeping the same physical parameters
as low-frequency samples: the recovery time is still sufficiently small to keep up
the enhanced pulses frequency, but it should be further reduced in order to obtain
similar results in terms of pulse width.

Figure 4.25: Pulses in the time domain within a round trip period.
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In conclusion, the average photocurrent extracted is equal to Iph = 121.5 mA,
whereas average and peak power are Pavg = 2.31 mW and Pmax = 5.63 mW, respec-
tively (Figure 4.26).
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Figure 4.26: Average and peak power values in the considered bias range.

4.2 Fabry-Pérot lasers
As stated in Subsection 3.5.2, the MS-DDE model is thought for the simulation of
unidirectional ring lasers. However, it is possible to exploit it for the analysis of
Fabry-Pérot devices by simply considering an equivalent ring structure, obtained
by taking into account the complete path that the light pulses follow along the
cavity in a round trip period.

In the following, different types of edge-emitting devices are characterized in
order to make a comparison with the previously introduced ring structures. Apart
from a tapered 2-section laser, whose parameters have been taken from the literature
in order to verify the applicability of this model to such devices, two examples of
colliding pulse ML lasers are also presented. This can again represent the starting
point for a design activity, involving FP lasers in ML condition to achieve high
repetition rate pulse trains.

4.2.1 MS-DDE modeling of edge-emitting structures
An example of basic 2-section FP laser and its equivalent ring structure is reported
in Figure 4.27. At the reference section z = 0, where the first edge of the device is
located (and R0 is its associated power reflectivity), the first slice can be found
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identified by the number 1. Moving rightwards, the traveling pulses encounter
active region slices marked with an increasing number until they reach the SA
section. At the end of it, the light bounces back due to the presence of a second
edge (power reflectivity RL) located at section z = L: from now on, it propagates
in the opposite direction returning to section z = 0 or, equivalently, it can be
thought of going straight on along the second part of the ring cavity (with total
length 2L), symmetrical with respect to the previous one.

2

Figure 4.27: Basic FP and equivalent ring structures analyzed with the proposed
MS-DDE model.

Notice that the overall non-saturable losses experienced by the field over a round
trip must be the same in the two structures. In previous DDE models [109, 110],
this was ensured by considering a lumped power attenuation factor K localized at
the reference section z = 0, i.e.

K = R0RL exp(−αiL). (4.17)

With this approach, the SA section would be forced to be located just before or
after the section z = 0, where non-saturable losses are introduced.

In the MS-DDE model, though, the non-saturable losses can be distributed
between any two adjacent cavity slices. This also allows to lift the limitations on
the SA position, which can be placed at any section of the cavity (also enabling
the colliding pulse regime to be modeled). The loss coefficients Mk introduced in
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the round trip gain evaluation (Equation 3.60) then become

Mk =



ñ
R0 exp

3
−αi

2 LF

4
k = Fñ

RL exp
3

−αi

2 LF/2

4
k = F/2

exp
3

−αi

2 Lk

4
k /= F/2, F

, (4.18)

where the number of slices F must be even.

4.2.2 20 GHz, tapered gain section
In order to verify the applicability of the MS-DDE model to describe tapered edge-
emitting structures, an example of device has been taken from the literature [97].
In particular, the chosen device is the one presented in Figure 4.28, characterized
by the following features.

• Total cavity length L = 2048 µm, corresponding to a fundamental repetition
rate fR = 20 GHz.

• SA section length equal to 5% of the total cavity, i.e. Labs = 102.4 µm.

• Ridge width of the device monotonically tapered from 3 µm to 6 µm.

• Active region consisting of a five-layer chirped InAs/InGaAs dots-in-a-well.

• Intrinsic waveguide losses αi = 6 cm−1.

• Mirror losses αm = 5.6 cm−1.

• Material gain g = 12.4 cm−1.

Among the features presented in the aforementioned article, the average output
power can be exploited to perform a direct comparison with the results obtained
by using the MS-DDE model. A good agreement between the two maps can be
seen in Figure 4.29.

