
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

A monitoring system for embedded
devices widely distributed

Supervisor:

Prof. Cataldo Basile

Candidate:

Rosario Iudica

Academic Year 2021/2022
Torino

Abstract

Today, the technological world is increasingly affected by cyber-attacks and
cybercrime, and, at the same time, it is proliferating. Consequently, some
ways of protection become essential. As a result, one of the most critical
countermeasures is the detection of these cyber-attacks. Each attack leaves
traces in the target system in different forms. In this respect, the purpose
of this thesis is, firstly, a deeper analysis of various monitoring and logging
techniques, the source information they process, and the solutions which
better can detect most attacks, second allowing a better comprehension
of what is going on through the creation of security alerts. Moreover,
detection needs to be optimized to avoid false positives, i.e., alerts for
harmless and not anomalous events. Hence, this thesis also proposes an
alert correlation, an additional technique that permits the improvement of
accuracy, correctness, and efficiency of the security logging process. For this
purpose, various monitoring and logging tools have been compared based
on tailored discriminants to find the solution that best fits the proposed
case study, a platform with various embedded devices spread worldwide
that need to be monitored from the security point of view. Once the
chosen solution has been described in a detailed way, it is implemented
in the proposed platform, considering a list of suitable events to monitor
the case study. For the completeness of the detection, various adjustments
have been created without significant degradation of performance following
the chosen solution’s semantics. Several tests have been carried out to
validate the tool’s effectiveness: simulated cyber-attacks, tests for information
gathering capabilities, and performance impact tests. The performed tests
highlighted the excellent capabilities of the chosen product, demonstrating
how a monitoring and logging tool is one of the most valuable lines of
defense against cyber-attacks. However, to improve the defense capabilities,

ii

introducing another product that permits correlating the outputs of the
logging tool is desirable, without underestimating the use of constant vigilance
about new vulnerabilities and attack techniques employed by attackers.

iii

Ringraziamenti

Vorrei cogliere l’occasione per ringraziare il Politecnico di Torino, che in
questi anni mi ha permesso di accrescere il mio bagaglio culturale migliorando
i miei punti di forza e limando le mie debolezze. Voglio ringraziarlo, inoltre,
perché mi ha permesso, nonostante la situazione pandemica che ci ha colpiti,
una didattica sempre attenta alle mie esigenze.

Vorrei, inoltre, ringraziare di vero cuore il relatore della tesi, il professore
Cataldo Basile che ha sempre dimostrato una grande disponibilità e mi ha
permesso lo svolgimento di questo lavoro di tesi in azienda, dandomi la
possibilità di fare esperienza nel mondo del lavoro.

Un altro sentito ringraziamento va all’azienda che ha permesso la stesura
di questo lavoro, Drivesec. All’interno di Drivesec ho potuto sperimentare
la grande gentilezza e disponibilità di tutti coloro che vi lavorano. In par-
ticolare, volevo esprimere la mia immensa gratitudine al CEO, Giuseppe
Faranda-Cordella e al CTO, Rossella Lertora per le possibilità di crescita
che mi hanno dato e per la fiducia che hanno riposto in me. Inoltre, volevo
esprimere la mia riconoscenza verso i dipendenti per il loro supporto e per
avermi dato la possibilità di imparare tanto.

Ovviamente, tutto ciò non sarebbe stato possibile se non avessi avuto al
mio fianco delle figure indispensabili che mi aiutassero nei grandi momenti di
difficoltà che ho incontrato durante questo percorso. In particolare, ringrazio
i miei genitori per avermi sempre sostenuto, mia sorella per essere stata
il faro a cui appoggiarsi ogni volta ne avessi bisogno e a mio cognato per

iv

avermi guidato nei vari adempimenti burocratici.

Un altro ringraziamento va ai miei amici che sono stati fonte di allegria
e leggerezza durante questi anni. Parlo ovviamente degli amici di sempre,
coloro che non mi hanno mai lasciato solo e che hanno fatto sempre il tifo
per me, anche in modo non convenzionale.

Un ringraziamento alle mie nonne, ai miei zii e a tutti i miei cugini poiché
ho ricevuto da parte loro preziosi consigli al momento opportuno.

Ai nuovi pochi colleghi che ho avuto la possibilità di conoscere volevo
esprimere la mia gratitudine per aver condiviso un pezzo di percorso assieme
a me. Inoltre, un ringraziamento ai vecchi colleghi che ho incontrato a
Catania ai quali devo molto per il metodo di studio acquisito e di cui ho
sentito ogni giorno la mancanza.

Un ringraziamento a tutte le altre persone che mi sono state accanto e
che hanno creduto in me.

Per ultimo, ma proprio per questo importantissimo, un ringraziamento
speciale alla mia dolce metà, Adriana. La ringrazio perché c’è stata in
qualsiasi momento io ne avessi bisogno ed è stata anche lei un faro a cui
aggrapparsi. Grazie al suo prezioso aiuto questo lavoro di tesi è stato meno
gravoso e la sua presenza ha riempito di affetto ogni istante.

v

Table of Contents

List of Figures ix

Acronyms xv

Introduction 1

1 Security Logging and Monitoring 3

1.1 Security Logging . 4

1.2 Intrusion Detection System 7

1.2.1 Knowledge-based detection 10

1.2.2 Anomaly-based detection 12

1.2.3 Additional Approaches 20

1.2.4 Stateful Protocol Analysis 21

1.2.5 Hybrid System . 22

1.2.6 Passive versus active intrusion detection 22

1.2.7 Host-based intrusion detection 22

1.2.8 Network-based intrusion detection 25

vii

1.2.9 Additional Technologies 27

1.2.10 Continuous monitoring versus periodic analysis . . . 28

1.3 Alert correlation . 28

1.3.1 Similarity-based Algorithms 29

1.3.2 Knowledge-based Algorithms 31

1.3.3 Statistical-based Algorithms 32

1.4 Case study: Weseth . 34

2 Security and Monitoring tools 36

2.1 Discriminants . 36

2.2 Wazuh . 40

2.2.1 Wazuh elements . 41

2.2.2 Architecture . 44

2.2.3 User manual . 45

2.2.4 Capabilities . 49

2.2.5 Ruleset . 63

3 Implementation of Wazuh in the Weseth platform 66

3.1 Test Environment . 66

3.2 Events to monitor . 68

Conclusion 115

Bibliography 117

viii

List of Figures

1.1 Possible cases during a detection 8

1.2 Characteristics of intrusion-detection systems 9

2.1 Description of Wazuh Architecture 44

2.2 Wazuh Agent life cycle . 47

2.3 Wazuh cluster . 48

2.4 Wazuh Log analysis flow . 50

2.5 Wazuh File integrity monitoring 50

2.6 Wazuh intrusion and anomaly detection 52

2.7 Wazuh SCA integrity and alerting flow 53

2.8 Wazuh OpenSCAP flow . 55

2.9 Wazuh command monitoring flow 56

2.10 Wazuh active response workflow 57

2.11 Wazuh anti-flooding bucket 59

2.12 Wazuh buffer usage with flooding 60

2.13 Wazuh buffer usage without flooding 61

ix

2.14 Wazuh Log Analysis without Sibling decoders 63

2.15 Wazuh Log Analysis with Sibling decoders 64

3.1 Diagram for Wazuh default installation 67

3.2 Wazuh alert for file write access 72

3.3 Wazuh alert for file sed command 72

3.4 Wazuh alert for file deleting in a monitored directory 73

3.5 Wazuh alert for generic hardware issue 74

3.6 Wazuh alert for process crash 75

3.7 Wazuh alert for kernel module loading/unloading 77

3.8 Wazuh alert for the first time sudo is executed 80

3.9 Wazuh alert for sudo success 80

3.10 Wazuh alert for sudo failure 81

3.11 Wazuh alert for two sudo failures 81

3.12 Wazuh alert for three sudo failures 82

3.13 Wazuh alert for SSH login success 83

3.14 Wazuh alert for SSH login failure 84

3.15 Wazuh alert for SSH login failures excesses 85

3.16 Wazuh alert for multiple SSH login failures 85

3.17 Wazuh alert for SSH brute force attack 86

3.18 Wazuh alert for SSH login with invalid user 87

3.19 Wazuh alert for SSH timeout 87

x

3.20 Wazuh alert for SSH scan 88

3.21 Wazuh alert for SSH connection reset 88

3.22 Wazuh alert for attached device 90

3.23 Wazuh alert for umount operation 90

3.24 Wazuh alert for umount operation 91

3.25 Wazuh alert for uptime output 92

3.26 Wazuh alert for GDB . 93

3.27 Wazuh alert for ossec stop 94

3.28 Wazuh alert for ossec start 94

3.29 Wazuh alert for chown command 97

3.30 Wazuh alert for chmod command 98

3.31 Wazuh auditd alert for groupadd command 100

3.32 Wazuh default alert for groupadd command 100

3.33 Wazuh alert for groupadd writing in /etc/group 101

3.34 Wazuh auditd alert for groupmod command 101

3.35 Wazuh auditd alert for userpadd command 102

3.36 Wazuh default alert for useradd command 102

3.37 Wazuh alerts for groupadd writings 103

3.38 Wazuh auditd alert for usermod command 103

3.39 Wazuh alert for usermod writing of /etc/passwd file 104

3.40 Wazuh alert for usermod writing of /etc/shadow file 104

3.41 Wazuh auditd alert for userdel command 105

xi

3.42 Wazuh default alert for userdel command 105

3.43 Wazuh alerts for userdel writings 106

3.44 Wazuh auditd alert for groupdel command 106

3.45 Wazuh alerts for groupdel writings 107

3.46 Wazuh auditd alert for chfn command 107

3.47 Wazuh default alert for chfn 108

3.48 Wazuh auditd alert for chpasswd command 108

3.49 Wazuh default alert for chpasswd 109

3.50 Wazuh alert for UFW rule violation 109

3.51 Wazuh alert for nft command 110

3.52 Wazuh alert for traceroute command 110

3.53 Wazuh alert for printenv command 111

3.54 Wazuh alert for arp command 111

3.55 Wazuh alert for capsh command 112

3.56 Wazuh alert for chroot command 112

3.57 Wazuh alert for start-stop-daemon command 113

3.58 Wazuh alert for vipw command 113

3.59 Wazuh alert for vigr command 113

3.60 Wazuh alert for busctl command 113

3.61 Wazuh alert for nice command 113

3.62 Wazuh alert for renice command 113

3.63 Wazuh alert for ln command 113

xii

3.64 Wazuh alert for loginctl command 113

3.65 Wazuh alert for nohup command 113

3.66 Wazuh alert for openssl command 113

3.67 Wazuh alert for run-parts command 114

3.68 Wazuh alert for timedatectl command 114

3.69 Wazuh alert for xargs command 114

3.70 Wazuh alert for dbus-send command 114

3.71 Wazuh alert for service command 114

3.72 Wazuh alert for rootcheck detected 114

xiii

Acronyms

AP
Access Point

API
Application Programming Interface

ARP
Address Resolution Protocol

BSD
Berkeley Software Distribution

Can
Controller Area Network

Can-FD
Controller Area Network Flexible Data-Rate

CIS
Center Internet Security

CIS-CAT
CIS Configuration Assessment Tool

CVE
Common Vulnerabilities and Exposures

xv

DAC
Discretionary Access Control

DNS
Domain Name System

DoS
Denial of Service

EMM
Enterprise Mobility Management

FIM
File Integrity Monitoring

GDB
GNU Debugger

GECOS
General Electric Comprehensive Operating Supervisor

GNU
GNU’s Not Unix

HIDS
Host-based Intrusion Detection System

HTTPS
Hypertext Transfer Protocol Secure

ID
Identifier

IDS
Intrusion Detection System

xvi

IoT
Internet of Things

IP
Internet Protocol

JSON
JavaScript Object Notation

LTE
Long Term Evolution

MD-5
Message Digest 5

MIB
Management Information Base

NIST
National Institute of Standards and Technology

OpenSCAP
Open-Security Content Automation Protocol

OS
Operating System

OWASP
Open Web Application Security Project

PAM
Pluggable Authentication Modules

PCA
Principal Component Analysis

xvii

PCI-DSS
Payment Card Industry Data Security Standard

PID
Process Identifier

RBAC
Role-based Access Control

REST
Representational State Transfer

SCA
Security Configuration Assessment

SCAP
Security Content Automation Protocol

SHA-1
Secure Hash Algorithm-1

SHA-256
Secure Hash Algorithm-256

SIEM
Security Information and Event Management System

SIM
Security Incident Management

SNMP
Simple Network Management Protocol

SOC
Security Operations Center

SQLite
Structured Query Language Lite

xviii

SSH
Secure Shell

SSL
Secure Sockets Layer

SSO
Single Sign On

TCB
Trusted Computing Base

TCP
Transmission Control Protocol

TLS
Transport Layer Security

UDP
Unified Datagram Protocol

UFW
Uncomplicated Firewall

UNIX
Uniplexed Information and Computing System

URL
Uniform Resource Locator

USB
Universal Serial Bus

WiFi
Wireless Fidelity

xix

XDR
Extended Detection and Response

XML
Extensive Markup Language

YAML
YAML Ain’t Markup Language

YARA
Yet Another Recursive/Ridiculous Acronym

xx

Introduction

The world is conscientious about safety and security about themselves but
most of the time people never consider their data. Data can be manipulated,
stolen, sold, observed and those are the reasons why cyber-security has born.
In according to NIST’s definition, Cyber-security is “the process of protecting
information by preventing, detecting, and responding to attacks”[1] where
the attacks are committed against personal and commercial data. The
only way people could protect data is improving the overall security of a
system and one of the aspects that improve this process is the detection
of security events and their analysis. This paper’s main goal is to explore
the techniques for detecting attacks, what can be estimated as an attack,
and what is the best solution to fit those problems. In the first chapter,
firstly, the source information for finding attacks have been described with
a very fine granularity trying to describe how they would be collected, and
what are more important than the other; secondly, the real subject of this
thesis has been presented: the Intrusion Detection Systems. They have
been dissected with very meticulously defining the techniques and the sub-
techniques used for describing how the source information are analyzed by
all them; in addition, they have been classified according to what are the
source information dividing, among all, the host-based and the network-based
ones. Immediately after, an improvement for the existent systems has been
described, focusing the attention on what are the most important information
the cyber-security teams are interested. Thus, the alert correlation has been
presented trying to distinguish, as done for the Intrusion Detection Systems,
the techniques and sub-techniques. Finally, the last part of the first chapter
presents the case study that has been taken in consideration, trying to
describe how it is composed and how it works.
In the second chapter, all the most known security and monitoring tools

1

Introduction

have been presented, and they have been examined by different discriminants
and the best solution that fits with the case study has been chosen for the
implementation and, sequentially, it has been described in a deeper way.
That is, firstly, the architecture has been presented trying to distinguish the
different elements that compose the platform; thereafter, the entire platform
has been described entirely while in the third sub-section, the capabilities of
the chosen monitoring tool have been introduced. At the end of the chapter,
the knowledge used by the monitoring tool has been described not in a deep
way.

The last chapter describes how the Intrusion Detection System chosen
has been implemented in the case study, under the constraints of a test envi-
ronment, and various events have been monitored, validating the capabilities
of the chosen tool.

2

Chapter 1

Security Logging and
Monitoring

Nowadays, all systems permit explicit most part of useful information about
security events through system logs. “A log is a file generated by a software
system that contains a set of events, i.e., changes that happened in such
system”[2]. In according to AppDynamics “the purpose of logging is to
create an ongoing record of application events”[1]. Following this definition,
it is clear how much important the logging process is; however it does
not concern only the effortless process of collecting events but also their
analysis. “The logged event data needs to be available to review and there
are processes in place for appropriate monitoring, alerting and reporting”[3].
From the latter NIST definition, an unfamiliar word comes out: monitoring.
“Monitoring is the live review of application and security logs using various
forms of automation”[4]. “Using a combination of logging tools and real-
time monitoring systems helps improve observability”[1]: indeed, “one of
the top ten security risks identified by NIST is ”Insufficient logging and
monitoring”. The security risks allow criminals to further attack systems”[2].
So basically, for NIST a good logging process and further consumption,
correlation, analysis, and management are needed. Moreover, for better
management of security risk, the attention is related to security logging.

3

Security Logging and Monitoring

1.1 Security Logging

“Log data needs to tell a succinct but complete story”[1]. Basically, logs
must the following features:

• Complete

• Descriptive

• Contextual

OWASP gives an explanation about application logging, which could be
used as a source of security logging. Indeed, logs coming from applications can
be used for: the identification of security incidents, monitoring of policy vio-
lations, the establishment of policy violations, assistance to non-repudiation
controls, provisioning of information about problems and unusual conditions,
contributions of additional-specific data for incident investigation and helps
defending against vulnerability identification and exploitation through attack
detection. Moreover, following the OWASP definition, application logs are
very useful for recording other types of elements such as security events,
business processes, audit trails, performance events, data from requests for
information, and so on. In addition, logs "can provide information useful
during a digital investigation to identify who, what, when, and how a security
breach occurred”[2]. Moreover, “it is important not to log too much, or too
little”[3]: “logging too little poses the risk of missing relevant information
for posterior analysis”[2]; otherwise “logging too much has the drawback of
adding more code to write and maintain, producing non-informative logs
having limited usefulness, and increasing usage of resources”[2]. The interest
should not be based only on the logs but also on the collection, storing,
verification, and monitoring process. Basically, the logging process is not so
easy to implement, even if it seems to be. According to OWASP, the first
phase is about the identification of event data sources which can be varied
and heterogeneous. Here are some examples: client software, embedded
instrumentation code, network firewalls, network and host intrusion detec-
tion systems, closely related applications, database application, reputation
monitoring services, operating system and so on.
Another important step is the location where the event data must be stored.

4

Security Logging and Monitoring

Commonly, the preferred locations are file systems and databases. If the
former is used, it is better to use a separate partition than those used by
the operating system, other application files and user-generated content. In
the latter case, it is preferable a separate database account used only for log
data. Moreover, a standard format over secure protocols is preferable since
it facilitates the integration with centralized logging services.
The following step is crucial because “the level and content of security moni-
toring, alerting and reporting needs to be set during the requirements and
design stage of projects and should be proportionate to the information
security risks”[3]. The most important data to log are input and output
validation failures, authentication/authorization success and failures, session
management failures, application errors and system events, logging initializa-
tion and so on.
In addition, to fulfill the collection of data, other events can be considered
interesting, as follow: sequencing failure, excessive use, modifications to
configuration, criminal activities, suspicious behaviors and so on. More
specifically, “the [. . .] logs must record "when, where, who and what" for
each event”[3]:

• When:

– Log date and time
– Event date and time

• Where:

– Service
– Geolocation
– Code location

• Who:

– Source address
– User

• What:

– Type of events
– Security event

5

Security Logging and Monitoring

– Security relevant event flag
– Description

Additionally, it could be useful to record also secondary time source event,
object affected by suspicious behaviors, internal classification and external
one, the action performed and some extended details. Until now, only what
is good to log has been introduced, but effectively a rule must be followed:
“never log data unless it is legally sanctioned”[3]. It means that the following
elements should not be collected directly in the logs: application source
code, session identifier, access tokens, sensitive data, password, database
connection string, cryptographic values, payment cardholder data, data
of high-security classification, commercial data and, generally, information
which is not legal to gather. Sometimes, it could happen that examples of
the latter elements could be collected for investigation matters but they must
be treated in a particular way before being recorded. For OWASP, the next
phase of the collection process is based on the verification that everything
is working well, such as the logging process is working correctly also during
fuzz, penetration and performance tests and it does not cause any type of
side-effect. In addition, the just cited process should work even in case of
the external network is down and also a test about what happens in case of
logging failures must be done. Moreover, the verification continues testing
the events are classified in the proper way and in agreement with the chosen
standard, verifying access control on the event log data and checking if the
logging process can be used to cause a denial of service attack.
“The logging mechanism and collected event data must be protected from
misuse”[3]: protection is needed in two different situations when data is in
transit and where it is stored. In the former case it could be useful to use
a secure transmission protocol in case of untrusted networks and to verify
the event data origin. While, in the latter case, when data are at rest it
seems to be better to build in tamper detection in order to understand if
a record has been modified or deleted, storing and/or copying log data to
read-only destinations, recording all the accesses to the logs and restricting
the privileges to read log data. Event data are very useful for defense
purposes, so it could happen that they become targets of attacks. To prevent
security issues confidentiality, integrity, availability, and accountability must
be achieved. “A confidentiality attack enables an unauthorized party to
access sensitive information stored in the logs”[3]. In addition, it is preferable
to check who can modify log data, for example, an attacker whit read

6

Security Logging and Monitoring

access can exfiltrate secrets. Differently, when availability is lost, downtime
is expected and, for example, an attacker can flood log files to exhaust
disk space available both for logging and other purposes and he can also
destroy all the present logs. When an attack occurs, it must be possible
to identify who causes the loss of accountability even if the attacker can
be able to prevent log writes or log damages to cover what he does or
he can use a wrong identity to be logged such that he is considered out
of responsibility. Following the OWASP definition, here is a list to detail
the important events to monitor: authentication login success and failure,
authentication password changes, authorization failures, and changes, input
validation failures, malicious activities, sensitive management, operating
system actions, user management and so on.

1.2 Intrusion Detection System

Logging must be used “to identify activity that indicates that a user is
behaving maliciously”[4], so the logging process is totally necessary for the
intrusion detection. Moreover, “NIST describes the intrusion as an attempt
[. . .] to bypass the security mechanisms of a computer or network”[5] and
the “intrusion detection is the process of monitoring the events occurring in
a computer system or network, and analyzing them for signs of intrusions”[5].
According to Debar et al. (1999), an “intrusion detection system dynamically
monitors the actions taken in a given environment, and decides whether
these actions are symptomatic of an attack or constitute a legitimate use of
the environment”[6]. More in detail, the “intrusion detection is the act of
detecting actions that attempt to compromise the confidentiality, integrity
or availability of a system/network”[7]. In a similar way to the previous
definitions, Garcia-Teodoro et al. (2009) define Intrusion Detection Systems
as security tools that are useful to strengthen the security of information and
communication systems. According to Patcha and Park (2007), the "generic
architectural model of an intrusion detection system contains the following
modules”[7]:

• Audit data collection: “data is collected and analyzed by the intrusion
detection algorithm in order to find traces of suspicious activity”[7]

7

Security Logging and Monitoring

Figure 1.1: Possible cases during a detection

• Audit data storage: the audit data usually are stored for a long time
due to later reference[7]

• Analysis and detection: “the processing block is the heart of an intrusion
detection system”[7]. Here the algorithm detects if some suspicious
activities happen.

• Configuration data: they are useful for configuring the intrusion detection
system, describing how to gather data and respond, etc.

