
POLITECNICO DI TORINO
DEPARTMENT OF CONTROL AND COMPUTER ENGINEERING (DAUIN)

Master Degree in Computer Engineering

Master Degree Thesis

MC2101: A RISC-V-based Microcontroller
for Security Assessment and Training

Author: Luca Dalmasso

Advisor: Paolo Ernesto Prinetto
Co-Advisor: Gianluca Roascio

October, 2022

Summary
Today, as the Internet Of Things (IoT) world keeps growing, billions of microcontrollers
are used as edge devices in a very wide range of applications, from industrial automation
to health care dimension. Such massive diffusion of embedded devices in safety-critical
and business-critical missions brings up important consequences in terms of security due
to hardware and software vulnerabilities of such devices.

In literature, many security solutions for microcontrollers have been proposed, relying
on both hardware and software techniques. While software-based solutions can be easily
evaluated with a proper software toolchain suited for the target ISA, hardware solutions
are more critical as they require an open architecture that can be easily customized starting
from the core itself. The aforementioned requirements lead to choose an ISA that is well
documented and allows to be extended and modified. For all these reasons, the most
suitable architecture is the open-source RISC-V platform, widely used by the embedded
systems research community. Other benefit of choosing RISC-V is to have a small and
simple standard ISA that is adequate not only for testing new security solutions, but
also for security training activities for students and professionals, e.g., through artificial
insertion of vulnerabilities and exercises on exploits and remediations.

The aim of my thesis project is to design and implement MC2101, a soft microcontroller
similar to PULPino, compatible with the RISC-V ISA and synthesizable on FPGA with
the purpose of being a starting point to be extended, modified and used to perform security
tests in a realistic environment. Starting from a custom 32-bit RISC-V processor named
AFTAB, the goal was to design in VHDL a minimal set of peripherals that, together with
the core and a proper bus architecture, are able to provide all the necessary I/O functional-
ities for running test software on a real board. In particular, the peripherals introduced are
a 32-bit GPIO module that is used to handle both incoming and outgoing digital signals,
and a UART peripheral containing a subset of the UART 16550 specifications selected for
our needs. The UART peripheral plays a very important role, allowing a serial commu-
nication between MC2101 and a PC. This is a crucial feature to interact with the board
through standard input and output interfaces.

To verify the correctness of the architecture, MC2101 has been synthesized and tested
with custom Assembly and C applications with the aim of testing the correct behaviour
of all interconnected peripherals, as well as the software libraries necessary for driving
them. In conclusion, the synthesis results on FPGA have been compared with PULPino
microcontroller to see what are the differences in terms of resources utilization.

2

Contents

List of Tables 5

List of Figures 6

1 Introduction 7

2 Background 11
2.1 The RISC-V Architecture . 11

2.1.1 Software Execution Environment 11
2.1.2 Instruction Set Architecture . 12
2.1.3 Implemented Extensions . 13
2.1.4 Privilege Levels . 14

2.2 RISC-V Importance in IoT era . 15
2.3 State of the Art in Embedded System Design 17

2.3.1 Berkeley Out of Order Machine . 18
2.3.2 Picorv32 microcontroller . 18
2.3.3 PULPino . 20

2.4 Our contribution to the RISC-V community 22
2.5 The AFTAB Processor . 23

2.5.1 AFTAB Interfacing Ports . 23

3 Design and Development of MC2101 25
3.1 MC2101 architecture . 25

3.1.1 Bus Infrastructure . 27
3.1.2 GPIO Peripheral . 29
3.1.3 UART Peripheral . 31

3.2 Software libraries . 34
3.2.1 GPIO Library . 35
3.2.2 UART Library . 36
3.2.3 String Library . 36
3.2.4 Board Library . 37

3.3 Testing . 38
3.3.1 Testing while-developing . 38
3.3.2 FPGA Tests . 38

4 Experimental Results 41

3

5 Conclusions and Future Work 43

Bibliography 45

4

List of Tables

2.1 RISC-V Integer Register File summary. 14
2.2 Summary of RISC-V advantages with respect to Legacy ISAs [7]. 17
3.1 Bus Signals. 29
3.2 GPIO User Registers. 31
3.3 UART Interrupt Sources. 33
3.4 UART User Registers. 34
3.5 GPIO Library functions. 36
3.6 UART Library functions. 37
4.1 MC2101 resource usage on Cyclone-V FPGA. 41
4.2 PULPino and MC2101 resource usage comparison on Artix-7 FPGA. . . . 42

5

List of Figures

2.1 RISC-V ISA Encoding Formats [11]. 13
2.2 RISC-V Supported Privileges [2]. 14
2.3 Implemented Instruction Set [6]. 16
2.4 BOOM Architecture Overview [13]. 19
2.5 PULPino Microcontroller [14]. 20
2.6 RISCY core. 21
2.7 Zero-riscy core. 22
2.8 AFTAB microprocessor interface. 24
3.1 MC2101 microcontroller. 26
3.2 MC2101 Bus Block Diagram. 28
3.3 Master & Slave Interfaces. 28
3.4 MC2101 GPIO Peripheral Core. 30
3.5 MC2101 UART Peripheral Core. 32
3.6 MC2101 Memory Map. 35
3.7 Modular structure of a peripheral. 39
3.8 GPIO Interconnection on DE1-SoC. 40
3.9 UART Interconnections. 40

6

Chapter 1

Introduction

Embedded systems are the real driving force of today’s society and almost every aspect of
our life is becoming more and more dependant on them. They appear in every industrial
sector as edge devices engineered to operate safety-critical and mission-critical environ-
ments with minimal human intervention. They play crucial role in functioning of cars,
home appliances, medical devices and many other equipments that are the heart of today’s
digital, connected and automated world we live in.
The key benefits of such devices is their capability to perform in real time, with no or
little delay, even sophisticated tasks and guaranteeing at same time low power consump-
tion and low manufacturing cost. On one hand, having a low power device is crucial in
order to keep the cost down, also because power consumption is critical when the device
is battery-powered. On the other hand, this implies a couple of consequences in terms of
security:

1. Usually, built-in device security is minimal. An IoT system must be lightweight,
and it is very difficult to have a system that is cheap but at the same time secure,
low-power, and real-time reliable;

2. Limited resources cannot support a fully featured operating system with all common
robust security features. For instance, it is not unusual to see IoT devices running
software in bare-metal with few KB of on-chip memory.

For these reasons, a technology with these limits is by nature weak, and exposed to possible
malicious attacks. Furthermore, because of the surging usage of such devices in mission-
critical and safety-critical applications, their security is a growing concern.
In literature, there exist a wide number of solutions aimed to secure embedded systems,
many of which rely on software techniques, like binary instrumentation, aimed at pro-
tecting the system at application level. Other solutions, on the other hand, are based on
direct interventions on the hardware aimed at introducing additional modules capable of
protecting the system from attacks that exploit vulnerabilities of other components of the
system itself. While software-based techniques can be easily tested outside the operating
environment, with a proper toolchain, hardware-based techniques need to be evaluated in
a realistic environment, meaning that once designed they must be synthesized and tested,
e.g., on a FPGA. For the reasons mentioned above, in order to make research at hardware

7

Introduction

level, it is crucial to have the availability of an open-source architecture, modular and cus-
tomizable without incurring any fees.
Among all the known open-source designs, the most widely used is the RISC-V platform,
not only for academic purposes but also in industry. Among the reasons that made RISC-V
such a success in the embedded systems research community, the following for sure should
be mentioned:

• It is provided under open source licenses that do not require fees to use: thanks to
this, derivative designs are allowed to be published, reused and modified;

• Instruction set is now supported by commonly available language compilers, e.g,
RISC-V GNU GCC;

• It features a small base instruction set architecture engineered for extensibility: RISC-
V ISA can be addressed to many possible uses, from performances to low-power
real-world applications;

• Unlike legacy ISAs that are decades old, RISC-V is a modern, clean state-of-the-art
architecture designed to handle the latest computer load.

The work behind the present thesis consisted in the design of MC2101, which is a
simple, modular, and synthesizable embedded system entirely described in VHDL language,
meant to be used as a reliable platform on which is possible to run real applications,
as well as integrate and evaluate security solutions for IoT in a realistic environment.
Furthermore, the platform can be used for training activities in the cybersecurity domain,
e.g., for modeling specific hardware security issues in Capture-the-Flag exercises, where
vulnerabilities are intentionally inserted with the aim of being exploited and/or mitigated.

