
POLITECNICO DI TORINO
DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING (DAUIN)

Master Degree in Computer Engineering

Master Degree Thesis

PROLEPSIS: Binary Instrumentation Tool
for Control-Flow Integrity

in ARM and RISC-V

Author: Alessandro Iandoli

Advisor: Paolo Ernesto Prinetto
Co-Advisor(s): Gianluca Roascio

September, 2022

Abstract

The Internet of Things, also shortened with the term IoT, corresponds to an ecosystem
made of web-enabled smart devices (the IoT devices), implemented as embedded systems,
which collect, send and take other actions on the data that they acquire from their envi-
ronment. IoT started to grow rapidly in recent years, leading to an increasing usage of
embedded systems in the daily life of common people, and in critical infrastructures of
companies like SCADA systems. For this reason IoT devices started to be the target of
different cyber-attacks with the objective of controlling the functionalities of the embedded
system or exfiltrating the data that are treated. Tipically, cyber-attacks are carried out by
exploiting software vulnerabilities present in the code executed by victim system.

The software application that are executed by embedded systems are usually written
with the C/C++ language, which provides total freedom to the developer in terms of
interaction with hardware resources especially memory. Since memory management is all
entailed to the developer, this may lead to create memory corruption vulnerabilities in
the program, like buffer overflows or use-after-frees that can be exploited by an attacker
to hijack the execution flow and possibly execute remote commands on the vulnerable
systems.

Software protection techniques like Data Execution Prevention were introduced in order
to prevent such attacks, but nowadays Code-Reuse Attack techniques like Return-Oriented
Programming (ROP) or Jump-Oriented Programming (JOP) can bypass such mechanisms.

Such attack techniques consist in redirecting the execution flow to a chain of so-called
ROP/JOP gadgets. A gadget consist of a small piece of code inside the vulnerable program
image (few instructions), ending either with a return or with a jump instruction, that will
redirect the execution flow to the next gadget in the chain. The chain is created by the
attacker with the aim of executing arbitrary commands on the vulnerable system.

The countermeasure to Code-Reuse Attack is represented by Control Flow Integrity so-
lutions (CFI). CFI aims at guaranteeing the correcteness of the execution flow by retrieving
the set of valid destinations for each control-flow transfer instruction, and constraining that
instruction to redirect the execution flow only to a valid destination in the set. The con-
straint is enforced by inserting instrumentation code in the proper locations in the program.

The aim of the present thesis is to provide a tool that can automatically retrieve the set
of destinations for each control-flow transfer instruction, by using binary analysis on the
program, and then instrument the program with instructions that are provided externally
by the user, with the aim of making the program resistant to Code-Reuse attack techniques
and other attacks aiming at hijacking the execution flow of a program.

The tool was written in Python and exploits the abstractions provided by the reverse

2

engineering framework Radare2 for program analysis. The interaction with the Radare2
is carried out by leveraging the primitives provided by the r2pipe module.

The tool was integrated with two existing CFI solutions, one for ARM platform and
the other one for RISC-V.

Analyzing the results it was noticed how the solution itself, heavily affect the overhead
in terms of memory costs. In particular, for RISC-V solution were defined custom instruc-
tions, for the instrumentation code, by modifying the toolchain. The possibility to define
custom instructions and delegate most of the work to the hardware, significantly reduces
the overhead on the final executable size for the RISC-V solution, with respect to ARM
one.

3

Contents

1 Introduction 7

2 Background 9
2.1 Memory Corruption Vulnerabilities . 9
2.2 Stack-Based Buffer Overflow . 10
2.3 Data Execution Prevention . 12
2.4 Code-Reuse Attack . 14

2.4.1 Return-Oriented Programming (ROP) 14
2.4.2 Other CRA Techniques . 15

2.5 Mitigation and Countermeasures . 16
2.5.1 Address Space Layout Randomization (ASLR) 16
2.5.2 Stack Canaries . 17
2.5.3 Control-Flow Integrity (CFI) . 18

3 State of the Art 21
3.1 Static and Dynamic Binary Instrumentation 21

3.1.1 Binary Instrumentation Tools . 23
3.2 Software-based Solutions . 24
3.3 Hardware-based Solutions . 26

3.3.1 Branch Target or Instruction Encryption 26
3.3.2 Shadow Call Stack (SCS) . 27
3.3.3 Basic Block Hashing . 27
3.3.4 ISA extensions . 27

4 Instrumentation Tool - Theory 29
4.1 Basic Definitions and Edge Classification 29
4.2 Protection Mechanism . 31
4.3 CFI Monitor Implementations . 32

5 Instrumentation Tool - Implementation 39
5.1 Followed Strategies . 39
5.2 Code Analysis . 43

5.2.1 Parsing . 44
5.2.2 CFG Extraction . 47
5.2.3 Edge Retrieval . 50

4

5.2.4 Label Generation . 53
5.2.5 Instrumentation . 54

6 Experimental Results 57

7 Conclusions and Future Work 59

Bibliography 63

5

6

Chapter 1

Introduction

The technological process and the demand for new kind of services brought to the creation
of several smart devices, each one in charge of a specific function, interacting among them
or with existing information systems. This kind of architecture brought to the creation
of the so-called Internet of Things (IoT), an ecosystem of physical objects with sensors,
processing capabilities, software and other technologies that connect and exchange data
with other devices and systems over the Internet or other communications networks. This
new kind of architecture brought to an increasing production of embedded systems, that
now are employed in a wide range of applications, like medical devices or control systems
architecture like SCADA applied in industrial environments.

In order to reduce power consumption and increase performances, applications running
on embedded systems are executed directly on bare metal, meaning that there is no middl-
ware layer between the hardware and the application software, like an operating system for
desktop or mobile applications. The impossibility to rely on a middleware like an operating
systems is critical for security considerations, since no native protection mechanisms are
provided by default when an application is executed in an embedded system. Furthermore,
IoT devices are tipically exposed on Internet in order to communicate with other devices.

These characteristics make these devices appealing targets for threat actors, given the
wide attack surface offered in terms of software and hardware vulnerabilities. A cyber
threat that is able to exploit a vulnerability in such kind of device might be able to: inject
code in the firmware, alter his behaviour, exfiltrate sensible data manipulated by the device,
make the device part of a botnet.

Design of solutions providing security features to embedded systems like Confidentiality,
Integrity and Availability (CIA) must consider some constraints raised by limited hardware
resources, such as:

• reduced memory and computational resources;

• lack of support for task isolation;

• non-applicability of most existing solutions to ARM-based architectures;

• lack of middleware like an operating system or hypervisor standing between hardware
and software application;

7

Introduction

The wide attack surface offered by these devices and the lack of countermeasures against
attack techniques continuously evolving, contributed to the definition and development of
defensive techniques. Among them, Control Flow Integrity (CFI) [1] proved to be effective
to prevent memory corruption vulnerabilities. The idea of Control Flow Integrity is to
have a monitor that monitors the execution flow of the monitored program and prevents
branches not allowed. Before the program (and the monitor) are started, it is necessary
to extract the Control-Flow Graph of the application through static analysis [3], and find
what are all the allowed branches that will be provided to the monitor in order to perform
security checks at execution time.

The objective of the thesis is to provide a Python written tool, referred to as PROLEP-
SIS, performing static and dynamic analysis and binary instrumentation of applications
for Control-Flow Integrity purposes. PROLEPSIS takes as input custom instrumentation
code that can be used to instrument the target application, allowing to integrate the tool
with existing Control-Flow integrity solutions.

In particular the tool was integrated with the Control-Flow integrity solution defined
here [30]. The solution is based on an external monitor consisting of a Field Programmable
Gate Array (FPGA), a reprogrammable hardware module that interacts with the CPU in
order to guarantee integrity of the execution flow.

The remainder of the document is organized as follows. Chapter 2 discusses what
are the main memory corruption vulnerabilities affecting software application and the
corresponding software protections, defined in order to prevent attacks exploiting such
vulnerabilities. Chapter 3 discusses the state of the art of CFI solutions. Chapter 4
provides background information and terminology, needed for understanding the work of
the tool. In addition it describes the solution presented in [30], the tool was integrated in.
In Chapter 5, the architecture of the Python tool and how the activities are carried out
are discussed. Chapter 6 illustrates the results obtained by running the tool on a given set
of benchmarks, and finally, Chapter 7 concludes the work and offers suggestions for future
improvements.

8

Chapter 2

Background

In the present Chapter, the main memory corruption vulnerabilities that may affect a
software application are presented, and how they can be exploited by a threat actor in
order to possibly obtain arbitrary code execution on the victim system. Finally, the possible
software protection techniques that can be employed in order to counter such kind of attacks
are discussed. Among them, Control-Flow Integrity is only briefly presented, while it is
described more in the depth in the next Chapter.

2.1 Memory Corruption Vulnerabilities
C/C++ languages are usually the preferred languages for writing software applications for
embedded systems. C/C++ provide powerful abstractions to the developer for manipulat-
ing hardware resources like memory, as developer wants to gain higher performances. For
these reasons, C/C++ entails all memory management to the developer.

Most of the times, vulnerabilities are introduced due to incorrect memory management
by the developer, that may be exploited by an external threat actor in order to leak data
from the running application or overwrite critical data structure in the application, that
can alter the program behaviour. C/C++ provide pointers to manipulate memory with
no restrictions. if the developer does not follow good programming practices when writing
code, he may unwillingly insert a vulnerability.

Some of the most known types of vulnerabilities are:

• Buffer Overflow [13][14]: vulnerability where a program when writing data in an
array overruns the boundaries of the array, and as a consequence overwrites adjacent
memory location.

• Externally-Controlled Format String [16]: present when the format string is
controlled by the malicious user. It leads to format string attacks. A vulnerability
that stems from the usage non-sanitized user input as format string parameter in C
functions in charge of formatting, for example printf.

• Buffer Over-read [15]: vulnerability where a program when reading data from an
array overruns the boundaries of the array, and as a consequence reads adjacent
memory location.

9

Background

• Memory leakage [17]: it refers to multiple allocation on the heap without any
release, with a consequent heap’s saturation. The heap saturation causes the system
to not work anymore properly, since no more memory is available.

• Use-after-free [18]: Present when the memory pointed by a pointer is freed, but
the pointer is not sanitized (i.e., set to NULL) but still references the freed memory
location.

The exploitation of this vulnerabilities may lead to program crashes or to unexpected
behaviour in the program. But typically the threat actor exploits them with the aim of
obtaining arbitrary code execution. It means that attacker is able to inject arbitrary code,
in the memory reserved to the program, and hijack the execution flow of the program to
the location of the inject code.

In the next Section, it is shown how a buffer overflow vulnerability can be exploited by
an attacker, and the corresponding countermeasures will be described.

2.2 Stack-Based Buffer Overflow
Stack-based Buffer overflow corresponds to a buffer overflow vulnerability affecting the the
memory area reserved to the stack. As anticipated, it is present when a program writes to
a memory address on the program stack, outside of the data structure pointed to by the
memory address that corresponds to a fixed-length buffer.

Let us consider the following simple C program as an example:

include <stdio.h>
include <string.h>
include <stdlib.h>

int main(int argc , char *argv [])
{

char buffer [30];

strcpy(buffer , argv [1]); // here happens the overflow
printf("buffer content = %s\n", buffer);

printf("strcpy () executed ...\n");

return 0;
}

This simple program takes as input a string from the user and copy the string inside
a fixed-length buffer wide 30 bytes. The variable buffer is our vulnerable buffer. At
execution time, buffer is inside the stack frame of the main() function. In case, the user
may provide a string larger than 30 bytes: this will cause overwriting data inside the stack
after the vulnerable buffer.