• Reference data: these are “information about known intrusion signature
[. . .] or profiles of normal behavior”[7]

• Active/processing data: intermediate results

• Alarm: the output of the intrusion detection system, and it could also
be an automated response to an intrusion

Differently, according to Garcia-Teodoro et al. (2009), a general IDS architec-
ture is composed of four functional types of the box: event box, database box,
analysis box and response box. Event boxes are the sensors that monitor the
target system, acquiring information about events to be analyzed. Instead,
a database box is used to store information from the previous Event boxes

8

Security Logging and Monitoring

Figure 1.2: Characteristics of intrusion-detection systems

for subsequent processing. The analysis boxes are processing modules used
to analyze events and detect potential hostile behavior, so that some kind
of alarm will be generated if necessary. Finally, the response boxes aim to
execute a response if an intrusion occurs. “A common drawback of IDS
technologies is that they cannot supply absolutely accurate detection. False
positives (FP) and false negatives (FN) are two indicators to assess the
degree of accuracy”[5]. From Figure 1.1, Juan et al. (2004) describe the
result of detection in four different categories: false positive, true positive,
true negative and false negative. The false positive result is the true limiting
factor in the detection because the detection is incorrect in the case of a
harmless event. Moreover, a "side effect of false positives, is that an attack
or malicious activity on the network/system could go undetected because
of all the previous false positives”[7]. Differently, the true positive results
from a correct operation made by the detector. Similarly, the true negative
is a good result because, as the true positive, it indicates that the detector
is working correctly. Finally, another negative result is the false negative
because it is the real challenge of every detector: when the false negative
rate is very low, it means that the detector identifies every attack.
According to Debar et al. (1999), to evaluate the efficiency of an intrusion
detection system three different measures could be used: accuracy, where
inaccuracy “occurs when an intrusion-detection system flags as anomalous
or intrusive a legitimate action in the environment”[6], a performance which
describes “the rate at which audit events are processed”[6] and in case of low

9

Security Logging and Monitoring

performance, the intrusion detection cannot be labeled as real-time and the
completeness which decreases when the intrusion detection system is not able
to detect attacks. Going deeper into the evaluation of intrusion detection
systems, two additional properties must be presented: fault tolerance because
the intrusion detection systems must be resistant to attacks, particularly
denial of service, otherwise, intrusions cannot be detected and timeliness,
because the system “has to perform and propagate its analysis as quickly
as possible to enable the security officer to react before much damage, has
been done”[6]. Following Figure 1.2, the Intrusion Detection Systems can be
classified in four different ways: detection method, behavior on detection,
audit source location and usage frequency.
About the first discriminant, three different categories are present: Signature-
based Detection (also named Knowledge-based Detection), Anomaly-based
Detection (also known as Behavior-based Detection), and Stateful Protocol
Analysis.

1.2.1 Knowledge-based detection

For Garcia-Teodoro et al. (2009), the intrusion detection system contains
information about specific attacks and system vulnerabilities and looks for
some attempts to exploit them. The technique “relies on a predefined set
of attack signatures” [7]. Moreover, the intrusion detection system tries
to match incoming packets and/or command sequences like known attacks
to find specific patterns. According to Patcha and Park (2007), decisions
are based on the knowledge acquired from the model of intrusive process
and after observing what the traces left in the system are. In other words,
“signature-based schemes provide very good detection results for specified,
well-known attacks”[8]. In agreement with Debar et al. (1999), if on the
one hand, the accuracy of this technique can be considered good, on the
other hand, the completeness depends on how frequently the knowledge of
attacks is updated. This approach has many benefits: it has a low possibility
of encountering false alarms, the contextual analysis made by the intrusion
detection system is detailed and it detects “previously unseen intrusion
events”[8]. About the drawbacks, the difficulty of gathering information
about known attacks increases and “maintaining the knowledge base of the
intrusion-detection system requires careful analysis of each vulnerability and

10

Security Logging and Monitoring

it is, therefore, a time-consuming task”[6]. Furthermore, this approach is
more related to a specific environment; in addition, “the signature detection
system must have a signature defined for all of the possible attacks that an
attacker may launch”[7]. Another drawback is the inability to detect new
intrusions, even if these are variants of already known attacks and a little
understanding of states and protocols.

Expert Systems (Rule based)

These systems contain a set of rules that describes attacks. “Rule-based
languages are a natural tool for modeling the knowledge that experts have
collected about attacks”[6]. This means that a “systematic browsing of the
audit trail in search of evidence of attempts to exploit known vulnerabil-
ities”[6] is required. Moreover, the rules should also describe the goal of
the attacker and the action required to reach these goals in a deeper way.
According to Garcia-Teodoro et al. (2009), “expert systems are intended to
classify the audit data according to a set of rules involving three steps”[8]:
starting from the training data, different attributes and classes are identified;
then, a set of classification rules, parameters or procedures are deduced and
finally, the audit data are classified properly. Nevertheless, the usage of
rule-based languages encounters some limitations: knowledge engineering
and processing speed. The former comes from the difficulty of extracting
knowledge about attacks and, in addition, translating the knowledge into
production rules using audits as input is even more difficult. Instead, the
latter is related to performance issues: “use of an expert system shall require
that all audits be imported into the shell as facts, and only then can reasoning
take place”[6].

Signature Analysis

This approach is very similar to the expert system one, but “the knowledge
acquired is exploited in a different way”[6]: “the semantic description of the
attacks is transformed into information that can be found in the audit trail
in a straightforward way”[6]. As well as the expert systems, basically the
drawbacks are the same; however, in this approach, all the possible facets of

11

Security Logging and Monitoring

the attacks must be represented as signatures.

State-transition

This technique can be considered conceptually similar to model-based rea-
soning: “it describes the attacks with a set of goals and transitions, but
represents them as state-transition diagrams”[6]. With this approach, the
model behavior is captured in three different elements: states, transitions
and actions. When a deviation from the expected behavior occurs, such
as the transition to an unexpected state, an alarm is triggered. According
to Garcia-Teodoro et al. (2009), this approach is very useful for modelling
network protocols.

1.2.2 Anomaly-based detection

This detection assumes that “an intrusion can be detected by observing a
deviation from normal or expected behavior of the system or the users”[6]. In
agreement with Patcha and Park (2007), for the distinction between normal
and expected behavior a model must be created: it is a baseline profile of the
normal system, network, or program activity. “Thereafter, any activity that
deviates from the baseline is treated as a possible intrusion”[7]. Otherwise,
there is another possibility: “to model the abnormal behavior of the system
and raise an alarm when the difference between the observed behavior and
the expected one falls below a given limit”[8]. Furthermore, Liao et al.
(2013) describe the anomaly as a deviation from a known behavior. In other
words, anything which does not fit with a previously learned behavior can
be considered an intrusion. Differently, according to Juan et al. (2004) the
application of anomaly-based intrusion detection consists of the following
hypothesis: “to assume that anomalous events are suspicious from a security
point of view”[9]. If, from a side, the completeness increases, the accuracy
becomes lower. Moreover, “the analysis of user activity is a natural approach
to detect intrusions”[9]. To Juan et al. (2004), the former hypothesis, also
called the Suspicious Hypothesis, cannot be always satisfied due to the
differences between normal/anomalous and harmless/attack events. In more
detail, there is an important statement: the intrusive activity is a subset

12

Security Logging and Monitoring

of anomalous activity and, of course, “intrusive activity does not always
coincide with anomalous activity”[7]. For Patcha and Park (2007), four
different possibilities exist: intrusive but not anomalous which is the case of
false negatives because the intrusion detection system reports the absence of
intrusions; not intrusive but anomalous which are the false positives reported
as intrusive even if they are not; not intrusive and not anomalous which is
the case of the true negatives and intrusive and anomalous which are the true
positives. In order to minimize the false negatives, “thresholds that define
an anomaly are set low”[7]. Some advantages of behavior-based intrusion
detection are less dependency on operating-system-specific mechanisms; the
capability of detecting abuse of privilege types of attack and to detect insider
attacks, for instance, if a user using a stole account can perform actions
that are outside of the normal behavior, the system generates an alarm; the
difficulty for an attacker to understand what activities trigger an alarm and
what do not because the system is based on profiles which are customizable
and the capability for the system to detect previously unknown attacks
because the profile of intrusive activity is not based on signatures which
represent intrusive activity. Instead, the drawbacks user profiles are not
accurate due to the high false alarm rate because of normal activities which
are not compliant with the behavior profile but at the same time, they cannot
be considered as intrusions. Moreover, behaviors can change over time, with
the need for periodic online retraining of the profiles during which the system
is not available. Furthermore, the intrusion can happen during the training
phase and, as result, the modelled profile contains also intrusive behaviors
increasing the false negative rate finally the maintenance of the behavior
profiles can be time-consuming. The anomaly detection techniques can be
classified in three categories:

• Statistical based: in this case the behavior of the system is represented
from a random viewpoint

• Knowledge-based: this category tries to capture the behavior from
available system data even if it can be assumed to be a knowledge
intrusion detection system

• Machine learning based: this one is based on the establishment of explicit
and implicit model that allows categorizing the patterns analyzed

13

Security Logging and Monitoring

Statistical based

In statistical methods, “the user or system behavior is measured by a number
of variables sampled over time” and the “time sampling period ranges from
very short to long”[6]. Moreover, Patcha and Park (2007) stated that
the behavior profiles are generated starting from the activity of subjects
measuring the activity intensity, the audit record distribution, the distribution
of activities over categories (also called categorical measures), and such
ordinal measures. In the statistical approach, two different profiles are
created: the current and the stored ones. When the system or network
events are processed, the system updates the current profile and then a
comparison with the stored one is done calculating the anomaly score. The
comparison is done using “a function of abnormality of all measures within
the profile”[7]. “The score normally indicates the degree of irregularity for a
specific event, such that the intrusion detection system will flag the occurrence
of an anomaly when the score surpasses a certain threshold”[8]. Inside the
statistical approaches, different models can be presented: univariate model,
multivariate model and time series model. In the former, parameters are
modelled as independent Gaussian random variables accepting a range of
values for every variable. In the multivariate model, the correlation between
two or more metrics is introduced: this model brings out a better level of
discrimination. While, the time series model uses an interval timer, together
with an event counter or resource measure, and notices the order and the inter-
arrival times of the events together with their values. “Thus, an observed
traffic instance will be labeled as abnormal if its probability of occurrence is
too low at a given time”[8]. From a side, the statistical approaches bring out
some benefits: no need of prior knowledge about the normal activity of the
target system because they learn the expected behavior from the observations
and the provisioning of “accurate notification of malicious activities occurring
over long periods of time”[8]. For Garcia-Teodoro (2009) an attacker could
be able to train the system which does not point out any abnormal activity
during an attack, the settings about parameters/metrics are difficult tasks,
especially for the balance between false positives and false negatives and
not all the variables can be modelled as a statistical distribution, therefore
some of these schemes assume a quasi-stationary process, which cannot be
considered as a realistic process.

14

Security Logging and Monitoring

Machine learning based

“Machine learning can be defined as the ability of a program and/or a
system to learn and improve their performance on a certain task or group of
tasks over time”[7]. The machine learning-based techniques “are based on
establishing an explicit or implicit model that enables the patterns analyzed
to be categorized”[8]. The behavioral model has to be trained with labelled
data and this is the most negative drawback because this procedure demands
a lot of resources. For Garcia-Teodoro et al. (2009) the machine learning
principles are very similar to the static ones, but the former creates a model
which improves thanks to the previous results. Instead, for Patcha and Park
(2007), the execution strategy of these systems may change on the basis of
newly acquired information.

System call-based sequence analysis Even if the sliding window method
is a sequential learning methodology, it “converts the sequential learning
problem into the classical learning problem”[7]. A window classifier hw maps
an input window of width w into an individual output value y. The classifier
predicts the value yi,t using the following window:

< xi,t−d, xi,t−d+1, . . . , xi,t+d−1, xi,t+d >

where d = w+1
d .

The window classifier is able to convert each sequential training example
(xi, yi) into new windows and then the machine learning algorithm is applied.
In other words, a new sequence x is classified by converting it to windows; next
the window classifier predicts each yt and then all the yts are concatenated
to the predicted sequence y. The sliding window method does not take
into consideration the correlations between nearby yt values because the
only correlations captured are the ones predicted from nearby xt values. By
way of explanation, if some correlations among the yt values independent
from the xt values exist, they are not captured. This technique is used in
the host-based intrusion detection system where the source of information
is the system calls. Because the system calls are irregular by nature, the
false positive rate may increase, making difficult the differentiation between
normal and anomalous system calls. Furthermore, Patcha and Park (2007)
underline how the computational overhead coming from monitoring every
system call is very high.

15

Security Logging and Monitoring

Bayesian Networks The Bayesian network is a model which encodes prob-
abilistic relationships among variables of interest. “When used in conjunction
with statistical techniques, Bayesian networks have several advantages for
data analysis”[7]: even if data is missing, the networks are able to handle
the situation thanks to the interdependencies between variables, casual rela-
tionship can be represented, and it is useful to predict the consequences of
an action and when there is the need to combine prior knowledge with data,
the problems can be modelled thanks to the presence of both casual and
probabilistic relationships. Obviously, there are also disadvantages such as
the fact that the accuracy of this method depends on the choice of the model:
“selecting an accurate model will lead to an inaccurate detection system”[7].
Moreover, “the classification capability of naïve Bayesian network is identical
to a threshold-based system that computes the sum of the outputs obtained
from the child ones”[7]. The definition of child nodes, are the information
nodes pointed by the hypothesis node, also called the root node. In the
naïve case, the network is restricted, and it has only two layers and there is
complete independence between the information nodes.

Markov Models Within this category, two different approaches can be
distinguished: Markov chains and hidden Markov models. In the former
case, Ye et al. (2004) builds up an anomaly detection technique based
on Markov chains. In their paper, a new window of size N is created to
observe the system call event sequences from the recent past starting from
the current time t. “For the audit events, Et−N+1, . . . , Et, in the window at
time t, the type of each audit event was examined, and the sequence of states
Xt−(N−1), . . . , Xt appearing in the window was obtained”[10] where Xi is the
state that the audit event Ei takes. “The larger the probability, the more
likely the sequence of states results from normal activities”[7]. If an attack
occurs, the sequence of states is presumed to receive “a low probability of
support from the Markov chain model of the normal profile”[7]. In short,
the Markov chain can be considered a set of states which are interconnected
through transition probabilities. The former determines the topology and the
capabilities of the model. “During the first training phase, the probabilities
associated with the transitions are estimated from the normal behavior of
the target system”[8]. Therefore, the associated probability (anomaly score)
obtained from the observed sequence is compared with a fixed threshold in

16

Security Logging and Monitoring

order to detect the anomalies. About the hidden Markov model, Garcia-
Teodoro et al. (2009) write that the system is seen as a Markov process
that states and transitions which are hidden and only the productions are
observable. In more detail, here the challenge is to determine the states and
the transitions from the parameters which are observable: “the variable of
the system that is influenced by the state of the system”[7]. For each state,
there are two different variables: the probability of producing one of the
observable system outputs and the probability which indicates what could
be the next state. Each state has a different output probability distribution
and the system changes over time; thanks to them, “the model is capable of
representing non-stationary sequence”[7]. The aim is to model normal system
behavior and for this reason the parameters of the hidden Markov model
have to be found: “sequences of normal events collected from normal system
operation are used as training data”[7]. Therefore, the detection activity
can start thanks to probability measures which are used as thresholds and
are compared with test data. For Patcha and Park (2007), three different
problems are addressed in this specific model:

• Evaluation problem: given a sequence of observations as input to de-
termine what is the probability that the observed sequence has been
generated by the model

• Learning problem: the building up of the model starting from audit
data which correctly describes the observed behavior

• Decoding problem: it describes how to determine what is the most likely
set of hidden states coming from the observations;

As seen in the previous machine learning techniques, also Markov Models have
the same drawback: the usage of resources. For this reason, this “technique
for the anomaly detection is not scalable for real-time operation”[7].

Neural networks In according to Garcia-Teodoro (2009), neural networks
have been created with the idea of simulating the operation of the human
brain and they have been adopted in the field of anomaly intrusion detection.
“Neural networks are algorithms that learn about the relationship between
input-output vectors and "generalize" them to obtain new input-output in

17

Security Logging and Monitoring

a reasonable way”[6]. Even if this approach could be used in a knowledge-
based intrusion detection tool, “the neural network learns to predict the
behavior of the various users and daemons in the system”[7]. The neural
network has been used for the creation of user profiles, for the prediction
of the next command from a sequence of previous ones and for identifying
the intrusive behavior of traffic patterns. According to Debar (1999), this
detection approach and statistics have some points in common; therefore,
the former is preferred because it expresses in a simpler way the nonlinear
relationships between variables and the automation in the learning/retraining
of the neural network. The main advantage is the “tolerance to imprecise
data and uncertain information”[7] and the capability to deduct solutions
even without knowing the regularities in the data. However, this detection
approach has several drawbacks. Firstly, the network may fail in identifying
a satisfactory solution since a lack of sufficient data or because no learnable
function is available. In addition, by the side of Patcha and Park (2007), the
training of the system can be slow and expensive; the speed, it depends on
the fact that the training data has to be collected and analyzed and also
the neural network has to deal with the weights of the individual neurons so
that the correct solution can be provided. Finally, the neural networks suffer
the lack of a “descriptive model that explains why a particular decision has
been taken”[8] and so “the neural network cannot propose a reasoning or an
explanation of the attack”[6].

Fuzzy logic The fuzzy logic derives from “fuzzy set theory under which
reasoning is approximate rather than precisely deduced from classical predi-
cate logic”[8]. This detection approach has been used for two reasons: some
quantitative parameters, used in the context of intrusion detection, can be
seen as fuzzy variables and the "concept of fuzziness helps to smooth out the
abrupt separation of normal behavior from abnormal behavior”[7]. Indeed,
a given data point that is inside or outside a normal interval is defined as
anomalous or normal independently from the distance from or within the
interval. If on the one hand, fuzzy logic is very effective in port scans and
probes, the high resource consumption could be a big problem.

18

Security Logging and Monitoring

Genetic algorithms They are a “particular class of evolutionary algo-
rithms that use techniques inspired by evolutionary biology such as inher-
itance, mutation, selection, and recombination”[8]. In more detail, it is a
search technique useful to find approximate solutions to optimization and
search problems; moreover, it is based on probabilistic rules instead of deter-
ministic ones. Thus, these algorithms can be used for deriving “classification
rules and/or selecting appropriate features or optimal parameters for the
detection process”[8]. The main advantages are the capability to converge to
a solution from multiple sources and the “flexibility and robustness as global
search method”[7]. Here are some approaches using the genetic algorithm as
a network-based intrusion detection system: the derivation of classification
rules and using them to select appropriate features or to determine the
parameters of related functions using different techniques to acquire the
rules. As a drawback, high resource consumption is still present also in this
approach.

Clustering and outlier detection (data grouping) It is a technique
for finding some patterns in unlabeled data with many dimensions. In the
clustering algorithm, for Patcha and Park (2007), the outlier is an object
which is not placeable in a cluster of a data set and this element become
very interesting from an intrusion detection point of view: the outlier can
be seen as an attack/intrusion. Moreover, “data points are modeled using
stochastic distribution and points are determined to be outliers based on their
relationship with this model”[7]. Based on Patcha and Park’s (2007) article,
to cluster-based anomaly detection, two different approaches exist: both
normal and intrusion unlabeled data are used to train the anomaly detection
model and only normal data are used to train the model. The former comes
from the idea that the attacks are a small percentage of the entire data;
therefore, the anomalies and the attacks do not hold in large clusters, but they
are outliers; the latter can be used to create a profile of normal activity. In a
simpler way, the clustering techniques group the observed data into clusters
searching for similarity or for distance measurement. Inside each cluster,
a representative point is chosen and then, new data points are classified
according to the distance (or the similarity) with this representative point.
If some points do not belong to any cluster, they are outliers. As written
before, an important discriminant is distance which could be euclidean or
Mahalanobis. The first approach does not consider features that could have

19

Security Logging and Monitoring

very different variability or which could be measured in different scales.
Features with large scales of measurement or high variability dominate the
other ones. For this reason, the Mahalanobis distance has been proposed
and it uses “group means and variances for each variable, and the correlation
and covariances between measures”[7]. Moreover, in this scheme a threshold
is computed in according to the most distant points from the mean of the
normal data and, at the same time, it is a user-defined percentage of the
total number of points. If a data point has a distance greater than this
threshold, it is an outlier.
As an advantage, the clustering techniques “determine the occurrence of
intrusion events only from the raw audit data, and so the effort required to
tune the IDS is reduced”[8]; Patcha and Park (2007) write that it depends
on whether the clustering is able to learn from audit date without the need
of explicit description of the attacks.

1.2.3 Additional Approaches

Here is the description of two different techniques which are not directly
related to the intrusion detection system, but they are auxiliary schemes.

Principal Component Analysis

PCA is a dimensionality reduction technique created due to the extension and
complexity of datasets. In mathematical terms, PCA makes a translation: n
correlated random variables are represented as d ≪ nuncorrelated variables
which are “linear combination of the original variables”[7]. In general, the
transformation is divided into two steps:

• Linear combination of the original variables with the largest variance.
This step is the “projection on the direction in which the variance of
the projection is maximized”[7]

• Linear combination of the original variables with the second largest
variance and orthogonal to the first step

20

Security Logging and Monitoring

Association Rule Discovery

This technique is used to obtain correlations between features extracted from
the training dataset. In more detail, given a database D of transactions
where each transaction T ∈ D denotes a set of items in the database, an
association rule is the following implication:

X ⇒ Y, where X ⊂ D, Y ⊂ D and X ∩ Y = ∅.

In this technique, the rule confidence and the rule support are two important
concepts to deal with. The probability of rule confidence is the conditional
probability P (Y ⊆ T | X ⊆ T) and a rule has support s in the database D
if s% of transactions in D contain X ∩ Y . Instead, the rule X ⇒ Y holds
in the transaction set D with confidence c if c% of transactions in X also
contain Y .
Furthermore, the association rules can be used “to construct a summary
of anomalous connections detected by the intrusion detection system”[7];
for example, as written by Garcia-Teodoro et al. (2009), these rules could
be used to find internal relations between data which belongs to a specific
connection.

1.2.4 Stateful Protocol Analysis

In according to Liao et al. (2013), another category can be added to
the previous ones: the Stateful Protocol Analysis also called Specification-
based Detection, an approach which indicates that the intrusion detection
system could “know and trace the protocol states”[5]. Even if this approach
seems very similar to the anomaly-based one, the Stateful Protocol Analysis
depends on “vendor-developed generic profiles to specific protocols”[5]. The
advantages of this approach are the knowledge of the protocol states and
the capability to distinguish unexpected sequences of command while the
drawbacks are the resource consumption due to the protocol state tracing and
examination, the inability to inspect attacks that look like normal protocol
behaviors, and it could be incompatible with specific operating systems.

21

Security Logging and Monitoring

1.2.5 Hybrid System

A third solution can be taken into consideration: the hybrid intrusion detec-
tion system. According to Garcia-Teodoro et al. (2009), it is a combination
of a signature-based detection module with a complementary anomaly-based
scheme. In this system, anomaly detection is useful to determine new or
unknown attacks while the signature one is good in detecting known attacks.
Moreover, if a patient attacker is able to retrain the anomaly detection mod-
ule so that it accepts the attack as normal behavior, the signature detection
is able to detect this kind of attack. Basically, the combination of the two
detection techniques “seeks to improve the overall intrusion detection perfor-
mance of signature-based systems”[8] and, at the same time the usual high
false positive rate of the anomalous-based systems decreases. Approaches
of the hybrid system have been developed and could be categorized as de-
tection in parallel and detection in sequence. Although the combination of
two different detection technologies seems to improve the capability of the
intrusion detection system, the result is not always better. Indeed, as written
by Patcha and Park (2007), the different technologies examine the system
and the network in different ways. Hence, the challenge to creating a hybrid
intrusion detection system is about “getting these different technologies to
interoperate effectively and efficiently”[7].