MC2101 microcontroller integrates a RISC-V core with a proper set of peripherals nec-
essary to provide all basic I/O functionalities for running software. In particular, the
peripherals selected are a GPIO module for handling input and output digital signals and
a UART module used to allow serial communication between a computer and the micro-
controller itself. The relative simplicity and modularity of the system makes it suitable,
in the future, to be also used as a platform for teaching microcontrollers architecture at
master students involved in embedded systems curriculum.

The development of the microcontroller included also a software design part. In par-
ticular, all system libraries used for driving and configuring the peripherals were written,
and also interrupt service routines have been included in the processor’s bootloaders. The
pre-existing software toolchain for automatic compilation and RTL simulation, based on
CMake and ModelSim commands and derived from the PULPino project [14], has been
extended with new test programs aimed at verify MC2101 activity on a board and at RTL
level. Synthesis automation features have been included with the purpose of running Quar-
tus Prime commands in a proper shell environment, in order to allow automatic synthesis
and memory update for a fast deployment on FPGA.

To conclude the work, MC2101 synthesis results have been compared with the PULPino
microcontroller, used as reference in many projects for both RISC-V hardware and software
design, to understand what are the differences in terms of complexity and resource usage
in a FPGA.

8

Introduction

The remainder of the document is organized as follows. Chapter 2 contains a brief
description of the RISC-V ISA, with particular attention to the subset of instructions
executable by our core. It is underlined also the importance of the RISC-V ISA today.
Also, are analyzed some of the most relevant scientific works in SoCs design present in
literature, and all the motivations that led us to choose a new design from scratch. Some
details on our RISC-V core are also provided, focusing on the most important features
implemented. Chapter 3 presents a high-level description of the MC2101 microcontroller.
In particular, the architecture features, hardware/software co-design choices and testing
framework are presented. In Chapter 4, synthesis results are evaluated and compared with
our reference architecture PULPino. Finally, Chapter 5 concludes the thesis, providing
ideas for future improvements of the system.

9

10

Chapter 2

Background

In this Chapter, all technical elements needed for the understanding of the covered topics
are presented. In particular, since MC2101 is a RISC-V-based microcontroller, the RISC-V
ISA is briefly described, with focus on the details of the implemented features. It is also
underlined the importance of having an open-source ISA, like RISC-V, which allows the em-
bedded system community to grow continuously, and consequently, to bring technological
innovation to the IoT world without being limited by closed-source proprietary solutions.
Some relevant scientific works are also presented, that are the today’s state-of-the-art for
system on a chip design, and all the motivations that led us to choose a new design from
scratch. Regarding the RISC-V core present in the architecture, AFTAB [5], its design is
not described in details, and only some technical characteristics will be discussed, with the
purpose of being useful just for the comprehension of some architectural choices made for
the microcontroller design.

2.1 The RISC-V Architecture
RISC-V is the fifth generation of the open RISC ISA design from Berkeley UC. It was born
originally to support academic research in computer architecture and today it has become
the most widely used open-source instruction set in the embedded systems community.
Starting from its introduction in 2010, the project has been growing continuously. As a
consequence, the number of extensions and features is now quite significant. Since it would
be too much verbose explaining all details documented in the official specifications, this
Section only presents the ones of interest for our system.

Any further details on RISC-V ISA can be found in the official documentation, which
is comprehensively explained into two volumes that can be found in the public Github
repository: https://github.com/riscv/riscv-isa-manual.

2.1.1 Software Execution Environment
Every RISC-V platform is first described by its Software Execution Environment Interface
(EEI). The EEI defines: the initial state of a program running on a RISC-V core, privilege

11

https://github.com/riscv/riscv-isa-manual

Background

modes supported, memory and I/O accessibility and attributes, the ISA itself, the han-
dling mode for any interrupt and exception including environment calls. An example of
EEI implementation can be a RISC-V operating system that manages multiple user-level
applications controlling their accesses to physical memory through a virtual memory inter-
face. Regarding our RISC-V machine, since the core is not sufficiently equipped to run an
operating system yet, it can be considered a bare-metal platform where all programs have
full access to the physical address space.

2.1.2 Instruction Set Architecture
RISC-V has a modular design: the ISA consists of a base integer set of instructions,
that must be included in every machine, plus a wide number of optional standard exten-
sions. The base integer ISA implements a minimal set of instructions that are enough
for building up a simplified computer with full software support by themselves, including
general-purpose compilers, linkers, and assemblers. In particular, there are four groups of
base ISA available:

• RV32I & RV64I: two primary integer variants, with the only difference residing in
their data and address parallelism (32-bit and 64-bit, respectively)

• RV128I: future variant of integer set supporting 128-bit parallelism;

• RV32E: a subset variant of the RV32I, implemented to support small 32-bit micro-
controllers with just 16 registers.

Regarding the standard extensions, they are group of instructions developed as a result of
a collective effort between industry, research community, and educational institutions to
allow general-purpose software development in a wide range of applications. Extensions
are a crucial key for the RISC-V flexibility, as they can be included in a specialized design,
without conflict, in such a way that only the exact set of ISA features required by the ap-
plication are implemented, avoiding over-architecting a particular microarchitecture style.
The number of standard extensions is quite large, and here are reported just some very
commonly used ones:

• "M" extension •Integer Multiplication and Division
Adds instructions to multiply and divide values held in integer registers.

• "A" extension •Atomic Instructions
Adds instructions that atomically read, modify and write memory locations for inter-
processor synchronization.

• "F" extension •Single-Precision Floating-Point
Adds floating-point registers, single precision computational instructions as well as
load and stores instructions.

• "D" extension •Double-Precision Floating-Point
Variant of the "F" extension for double precision arithmetic.

• "C" extension •Compressed Instructions
Provides 16-bit forms of common instructions.

12

2.1 – The RISC-V Architecture

The combination of all the previous standard extensions plus a base integer is commonly
known as the "G" extension, and together with the supervisor instructions implemented
in the "S" extension defines all instructions needed to fully support a general-purpose
operating system.

2.1.3 Implemented Extensions
Here is presented the set of instructions currently implemented in MC2101. The ISA cur-
rently includes the RV32I Base Integer Set, the "M" Integer Multiplication and Division
extension, and finally the "Zicsr" Control and Status Registers (CSRs) extension.

The base integer ISA RV32I is divided into four core instruction formats (R, I, S, and U
Type), plus two further variants (B, J) for handling immediate values. From Figure 2.1,

Figure 2.1. RISC-V ISA Encoding Formats [11].

it is possible to see that the opcode, the source operands (rs1 and rs2) and destination
operand (rd) are maintained in the same bit positioning in order to reduce the decoding
phase complexity. The integer register file, used by all integer instructions, is composed of
32 general-purpose 32-bit registers. Table 2.1 shows the registers names together with the
ABI conventions. Notice that the program counter is not part of the register file itself, as
the software cannot directly address it.

Part of the implemented ISA is also the Integer Multiplication and Division extension
RV32M, which contains instructions that multiply or divide values held in two integer
registers (see Table 2.1). The reason that made designers to separate multiply and divide
out from the base integer is because usually multiplications and divisions operations are
either infrequent or better handled by specialized accelerators. Thanks to this extension,
the ISA can support multiplications, divisions, and reminder operations (No operation al-
lows computing both Quotient and Reminder of a division).

The last extension implemented is the Control and Status Registers extension Zicsr, con-
taining instructions needed to operate on CSRs registers. CSRs are a particular class of
registers that can only be addressed by the Zicsr instructions and they are primarily used
by privileged architecture to perform very specific tasks, e.g., handling exceptions, inter-
rupts and traps. RISC-V ISA counts a total amount of 4096 CSRs but allow to implement

13

Background

Register ABI
Name

Description ABI Saver

x0 zero Hard-wired zero /
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer /
x4 tp Thread pointer /
x5 t0 Temporary/alternate

link register
Caller

x6-7 t1-2 Temporaries Caller
x8 s0/fp Saved register/frame

pointer
Callee

x9 s1 Saved register Callee
x10-11 a0-1 Function argu-

ments/return values
Caller

x12-17 a2-7 Function arguments Caller
x18-27 s2-11 Saved registers Callee
x28-31 t3-6 Temporaries Caller

Table 2.1. RISC-V Integer Register File summary.

just a subset of them. Our platform, for example, includes only those required for handling
exceptions, interrupts, traps and for supporting User and Machine privilege levels.

2.1.4 Privilege Levels
Privilege levels are used to provide a protection mechanism, embedded in the hardware
itself, between the different components of software stack, in such a way that any attempt
to perform operations not permitted by the current privilege mode will rise an exception.
Figure 2.2 shows all privilege modes supported by a RISC-V machine. These modes are

Figure 2.2. RISC-V Supported Privileges [2].