The possibility to properly simulate tapered structures is rather interesting,
since edge-emitting ML laser diodes with flared waveguides have shown promising
results in terms of high output power and ultrashort pulse width [86]. In particular,
the tapered section is able to deliver high power when increasing its width, without
impairing the optical signal quality, and such optimization can be exploited also in
harmonic ML devices [121].
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Figure 4.28: Reference structure for the tapered FP analysis [97].

(a) Original results [97]
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Figure 4.29: Average output power of the tapered device.

4.2.3 Five-section devices
Similarly to the case of ring devices, an example of edge-emitting laser in harmonic
ML condition has been designed to work at repetition rates in the order of tens
of GHz. In this case, two different implementations are proposed, only changing
the total cavity length (and therefore the achieved repetition rate). The remaining
parameters, which are considered to be fixed, are reported in Table 4.2.

In FP lasers, harmonic mode locking is also referred to as colliding pulse ML,
since the pulses actually collide in the SA sections of the device (differently from the
ring laser case, in which unidirectionality has been assumed). Here, a 5-section FP
device is simulated, with the external active region characterized by a length equal
to Lgain/2. In this way, the equivalent ring will consist of 8 sections, as reported in
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Symbol Description Value
d Ridge waveguide width 6 µm
αi Intrinsic waveguide losses 1.5 cm−1

Γy Transversal confinement factor 75%
Γx Vertical confinement factor 10%
nr Refractive index 3.66
ηi Internal quantum efficiency 85%

hSCH SCH height 180 nm
hQW QW height 7 nm
hQD QD height 5 nm
Nl QD layers 12
ND QD surface density 2.85 × 1010 cm2

RQD QD radius 15.5 nm
∆Einh FWHM inhomogeneous broadening 34 meV

E(e−h),GS GS interband transition energy 0.9904 eV
E(e−h),ES1 ES1 interband transition energy 1.0597 eV

τc,GS GS capture time 0.3 ps
τc,ES1 ES1 capture time 0.3 ps
Vbi Built-in potential 0.8 V

Table 4.2: Main physical parameters used in the simulation of the FP device [18].

Figure 4.30, hence the expected repetition rate is at 4 times the fundamental one.

Figure 4.30: 5-section FP (left) and equivalent ring structure (right) analyzed
with the proposed MS-DDE model.
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64 GHz operation

Promising results have been obtained by choosing gain and SA sections lengths as
follows (see Section A.2 for the corresponding MATLAB code):I

Lgain = 960 µm
Labs = 320 µm

. (4.19)

The total FP cavity length is therefore equal to L = 2560 µm, whereas the equivalent
ring one is twice this value. The fundamental repetition rate of the cavity and the
expected output one can then be derived as

fR = vg

2L
= 16 GHz =⇒ f = 4 × fR = 64 GHz. (4.20)

In Figure 4.31 the obtained repetition rate values, normalized to the fundamental
one, can be seen as a function of the bias voltage and current. As for the ring
devices, also in this case the regions characterized by instability according to Haus
criterion [105] are identified with black oblique lines. The tunability range for this
device appears to be rather wide, and the gain current and SA voltage values have
to be chosen in such a way that stable ML operation is ensured.

Figure 4.31: Repetition rate and stability.

The chosen bias point for the pulses analysis is characterized by injection current
I = 160 mA and reverse SA voltage V = −5.5 V. The corresponding peak value in
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the RF spectrum is correctly located at the fourth harmonic of the fundamental
cavity frequency (Figure 4.32a), with four stable pulses in a round trip period as
shown in Figure 4.32b. The estimated autocorrelation pulse width is 3.92 ps.

(a) RF spectrum (b) Pulses

Figure 4.32: Frequency and time domain behavior for the chosen bias values.