1.2.6 Passive versus active intrusion detection

According to Liao et al. (2013), a passive intrusion detection system means
that when an attack is detected, only an alarm is generated without any
countermeasure applied. Differently, an active intrusion detection system
generates scripts “both to suppress the vulnerability [. . .] and to restore the
system in the previous state”[6].

1.2.7 Host-based intrusion detection

A host-based intrusion detection system analyzes all the events which are
related to the operating system information such as process identifiers, system
calls searching for privilege escalation attempts, unauthorized logins, access

22

Security Logging and Monitoring

to sensitive files, and malware. It comes from the assumption that the
“host-based intrusions leave trails in the audit data”[7]. Moreover, only
a host-based IDS is able to analyze end-to-end encrypted communication
activities while as limitations it is challenging the detection accuracy due
to the lack of context knowledge, there are delays in the generation of alert
and in centralized reporting, and if some security controls already exist some
conflict could happen.
Furthermore, if an anomaly-based approach is used, the analysis of the user
behavior is not accurate because a user could install new programs, changes
his working hours, learns new commands, etc. For these reasons, as written
by Juan et al. (2004), user profile which is built upon user behavior cannot
be accurate and they cause a large number of false alarms.

Host-based intrusion detection sources

Only host audit sources can describe the activities of a user in a given
machine but, at the same time, they are susceptible to alterations in case a
successful attack happens. Hence, host-based intrusion detection systems
have to “process the audit trail and generate alarms”[6] just before the
audit trails are subverted or the intrusion detection system crashes. Now,
the information sources of the host-based intrusion detection system are
described.

System sources This information concerns information of the processes
which are currently active on the computer, and they are very precise because
the kernel memory is directly examined. As defined by Debar et al. (1999),
the only drawback is about the lack of a structured way to collect and store
the audit information.

Accounting Accounting provides “information on the consumption of
shared resources by the users of the system”[6] where the resources are, for
example, processor time, memory, disk or network usage, and applications
launched. This information source has many drawbacks:

• The position of the accounting files is the same as the disk partition

23

Security Logging and Monitoring

of the /tmp directory; hence if the partition is fulfilled, the accounting
stops

• Accounting cannot be activated for selected users

• Timestamp is not so precise: the precision to the second and this does
not permit sorting and sequence of the actions because in the accounting
file they are logged in the order in which they terminate

• Commands are not precisely identified: only the first eight characters of
the name of the command are stored in the accounting record. It means
that path information and command line arguments are lost

• Only the applications which terminate are recorded in the accounting
file; hence, the daemon activity is not recorded

• The accounting action happens only when the application terminates;
thus, the accounting file is updated only when the intrusion has happened

Due to these drawbacks, accounting is not used for knowledge-based intrusion
detection and rarely for behavior-based ones.

Syslog Syslog is an audit service provided to applications by the operating
system that “receives a text string from the application, prefixes it with a
timestamp and the name of the system on which the application runs, and
then archives it”[6] in a local or remote way. Even if it is a slight audit
source with little audit date per machine, a large network can generate a
great number of messages.

C2 security audit Differently from other information sources, security
audit records concern “security-significant events on the system”[6]. The idea
is to record “the crossing of instructions executed by the processor in the
user space and instructions executed in the Trusted Computing Base (TCB)
space”[6] which is the kernel, in the UNIX environment. In more detail,
TCB is considered trusted and the actions which can impact the system are
the services from the TCB; hence, the actions executed in the user space
cannot harm the security of the system. Therefore, the record consists of the
execution of the system call of all the applications launched by the user, and

24

Security Logging and Monitoring

context switches, memory allocation, internal semaphores and consecutive
file reads are not present. The details which are stored are the user and group
identification, the parameters of the system call execution, the return code
from the execution, and the error code. About the advantages: the audit
events are classified in order to make simpler the configuration of the audit
system; the information which has been gathered are parametrized according
to user, class, audit event, or failure or success of the system call; in case of
error status, usually a run out of the disk, of the audit system, the machine
shutdowns and a strong identification of the user are performed. On the other
hand, according to Debar et al. (1999), this source information suffers certain
drawbacks: in the case of detailed monitoring, heavy use of system resources
occurred and in particular, processor performance is reduced by 20% while
the requirements for local disk space storage and archiving become higher; if
the audit file system is fulfilled, a denial-of-service attack is possible; the set
up of the audit service is difficult due to the number of parameters and also
because the standard configuration minimizes the performance recording
only classes of rare events; moreover, the parametrization concerns too often
subjects and actions rather than the objects on which the action is performed;
finally, due to the big amount and complexity of the information obtained,
exploiting them is difficult: hence, the heterogeneity of the audit system
interfaces and the audit record formats of the various operating systems
makes the exploitation harder.

1.2.8 Network-based intrusion detection

With the widespread use of the Internet, the host-based intrusion detection
systems were not good in the detection of attacks against the network such
as DNS spoofing, TCP hijacking, port scanning, ping of death and so on
because the host audit trails are not interested in the network area. Therefore,
“specific tools have been developed that sniff network packets in real-time,
searching for these network attacks”[6]. This technology is “capable to
analyze the broadcast scopes of AP protocols”[5]. Regarding the drawbacks,
the article of Liao et al. (2013) describes the following ones: the inability to
monitor wireless protocols, the high values of false positive and false negative
rates, and, in case of high load, the inability to analyze fully the traffic.

25

Security Logging and Monitoring

Network-based intrusion detection sources

The network-based intrusion detection systems capture network traffic at
specific network places using sensors and then, this traffic is analyzed to
recognize suspicious incidents. Below is the description of the information
sources.

SNMP information The Simple Network Management Protocol (SNMP)
Management Information Base (MIB) is “a repository of information used
for network management purposes”[6]. This information is routing tables,
addresses, names, and some performance/accounting data such as counters
which measure traffic at various network interfaces and at different layers of
the network, as stated in the article of Debar et al. (1999). However, these
MIB counters at higher levels do not contain much more information because
not all the correlations between these counters are computed due to their
similar behavior of themselves.

Network packets To gather information about the events that occur on
the network architecture, an efficient way could be the network and the most
efficient way to capture the packets is before entering the server instead of
after. Most of the denial-of-service attacks are originated from the network
and for this reason, a host-based intrusion detection system cannot detect
them. Moreover, the network sniffers could work in two different ways:

• Low-level performing pattern matching, signature analysis and other
kinds of analysis of the raw content of TCP or IP packets. Although
the analysis is very quick, some session information is lost

• High level working at application gateway: each packet is analyzed with
respect to the application, or the protocol followed. Furthermore, this
analysis depends also on the particular machine protected because the
implementation of protocols is not equal in all the network stacks

However, certain problems may be encountered: difficulty to detect network-
specific attacks if not analyzing network traffic instead of audit information
on the host; the host performance is impacted by this type of auditing

26

Security Logging and Monitoring

because the information is collected on a separate machine without knowing
the rest of the network; each audit trail format is different from the other
ones even if the standardization towards TCP/IP simplifies this problem and
when tools analyze the payload of the attack using the signature analysis,
it means that for efficient analysis, the tools should know all the types of
machines or application for which the packet is intended and it is not feasible.
Moreover, in according to Debar et al. (1999), there are also drawbacks: no
link between the information contained in a packet and its user source; in the
case of switched networks, the placement of the sniffer is not an easy task.
The choices are switches or gateways between the protected system and the
outside world. The former solution is the best because permits better audit
information, but it is costly. Despite these difficulties, the switched networks
are less vulnerable to sniffer attacks. Furthermore, in the case of encryption,
the payload of the packets is unable to be analyzed and also the obfuscation
of the packet contents decreases the comprehensiveness of the signature.
Finally, because all these tools are based on commercial operating systems
and their network stacks are vulnerable to attacks, they are susceptible to
denial-of-service attacks.

1.2.9 Additional Technologies

In addition to the host-based intrusion detection technology and the network-
based one, according to Liao et al. (2013), other three types of approaches
are possible: Wireless-based IDS, Network Behavior Analysis, and Mixed
IDS. Wireless-based IDS is very similar to network-based technology, but
it is relative to wireless network traffic. It has the advantage of being more
accurate since its narrow focus, but it has also several drawbacks, as stated
by Debar et al. (1999): it cannot avoid evasion techniques; the used sensors
are susceptible to physical jamming attacks and, if the wireless protocols are
insecure, this technology does not mean that they become more secure.
Instead, the Network Behavior Analysis system tries to recognize attacks
with unexpected traffic flows but also it is very similar to the network-
based approach. If from a side, it has superior detection powers in the
reconnaissance scanning, in reconstructing the malware infection and DoS
attacks, its detection activity is very slow and not in real-time. The latter
has the goal to detect attacks in a complete and accurate way.

27

Security Logging and Monitoring

1.2.10 Continuous monitoring versus periodic analysis

This distinction is about how the tools perform their analysis. A static
intrusion-detection tool “periodically takes a snapshot of the environment
and analyzes”[6] it, looking for some vulnerable software, configuration errors
or other anomalies. The analysis consists of verifying the version of the
applications installed to be sure the latest security patches have been applied,
checking if weak passwords are present, verifying the contents of special
files or verifying the configuration of open network services. Of course, the
snapshot is a description of the system which is valid only in the instant it is
taken. This approach has several problems: the security patches could be
not present in the legacy systems, and these security assessments are a slow
process, in particular when the target is a networked environment where each
system has to be analyzed. Moreover, for Debar et al. (1999) between two
different snapshots, a vulnerability can be easily exploited; for this reason,
the frequency of the snapshots is important.
Differently, a dynamic intrusion-detection tool “performs a continuous, real-
time analysis by acquiring information about the action taken on the environ-
ment immediately after they happen”[6]. The monitoring phase takes place
in real-time or in batches, reviewing the information sources accumulated
over a given period of time. Even if, the security of the system improves due
to real-time analysis and constant assessment of the security, the dynamic
intrusion detection is a costly process both for the transport of the audits
and also during their processing.

1.3 Alert correlation

The Intrusion Detection Systems have been deployed for monitoring and
defending networks and hosts from malicious attacks. In addition, they can be
combined with other preventive security mechanisms. However, these systems
suffer from several limitations such as a large volume of alerts outputted
every day and a large percentage of the alerts are false positives; real-time
applications are inefficient; furthermore, as stated by Elshoush and Osman
(2011), certain attacks are not detected by the intrusion detection system,
while for Ramaki et al. (2015), inability to detect incomplete events that will

28

Security Logging and Monitoring

turn in future attacks. Due to these drawbacks, the accuracy of intrusion
detection systems must be improved and thanks to alert management and
the alert correlation it can be achieved. The management of the alerts has
four main objectives: the reduction of false alarms, the comprehensiveness
of the cause of the false alerts, the creation of a higher-level view or scenario
of the attacks and the creation of responses to attacks by understanding
the relationships among the different alarms, as written by Elshoush and
Osman (2011). In other words, the alert correlation system is “a system
which receives incidents from various heterogeneous systems, reduces the
required information for assessment, removes false alerts, and detects high-
level attack patterns”[11]. The alarm correlation approaches can be split
into three categories: implicit correlation, explicit and semi-explicit ones.
The former "uses data-mining paradigms in order to fuse, aggregate and
cluster large alert dataset”[12]: this approach, generally, fails to enhance the
semantics of the alert. The explicit correlation relies on a language used to
specify logical and temporal constraints between alert patterns searching for
complex attack scenarios: when a complete or partial attack scenario is found,
a higher-level alert is generated. Finally, the latter correlation consists of an
association between preconditions and postconditions. In other words, “the
correlation process receives individual alerts and tries to build alert threads
by matching the preconditions of some attacks with the postconditions of
some prior ones”[12]. Differently, in according to Mirheidari et al. (2013),
alert correlation algorithms can be divided into three different categories:

• Similarity-based

• Knowledge-based

• Statistical based

1.3.1 Similarity-based Algorithms

The aim is to compute the difference between two alerts or an alert with
a cluster of alerts: the goal is “to cluster similar alerts in time”[11]. The
advantage is that a precise definition of attack types is not needed; however,
only when similarity factors for alert features are defined the correlation is
achievable.

29

Security Logging and Monitoring

Simple rules

The main aspect of this approach is to define simple rules “to express relations
among alert features which can be combined together”[11]. The knowledge
required is rules structures and information about the similarity between
alerts. As a drawback, these rules have some limits in the definition of attack
types, and they are able to detect only sequences based on attack class.
Moreover, the required memory is “linearly proportional to alert input rate
multiplied by the time window length”[11]. However, this is a good algorithm
since it has good parallelism capabilities.

Hierarchical Rules

In these algorithms, the rules are expressed in different abstract layers of
hierarchy. The alert values are compared with a “linear calculation degree
proportional to generalization hierarchy tree depths”[11]. The required
knowledge is about the definition of generalization trees while deep network
structure and elements knowledge is not required. As before, the required
memory is linear but, in this algorithm, it is equivalent to generalization tree
sizes.

Machine Learning

In this category, the comparison factors are generated automatically. Machine
learning algorithms can be divided into supervised and unsupervised ones.
The former uses a set of clustered alerts as prerequisites and this set is used
to set the parameters of the decision-making model. While the unsupervised
algorithm does not have any type of prerequisites because the measure of
similarity is done directly by the algorithm. Three different branches can be
described:

• The algorithms cluster alerts based on “decision tree learning by previous
data features”[11]. They can be used both for detecting similar alerts
and also for attack sequences. Moreover, this branch needs a huge and
comprehensive set of training examples for the creation of a decision tree.

30

Security Logging and Monitoring

Each new alert is compared to all the meta-alerts which exist in the
same time window and the comparison is performed with one decision
tree. These algorithms are not very flexible and compatible with new
conditions because they need to pre-train the decision tree with new
data.

• In this branch, the algorithm performs “alert clustering based on alert
Reconstruction Error by a neural network”[11]. This category does not
need particular previous knowledge except a set of alerts, and, for this
reason, the precision is not so high. Regarding processing power and
comparison modularity, the algorithm is fast and simple because for
each alert the reconstruction error is calculated, and it is independent
of the existing meta-alerts. Moreover, the retraining is not so important
because it is done only for the alert precision

• The last branch is focused on learning and applying “true and false
alert patterns based on labeled data by the system supervisor”[11]. The
decision-making is based on searching the similarity among alerts that
are inside the same time range. In order to partition the algorithm,
the alert observed must be limited to specific clusters. The memory
usage is very high due to the partitioning and also to the access of the
information related to all the clusters; therefore, even if flexibility is
very good, parallelism cannot be achieved

1.3.2 Knowledge-based Algorithms

They are based on a knowledge base of attack definitions, and they can be
divided into Prerequisites/Consequences algorithms and Scenario ones.

Prerequisites/Consequences

These algorithms are based on the definition of pre-requisites and possible
results; therefore, “each incident is chained to other incidents by a network of
conjunction and dis-junction combination and generates the possible network
of attacks”[11]. The previous knowledge is based on the description of
all existing prerequisites/consequences of alerts and a database with the

31

Security Logging and Monitoring

network configurations and structure. The outputs of the algorithms can be
considered without bias because they are based on real alert meanings. This
category has high processing power, low unity and parallelism ability and it
requires huge previous data. These drawbacks depend on the fact that when
a new alert arrives, any kind of relationship with the other alerts within the
same time window must be taken into consideration and, at the same time,
the precision improves due to the continuous maintenance and updating of a
lot of incidents for a different resource.

Scenario

This category is based on the idea that “many intrusions include various
steps which must run one by one to success the attack”[11]. So, low-level
alerts are compared with pre-defined intrusion steps and are correlated to
find a sequence of alerts related to each attack. The algorithms have to
maintain all the scenarios and improve this list when new scenario attacks are
discovered. In particular, when a new low-level alert arrives, it is compared
with the current scenario and if a certain threshold is exceeded, the alert is
attached to the scenario; otherwise, if the alert is below the threshold but
it is compatible with another scenario, a new scenario is generated. The
scenarios can be described in various languages and, in detail, the specifying
attack steps, prerequisites, and goals are described. The required processing
resources concern the definition of rules and for this reason parallelization
and unification are difficult; however, the flexibility and extendibility improve
because “the system behavior must change in real-time according to any
change or extension in rules”[11]. The challenge is about defining the attack
scenarios even if there exist various automatic attack scenario learning
methods.

1.3.3 Statistical-based Algorithms

This category is based on the idea that “relevant attacks have similar statis-
tical attributes and a proper categorization can be found by detecting these
similarities”[11]. These algorithms store the causal relationships between

32

Security Logging and Monitoring

incidents and analyze their frequencies using previous data statistical anal-
ysis and then the attack steps are created. After this learning phase, this
knowledge is used for the correlation between the attack stages.

Statistical Traffic Estimation

The basic idea of this category is to find repetition and non-similarity patterns
in the alerts. Context knowledge is not required because the raw material is
the statistics of each alert. The processing load depends only on the statistical
model which is used even if some model parameters can be changed at run-
time according to new data. One of the applications of these algorithms is
detecting alerts that normally occur together, and an important further task
is determining the alert priorities. The analysis of alerts is based on time
windows: in each time window, “statistical information about all alerts is
calculated and the resulting statistics are compared to the previous ones”[11].
In addition, input data can be pre-partitioned and this means that each alert
belonging to a unit is processed independently: parallelization improves.

Causal Relation Estimation

The aim of these algorithms is “finding alert sequence or association domi-
nant patterns and using these patterns for detecting false cases, or proper
combination”[11]. In other words, the purpose of this category is the creation
of a model for determining correlation relationships between alerts. The
algorithm can be divided into two steps: training and functional. The former
is performed offline with archive data; therefore, the training phase does not
affect the practice use. The flexibility of this algorithm is not so high due to
the need for the training phase but if the user interferes during the learning
of the relationships, the algorithm behavior can change faster.

Reliability Degree Combination

The goal of this category concerns the introduction of an algorithm that
combines reliability and completely similar alerts where the reliability is

33

Security Logging and Monitoring

equivalent to alert repetitions. In other words, the importance/priority of
an alert depends on approval by other resources. The idea can be simplified
by removing all the processing details and accepting “the amount of an
alert repetition as a factor independent from alert importance and resource
history”[11]. The Causal Relation Estimation algorithms, these ones work in
two phases: training and function. As before, the training phase does not
interfere with function one and the algorithm speed during the execution
of the order O(1), too. Input data are simply partitioned and therefore
parallelism is not needed. The flexibility is slow due to the need of retraining
with a lot of data the model every time new conditions are needed; other-
wise, “the reliability to different resource opinions can change by the direct
interference of the system supervisor and changing the algorithm behavior
in real time”[11].

1.4 Case study: Weseth

“Weseth is a [. . .] platform, that enables the remote verification of the
security posture and the effectiveness of the security countermeasures”[13].
Moreover, according to the Drivesec website, remote testing reduces the
time of execution of vulnerability assessments and penetration tests and,
at the same time, allows the execution of tests in a realistic environment
avoiding boring setup time. The architecture, of Weseth could be divided
into four different pieces: Weseth Box, Weseth Server, Weseth Web App,
and Weseth Client. The Weseth Box is “an embedded device which exports
a large number of network interfaces”[13] and it is connected to remote
components such as test benches, manufacturing lines, vehicles, and so on.
In short, it is directly connected to the IoT component which has to be
tested and different protocols as well as Can, Can-FD, WiFi, Bluetooth,
Ethernet and USB are available. Furthermore, Weseth boxes are widely
distributed around the world and they could easily reach test benches even in
case of difficult conditions. The Weseth server implements “the core platform
logistic, including:

• Authentication

• Communication multiplexing

34

Security Logging and Monitoring

• Security

• Testing session logging”[13]

In addition, the connection with the Weseth Box is based on the LTE proto-
col.
The Weseth Web App is the place where customers who need Vulnerabil-
ity Assessment and Penetration testing tasks, can find and engage Cyber
researchers.
The Weseth client can be downloaded from the Weseth Web App and it
is used by the researcher to perform its tasks in a completely remote way.
Through it, the researcher can communicate with the test benches: the client
is in communication with the server which has a preferential channel with
the Weseth Box. Each command which is inserted in the Client is directly
sent to the test bench. Among the various use cases, there are: remote
access, remote functional testing, remote component reflash, remote analyses,
remote diagnostic and repair, remote continuous assessment, and so on.

35

Chapter 2

Security and Monitoring
tools

This chapter aims to describe the state of the art of various intrusion detection
systems. In particular, for the architecture introduced in the previous chapter,
a host-based intrusion detection system has been chosen because the main
objective is to detect and monitor the action performed in the host container.
The first part is about the presentation of the discriminant used to decide
what is the best tailored HIDS solution for the architecture, then the selected
product, Wazuh, is analyzed deeply.

2.1 Discriminants

In this paragraph the discriminants which have been taken into consideration
for the decision of the best solution are pointed out:

• Multiplatform: even if the architecture is based on a Linux operating
system, this feature has been taken into consideration for future change.

• File integrity: this is one of the most important aspects to consider
for the decision of the HIDS. It is a module that detects when any file,
directory, or registry is modified, deleted, or added to the file system.

36

Security and Monitoring tools

• Log Analysis: As the previous one, this module is useful to analyze
the logs which are gathered from the host system. The Log Analysis
module is in charge to collect, analyze and correlate the logs to alert if
something suspicious is happening.

• Rootkit detection: a rootkit is “a set of procedures or codes which
are used to hide the code modules, files, registry entries, etc.”[14]. In
other words, a rootkit is a set of elements that provides continuous
privileged access to a computer and at the same time, its presence is
hidden. The chosen intrusion detection system has to detect when a
system is modified in a way common to rootkits.

• Active response: even if it is out of scope for the specific use case, this
feature could be very useful in a future deployment because it permits
taking immediate action when specified alerts are triggered.

• Real-time alerting: it is a feature that permits to receive alerts as soon
as possible when critical incidents happen. Of course, the priority of
critical incidents is configured by the customer, but real-time alerting is
useful to split the regular noise from interesting events.

• Documentation completeness: it describes the quality of available docu-
mentation, before its deployment.

• Setup difficulty: this discriminant determines how easy is the setup
and/or installation of the various nodes for correct functioning.

• Readable output: it describes if the alert coming from the analysis of
the source information is easily readable or not.

• CVEs: this element describes if the solution has some specific CVEs and,
in particular, here the interest is on the latest version of the product.

• Agent-based: this discriminant describes the possible architecture that
could be implemented in the HIDS. The agent-based monitoring means
that the daemons collect logs, and the file system information from the
boxes and then the analysis is performed in a centralized management
server. Moreover, centralized management permits the of definition
policies across multiple operating systems.

• Open source: it describes if the product is a commercial or an open
source one.

37

Security and Monitoring tools

Discriminants Logging and Monitoring tools

A
ID

E

EV
EN

T
LO

G
A

N
A

LY
ZE

R

IB
M

M
aa

S3
60

LA
C

EW
O

R
K

T
.D

.

O
SS

EC

SA
G

A
N

SA
M

H
A

IN

SO
LA

RW
IN

D
S

SE
M

T
R

IP
W

IR
E

L.
C

.