14

2.2 – RISC-V Importance in IoT era

listed in order of increasing privilege, where Machine mode is the most privileged and User
mode being the least. All RISC-V systems must implement the M mode, while the other
are optional extensions.
Thus, any RISC-V platform must fall in one of the following configurations, depending on
the requirements:

• M
Simple embedded system.

• M, U
Secure embedded system.

• M, S, U
Systems running Unix-like operating systems.

When designing a RISC-V platform, the proper set of privileges must be carefully chosen
based on the complexity of the software it will run. For instance, a small device that
runs a single, thrusted application may choose to only support Machine mode: in this
case, the application must be secure because it has full low-level access to the hardware.
The modality Machine - User is suitable for secure embedded systems. It provides a
level of isolation between the application and a direct access to the hardware, by using
ecall instruction to perform machine-level operations, that can fully and directly access
the hardware. The full software stack separation is reached when the machine implements
the Machine - Supervisor - User mode. In this case the ISA is able to support a more
robust system where there is an operating system working as intermediate between user
and hardware.

Since our microcontroller is intended to be used as a security platform, it implements both
M and U privileges required for a secure embedded system.

2.2 RISC-V Importance in IoT era
Provided the main features of the RISC-V ISA, it should be clear the advantage that a
modular architecture of this type can bring in terms of design freedom and use cases.
In fact, the various extensions allow to design any kind of chip, from very small 16-bit
low-power and cost-constrained microcontrollers, to extremely complex 64-bit full-featured
high-performance SoCs. But why is there any need for a new instruction set architecture
when there are several popular commercial ISAs available, that could be reused avoiding
the significant effort and cost of porting software to a newer one?

The first reason behind the adoption of the RISC-V ISA as the standard architecture
in academia and research is that all popular commercial ISAs, like x86 or ARM, are pro-
prietary. This means that vendors have a lucrative business in selling implementations,
both in form of IP cores and silicon. Because of this, it is economically not sustainable for
many companies, universities, or individuals, to develop custom designs. Another reason is
that all popular commercial ISAs are massively complex. In particular, the increasing com-
plexity of legacy microprocessors has become profound, requiring hundreds of engineers,

15

Background

Figure 2.3. Implemented Instruction Set [6].

16

2.3 – State of the Art in Embedded System Design

millions in investment, years in development, and all this complexity lead to a very inef-
ficient and power-hungry design, for sure not suitable for IoT applications. It is therefore
very difficult to fully implement one of those legacy architectures. Also, there is a little
incentive to create subset ISAs, for more specialized design, because the software cannot
run without being modified as well. For the aforementioned reasons, having an open source
architecture like RISC-V, with tons of materials available for free, as well as a wide variety
of projects going on, is a fundamental architecture that can help to overcome the barriers
imposed by proprietary solutions. Among all the available open-source RISC-based ISA,
RISC-V was designed to face these problems, through its modular architecture that allows
to be used in any kind of applications, suitable also for educational purposes thanks to the
simple base integer subset.

Barriers Legacy ISA RISC-V ISA
Complexity 1500+ instructions, in-

cremental ISA
47 base instructions,
modular ISA

Design freedom $$$ - Limited Free - Unlimited
License and Royalty fees $$$ Open Source
Design ecosystem Moderate Growing rapidly. Nu-

merous extensions, nu-
merous open cores.

Software ecosystem Extensive Growing rapidly

Table 2.2. Summary of RISC-V advantages with respect to Legacy ISAs [7].

The Table 2.2 is useful to summarize the advantages that the RISC-V ISA can offer with
respect to popular commercial ISAs. These are the main reasons that allowed RISC-V to
grow and become the today standard ISA used for embedded systems design in academia
and research world.

It is important to underline that RISC-V is not only a revolution for hardware design
in academia and research: it is also cracking a new commercial market wide open. As the
IoT era keeps growing day by day, more and more companies are starting to develop their
own chip, and companies that long prized for their proprietary architectures, like ARM,
Intel and others, suddenly have to contend and compete with this new way of thinking and
building. Therefore, it is essential that universities train engineers capable of designing
efficient and reliable microarchitectures and also that the research can continue to produce
innovative ideas that allow IoT technology to be widespread.

2.3 State of the Art in Embedded System Design
In this Chapter, some relevant state-of-the-art works are presented, featuring relevant
scientific works related to RISC-V. As the purpose of my thesis is the design of a micro-
controller, this Chapter discusses some of the most popular open-source RISC-V based
SoCs, designed for energy-efficient computing. To stress again on the wide possibility that
the RISC-V ISA can offer, three different types of architecture are here presented.

17

Background

The first one is the BOOM [13] SoC, part of the Berkeley Hardware CPUs, a very com-
plex platform with an infrastructure usable for personal, supercomputer and warehouse-
scale computers. The second example is about PicoRV32 [10] by Claire Wolf, a 32-bit
microcontroller class RV32IMC implemented in Verilog HDL. The third and last example
focuses on PULPino [14] from ETH Zürich and University of Bologna, which is a simple
microcontroller that can be extended for being used as custom embedded DSP. The ar-
chitecture of this last microcontroller has been particularly important for my thesis work,
because it has been used as a reference.

2.3.1 Berkeley Out of Order Machine
The BOOM machine is a synthesizable and parameterizable open-source RV64GC RISC-
V core, written in Chisel [1]. As its name suggest, BOOM is an out-of-order processor,
inspired by the MIPS R10000 [12] and the Alpha 21264 [8] processors . Created at the
University of Berkeley (California) in the Berkeley Architecture Research group, its focus
is to provide a high performance, synthesizable and parameterizable SoC for architecture
research. This is a perfect example to underline how much degree of complexity can be
reached by using RISC-V extensions.

From Figure 2.4, it is possible to distinguish the classical pipeline stages of out-of-
order architectures. Conceptually, the processor implements 10 stages: Fetch, Decode,
Register Rename, Dispatch, Issue, Register Read, Execute, Memory, Writeback and
Commit. The architecture is then able to execute instructions in out-of-order fashion,
pushing even more the throughput and performances of a standard pipeline. The fact
that it also implements a 64-bit version of the standard G indicates this core is designed
exclusively for high performance systems.

Further details can be found in the official Github repository1, where it is also possible
to access at the RTL description.

2.3.2 Picorv32 microcontroller
The PicoRV32 is a microcontroller that implements the RV32IMC instruction set written
in Verilog. This microcontroller can be configured in many different ways, starting from
the core itself that can be configured to support the following extensions: RV32I, RV32IC,
RV32IM and the RV32IMC. The architecture of the microcontroller is also available in the
following configurations:

• picorv32: simplest version that implements a simple native memory interface, usable
in simple environments;

• picorv32_axi: provides an AXI-4 Lite Master interface that can be easily integrated
within other systems based on AXI standard bus infrastructure;

• picorv32_wb: provides a Wishbone bus master interface;

1https://github.com/riscv-boom/riscv-boom

18

https://github.com/riscv-boom/riscv-boom

2.3 – State of the Art in Embedded System Design

Figure 2.4. BOOM Architecture Overview [13].

19

Background

• picorv32_axi_adapter: This core provides a bridge between the native memory
interface and an AXI4 infrastructure. This implementation can be used to create
custom cores that include one or more picorv32 cores together within a compact
microcontroller that internally can communicate using a native custom lightweight
interface, and externally can be attached through AXI4.

It is possible to understand that this embedded system is meant to be used as auxiliary
processing device in FPGA designs and ASICs. The architecture includes also a UART
peripheral and a SPI Flash Controller. Any additional information can be found in the
official Github repository2.

2.3.3 PULPino
Developed by ETH Zurich and the University of Bologna, PULPino is a RISC-V-based
single-core SoC written in SystemVerilog, which represents a small part (one core) of the
Parallel Ultra-Low Power (PULP) platform designed for energy-efficient IoT parallel com-
puting.

In Particular, the PULP SoC is a cluster that embeds a configurable number of RISC-
V based cores with a design focused for being extremely low power consuming. Perfectly
suited for IoT devices that requires high computational capabilities. PULPino represents
a first step towards the release of the full PULP platform. In fact, PULPino inherits from
its bigger brother some of the IPs and the core, focusing on ease of use and simplicity.

Figure 2.5. PULPino Microcontroller [14].