Concerning the other figures of merit of the device, the average photocurrent
extracted from the SA sections has been estimated to be Iph = 286.0 mA. This
value is significantly higher with respect to the ones found in the case of ring
devices, as it is the maximum power value (Pmax = 25.84 mW), whereas the average
power is almost unchanged (Pavg = 2.52 mW). The complete maps for average and
peak power are shown in Figure 4.33.

0.5

1

1.5

2

2.5

3

3.5

(a) Average power

5

10

15

20

25

30

35

40

45

50

55

(b) Peak power

Figure 4.33: Average and peak power values in the considered bias range.
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85 GHz operation

The total cavity length has then been reduced to L = 1920 µm without changing
the ratio between gain and SA sections lengths, which are therefore equal toI

L′
gain = 720 µm

L′
abs = 240 µm

. (4.21)

With this choice, the fundamental repetition rate becomes f ′
R = 21.25 GHz, leading

to a f ′ = 4 × f ′
R = 85 GHz output frequency.

The results obtained in terms of repetition rate and stability when simulating the
shorter FP laser are shown in Figure 4.34. The bias window has not been changed
with respect to the initial case, so the tunability range seems to be rather narrow,
but one should recall that by reducing the total cavity length the required injection
current is reduced, too: other working points at lower I values can therefore be
found in addition to the ones already visible in the proposed map.

Figure 4.34: Repetition rate and stability.

The RF spectrum obtained for I = 160 mA and V = −5.5 V exhibits a peak at
four times the fundamental repetition rate as expected (Figure 4.35a). Four peaks
are visible in the time trace reported in Figure 4.35b, and they appear to be slightly
wider with respect to the ones obtained at lower frequency. This is confirmed by
evaluating the autocorrelation pulse width, equal in this case to 4.40 ps.
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(a) RF spectrum (b) Pulses

Figure 4.35: Frequency and time domain behavior for the chosen bias values.

Finally, the average photocurrent extracted from the SA sections has been
estimated to be Iph = 267.8 mA, similarly to the results obtained with the longer
FP cavity. Concerning the optical output power for the chosen bias point, the
values Pavg = 4.22 mW and Pmax = 19.55 mW have been obtained for the average
and peak values, respectively. Figure 4.36 reports the complete bias map for these
last two figures of merit.

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

(a) Average power

10

20

30

40

50

60

(b) Peak power

Figure 4.36: Average and peak power values in the considered bias range.
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Chapter 5

Conclusions

5.1 Final considerations
At the end of this research activity, some concluding remarks are provided to outline
what have been the most relevant outcomes of the Thesis, alongside possible future
steps that can be followed along this path.

5.1.1 Main outcomes
Even though the topic of QD-based semiconductor lasers is widely investigated
in the literature, finding a complete mathematical description that links the ma-
terial behavior to the classical waveguide theory can turn out to be a hard task.
The theoretical framework presented in Chapters 2 and 3 of this Thesis aims
at providing a simplified but self-consistent explanation of the basic phenomena
behind these devices’ macroscopic behavior, fundamental for their description and
subsequent numerical simulation. This analysis has represented the first step of
the research activity, starting from the thorough analytical description provided by
Mattia Rossetti in his PhD Thesis and expanding it by introducing some auxiliary
considerations required to understand all the model’s features.

A pre-existing version of the MATLAB program for MS-DDE modeling of
passively mode-locked QD laser diodes has instead represented the starting point
for the simulation activities. In this case, though, the code has been heavily
rewritten in order to improve its computational efficiency while including additional
features to be modeled. Concerning the first goal, the simulation times obtained
with the new code turned out to be almost one order of magnitude lower when
compared to the original ones, thus representing an interesting improvement from
an application perspective. In addition to this, the current version of the program
allows to model harmonic ML in multi-section devices too, and it has been tested
on a wide variety of FP and ring lasers to assess its flexibility. Notice that
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understanding the physical mechanisms mentioned previously has represented an
essential step in order to perform these optimizations.