W
A

ZU
H

Multiplat. No Y es Y es Y es Y es No Y es Y es No Y es

File Integr. Y es Y es − Y es Y es No Y es Y es Y es Y es

Log Anal. No Y es − Y es Y es Y es Y es Y es Y es Y es

Rootkit det. No − Y es No Y es No Y es − No Y es

Active resp. No No Y es Y es Y es No No Y es Y es Y es

RT alerts − Y es Y es Y es Y es Y es Y es Y es Y es Y es

Doc complet. No Y es Y es Y es Y es Y es Y es Y es No Y es

Setup Diff. Y es Y es No Y es Y es Y es Y es Y es Y es Y es

Read. out. No Y es Y es Y es Y es Y es Y es Y es − Y es

CVEs No No No No Y es No No No No No

Agent No Y es Y es Y es Y es No Y es Y es Y es Y es

OS Y es No No No Y es Y es Y es No No Y es

Table 2.1: Peculiarities of the most known monitoring and logging tools

Here a general description of each HIDS taken from Table 2.1:

• AIDE: it is a “file and directory integrity checker”[15], and it is present
in this list just for the file integrity module. It creates a database of
files on the system and then the database is used to ensure the integrity
and detect system intrusions. However, AIDE is not able to provide

38

Security and Monitoring tools

"sureness about change"[15] in certain types of files.

• EventLog Analyzer: it is a "web-based, real-time, log monitoring and
compliance management solution for Security Information and Event
Management System (SIEM)"[16]. It is very useful to improve network
security and perform audits for various regulations.

• IBM MaaS360: it is a "comprehensive mobile device management solu-
tion for monitoring and managing [. . .] mobile devices from a web-based
portal"[17]. Moreover, portal administration functions, device manage-
ment, software distributions, policy self-service, and device compliance
functions are also supported by the enterprise mobility management
(EMM) platform.

• Lacework Threat Detection: it is a general intrusion detection system
that delivers "cloud infrastructure compliance and security for develops,
workloads, and cloud containers"[18].

• Ossec: it is "a platform to monitor and control ”[19] systems. It is
composed of all the aspects of a host-based intrusion detection such as
log monitoring and the Security Incident Management(SIM)/Security
Information and Event Management(SIEM)1; all them create an open
source solution.

• Sagan: it is a log analysis engine and it has been designed "with a
Security Operations Center (SOC) in mind"[20]. This means that Sagan
analyzes logs across many different platforms in many different locations
in real-time and with "heavy lifting analysis before putting the event
in front of a human"[20]. Moreover, it has also a few peculiarities of
correlation engines even if it is very simple.

• Samhain: it is "a file and host integrity and intrusion alert system
suitable for single hosts as well as for large, UNIX-based networks"[21].
This solution can be used with the client/server paradigm where hosts
are monitored and, then, the central log server collects the events from
them.

1SIEM technology supports threat detection, compliance and security incident man-
agement through the collection and analysis of security events.

39

Security and Monitoring tools

• Solarwinds Security Event Manager: it is a SIEM "virtual appliance
that adds value to existing security products"[22] increasing efficiencies
in the administration, management, and monitoring security policies in
networks. Solarwinds SEM allows access to log data both for forensic
analysis and for threat analysis looking for suspicious activities and/or
anomalies.

• Tripwire Log Center: it is one of the proposed solutions by Tripwire and
it is in charge to collect, analyze, and correlate log data from devices,
servers, and applications. "Its correlation engine automatically identifies
and responds to events of interest using a logical flow of one or more
conditions"[23]. Moreover, it allows customers to discover assets never
identified through analysis of their log data.

• Wazuh: it is "a security platform that provides unified XDR2 and SIEM
protection for endpoints and cloud workloads"[25]. It is composed by a
single universal agent and three components for the central monitoring
manager: server, indexer, and dashboard.

From Table 2.1, the solutions with the most researched requirements are
Ossec and Wazuh. However, Wazuh has been preferred to Ossec for various
reasons. First of all, Wazuh is an extension of Ossec and it maintains many
features and configurations from it. Moreover, Wazuh is more up-to-date
than Ossec and the new versions of the latter have only bug fixed. Moreover,
Wazuh can be developed in different clusters and it can be integrated with
cloud providers such as AWS, Microsoft Azure, and so on, too. For these and
other reasons, Wazuh is the solution that has been chosen for the Weseth
platform.

2.2 Wazuh

At first, an overview of the Wazuh components and architecture is described,
then the user manual, the capabilities, and the functionality are pointed out.

2"XDR is a security threat detection and incident response tool that natively integrates
multiple security products into a cohesive security operations system that unifies all
licensed components"[24]

40

Security and Monitoring tools

2.2.1 Wazuh elements

Wazuh is composed of four different elements: Wazuh Indexer, Wazuh Server,
Wazuh Dashboard, and Wazuh Agent.

Wazuh Indexer

The Indexer is a “highly scalable, full-text search and analytics engine”[25].
Its goal is to index and store the alert generated by the Server and, at the
same time, it allows real-time data search with analytics capabilities. This
component stores data as JSON documents and each document has the task
of correlating a set of keys, field names, or properties with their corresponding
values. In short, “an index is a collection of documents that are related to
each other”[25]. Moreover, to protect the system against hardware failures,
the documents are distributed across containers known as shards and can be
distributed across multiple nodes. Wazuh defines four different indices to
store different event types:

• Wazuh-alerts: Alert generated by the Wazuh server and created “each
time an event trips a rule with a high enough priority”[25]

• Wazuh-archives: All the events received by the Wazuh server

• Wazuh-monitoring: Data about the Wazuh agent status over time

• Wazuh-statistics: Data about Wazuh server performance

The indexer is fast, scalable, and resilient and owns features such as data
rollups, alerting, anomaly detection and index lifecycle management.

Wazuh Server

The Wazuh Server “analyzes the data received from the agents, triggering
alerts when threats or anomalies are detected”[25]. The server architecture is
composed by different elements: agent enrollment service, agent connection
service, analysis engine, Wazuh RESTful API, Wazuh cluster daemon and

41

Security and Monitoring tools

Filebeat. The agent enrollment service is the one for enrolling new agents by
providing and distributing unique authentication keys to each agent. This
service supports authentication via TLS/SSL certificates or fixed passwords.
The agent connection service receives data from agents and it uses the
previously exchanged keys to validate the agent’s identity and to encrypt
the communication between the agent and the server. Moreover, this service
is useful for managing the agent configuration remotely. The analysis engine
is the core of the Wazuh server because it is in charge of performing data
analysis. The analysis is performed thanks to two different items: decoders
and rules. The decoder is useful for identifying the type of information
being processed and extracting relevant data elements from the log messages.
Then, through the use of rules, the engine tries to identify specific patterns
in the decoded data that could trigger alerts and, in case of dangerous ones,
an automated countermeasure could start. The Wazuh RESTful API is
a service that allows endpoints to interact with the Wazuh infrastructure
allowing configuration settings of agents and servers, monitoring the status
of the infrastructure, managing and editing decoders and rules, and querying
the state of agents. The Wazuh cluster daemon is used when Wazuh servers
are scaled horizontally and deployed as a cluster. Filebeat is "a lightweight
shipper for forwarding and centralizing log data"[26] and it is used to forward
events and alerts to the Wazuh indexer. Moreover, it provides load balancing
when the indexer is clustered.

Wazuh Dashboard

The dashboard is "a flexible and intuitive web user interface for mining,
analyzing, and visualizing security events and alerts data"[25]. Moreover,
thanks to the dashboard, the entire Wazuh platform can be managed and
monitored. The access to the dashboard could be restricted with role-based
access control (RBAC) and single sign-on (SSO) mechanisms. Detailing
them, Wazuh dashboard features are data visualization and analysis, agents
monitoring and configuration, platform management, and developer tools.
The former service represents the web interface for the visualization of
different types of data collected and the corresponding alerts generated by
the Wazuh server. The agents monitoring and configuration is the service
through which the status of the agents can be monitored. In general, the
platform can be managed directly from the dashboard, configuring the Wazuh

42

Security and Monitoring tools

server, creating custom rules and decoders, and monitoring the status of
the different Wazuh components. In the end, the developer tools are useful
to process log messages to check how they are decoded and, in the case of
custom rules, if they are matched or not.

Wazuh Agent

The agent is in charge to protect the system and it provides various services
such as threat prevention, detection and response capabilities. Moreover, it is
used to collect source information such as security-related events, operational
data and information about its status and configuration from the system and
forwards them to the Wazuh server. The communication between the agent
and the server "takes place through a secure channel (TCP or UDP)"[25],
which provides data encryption and compression in real-time. At the same
time, the channel provides flow control mechanisms to avoid flooding and
queueing events when they increase a lot and protection for the network
bandwidth. Moreover, the Wazuh agent has a modular architecture, that is,
each module performs only one action and it can be configured independently
from the other ones. Following, a description of each module is provided.
The log collector is in charge to read log files and Windows events, "collecting
operating system and application messages"[25]. Moreover, JSON events can
be enriched with additional data. According to the Wazuh documentation,
the command execution allows the agent to run commands periodically,
collect outputs, and report them to the Wazuh server for further analysis.
One of the most important modules is File Integrity Monitoring (FIM) which
is in charge to monitor the file system and reporting if new files are added or
if already present ones are deleted or modified. Moreover, the FIM reports
file attributes, permission, and ownership changes. When one of these events
happens "who, what, and when details"[25] are captured in real-time. Another
module is the one in charge to perform the security configuration assessment
(SCA) which provides "continuous configuration assessment, utilizing out-of-
the-box checks based on the Center Internet Security (CIS) benchmarks"[25].
Furthermore, the agent performs also a system inventory action that consists
of periodic scans, and collection of inventory data such as the version of
the operating system, network interfaces and so on. The malware detection
element uses a non-signature-based approach in order to detect anomalies and
eventual rootkits. It is also able to search hidden processes, files and hidden

43

Security and Monitoring tools

Figure 2.1: Description of Wazuh Architecture

ports during the system calls monitoring. Another block is the active response
one and it "runs automatic actions when threats are detected, triggering
responses"[25] which could be blocking a network connection, stopping a
running process or deleting a malicious file. Container Security monitoring is
the element that allows monitoring changes in containers. The last module
is the one related to monitoring cloud security thanks to the detection of
changes in the cloud infrastructure and the collection of cloud services log
data. All these modules are customizable for the user’s needs through the
introduction of new security policies, responses and so on.

2.2.2 Architecture

In short, the Wazuh architecture is based on "agents [. . .] that forward
security data to a central server"[25]. Right after, the Wazuh server decodes
and analyzes the received security data and passes the results to the Indexer
which is in charge of index and storing. Moreover, the results are forwarded
by Filebeat which uses TLS encryption. More precisely, Filebeat "reads the
Wazuh server output data and sends it to the Wazuh Indexer"[25]. From
Figure 2.1, it seems that the Server and the Indexer are deployed in different
nodes. It happens when many endpoints should be monitored together with
a large volume of data anticipated or in case of high availability is needed. As

44

Security and Monitoring tools

written before, when the server receives security data, it has to decode and
rule-check the received events through the analysis engine. When data are
indexed by the indexer, "the Wazuh dashboard is used to mine and visualize
the information"[25].

An important aspect to take into consideration is how alerts and log data
are managed by Wazuh. If from a side, rotation and backups of archive files
are in charge of the user, Wazuh offers the possibility to rely completely on
the storage actions performed by the Wazuh indexer and this alternative is
preferred in case of multi-node architecture.

2.2.3 User manual

In this section, the most important aspects of the entire Wazuh platform are
described.

Wazuh server Administration

As written before, the Wazuh server receives data from agents and triggers
alerts when an event matches a rule but, at the same time, the "manager
also works as an agent on the local machine"[25] and it means that all the
modules present in the agent are also present in the server. When the server
receives an event, it has to assign a "severity level depending on which rules
it matches from the ruleset"[25] and the default behavior is to log alerts with
a severity level higher than three. Of course, this severity threshold could be
changed according to necessities.
Furthermore, the Wazuh server allows to be integrated with external APIs
such as Slack which is "a simple way to post messages from 3rd-party apps"[25],
PagerDuty which is an incident response platform, VirusTotal which is able
to inspect the malicious file and also other external software. The server
could be configured to send alert to Syslog, it can output the alerts into a
database, generates daily reports about the alerts triggered each day, and
it could send email alerts to one or more email addresses; the email alerts
could be sent in generic and granular ways such as based on alert level, alert
level and agent, rules identification or based on rule group.

45

Security and Monitoring tools

Wazuh agent enrollment

It is the process "of registering Wazuh agents as authorized members of the
Wazuh solution"[25]. This process allows the Wazuh manager to register
agents and generate unique keys for them which are also used to encrypt
the communication between agent and manager and to validate the identity
of the agents. The enrollment may happen via manager API or via agent
configuration. In the former way, a unique key is generated from the server
and it has to be manually imported to the agent. Differently, when the
manager API is used, the agent is enrolled after the IP address of the Wazuh
Manager has been inserted. This processing method is very risky and for
this reason, additional security options could help to secure it and these are
password authentication, manager identity verification, and agent identity
check. In the former way, the password is used to ensure the agents enrolled
with the Wazuh manager are authenticated. The other two approaches need
a certificate authority that signs certificates both for the Wazuh manager and
agents and, if an already configured one is not present, the manager could
act in its place. For the manager identity validation, the root certification
authority certificate has to be copied to the endpoint while for agent one, the
certificate and the corresponding key should be created from the manager
and subsequently copied to the endpoints; the agent verification has two
options: the one with host validation specifying the agent host name or IP
address or the one without host validation where the same certificate could
be used on multiple agents because no hostname or IP address is specified.
Of course, the latter is insecure.

Agent management

After the agent installation, it must be registered with the server in order
to establish communication and this is the enrollment process. In addition,
an agent remains registered until it is removed. An agent could have four
different states as shown in the image below.
In Figure 2.2 the four states are shown: never connected, pending, active,
and disconnected. The former is when the "agent has been registered but has
not yet connected to the manager"[25]. The pending state happens when the
authentication process has not already finished due to a lack of information

46

Security and Monitoring tools

Figure 2.2: Wazuh Agent life cycle

from the agent itself. This state persists until the agent sends the other
requested information to the manager. The active state means that the agent
has connected to the manager while the disconnected one means that the
manager has not received any keep alive message from the agent.

Deploying a Wazuh cluster

By Wazuh’s definition, the cluster "is made up of manager type nodes"[25]
where one of them is the master node while the others become worker nodes.
In particular, in a cluster, the managers work together "to enhance the
availability and scalability of the service"[25]. Just the latter represent the
reasons for using a cluster: the horizontal scalability multiplies the capacity of
processing the events while in case a server fails, high availability is achieved
thanks to the various nodes. The master node "centralizes and coordinates
worker nodes"[25] and, at the same time, allows the maintenance of critical
and required data consistent across all nodes. Moreover, it is in charge of
agent registration and detection, and synchronization of rules and decoders.
Differently, the worker nodes are able to synchronize integrity files from the
master node, send agent status updates to the master, and redirect agent
enrollment requests to the master.

47

Security and Monitoring tools

Figure 2.3: Wazuh cluster

How the cluster works "The cluster is managed by a daemon [. . .] that
communicates with all the nodes following a master-worker architecture"[25].

Figure 2.3 shows the various communications between the master and the

48

Security and Monitoring tools

worker nodes, and the different independent threads running in the worker:
keep-alive thread, agent info thread, integrity thread, and file integrity
thread. The former "sends a keep-alive to the master every so often"[25]
and it is necessary to not close the connection between the master and the
worker. The agent info thread is in charge to send OS information and the
statuses of the agents which report to the specific worker node. Moreover,
the master should verify if an agent exists or not before saving useless and
unnecessary information. Differently, the integrity thread should synchronize
the files sent by the master to the workers. The files exchanged concern the
Wazuh agent keys file, custom rules and decoders, and agent group files and
assignments. The file integrity thread is in charge to check the integrity of
each file calculating its checksum and modification time. This thread is run
by the master node in order to avoid the calculation of the integrity of each
worker connection.

2.2.4 Capabilities

This section contains a detailed explanation of how the following capabili-
ties work: log data collection, file integrity monitoring, auditing who-data,
anomaly and malware detection, security configuration assessment, monitor-
ing security policies, monitoring system calls, command monitoring, active
response, agentless monitoring, anti-flooding mechanism, agent labels, system
inventory, and vulnerability detection.

Log data collection

It is the "real-time process of making sense of the records generated by
servers or devices"[25], that is, it receives logs from text files, Windows event
logs, or directly via remote Syslog. The goal of log data collection is the
"identification of application or system errors, misconfigurations, intrusion
attempts, policy violation, or security issues"[25].
From Figure 2.4, in particular, in the analysis part, the analysis process
is described in detail and it can be divided into three sub-processes: pre-
decoding, decoding, and rule matching. In the former step, "static information
from well-known fields"[25] are extracted from log headers. In the decoding

49

Security and Monitoring tools

Figure 2.4: Wazuh Log analysis flow

Figure 2.5: Wazuh File integrity monitoring

phase, the message is dissected in order to identify what type of log it is,
and then extraction of specific fields is performed. The last sub-process
consists of the comparison between the extracted log information and the
rules looking for matches. Furthermore, if one or more rules are matched,
the manager creates corresponding alerts.

File integrity monitoring

The FIM system "watches selected files and triggers alerts when these files
are modified"[25]. As shown in Figure 2.5, the FIM module is located in the
Wazuh agent and it runs a periodic scan of the system storing checksums
and attributes in a local database. Thereafter, the comparison between new
files’ checksums and old ones is performed and if modifications are detected,
they are reported to the Wazuh manager. Moreover, not only do agents
have information about their files but also the Wazuh manager has its file
inventory always updated. The FIM synchronization "is based on periodic
calculations of integrity between the Wazuh agent and the Wazuh manager

50

Security and Monitoring tools

database"[25] and only modified files are updated in the manager decreasing
the data transfer. Every time an agent is restarted, FIM database is clear
and, of course, if modifies happen when the Wazuh agent is not running, they
are not reported to the manager as well as the updates which occur after the
last scan and before the restart. Some of the information gathered from the
FIM module are path, size, hard links, FIM event mode, file permissions, user
ID of the owner of the file, group ID of the group that shares the ownership,
user name and group name of the owner, MD-5, SHA-1 and SHA-256 hashes
of the file, timestamp of the file changes, the inode of the file, the changes in
the files, the processor that triggers the event, and so on.

Auditing who-data

This capability permits us to know "the user who made the changes on the
monitored files and the program name or process used to carry them out"[25].
This information, as the FIM one, are processed by the syscheck module and
reported to the manager. The alert contains different information such as
the ID, the name, the Audit user ID and name during the login, the group
ID and the group name of the user who ran the process that modified the
monitored file, and the ID, and the name and the parent process ID of the
process that modifies the file.

Anomaly and malware detection

It refers to the "act of finding patterns in the system that do not match the
expected behavior"[25]. When malware is installed, it modifies the system to
hide from the user and, even if it uses different techniques to achieve this,
Wazuh owns a broad spectrum of approaches to finding anomalous patterns
about possible intruders.
From Figure 2.6 it is clear how the rootcheck module is the main component
for this task, however, also the syscheck module has an important role.
The latter permits the detection of directories that have been changed
and, in particular, it can check if the malware has replaced file, directories,
and commands. Although that, rootcheck is the most important module
because it permits to check running processes, hidden ports, unusual files and

51

Security and Monitoring tools

Figure 2.6: Wazuh intrusion and anomaly detection

permissions, hidden files using system calls, to scan /dev directory, network
interfaces. and to perform rootkit checks. About the running processes,
it could happen that a malicious one prevents itself from being seen in
the system’s list of processes and rootcheck inspect all the PIDs (Process
Identifiers) "looking for discrepancies with different system calls (getsid,
getpid)"[25]. In addition, the module has to check every port in the system
because malware can use hidden ports to talk with the attacker. Rootcheck
tries to bind each port with the bind() function; if it is not possible and,
at the same time, the port is not in the netstat output, malware may be
present. The syscheckd module is useful to look for files owned by the root
but with write permissions for other users or hidden directories and files. At
the same time, Wazuh searches differences between the stat size and the file
size performing fopen + read calls. Moreover, hidden files could be found
thanks to the comparison between the number of nodes in each directory
and the output of opendir + readdir. If the results of the comparisons do
not match, malware could be present. The /dev directory is the container
for some hidden files even if it should contain only device-specific files. The
scanning of network interfaces could be useful to check if one of them is
in promiscuous mode which is an indicator that malware could be present.
Finally, the rootkit checks are performed by comparing the file system with
a database of rootkit signatures. One problem with this feature is the lack
of updated rootkit signatures.

52

Security and Monitoring tools

Figure 2.7: Wazuh SCA integrity and alerting flow

Security Configuration Assessment

The Security Configuration Assessment (SCA) has been created by the Wazuh
team to overcome limitations such as the license needed to use CIS-CAT
tool and the dependence of rootcheck module from the syscheck daemon that
have policies feed often outdated. The principle goal of the SCA module is
to provide the best user experience performing scans about hardening and
configuration policies. Moreover, the module includes the possibility to store
the state of the last SCA scan which is stored in the Wazuh manager, to
create new alerts if SCA states change, and to use YAML format for policy
files.

The SCA is a way "to determine opportunities where hosts could have
their attack surface reduced"[25]; indeed, SCA performs scans looking for
exposures and misconfigurations in monitored hosts. "Those scans assess the
configuration of the hosts using policy files that contain rules to be tested
against the actual configuration of the host"[25]. Examples of SCA assess-
ments are: when it is necessary to change passwords, remove unnecessary

53

Security and Monitoring tools

software, and so on. The policies are written in the YAML format because it
is easily readable such that they can be quickly understood by humans; in
addition, new custom policies could be created in an easy way. In every SCA
check two types of definitions are gathered: metadata and logical descriptions
with particular attention to condition and rules fields. In the former infor-
mation, another field is present: compliance is used "to specify if the check
is relevant to any compliance specifications"[25]. Furthermore, the Wazuh
agents send only events necessary to keep updated on the global status. In
the SCA module, each agent has its local database and when a change in
the SCA checks is found, only the differences are sent to the manager. In
case there is no change, a summary event is sent in order to avoid wasting
network traffic while keeping the manager up to date. Each scan could have
three different results, that are passed, failed, and not applicable. Describing
Figure 2.7, two different elements are depicted: the integrity mechanism and
the alerting flow. Regarding integrity, two different mechanisms are present:
one for policy files and the other one for scan results. These mechanisms
have been created to "ensure integrity between agent-side and manager-side
states"[25]. The integrity of policy files mechanism is in charge to maintain
policy files and scan results aligned. When a policy file change is detected,
SCA invalidates the previous results about that policy in the database, and
a new request for that specific policy is performed. Therefore, whenever
the hash of a policy file changes, the following steps are performed: a log
message appears in the manager, it flushes the stored data for the specific
policy, the agent sends the scan results for the policy, and, in the end, the
manager updates its database. Differently, regarding the integrity of the scan
results, if the version between the agent side and the manager side differs,
the manager requests the agent for its latest scan data and refreshes the
database.