2https://github.com/YosysHQ/picorv32

20

https://github.com/YosysHQ/picorv32

2.3 – State of the Art in Embedded System Design

Figure 2.5 shows the design overview of the SoC. From an architectural point of view, it
is a simple single-core AMBA-based embedded system. It offers a modular design that does
not include complex features like caching mechanisms, memory hierarchy or DMA. The
core is directly connected to the IRAM and DRAM in a single access, no waiting manner.
There is a central AXI interconnection, that interconnects the processor with the memories,
allowing pipelined high-bandwidth operations. Regarding the core, the microcontroller is
based on a 32-bit RISC-V architectures and can be configured to use either the RISCY or
the zero-riscy core. Both developed at ETH Zürich.

Figure 2.6. RISCY core.

The RISCY core, shown in Figure 2.6, is an in-order, single-issue core with 4 pipeline
stages able to guarantee an IPC close to 1. The ISA supports the base integer instruc-
tion set (RV32I), compressed instructions (RV32C), multiplication and division instruc-
tion extension (RV32M). In can also be configured to implement the RV32F extension for
single-precision floating point operations. It also implements several custom ISA extensions
such as hardware loops, post-incrementing load and store instructions, bit-manipulation
instructions, MAC operations, fixed-point operations, packed-SIMD instructions and the
dot product. All these additional features have been implemented for allowing ultra-low-
power signal processing applications. Also, a subset of the 1.9 privileged instructions are
supported.

The Zero-riscy core, depicted in Figure 2.7, is instead a much more simpler processor.
Suitable for ultra-low-power ultra-low area constrained embedded systems. It is an in-
order, single issue core with 2 pipeline stages supporting the RV32I, RV32C and a subset
of 1.9 privileged ISA. Can also be configured to implement the RV32M and the reduced
number of register extension RV32E. The architecture offers a secondary bus level that
interconnects a broad set of peripherals for the communication with the outside world.
Part of the implementations are also the SPI Slave and the Debug Unit, which are used to
pre-load the RAMs with executable code from SPI flash and to allow access to the whole
memory map via JTAG for debugging purposes.

21

Background

Figure 2.7. Zero-riscy core.

Among all the available microarchitectures, PULPino is the one chosen to be our ref-
erence architecture. This is because it implements in a very simple and compact design
all the features necessary to have a complete usable microcontroller-style platform, closer
to our requirements. Also, what makes PULPino perfect for being used as a reference soft
microcontroller is for sure its modular and clean design, the extensible software toolchain
built around it for cross-compilation, RTL simulation and synthesis, together with a great
documentation to support usage and learning.

The RTL description, as well as the entire toolchain for simulations, compilation and
FPGA synthesis can be found in the official Github repository3.

2.4 Our contribution to the RISC-V community
Whenever an team of engineers decide to start designing a new RISC-V platform, the first
possible way to act is to start from an already implemented open-source platform, like
one of those seen before, where it is possible to include custom integrations and modify
the existing design to fulfil the desired behaviour. The second choice would be to start
a new design from scratch, by using some well known architecture as a reference. There
are two factors on which the choice of the path to take is based: the first one regards the
specifications and use cases of the embedded device. For instance, if the target is to design
a low-power IoT device, if one wants to start from something already developed, he or she
must have a soft lightweight microcontroller to customise, otherwise there is the need to
start a new design from scratch. The second factor is related to the technical background
of the team on HDL languages, which require a certain degree on know-how in order to
develop clean and synthesizable designs. Embedded Systems engineers in Politecnico di
Torino, for example, have strong expertise in VHDL, but not in SystemVerilog or Chisel

3https://github.com/pulp-platform/pulpino

22

https://github.com/pulp-platform/pulpino

2.5 – The AFTAB Processor

HDLs, and this reflects to the students.
Regarding our RISC-V based platform MC2101, the research team that hosted me

needed to have a RISC-V based architecture entirely customizable and synthesizable. The
particular aim of our platform is to offer the possibility to integrate hardware security
solutions and also to assess and evaluate them through software testing. Those kind of
solutions first require a simple architecture that can be easily customised starting from the
core itself, and then a proper toolchain for automating all the processes of RTL simulation,
synthesis and compilation.

Among all the most popular solutions available in literature, the PULPino architecture
mentioned before is for sure the one that comes closest to our needs. Referring again to
the Figure 2.5, it is a modular design, easy to use, that includes all the set of peripherals
necessary to interact with the microcontroller once synthesized on FPGA, as well as the
necessary interfaces used to debug and flash the firmware on it. All these features are
what is needed to test the architecture and any custom integration. Of great importance
is also the software toolchain, created with the aim of automating all the processes of
synthesis, RTL simulations, and software compilation. The big problems with PULPino,
common to many other RISC-V most popular open-hardwares, is that it is fully described
using SystemVerilog hardware description language, which is not part of our background
as computer engineers.

It was therefore mandatory to opt for our own design, developed from scratch, fully
implemented in VHDL. The AFTAB processor, briefly described in the next Section, was
the first step of the development.

2.5 The AFTAB Processor
AFTAB, acronym for “A Fine Turin/Tehran Architectural Being”, is an in-order fully se-
quential (not pipelined) 32-bit RISC-V core, developed by the CINI Cybersecurity National
Laboratory in cooperation with University of Tehran. The processor works according to
the Von Neumann architecture, so there is only a single RAM containing both data and
instructions.

As for the implementation details, its enough to give a high-level description of the
processor, starting from its interface and going directly to the programmer’s model.

2.5.1 AFTAB Interfacing Ports
The core can be described as a blackbox component (Figure 2.8), whose pins can be
grouped into the Memory Interface set and the Interrupt Interface set. The Memory
Interface includes these signals:

• memRead & memWrite: read and write signals for the memory. Forwarded in the
MC2101 bus in order to start a transaction that can target the main memory or any
peripheral

• memReady: fundamental signal used to stall the processor in the fetch stage. In this
way, by controlling this signal, the bus infrastructure can take the necessary time to
complete read and write operations;

23

Background

Figure 2.8. AFTAB microprocessor interface.

• memAddr: AFTAB address bus is 32-bit wide;

• memDataIn & memDataOut: two 8-bit ports that together build the data bus of the
microcontroller. During load and store operations, they carry variable number of
bytes per transaction (1, 2, or 4) in a sequential way, so that only one byte per clock
cycle can be read or written.

As for the Interrupt Interface set, there are a total of 22 independent interrupt lines,
where 16 of them are for platform use, plus an additional signal (interruptProcessing)
indicating when the processor is in the interrupt processing states. The core is also able
to handle the following hardware-level exceptions:

• Illegal Instruction: the decode phase does not recognise the opcode as a valid one;

• Illegal CSR instruction: raised when there is an attempt to read or write a CSR
register with an inappropriate privilege level, or when trying to access a non-existing
CSR register;

• Instruction address misaligned: raised after an attempt to access the instruction
memory without the proper 4-bytes alignment.

For the programmer’s point of view, as previously anticipated, AFTAB implements the
RV32I, RV32M, and Zicsr extensions. Therefore, the instruction set supported is the one
depicted in Figure 2.3, and the registers available are the integer ones, listed in Figure 2.1.

The RTL description, as well as the entire toolchain for simulations, compilation and
the manuals can be found in the official Github repository4.

4https://github.com/RHESGroup/aftab

24

https://github.com/RHESGroup/aftab

Chapter 3

Design and Development of
MC2101

The present Chapter is entirely dedicated to MC2101 microcontroller. The first Section
explains the hardware-level architecture of MC2101, from the bus infrastructure to the
various peripherals, and all the related design and development choices. The software part
is described in the second Section, dedicated precisely to describe all the implemented
system’s libraries provided to support the programmer job with a proper set of low-level
C functions, useful to program all peripherals without the need of accessing their registers
“by hand”. A third Section is dedicated to the testing part, in particular to the testing
methodology followed to assess the functional correctness of the various designed hardware
components, and their interconnection. The same Section is also dedicated to describe how
does the serial communication between FPGA and a PC have been implemented, with the
purpose of providing a way to allow the interaction between a personal computer and the
synthesized MC2101, through a command-line terminal.

3.1 MC2101 architecture
MC2101 microcontroller has been designed with the purpose of being used as a synthe-
sizable and extensible platform for integration and assessment of security solution for IoT
implemented inside the AFTAB processor. At the current state, the microcontroller is
composed of a minimal set of peripherals properly selected for providing all necessary in-
put/output functionalities useful for interacting with the external world, once synthesized
on a FPGA.