10

2.2 – Stack-Based Buffer Overflow

A critical structure located inside the stack is the return address. If the return address
is overwritten, it is possible to redirect the execution flow to an arbitrary memory address,
as can be seen in Figure 2.1. The practice of voluntarily overwriting data inside the stack
is also referred to as stack smashing. With this technique, an attacker can also place in the
stack arbitrary code, and overwrite the return address with the memory pointing to the
injected code (Figure 2.2), thus obtaining arbitrary code execution on the victim system.

This happens because when the epilogue of the function main() is reached, the RET
instruction is executed, and the corrupted return address is loaded into the instruction
pointer, also referred to as program counter, containing the current instruction to be exe-
cuted by the CPU.

Figure 2.1: Stack smashing overwriting return address with 4 A’s.

The injected code is usually referred to as shellcode, i.e., a sequence of instruction that
allows to “get a shell" to issue arbitrary commands on the victim system. In other cases
the shellcode, might perform more complex operations like connecting to a Command and
Control Framework, also called C2 Framework from which the threat actor can remotely
control the victim system (Figure 2.3).

As can be seen, without any software protection a memory corruption vulnerability as
a stack-based buffer overflow can be trivially exploited by a threat actor. It is worth to
notice how this technique relies on the fact that the stack allows to store code and execute
it. This means that pages composing the stack are both writable and executable. For this
reason, the first software protection technique that was introduced to counter this kind of
threat is Data Execution Prevention (DEP).

11

Background

Figure 2.2: Stack smashing overwriting return address with address pointing to shellcode.

Figure 2.3: Attacker controls victim after exploiting memory corruption vulnerability.

2.3 Data Execution Prevention
Data Execution Prevention [38], also referred to as Write Xor Execute, is a software protec-
tion technique based on memory pages permissions. A memory page can be Writable (W),
meaning that it is possible to write data on it, Readable (R), meaning that it is possible
to read data from it, or Executable (E), meaning that it is possible to execute instructions
stored in it.

12

2.3 – Data Execution Prevention

A memory page can have a combination of this permissions: for example, it can be
both writable and readable (WR), or both readable and executable (RX). With DEP, it
is guaranteed that a memory page can not be at the same time writable and executable
(WX). Therefore, with DEP, all memory pages reserved to the stack are marked as WR,
writable and readable, but not executable. The same of course applies also to pages of
other memory regions used for writing data, like the heap.

When there is an attempt of executing code in the stack (as was done with the shell-
code in Figure 2.2) an exception is thrown, since the memory pages are not executable
(Figure 2.4). In desktop application running on top of an operating system, DEP policy
is guaranteed by the operating system.

For embedded systems, Data Execution Prevention policy can be implemented by a
Memory Protection Unit (MPU) as described in [37]. For every access request to a memory
page, the MPU first checks permissions against type of access, and the access request is
possibly not permitted, with a protection fault triggered.

It is important to notice that the Data Execution Prevention policy only prevents the
attacker from executing arbitrary code injected in the program address space. In case the
attacker is able to take control of the instruction pointer, for example by exploiting buffer
overflow vulnerability as described in Section 2.2, it is still possible for the malicious actor
to hijack the execution flow to existent pieces of code already present in the program (since
these pages will be marked as executable). Upon this concept, new attack techniques were
developed, called Code-Reuse Attack techniques.

Figure 2.4: DEP prevents execution of shellcode in stack.

13

Background

2.4 Code-Reuse Attack
When memory-protection defense techniques were introduced, attackers found the way to
still been able to obtain ACE arbitrary code execution by reusing the code already available
in the victim program instead of injecting custom code. In this way, a memory-based
protection technique as Data Execution Prevention is ineffective, since the code executed
is all contained in valid memory pages (according to the DEP policy, in executable pages).

This advanced exploit model is called Code-Reuse Attack (CRA), and consists of lo-
cating small pieces of code, referred to as gadgets, ending with a control-flow transfer
instruction, like a jump, call or return instruction. When executed, a gadget redirects the
execution to the next gadget in the so-called gadget chain.

As previously said, an attacker is first required to find an exploitable vulnerability that
allows him/her to inject the gadget chain and to hijack the execution flow to the first
gadget in the chain. The attacker can locate gadgets either in the code of the program, or
in the code of external libraries the program is linked to. The attacker might exploit the
presence of external libraries in order to redirect the execution flow to an entire function
in a library, that may allow him to obtain arbitrary code execution more easily.

This is how Ret-to-libc attack work [26]: the attacker hijacks the execution flow in order
to make the program execute functions inside the C Standard Library (libc). Typically
the attacker redirects the execution flow to the system() function, that can execute arbi-
trary system commands passed as parameters. In Figure 2.5, it is shown how an attacker
that, by exploiting a buffer overflow vulnerability, can use the Ret-to-libc technique in order
to obtain arbitrary command execution on the victim system. The return address is over-
written with the address of the system() function, and pointer to the string “/bin/sh" is
passed as parameter in the stack.

When the RET instruction is executed by the epilogue the program, system("/bin/sh")
is called. This causes the program to start the Unix shell /bin/sh, allowing the attacker
to execute arbitrary shell commands on the victim system.

The first attack technique implementing the Code-Reuse attack paradigm is Return-
Oriented Programming (ROP) [33]. Subsequently, more complex Code-Reuse attack tech-
niques were introduced, like Jump-Oriented Programming (JOP) [7] or Call-Oriented Pro-
gramming (COP) [34].

2.4.1 Return-Oriented Programming (ROP)
The most traditional version of CRAs is the Retun-Oriented Programming (ROP) [33]. In
ROP, the attacker exploits a buffer overflow vulnerability and places in the stack, after the
return address, a sequence of memory addresses each one pointing to a small piece of code,
located in the program address space, ending with a RET instruction (Figure 2.6). These
small pieces of code are also called ROP gadgets and are usually made of few instructions.
Every gadget performs a specific task, such as read/write operation from/to memory, or
arithmetic/logic operations between registers.

As can be seen in Figure 2.6, the return address is overwritten with the address pointing
to the first address in the chain. When the epilogue of the vulnerable function is executed,
the first RET instruction is executed, and the first gadget address is popped from the stack
and loaded in the instruction pointer. The instructions of the first gadget are executed

14

2.4 – Code-Reuse Attack

Figure 2.5: View of the stack after a Ret-to-libc attack

until final RET instruction in the gadget is executed that will pop the second gadget address
from the stack in the instruction pointer. The execution continues in this way until all the
gadgets in the chain are executed.

The objective of the attacker is to craft a gadget chain that, when executed as a whole,
allows the attacker to execute arbitrary command on the target system. For example,
the attacker may craft a ROP chain that will end up with a syscall instruction to the
execve function (considering a Linux environment with a x86_64 architecture): this leads
the malicious actor to execute arbitrary shell commands on the target system.

2.4.2 Other CRA Techniques
As previously mentioned, ROP is not the only Code-Reuse Attack technique available.
Another more powerful implementation (but also more complex) is the Jump Oriented
Programming (JOP) [7]. Similarly to Return-Oriented Programming, the execution flow
is redirected to a chain of small pieces code, but this time each one ends with an indirect
JMP instruction instead of a RET.

These technique is more complex with respect to the return-based one, since JMP does
not allow to naturally return control to the next gadget in the chain the same as with a
RET by storing gadgets in the stack.

In order to solve the issue, a dispatcher gadget have to be found (increasing the com-
plexity of the attack). Such a gadget will control the execution flow among the other

15

Background

Figure 2.6: Stack view after a ROP-based attack.

gadgets (called functional gadgets) with the help of a dispatch table containing addresses
to the functional gadgets. When the functional gadgets completes his execution, it will
return control through a JMP to the dispatcher gadget, that will transfer control to the
next functional gadget in the disaptch table (Figure 2.7). The execution continues in this
manner until all functional gadgets are executed.

In conclusion, all these techniques are effective when the attacker is able to alter the
execution flow of a program by initially corrupting the instruction pointer. In case it is
prevented the attacker from overwriting the instruction pointer or it is just prevented from
hijacking the execution flow such kind of attacks is mitigated.

2.5 Mitigation and Countermeasures
This Section discusses possible countermeasures to attack techniques described so far,
highlighting advantages and drawbacks for each.

2.5.1 Address Space Layout Randomization (ASLR)
Address Space Layout Randomization (ASLR) is a software protection technique based on
the randomization of address space. This means that the base address of an executable, the
start location of the heap, the stack, and the base address for shared libraries loaded in the

16

2.5 – Mitigation and Countermeasures

Figure 2.7: Schema of JOP-based attack.

process’ address space are chosen randomly every time a process running the application
is created [35].

In a 32-bit architecture, the attacker might still be able to brute-force the base address,
since usually the lower 2 bytes will be set to 0 while change only the upper ones, by running
the exploit multiple times until success. In a 64-bit system, a brute-force attempt would
be too expensive, and it is considered very unlikely [35].

ASLR, in conjuction with DEP, proved to be effective in order to prevent the attacks
previously described, since the Code-Reuse Attack paradigm relies portion of code (gad-
gets) in the program address space that needs to be located at a fixed/predictable location
[35].

However, in the case the attacker is able, maybe by exploiting another vulnerability, to
leak the base address of a library linked to the program, like the C standard library (libc),
at runtime, CRA techniques are again available to the attacker, like ret-to-libc.

2.5.2 Stack Canaries
The stack canary protection technique [12] is particularly effective in order to protect the
application from attacks targeting the program’s stack. In particular, stack canaries aim
at protecting the return address stored in the stack from been overwritten.

When a function is called, a randomly-generated value is inserted between the return
address and the stack frame of the called function. Before the function returns, so before the

17

Background

RET instruction is executed, the program checks the value of the canary in the stack against
the original value. If there is a match, the execution continues successfully; otherwise, an
exception is thrown, and the program execution is interrupted (Figure 2.8).

Figure 2.8: Stack canary preventing stack-based buffer overflow.

In order to bypass a stack canary, an attacker must be able to first leak the canary
value at runtime, insert it in his/her malicious buffer and finally send it to the vulnerable
application.

2.5.3 Control-Flow Integrity (CFI)
Control-Flow Integrity (CFI) is the most powerful protection concept for code hijacking
attacks. The solution has been first proposed in 2005 by Abadi et al. [2].

To be applied, CFI requires to first obtain a map of all the valid destinations for each
control-flow transfer instruction, like return, call or jump instruction. Once the map has
been obtained, the program needs to be instrumented in order to verify, at runtime, that
each control-flow instruction will transfer the execution flow to a valid destination among
the ones in the map previously obtained.

In other words, the integrity of the execution flow is checked by comparing the current
program path against a pre-computed model, encapsulating information about all the
allowed execution paths in the program.

This model corresponds to the Control-Flow Graph, a higher level representation of the
program extracted with the adoption of program analysis techniques.

18

2.5 – Mitigation and Countermeasures

The Control-Flow Graph is a directed graph made of:

• Nodes: a node identifies a basic block (BB), where a basic block corresponds to a set
of non-jumping instructions ending with a control-flow transfer instruction (condi-
tional/unconditional jump, call, return,...). It is important to highlight a basic block
has no other branch instruction than the ending one (Figure 2.9).

• Edges: an edge corresponds to a control flow-transfer instruction and links two basic
blocks. The edge corresponds to control-flow transfer instruction that terminates a
source basic block and redirects the execution to a destination basic block (Figure
2.10).