Much effort has then been aimed at the identification of a parameters set allowing
to achieve a stable harmonic mode locking regime, both in the case of ring-shaped
and edge-emitting structures. This has actually represented the major challenge
of the whole work, given the absence of complete datasets in the literature that
would have provided a starting point for the simulation activities, as well as the
interdependence among key design parameters that has required massive parametric
simulations as a function of external bias and/or structural features.

Concerning the final results of this analysis, some key performance indicators
describing the device behavior have been extracted, from which a set of design rules
for these innovative devices can be obtained. The MS-DDE model can therefore
be seen as a practical tool for the feasibility assessment of QD based laser sources
working in passive or harmonic mode locking regimes, with a possible practical
usage in the early stages of a design process for these types of devices since providing
accurate results with a reduced time overhead with respect to other approaches.

5.1.2 Next steps
Apart from the functionalities reported in this document, the MS-DDE program
also includes additional features that have not been directly used yet, but they
may represents valuable assets for subsequent research works. As an example,
it is possible to verify the behavior of a device lifting the excitonic assumption:
the portion of code able to perform these computations has been rewritten in
the optimization phase of the Thesis, but this functionality has not been used in
the presented work. Moreover, the possibility of introducing an external cavity
(providing optical feedback) or moving the electrical signal extraction point along
the cavity have also been included in the program, with no immediate usage in the
analysis of the devices presented in this Thesis.

In the medium-long term, the current version of the program could be employed
in the preliminary design phase for the optimization of RF devices with embedded
QD lasers, working in both passive or harmonic ML conditions. Some joint activities
focused on these topics have already started, involving other research groups.
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Appendix A

MATLAB Codes

A.1 8-section ring laser (75 GHz)

%% Geometry
% ' Ring ' −> r ing l a s e r
data.CavityType=' Ring ' ;
% Sect i on l eng th s (um) P o s i t i v e −> a c t i v e s e c t i on , negat ive −> ✳✳✳

absorpt ion s e c t i o n
data .Lengths =[140 , −85 ,280 , −85 ,280 , −85 ,280 , −85 ,140]∗3;
% Nuber o f s l i c e s used to d iv id e the s e c t i o n s
d a t a . S l i c e s = [ 4 , 2 , 8 , 2 , 8 , 2 , 8 , 2 , 4 ] ;

% Waveguide width (um) ( func t i on o f z or s c a l a r )
data.Func_d=6;

%% Confinement f a c t o r s
% Confinement f a c t o r in the t r a n s v e r s a l d i r e c t i o n ( y ) ( func t i on o f z✳✳✳

or s c a l a r )
data.Func_gamma_trasv=0.75 ;
% Confinement f a c t o r in the v e r t i c a l d i r e c t i o n ( x ) ( func t i on o f z or ✳✳✳

s c a l a r )
data.Func_gamma_x=0. 1 ;

%% R e f l e c t i v i t i e s − Ring s t r u c t u r e
% In a Ring con f i gu ra t i on , only K_Laser i s present , i n d i c a t i n g the ✳✳✳

amount o f power that remains in the dev i ce
% 10% of the power i s extracted , 90% remains in the cav i ty ( )
data.K_Laser=0. 9 ;

%% Losses
% Inc lude f i e l d l o s s e s
da ta . I n c ludeLo s s e s=true ;
% Power i n t r i n s i c waveguide l o s s e s (cm^−1) ( func t i on o f z or s c a l a r )
data .Func_al fa i=1. 5 ;
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%% Other parameters
% S e l f Phase Modulation e f f e c t s c a l i n g f a c t o r (0 −> not inc luded )
data.IncludeSPM=0. 2 ;
% E f f e c t i v e r e f r a c t i v e index ( )
data .n r=3.66 ;
% I n t e r n a l quantum e f f i c i e n c y ( )
d a t a . e t a i=0.85 ;

%% Global parameters
% Temperature (K)
data.T =293;
% Number o f dot l a y e r s ( )
data.NumLayers =12;
% Dot s u r f a c e rad iu s (um)
data.Rdots=15 .5e −3;
% Bui l t−in vo l tage (V)
data.Vbi=−0.8 ;