The Figure 3.1 shows the design overview of the microcontroller. The architecture
includes a single bus, which provides the system with the proper hardware infrastructure
necessary to interconnect the AFTAB processor with all peripherals and the main memory.
The processor plays the role of the master: it is the only component able to initiate trans-
actions on the bus, which can be composed of single or multi-cycles read/write operations.
Peripherals and main memory are accessed by AFTAB using the memory-mapped mode:
this means that the entire address space includes both peripherals and main memory.
Therefore, the processor uses the same load/store instruction for accessing all components

25

Design and Development of MC2101

Figure 3.1. MC2101 microcontroller.

attached to the bus.
The communication between the processor and any peripheral happen only through the

peripheral’s register file, which can contain three different type of registers, with different
read/write policy:

• Control Registers: used to configure the peripheral functionalities. They are writ-
ten by the processor and read by the peripheral;

• Status Registers: used to report the current state of the peripheral. Written by
the peripheral and read by the processor;

• Data Registers: used to exchange data. Both processor and peripheral can read
and write on them.

The size and the number of registers depends on the functionalities implemented by the
peripheral, which can be for instance a 32-bit peripheral, with 32-bit register file or a 8-bit
peripheral with 8-bit registers.

The bus implements three different types of interconnections:

• Data Lines: set of independent read and write data signals used to read and write
data on peripherals registers and on the main memory;

• Control Lines: used to provide signals for controlling read or write operations and
for allowing peripherals and main memory to feedback the processor about the current
state of the transaction;

26

3.1 – MC2101 architecture

• Address Lines & Chip Select: the most significant bits of the address lines pass
through a decoder that drives all chip select signals: in this way, the peripheral is
activated only when necessary.

Each component attached to the bus must include the Bus Interface, which is a sort
of wrapper to be placed around each component in such a way to bridge signals coming
from the bus to the internal hardware (FSM + Datapath) of the peripheral and vice versa.
Peripherals can implement an additional External Interface, which is used to handle the
communication to the external world. In particular, the conversion of incoming external
asynchronous digital signals into the synchronous domain of the microcontroller.

In the following Subsection, some more details of the microcontroller design are re-
ported, in order to present what are the functionalities supported by the system and the
relative design choices made.

3.1.1 Bus Infrastructure
In the microcontroller development, the bus infrastructure was the first item to be ad-
dressed because of its vital role in interconnecting the whole system. In literature, there
exist a lot of bus architectures which, over the years, have evolved to become an open-
standard in SoCs design. In particular, the the most used open-source architecture is the
ARM AMBA bus [3] [4], that, thanks to its modular design engineered to support high-
performance and low power on-chip communications, is today a standard de facto, used
in most of the SoCs present on the market. The problem with such solutions is that they
implements sophisticated features, designed to be used in full-featured high-performance
microcontrollers much more complex than our embedded system. In particular, the ab-
sence of a pipeline in the our processor prevents the usage of AMBA solutions, that are in
fact designed to pipeline all the communications in order to increase the throughput.

The idea was to take inspiration from a standard architecture (AMBA and Avalon, for
instance) to build a simpler infrastructure. In particular, the designed architecture pre-
serves a minimal subset of AMBA specifications to build a simpler infrastructure, suitable
for our needs, that remains modular and upgradable at the same time.

Figure 3.2 shows the block diagram of the bus system. It is an infrastructure that
supports a single master with multiple slaves, thus no arbitration mechanism has been
implemented. The bus interconnection logic consists of a single centralised address decoder
and a slave-to-master multiplexor. The decoder monitors the address lines driven by the
master so that the appropriate slave is selected during each transaction. It also provides
control to the multiplexor, which is in charge of routing the corresponding slave output
back to the master.

The bus master interface, on the left of Figure 3.3, provides address and control infor-
mation to initiate read and write operations. The slave, whose interface is shown on the
right of Figure 3.3, responds to transfers initiated by the master, by using a hsel (chip
select) signal from the decoder to control when to respond a request. When selected, the
slave will start monitoring the bus lines in order to respond to commands from the master.
Therefore, all the slaves will stay into an idle state until they are individually waken up by
a signal.

27

Design and Development of MC2101

Figure 3.2. MC2101 Bus Block Diagram.

Figure 3.3. Master & Slave Interfaces.

28

3.1 – MC2101 architecture

Each slave is also able to feedback the master about:

• the success

• the failure

• or the waiting of the data transfer

by using the hresp and hready dedicated lines. In this way, a slave is able to extend the
data phase when extra time is needed, but also to inform the rest of the system that some
bad operations are happening in the bus. The full list of signals is described in Table 3.1.

Name Type Description
hready Control When driven LOW, the transfer is ex-

tended.
hresp Control When HIGH, indicates that the transfer

status is on error.
hwrite Control Indicates the transfer direction. When

HIGH the signal implies a write transfer,
on the contrary when LOW a read trans-
fer.

htrans[1:0] Control Shows the current state of the bus.
int[15:0] Control Independent interrupt lines, can be driven

by peripherals to issue a IRQs.
hwrdata[7:0] Data 8-bit data lines from the master to the

slaves.
hrdata[7:0] Data 8-bit data lines from the slave to the mas-

ter.
haddr[31:0] Address Address space is on 32-bit, thus also the

address line.
clk Global global clock signal
rst Global global reset signal

Table 3.1. Bus Signals.

In the following Subsections, the main features implemented in the GPIO and UART
peripherals are presented. Together, they provide a set of minimal functionalities for
interacting with the microcontroller from the external world.

3.1.2 GPIO Peripheral
The GPIO (General Purpose Input Output) is a peripheral module present in all embedded
processors. It is used to manage sets of SoC’s incoming and outgoing digital signals, by
driving and checking the logic state of physical pins. GPIOs can be used in a diverse variety
of applications, limited only by the electrical and timing specifications of the peripheral’s
interface, and the ability of software to interact with it in a sufficiently timely manner.
In most of the cases, GPIOs are used to switch LEDs, interface the microcontroller to

29

Design and Development of MC2101

buttons, user-selectable switches or electronic switches (relays). In other cases, there is
also the possibility to use GPIO as a bit banging communication interface, where software
is used as substitute for dedicated hardware in order to implement a specific communication
protocol, e.g., a software-based SPI bus with 4 GPIO pins.

Figure 3.4. MC2101 GPIO Peripheral Core.

In Figure 3.4, the core of the peripheral is showed, together with its relative set of signals
coming from the Bus Interface and from the External Interface. The GPIO is designed
as a 32-bit peripheral, and so it provides a 32-bit processor’s interface with 32-bit wide
user registers and data bus (dataIn and dataOut). The conflict between MC2101’s data
bus, that is on 8-bit (see hwrdata and hrdata in Table 3.1), and the peripheral’s data bus
are solved by the Bus Interface, which provides a bridge for the communications between
the two domains. The External Interface (in Figure 3.4 as Pads Interface) works as an
intermediate between the bidirectional bus connected to physical pins and the peripheral’s
core. In particular, through the Pads Interface, the asynchronous bidirectional external
lines (gpio_pads) are separated into independent input and output lines, synchronised
with the global clock.

The 5-bit address signal selects which user register is being access by the by the
processor. As explained before, read and write operations on peripherals are enabled by
a proper chip select signal. When the chip select condition is met, the Bus Interface rises
one of the two strobe signals, read and write, for accessing the user registers. The GPIO
provides also an interrupt line to the processor. This line will rise as soon as an interrupt
condition occurs on any of the 32 pad lines. When this happen, the processor will have
to execute appropriate read or write operations to deassert the interrupt. The peripheral,

30

3.1 – MC2101 architecture

programmed through the user registers, is able to support the following functionalities:

• Control the input/output direction of each GPIO pads;

• Enable interrupts for each input bits and configure the triggering behaviour on logic
levels or rising/falling edges;

• Drive and control external pins.

Name Address Access Description
PADDIR 0x1A100000 R/W Control the direction of each of the GPIO

pads. A value of 1 means the pin is config-
ured as output.

PADIN 0x1A100004 R Saves the input values coming from input
pins.

PADOUT 0x1A100008 R/W Drives the output lines with its content.
PADINTEN 0x1A10000C R/W Interrupt enable bits for input lines.
INTTYPE 0x1A100010 R/W Two registers: INTTYPE0, INTTYPE1 that

are used to control the interrupt triggering
behavior of each interrupt-enabled pin.

INTSTATUS 0x1A100018 R Contains interrupt status for each GPIO
line. The interrupt line is high when a bit
is set in this register and will be de-asserted
when this register is read.

Table 3.2. GPIO User Registers.

From the programmer’s point of view, the GPIO peripheral can be programmed through
the set of registers in Table 3.2. More details on the software are provided in the next
Section, dedicated to the software part.

3.1.3 UART Peripheral
Communication protocols play very important role in organising communication between
devices, which is a fundamental feature to be implemented, as it allows a way for inter-
action between different platforms. In fact, every embedded system includes at least one
hardware peripheral dedicated for this role. Microcontrollers and computers mostly use
UART as a form of device-to-device communication protocol, which only requires two wires
to implement transmission and reception of data.