Monitoring security policies

Policy monitoring is "the process of verifying that all systems conform to a set
of predefined rules regarding configuration settings and approved application
usage"[25]. In order to accomplish this task, three different items are used by
Wazuh: Rootcheck, OpenSCAP, and CIS-CAT. About rootcheck it has been
replaced by the SCA module since the newest version of Wazuh. Indeed, the
rootcheck engine performs checks if a process is running, if a file is present, and

54

Security and Monitoring tools

if the content of a file contains a pattern. OpenSCAP is an integration with
Wazuh that provides the possibility to perform configuration and vulnerability
scans of an agent and it allows to verify of security compliance and to perform
vulnerability and specialized assessments. The former is done thanks to the
OpenSCAP policies which defines "the requirements that all systems [. . .]
must meet in order to be in line with applicable security policies and/or
security benchmarks"[25]. In according to the Wazuh documentation, the
Security Content Automation Protocol is a way to express and manipulate
security data in standardized ways. The security compliance evaluation
process is done through four different components: SCAP scanner, security
policies, profiles, and evaluation. The scanner is used to read SCAP policy
and to perform checks on whether or not the system is compliant with it. The
security policies, recognizable even as SCAP content, determine what should
be the settings of a system and they are composed of machine-readable
descriptions of the rules the system should follow. Moreover, each security
policy is composed of one or more profiles and each profile is made by sets
of rules and values. In other words, the profile is a "subset of rules within
the policy"[25]. Finally, the evaluation is the "process performed by the
OpenSCAP scanner on agent according to a specific security policy and
profile"[25].

Figure 2.8: Wazuh OpenSCAP flow

The OpenSCAP flow is described by Figure 2.8 where the agent runs the
openscap-scanner periodically according to the configuration and each result
the scan provides is sent to the manager which could generate an alert in
case the results’ states fail.
The last component used by Wazuh for monitoring security policies is the
CIS-CAT integration. Center for Internet Security is "an entity dedicated to
safeguarding private and public organizations against cyber threats"[25] and

55

Security and Monitoring tools

it is in charge to provide CIS benchmarks guidelines. Moreover, CIS-CAT
Pro is a tool that scans the targeted systems generating a report about the
differences between the system settings and the CIS benchmarks. Wazuh
integrates CIS-CAT, which is a proprietary product, into the Wazuh agents
and the result of each scan are reported as alerts.

Monitoring system calls

In Linux operating system, there is a way to prove "detailed real-time logging
about the events that are happening on"[25] the system and this is Audit.
It uses a set of rules to define what information to take from the log files.
Three different types of rules exist control rules which allow modification
of the configuration and the behavior of the Audit system; file system rules
which permit audit access to particular files or directories; and system call
rules in charge to log system calls that specified programs make. Wazuh
permits the integration of the output of Audit rules thanks to decoders and
rules which are suitable.

Command monitoring

Figure 2.9: Wazuh command monitoring flow

Among others, Wazuh can monitor items that are not present in the log
files. In order to accomplish this, Wazuh incorporates "the ability to monitor
the output of specific commands and treat the output as though it were
log file content"[25]. As shown in Figure 2.9, both the Wazuh manager and
Wazuh agent should be configured to monitor remote commands output.
After configurations are done, new custom rules could be created in order to

56

Security and Monitoring tools

Figure 2.10: Wazuh active response workflow

process the output and, eventually, trigger an alert. Some possible usages
could be monitoring disk space utilization, load average, changes in network
listeners, running processes, and so on.

Active response

The active response is an action that permits the application of countermea-
sures against active threats. It executes a script "in response to the triggering
of specific alerts based on alert level or rule group"[25]. Indeed, in case
of poor implementation of rules and responses, the system’s vulnerability
increases.
Looking at Figure 2.10, when an event received by the Wazuh manager fires
an alert configured in Active Response, the response is sent to the Agentd
module of the agent, which executes the received response. Thereafter, the
Active Response log is sent to the manager. First of all, active responses
could be either stateful or stateless. The former undo the action after a
specific period of time while the stateless responses are configured "as one-
time actions without an event to revert the original effect"[25]. Moreover,
the stateful responses perform the "basic actions of a stateless AR to undo
later the process based on the command configuration"[25]. Every time an
active response may be executed, the associated commands could be executed
locally, that is, on the agent that generates the alert, on the server, on a
defined agent specifying the IDs of the agents where running the script, or
on every agent in the environment. To create a new active response, at first,
a command must be defined and it will initiate certain scripts in response
to a trigger. Secondly, the active response configuration should say when

57

Security and Monitoring tools

and where the command should be executed. Wazuh already owns default
active response scripts such as disabling an account, adding an IP address to
the iptables deny list, adding an IP address to the firewalld drop list, adding
an IP address to the /etc/hosts.deny file, different firewall-drop responses,
restarting Wazuh, adding an IP address to null route, and so on.
In addition, Wazuh can integrate YARA, which is a "versatile Open Source
pattern-matching tool aimed to detect malware samples based on rule descrip-
tion"[25]. A use case could be to execute automatically YARA scans through
the active response module when a Wazuh File Integrity Monitoring alert
is triggered. In this way, the resource consumption decreases because the
scans are interested only in the modified files in the environment. Another
use case could be the integration with VirusTotal, which monitor a directory
in real-time, and if the modified file is malicious, it is deleted thanks to a
triggered active response.

Agentless monitoring

In the case of routers, firewalls, switches, and Linux/BSD systems, the
monitoring cannot happen through an agent, but agentless monitoring could
be the correct solution. In this case, alerts are triggered "when checksums on
the output changes"[25] and they show both the checksum and the diff output
of the change. To create an agentless solution, SSH is needed, particularly its
authentication. In general, the device should be added to the manager, then
it monitors all the connected devices and BSD integrity check, Linux integrity
check, generic diff check, and pix configurations check are performed.

Anti-flooding mechanism

This mechanism has been introduced to prevent a negative impact on the
manager’s network in case of a large burst of events sent from an agent. The
solution is a leaky bucket queue that collects all the generated events and
the sending rate is lower than the specified events per the second threshold.
Going in deeper, agents collect information from a huge number of sources
and they could send all the gathered information to the manager separated
into individual events. In the absence of congestion control, all those single

58

Security and Monitoring tools

Figure 2.11: Wazuh anti-flooding bucket

events can saturate the manager’s network, causing a loss of availability.
Different misconfigurations can cause this scenario, such as real-time FIM of
a directory with files that changes often, applications that retry on errors
without a rate limiting, and so on. To handle this situation, two different
mechanisms have been designed: agent-to-manager anti-flooding and internal
agent anti-flooding controls. The first mechanism precludes the saturation
of the network or of the manager by an agent through an agent-side leaky
bucket queue; differently, the latter uses internal limits in different modules
of the agent trying to slow down the rate at which events are sent.

The leaky bucket is "a congestion control located in agents and focused on
agent-to-manager communication"[25]. The events generated by the agent
are collected in a buffer of a specified size and, then, they are sent at a certain
rate below a chosen threshold. From Figure 2.11, four different flooding
situations are shown: warning alert, full alert, flood alert, and normal alert.
The former triggers an alert on the manager when the occupied capacity
reaches a threshold of 90 percent by default. The full alert is more serious
than the warning one because "a full bucket will drop incoming events"[25].

59

Security and Monitoring tools

Figure 2.12: Wazuh buffer usage with flooding

The flood alert is generated if, after a certain amount of time since the full
alert has been received, the buffer level has not fallen below the warning
level. The last case is generated when the buffer level is under a certain value,
70 percent by default, after a warning alert or higher has been triggered.
Each agent could configure the buffer differently: disabling it, configuring
the queue size, or the events per second. The queue size is "the maximum
number of events that can be held in the leaky bucket at one time"[25] and
it should be set as the expected rate at which the agent may generate events.
The events per second are the rate at which the events are pulled out from
the agent’s buffer at most. Moreover, warning, normal thresholds and a
tolerance time for triggering a flooding alert could be configured.
As shown in Figure 2.12, the green area represents a normal status, that
is, the buffer is working normally and in this situation, no alert should be
generated. When a number of events occur, as happens in the orange area,
the buffer usage could reach the warning level triggering a warning alert. If
events arrive with a speed higher than its processing, 100% of the buffer
usage could be reached, triggering the full alert. In this situation, all newly
arriving events are dropped because no space in the queue is available. At
this point, a timer is started and two possible things could happen: the buffer
usage decrease to 70% before the timer expiration and no alert flooding is
triggered, as shown in Figure 2.13 or the buffer usage stays high even after

60

Security and Monitoring tools

Figure 2.13: Wazuh buffer usage without flooding

the timer expiration and the flooding status (red area) is reached. When the
former happens, only a module shutdown or generation of excessive events
decreases can bring the situation back to normal, and when it happens a
normal alert is generated.
In order to avoid those situations, the Wazuh agent modules that could
cause saturation have been limited. The Logcollector module cannot "read
more than a configurable maximum number of lines from the same file per
read-cycle"[25] while CIS-CAT and Syscollector modules send their report
to the manager at a regular speed instead of sent as soon as a scan would
complete.

Agent labels

This feature has been added to include specific information about the agent
in the generated alerts. In large environments, it could be useful for grouping
agents with the same time zone, for example. To configure labels, a simple
XML structure is included in the alert, nesting the labels through separating
"key" terms in JSON formatted alerts.

61

Security and Monitoring tools

System inventory

The agents could collect also interesting system information and store them
into a SQLite database for each agent on the manager side and the Syscollector
module is in charge of this task. When the agent starts, the former module
runs periodically scans of defined targets and the collected data are sent to
the manager that updates appropriate tables of the database. The collected
information could be about hardware, operating system, packages, network
interfaces, ports, processes, windows updates, and so on.

Vulnerability detection

Wazuh allows the detection of "vulnerabilities in the applications installed
on agents using the Vulnerability Detector module"[25]. To accomplish this
task, the agent collects a list of installed applications and then it is sent
periodically to the manager. At the same time, the manager builds up a
"global vulnerability database from publicly available CVE repositories"[25]
and this information are matched with the agents’ list of applications. A new
alert is generated when a CVE affects a package installed on the monitored
hosts. Consequently, the package is labeled as vulnerable and the alerts
are stored in a per-agent vulnerabilities inventory. The module runs scans
on startup or every period of time. When new packages are installed, a
new scan is performed to check if they contain vulnerabilities. In case new
CVEs information updates the database of vulnerabilities or an interval
of time between two full scans expires, all the packages and the operating
system are re-scanned. Therefore, three different types of scans are possible:
baseline, full scan and partial scan. The former is triggered the first time
the Vulnerability Detector is enabled and it performs a "full scan for every
single package installed as well as the operating system"[25]. Moreover, the
CVE inventory is updated with the found vulnerabilities and eventual alerts
are generated. The full scan type is very similar to the baseline one and it
happens when new packages are installed or when the timer between two full
scans expires. The partial scan happens only when new packages are scanned.
In addition, two considerations can be done: the timer between two full scans
is set to protect the manager’s performance. Furthermore, every vulnerability
could be labeled as valid, which indicates that the vulnerability has not been

62

Security and Monitoring tools

Figure 2.14: Wazuh Log Analysis without Sibling decoders

packaged yet, as pending in case the vulnerability should be confirmed during
a full scan, and obsolete which indicates the vulnerability is no more present
in the system. Finally, two different alert types are generated: detection
alerts in case new vulnerabilities are added to the inventory and removal
alerts when vulnerabilities have been removed from the inventory.

2.2.5 Ruleset

It is a set of rules used to detect attacks, intrusions, software misuse, configu-
ration problems, application errors, malware, rootkits, system anomalies, or
security policy violations in the monitored system. At version 4.3 of Wazuh,
more than 3000 rules are supported and they accomplish technologies such
as Syslog, Docker, Suricata, Telnet, SSH, and so on. Moreover, in the Wazuh
repository new rules, decoders and rootkits can be found and, at the same
time, each rule is mapped to PCI-DSS compliance controls in order to identify
better when an alert is related to a specific compliance requirement. In order
to analyze the information coming from the received events, Wazuh uses
decoders in order to "identify event types and then extract the most relevant
fields"[25].
From OSSEC, Wazuh takes thirteen predefined fields such as user, source
and destination IP address, source and destination port, protocol, the action
performed, ID, URL, data, extra data, status, and system name. From this
set, only eight fields can be extracted simultaneously. However, it is often
necessary to extract more than eight fields and, at the same time, the data

63

Security and Monitoring tools

Figure 2.15: Wazuh Log Analysis with Sibling decoders

interested is not part of the predefined set of fields. For these reasons, Wazuh
extends OSSEC original set to decode an unlimited number of fields where
the field names are related to what is extracted. This is done through the
<order> tag into a JSON field. Another important feature of Wazuh is the
possibility of Sibling Decoders which are a decoder-building strategy helping
the creation of custom rules. Indeed, different logs have different needs
and different nested information, in particular in the case of dynamically
structured logs. At first, it could be useful to understand better how the
analysisd module works: Wazuh collects log events from a vast amount of
sources; then, for every message, "the ruleset is analyzed using a very simple
and resource-efficient logic that allows the Wazuh manager to handle large
amounts of log data requiring few resources"[25]. Every decoder without a
parent checks the log and when a condition is met, all the decoder children
check again the log, as shown in Figure 2.14. Furthermore, when a particular
parent decoder is found, the other parents’ ones are no more checked and,
of course, it means that if decoders are built too generic in the matching
conditions, they could result in false positives and it could happen that the
right decoders are not triggered.
In the case of dynamically structured logs, the provided information could
be omitted or changed in the order, thus it becomes impossible to create all
necessary decoders to match "each one of the possible combinations in which
security-relevant data may be received"[25]. For these reasons, the necessity
of sibling decoders which take advantage of the parent-children matching
logic, the user can create a set of decoders where each one’s parent of the
others, as shown in Figure 2.15. The consequence is that when one decoder

64

Security and Monitoring tools

is matched, all the other "sibling" ones are checked whilst they extract pieces
of information at a time. Another consequence is that if the log information
varies or is omitted, the analysisd module is the same ability to extract as
much information as possible. In addition, another advantage is present: the
sibling decoders are more readable with respect to the long regular expression
strings used in "normal" decoders.

65

Chapter 3

Implementation of Wazuh
in the Weseth platform

In the previous chapter, among the various proposed solutions, one has been
chosen for implementation in the Weseth platform: Wazuh. According to
the platform necessities, different events should be taken into consideration.
In the first section, the test environment to perform tests in order to validate
the Wazuh effectiveness is presented; thereafter, in the second section the
events to be monitored are presented; finally, in the rest of the chapter, all
the tests performed are described.

3.1 Test Environment

First of all, for the validation of the performed tests, a test environment
has been built up. Two Weseth boxes have been used for its creation of it.
In one of them, an Ubuntu Server distribution has been used upon which
the Wazuh indexer, Wazuh server, Wazuh dashboard, and Filebeat have
been installed. The other one is an original Weseth Box, where the Wazuh
agent has been installed. Moreover, they communicate in a local network
configuration without being exposed to the public Internet. The Wazuh
documentation recommends installing an indexer, server, and dashboard

66

Implementation of Wazuh in the Weseth platform

Figure 3.1: Diagram for Wazuh default installation

in three different places but for the test use case and in order to resemble
the entire structure they have been placed in only one box. The original
configuration should follow Figure 3.1.
As shown in Figure 3.1, three components should communicate between
them through the TLS protocol with pre-determined ports. In the test
environment taken into consideration, all components are installed in a single
box, communications between them happen in localhost (IP 127.0.0.1) and
the only opened ports to external are the port 1514, where Wazuh agents
send their log data, and port 1515, for the enrollment of new ones for the
Wazuh server. In the same way, for the Wazuh Dashboard only port 443 is
opened even if it is the standard port for HTTPS traffic. Furthermore, due
to the lack of clusters, ports 1516 and 9300-9400 are closed, as seen in the
Listing 3.1.

Listing 3.1: Configuration of Wazuh cluster for test environment
1 <cluster>
2 <name>wazuh</name>
3 <node_name>node01</node_name>
4 <node_type>master</node_type>
5 <key></key>
6 <port>1516</port>
7 <bind_addr>0.0.0.0</bind_addr>
8 <nodes>

67

Implementation of Wazuh in the Weseth platform

9 <node>NODE_IP</node>
10 </nodes>
11 <hidden>no</hidden>
12 <disabled>yes</disabled>
13 </cluster>

3.2 Events to monitor

When the researcher has to talk with the box, it uses the Weseth Client
which sends commands to the Weseth Box. For this reason, the principal
target of monitoring is the Weseth Box, over which the Wazuh agent may
be installed. The events to monitor should be referred to the box operating
system and applications. About the former, it is a custom distribution
based on Debian, which is a UNIX-based OS. The company, Drivesec, is
interested in monitoring events, but at the same time, two challenges are
open. The first one concerns the limited resources that can be used by the
Wazuh agent daemon but the most important challenge concerns the network
communication because LTE allows limited usage of bandwidth between
the Box and the Wazuh Server. According to that, the events sent by the
Box to the Server should be limited to avoid wasting useless bandwidth
for not-so-interesting log data and information. Therefore, a solution has
been provided: as seen in the previous chapter, Wazuh allows monitoring
system calls through the Linux service Auditd. The latter is the "userspace
component to the Linux Auditing System"[27] and it is "responsible for
writing audit records to the disk"[27]. It allows three different types of rules
that are control rules which allow configuring the Audit system’s behavior,
file system rules used as file watches, and system call rules. In practice,
both Wazuh and auditd rules allow monitoring the file system, the first with
the FIM module while the second with specific rules. The difference is that
Wazuh allows monitoring, in real-time, only the entire directory and this
means that a huge number of logs are created and this is not compliant with
the box constraints. Differently, auditd rules allow a more granular definition
of what the system is interested in, allowing it to monitor, in real-time,
both single files and entire directories. From those premises, the file system
monitoring is in charge of auditd both for the detection of anomalies in single
files and entire directories. Therefore, a trade-off between security interesting

68

Implementation of Wazuh in the Weseth platform

events and resource constraints should be found, and Drivesec has decided
to monitor the following activities:

• Integrity of file and directories

• Hardware issues

• Process crashes

• Kernel module loading/unloading

• Kernel parameters tuning

• Privilege escalation attempts

• Peripherals attachment

• Statistical resource usage

• Process states such as debugger attaching

• Power state changes

• Discretionary Access Control

• User and Group Management

• Firewall violations

• Dangerous and suspicious activities

Integrity of file and directories

For the integrity of a file, it refers to additions, removals, and changes
of content or file’s attributes, while to the integrity of the directory. It
refers to the addiction, modification, deletion, and modification of files in
or in the directory itself. About files and directories, as written above,
auditd rules have been used, and the elements that are interesting from a
security point of view are files controlling user accounts and groups, firewall
rules configuration files, service unit files, network configurations, DNS
configurations, containerization software configurations, cron and scheduled

69

Implementation of Wazuh in the Weseth platform

jobs, shell/profile configurations, and digital keys and certificates. The
interest is in writes and changes of attributes to these files and directories
and for each one, two rules should be generated. This comes from the
necessity to specify the key (-k) of each rule; indeed, Wazuh allows to insert
keys in the auditd rule such that it will be recognized by Wazuh itself and
will be consequently analyzed. However, from tests performed, even if two
different keys can be used to label a rule, it is better to specify two different
ones: one for the write changes and the other one for the changes of attributes
activities.

Listing 3.2: Auditd rules for write and attributes changes of /etc/passwd
1 ## Rule for monitoring file writes
2 -w /etc/passwd -p w -k audit-wazuh-w
3

4 ## Rule for monitoring file attributes changes
5 -w /etc/passwd -p a -k audit-wazuh-a

From the Listing 3.2, the specified permission -p w for the writes changes is
labelled with the key audit-wazuh-w while the permission for the attributes
changes -p a is labelled with the key audit-wazuh-a. Hence, generally, for
each file and directory defined above, two different auditd rules have been
added such that they create logs in the monitored hosts, in particular in the
/var/log/audit/audit.log file. In order to allow the forwarding of these logs,
the Listing 3.3 is added to the configuration file, ossec.conf, as shown below.

Listing 3.3: Configuration for the forwarding of auditd logs
1 <localfile>
2 <log_format>audit</log_format>
3 <location>/var/log/audit/audit.log</location>
4 </localfile>

Test performed As seen in the Listing 3.4, two simple actions have been
performed: insertion of a new line and, immediately after, its cancellation.
In the line 1 of the Listing 3.4, the variable StringArray contains all the file
the system is interested in.

Listing 3.4: Tests performed for validate file integrity changes

70

Implementation of Wazuh in the Weseth platform

1 for val in "\${StringArray[@]}"; do
2 echo "Append my text to a file, please" >> \$val
3 sed -i '' -e '\$ d' \$val
4 done

At the same time, also directories should be monitored, particularly directories
within which all the files are important from the monitoring point of view.

Listing 3.5: Tests performed for validate directory integrity changes
1 string1="file"
2 for val in "${StringArray[@]}"; do
3 str=valstring1
4 touch $str
5 echo "New line inside the file" >> $str
6 rm $str
7 done

As shown in the Listing 3.5, the actions performed for each directory, put
as an item in the list StringArray, are insertion of a new file, appending a
string, and, immediately, the file itself is removed.

Test result Remembering that the directories and files integrities are
monitored thanks to auditd rules, each log is treated by Wazuh following
the decoder in Listing 3.6.

Listing 3.6: Decoder used for file integrity
1 <decoder name="auditd-syscall">
2 <parent>auditd</parent>
3 <regex offset="after_regex">type=PATH msg=audit\(\S+\): item=\S+ name="

(\.+)" inode=(\S+) dev=\S+ mode=(\S+) ouid=\S+ ogid=\S+ |type=PATH msg
=audit\(\S+\): item=\S+ name=\((null)\) inode=(\S+) dev=\S+ mode=(\S+)
ouid=\S+ ogid=\S+ </regex>

4 <order>audit.file.name, audit.file.inode, audit.file.mode</order>
5 </decoder>

Moreover, when this decoder is triggered and a line is appended to the file,
the rule in Listing 3.7 is triggered.

71

Implementation of Wazuh in the Weseth platform

Figure 3.2: Wazuh alert for file write access

Figure 3.3: Wazuh alert for file sed command

Listing 3.7: Rule used for write in a file
1 <rule id="80781" level="3">
2 <if_sid>80780</if_sid>
3 <field name="audit.file.name">\.+</field>
4 <description>Audit: Watch - Write access: $(audit.file.name).</

description>
5 <group>audit_watch_write,gdpr_IV_30.1.g,</group>
6 </rule>

The triggered rule creates the alert with a level of 3 seen at Figure 3.2 when
the command in line 2 of Listing 3.4 is run.
Similarly, when the line is deleted from the file, as shown in the line 3 of
the Listing 3.4, the rule in Listing 3.7 is triggered again creating the alert at
Figure 3.3, with an alert level of 3.
Instead, for the command in line 6 of Listing 3.5, the rule in Listing 3.8 is
triggered and the alert in Figure 3.4 is created, with again an alert level of 3.

Listing 3.8: Rule used for write in a directory
1 <rule id="80791" level="3">
2 <if_group>audit_watch_write</if_group>
3 <match>type=DELETE</match>
4 <description>Audit: Deleted: $(audit.file.name).</description>
5 <mitre>
6 <id>T1070.004</id>
7 </mitre>
8 <group>audit_watch_delete,audit_watch_write,gdpr_II_5.1.f,gdpr_IV_30.1.

g,</group>
9 </rule>

At the same time, if tests at Listing 3.4 and Listing 3.5 are performed with

72

Implementation of Wazuh in the Weseth platform

Figure 3.4: Wazuh alert for file deleting in a monitored directory

directories and files that are not interesting from a security point of view, no
alerts are generated by Wazuh.