%% S t r u c t u r a l parameters
% Dot l a y e r he ight (um)
data.H_QD=5e −3;
% Wetting Layer he ight (um)
data.H_WL=7e −3;
% Separate Confinement Hete ro s t ruc tu re he ight (um)
data.H_SCH=180e −3;

%% Dot parameters
% Non−r a d i a t i v e recombinat ion time in CB ( ns )
da ta . tn r = [1 ; 1 ; 1 e50 ; 1 e50 ; 1 e50 ] ;
% Capture time in CB ( ns )
d a t a . t c =[0 . 3 ; 0 . 3 ; 0 . 3 ; 0 . 3 ] ∗1 e −3;
% Auger recombinat ion time at T=300K ( ns )
data.tAu300K=[1 e50 ; 0 . 22 ∗2 . 5 ; 0 . 22 ∗2 . 5 ; 0 . 22 ]∗3∗0 .75 ;
% Degeneracy in CB ( )
data.Degeneracy = [ 6 ; 4 ; 2 ] ;
% QD dens i ty (um^−2)
data.Nd=2.85e2 ;
% Number o f ex c i t ed s t a t e s cons ide r ed in CB ( )
data.NumES=2;
% Energy l e v e l s ES2 , ES1 , GS (eV)
data.E =[1 .106 ; 1 .0597 ; 0 .9986 ] ;
% WL energy gap (eV)
data.WLenergygap=1.1539 ;
% SCH energy gap (eV)
data.SCHenergygap=1.2797 ;
% Energy d i f f e r e n c e between CB l e v e l s (eV)
data.DeltaE =[( data.SCHenergygap−data.WLenergygap ) ∗0 . 7 ; . . .

( data.WLenergygap−data.E (1) ) ∗0 .77 ;− d i f f ( data.E ) ] ;
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A.2 8-section edge-emitting laser (64 GHz)

%% Geometry
% 'FP' −> edge−emit t ing l a s e r
data.CavityType='FP ' ;
% Sect i on l eng th s (um) P o s i t i v e −> a c t i v e s e c t i on , negat ive −> ✳✳✳

absorpt ion s e c t i o n
data .Lengths =[120 −80 240 −80 1 2 0 ] ∗ 4 ;
% Nuber o f s l i c e s used to d iv id e the s e c t i o n s
d a t a . S l i c e s = [ 8 , 4 , 1 6 , 4 , 8 ] ;

% Waveguide width (um) ( func t i on o f z or s c a l a r )
data.Func_d=6;

%% Confinement f a c t o r s
% Confinement f a c t o r in the t r a n s v e r s a l d i r e c t i o n ( y ) ( func t i on o f z✳✳✳

or s c a l a r )
data.Func_gamma_trasv=0.75 ;
% Confinement f a c t o r in the v e r t i c a l d i r e c t i o n ( x ) ( func t i on o f z or ✳✳✳

s c a l a r )
data.Func_gamma_x=0. 1 ;

%% R e f l e c t i v i t i e s − Edge−emit t ing s t r u c t u r e
% In a FP l a s e r , the two f a c e t s r e f l e c t i v i t i e s must be provided , ✳✳✳

whi le K_Laser i s determined accord ing to the chosen output f a c e t
% Power r e f l e c t i v i t y at the l e f t f a c e t ( )
d a t a . R l e f t=0.99 ;
% Power r e f l e c t i v i t y at the r i g h t f a c e t ( )
data .Rr ight=0. 9 ;
% Output e x t r a c t i o n f a c e t
data.OutputFromRightFacet=true ;

%% Losses
% Inc lude f i e l d l o s s e s
da ta . I n c ludeLo s s e s=true ;
% Power i n t r i n s i c waveguide l o s s e s (cm^−1) ( func t i on o f z or s c a l a r )
data .Func_al fa i=1. 5 ;