Figure 2.9: Example of valid and non valid basic blocks.

Figure 2.10: Example of edge.

19

Background

These kind of checks can be either implemented by the program itself (in software) or
by an hardware module external to the application. In both cases, the original software
application likely needs to be instrumented in order to protect the code location at risk of
control-flow hijacking attempts.

Drawbacks of Control-Flow Integrity are the complexity in the implementation and
overhead that may cause on the application in terms of memory costs and performances.

20

Chapter 3

State of the Art

The solution aiming at enforcing Control-Flow Integrity property of a program consists
of verifying, at execution time, that the current execution flow is compliant with the
Control-Flow Graph of the program, previously extracted through static analysis. In the
current Chapter, first the two main types of binary instrumentation are described, and
existing tools performing the instrumentation will be briefly described. Later, an overview
of the state of the art about Control-Flow Integrity techniques and methods is provided,
presenting what are the main software-based and hardware-based solutions.

3.1 Static and Dynamic Binary Instrumentation
Control-Flow Integrity solutions guarantees the integrity of execution flow by comparing
the checking the current execution path against a pre-computed model, encapsulating all
the valid execution paths. In order to enforce the correctness of the execution flow, solutions
may require to insert additional instruction, in suitable places, in the original program, in
order to instrument the application to check that the currrent execution path is compliant
with the valid model. The instrumentation code aims at protecting weak points in the
program that may be exploited by attackers in order to trigger Code-Reuse Attacks.

For this reason, some of the existing CFI solutions rely on the following activities:

1. the Control-Flow Graph analysis, that allows to extract a map with all the valid
execution paths that a program can follow;

2. the insertion of proper instructions in the program, e.g., before and after the execution
flow changes, that check if the current path followed by the program is still in the
boundaries of the map extracted at the previous stage.

The process of analyzing and instrumenting a program is called binary instrumentation.
There exist two alternatives:

• Dynamic Binary Instrumentation (DBI) [27]

• Static Binary Instrumentation (SBI) [28]

21

State of the Art

Static Binary Instrumentation consists of analyzing the program ahead of execution
time, by first disassembling the code and later detect the point in the program requiring
instrumentation [43]. These instrumentation points will be used as locations for inserting
the instrumentation code in the executable file. (Figure 3.1).

Figure 3.1: Static binary instrumentation process

On the other hand, Dynamic Binary Instrumentation relies on an external monitor that
monitors the program at execution time. The monitor inspects one instruction at a time
before being executed, and inserts the instrumentation code on-the-fly.

The main advantages of DBI are: (i) overhead in terms of memory costs is avoided,
since the original executable is kept unmodified, and (ii) instrumentation is performed at
execution time, without the need of an expensive offline process. In addition, the real-time
approach adopted by DBI does not have to face the inaccuracies of disassembly engines,
and does not have to care about code relocation, which have to be addressed by SBI during

22

3.1 – Static and Dynamic Binary Instrumentation

the Transformation phase.
DBI has instead its drawbacks in the overhead introduced in terms of execution time,

that may significantly affect performances. This is a particularly critical feature in real-time
applications such as in the embedded domain. SBI still introduces an overhead in terms of
performances, but it is only given by the additional instrumentation instructions that are
inserted, that is minimal with respect to what happens with DBI, where an execution by
symbols take place.

With both strategies, the instrumentation process follows to the following stages [42]:
1. Parsing: the purpose of this stage is to obtain the raw instruction stream from the

executable and then send it as input to a disassembler. In addition, the content of
global variables and data section are collected for further analysis;

2. Analysis: at this stage, the structure of the program is retrieved. The instruc-
tion stream is disassembled, and disassambled instructions are grouped in functions.
In addition, branch instructions are detected, and a Control-Flow Graph (CFG) is
produced;

3. Transformation: Once the CFG is available, the instrumentation points in the code
are collected, and are augmented with instrumentation code;

4. Code Generation: it is the last stage of the process, where the modifications are
integrated in the program in way that a final executable is produced;

3.1.1 Binary Instrumentation Tools
In literature, several binary instrumentation tools have been presented, based on advan-
tages and disadvantages of the instrumentation technique. In the present Section, some of
the most common tools following either SBI or DBI will be briefly presented.

PEBIL

PEBIL [28] (PMaC’s Efficient Binary Instrumentation Toolkit for Linux) is a binary instru-
mentation toolkit that enables the building of instrumentation tools producing an efficient
instrumented executables, leveraging the static approach.

PEBIL instruments the executable statically by placing a branch instruction at the
instrumentation point that will redirect the execution to the instrumentation code. The
instrumentation code saves the program state, and will perform the actions required by
the instrumentation tool.

In order to support ISAs with variable length instructions, PEBIL takes care of re-
locating and transforming code for each function in order to make instrumentation code
reachable from the instrumentation points.

PEBIL supports only x86 architecture.

PIN

Pin [4] as a dynamic binary instrumentation framework developed by Intel. Pin aims at
providing a platform for building program analysis tools, called pintools. A pintool consists
of three type of routines:

23

State of the Art

• instrumentation routines: routines that inspects the application’s instructions
and insert calls to analysis routines;

• analysis routines: invoked when the program executes an instrumented instruction;

• callback routines: called when an event occurs;

The C/C++ API’s provided by PIN can be leveraged to build pintools. PIN will
use a Just-In-Time (JIT) compiler in order to apply instrumentation at runtime to the
application.

Additionaly, PIN supports the probe mode option, which provides higher performances
but has a limited set of callbacks available limiting the capabilities of the pintool.

PIN is provided for Windows and Linux platforms, but works only for program compiled
for the Intel architecture, making it not suitable for embedded systems based on ARM
architectures.

Dynist

Dynist [5] is a binary instrumentation and analysis framework leveraging both the static
and dynamic approach for code instrumentation. Dynist provides a representation of the
program in terms more higher level structures, like function’s basic blocks, and the user
leverages this representation in order to instrument code in anywhere in the binary.

Dynist emphasize anytime instrumentation by providing the possibility either to stati-
cally instrumented the code (binary permanently modified) or instrument it at execution
time (dynamic instrumentation). The user is allowed to modify or remove instrumentation
at anytime.

In addition, the analysis techniques performed allows to insert new instruction without
influencing no-instrumented code, that can run at native speed, in order to minimize the
overhead in performances.

3.2 Software-based Solutions
Software-based Control-Flow Integrity solutions rely on control-flow monitors that are im-
plemented using software techniques only. In other words, checks are performed by ad-
ditional code, running in parallel through another process or inside the program itself,
through binary instrumentation.

In the original article describing CFI [1], authors propose a label-based instrumentation
to have the software checking the control flow validity by itself. The approach relies on
storing unique identifiers (labels) at the beginning of each basic block, where a basic block
in a CFG corresponds to a set of instructions with no branch instructions in between.
The instrumentation code is inserted before the indirect branch, and checks whether the
destination basic block ID matches with the expected one retrieved from the CFG analysis.
In case a malicious actor tries to hijack the execution flow, the attempt is detected and
integrity of the execution flow is guaranteed.

In Figure 3.2, it is shown an example of how the mechanism works. In this case, the
destination of the jump was labelled with ID 12345678. Before the JMP ECX is performed,
the target label is checked in order to detect control-flow tampering attempts. In the

24

3.2 – Software-based Solutions

example if the check fails, the execution is redirected to the violation() function, that
will stop the execution; otherwise, ECX is incremented and the execution is successfully
redirected to the proper destination.

Figure 3.2: Label-based instrumentation code

Control-Flow Locking (CFL) [6] was introduced as an alternative to the label-based im-
plementation in order to reduce the overhead introduced by the previous solution. Control-
Flow locks are similar to mutex locks, but they are instead used to enforce validity of the
application execution flow.

Some lock code is placed before each indirect control-flow transfer instruction. This lock
code, will asserts a lock by simply changing the lock value, a value in memory.

The corresponding unlock code is placed at each destination of the control-flow transfer
instruction, where the unlock code will de-assert the lock only if the current value of the
lock is a valid one. In case the current lock value is different from the expected one, which
implies that branch performed is not a valid. This behaviour allows to detect control-flow
tampering attempts.

The unlock code must also set the lock value to an “initialization value", notifying to
the next holder of the lock, that it can be acquired.

In Figure 3.3 is provided an example of application of Control-Flow Locking. First,
func1() is called. Before returning at the end of the function, the lock code is executed.
This snippet of code first checks if the lock was not set. If it was already set, this reveals a
control-flow hijacking attempt, and the flow jumps to violation() function. Otherwise,
the lock is set to a known value, (the value correspond to key in the example), and the
execution returns to the caller. The caller, upon return, checks if the lock contains the
correct key value. If the check is successful, the lock is unlocked (it is set to 0), and the
execution proceeds normally; otherwise, it jumps again to violation().

The main disadvantage of enforcing Control-Flow Integrity with software-based solu-
tions is that requires to add to the program a large amount of instructions that introduces
a significant overhead in terms of occupied memory and performances. This is particularly
critical for systems with limited resources as embedded systems.

25

State of the Art

Figure 3.3: Label-based instrumentation code

3.3 Hardware-based Solutions
Hardware-assisted CFI monitor allows to avoid the losses in performances that are intro-
duced by instrumentation routines at the software level. In order to guarantee the correct-
ness of the control flow with hardware solutions, several challenges needs to be faced, in
order to limit costs and ensure at the same time that the CFI principle is guaranteed.

The processor architecture must either modified or enriched with external modules, that
are able to support CFI capabilities, increasing production costs. On the other hand, the
solution is much faster in checking CFI, so that the impact on performances is negligible
with respect to software-based solutions.

3.3.1 Branch Target or Instruction Encryption
One method for guaranteeing integrity of the control flow is to encrypt either the target
address of a branch instruction or the target instruction itself.

The first method was proposed in [32]. It consists of inserting an additional component
in the processor architecture which, before a function call, encrypts the return address
before putting it onto the stack. At RET time, the encrypted return address gets popped
from the stack, gets decrypted from the newly introduced module, and finally the address
is loaded in the instruction pointer. If there was an attempt of tampering the control
flow by overwriting the return address, the decryption will return an invalid address and
the execution is stopped, successfully detecting the control-flow hijacking attempt. It is
important to highlight that this solution does not protect indirect branches.

Slightly different technique was presented in [29]. In this case, the destination instruc-
tions of indirect branches are encrypted at load time, i.e., before the application is actually
running. Everytime a branch instruction is executed, first the target instruction is de-
crypted and then it is executed by the processor. If the decryption procedure produces an
invalid instruction, it means that there was an attempt of tampering the control-flow, and
the execution is stopped.

The module in charge of the encryption/decryption process is joined with the help of
Physical Unclonable Function (PUF) [25] or the Advanced Encryption Standard (AES) [19]
algorithm. A solution adopting PUF allows to obtain better performances but suffers from

26

3.3 – Hardware-based Solutions

the cryptographic point of view, since the encryption/decryption procedure only consists
of a XOR operation. Solutions using AES algorithm slightly decreases performances but
are more resistant from a cryptographic point of view.

3.3.2 Shadow Call Stack (SCS)
Shadow Call Stack software protection, initially proposed in this paper with the name
SmashGuard [31].

The technique requires to introduce an additional hardware module in the processor
architecture, a new hardware stack, in which return addresses of function calls are pushed
to and popped from.