Hardware issues

Hardware issue refers to problems with the hardware devices such as the
Weseth box, the LTE modem, and so on. From this aspect, various problems
have been encountered. Different hardware manufacturers define different
structures and types of logs, and embracing them is impossible. The adopted
solution is trying to embrace the most using a simple detector and rule. When
a log such as [8.510810] ata1: SError: { UnrecovData 10B8B BadCRC }
is analyzed, Wazuh does not use any type of decoder, however the rule at
Listing 3.9 is triggered; it tries to match some bad words defined at lines 1
of the Listing 3.9.

Listing 3.9: Rule used for generic errors
1 <var name="BAD_WORDS">core_dumped|failure|error|attack| bad |illegal |

denied|refused|unauthorized|fatal|failed|Segmentation Fault|Corrupted
</var>

2

3 <rule id="1002" level="2">
4 <match>$BAD_WORDS</match>
5 <description>Unknown problem somewhere in the system.</description>
6 <group>gpg13_4.3,</group>
7 </rule>

However, there is another problem: by default, the alerts shown in the Wazuh
dashboard have as 3 the minimum alert level while the rule at Listing 3.9
produces an alert level of 2. Therefore, ultimately, the alerts as shown in
Figure 3.5 are generated only if the configuration of the Wazuh manager is
changed as shown in the Listing 3.10, or changing the corresponding Wazuh
rule with an alert level of 3.

73

Implementation of Wazuh in the Weseth platform

Figure 3.5: Wazuh alert for generic hardware issue

Listing 3.10: Manager configuration about alert level
1 <alerts>
2 <log_alert_level>2</log_alert_level>
3 <email_alert_level>12</email_alert_level>
4 </alerts>

This event has been the most difficult to emulate due to the challenge in
creating hardware problems. The only way to accomplish it has been to copy
a log with hardware issue in the log file.

Process crashes

These events are related to processes that crash abnormally. Wazuh has, by
default, some rules to accomplish the monitoring of these events.

Test performed As seen in the Listing 3.11 two single actions have been
performed: starting the top command in the foreground and, then, as shown
at line 2 of the same Listing, killing it with a SIGSEV signal that is a
segmentation fault one, and, in Linux, it corresponds to 11.

Listing 3.11: Tests performed for validate process crashes events
1 ./top&
2 kill -11 $(pidof top)

Test result The decoders used are different and they could be found in
the 0040-auditd_decoders.xml file while the rule triggered for the specific
event is the one shown in Listing 3.12 while the alert generated is the one at
Figure 3.6 with an alert level of 10.

74

Implementation of Wazuh in the Weseth platform

Figure 3.6: Wazuh alert for process crash

Listing 3.12: Rule used for process crashes detection
1 <rule id="80711" level="10">
2 <if_sid>80700</if_sid>
3 <field name="audit.type">ANOM_ABEND</field>
4 <description>Auditd: Process ended abnormally.</description>
5 <group>audit_anom,gdpr_IV_30.1.g,gdpr_IV_35.7.d,gpg13_4.14,hipaa_164

.312.b,nist_800_53_AU.6,nist_800_53_SI.4,pci_dss_10.6.1,pci_dss_11.4,
tsc_CC6.1,tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>

6 </rule>

Kernel module loading/unloading

These events refer to the loading or unloading of kernel modules in a Linux
environment where a module is a piece of code. In Linux, two different
commands can be used to achieve the loading and they are modprobe and
insmod where the former needs the path where the module is placed, while
the latter watches itself directly in the default module directory. Moreover,
the former can be configured with the modprobe.conf file, and with the
modprobe.d directory: for these reasons, they are interesting from a security
point of view and they have monitored thanks to the auditd rules similar
to the ones in Listing 3.2. On the contrary, in order to unload the loaded
module, the rmmod command is used, and monitored. For the commands,
the auditd rules shown in the Listing 3.13 have been used.

Listing 3.13: Auditd rules for kernel modules loading/unloading
1 ## Kernel module loading and unloading
2 -a always,exit -F perm=x -F auid!=-1 -F path=/usr/sbin/insmod -k audit-

wazuh-c
3 -a always,exit -F perm=x -F auid!=-1 -F path=/usr/sbin/modprobe -k audit-

wazuh-c
4 -a always,exit -F perm=x -F auid!=-1 -F path=/usr/sbin/rmmod -k audit-

wazuh-c
5 -a always,exit -F arch=b64 -S finit_module -S init_module -S

delete_module -F auid!=-1 -k audit-wazuh-c

75

Implementation of Wazuh in the Weseth platform

As shown in the Listing before, the interest is on the command, and, for this
reason, the key -k audit-wazuh-c has been added; indeed, it is analyzed by the
decoders and rules for logs coming from auditd rules related to commands.
Moreover, here the permission is related to the execution of commands and
each audit rule is marked with the permission perm=x.

Test performed As seen in the Listing 3.14, at first an example module is
loaded with insmod, then it is removed with rmmod; lately, the same module
is loaded with the command modprobe, and, finally, it is removed again.

Listing 3.14: Tests performed for validate kernel module loading/unloading
1 insmod /lib/modules/5.10.0-13-amd64/kernel/fs/ufs/ufs.ko
2 rmmod /lib/modules/5.10.0-13-amd64/kernel/fs/ufs/ufs.ko
3 modprobe ufs
4 rmmod /lib/modules/5.10.0-13-amd64/kernel/fs/ufs/ufs.ko

Test result As seen in the case of process crashes, even here different
decoders from the 0040-auditd_decoders.xml file have been used to find as
much information as possible from the logs. Differently, the triggered rule is
the one in Listing 3.15 that has an alert level of 3.

Listing 3.15: Rule used for kernel module loading and unloading
1 <rule id="80792" level="3">
2 <if_sid>80700</if_sid>
3 <list field="audit.key" lookup="match_key_value" check_value="command">

etc/lists/audit-keys</list>
4 <description>Audit: Command: $(audit.exe).</description>
5 <group>audit_command,gdpr_IV_30.1.g,</group>
6 </rule>

The rule embraces both loading and unloading actions and the generated
alerts are always the same independently from the action performed. An
example alert is shown in Figure 3.7.

76

Implementation of Wazuh in the Weseth platform

Figure 3.7: Wazuh alert for kernel module loading/unloading

Kernel parameters tuning

Kernel parameters are tunable values that can be adjusted while the system
is running and their tuning could change the system’s behavior. For that
reason, the tuning should be monitored. The tuning happens with the
command sysctl and also here the auditd rule shown in the Listing 3.16 is
able to detect both the reading of already existent parameters and writing
of new ones.

Listing 3.16: Auditd rules for kernel parameters tuning loading/unloading
1 -a always,exit -F perm=x -F auid!=-1 -F path=/usr/sbin/sysctl -k audit-

wazuh-c

Even in the latter, the permission concerns the execution and the key used
is audit-wazuh-c. Moreover, also the file /etc/sysctl.conf and the directory
/etc/sysctl.d contains configuration and kernel parameters: they are also
monitored with the file and directory integrity checks.

Test performed For the kernel parameters tuning, the test performed is
the one seen in the Listing 3.17 where the command sysctl is run twice. In
line 1, the command shows all the kernel parameters, while in the second
one, the parameter net.ipv4.ip_forward is set to 1.

Listing 3.17: Tests performed for validate kernel parameters tuning
1 sysctl -a
2 sysctl -w net.ipv4.ip_forward=1

Test result Every time one log coming as a result of auditd rules is created,
it triggers the decoders at file 0040-auditd_decoders.xml and the rule at
Listing 3.15.

77

Implementation of Wazuh in the Weseth platform

Privilege escalation attempts

Privilege escalation means exploiting bugs, and misconfigurations of appli-
cations and operating systems to gain more privileges that allow to access
resources not accessible before. Two different types of privilege escalation
exist vertical and horizontal. In the vertical case, a user with low privileges
tries to gain higher ones; differently, in the horizontal privilege escalation, a
normal user tries to gain the privileges of another normal user. Wazuh is able
to detect privilege escalation attempts analyzing logs in /var/log/auth.log,
as shown in the Listing 3.18.

Listing 3.18: Configuration for the forwarding of auth.log
1 <localfile>
2 <log_format>syslog</log_format>
3 <location>/var/log/auth.log</location>
4 </localfile>

To be more specific and to know who is the user after the sudo command, it
is necessary to configure PAM. So, each login with PAM or SSH is logged
and Wazuh analyzes their logs, therefore no new rules or auditd rules have
been added.

Test performed In Listing 3.19 the tests performed for validate the
detection of privilege escalation attempts.

Listing 3.19: Tests performed for validate privilege escalation attempts
1 ## Run sudo as normal user with the correct password
2 echo <correct_password> | sudo -S sleep 1 && sudo su - root
3 ## Run sudo as normal user with the wrong password
4 echo <wrong_password> | sudo -S sleep 1 && sudo su - root
5 ## Run sudo as normal user with the wrong password for 5 times
6 for i in {1..5}
7 do
8 echo <wrong_password> | sudo -S sleep 1 && sudo su - root
9 done

10

11 ## Run ssh login with an existent user and correct password
12 sshpass -p <correct_password> ssh <username>@<ip_address>

78

Implementation of Wazuh in the Weseth platform

13 ## Run ssh login with an existent user and wrong password
14 sshpass -p <wrong_password> ssh <username>@<ip_address>
15 ## Run ssh login with an existent user and wrong password for 15 times
16 for i in {1..15}
17 do
18 sshpass -p <wrong_password> ssh <username>@<ip_address>
19 done
20 ## Run ssh login with a non-existent user
21 sshpass -p <password> ssh <username>@<ip_address>
22 ## Run ssh login to a different port
23 sshpass -p <password> ssh <username>@<ip_address> -p 55
24 ## Run ssh login to a different port for 10 times
25 for i in {1..10}
26 do
27 sshpass -p <password> ssh <username>@<ip_address> -p 55
28 done
29 ## Run ssh login and stopping it immediately after
30 sshpass -p <password> ssh <username>@<ip_address>&
31 kill -11 $(pidof sshpass)

The first part concerns the correct and wrong login with the PAM module;
the second one concerns the correct and wrong attempt to login with SSH.
About the first part, the tests are written in that way because the standard
input has to be filled with the echoed password and the sleep of 1 second
has been used for that reason.

Test result For the line 2 of Listing 3.19 the decoder in Listing 3.20 is
triggered together with the rules at Listing 3.21 and at Listing 3.22.

Listing 3.20: Decoder used for first time sudo executed
1 <decoder name="sudo-fields">
2 <parent>sudo</parent>
3 <prematch>\s</prematch>
4 <regex>^\s*(\S+)\s*:</regex>
5 <order>srcuser</order>
6 <fts>name,srcuser,location</fts>
7 <ftscomment>First time user executed the sudo command</ftscomment>
8 </decoder>

Listing 3.21: Rule used for first time sudo executed

79

Implementation of Wazuh in the Weseth platform

Figure 3.8: Wazuh alert for the first time sudo is executed

Figure 3.9: Wazuh alert for sudo success

1 <rule id="5403" level="4">
2 <if_sid>5400</if_sid>
3 <if_fts />
4 <description>First time user executed sudo.</description>
5 <mitre>
6 <id>T1548.003</id>
7 </mitre>
8 </rule>

Listing 3.22: Rule used for sudo success
1 <rule id="5402" level="3">
2 <if_sid>5400</if_sid>
3 <regex> ; USER=root ; COMMAND=| ; USER=root ; TSID=\S+ ; COMMAND=</

regex>
4 <description>Successful sudo to ROOT executed.</description>
5 <mitre>
6 <id>T1548.003</id>
7 </mitre>
8 <group>pci_dss_10.2.5,pci_dss_10.2.2,gpg13_7.6,gpg13_7.8,gpg13_7.13,

gdpr_IV_32.2,hipaa_164.312.b,nist_800_53_AU.14,nist_800_53_AC.7,
nist_800_53_AC.6,tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>

9 </rule>

Moreover, for the same test performed, the alert with a level of 4 is triggered,
as shown in Figure 3.8, and the alert with level 3 is seen in Figure 3.9.
For the line 4 at Listing 3.19, various decoders that are present in the file
0205-pam_decoders.xml have been used to gather all the possible information.
Furthermore, the triggered rule at Listing 3.23 generates the alert with alert
level of 5 shown in Figure 3.10.

80

Implementation of Wazuh in the Weseth platform

Figure 3.10: Wazuh alert for sudo failure

Figure 3.11: Wazuh alert for two sudo failures

Listing 3.23: Rule used for sudo failure
1 <rule id="5503" level="5">
2 <if_sid>5500</if_sid>
3 <match>authentication failure; logname=</match>
4 <description>PAM: User login failed.</description>
5 <mitre>
6 <id>T1110.001</id>
7 </mitre>
8 <group>authentication_failed,pci_dss_10.2.4,pci_dss_10.2.5,gpg13_7.8,

gdpr_IV_35.7.d,gdpr_IV_32.2,hipaa_164.312.b,nist_800_53_AU.14,
nist_800_53_AC.7,tsc_CC6.1,tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>

9 </rule>

From line 6 to line 9 of Listing 3.19, a user login fails for 5 times due to
wrong passwords. The first time, the alert at Figure 3.10 is generated. The
second time, the login action triggers only a rule without decoders that is
the one in Listing 3.24 generating the alert at Figure 3.11 with alert level of
10.

Listing 3.24: Rule used for twice sudo failures
1 <rule id="2502" level="10">
2 <match>more authentication failures;|REPEATED login failures</match>
3 <description>syslog: User missed the password more than one time</

description>
4 <mitre>
5 <id>T1110</id>
6 </mitre>
7 <group>authentication_failed,pci_dss_10.2.4,pci_dss_10.2.5,gpg13_7.8,

gdpr_IV_35.7.d,gdpr_IV_32.2,hipaa_164.312.b,nist_800_53_AU.14,
nist_800_53_AC.7,tsc_CC6.1,tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>

8 </rule>

81

Implementation of Wazuh in the Weseth platform

Figure 3.12: Wazuh alert for three sudo failures

The third time the login is failed, the triggered rule is at Listing 3.25 that
generates the alert with level 10 of Figure 3.12.

Listing 3.25: Rule used for three sudo failures
1 <rule id="5404" level="10">
2 <if_sid>5401</if_sid>
3 <match>3 incorrect password attempts</match>
4 <description>Three failed attempts to run sudo</description>
5 <mitre>
6 <id>T1548.003</id>
7 </mitre>
8 <group>pci_dss_10.2.4,pci_dss_10.2.5,gpg13_7.8,gdpr_IV_35.7.d,

gdpr_IV_32.2,hipaa_164.312.b,nist_800_53_AU.14,nist_800_53_AC.7,
tsc_CC6.1,tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>

9 </rule>

Every time the login fails more than one time, the triggered rule is the one
at Listing 3.23 and the Figure 3.10 shows the alert generated.
The second part of the tests performed concerns SSH login. In line 12 of
Listing 3.19, a SSH login is run with an existent username and a correct
password. The incoming log triggers the decoder at Listing 3.26 and the rule
at Listing 3.27.

Listing 3.26: Decoder used for SSH login success
1 <decoder name="sshd-success">
2 <parent>sshd</parent>
3 <prematch>^Accepted</prematch>
4 <regex offset="after_prematch">^ \S+ for (\S+) from (\S+) port (\S+)</

regex>
5 <order>user, srcip, srcport</order>
6 <fts>name, user, location</fts>
7 </decoder>

82

Implementation of Wazuh in the Weseth platform

Figure 3.13: Wazuh alert for SSH login success

Listing 3.27: Rule used for SSH login success
1 <rule id="5715" level="3">
2 <if_sid>5700</if_sid>
3 <match>^Accepted|authenticated.$</match>
4 <description>sshd: authentication success.</description>
5 <mitre>
6 <id>T1078</id>
7 <id>T1021</id>
8 </mitre>
9 <group>authentication_success,gdpr_IV_32.2,gpg13_7.1,gpg13_7.2,

hipaa_164.312.b,nist_800_53_AU.14,nist_800_53_AC.7,pci_dss_10.2.5,
tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>

10 </rule>

When, respectively, the decoder and the rule are triggered, the alert with
level 3 at Figure 3.13 is generated.
The test performed at line 14 of Listing 3.19 refers to SSH login failure due
to a wrong password. The decoder is the one at Listing 3.28, while the rule
is the one at Listing 3.29.

Listing 3.28: Decoder used for SSH login failure
1 <decoder name="ssh-failed">
2 <parent>sshd</parent>
3 <prematch>^Failed \S+ </prematch>
4 <regex offset="after_prematch">^for (\S+) from (\S+) port (\d+)</regex>
5 <order>user, srcip, srcport</order>
6 </decoder>

Listing 3.29: Rule used for SSH login failure
1 <rule id="5760" level="5">
2 <if_sid>5700,5716</if_sid>
3 <match>Failed password|Failed keyboard|authentication error</match>
4 <description>sshd: authentication failed.</description>
5 <mitre>
6 <id>T1110.001</id>

83

Implementation of Wazuh in the Weseth platform

Figure 3.14: Wazuh alert for SSH login failure

7 <id>T1021.004</id>
8 </mitre>
9 <group>authentication_failed,gdpr_IV_35.7.d,gdpr_IV_32.2,gpg13_7.1,

hipaa_164.312.b,nist_800_53_AU.14,nist_800_53_AC.7,pci_dss_10.2.4,
pci_dss_10.2.5,tsc_CC6.1,tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>

10 </rule>

The consequent alert, with level 5, is the one in Figure 3.14.
From line 16 up to line 19 of Listing 3.19, for fifteen times, a SSH login is
performed with a wrong password and the result are two different alerts
generated from the triggering of the decoder at Listing 3.30 and the rules at
Listing 3.31.

Listing 3.30: Decoder used for SSH login failure excesses
1 <decoder name="sshd-exceed">
2 <parent>sshd</parent>
3 <prematch> exceeded for </prematch>
4 <regex offset="after_prematch">^(\S+) from (\S+) port (\d+) </regex>
5 <order>user, srcip, srcport</order>
6 </decoder>

Listing 3.31: Rule used for SSH login failures excesses
1 <rule id="5758" level="8">
2 <if_sid>5700,5710</if_sid>
3 <match>^error: maximum authentication attempts exceeded </match>
4 <description>Maximum authentication attempts exceeded.</description>
5 <mitre>
6 <id>T1110</id>
7 </mitre>
8 <group>authentication_failed,gpg13_7.1,</group>
9 </rule>

The consequent alert is the one at Figure 3.15.
Moreover, because all these consequent tries are part of an attack pattern,

84

Implementation of Wazuh in the Weseth platform

Figure 3.15: Wazuh alert for SSH login failures excesses

Figure 3.16: Wazuh alert for multiple SSH login failures

the rule at Listing 3.32 is triggered causing the generation of an alert with
level 10 of Figure 3.16.

Listing 3.32: Rule used for multiple SSH login failures
1 <rule id="40111" level="10" frequency="12" timeframe="160">
2 <if_matched_group>authentication_failed</if_matched_group>
3 <same_source_ip />
4 <description>Multiple authentication failures.</description>
5 <mitre>
6 <id>T1110</id>
7 </mitre>
8 <group>authentication_failures,pci_dss_10.2.4,pci_dss_10.2.5,gpg13_7.1,

gpg13_7.8,gdpr_IV_35.7.d,gdpr_IV_32.2,hipaa_164.312.b,nist_800_53_AU
.14,nist_800_53_AC.7,tsc_CC6.1,tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>

9 </rule>

Step by step, when failures increase, new attack patterns are found such
as brute force attack that is monitored thanks to the rule at Listing 3.33
that fires the alert at Figure 3.17 when the failures are more than the value
frequency of the rule: in this case 8.

Listing 3.33: Rule used for SSH brute force attack
1 <rule id="5763" level="10" frequency="8" timeframe="120" ignore="60">
2 <if_matched_sid>5760</if_matched_sid>
3 <same_source_ip/>
4 <description>sshd: brute force trying to get access to the system.

Authentication failed.</description>
5 <mitre>
6 <id>T1110</id>
7 </mitre>

85

Implementation of Wazuh in the Weseth platform

Figure 3.17: Wazuh alert for SSH brute force attack

8 <group>authentication_failures,gdpr_IV_35.7.d,gdpr_IV_32.2,hipaa_164
.312.b,nist_800_53_SI.4,nist_800_53_AU.14,nist_800_53_AC.7,pci_dss_11
.4,pci_dss_10.2.4,pci_dss_10.2.5,tsc_CC6.1,tsc_CC6.8,tsc_CC7.2,tsc_CC7
.3,</group>

9 </rule>

In line 21 of Listing 3.19, a SSH login is performed with a non existent user
causing the triggering of the decoder at Listing 3.34 and the rule at Listing
3.35.

Listing 3.34: Decoder used for SSH login with invalid user
1 <decoder name="ssh-invalid-user">
2 <parent>sshd</parent>
3 <prematch>^Invalid user|^Illegal user</prematch>
4 <regex offset="after_prematch">(\S+) from (\S+)</regex>
5 <order>srcuser,srcip</order>
6 </decoder>

Listing 3.35: Rule used for SSH login with invalid user
1 <rule id="5710" level="5">
2 <if_sid>5700</if_sid>
3 <match>illegal user|invalid user</match>
4 <description>sshd: Attempt to login using a non-existent user</

description>
5 <mitre>
6 <id>T1110.001</id>
7 <id>T1021.004</id>
8 <id>T1078</id>
9 </mitre>

10 <group>authentication_failed,gdpr_IV_35.7.d,gdpr_IV_32.2,gpg13_7.1,
hipaa_164.312.b,invalid_login,nist_800_53_AU.14,nist_800_53_AC.7,
nist_800_53_AU.6,pci_dss_10.2.4,pci_dss_10.2.5,pci_dss_10.6.1,tsc_CC6
.1,tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>

11 </rule>

86

Implementation of Wazuh in the Weseth platform

Figure 3.18: Wazuh alert for SSH login with invalid user

Figure 3.19: Wazuh alert for SSH timeout

The rule above generates the alert with level 5 of the Figure 3.18.
In line 23 of Listing 3.19, a SSH login is performed with a correct user but
with a port where the SSH service is not hosted. The result is a connection
timed out that is detected from the simple decoder at Listing 3.36 and from
the rule at Listing 3.37.

Listing 3.36: Decoder used for SSH
1 <decoder name="sshd">
2 <program_name>^sshd</program_name>
3 </decoder>

Listing 3.37: Rule used for SSH timeout
1 <rule id="5704" level="4">
2 <if_sid>5700</if_sid>
3 <match>fatal: Timeout before authentication for</match>
4 <description>sshd: Timeout while logging in.</description>
5 </rule>

The resulting alert is the one in Figure 3.19.
From line 25 up to line 28 of Listing 3.19, a loop with ssh login attempts to
the port 55, that is not the port hosting the SSH service, is performed. No
decoder is triggered while, being a loop, the rule at Listing 3.38 is because
the frequency of the timeout action is bigger than 6.

Listing 3.38: Rule used for SSH high number timeouts
1 <rule id="5705" level="10" frequency="6" timeframe="360">
2 <if_matched_sid>5704</if_matched_sid>
3 <description>sshd: Possible scan or breakin attempt (high number of

login timeouts).</description>

87

Implementation of Wazuh in the Weseth platform

Figure 3.20: Wazuh alert for SSH scan

Figure 3.21: Wazuh alert for SSH connection reset

4 <mitre>
5 <id>T1190</id>
6 <id>T1110</id>
7 </mitre>
8 <group>gdpr_IV_35.7.d,gpg13_4.12,nist_800_53_SI.4,pci_dss_11.4,tsc_CC6

.1,tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>
9 </rule>

The rule above generates the alert with level 10 of Figure 3.20.
Line 30 and line 31 of Listing 3.19 perform a ssh login that is stopped
immediately after. Those events trigger, firstly, the decoder at Listing 3.39,
and secondly the rule at Listing 3.40.