%% Other parameters
% S e l f Phase Modulation e f f e c t s c a l i n g f a c t o r (0 −> not inc luded )
data.IncludeSPM=0. 2 ;
% E f f e c t i v e r e f r a c t i v e index ( )
data .n r=3.66 ;
% I n t e r n a l quantum e f f i c i e n c y ( )
d a t a . e t a i=0.85 ;

%% Global parameters
% Temperature (K)
data.T =293;
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% Number o f dot l a y e r s ( )
data.NumLayers =12;
% Dot s u r f a c e rad iu s (um)
data.Rdots=15 .5e −3;
% Bui l t−in vo l tage (V)
data.Vbi=−0.8 ;

%% S t r u c t u r a l parameters
% Dot l a y e r he ight (um)
data.H_QD=5e −3;
% Wetting Layer he ight (um)
data.H_WL=7e −3;
% Separate Confinement Hete ro s t ruc tu re he ight (um)
data.H_SCH=180e −3;

%% Dot parameters
% Non−r a d i a t i v e recombinat ion time in CB ( ns )
da ta . tn r = [1 ; 1 ; 1 e50 ; 1 e50 ; 1 e50 ] ;
% Capture time in CB ( ns )
d a t a . t c =[0 . 3 ; 0 . 3 ; 0 . 3 ; 0 . 3 ] ∗1 e −3;
% Auger recombinat ion time at T=300K ( ns )
data.tAu300K=[1 e50 ; 0 . 22 ∗2 . 5 ; 0 . 22 ∗2 . 5 ; 0 . 22 ]∗3∗0 .75 ;
% Degeneracy in CB ( )
data.Degeneracy = [ 6 ; 4 ; 2 ] ;
% QD dens i ty (um^−2)
data.Nd=2.85e2 ;
% Number o f ex c i t ed s t a t e s cons ide r ed in CB ( )
data.NumES=2;
% Energy l e v e l s ES2 , ES1 , GS (eV)
data.E =[1 .106 ; 1 .0597 ; 0 .9986 ] ;
% WL energy gap (eV)
data.WLenergygap=1.1539 ;
% SCH energy gap (eV)
data.SCHenergygap=1.2797 ;
% Energy d i f f e r e n c e between CB l e v e l s (eV)
data.DeltaE =[( data.SCHenergygap−data.WLenergygap ) ∗0 . 7 ; . . .
( data.WLenergygap−data.E (1) ) ∗0 .77 ;− d i f f ( data.E ) ] ;
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Acronyms

AM Amplitude Modulation
AML Active Mode Locking

BPF Band-Pass Filter
BW BandWidth

CB Conduction Band
CML Colliding pulse Mode Locking
CW Constant Wavelength

DBR Distributed Bragg Reflector
DDE Delayed Differential Equation
DHS Double HeteroStructure
DOS Density Of States
DWELL Dots-in-a-Well

ES Excited State
EOM Electro-Optic Modulator

FP Fabry-Pérot
FM Frequency Modulation
FROG Frequency Resolved Optical Gating
FSR Free Spectral Range
FWHM Full Width at Half Maximum
FWM Four-Wave Mixing

GS Ground State

HML Hybrid Mode Locking

LASER Light Amplification by Stimulated Emission of Radiation

MBE Molecular Beam Epitaxy
ML Mode Locking
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Acronyms

MOCVD Metal Organic Chemical Vapor Deposition

OFC Optical Frequency Comb
OTDM Optical Time Division Multiplexing

PML Passive Mode Locking

QCSE Quantum-Confined Stark Effect
QD Quantum Dot
QW Quantum Well

RF Radio Frequency

SA Saturable Absorber
SCH Separate Confinement Heterostructure
SCP Self-Consistent Pulse
SiP Silicon Photonics
SML Self Mode Locking
SPM Self-Phase Modulation

TBP Time-Bandwidth Product
TDTW Time-Domain Traveling-Wave
TE Transverse Electric
TM Transverse Magnetic

VB Valence Band

WDM Wavelength Division Multiplexing
WL Wetting Layer
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