The UART module designed for MC2101, whose block diagram is shown in Figure 3.5,
provides a transmitter-receiver pair, configurable for different speeds, data widths, par-
ity codifications and information status for several error conditions. The implementation
provides a subset of the standard UART 16550 specifications [9], without including some
more advanced functionalities for supporting DMA and MODEM communications. The
module is designed as an 8-bit peripheral and so it provides an 8-bit data interface to
the processor. This characteristic makes the Bus Interface more lighter than the GPIO’s

31

Design and Development of MC2101

Figure 3.5. MC2101 UART Peripheral Core.

one, because in this case UART’s internal data lines are already compatible with the bus
infrastructure of the microcontroller. Also the External Interface is lighter because only
two external lines, rx and x, are controlled. Similarly to the GPIO, the signals in Figure
3.5 are generated by the Bus Interface, except for the rx and tx lines which came from
the External Interface, with the difference that, in this case, the user register file is more
compact and requires only 3-bit for the addressing. Both receiver and transmitter use a
dedicated queue, implemented in hardware as a FIFO memory, used to hold data either
received from the rx serial port or to be written to the tx serial port. This buffering feature
is particularly useful when the interrupt mechanism is enabled at the receiver side, which
can raise interrupts when its queue surpasses a certain fill level, instead of triggering every
time a new character is received. The processor can also benefit from this buffering feature
by filling the transmitter’s FIFO when multiple character must be transmitted, without the
need of wasting polling cycles in waiting for the completed transmission of each character
sent. With both the FIFO empty, is possible to have 17 characters simultaneously: in the
transmitter, 1 being sent and 16 buffered, while in the receiver, 16 ready to be read and 1
being assembled.

As anticipated, parity conditions and error controls are part of the implemented func-
tionalities. The following error conditions can be detected by the receiver:

• Break Interrupt: Error flag asserted when the rx line remained stuck at 0 for the
entire character time. This error is usually generated from an incorrect wiring, e.g.,

32

3.1 – MC2101 architecture

the rx or tx line are mistakenly wired to a ground pin.

• Framing Error: Asserted when the stop bit was not detected. Usually this type of
error is generated when a device is sending data at a different speed with respect to
the one used by the receiving device for sampling.

• Parity Error: Asserted when the parity of the received character is wrong according
to the current one configured. This provides a very simple and useful error detection
feature.

• Overrun Error: Produced when a character is assembled but there is no more space
inside the receiver’s FIFO. The UART peripheral must be able to inform the processor
that it will lose data if the FIFO is not read.

Regarding the interrupts, the UART module can be configured to assert an interrupt
when different conditions are detected, each one with an associated priority.

Name Priority Description
Receiver
Line Status

Level 1
(max.)

There is an overrun error, parity error,
framing error or break interrupt indication
in the received data on the top of receiver’s
FIFO.

Received
Data Ready

Level 2 The number of characters in the recep-
tion FIFO is equal or grater than the pro-
grammed trigger level.

Reception
Timeout

Level 2 There is at least one character in the re-
ceiver’s FIFO and during a time corre-
sponding to four characters at the selected
baud rate no new character has been re-
ceived and no reading has been executed
on the receiver’s FIFO.

Transmitter
Empty

Level 3 The transmitter’s FIFO is empty.

Table 3.3. UART Interrupt Sources.

The Table 3.3 summarises the different conditions that can be a source of interrupt and
their relative priorities. From Table 3.4 is possible to see that all registers are on 8-bit
and in fact are all byte aligned, with respect to GPIO register file which is word aligned,
because all registers are on 32-bit. Another detail is in the RHR and the THR registers,
it is possible to see that they are on the same address. This is not a typo. Since RHR
is accessed for reading and THR is accessed for writing, it is possible to use the same
address for accessing both in an exclusive way. In particular, during a read operation RHR
is accessed, instead, during a write operation the THR is addressed. This trick allows to
include all 9 registers in a space that theoretically can only be allocated for 8, saving a bit
in the address line.

33

Design and Development of MC2101

Name Address Access Description
IER 0x1A100000 R/W Used to individually enable each of the pos-

sible interrupt sources.
ISR 0x1A100001 R Used to identify the interrupt with the

highest priority that is currently pending.
FCR 0x1A100002 W Used to reset the FIFOs and program the

receiver trigger level for the Received Data
Ready interrupt.

LCR 0x1A100003 R/W This register controls the way in which
transmitted characters are serialized and
received characters are assembled and
checked.

LSR 0x1A100004 R Used to inform the user about the status
of the transmitter and the receiver.

DLL & DLM 0x1A100005 R/W Two different registers that together form
the 16-bit Divisor Latch, which contains
the divisor value used to program the bau-
drate of the communications.

RHR 0x1A100007 R Contains the most recent received charac-
ter.

THR 0x1A100007 W Contains the character to be transmitted.

Table 3.4. UART User Registers.

The UART peripheral can be programmed through the set of registers in Table 3.4.
Also in this case, more details about the software are given in the next Section, dedicated
to the software part.

3.2 Software libraries
This Section is dedicated to describe the functionalities of the microcontroller from the
software point of view. A proper set of libraries is included in the design with the purpose
to facilitate the programming of the microcontroller, but also to integrate the possibility
to use all the classical string manipulation functions as well as the printf and scanf that
are useful also for testing activities.

Before entering into details, the first thing that usually is presented when talking about
the programmer’s point of view is the memory map of the microcontroller. MC2101 archi-
tecture supports a 32-bit address space, which virtually corresponds to a 4 GB memory.

Figure 3.6 shows the default memory map of MC2101. By carefully observing the
size of the memory sections it is possible to note that the physical portion of memory
currently mapped is in the order of KB, there is a huge free space that can be used in
future expansions. In particular the main memory has a lot of available space for being
extended to support more advanced software implementations, e.g., hosting an operating
system.

34

3.2 – Software libraries

Figure 3.6. MC2101 Memory Map.

The following Subsections are presenting all the possible high-level functions that a
programmer can use to write programs for MC2101, maintaining a certain degree of ab-
straction from the hardware. For this purpose, the GPIO and UART peripherals libraries
include a wide amount of functions that, together with macro definitions, allow to program
all the functionalities without the need of manually access the user registers manually.

3.2.1 GPIO Library
The Table 3.5 shows a simplified prototype and explanation of the GPIO functions currently
implemented in the library. The library implements all the necessary functions to be used
for programming the peripheral without the need to directly access its registers, thus
providing an adequate level of abstraction. The library offers the possibility to configure

35

Design and Development of MC2101

Function Description
set_pin_direction() Used to set a pin direction to input or out-

put.
get_pin_direction() Returns the direction of a given pin.
set_pin_value() Used to set a pin voltage level to low/high.
get_pin_value() Returns a given pin’s voltage level.
set_pin_irq_enable() Enable or disable interrupt on a pin.
get_pin_irq_enable() Get the programmed pin’s interrupt enable

flag.
set_pin_irq_type() Used to configure the interrupt triggering

behavior for a given pin. {Logic Levels or
Edges}. Pin must have its interrupt flag
enabled.

get_pin_irq_type() Returns the programmed pin’s interrupt
triggering behavior.

get_gpio_irq_status() Returns GPIO’s current interrupt status
register (INTSTATUS) value. Responsible
also to deassert the GPIO pending inter-
rupt.

ISR_GPIO() GPIO interrupt handler. When the inter-
rupt is raised, the bootloader will jump to
this function.

Table 3.5. GPIO Library functions.

the direction of each of the 32 pins, read and write values on them. But also, provide a
set of functions to be used to enable interrupts on any pin and write a custom interrupt
service routine.

3.2.2 UART Library
The UART library offers a bigger set of functions with respect to the GPIO library, func-
tions that are also more complex (in terms of execution time) because also the UART
features are more complicated. The library provides the possibility to configure the speed
of the communications, the size of the frames transmitted/received as well as all the error
detection mechanisms. Provides to the programmer functions able to send single characters
or strings, and to customise the interrupt behavior.
More details about the library are reported in Table 3.6.