Everytime a function call is performed, the return address and the current stack pointer
will be both saved in the software stack (the usual memory area available allocated in the
process address space), and in the newly hardware stack added to the CPU. When a return
instruction is executed, both return addresses, the one in the software stack and the other
in the hardware stack, are popped from the top of their stacks and are compared. If the
popped addresses are equal, the execution can continue successfully; otherwise, a hardware
exception is raised, detecting any attempt of hijacking the execution flow by return address
corruption [9] [8] [24].

Drawback of this solution is that it is only limited at detecting stack-based attacks.
Malicious actions on other memory area, e.g. heap or global data, remain undetected. In
addition, inserting a module inside the processor is a very expensive solution, since requires
to modify the processor architecture, even though no modification may be required to the
Instruction Set Architecture (ISA).

3.3.3 Basic Block Hashing
Basic Block Hashing is another CFI enforcement technique that verifies the correctness
of the execution flow by computing a hash of the basic block, and comparing the result
with a pre-computed value. A mismatch reveals that the integrity of the control-flow was
violated, and therefore the execution is interrupted.

The hardware module implementing the checks may be either strictly bounded to the
processor [41], or placed between the instruction cache and the processor [10] [20], being
also known as Control-Flow Integrity Cache.

3.3.4 ISA extensions
Another possibility to enforce Control-Flow Integrity is by extending the existing Instruc-
tion Set architecture (ISA) with additional instructions that perform CFI enforcement.

In [21], the authors propose HAFIX (Hardware-Assisted Flow Integrity eXtension), an
extension of the base Instruction Set of Intel and Sparc embedded system architectures,
defining additional instruction for protecting against attacks trying to break the integrity
of returns from function calls.

HCFI (Hardware-enforced Control-Flow Integrity) [11] instead relies again on extending
the ISA but also on introducing a shadow stack. HCFI improves HAFIX, as it allows to

27

State of the Art

guarantee the integrity also of indirect branches/function calls (forward edges) in addition
to backward edges.

28

Chapter 4

Instrumentation Tool - Theory

The present Chapter is committed to provide the theory which is behind the instrumenta-
tion tool “PROLEPSIS" implemented during the work of this thesis.

The first Section aims at providing background information and the necessary termi-
nology that is required in order to better understand the work. The next Section describes
the general protection strategy and the rules of the monitor that is in charge of actually
enforcing Control-Flow Integrity. In the final Section are discussed two example implemen-
tations of the CFI monitor: one as an external reconfigurable hardware module (FPGA)
[30], and another one as a security IP module integrated in the processor.

4.1 Basic Definitions and Edge Classification
As already anticipated in Chapter 2, in order to guarantee the integrity of the execution
flow it is required to extract and analyze the Control-Flow Graph, a directed graph made
of nodes and edges, with nodes representing basic blocks and edges control-flow transfer
instructions, transferring the execution flow from one basic block to another one.

Depending on the entity of control-flow transfer instruction, represented by the edge,
two different kind of edges are distinguished [1]:

• Forward edge: in case the control-flow transfer instruction corresponds either to a
branch in the same function (conditional or unconditional branches) or to a function
call (call instruction), the edge is categorized as a forward edge;

• Backward edge: in case the control-flow transfer instruction corresponds to a return
from a function call (return instruction), the edge is classified as a backward edge.

Edges can be further classified according to the source from which the target address
of the branch is retrieved. In particular, an edge can be:

• Direct edge: an edge identifying a jump instruction which target is constant and
encoded in the jump instruction itself;

• Indirect edge: an edge identifying a jump instruction which target is inside either
a CPU register or a memory location.

29

Instrumentation Tool - Theory

As discussed in the previous Chapters, a malicious actor is able to tamper the exe-
cution flow by overwriting the content of memory/registers containing memory addresses
to executable code. The target addresses of indirect jumps can be exploited in order to
achieve such a condition. In the case of ARM-based and RISCV-based CPU architectures,
the indirect jumps corresponds to that jump instructions getting the target address either
from a register or from a memory location, which content may be corrupted by a threat
actor.

With the retrieval of the Control-Flow Graph, it is possible to immediately retrieve the
destination addresses of direct jumps, like CALL to a function or branches to labels, since
the destination is constant and encoded in the instruction itself.

The same does not apply to indirect jump instructions, like POP PC or BX lr in the
ARM instruction set or RET in the instruction set of RISC-V. In order to retrieve the
target address of an indirect jump instruction it is necessary to retrieve the source operand
from the instruction, and then trace back It’s history until the target address is retrieved.

In order to achieve such a result it is necessary to retrieve the origin-tree of the source
operand of the target. As mentioned here [30] the origin tree is a tree having as a root, the
source operand of instruction generating the indirect edge, and as arms all the traces that
allows to reconstruct the value stored in the source operand. In order to retrieve it, it is
necessary to retrieve a slice of the program containing the instructions involved in defining
the value of the source operand.

For executable running on embedded systems, it is always possible to retrieve the set
of target addresses of an indirect jump instruction [30], since the executable is statically-
linked to the necessary external libraries at compile time, therefore all the code is already
available inside the executable file.

Figure 4.1: ARM code segment and origin tree of the register involved in the indirect jump
[30].

For the purpose of protecting the integrity of the control-flow of the target executable,
while minimazing the overhead in terms of memory costs, the edges of the CFG can be
again distinguished in:

• Insecure edge: an insecure edge corresponds to an edge that requires to be applied
instrumentation. Insecure edges are indirect jumps which source operand’s value
depends on memory locations at risk of corruption, like the stack or the heap. An
example is the RET instruction for RISC-V or POP {PC} for ARM;

• Secure edge: a secure edge insteads corresponds to an edge that does not need

30

4.2 – Protection Mechanism

to get applied instrumentation. Secure edges are either direct jumps or indirect
jumps which source operand’s value does not depends on memory locations at risk
of corruption, like the stack or the heap;

Another issue that has to be taken into account are the handling of Interrupt Requests.
At execution time, the processor may receive an Interrupt Request, that will trigger the
processor to transfer the execution to the corresponding Interrupt Service Routine (ISR)
in order to serve the request. Interrupt Request are received asynchronously at anytime in
the code, and can not be forecasted through Control-Flow Graph analysis.

When the processor needs to serve the Interrupt Request, first saves the current program
context (current content of the registers) in memory, so that it can be restored when
completes the ISR execution. Since ISRs may contain vulnerabilities exploitable by an
attacker, it must be kept into account by the instrumentation process [30]. For this reason,
in order to handle ISRs properly, it might be required to add instrumentation instructions
both at the beginning and at the end of the routine.

4.2 Protection Mechanism
PROLEPSIS it is thought to instrument the program in a way that the CPU interacts
with a CFI monitor, that is in charge of enforcing the Control-Flow Integrity policy.

It is possible to distinguish two stages in the protection mechanism: an offline stage
and online stage. The offline stage is the one carried out by the instrumentation tool. The
instrumentation tool analyzes the executable binary with binary analysis technique in order
to extract the Control-Flow Graph, and then the Control-Flow Graph is further inspected
in order to retrieve the insecure edges requiring instrumentation. The fundamental premise
is that it is always feasible to retrieve the destination of indirect edges and preserve the
execution context when handling Interrupt Requests.

Once are retrieved all the insecure edges, the tool generates a set of labels that uniquely
identify each source/destination of every insecure edge.

For every identified insecure edge instrumentation code is inserted both before and after
the jump instruction is executed. Therefore instructions are inserted before the control-flow
transfer instruction itself and before the first instruction pointed by the target address of
the control-flow transfer instruction.

The instrumentation instructions may consist of regular instructions already present
in the Instruction Set Architecture or custom instructions (the choice depends on the
CPU architecture, for example RISC-V allows to modify the toolchain and define custom
instructions, while it is not the same for ARM). The instrumentation code provides the
CFI monitor with the information about the current position in the program by sending
the label, previously generated, identifying that code location.

Therefore, ahead of execution time, two operations must be performed:

• the monitor is provided with the list of accepted source-destination labels (identifying
an insecure edge), and everytime it receives a pair, it checks if the pair is among the
accepted ones embedded in it;

• the CPU is loaded with an instrumented version of the target executable, where the
instrumentation instructions are executed in order to provide the monitor with the

31

Instrumentation Tool - Theory

pair source-destination identifying the current branch performed;

Subsequently, during the online stage (at runtime), the instrumented program, when
an insecure branch is occuring, sends labels previously generated identifying the performed
branch, by executing instrumentation code before and after the control-flow transfer in-
structions. The CFI monitor, when receiving information about the currently control-flow
transfer operation, may detect a violation in case:

• the destination label is not valid or the pair source-destination labels received is not
among the list of accepted pairs previously loaded;

• no label is received after the reception of a source label, meaning that the execution
flow was redirected to a non-instrumented site that by construction can not be valid;

In case the Control-Flow Integrity monitor detects a violation, it may react in two
distinct ways: stopping the execution or performing a corrective action.

4.3 CFI Monitor Implementations
As discussed in the previous Section 4.2, the instrumentation of the firmware consists
of instructions sending to the monitor the information about the current location in the
code before and after a branch is performed. These information consist of pairs of unique
identifiers, also referred to as labels, that must be provided at load-time to the monitor in
order to check the validity of the branch.

A possible implementation of the monitor is the one described in this paper [30], that
consists of a reprogrammable hardware module (FPGA) interacting with the CPU with
the purpose of enforcing integrity of the execution flow.

For this solution, the following types of instrumentation were identified:

1. Backward insecure edge with a single target: CPU transmits to the monitor the source
ID before the branch and the destination ID immediately after the branch;

2. Forward insecure edge with a single target: same as previous one;

3. Forward insecure edge with multiple targets: as in 2., but inserting instrumentation
code for all the destinations;

4. Backward insecure edge with multiple targets: as in 1., but inserting instrumentation
code for all the destinations;

5. Forward secure edge to a routine ending with a backward insecure edge with multiple
targets: it corresponds to a function call that does not require protection, since the
edge is secure, but it is important to check that the return address is not modified.
Therefore the CPU transmits to monitor the ID corresponding to the return address;

6. Forward insecure edge to a routine ending with a backward insecure edge with single
target: a combination of 2 and 5. CPU sends both the ID of current location plus
the ID of the return address;

32

4.3 – CFI Monitor Implementations

7. Forward insecure edge to a routine ending with a backward insecure edge with multiple
targets: same as the previous, but all return locations are protected;

For preserving program context, it is instead necessary to add instrumentation code at
the beginning and at the end of every Interrupt Service Routine. The code for instrument-
ing edges according to the case and to preserve program context when entering/exiting
into/from ISRs is shown in figures 4.2 and 4.3.

In the presented solution [30], the CPU is allowed to transfer to the FPGA:

• a 16-bit value passed on the bus;

• a 6-bit value that defines the opcode.

The opcode identifies the type of operation to be performed by the FPGA, while the
16-bit value transmitted by the CPU can have one of the following meanings:

1. a unique ID identifying a position in the code. The 3 most-significant bits are set to
0 while the ID consists of the remaining 13 bits.

2. a 16-bit value representing half of the content of a 32-bit register. It is sent by the
CPU when handling ISRs.

Another CFI monitor implementation is the one defined for RISC-V by the same re-
search team of the previous solution. In this case, the monitor is implemented as an IP
hardware component integrated in the processor. The IP hardware component consist of
a Programmable Logic Array (PLA) [36]. The behavior is quite similar to the previous
solution where the program, running on the CPU, is instrumented to send labels to the
monitor along with opcodes. The main difference is in the instrumentation code.