Listing 3.39: Decoder used for SSH connection reset
1 <decoder name="sshd-reset">
2 <parent>sshd</parent>
3 <prematch>Connection reset</prematch>
4 <regex offset="after_prematch">(\S+) (\S+) port (\d+)</regex>
5 <order>user, srcip, srcport</order>
6 </decoder>

Listing 3.40: Rule used for SSH connection reset
1 <rule id="5762" level="4">
2 <if_sid>5700</if_sid>
3 <match>Connection reset</match>
4 <description>sshd: connection reset</description>
5 </rule>

The result of those triggers is the alert with level 4 shown in Figure 3.21.

88

Implementation of Wazuh in the Weseth platform

Peripherals attachment

Those events concern the detection of new peripherals attached. By default,
Wazuh detects when new peripherals are attached and disconnected but, in
the case of mounting as a file system the interest is also in the system calls
mount and umount. To achieve that, one auditd rule has been added, as
shown in the Listing 3.41.

Listing 3.41: Auditd rules for mount and umount operations
1 ## Mount operations
2 -a always,exit -F arch=b64 -S mount -S umount2 -F auid!=-1 -k audit-wazuh-

c

Test performed About tests, they can be divided in three parts. In the
first one, an USB device is attached; in the second step the tests performed
are shown in the Listing 3.42; finally, the USB device is disconnected.

Listing 3.42: Tests performed for validate mount and umount operations
1 ## Mount the attached USB to a file system partition
2 mount /dev/sdb1 /media/usb_device
3 ## Disconnect and umount the file system partition
4 umount /media/usb_device

For clarification, /dev/sdb1 is the special device file for the attached device.

Test result At first, the USB device has been attached triggering the
decoder at Listing 3.43 and the rule at Listing 3.44.

Listing 3.43: Decoder used for attached device
1 <decoder name="usb-storage-attached">
2 <parent>kernel</parent>
3 <prematch offset="after_parent">^usb|^[\s*\S+] usb</prematch>
4 <regex offset="after_parent">^(usb) |^[\s*\S+] (usb)</regex>
5 <order>id</order>
6 </decoder>

89

Implementation of Wazuh in the Weseth platform

Figure 3.22: Wazuh alert for attached device

Figure 3.23: Wazuh alert for umount operation

Listing 3.44: Rule used for attached device
1 <rule id="81101" level="3">
2 <if_sid>81100</if_sid>
3 <match>New USB device found</match>
4 <description>Attached USB Storage</description>
5 <group>gpg13_4.8,</group>
6 </rule>

Those decoder and rule generate the alert with level 3 shown in Figure 3.22.
After that, the tests shown in Listing 3.42 at line 2 and line 4 are performed.
Both trigger the decoders in 0040-auditd_decoders.xml file and the rule at
Listing 3.15, that, of course, concerns the analysis of auditd logs. The alerts
generated are shown in Figure 3.24 for the mount operation and in Figure
3.23 for the umount one.

Statistical resource usage

For that specific event, new decoders and new rules have been added to the
Wazuh ruleset trying to exploit the command monitoring offered by Wazuh
itself. First of all, the command used is uptime that prints the current time,
the length of time the system has been up, the number of users online, and
the load average. "The load average is the number of runnable processes over
the preceding 1-, 5-, 15-minute intervals"[28]. Secondary, a XML tag has
been added to the Wazuh server configuration as shown in the Listing 3.45.

Listing 3.45: Configuration for the command monitoring of uptime
1 <localfile>
2 <log_format>command</log_format>

90

Implementation of Wazuh in the Weseth platform

Figure 3.24: Wazuh alert for umount operation

3 <command>uptime</command>
4 <frequency>120</frequency>
5 </localfile>

The frequency represents how much time elapses between two consecutive
execution of the command written above. Then, two new decoders have been
added because the output of the command could have two different formats:
one for the current time in minutes, the other one for the current time in
hours, as shown in Listing 3.46 and Listing 3.47, respectively.

Listing 3.46: Decoder used for uptime in minutes format
1 <decoder name="ossec-uptime-min">
2 <parent>ossec</parent>
3 <type>ossec</type>
4 <prematch offset="after_parent">^output: 'uptime':\s+\d+:\d+:\d+\s+up\s

+\d+\s+min,\s+\d+\s+\S+,\s+load average:</prematch>
5 <regex offset="after_prematch">^ (\d+.\d+)</regex>
6 <order>extra_data</order>
7 </decoder>

Listing 3.47: Decoder used for uptime in hours format
1 <decoder name="ossec-uptime-hour">
2 <parent>ossec</parent>
3 <type>ossec</type>
4 <prematch offset="after_parent">^output: 'uptime':\s+\d+:\d+:\d+\s+up\s

+\d+:\d+,\s+\d+\s+\S+,\s+load average:</prematch>
5 <regex offset="after_prematch">^ (\d+.\d+)</regex>
6 <order>extra_data</order>
7 </decoder>

Thus, the extra_data is the value of load average in the last minute and it is
matched by the rule in Listing 3.48.

Listing 3.48: Rule used for uptime

91

Implementation of Wazuh in the Weseth platform

Figure 3.25: Wazuh alert for uptime output

1 <rule id="100300" level="7">
2 <if_sid>530</if_sid>
3 <match>ossec: output: 'uptime': </match>
4 <extra_data type="pcre2">^(?:[5-9]\d*\.\d+)|(?:\d\d+\.\d+)$</extra_data

>
5 <description>Load average reached 5..</description>
6 </rule>

Test performed For testing that event, a custom C script has been coded
as shown in Listing 3.49. The fork system call creates a new process each
time it is called and it has been used to saturate the system resources.

Listing 3.49: Test for uptime
1 #include <stdio.h>
2 #include <sys/types.h>
3 #include <unistd.h>
4 int main()
5 {
6 while(1)
7 fork();
8 }

Test result Thus, every 2 minutes, the output of uptime is analysed
through the decoders and the rule shown above. In particular, if the rule is
triggered, an alert like the one shown in Figure 3.25, is generated.

Process states such as debugger attaching

Those events concern the attaching of the debugger to applications or pro-
cesses. When a debugger is attached, the system call ptrace is called. It

92

Implementation of Wazuh in the Weseth platform

Figure 3.26: Wazuh alert for GDB

provides a means by which one process observes and controls the execution
of another, examining and changing the registers and the memory of the
traced process. For monitoring those events, new auditd rules have been
added and they are shown in the Listing 3.50.

Listing 3.50: Auditd rules for debugger attaching
1 -a always,exit -F arch=b64 -S ptrace -F a0=0x4 -k audit-wazuh-c
2 -a always,exit -F arch=b64 -S ptrace -F a0=0x5 -k audit-wazuh-c
3 -a always,exit -F arch=b64 -S ptrace -F a0=0x6 -k audit-wazuh-c
4 -a always,exit -F arch=b64 -S ptrace -k audit-wazuh-c

Test performed For testing the Wazuh and auditd capacities, the test at
Listing 3.51 has been performed. At line 1, a simple program is started with
a debugger, such as GDB and, then, it is killed.

Listing 3.51: Tests performed for validate debugger attaching
1 gdb -ex=r /home/weseth/Codes/hello
2 kill -9 $(pidof gdb hello)

Test result In that case, the decoders and the rule used are the same as
the other auditd logs, therefore the decoders at 0040-auditd_decoders.xml
file and the rule at Listing 3.15. The only difference is the alert that is shown
in Figure 3.26.

Power state changes

About power state changes, they mean when the state of the machine changes
such as a reboot, a shutdown, a hibernate, or a suspension. Those events
are monitored thanks to auditd rules, as shown in the Listing 3.52.

93

Implementation of Wazuh in the Weseth platform

Figure 3.27: Wazuh alert for ossec stop

Figure 3.28: Wazuh alert for ossec start

Listing 3.52: Auditd rules for power state changes
1 -w /sbin/poweroff -p x -k audit-wazuh-x
2 -w /sbin/reboot -p x -k audit-wazuh-x
3 -w /sbin/halt -p x -k audit-wazuh-x

Every rule is monitored for execution, due to the permission -p x, and Wazuh
collects their logs thanks to the key audit-wazuh-x.

Test performed Those tests should be performed manually but, for clarity,
those are listed in the Listing 3.53.

Listing 3.53: Tests performed for validate power state changes
1 reboot
2 power-off
3 halt

Test result In line 1 of the Listing 3.53, the system is rebooted and the
result is the generation of two alerts that show the stopping and starting of
the Wazuh agent as shown in Figure 3.27 and Figure 3.28.
The alert in Figure 3.27 comes from the decoder at Listing 3.54 and the rule
at Listing 3.55.

Listing 3.54: Decoder used for ossec stop
1 <decoder name="ossec-agent-stop">
2 <parent>ossec</parent>
3 <type>ossec</type>
4 <prematch offset="after_parent">^Agent stopped:</prematch>

94

Implementation of Wazuh in the Weseth platform

5 <regex offset="after_prematch">^ '(\S+)'</regex>
6 <order>extra_data</order>
7 <fts>name, location, extra_data</fts>
8 </decoder>

Listing 3.55: Rule used for ossec stop
1 <rule id="506" level="3">
2 <if_sid>500</if_sid>
3 <match>Agent stopped</match>
4 <description>Ossec agent stopped.</description>
5 <mitre>
6 <id>T1562.001</id>
7 </mitre>
8 <group>pci_dss_10.6.1,pci_dss_10.2.6,gpg13_10.1,gdpr_IV_35.7.d,

hipaa_164.312.b,nist_800_53_AU.6,nist_800_53_AU.14,nist_800_53_AU.5,
tsc_CC7.2,tsc_CC7.3,tsc_CC6.8,</group>

9 </rule>

Differently, the alert in Figure 3.28 is the result of decoder in Listing 3.56
and rule at Listing 3.57.

Listing 3.56: Decoder used for ossec start
1 <decoder name="ossec-agent">
2 <parent>ossec</parent>
3 <type>ossec</type>
4 <prematch offset="after_parent">^Agent started:</prematch>
5 <regex offset="after_prematch">^ '(\S+)'</regex>
6 <order>extra_data</order>
7 <fts>name, location, extra_data</fts>
8 </decoder>

Listing 3.57: Rule used for ossec start
1 <rule id="503" level="3">
2 <if_sid>500</if_sid>
3 <match>Agent started</match>
4 <description>Ossec agent started.</description>
5 <group>pci_dss_10.6.1,pci_dss_10.2.6,gpg13_10.1,gdpr_IV_35.7.d,

hipaa_164.312.b,nist_800_53_AU.6,nist_800_53_AU.14,nist_800_53_AU.5,
tsc_CC7.2,tsc_CC7.3,tsc_CC6.8,</group>

6 </rule>

95

Implementation of Wazuh in the Weseth platform

In case of halt, and power-off commands the only alert generated is the one
at Figure 3.27.

Discretionary Access Control

DAC refers to a "type of security access control that grants or restricts object
access via an access policy determined by an object’s owner group and/or
subjects"[29]. Those events are monitored thanks to the auditd rules of the
Listing 3.58.

Listing 3.58: Auditd rules for DAC
1 -a always,exit -F arch=b64 -S chmod -F auid>=1000 -F auid!=-1 -k audit-

wazuh-c
2 -a always,exit -F arch=b64 -S chown -F auid>=1000 -F auid!=-1 -k audit-

wazuh-c
3 -a always,exit -F arch=b64 -S fchmod -F auid>=1000 -F auid!=-1 -k audit-

wazuh-c
4 -a always,exit -F arch=b64 -S fchmodat -F auid>=1000 -F auid!=-1 -k audit-

wazuh-c
5 -a always,exit -F arch=b64 -S fchown -F auid>=1000 -F auid!=-1 -k audit-

wazuh-c
6 -a always,exit -F arch=b64 -S fchownat -F auid>=1000 -F auid!=-1 -k audit-

wazuh-c
7 -a always,exit -F arch=b64 -S fremovexattr -F auid>=1000 -F auid!=-1 -k

audit-wazuh-c
8 -a always,exit -F arch=b64 -S fsetxattr -F auid>=1000 -F auid!=-1 -k

audit-wazuh-c
9 -a always,exit -F arch=b64 -S lchown -F auid>=1000 -F auid!=-1 -k audit-

wazuh-c
10 -a always,exit -F arch=b64 -S lremovexattr -F auid>=1000 -F auid!=-1 -k

audit-wazuh-c
11 -a always,exit -F arch=b64 -S lsetxattr -F auid>=1000 -F auid!=-1 -k

audit-wazuh-c
12 -a always,exit -F arch=b64 -S removexattr -F auid>=1000 -F auid!=-1 -k

audit-wazuh-c
13 -a always,exit -F arch=b64 -S setxattr -F auid>=1000 -F auid!=-1 -k audit-

wazuh-c

All of them are monitored only if the Audit User Identifier is more than 1000
because the values smaller than this threshold are not used while the auid

96

Implementation of Wazuh in the Weseth platform

Figure 3.29: Wazuh alert for chown command

should be not equal to -1 because this value is referred to auid not set. The
system calls related to chown change the owner of files and directories while
the ones referred to chmod concern the change of permissions. Differently.
the system calls related to setxattr refer to the extended attributes associated
with files and directories.

Test performed The test performed are the ones shown in the Listing
3.59

Listing 3.59: Tests performed for validate DAC
1 val = /etc/passwd
2 oldPerms=$(stat -c "%a" $val)
3 oldOwner=$(stat -c "%U" $val)
4 oldGroup=$(stat -c "%G" $val)
5 chown weseth:weseth $val
6 chmod 777 $val
7 chown $oldOwner:$oldGroup $val
8 chmod $oldPerms $val

From line 2 up to line 4 of Listing 3.59, the old permissions, the old owner,
and the old group are saved into variables in order to restore them after the
test performing in line 7 and line 8 of the same Listing. Also those events are
monitored and, together with tests at line 5 and line 6, alerts are generated.

Test result The tests performed at line 5 and line 7 of Listing 3.59 trigger
the decoders of 0040-auditd_decoders.xml file and the rule at Listing 3.15
and the alerts generated are the same of the one at Figure 3.29.
Similarly, the tests performed at line 6 and line 8 trigger the same decoders
and rule and the alerts generated are as well as the one shown at Figure 3.30.

97

Implementation of Wazuh in the Weseth platform

Figure 3.30: Wazuh alert for chmod command

User and Group Management

User and Group management refer to adding, deleting, and updating of user
and group profiles. To achieve those detections new auditd rules have been
added as shown in Listing 3.60.

Listing 3.60: Auditd rules for user and group management
1 -w /usr/sbin/groupadd -p x -k audit-wazuh-c -k audit-wazuh-x
2 -w /usr/sbin/groupmod -p x -k audit-wazuh-c -k audit-wazuh-x
3 -w /usr/sbin/groupdel -p x -k audit-wazuh-c -k audit-wazuh-x
4 -w /usr/sbin/useradd -p x -k audit-wazuh-c -k audit-wazuh-x
5 -w /usr/sbin/userdel -p x -k audit-wazuh-c -k audit-wazuh-x
6 -w /usr/sbin/usermod -p x -k audit-wazuh-c -k audit-wazuh-x
7 -w /usr/sbin/adduser -p x -k audit-wazuh-c -k audit-wazuh-x
8 -w /usr/bin/passwd -p x -k audit-wazuh-c -k audit-wazuh-x
9 -w /usr/sbin/chpasswd -p x -k audit-wazuh-c -k audit-wazuh-x

10 -w /bin/gpasswd -p x -k audit-wazuh-x

All these rules concern the commands to deal with users and groups in Linux,
also considering passwords.

Test performed The Listing 3.61 describes what tests have been performed
to validate the detections of user and group management events.

Listing 3.61: Tests performed for validate user and group management
1 groupadd newGroup
2 groupmod -n Group newGroup
3 useradd -g Group newUser
4 usermod -u 10000 newUser
5 usermod -g weseth newUser
6 userdel newUser
7 groupdel Group
8 adduser secondNewUser --gecos "First Last,RoomNumber,WorkPhone,HomePhone"

--disabled-password --force-badname --no-create-home

98

Implementation of Wazuh in the Weseth platform

9 set -e
10 PASSWD=$(date | md5sum | cut -c1-8)
11 echo "secondNewUser:$PASSWD" | chpasswd
12 userdel secondNewUser

The command groupadd in line 1 creates a new group in the system, the
command groupmod in line 2 modifies the name of the just created group,
the commands useradd in line 3 and adduser in line 8 create new users
in the system but if in the first case no password is set by default, in the
second one the command is interactive and it waits for password insertion
by the user; for that reason the option –disable-password is used while the
option –force-badname is used to avoid checks in the input name of the user;
moreover, the option –gecos is used to avoid interactive request for the gecos
information, while the option –no-create-home is used to avoid the creation
of the home directory for that new user. The command usermod at line 4 and
line 5 changes, respectively, the group and the user identifier, the command
userdel at line 6 and line 12 deletes just created users, the command groupdel
at line 7 deletes the group while in line 9 and line 10 a new password is
created and then in line 11 the password has been set for a specific user: that
has been done to insert the command in a bash script but also the passwd
command is monitored.

Test result Because logs come from auditd rules, all those tests trigger
the decoders in 0040-auditd_decoders.xml file and the 3.15 rule but some of
those commands are also monitored by Wazuh by default and other decoders
and rules are triggered, also considering that the commands above write files
monitored by the auditd rules of Listing 3.2. For command groupadd, the
decoder used is shown in Listing 3.62 and the rule is at Listing 3.63.

Listing 3.62: Decoder used for groupadd command
1 <decoder name="groupadd-fields">
2 <parent>groupadd</parent>
3 <prematch offset="after_parent">new group: name=</prematch>
4 <regex offset="after_prematch">(\S+), GID=(\S+)</regex>
5 <order>user,gid</order>
6 </decoder>

99

Implementation of Wazuh in the Weseth platform

Figure 3.31: Wazuh auditd alert for groupadd command

Figure 3.32: Wazuh default alert for groupadd command

Listing 3.63: Rule used for groupadd command
1 <rule id="5901" level="8">
2 <match>^new group</match>
3 <description>New group added to the system.</description>
4 <group>pci_dss_10.2.7,pci_dss_10.2.5,pci_dss_8.1.2,gpg13_4.13,

gdpr_IV_35.7.d,gdpr_IV_32.2,hipaa_164.312.b,hipaa_164.312.a.2.I,
hipaa_164.312.a.2.II,nist_800_53_AU.14,nist_800_53_AC.7,nist_800_53_AC
.2,nist_800_53_IA.4,tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>

5 </rule>

The alerts created for auditd log analysis and Wazuh rule triggered are shown
in Figure 3.32 and Figure 3.31, respectively.
Moreover, the groupadd command writes in the /etc/group file, that is
monitored; therefore, the alert in Figure 3.33 is generated.
Besides the auditd alert, shown in Figure 3.34, the command groupmod
modifies also the /etc/group file , generating the alert in Figure 3.33.
In addition to the auditd analysis and consequent alert, the command useradd
generates two other kinds of alerts: default alert, and writing files alerts.
The first one is generated by the decoder at Listing 3.64 and the rule at
Listing 3.65.

Listing 3.64: Decoder used for useradd command
1 <decoder name="useradd-fields">
2 <parent>useradd</parent>
3 <prematch offset="after_parent">new user: </prematch>
4 <regex offset="after_prematch">name=(\S+), UID=(\S+), GID=(\S+), home

=(\S+), shell=(\S+)</regex>
5 <order>user,uid,gid,home,shell</order>
6 </decoder>

100

Implementation of Wazuh in the Weseth platform

Figure 3.33: Wazuh alert for groupadd writing in /etc/group

Figure 3.34: Wazuh auditd alert for groupmod command

Listing 3.65: Rule used for useradd command
1 <rule id="5902" level="8">
2 <match>^new user|^new account added</match>
3 <description>New user added to the system.</description>
4 <mitre>
5 <id>T1136</id>
6 </mitre>
7 <group>pci_dss_10.2.7,pci_dss_10.2.5,pci_dss_8.1.2,gpg13_4.13,

gdpr_IV_35.7.d,gdpr_IV_32.2,hipaa_164.312.b,hipaa_164.312.a.2.I,
hipaa_164.312.a.2.II,nist_800_53_AU.14,nist_800_53_AC.7,nist_800_53_AC
.2,nist_800_53_IA.4,tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>

8 </rule>

The alerts generated by auditd log analysis and default Wazuh rule are shown
in Figure 3.35 and Figure 3.36, respectively.
As in the groupadd case, also the useradd command writes some files such as
/etc/group, /etc/passwd, and /etc/shadow and the corresponding alerts are
shown in Figure 3.37.

The command usermod triggers the auditd decoders and rule and, in addition,
the update of /etc/passwd, and /etc/shadow files. The auditd rule is shown
at Figure 3.38, while the alerts for the writings are in Figure 3.39 and Figure
3.40.

The command userdel is responsible of triggering the decoder at Listing 3.66
and the rule at Listing 3.67, in addition to auditd ones.

101

Implementation of Wazuh in the Weseth platform

Figure 3.35: Wazuh auditd alert for userpadd command

Figure 3.36: Wazuh default alert for useradd command

Listing 3.66: Decoder used for userdel command
1 <decoder name="open-userdel">
2 <program_name>userdel</program_name>
3 <regex>user removed: name=(\S+)$|delete user '(\S+\w)'</regex>
4 <order>srcuser</order>
5 </decoder>

Listing 3.67: Rule used for userdel command
1 <rule id="5903" level="3">
2 <match>^delete user|^account deleted|^remove group</match>
3 <description>Group (or user) deleted from the system.</description>
4 <mitre>
5 <id>T1531</id>
6 </mitre>
7 <group>pci_dss_10.2.7,pci_dss_10.2.5,pci_dss_8.1.2,gpg13_4.13,

gdpr_IV_35.7.d,gdpr_IV_32.2,hipaa_164.312.b,hipaa_164.312.a.2.I,
hipaa_164.312.a.2.II,nist_800_53_AU.14,nist_800_53_AC.7,nist_800_53_AC
.2,nist_800_53_IA.4,tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>

8 </rule>

The consequent alerts are the auditd one in Listing 3.41, the default one in
Figure 3.42, and the writings of /etc/group, /etc/passwd, and /etc/shadow
in Figure 3.43.

The command groupdel triggers only the auditd decoders and rule and the
writing of the /etc/group file, as shown in Figure 3.44 and 3.45, respectively.

The command useradd used in line 3 of Listing 3.61 generates many alerts
due to the operations it performs: at first, it creates a new group as shown for

102

Implementation of Wazuh in the Weseth platform

Figure 3.37: Wazuh alerts for groupadd writings

Figure 3.38: Wazuh auditd alert for usermod command

the groupadd command, the command chfn1 is called, the user is added, and,
finally, it is also modified with the command usermod. All those commands
trigger the decoders in 0040-auditd_decoders.xml file and the rule in Listing
3.15. Moreover, the chfn command triggers both an auditd rule and a Wazuh
default: the decoder is in Listing 3.68 while the rule is in Listing 3.69.