3.2.3 String Library
More advanced I/O functionalities have been implemented in the string library. This
library is particularly important, because it provides the principal string manipulations
functions that together with the UART Library are able to support the printf and scanf
functions. The library is the same implemented in PULPino, with the addition of the

36

3.2 – Software libraries

Function Description
uart_set_cfg() Used to program the LCR register for con-

figuring the character width, number of
stop bits, parity type and enable, even/odd
parity and the baudrate.

uart_get_cfg() Return the current LCR register value.
uart_set_int_en() Configure the IER register to enable the

different type of interrupt sources.
uart_get_int_en() Used to get the enabled interrupt sources

by reading the IER content.
uart_rx_rst() Clear the content of the receiver’s FIFO.
uart_tx_rst() Clear the content of the transmitter’s

FIFO.
uart_set_trigger_lv() Set the receiver’s FIFO trigger level.
uart_get_lsr() Used to read the Line Status Register

(LSR).
uart_get_isr() Used to read the Interrupt Status Register

(ISR).
uart_sendchar() Send a character on the transmitter line.
uart_getchar() Get the character received.
uart_send() Used to send a string on the transmitter

line.
ISR_UART() UART interrupt handler. When the inter-

rupt is raised, the bootloader will jump to
this function.

Table 3.6. UART Library functions.

scanf function and some other utilities. The following functions are part of the system’s
library: strlen, strcpy, strcmp, puts, putchar, memset, printf and finally the scanf.

3.2.4 Board Library
This is the “top-level” library that should be included in every application developed for
MC2101. It contains the board_setup function, which was prepared right after the pin
planning phase. It is used to initialize the microcontroller hardware once synthesized on
FPGA and connected with the various user buttons, switches and LEDs present in the
board.

Once called, the microcontroller is configured in this way:

• UART peripheral is programmed with 115200 standard baudrate, no parity, 1 stop
bit, 8-bit character width. This is a standard configuration for the printf and scanf
functions.

• GPIO lines interconnected to LEDs are set as output.

37

Design and Development of MC2101

• GPIO lines interconnected to User buttons are set as input.

• GPIO lines interconnected to Switches are set as input.

• Al interrupts are disabled.

The board_setup function should be the first called in every application, because brings
the microcontroller in the correct configuration, according to the pin assignment used for
the synthesis, in order to properly interface the external hardware.

3.3 Testing
The microcontroller has been tested with the combination of RTL testbenches and C
programs, aimed together to verify the correctness of the architecture. The original AFTAB
simulation environment, similar to PULPino, has been adopted and extended for the test
of MC2101.

As anticipated, the software environment integrates the RISC-V toolchain with Model-
Sim commands using CMake build automation tool. In this way, it is possible to compile
custom C applications, HDL design files, and also run RTL simulations on ModelSim.

The test of the architecture has been separated into two distinct phases:

1. Testing while-developing.

2. Testing post-synthesis on FPGA.

3.3.1 Testing while-developing
Test activities and design activities happened in parallel during the RTL development of the
microcontroller. All the components have been implemented using a structural approach
in such a way to have a modular design, easily testable with a bottom-up methodology.

Figure 3.7 shows what is the typical structure used to design all the peripherals. There is
always a top-level entity, that works as a wrapper for the bus controller and the peripheral
core, which is itself composed of discrete interconnected HDL entities. Each of the entities
is at first tested in isolation, then in integration with the other components until the design
is functionally tested from the bottom to the top-level entity. The peripheral can be then
attached to the bus, through the top-level wrapper, and be finally tested with a proper
C/Assembly program to verify the correctness of the interconnection with the processor
and the memory. With this approach, the microcontroller can be testes bottom-up, and
debugged with custom applications. After these steps, the final test would be to proceed
with the synthesis of the design and perform a last RTL test with a gate-level simulation,
to properly check that timing constraints are really respected.

3.3.2 FPGA Tests
The test procedure explained before is not actually able to fully test all the functionalities
because of the limitations of RTL simulations. Interrupts for instance, are ver difficult to
test, because they should be generated asynchronously by the external environment, e.g., a

38

3.3 – Testing

Figure 3.7. Modular structure of a peripheral.

button press. Other behaviors like the printf or scanf functions would require very long
simulation times (in the order of ms) that can really overload ModelSim, with the risk of
crashing the workstation.

In general, the functional properties of the microcontroller can be fully tested only when
synthesized on FPGA, that in our case is the Cyclone-V FPGA embedded into the DE1-
SoC development board. With the purpose of having a proper test infrastructure, a set of
make targets, integrating Quartus commands with tcl and bash scripts have been prepared
in order to provide to the user a simple, fast and automatic toolchain for the synthesis
and deployment on FPGA. The most useful feature of the aforementioned toolchain, is
certainly the possibility of updating the memory content of the sythesized microcontroller
with new programs, without having to repeat the entire synthesis process from scratch,
which can be quite time consuming.

Below, are presented some more details about the testing of the UART and GPIO
peripherals, thus are also showed the different ways of interacting with the microcontroller.

The GPIO peripheral is interconnected with a proper set of component present on
the DE1-SoC. As shown in Figure 3.8, there are 10 LEDs in total, 3 push buttons, and
10 switches that are physically connected with the GPIO’s External Interface lines. This
set of electronic components are very useful in order to test the behavior of the peripheral,
the user can assess if the peripheral works or not by just trying to turn on/off LEDs. Test
programs have been implemented with the purpose to check the functional correctness of
the the whole peripheral and the interrupt mechanism.

The UART peripheral has been tested together with the printf and scanf functions.
In this case, the test is a little bit more complicated, as it requires the usage of a Terminal
Emulator in order to see if the I/O functions are working.

In Figure 3.9, the communication mechanism designed for interconnecting the UART

39

Design and Development of MC2101

Figure 3.8. GPIO Interconnection on DE1-SoC.

Figure 3.9. UART Interconnections.

peripheral with an external PC is shown. The interconnection is very simple, the tx and
rx lines have been routed with 2 header pins of the DE1-SoC, then two cables are used
to connect the tx and rx lines to a USB-UART bridge that is directly plugged into USB
Port of a computer. In this way, every Terminal Emulator is able to print the character
transmitted by the microcontroller and also send character to the microcontroller. This
communication mechanism, together with the GPIO connections allow a proper test of the
entire microcontroller.

40

Chapter 4

Experimental Results

The aim of this Chapter is to show the results obtained from the design choices imple-
mented. In particular, the specifications of the systems are evaluated as well as the FPGA
resource usage, which is very useful to know in order to evaluate which future extensions
to implement.

Starting from the specifications, as anticipated, the purpose of this project was to design
a simple, modular, and extensible microcontroller able to provide all I/O functionalities
to support its usage in a realistic environment. All tests performed have shown that the
system fulfils all of the requirements. In fact, MC2101 is able to interface correctly with
all of the interconnected hardware components of the DE1-SoC. The infrastructure built
for bridging the communications between the UART and a Terminal Emulator allows the
user to interact correctly with the system by using any platform that have a USB driver
inside. Assessed that also the interrupt mechanism fully responds to external triggers, the
system requirements have been fully fulfilled.

Thanks to the fact that the main memory has been designed to be synthesised in the
embedded M10K blocks of the Cyclone-V FPGA, it is possible to extend the available
RAM without wasting LUTs. Considering that only 3% of the M10K blocks available on
the target FPGA are currently used, and that the architecture actually takes advantage of a
very small portion of the addressable space there is plenty of room for future developments.

Resource Name Used
Amount

Total
Amount

Percentage
Used

ALM 2628 32070 8%
FF 3443 64140 5%
PIN 36 457 8%
M10K Bit 131072 4065280 3%
RAM Block 16 397 4%

Table 4.1. MC2101 resource usage on Cyclone-V FPGA.

More details about FPGA resource usage are reported in Table 4.1. It is possible to see
that the architecture of MC2101 takes advantage of a very small percentage of the available

41

Experimental Results

resources on the Cyclone-V, which allows a great deal of freedom for future extensions.
To conclude the discussion, it is useful also to compare the results of the MC2101

synthesis with those of PULPino, which has been the reference architecture and will still
be source of inspiration for future developments. Unfortunately, following several attempts,
was not possible to correctly synthesize PULPino on the Cyclone-V using Quartus software.

This is due to the outdated release of the software, that does not support some of
the SystemVerilog HDL structures coded inside PULPino. For instance, the memories in
PULPino are designed to be synthesized within Vivado HLS for Xilix FPGAs that are not
supported in Quartus. Because it was not possible to synthesize PULPino using MC2101
synthesis environment, the two architectures have been synthesized using Vivado HLS in
order to have a report generated by the same synthesis software and also in order to have
a comparison between the architecture that is useful to understand what results to expect
from future developments of our microcontroller.

Resource Name PULPino
Usage

MC2101
Usage

LUT 15657 3440
FF 9883 3253
PINS 143 36
BRAM 16 4

Table 4.2. PULPino and MC2101 resource usage comparison on Artix-7 FPGA.