RISC-V provides the possibility to extend the Instruction Set Architecture with addi-
tional instructions. For the solution the ISA was extended with four custom instructions:

• CFLC: Control-Flow Load Configuration. A series of this instructions is executed
before the instrumented program is actually executed, in order to configure the PLA
to interact properly with the processor;

• CFES: Control-Flow Enforce Source. This instruction must be executed before
a control-flow transfer instruction of an insecure edge. It sends to the monitor the
source label of the edge;

• CFED: Control-Flow Enforce Destination. This instruction must be executed
after a control-flow transfer instruction of an insecure edge. It sends to the monitor
the destination label of the edge;

• CFPUSH: Control-Flow Push. This instruction must be executed at entry point of
an Interrupt Service Routine. It allows to store the value of registers directly inside
a shadow register file inside the processor;

• CFPOP: Control-Flow Pop. This instruction must be executed at exit points of
ISRs. It allows to restore the value of registers previously saved in the security
module through the CFPUSH;

33

Instrumentation Tool - Theory

Both instructions CFES and CFED automatically take care of disabling interrupts before
and after the information is sent to the monitor, allowing to reduce drastically the overhead
in terms of memory cost, since now only one instruction have to be inserted.

Figure 4.4 summarizes how the instructions CFES, CFED, CFPUSH and CFPOP are inserted
by the instrumentator in the program.

In this solution CFES and CFED take the format of a jump instruction, but have the
purpose of sending a 20-bit value to the monitor.

The value is an ID identifying the location in the code that was protected, either a
source or a destination of an insecure edge.

On the other hand CFPUSH and CFPOP have the same format of store or load instruction,
already defined in the original Instruction Set Architecture of RISC-V, with a different
behaviour: CFPUSH loads the register value both in the normal stack and in the Secure
Register Stack located in the monitor (later described). CFPOP perform a load both from
the Secure Register Stack and from the normal stack. It compares the values and, if they
are different, raises an exception.

As for the FPGA-based solution, the opcodes specify to the monitor what operation
has to perform.

The type of instrumentations identified are the same as the ones already listed for
the ARM solution, but now all of them are handled in the same way, as summarized in
Figure 4.4, where CFES is executed before the control-flow transfer instruction, while CFED
is executed after the control-flow transfer instruction. Only exception are the handling of
Interrupt Service Routines, that are handled using CFPUSH and CFPOP as anticipated.

In both solutions, the CFI monitor relies in three internal data structures in order to
check the validity of the different kind of control-flow transfer instructions:

• a Secure Edge Table to store the list of valid source-destination pairs (source and
destination corresponds to IDs, where an ID refer to a position in the code);

• a Secure ID Stack used as stack for direct function calls, to check the validity of
the return address;

• a Secure Register Stack to manage registers content before and after the ISRs
execution and preserve program state.

After the instrumentation process completes, at load time, the list of valid source-
destination pairs will be converted in a bitstream and then "injected" in the monitor at
load-time. At execution time, first secure bootloader is executed, taking care of configuring
the monitor and setting up the interaction between the CPU and the monitor. Finally the
bootloader, through a final jump instruction, redirect the execution to the entry point of
the instrumented binary loaded in the CPU.

Therefore, at execution time, when the monitor receives both the source and destination
IDs, it combines them through a XOR operation to index the Secure Edge Table containing
the list valid source-destination pairs.

When the index points to a non-valid entry in the table, it means that a control-flow
hijacking attempt was detected, so the monitor transmits an interrupt to the CPU in order
to stop the execution. Otherwise, the execution continues transparently.

The check of the branch relies also on a timer inside the monitor, meaning that a
destination ID, after the reception of the source ID, must be received before a timeout

34

4.3 – CFI Monitor Implementations

expires. If the destination ID is not received before the timeout, it implies the execution
flow was redirected to a non-instrumented point in the code, that is invalid, so the CPU
must be again signaled with an interrupt after timeout expiration.

35

Instrumentation Tool - Theory

(a) ARM-FPGA instrumentation for types 1), 2), 3), 6).

(b) ARM-FPGA instrumentation for type 4).

(c) ARM-FPGA instrumentation for type 5). (d) ARM-FPGA instrumentation for type 7).

Figure 4.2: Instrumentation code based on edge classification.

36

4.3 – CFI Monitor Implementations

Figure 4.3: ARM-FPGA instrumentation code for ISRs.

37

Instrumentation Tool - Theory

(a) RISC-V instrumentation of forward edge.

(b) RISC-V instrumentation of backward edge.

(c) RISC-V instrumentation of ISRs.

Figure 4.4: Instrumentation with custom instructions for RISC-V.

38

Chapter 5

Instrumentation Tool -
Implementation

The instrumentation tool, called PROLEPSIS, was first presented in 2021 [23]. At that
moment, only ARM architecture was supported, and the tool was just a prototype with
lack of stability and efficiency.

The aim of the thesis is to create a tool that is capable of automatically identifying
the insecure edges in a target program, and then produce an instrumented version of the
application, with the insecure edges, previously identified, protected against control-flow
redirection attacks. It is in charge of implementing the instrumentation process in the
offline phase of the solution presented in the Chapter 4. The tool is abstracted from the
instrumentation code: it accepts any kind of instrumentation code, that is provided by
the user as a parameter. The functionalities of the tool were expended by supporting
also the instrumentation of applications compiled for the RISC-V architecture. In the
current Chapter, the strategies adopted for implementation will be discussed, as well as the
organization of the code, the data structures involved, and the stages of the instrumentation
process implemented by the tool: parsing of the disassembly listing and reconstruction of
the disassembly code, retrieval of insecure edges, label generation, code instrumentation.

5.1 Followed Strategies
By analyzing Control-Flow Integrity solutions, it is possible to understand that the effec-
tiveness of the protection mechanism essentially relies on 2 factors:

1. the generation and analysis of the CFG in order to extract the edges in the program;

2. the insertion of instrumentation instructions in order to protect insecure edges from
control-flow hijacking attacks;

As already mentioned, static analysis techniques do not allow the reconstruction of a
complete CFG in general, as they might fail on retrieving the destinations associated with
indirect jumps, and require a more in depth analysis. In addition, it is required to take

39

Instrumentation Tool - Implementation

into account that the execution of Interrupt Service Routines (ISR) may happen in any
point in the code, without the possibility of being tracked by the CFG.

The purpose of the tool is to extract and analyze the Control-Flow Graph, and from
the CFG retrieve all possible insecure edges by also retrieving the destinations of indirect
branches, and protect the execution context as described in the aforementioned paper [30].
In addition, the tool must be independent of the instrumentation code, that is provided
externally by the user. The instructions still need to be compliant with the label-based
protection mechanism as described in [30]. Therefore, as will be better described later, the
instrumentation code requires to contain a marker indicating where the label value must
be inserted in the code itself.

The considered instruction sets are the ARMv7 with Thumb II extension and RISC-V
RV32IM. These have some peculiarities that must be taken into account during the edge
retrieval process:

1. the presence of instructions that redirect the execution flow by changing the PC reg-
ister value through operations that may involve tainted registers, which value may
derive from memory locations potentially corrupted (this applies to both RISC-V and
ARM);

2. unlike Intel-based architectures, the lack of proper RET machine instructions: by
convention, ARM and RISC-V perform the return with a branch instruction to the
content of the link register (ARM’s LR or RISC-V’s RA, return address), or by directly
loading the return address in the PC register through a POP instruction or load (LDMIA)
instruction;

3. the application of multiple instructions sets inside the same binary file: Executable
files compiled against the ARMv7 thumb II architecture, may contain either instruc-
tions on 32-bits typical of the ARM instruction set, or 16-bits/32-bits instructions
belonging to the Thumb instruction set;

In order to simplify the development, it was decided to keep two separate script: one for
instrumenting ARM binaries and another one for RISC-V binaries. However, apart from
minimal differences depending on the two different instruction sets, the algorithm followed
remains conceptually the same, and can be outlined 5 different stages:

1. Parsing: it parses the file containing the disassembly of the code section (.text)
and the disassembly of data sections (.data, .rodata and .bss), and are converted
in two separate listing files;

2. CFG Extraction: the program is analyzed by applying a combination of static and
dynamic analysis techniques in order to retrieve the Control-Flow Graph and obtain
the destinations of indirect branches;

3. Edge Retrieval: insecure edges are identified, and stored in proper data structures
with additional information for classification purposes;

4. Label Generation: from the edges, all the sources and destinations are associated
to a given label; labels are chosen according to a given label generation algorithm;

40

5.1 – Followed Strategies

5. Instrumentation: once the labels are available, the instrumentation code is applied
to the locations previously identified in the code. Finally, all the sections are again
merged in order to output a single instrumented assembly file, ready to be compiled
again;

The CFG Extraction and Edge Retrieval phases of the instrumentation process heav-
ily rely on the reverse-engineering framework Radare2 [40] and the Python module r2-pipe
[39], that allows programmatic interaction with the framework. As described in the Github
repository of Radare2 [40]:

Radare project started as a forensics tool, a scriptable command-line hexadecimal
editor able to open disk files, but later added support for analyzing binaries,
disassembling code, debugging programs, attaching to remote gdb servers...

The tool is in fact extensively used to extract control-flow graphs and retrieve multiple
high-level information about components of the program (especially functions) and for each
instruction, information about their type are provided, e.g., if it is a call or a ret or a
jump instruction.

The CFG Extraction stage (second phase of the process) heavily leverages the capabil-
ities provided by the reverse-engineering framework. As previously stated, the interaction
with Radare2 in the script is performed through the module R2pipe. r2pipe provides the
APIs cmdj() and cmdJ(), where the second one is extensively used in the script. cmdj()
allows to retrieve the JSON object from Radare2, represented in Python through a dictio-
nary. cmdJ() is another API working on top of cmdj() that takes the JSON object and
converts it into a Python object that is finally returned to the caller.

The scripts, both for ARM and RISC-V platforms, take as input:

1. Target binary: executable binary file, target of the instrumentation process;

2. Disassembly listings: 2 disassembly listings retrieved through objdump. One is the
disassembly of the .text section, while the other one lists .data, .bss and .rodata
sections;

3. Instrumentation file: file containing the instrumentation code to be inserted in
the instrumented version program. Instrumentation code is provided in the form of a
JSON array. It is important to highlight that the instrumentation instructions needs
to be compliant with the label-based instrumentation strategy;

On the other hand, after the instrumentation process is applied the scripts will output
the following files:

1. Instrumented Assembly: an Assembly source file retrieved from parsing the disas-
sembly listings provided as input, and augmented with instrumentation code provided
as input; such a file will be later need to be compiled in order to obtain the final in-
strumented executable;

2. Insecure edge list: A list of insecure edges that were retrieved during the Edge
retrieval phase. Edges are classified in terms of backward and forward edges, and for
each of them, some additional information is provided, like associated label or source
and destination memory addresses;

41

Instrumentation Tool - Implementation

Figure 5.1: Phases of instrumentation tool.

In the following Sections, the various stages of the process will be analyzed with a greater
level of details, describing the procedures followed and the data structures involved.

In particular, the internal details of the Python object defined will be first described,
and later the different phases will be described and the main features highlighted.

42

5.2 – Code Analysis

5.2 Code Analysis
A structural analysis of the program may help in understanding the methods and strategies
followed during each phase of the process. In particular, the main Python classes involved
are: Cfi, MultipleForwardEdges and MultipleBackwardEdges.

In addition, two additional packages were defined, called Utils and Protection, where
the first one provides helper functions for dealing with objects of type MultipleForwardEdges
and MultipleBackwardEdges or for creating the label map, a Python dictionary contain-
ing the mapping between edge source/destinations and labels. On the other hand, the
second one provides the functions for applying instrumentation to the Assembly code, and
exposes the variables containing the instrumentation instruction, that will be loaded with
the specifications provided by the user.