Listing 3.68: Decoder used for chfn command
1 <decoder name="chfn-fields">
2 <parent>chfn</parent>
3 <prematch offset="after_parent">changed user</prematch>
4 <regex offset="after_prematch">'(\S+)'</regex>
5 <order>user</order>
6 </decoder>

Listing 3.69: Rule used for chfn command
1 <rule id="5904" level="8">
2 <match>^changed user</match>
3 <description>Information from the user was changed.</description>
4 <mitre>
5 <id>T1098</id>
6 </mitre>
7 <group>pci_dss_10.2.7,pci_dss_10.2.5,pci_dss_8.1.2,gpg13_4.13,

gdpr_IV_35.7.d,gdpr_IV_32.2,hipaa_164.312.b,hipaa_164.312.a.2.I,
hipaa_164.312.a.2.II,nist_800_53_AU.14,nist_800_53_AC.7,nist_800_53_AC
.2,nist_800_53_IA.4,tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>

8 </rule>

1This command is in charge to show the user information, in the field GECOS

103

Implementation of Wazuh in the Weseth platform

Figure 3.39: Wazuh alert for usermod writing of /etc/passwd file

Figure 3.40: Wazuh alert for usermod writing of /etc/shadow file

As a consequence, the auditd alerts of the above commands have been shown
previously while the auditd alert about the chfn command is in Figure 3.46,
and the alert generated by the default Wazuh alert for the same command is
shown in Figure 3.36.
The last command tested, chpasswd, triggers both auditd rule and Wazuh
default one. That is shown in Listing 3.70.

Listing 3.70: Rule used for chpasswd command
1 <rule id="5555" level="3">
2 <match>: password changed for</match>
3 <description>PAM: User changed password.</description>
4 <group>pci_dss_8.1.2,pci_dss_10.2.5,gpg13_4.13,gpg13_7.10,gdpr_IV_35.7.

d,gdpr_IV_32.2,hipaa_164.312.a.2.I,hipaa_164.312.a.2.II,hipaa_164.312.
b,nist_800_53_AC.2,nist_800_53_IA.4,nist_800_53_AU.14,nist_800_53_AC
.7,tsc_CC6.8,tsc_CC7.2,tsc_CC7.3,</group>

5 </rule>

Alerts generated are the auditd one, shown in Figure 3.48, and the Wazuh
default one shown in Figure 3.49.

Firewall violations

The firewall used in the Weseth boxes is UFW, that has been created to deal
in a simpler way iptables. Its logs are analysed by default by Wazuh, the
only things that it needs is the forwarding of the logs and that is achieved
thanks to the addition of a XML tag in the configuration of each Wazuh
agent as shown in Listing 3.71.

Listing 3.71: Configuration for the forwarding of ufw.log

104

Implementation of Wazuh in the Weseth platform

Figure 3.41: Wazuh auditd alert for userdel command

Figure 3.42: Wazuh default alert for userdel command

1 <localfile>
2 <log_format>syslog</log_format>
3 <location>/var/log/ufw.log</location>
4 </localfile>

Test performed About the test performed, firstly a new rule has been
appended to the firewall blocking all the connection that arrives at port 1234
and to add that rule the command line 1 command of Listing 3.72 has been
run.

Listing 3.72: UFW command for adding a new rule
1 sudo ufw deny in from any port 1234
2 nc -l 127.0.0.1 1234

Right after the port 1234 in localhost is opened and it is ready for receiving
new requests, as specified in line 2 of Listing 3.72. From another device, the
request nc <boxIpAddress> 1234 is run but the connection is never opened.

Test result The decoders triggered are shown in Listing 3.73 while the
rule triggered is shown in Listing 3.74.

Listing 3.73: Decoders used for UFW
1 <decoder name="ufw">
2 <parent>kernel</parent>

105

Implementation of Wazuh in the Weseth platform

Figure 3.43: Wazuh alerts for userdel writings

Figure 3.44: Wazuh auditd alert for groupdel command

3 <type>firewall</type>
4 <prematch>^[\s*\d+.\d+] [\.*] IN=</prematch>
5 <regex>^[\s*\d+.\d+] [(\.*)] \.+ SRC=(\S+) DST=(\S+)</regex>
6 <regex> \.+ PROTO=(\w+) </regex>
7 <order>action,srcip,dstip,protocol</order>
8 </decoder>
9

10 <decoder name="ufw">
11 <parent>kernel</parent>
12 <type>firewall</type>
13 <regex offset="after_regex">^SPT=(\d+) DPT=(\d+) </regex>
14 <order>srcport,dstport</order>
15 </decoder>

Listing 3.74: Rule used for UFW
1 <rule id="100400" level="7">
2 <if_sid>4100</if_sid>
3 <dstip>!224.0.0.251</dstip>
4 <action>UFW BLOCK</action>
5 <description>A ufw rule has been violated</description>
6 </rule>

About the rule it has been added in the local_rules.xml where the destination
IP cannot be 224.0.0.251 because it is a broadcast address and the interest
is only on the block action of the firewall. The consequent alert is the one
shown in Figure 3.50.

106

Implementation of Wazuh in the Weseth platform

Figure 3.45: Wazuh alerts for groupdel writings

Figure 3.46: Wazuh auditd alert for chfn command

Dangerous and suspicious activities

Those event concern the monitoring of dangerous and suspicious activities
that are run in the Weseth box.

Test performed The test have been performed are shown in Listing 3.75
and in Listing 3.76.

Listing 3.75: Tests performed for validate danger and suspicious activities
1 nft list ruleset
2 traceroute 192.168.5.106
3 printenv
4 arp -a
5 capsh --print
6 chroot /home/weseth/jail /bin/bash
7 start-stop-daemon --start --exec --name auditd
8 vipw -s&
9 vigr -s&

10 kill -9 $(pidof vipw)
11 kill -9 $(pidof vigr)
12 busctl&
13 kill -9 $(pidof busctl)
14 nice -10 busctl&
15 renice -n 0 -p $(pidof busctl)
16 kill -9 $(pidof busctl)
17 ln -s /home/weseth/testLms/testLms.sh /home/weseth/testLms/test
18 rm /home/weseth/testLms/test
19 loginctl list-sessions
20 nohup ping 192.168.5.106&

107

Implementation of Wazuh in the Weseth platform

Figure 3.47: Wazuh default alert for chfn

Figure 3.48: Wazuh auditd alert for chpasswd command

21 kill -9 $(pidof ping)
22 rm nohup.out
23 openssl genrsa -out private.key 2048
24 rm private.key
25 run-parts --list --regex '^p.*d$' /etc
26 timedatectl status
27 ls -al /etc | xargs
28 dbus-send --help
29 service sshd status

Listing 3.76: Tests performed for validate detection of vulnerable binaries
1 cp -p /usr/bin/w /usr/bin/w.copy
2 # Replace the content of the original binary with the content of Listing

3.77
3 /usr/bin/w.copy

Listing 3.77: Script that replace the original binary
1 #!/bin/bash
2 echo "`date` this is evil" > /tmp/trojan_created_file
3 echo 'test for /usr/bin/w trojaned file' >> /tmp/trojan_created_file

Test result Each one of the commands in the above Listing triggers the
decoders in 0040-auditd_decoders.xml file and the rule at Listing 3.78.

Listing 3.78: Rule used for suspicious commands
1 <rule id="80789" level="3">
2 <if_sid>80700</if_sid>

108

Implementation of Wazuh in the Weseth platform

Figure 3.49: Wazuh default alert for chpasswd

Figure 3.50: Wazuh alert for UFW rule violation

3 <list field="audit.key" lookup="match_key_value" check_value="execute">
etc/lists/audit-keys</list>

4 <description>Audit: Watch - Execute access: $(audit.file.name).</
description>

5 <group>audit_watch_execute,gdpr_IV_30.1.g,</group>
6 </rule>

The next part is organized as follows: alert figure followed by the description
of each command and where, in the test, it is run.
The command nft run in line 1 of Listing 3.75 provides the alert at Figure
3.51 and it is in charge to set up, maintain, and inspect packet filtering and
classification rules in Linux systems.

The command traceroute run in line 2 of Listing 3.75 provides the alert
at Figure 3.52 and it is in charge to track the route packets taken from an
IP network on their way to a given host.
The command printenv run in line 3 of Listing 3.75 provides the alert at
Figure 3.53 and it is in charge to display the values of environment variables.

The command arp run in line 4 of Listing 3.75 provides the alert at Figure
3.54 and it is in charge to manipulate and dump the ARP cache.
The command capsh run in line 5 of Listing 3.75 provides the alert at Figure
3.55 andi it is a wrapper that allows to explore the Linux capability, to create
environment, and to provide debugging features.
The command chroot run in line 6 of Listing 3.75 provides the alert at Figure
3.56 and it is in charge to change the root directory.

The command start-stop-daemon run in line 7 of Listing 3.75 provides the

109

Implementation of Wazuh in the Weseth platform

Figure 3.51: Wazuh alert for nft command

Figure 3.52: Wazuh alert for traceroute command

alert at Figure 3.57 and it is in charge to control the creation and termination
of system-level processes.
The command vipw run in line 8 of Listing 3.75 provides the alert at Figure
3.58 and it is in charge to edit the /etc/passwd file or, with the -s flag, its
shadow version /etc/shadow.
The command vigr run in line 9 of Listing 3.75 provides the alert at Figure
3.59 and it is in charge to edit the /etc/group file or, with the -s flag, its
shadow version /etc/gshadow.

The command busctl run in line 12 of Listing 3.75 provides the alert at Figure
3.60 and it is in charge to introspect and monitor the D-Bus bus, that is an
Inter-Process communication protocol in Linux.
The command nice run in line 14 of Listing 3.75 provides the alert at Figure
3.61 and it is in charge to start a process with a different priority respect to
the default one.
The command renice run in line 15 of Listing 3.75 provides the alert at Figure
3.62 and it is in charge to change the priority of an already run process.

The command ln run in line 17 of Listing 3.75 provides the alert at Figure
3.63 and it is in charge to create hard or soft links between files.
The command loginctl run in line 19 of Listing 3.75 provides the alert at
Figure 3.64 and it is in charge to introspect and control the state of the
systemd login manager service.
The command nohup run in line 20 of Listing 3.75 provides the alert at
Figure 3.65 and it is in charge to keep processes running even if the signal
Hang Up is received..
The command openssl run in line 23 of Listing 3.75 provides the alert at
Figure 3.66 and it is an open source implementation of the SSL and TLS
protocols.

110

Implementation of Wazuh in the Weseth platform

Figure 3.53: Wazuh alert for printenv command

Figure 3.54: Wazuh alert for arp command

The command run-parts run in line 25 of Listing 3.75 provides the alert at
Figure 3.67 and it is in charge to run all the executables inside a specified
directory.
The command timedatectl run in line 26 of Listing 3.75 provides the alert at
Figure 3.68 and it is in charge to control date, time, and time zones of the
Linux system. Moreover, it could be used to enable automatic system clock
synchronization.
The command xargs run in line 27 of Listing 3.75 provides the alert at Figure
3.69 and it allows to execute another command specifying as parameters
what is written in standard input.
The command dbus-send run in line 28 of Listing 3.75 provides the alert at
Figure 3.70 and it allows to send a message to the Dbus message bus.
The command service run in line 29 of Listing 3.75 provides the alert at
Figure 3.71 and it is in charge to control SysVinit2 services through SysVinit
scripts.
Anyway, in the Listing 3.76 another test has been performed. As seen in the
line 1, a bin is copied and than it is replaced with the content of Listing 3.77.
The result is the triggering of the rule at Listing 3.79 and the generation of
the alert at Figure 3.72.

Listing 3.79: Rule used for suspicious binary
1 <rule id="510" level="7">
2 <if_sid>509</if_sid>
3 <description>Host-based anomaly detection event (rootcheck).</

description>
4 <group>rootcheck,pci_dss_10.6.1,gdpr_IV_35.7.d,</group>
5 <!-- <if_fts /> -->
6 </rule>

2sysvinit is a collection of System V-style init programs

111

Implementation of Wazuh in the Weseth platform

Figure 3.55: Wazuh alert for capsh command

Figure 3.56: Wazuh alert for chroot command

Indeed, the command injection written in line 2 of Listing 3.77 has been
detected by Wazuh as a root check, as seen in the generated alert.

112

Implementation of Wazuh in the Weseth platform

Figure 3.57: Wazuh alert for start-stop-daemon command

Figure 3.58: Wazuh alert for vipw command

Figure 3.59: Wazuh alert for vigr command

Figure 3.60: Wazuh alert for busctl command

Figure 3.61: Wazuh alert for nice command

Figure 3.62: Wazuh alert for renice command

Figure 3.63: Wazuh alert for ln command

Figure 3.64: Wazuh alert for loginctl command

Figure 3.65: Wazuh alert for nohup command

Figure 3.66: Wazuh alert for openssl command

113

Implementation of Wazuh in the Weseth platform

Figure 3.67: Wazuh alert for run-parts command

Figure 3.68: Wazuh alert for timedatectl command

Figure 3.69: Wazuh alert for xargs command

Figure 3.70: Wazuh alert for dbus-send command

Figure 3.71: Wazuh alert for service command

Figure 3.72: Wazuh alert for rootcheck detected

114

Conclusion

The paper has aimed to find preventive solutions against cyber-attacks. One
of them has been explored trying to consider what are its peculiarities and its
challenges. The Host-based Intrusion Detection System has been explained
as a good solution to achieve the main purpose of the thesis. Basically, the
source information, or logs, are the most important basic knowledge for those
tools. Moreover, the Intrusion Detection System is the answer to detect
new attacks, starting from information coming from logs, and analyzing
those using rules and decoders, as in the case of the chosen tool: Wazuh.
Therefore, in the first chapter, all families of Intrusion Detection Systems
have been presented matching their source information going in deeply for
the Host-based one, such as Wazuh is of that category. In the second chapter,
Wazuh has been compared with its competitors such as Sagan, Samhain, and
Event Log Manager. Above all, the best comparison has been made with its
similar: OSSEC. Those comparisons have been performed based on different
discriminants such that the multiplatform feature, File Integrity Monitoring,
Log Analysis, and Rootkit detection modules, and, in the end, the chosen
solution has been Wazuh.
The third chapter describes how Wazuh has been implemented in the case
study, the Weseth platform. Thereby, a test environment has been built up
with two Weseth boxes where one acts as Weseth Server while the other one
is the device to be monitored. To fit with the platform needs, Wazuh has
been implemented with the Linux service Auditd integrating its functionality
in the tool. For the monitoring purpose, certain security events have been
monitored such as the integrity of files and directories, kernel module and
parameters tuning, privilege escalation attempts, statistical resource usage,
and so on.
Although the great capabilities of Wazuh, it alone is not able to deal with

115

Conclusion

all cyber-security problems and, for those reasons, some improvements are
possible. Firstly, an alert correlation engine could be added to Wazuh
trying to extract more useful information from the alert created by the
Intrusion Detection tool; moreover, Wazuh is a Host-based IDS and it does
not covers the threats coming from networks, thus, for that reason, the
introduction of Network-based tool could improve the Wazuh capabilities.
Finally, the introduction of new decoders and rules in the Wazuh ruleset
and the integrations with other anti-virus tools could help the discovery
capability of Wazuh of new attack patterns and vulnerabilities.

116

Bibliography

[1] Logging vs Monitoring: Best Practices for Integration. https://www.a
ppdynamics.com/product/how-it-works/application-analytics/
log-analytics/monitoring-vs-logging-best-practices.

[2] Fanny Rivera-Ortiz and Liliana Pasquale. «Automated modelling of
security incidents to represent logging requirements in software systems».
In: Proceedings of the 15th International Conference on Availability,
Reliability and Security. 2020, pp. 1–8.

[3] Logging Cheat Sheet. https://cheatsheetseries.owasp.org/cheat
sheets/Logging_Cheat_Sheet.html.

[4] Security Logging. https://owasp.org/www- project- proactive-
controls/v3/en/c9-security-logging.html.

[5] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-
Yuan Tung. «Intrusion detection system: A comprehensive review». In:
Journal of Network and Computer Applications 36.1 (2013), pp. 16–24.

[6] Hervé Debar, Marc Dacier, and Andreas Wespi. «Towards a taxonomy
of intrusion-detection systems». In: Computer networks 31.8 (1999),
pp. 805–822.

[7] Animesh Patcha and Jung-Min Park. «An overview of anomaly detec-
tion techniques: Existing solutions and latest technological trends». In:
Computer networks 51.12 (2007), pp. 3448–3470.

[8] Pedro Garcia-Teodoro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández,
and Enrique Vázquez. «Anomaly-based network intrusion detection:
Techniques, systems and challenges». In: computers & security 28.1-2
(2009), pp. 18–28.

117

https://www.appdynamics.com/product/how-it-works/application-analytics/log-analytics/monitoring-vs-logging-best-practices
https://www.appdynamics.com/product/how-it-works/application-analytics/log-analytics/monitoring-vs-logging-best-practices
https://www.appdynamics.com/product/how-it-works/application-analytics/log-analytics/monitoring-vs-logging-best-practices
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Logging_Cheat_Sheet.html
https://owasp.org/www-project-proactive-controls/v3/en/c9-security-logging.html
https://owasp.org/www-project-proactive-controls/v3/en/c9-security-logging.html

BIBLIOGRAPHY

[9] Juan M Estevez-Tapiador, Pedro Garcia-Teodoro, and Jesus E Diaz-
Verdejo. «Anomaly detection methods in wired networks: a survey and
taxonomy». In: Computer Communications 27.16 (2004), pp. 1569–
1584.

[10] Nong Ye, Yebin Zhang, and Connie M Borror. «Robustness of the
Markov-chain model for cyber-attack detection». In: IEEE transactions
on reliability 53.1 (2004), pp. 116–123.

[11] Seyed Ali Mirheidari, Sajjad Arshad, and Rasool Jalili. «Alert correla-
tion algorithms: A survey and taxonomy». In: International Symposium
on Cyberspace Safety and Security. Springer. 2013, pp. 183–197.

[12] Huwaida Tagelsir Elshoush and Izzeldin Mohamed Osman. «Alert
correlation in collaborative intelligent intrusion detection systems—A
survey». In: Applied Soft Computing 11.7 (2011), pp. 4349–4365.

[13] Drivesec Weseth. https://www.drivesec.com/weseth/.
[14] Leian Liu, Zuanxing Yin, Yuli Shen, Haitao Lin, and Hongjiang Wang.

«Research and design of rootkit detection method». In: Physics Procedia
33 (2012), pp. 852–857.

[15] Aide. https://aide.github.io/.
[16] Event Log Analyzer. https://www.manageengine.com/products/eve

ntlog/help/StandaloneManagedServer-UserGuide/Introduction/
about-eventlog-analyzer.html.

[17] IBM MaaS360. https://www.ibm.com/docs/en/maas360?topic=
guide-getting-started-maas360-portal.

[18] Lacework Threat Detection. https://docs.lacework.com/onboardin
g/lacework-overview.

[19] Ossec. https://www.ossec.net/docs/docs/manual/non-technical
-overview.html.

[20] Sagan. https : / / sagan . readthedocs . io / en / latest / what - is -
sagan.html.

[21] Samhain. https://www.la- samhna.de/samhain/manual/intro.
html.

[22] Solarwinds SEM. https://documentation.solarwinds.com/en/
success_center/sem/content/getting_started_guide/gsg-intr
oduction.htm.

118

https://www.drivesec.com/weseth/
https://aide.github.io/
https://www.manageengine.com/products/eventlog/help/StandaloneManagedServer-UserGuide/Introduction/about-eventlog-analyzer.html
https://www.manageengine.com/products/eventlog/help/StandaloneManagedServer-UserGuide/Introduction/about-eventlog-analyzer.html
https://www.manageengine.com/products/eventlog/help/StandaloneManagedServer-UserGuide/Introduction/about-eventlog-analyzer.html
https://www.ibm.com/docs/en/maas360?topic=guide-getting-started-maas360-portal
https://www.ibm.com/docs/en/maas360?topic=guide-getting-started-maas360-portal
https://docs.lacework.com/onboarding/lacework-overview
https://docs.lacework.com/onboarding/lacework-overview
https://www.ossec.net/docs/docs/manual/non-technical-overview.html
https://www.ossec.net/docs/docs/manual/non-technical-overview.html
https://sagan.readthedocs.io/en/latest/what-is-sagan.html
https://sagan.readthedocs.io/en/latest/what-is-sagan.html
https://www.la-samhna.de/samhain/manual/intro.html
https://www.la-samhna.de/samhain/manual/intro.html
https://documentation.solarwinds.com/en/success_center/sem/content/getting_started_guide/gsg-introduction.htm
https://documentation.solarwinds.com/en/success_center/sem/content/getting_started_guide/gsg-introduction.htm
https://documentation.solarwinds.com/en/success_center/sem/content/getting_started_guide/gsg-introduction.htm

BIBLIOGRAPHY

[23] Tripwire. https://www.tripwire.com/state-of-security/tripwi
re-news/tripwire-products-reference-guide/.

[24] XDR Definition. https : / / www . trellix . com / en - us / security -
awareness/endpoint/what-is-xdr.html.

[25] Wazuh. https://documentation.wazuh.com/current/index.html.
[26] Filebeat. https://www.elastic.co/guide/en/beats/filebeat/

current/filebeat-overview.html.
[27] Auditd. https://man7.org/linux/man-pages/man8/auditd.8.html.
[28] Uptime. https://www.ibm.com/docs/en/aix/7.2?topic=u-uptime-

command.
[29] DAC. https://www.techopedia.com/definition/229/discretion

ary-access-control-dac.

119

https://www.tripwire.com/state-of-security/tripwire-news/tripwire-products-reference-guide/
https://www.tripwire.com/state-of-security/tripwire-news/tripwire-products-reference-guide/
https://www.trellix.com/en-us/security-awareness/endpoint/what-is-xdr.html
https://www.trellix.com/en-us/security-awareness/endpoint/what-is-xdr.html
https://documentation.wazuh.com/current/index.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-overview.html
https://www.elastic.co/guide/en/beats/filebeat/current/filebeat-overview.html
https://man7.org/linux/man-pages/man8/auditd.8.html
https://www.ibm.com/docs/en/aix/7.2?topic=u-uptime-command
https://www.ibm.com/docs/en/aix/7.2?topic=u-uptime-command
https://www.techopedia.com/definition/229/discretionary-access-control-dac
https://www.techopedia.com/definition/229/discretionary-access-control-dac

	List of Figures
	Acronyms
	Introduction
	Security Logging and Monitoring
	Security Logging
	Intrusion Detection System
	Knowledge-based detection
	Anomaly-based detection
	Additional Approaches
	Stateful Protocol Analysis
	Hybrid System
	Passive versus active intrusion detection
	Host-based intrusion detection
	Network-based intrusion detection
	Additional Technologies
	Continuous monitoring versus periodic analysis

	Alert correlation
	Similarity-based Algorithms
	Knowledge-based Algorithms
	Statistical-based Algorithms

	Case study: Weseth

	Security and Monitoring tools
	Discriminants
	Wazuh
	Wazuh elements
	Architecture
	User manual
	Capabilities
	Ruleset

	Implementation of Wazuh in the Weseth platform
	Test Environment
	Events to monitor

	Conclusion
	Bibliography