Table 4.2 shows the resource usage of both MC2101 and PULPino synthesized on the
Artix-7 FPGA using Vivado HLS. As expected, because PULPino implements a typical
AMBA-based full-featured design, it is a much more complex embedded system than the
current MC2101 and so the resources required for the synthesis are much higher. The
memory blocks for instance are 16 instead of 4 because PULPino makes use of 64 KB
memory, divided into instruction RAM and data RAM, while MC2101 only uses one 16
KB single port memory. The higher number of peripherals, the pipelined architecture of
the processor and the higher complexity of the bus infrastructure are the reasons of which
PULPino needs more sequential elements (FF) as well as LUT to implement all the logic
required.

42

Chapter 5

Conclusions and Future Work

The goal of this thesis was to provide my research team a RISC-V microcontroller written
in VHDL that can be synthesized and usable on FPGA, where is possible to test, integrate
and evaluate hardware and software security solutions for embedded systems. The work
carried out includes all the functions necessary to automate the synthesis processes, the
RTL simulations, the compilation of custom applications and a soft architecture able to
run software on FPGA. The architecture designed integrates all the necessary hardware
modules e their software libraries required to support all the basic I/O functionalities that
permit its usage on a development board. All tests performed have demonstrated the
ability of the system to perform all the functions set up, and therefore to be able to satisfy
the initial requirements.

The actual state of the platform offers a good starting point for future improvements.
In particular, the following are some of the most relevant features that should be included
in future extensions in order to have a more complete microcontroller able to run general
purpose software:

• Pipelining: Up to now, all the operations are executed and issued in sequence,
thus no pipelined behavior is supported yet and so the performances are the main
limitation of this device. Introducing the pipeline into core together with a proper
upgrade of the bus infrastructure is indeed a precious feature to be included. This
upgrade will definitely increase the computing capability of the embedded system and
therefore the possibility to run a wider range of applications.

• ISA Extensions: In order to support a wider range of applications, the ISA itself
must be extended. In particular, for being able to support general purpose computing
all the standard extensions M, A, F, D, C should be included. Considering that I
and M are already part of the ISA, withe the remaining three standard extensions
F, D, C the processor will be able to execute floating point single precision (F) and
double precision (D) and also the compressed instructions (C).

• OS Support: Currently AFTAB is not able to support the Supervisor mode required
to run an operating system. Thus, in order to be able to support the full software
stack separation required to run an operating system, the ISA must include also the

43

Conclusions and Future Work

S privileged mode and all the required CSR registers. This upgrade, together with
the introduction of all the ISA Standard Extensions, would allow the system to run
a wide range of general purpose applications.

• Timer peripheral: To extend the platform functionalities, there are a lot of pe-
ripherals that could be added. For instance, as in PULPino microcontroller, some of
the peripherals missing in MC2101 are the SPI, I2C modules and the Timer. What i
would suggest more is for sure the Timer peripheral, which is used to trigger periodic
interrupts with a very high timing precision. A periodic interrupt can be used for
example by the operating system to control the scheduling of processes with a very
high timing precision, mandatory feature when real-time constrains must be met. An-
other example of period interrupt usage is for example the Watchdog Timer, used to
generate a non-maskable interrupt that resets the entire system if not handled. This
feature is a must, because allows to recover after some bad internal failure occurs and
no user intervention is possible.

• Debug Interface: All modern MCUs feature an on-chip debug module that opens
up the access to all the addressable space, including CPU registers. This capability
allows to debug the code execution, that actually in MC2101 can only be performed
by dumping contents with the printf function.

To conclude, I can say I am satisfied about this thesis experience that allowed me to
design the architecture of a system where it is possible to execute real software. I had
the opportunity to deepen my skills into the low level design of embedded systems and
complete my knowledge on microcontrollers architecture, for which i have grown a great
deal of interest during my studies and which i have been able to deepen thanks to this
experience. In this regard, I would like to underline the importance of the RISC-V ISA in
the world of research and academia and in general the importance of having open-source
materials on which is possible to learn, get inspired and create original contribute for the
community. As the last thing, I would like to express my gratitude to Gianluca, who
constantly supported me during my work, and to Professor Prinetto, who gave me this
opportunity.

44

Bibliography

[1] CHIPS Alliance. Chisel 3: A Modern Hardware Design Language. https://github.
com/chipsalliance/chisel3. 2022.

[2] Andrew Waterman, Yunsup Lee, Rimas Avizienis, David A. Patterson, Krste Asanović.
The RISC-V Privileged Architecture Version 1.9.1. https://www2.eecs.berkeley.
edu/Pubs/TechRpts/2016/EECS-2016-161.pdf. 2016.

[3] ARM. AMBA AHB Protocol Specification. https://developer.arm.com/documentation/
ihi0033/latest/. 2021.

[4] ARM. AMBA APB Protocol Specification. https://developer.arm.com/documentation/
ihi0024/latest/. 2021.

[5] CINI Cybersecurity National Laboratory, University of Tehran. CNL RISC-V AFTAB.
https://github.com/RHESGroup/aftab. 2022.

[6] CINI Cybersecurity National Laboratory, University of Tehran. CNL RISC-V AFTAB
Microprocessor User Manual. https : / / github . com / RHESGroup / aftab / blob /
master/doc/aftab_user_manual.pdf. 2022.

[7] RISC-V International. RISC-V Introduction. https://riscv.org/wp- content/
uploads/2021/08/RISC-V-Introduction-_-Aug-2021.pptx. 2021.

[8] R.E. Kessler. «The Alpha 21264 microprocessor». In: IEEE Micro 19.2 (1999), pp. 24–
36. doi: 10.1109/40.755465.

[9] SIDSA. UART 16550 IP Datasheet. http://caro.su/msx/ocm_de1/16550.pdf.
2001.

[10] Claire Wolf. PicoRV32 - A Size-Optimized RISC-V CPU. https://github.com/
YosysHQ/picorv32. 2019.

[11] Yonghong Yan. Lecture 04 RISC-V ISA, CSCE 513 Computer Architecture. https:
//passlab.github.io/CSCE513/notes/lecture04_RISCV_ISA.pdf. 2018.

[12] K.C. Yeager. «The Mips R10000 superscalar microprocessor». In: IEEE Micro 16.2
(1996), pp. 28–41. doi: 10.1109/40.491460.

[13] Jerry Zhao, Ben Korpan, Abraham Gonzalez, and Krste Asanovic. «SonicBOOM:
The 3rd Generation Berkeley Out-of-Order Machine». In: (2020).

[14] ETH Zurich. PULPino. https://github.com/pulp-platform/pulpino. 2019.

45

https://github.com/chipsalliance/chisel3
https://github.com/chipsalliance/chisel3
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-161.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-161.pdf
https://developer.arm.com/documentation/ihi0033/latest/
https://developer.arm.com/documentation/ihi0033/latest/
https://developer.arm.com/documentation/ihi0024/latest/
https://developer.arm.com/documentation/ihi0024/latest/
https://github.com/RHESGroup/aftab
https://github.com/RHESGroup/aftab/blob/master/doc/aftab_user_manual.pdf
https://github.com/RHESGroup/aftab/blob/master/doc/aftab_user_manual.pdf
https://riscv.org/wp-content/uploads/2021/08/RISC-V-Introduction-_-Aug-2021.pptx
https://riscv.org/wp-content/uploads/2021/08/RISC-V-Introduction-_-Aug-2021.pptx
https://doi.org/10.1109/40.755465
http://caro.su/msx/ocm_de1/16550.pdf
https://github.com/YosysHQ/picorv32
https://github.com/YosysHQ/picorv32
https://passlab.github.io/CSCE513/notes/lecture04_RISCV_ISA.pdf
https://passlab.github.io/CSCE513/notes/lecture04_RISCV_ISA.pdf
https://doi.org/10.1109/40.491460
https://github.com/pulp-platform/pulpino

	List of Tables
	List of Figures
	Introduction
	Background
	The RISC-V Architecture
	Software Execution Environment
	Instruction Set Architecture
	Implemented Extensions
	Privilege Levels

	RISC-V Importance in IoT era
	State of the Art in Embedded System Design
	Berkeley Out of Order Machine
	Picorv32 microcontroller
	PULPino

	Our contribution to the RISC-V community
	The AFTAB Processor
	AFTAB Interfacing Ports

	Design and Development of MC2101
	MC2101 architecture
	Bus Infrastructure
	GPIO Peripheral
	UART Peripheral

	Software libraries
	GPIO Library
	UART Library
	String Library
	Board Library

	Testing
	Testing while-developing
	FPGA Tests

	Experimental Results
	Conclusions and Future Work
	Bibliography