The class Cfi is the core class implementing almost all the functionalities of the tool.
All the process stages, from Parsing to Instrumentation are in fact implemented in
the start() method provided by Cfi. In particular, the Cfi class contains the following
Python data structures:

• code: the disassembly code of the listing of the .text section retrieved with objdump
from the target binary. The code is represented as a Python dictionary where each en-
try has as key the hexadecimal address of the instruction, and as value the instruction
itself;

• sections: a python dictionary having as key the data section name (.data .rodata
or .bss), and as value another dictionary that is produced by parsing the disassembly
listing of the corresponding data section (again the listing is provided by objdump);

• functions: the list of functions (Interrupt Service Routines are included) retrieved
by Radare2 when analyzing the executable. Radare2 provides several information for
each function like: name, start address, size, number of basic blocks, references to
the function;

• edges_map: a python dictionary where each entry has as key the address of the source
of the edge and as value either a MultipleForwardEdges or MultipleBackwardEdges
object (later described);

• label_map: a Python dictionary where each entry has as key the address of an
instruction (belonging to an insecure edge part of edges map) and as value a unique
label that must be used for instrumentation purposes;

As it is shown Cfi class uses two additional classes, MultipleForwardEdges and Mul-
tipleBackwardEdges, representing the different insecure edges retrieved in the program
and stores them in a edges_map.

The class MultipleForwardEdges represents a a group of forward edges having a com-
mon source. In particular, the class wraps the following internal structures:

• source address: represents the common source of the group of edges. Specifically
stores hexadecimal address of the indirect call instruction;

• destination addresses: contains a list of hexadecimal addresses where each one is
a destination of the corresponding call instruction represented by source address;

43

Instrumentation Tool - Implementation

On the other hand MultipleBackwardEdges, has the purpose of representing a group
of backward edges having a common source. The inner structure of the class is similar to
the ones used for forward edges but still slightly different. It wraps:

• source address: represents the common source of the group of edges. Specifically
stores hexadecimal address of the ret instruction;

• caller and return addresses: contains a list of dictionaries, where each dictionary
has only two items. In particular each dictionary contains a return address (destina-
tion address) to which the ret instruction will redirect the execution flow, and the
associated call address. The call address corresponds to the address of the instruction,
(right before the return address) that called the function ending with the ret.

Both classes provides several methods for interacting with them like, adding destination
addresses or retrieving the source or the list of destination (with corresponding callers in
the case of MultipleBackwardEdges).

As anticipated the Protection module provides the necessary abstraction in order to
apply instrumentation the program. The module contains a variable called types storing
a dictionary which keys corresponds to the instrumentation type (in the form of string like
"type1", "type2",...) and values to the corresponding instrumentation instructions. The
dictionary is retrieved by parsing the instrumentation file, provided in JSON format by
the end user.

5.2.1 Parsing
As stated, the instrumentation is not applied directly to the executable binary but it is first
required to retrieve an assembly representation, and then apply the instrumentation code
there. The parsing stage take cares of producing an assembly file, to which instrumentation
can be applied, from the disassembly listing retrieved with objdump. In particular, it is
first performed the parsing of the disassembly of .text section, and later the disassembly
of .data .rodata and .bss sections are parsed.

For what concern the .text section, the disassembly listing will provide the list of
assembly functions, and for each of them a list rows providing for every instruction the
following information:

• the hexadecimal address of the instruction;

• the operational code of the instruction (opcode);

• the mnemonic representation of the instruction;

• optionally a comment. Comments will be useful for resolving labels and pc-relative
load operations;

Here, as an example, follows the disassembly listing of the exit function:
From the .text disassembly listing, every row is parsed and are extracted only the

the hexadecimal address and the mnemonic representation, along with the comment, as
a string. Address and mnemonic instruction will compose a entry of a python dictionary,
named code in the program, where the key corresponds to the address and the value to

44

5.2 – Code Analysis

00008010 <exit >:
8010: b508 push {r3 , lr}
8012: 2100 movs r1 , #0
8014: 4604 mov r4 , r0
8016: f000 fdc1 bl 8b9c <__call_exitprocs >
801a: 4b04 ldr r3 , [pc , #16] ; (802c <exit +0x1c >)
801c: 6818 ldr r0 , [r3 , #0]
801e: 6bc3 ldr r3 , [r0 , #60] ; 0x3c
8020: b103 cbz r3 , 8024 <exit +0x14 >
8022: 4798 blx r3
8024: 4620 mov r0 , r4
8026: f000 fe81 bl 8d2c <_exit >
802a: bf00 nop
802c: 00008 d3c .word 0 x00008d3c

Figure 5.2: Disassembly listing of text function.

the assembly instruction. The comment is still kept for resolving later pc-relative load
instructions. During the parsing, the direct branch instructions must be resolved. In or-
der to do that the comments provided by objdump are exploited. Taking the previous
example of the exit function the instruction bl 8b0c <__call_exitprocs> will be pro-
cessed and transformed into bl __call_exitprocs. Same happens for the instruction
cbz r3, 8024 <exit+0x14>, that will be transformed in cbz r3, labN and the instruc-
tion at address exit+0x14 will be prepended with the label labN.

On the other hand for the data sections less information are needed in fact every row
of the listing only provides:

• an hexadecimal address;

• data bytes;

Again every data section is parsed in a way to produce a dictionary having as keys
memory addresses and as values the corresponding values in memory. Depending on the
platform, ARM or RISC-V, the syntax may slightly change. In the case of ARM, the
conversion will looks like the one in Figure 5.3

One last step of the parsing phase is to resolve the pc-relative load instructions. In
order to do that, first from the comment of the load instruction, it is retrieved the memory
address in the data section. Later the dictionary representing the data section is consulted
in order to retrieve from the memory address the corresponding symbol. Finally the pc-
relative load is replaced with the symbol retrieved.

The final conversion of the same exit function, previously taken as an example, can be
observed in figure 5.4. As it is possible to notice, the ldr r3, [pc, #16] is a pc-relative
load instruction that finally is converted with ldr r3, =_global_impure_ptr.

45

Instrumentation Tool - Implementation

00018 d58 <impure_data >:
18 d58: 00000000 andeq r0 , r0 , r0
18 d5c: 00019044 andeq r9 , r1 , r4 , asr #32
18 d60: 000190 ac andeq r9 , r1 , ip , lsr #1
18 d64: 00019114 andeq r9 , r1 , r4 , lsl r1
18 d68: 00000000 andeq r0 , r0 , r0
18 d6c: 00000000 andeq r0 , r0 , r0
18 d70: 00000000 andeq r0 , r0 , r0
18 d74: 00000000 andeq r0 , r0 , r0
18 d78: 00000000 andeq r0 , r0 , r0
18 d7c: 00000000 andeq r0 , r0 , r0
18 d80: 00000000 andeq r0 , r0 , r0
18 d84: 00000000 andeq r0 , r0 , r0
18 d88: 00000000 andeq r0 , r0 , r0
18 d8c: 00000000 andeq r0 , r0 , r0
18 d90: 00000000 andeq r0 , r0 , r0
18 d94: 00000000 andeq r0 , r0 , r0

(a) Disassembly listing of .data section fragment.
impure_data :

.word 0 x00000000

.word 0 x00019044

.word 0 x000190ac

.word 0 x00019114

.word 0 x00000000

.word 0 x00000000

.word 0 x00000000

.word 0 x00000000

.word 0 x00000000

.word 0 x00000000

.word 0 x00000000

.word 0 x00000000

.word 0 x00000000

.word 0 x00000000

.word 0 x00000000

.word 0 x00000000

.word 0 x00000000

(b) Assembly representation retrieved after parsing of .data.

Figure 5.3: data listing conversion.

46

5.2 – Code Analysis

00008010 <exit >:
8010: b508 push {r3 , lr}
8012: 2100 movs r1 , #0
8014: 4604 mov r4 , r0
8016: f000 fdc1 bl 8b9c <__call_exitprocs >
801a: 4b04 ldr r3 , [pc , #16] ; (802c <exit +0x1c >)
801c: 6818 ldr r0 , [r3 , #0]
801e: 6bc3 ldr r3 , [r0 , #60] ; 0x3c
8020: b103 cbz r3 , 8024 <exit +0x14 >
8022: 4798 blx r3
8024: 4620 mov r0 , r4
8026: f000 fe81 bl 8d2c <_exit >
802a: bf00 nop
802c: 00008 d3c .word 0 x00008d3c

(a) Disassembly listing of exit function.
exit:

push {r3 , lr}
movs r1 , #0
mov r4 , r0
bl __call_exitprocs
ldr r3 , = _global_impure_ptr
ldr r0 , [r3 , #0]
ldr r3 , [r0 , #60]
cbz r3 , lab0
blx r3

lab0: mov r0 , r4
bl _exit
nop
.ltorg

(b) Assembly representation retrieved after full parsing of the .text section.

Figure 5.4: data listing conversion.

5.2.2 CFG Extraction
In this phase, the executable binary is analyzed in order to retrieve abstract representations
of the program in particular the Control-Flow Graph. This phase is mostly carried out
directly by the reverse engineering framework Radare2. The framework will apply several
static and dynamic analysis techniques, and once finished, it allows to be queried in order
to retrieve the result of the analysis. For example it is possible to automatically retrieve
the Control-Flow Graph of a function in image format (figure 5.5) or JSON format, more
useful for scripting purposes.

47

Instrumentation Tool - Implementation

Figure 5.5: Control-Flow graph of a function provided by Radare2.

What is particularly useful, for the purposes of the script, are the information provided
for every function in the program.

With the help of the API cmdJ() provided by r2pipe, it is possible to immediately
retrieve from Radare2 a list of Python objects each one representing several information
about a function. The object will contain the following fields, among the others:

• name : provides function name;

• offset : the relative memory address pointing to the beginning of the function;

• size : the space in bytes occupied by the function;

• codexrefs : a list of control-flow transfer instructions redirecting the execution flow
to code location in the function itself;

As we be later described in the next subsection the codexrefs property will be par-
ticularly important in order to identify all the callers of a function. Every python object
inside the codexrefs field will consists of the following properties:

• addr : provides the address of the control-flow transfer instruction (this can be a
memory address part of a different function in the code);

48

5.2 – Code Analysis

• type : the type of control-flow transfer. It can be CALL for identifying a call instruction
or JUMP for identifying jump instructions;

• at : the destination address of the control-flow transfer instruction at the correspond-
ing address addr (this is a memory address part of the function);

The following image (figure 5.6) summarizes better the relationships and meaning of the
different properties. In the example function func2() calls func1(). For func1 Radare2
will make available, through R2-pipe, a Python object representing the function, that will
contain (in the codexrefs property) the call from func2() to func1(). These information
are critical in order to extract all the edges from the Control-Flow Graph.

Figure 5.6: function object extract from Radare2 embedding calls to the function.

Another interesting object that can be extracted from Radare2 are Python objects
representing instructions. For every instruction Radare2 allows to retrieve the type that
can be call for direct call rcall for indirect call to register or ret for return instructions.
It is important to notice that also instructions like pop pc will be considered as type ret.
This allows to use the same algorithm for potentially any CPU architecture.

Another useful information provided by Radare2 are the targets of indirect call in-
structions. Given an instruction of type rcall, the list of targets will be provided in the
property, named refs, of the object representing the indirect call instruction.

49

Instrumentation Tool - Implementation

5.2.3 Edge Retrieval
The edge retrieval stage is the core of the script, where the information provided by Radare2
are exploited in order to extract the list of edges requiring protection.

Before proceeding with the description of the algorithm adopted, it is important to
highlight that the indirect call instructions are all considered as insecure even if some of
them may not be. It was decided to adopt this conservative approach because it was not
always possible to understand if the target was actually retrieved from insecure memory
regions or not.

In addition, it was noticed that the number of indirect forward edges was significantly
lower with respect to the total number of insecure backward edges. For this reason the
optimization on indirect forward edges in any case will not provide significant benefits in
terms of memory costs and performances.

In order to retrieve the insecure edges it necessary to first collect all the functions of
the program provided by Radare2. Once all of them are available the edge retrieval phase
can start.

For every function retrieved the following operations are performed:

1. the list of instructions is retrieved and stored in a list;

2. the list of caller instructions of the current function is retrieved through a recursive
algorithm, along with the next instruction the called function will return to (later
better described);

3. from the list of instructions retrieved at point 1 the indirect call instructions, along
with their targets, are retrieved. Every edge is inserted in a dictionary having as key
the source and as value the set of destinations (the value will be an object of type
MultipleForwardEdges);

4. from the list of instructions retrieved at point 1 the insecure return instructions, are
retrieved. For every pair return instruction-destination instruction a backward edge is
added to the same dictionary of point 3 (along with the caller instruction). In this case
to the dictionary will be eventually added objects of type MultipleBackwardEdges
as value and again the source as key;

As it is described the step 2 of the algorithm requires a recursive function in order to
retrieve the function callers, and consequently the destinations of return instructions. This
is required because in a program it may happen that a function function1() perform a
call to function2() and function2() perform a jump to function3(). This result in
function3() returning directly to function1(). This behaviour is summarized in figure
5.7.

50

5.2 – Code Analysis

Figure 5.7: call followed by jump and by ret.

In order to retrieve all the caller and destination instructions the following recursive
algorithm was implemented:

1. given a function first the codexrefs property is analyzed (described previously in the
CFG extraction subsection) and are retrieved two lists: one containing calls to the
function and another one containing jumps to the function;

2. the list containing calls is mapped to a list containing objects with address of the call
instruction and address of instruction the execution flow will return to after the call.
This list is then appended to a bigger list initialized to be empty before the recursive
procedure starts;

3. for every jump instruction in the second list (retrieved at point 1) the corresponding
function is retrieved and the algorithm proceeds recursively on that function;

Figures 5.8 and 5.9 summarize the behaviour of the two algorithms. The red block in
figure 5.8 indicates when the recursive algorithm, represented in figure 5.9, is called during
the overall edge retrieval process.

It is important to highlight that in order to define if the return instructions of a function
are insecure or not, it is checked if the return address is ever stored in the stack or any
other writable memory region, that may be potentially corrupted. This check is dependent
on the targeted Instruction Set Architecture since the name of the register holding the
return address of course will be different.

51

Instrumentation Tool - Implementation

Figure 5.8: algorithm for retrieval of edges.

52

5.2 – Code Analysis

Figure 5.9: recursive algorithm for retrieving the list of addresses to call instructions and
the corresponding return address.

5.2.4 Label Generation
During this phase the edges map created during the edge retrieval phase is taken as
input. From the map are extracted all the memory addresses (either corresponding to a

53

Instrumentation Tool - Implementation

source or destination of an edge), possible duplicates are filtered out and the remaining
memory addresses are stored in a list. As a final step the list of addresses is passed to
a label generation algorithm that will assign a unique label to each memory address. A
label corresponds to an integer that can be represented on 13 bits. This a constraint that
must be respected in order to make the solution compatible with the FPGA-based solution
described in the previous Chapter. The label generation algorithm will not be described
since it is out of the scope of the thesis, but was directly provided by Paolo Prinetto’s
research team as Python module to be added to the tool.

5.2.5 Instrumentation
During the last stage of the overall process, the assembly code, retrieved during the parsing
phase, is modified by adding instrumentation instruction to the instrumentation points.
First are instrumented the forward edges and later the backward edges. The algorithm is
separated in two parts:

1. first the MultipleForwardEdge objects from the edges map are retrieved;

2. for every MultipleForwardEdge object it is checked if there are multiple destinations
or not and based on that a given type of instrumentation is applied;

3. then MultipleBackwardEdge objects are retrieved from the edges map;

4. for every MultipleBackwardEdge object it is checked if there are multiple destinations
or not and based on that a given type of instrumentation is applied;

Once the assembly code is augmented with the instrumentation code the the resultant
assembly code is written to a file.

As a final step the list of forward and backward edges in the edges map are converted to
JSON objects and written to file. In figure 5.10 an example of content of the file containing
forward and backward edges in JSON format.

54

5.2 – Code Analysis

...
{

"type": " forward ",
"source": {

" source_addr ": "0x8ae0",
" source_label ": 716364

},
" destinations ": [

{
" dest_addr ": "0x8030",
" dest_label ": 222873

}
]

},
{

"type": " backward ",
"source": {

" source_addr ": "0x8ae6",
" source_label ": 216529

},
" destinations ": [

{
" dest_addr ": "0x80d2",
" dest_label ": 305699 ,
" caller_addr ": "0x80ce",
" caller_label ": 305699

}
]

},
{

"type": " forward ",
"source": {

" source_addr ": "0x8c82",
" source_label ": 141943

},
" destinations ": [

{
" dest_addr ": "0x8044",
" dest_label ": 904573

}
]

},
...

Figure 5.10: forward and backward edges in JSON format.

55

56

Chapter 6

Experimental Results

In the current Chapter, results obtained by running PROLEPSIS for different benchmarks
are presented.

In particular, it was chosen to select benchmarks from the Embench IoT project [22],
stored in a Github repository containing some test program that can be built over multiple
embedded platforms. Among them, the architecture of our interest are ARM Cortex-M
(having Thumb II ISA) and 32-bit integer set of RISC-V.

Tables 6.1 provides the number of edges retrieved for each considered benchmark, both
when the benchmark was built for the ARM architecture and for the RISC-V one.

(a) Results from running PROLEPSIS on ARM.

Benchmark total edges (approx.) insecure edges overhead .text section overhead total overhead on ELF
aha-mont64 164 17 476 B 14.0% 1.11%
crc32 130 15 436 B 32.3% 1.01%
edn 202 18 448 B 11.1% 0.98%
matmult-int 179 20 544 B 25.4% 1.25%
nettle-aes 197 23 720 B 15.7% 1.32%
nettle-sha256 221 32 904 B 13.6% 1.88%
slre 445 42 1284 B 22.1% 2.76%
statemate 461 16 480 B 6.6% 0.93%

(b) Results table for RISC-V

Benchmark total edges (approx.) insecure edges overhead .text section overhead total overhead on ELF
aha-mont64 156 11 52 B 0.98% 0.53%
crc32 110 9 48 B 2.42% 0.56%
edn 177 9 28 B 0.44% 0.21%
matmult-int 154 11 12 B 0.38% 0.12%
nettle-aes 165 15 48 B 0.57% 0.19%
nettle-sha256 200 20 88 B 0.68% 0.47%
slre 422 28 72 B 0.76% 0.48%
statemate 450 10 36 B 0.46% 0.02%

Table 6.1: Experimental results.

It must be considered that benchmarks compiled following the instructions provided
in the Embench Github repository [22] do not contain Interrupt Request handlers. The

57

Experimental Results

presence of Interrupt Request handlers may increase the values for the overhead.
It is possible to notice how the overhead in RISC-V executables is lower with respect

to the one on ARM executables. This happens because, as anticipated in the previous
Chapters, for the RISC-V instrumentation code were defined custom instructions, allow-
ing to perform the same operations performed on ARM but with one single instructions,
drastically reducing the size of the instrumentation code.

Another important considerations is that the disassembly and recompilation operations
might cause a loss of data from the original binary. In order to produce the disassembly
listing, later parsed, objdump is used: during the disassembly, that command might not
able to properly disassemble code, especially when code and data overlaps. This can be
observed especially on RISC-V, where in some cases the overhead is expected to be higher.

58

Chapter 7

Conclusions and Future Work

The objective of the thesis was to provide an instrumentation tool, written in Python,
that is able to automatically perform the following operations starting from an executable
binary:

1. take the executable binary as input and convert it to a compilable assembly file;

2. apply a set of static and dynamic analysis techniques to the binary, by exploiting
the primitives provided by a reverse engineering framework, in order to retrieve the
location in the code requiring instrumentation;

3. insert instrumentation instructions in the code location identified at the previous step;

The tool allows to specify the instrumentation code by inserting it in a JSON file passed
as input to the tool itself.

The instrumentator was integrated with two existing CFI solutions, one for ARM and
the other one for RISC-V. For the CFI solution instrumenting the RISC-V binaries, custom
instructions were defined.

The tool was executed against a set of benchmarks and were shown the results in terms
of overhead and insecure code locations identified.

Even if the tool proved to work for ARM and RISC-V binaries, there is still room for
improvements.

As already described, the tool uses Radare2 as an underlying reverse engineering frame-
work for applying static and dynamic analysis techniques. During testing, the tool proved
to be effective in retrieving backward edges, but likely was not able to retrieve all forward
edges. Radare2 is heavily exploited for retrieving the targets of indirect jump instructions,
but seems to fail in retrieving some of them. It was noticed how the angr reverse engineer-
ing Python library succeded, in some cases, where Radare2 failed. An improvement would
be the implementation of a custom dynamic analysis procedure that is able to retrieve the
targets of indirect jumps, that is invoked when Radare2 fails in retrieving them.

59

60

Acknowledgements

I would like to thank Professor Paolo Prinetto for giving me the opportunity to work with
the team members of his research group.

Special thanks go to Gianluca Roascio for having guided me during the project de-
velopment and the elaboration of the final document, and for been always available and
helpful.

Finally i would like to thank the friends, my family and my girlfriend having supported
me along the path.

61

62

Bibliography

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. «Control-flow integrity». In:
Proceedings of the 12th ACM conference on Computer and communications security.
ACM. 2005, pp. 340–353.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. «Control-flow integrity princi-
ples, implementations, and applications». In: ACM Transactions on Information and
System Security (TISSEC) 13.1 (2009), pp. 1–40.

[3] Frances E. Allen. «Control Flow Analysis». In: Proceedings of a Symposium on Com-
piler Optimization. Urbana-Champaign, Illinois: Association for Computing Machin-
ery, 1970, 1–19. isbn: 9781450373869. doi: 10.1145/800028.808479. url: https:
//doi.org/10.1145/800028.808479.

[4] M. Bach, M. Charney, R. Cohn, E. Demikhovsky, T. Devor, K. Hazelwood, A. Jaleel,
C. Luk, G. Lyons, H. Patil, et al. «Analyzing parallel programs with pin». In: Com-
puter 43.3 (2010), pp. 34–41.

[5] AR. Bernat and BP. Miller. «Anywhere, any-time binary instrumentation». In: Pro-
ceedings of the 10th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools. 2011, pp. 9–16.

[6] T. Bletsch, X. Jiang, and V. Freeh. «Mitigating code-reuse attacks with control-
flow locking». In: Proceedings of the 27th Annual Computer Security Applications
Conference. ACM. 2011, pp. 353–362.

[7] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. «Jump-oriented programming:
a new class of code-reuse attack». In: Proceedings of the 6th ACM Symposium on
Information, Computer and Communications Security. ACM. 2011, pp. 30–40.

[8] C. Bresch, D. Hély, A. Papadimitriou, A. Michelet-Gignoux, L. Amato, and T. Meyer.
«Stack Redundancy to Thwart Return Oriented Programming in Embedded Sys-
tems». In: IEEE Embedded Systems Letters 10.3 (2018), pp. 87–90. issn: 1943-0663.
doi: 10.1109/LES.2018.2819983.

[9] C. Bresch, A. Michelet, L. Amato, T. Meyer, and D. Hely. «A red team blue team
approach towards a secure processor design with hardware shadow stack». In: 2017
IEEE 2nd International Verification and Security Workshop (IVSW). 2017, pp. 57–
62. doi: 10.1109/IVSW.2017.8031545.

63

https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://doi.org/10.1109/LES.2018.2819983
https://doi.org/10.1109/IVSW.2017.8031545

BIBLIOGRAPHY

[10] A. Chaudhari and J. A. Abraham. «Effective Control Flow Integrity Checks for Intru-
sion Detection». In: 2018 IEEE 24th International Symposium on On-Line Testing
And Robust System Design (IOLTS). 2018, pp. 1–6. doi: 10.1109/IOLTS.2018.
8474130.

[11] N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis. «Hcfi: Hardware-
enforced control-flow integrity». In: Proceedings of the Sixth ACM Conference on Data
and Application Security and Privacy. ACM. 2016, pp. 38–49.

[12] C. Cowan, S. Beattie, RF. Day, C. Pu, P. Wagle, and E. Walthinsen. «Protecting
systems from stack smashing attacks with StackGuard». In: Linux Expo. 1999.

[13] CWE-121: Stack Based Buffer Overflow. https://cwe.mitre.org/data/definitions/
121.html.

[14] CWE-122: Heap Based Buffer Overflow. https://cwe.mitre.org/data/definitions/
122.html.

[15] CWE-126: Buffer Over-read. https://cwe.mitre.org/data/definitions/126.
html.

[16] CWE-134: Use of Externally-Controlled Format String. https://cwe.mitre.org/
data/definitions/134.html.

[17] CWE-401: Missing Release of Memory after Effective Lifetime. https://cwe.mitre.
org/data/definitions/401.html. [Online; accessed 03-March-2020]. 2020.

[18] CWE-416: Use After Free. https://cwe.mitre.org/data/definitions/416.html.
[Online; accessed 03-March-2020]. 2019.

[19] J. Daemen and V. Rijmen. «AES proposal: Rijndael». In: (1999).
[20] J. Danger, A. Facon, S. Guilley, K. Heydemann, U. Kühne, A. Si Merabet, and M.

Timbert. «CCFI-Cache: A Transparent and Flexible Hardware Protection for Code
and Control-Flow Integrity». In: 2018 21st Euromicro Conference on Digital System
Design (DSD). 2018, pp. 529–536. doi: 10.1109/DSD.2018.00093.

[21] Lucas Davi, Matthias Hanreich, Debayan Paul, Ahmad-Reza Sadeghi, Patrick Koe-
berl, Dean Sullivan, Orlando Arias, and Yier Jin. «HAFIX: Hardware-Assisted Flow
Integrity eXtension». In: 2015 52nd ACM/EDAC/IEEE Design Automation Confer-
ence (DAC). 2015, pp. 1–6. doi: 10.1145/2744769.2744847.

[22] Embench. Embench-Iot repository. https://github.com/embench/embench-iot.
2019.

[23] Valentina Forte, Nicolò Maunero, Paolo Prinetto, and Gianluca Roascio. «PRO-
LEPSIS: Binary Analysis and Instrumentation of IoT Software for Control-Flow
Integrity». In: 2021 International Conference on Electrical, Computer, Communi-
cations and Mechatronics Engineering (ICECCME). 2021, pp. 1–6. doi: 10.1109/
ICECCME52200.2021.9591080.

[24] A. Francillon, D. Perito, and C. Castelluccia. «Defending embedded systems against
control flow attacks». In: Proceedings of the first ACM workshop on Secure execution
of untrusted code. ACM. 2009, pp. 19–26.

64

https://doi.org/10.1109/IOLTS.2018.8474130
https://doi.org/10.1109/IOLTS.2018.8474130
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/121.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/122.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/126.html
https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/134.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/401.html
https://cwe.mitre.org/data/definitions/416.html
https://doi.org/10.1109/DSD.2018.00093
https://doi.org/10.1145/2744769.2744847
https://github.com/embench/embench-iot
https://doi.org/10.1109/ICECCME52200.2021.9591080
https://doi.org/10.1109/ICECCME52200.2021.9591080

BIBLIOGRAPHY

[25] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. «Silicon physical random func-
tions». In: Proceedings of the 9th ACM conference on Computer and communications
security. ACM. 2002, pp. 148–160.

[26] Getting around non-executable stack (and fix). https://seclists.org/bugtraq/
1997/Aug/63. 1997.

[27] Z. J. Huang, T. Zheng, and J. Liu. «A dynamic detective method against ROP attack
on ARM platform». In: 2012 Second International Workshop on Software Engineering
for Embedded Systems (SEES). 2012, pp. 51–57. doi: 10.1109/SEES.2012.6225491.

[28] MA. Laurenzano, MM. Tikir, L. Carrington, and A. Snavely. «Pebil: Efficient static
binary instrumentation for linux». In: 2010 IEEE International Symposium on Per-
formance Analysis of Systems & Software (ISPASS). IEEE. 2010, pp. 175–183.

[29] Y. Li, Z. Dai, and J. Li. «A Control Flow Integrity Checking Technique Based on
Hardware Support». In: 2018 IEEE 3rd Advanced Information Technology, Electronic
and Automation Control Conference (IAEAC). 2018, pp. 2617–2621. doi: 10.1109/
IAEAC.2018.8577547.

[30] Nicolò Maunero, Paolo Prinetto, Gianluca Roascio, and Antonio Varriale. «A FPGA-
based Control-Flow Integrity Solution for Securing Bare-Metal Embedded Systems».
In: 2020 15th Design & Technology of Integrated Systems in Nanoscale Era (DTIS).
2020, pp. 1–10. doi: 10.1109/DTIS48698.2020.9081314.

[31] H. Ozdoganoglu, CE. Brodley, TN. Vijaykumar, and BA. Kuperman. «Smashguard:
A hardware solution to prevent attacks on the function return address». In: Technical
Report (2000).

[32] P. Qiu, Y. Lyu, J. Zhang, D. Wang, and G. Qu. «Control Flow Integrity Based on
Lightweight Encryption Architecture». In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 37.7 (2018), pp. 1358–1369. doi: 10.1109/
TCAD.2017.2748000.

[33] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. «Return-oriented program-
ming: Systems, languages, and applications». In: ACM Transactions on Information
and System Security (TISSEC) 15.1 (2012), p. 2.

[34] A. Sadeghi, S. Niksefat, and M. Rostamipour. «Pure-Call Oriented Programming
(PCOP): chaining the gadgets using call instructions». In: Journal of Computer
Virology and Hacking Techniques 14.2 (2018), pp. 139–156. issn: 2263-8733. doi:
10.1007/s11416-017-0299-1. url: https://doi.org/10.1007/s11416-017-
0299-1.

[35] H. Shacham, M. Page, B. Pfaff, EJ. Goh, N. Modadugu, and D. Boneh. «On the
effectiveness of address-space randomization». In: Proceedings of the 11th ACM con-
ference on Computer and communications security. 2004, pp. 298–307.

[36] A.K. Sharma. Programmable Logic Handbook: PLDs, CPLDs, and FPGAs. McGraw-
Hill handbooks. McGraw-Hill, 1998. isbn: 9780070578524. url: https://books.
google.it/books?id=UH4eAQAAIAAJ.

[37] O. Stecklina, P. Langendörfer, and H. Menzel. «Design of a tailor-made memory
protection unit for low power microcontrollers». In: 2013 8th IEEE International
Symposium on Industrial Embedded Systems (SIES). IEEE. 2013, pp. 225–231.

65

https://seclists.org/bugtraq/1997/Aug/63
https://seclists.org/bugtraq/1997/Aug/63
https://doi.org/10.1109/SEES.2012.6225491
https://doi.org/10.1109/IAEAC.2018.8577547
https://doi.org/10.1109/IAEAC.2018.8577547
https://doi.org/10.1109/DTIS48698.2020.9081314
https://doi.org/10.1109/TCAD.2017.2748000
https://doi.org/10.1109/TCAD.2017.2748000
https://doi.org/10.1007/s11416-017-0299-1
https://doi.org/10.1007/s11416-017-0299-1
https://doi.org/10.1007/s11416-017-0299-1
https://books.google.it/books?id=UH4eAQAAIAAJ
https://books.google.it/books?id=UH4eAQAAIAAJ

BIBLIOGRAPHY

[38] Microsoft Support. A detailed description of the Data Execution Prevention (DEP).
https://support.microsoft.com/en-us/help/875352/a-detailed-description-
of-the-data-execution-prevention-dep-feature-in.

[39] Radare2 Team. R2pipe repository. https://github.com/radareorg/radare2-
r2pipe.

[40] Radare2 Team. Radare2 GitHub repository. https : / / github . com / radareorg /
radare2. 2017.

[41] Weike Wang, Muyang Liu, Pei Du, Zongmin Zhao, Yuntong Tian, Qiang Hao, and
Xiang Wang. «An Architectural-Enhanced Secure Embedded System with a Novel
Hybrid Search Scheme». In: 2017 International Conference on Software Security and
Assurance (ICSSA). 2017, pp. 116–120. doi: 10.1109/ICSSA.2017.14.

[42] M. Wenzl, G. Merzdovnik, J. Ullrich, and E. Weippl. «From hack to elaborate tech-
nique—a survey on binary rewriting». In: ACM Computing Surveys (CSUR) 52.3
(2019), pp. 1–37.

[43] Mingwei Zhang, Rui Qiao, Niranjan Hasabnis, and R. Sekar. «A Platform for Secure
Static Binary Instrumentation». In: SIGPLAN Not. 49.7 (2014), 129–140. issn: 0362-
1340. doi: 10.1145/2674025.2576208. url: https://doi.org/10.1145/2674025.
2576208.

66

https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://github.com/radareorg/radare2-r2pipe
https://github.com/radareorg/radare2-r2pipe
https://github.com/radareorg/radare2
https://github.com/radareorg/radare2
https://doi.org/10.1109/ICSSA.2017.14
https://doi.org/10.1145/2674025.2576208
https://doi.org/10.1145/2674025.2576208
https://doi.org/10.1145/2674025.2576208

	Introduction
	Background
	Memory Corruption Vulnerabilities
	Stack-Based Buffer Overflow
	Data Execution Prevention
	Code-Reuse Attack
	Return-Oriented Programming (ROP)
	Other CRA Techniques

	Mitigation and Countermeasures
	Address Space Layout Randomization (ASLR)
	Stack Canaries
	Control-Flow Integrity (CFI)

	State of the Art
	Static and Dynamic Binary Instrumentation
	Binary Instrumentation Tools

	Software-based Solutions
	Hardware-based Solutions
	Branch Target or Instruction Encryption
	Shadow Call Stack (SCS)
	Basic Block Hashing
	ISA extensions

	Instrumentation Tool - Theory
	Basic Definitions and Edge Classification
	Protection Mechanism
	CFI Monitor Implementations

	Instrumentation Tool - Implementation
	Followed Strategies
	Code Analysis
	Parsing
	CFG Extraction
	Edge Retrieval
	Label Generation
	Instrumentation

	Experimental Results
	Conclusions and Future Work
	Bibliography

