
Politecnico di Torino

EURECOM

Master’s degree in Electronic Engineering

Smart Object

LDPC 5G decoder implementation for
EMBB project

Supervisor Author
prof. Maurizio Martina Riccardo Torres
prof. Renaud Pacalet

candidate’s signature

.

Torino, 10 2022

To my mother Fabiola, for teaching me the
beauty of life and the power of a smile.

To my father Paolo, for teaching me
curiosity and the art of staying young.

To my sister Francesca, who completes
me by constantly showing me a world

that I forget to look at.

DECLARATION POUR LE RAPPORT DE STAGE
DECLARATION FOR THE MASTER’S THESIS

Je garantis que le rapport est mon travail original et que je n'ai pas reçu d'aide extérieure.
Seules les sources citées ont été utilisées dans ce projet. Les parties qui sont des citations
directes ou des paraphrases sont identifiées comme telles.

I warrant, that the thesis is my original work and that I have not received outside assistance.
Only the sources cited have been used in this report. Parts that are direct quotes or
paraphrases are identified as such.

À Biot, in Biot
Date : 08 March 2021

Nom Prénom : Riccardo Torres
Name First Name

Signature :

Smart Object LDPC 5G decoder implementation for EMBB project

Abstract

[EN]

This paper of work describes the implementation of a library that aims to implement a
device at the hardware level that is capable of decoding a 5G signal using the LDPC
algorithm. During the implementation of the algorithm, various optimizations will be
adopted to reduce the number of iterations required for the complete decoding of the

received data and reduce power consumption.

In addition to the implementation of the algorithm, it will also be necessary to implement
blocks that manage the transfer from an external block to the one in which the decoding

will be processed.

[FR]

Ce document de travail décrit l’implémentation d’une bibliothèque qui vise à mettre en
œuvre un dispositif au niveau matériel capable de décoder un signal 5G en utilisant
l’algorithme LDPC. Lors de l’implémentation de l’algorithme, diverses optimisations

seront adoptées afin de réduire le nombre d’itérations nécessaires au décodage complet des
données reçues et de réduire la consommation électrique.

Outre l’implémentation de l’algorithme, il sera également nécessaire de mettre en œuvre
des blocs qui gèrent le transfert d’un bloc externe vers celui dans lequel le décodage sera

traité.

3

Contents
Abstract 3

1 Introduction 7

2 AXI4 Protocol 9
2.1 Specification . 9

2.1.1 Handshake process . 9
2.1.2 Burst . 10
2.1.3 Differences with the lite protocol 13

2.2 Implementation . 14
2.3 DMA . 14

2.3.1 Burst Generator . 14
2.4 AXI2lite . 16

2.4.1 Addr generator . 17
2.5 Arbiter . 17
2.6 lite2RAM . 18

3 LDPC 19
3.1 Algorithm . 19
3.2 Algorithm implementation . 22
3.3 Implementation of the three main blocks 24

3.3.1 PE . 24
3.3.2 PRAM . 30
3.3.3 Generation of control signals . 32

3.4 Implementation of control blocks . 40
3.4.1 ROM CTRL . 40
3.4.2 PRAM CTRL . 41
3.4.3 PE CTRL . 41
3.4.4 Timing diagarm . 43

4 Conclusions 47

5 References 49

6 Annex 50

Acknowledgement 52

4

List of Figures
Figure 1 Generic library of EMBB project 7
Figure 2 VALID before READY handshake 9
Figure 3 READY before VALID handshake 10
Figure 4 VALID with READY handshake . 10
Figure 5 Final structure of the DMA . 16
Figure 6 VALID with READY handshake . 18
Figure 7 LDPC Algorithm . 20
Figure 8 Beta function . 21
Figure 9 General overview of the PSS . 22
Figure 10 Overview of how the PSS interacts with the MSS 23
Figure 11 First Processing Element representation 24
Figure 12 Timing Diagram showing the behavior of RRAM and RNEW at

phase variation . 25
Figure 13 Timing Diagram of GRAM’s behavior in phase variation 25
Figure 14 GRAM dual port . 26
Figure 15 Timing Diagram showing the behavior of GRAM dual-port as the

phases change . 27
Figure 16 Timing Diagram showing the behavior of RRAM and RNEW at

phase changes . 28
Figure 17 Final Processing Element schematic 29
Figure 18 Timing diagram representing generic Processing element processing 30
Figure 19 Schematic of PRAM block . 31
Figure 20 Schematic of PRAM block with bypass insertion 31
Figure 21 Simulation diagram for generating control signals 32
Figure 22 Figure for the study of data propagation within the simulation . . . 33
Figure 23 Row number three and four of the matrix 34
Figure 24 Row number four and five of the matrix 35
Figure 25 Row number zero and one of the matrix 36
Figure 26 Data propagation in a pipelined barrel shifter 38
Figure 27 List of signals generated by the control software 40
Figure 28 Schematic of ROM CTRL . 41
Figure 29 Schematic of PRAM CTRL . 41
Figure 30 Schematic of the PE CTRL . 42
Figure 31 Example of the execution of the first two lines by the PE 43
Figure 32 Example of PRAM execution of the first two lines 45
Figure 33 First part of the matrix from which the data will be extrapolated

for the generation of checkmarks . 50
Figure 34 Second part of the matrix from which the data will be extrapolated

for the generation of checkmarks . 51

5

List of Tables
Table 1 Different encodings for transmission size. 11
Table 2 Example of execution with bypass, data is lost. 38
Table 3 Thanks to the enable chip, there is no more data loss. 39

6

Smart Object LDPC 5G decoder implementation for EMBB project

1 Introduction
This internship aims to implement a new library for the EMBB project. This project
aims to group various libraries that aim to make the best use of the DSP blocks inside an
FPGA and use them to process a specific algorithm. The library that will be implemented
in this project will deal with implementing the LDPC algorithm for 5G decoding.

In particular, the block that will be worked on can be represented as in the following
diagram:

Figure 1: Generic library of EMBB project

In the image above, three distinct regions can be distinguished by colors. The grey region
represents the blocks that will not be treated within the document. In fact, of these blocks,
only the input and output signals and how to interact with them are known.

The green block refers to implementing a Direct Memory Access (DMA) block, which is
entrusted by the Control Sub System (CSS) block with signals containing the information
to perform data transfers. For now, what is essential to understand is that this block must
be responsible for the correct transfer between its block of interest, i.e., the Memory Sub
System (MSS) and the external system.
In addition to this block, there is also the ARBITER block. This block is needed to
manage the various data transfer requests of the MSS; in fact, the memory system of the
individual block can be accessed both from the reference block and from other external
blocks representing other libraries. Therefore, this block deals with the management of
possible conflicts in MSS access requests.

The second block that will be dealt with is the Processing Sub System (PSS), in which all

7

Smart Object LDPC 5G decoder implementation for EMBB project

the hardware necessary for processing the 5G decoding using the LDPC algorithm will be
implemented.

Before proceeding, what must be kept in mind is the correlation between these two blocks
(green and red). In fact, the first will be used to transfer into memory the data to be
analyzed by the second, during the latter, once decoding is done, must update the value
of the data in the MSS, which can then be taken from another block for a next step.

It is now possible to proceed to the detailed discussion of how each of these blocks has
been implemented and highlight the optimizations’ criteria.

8

Smart Object LDPC 5G decoder implementation for EMBB project

2 AXI4 Protocol
Before dealing with the implementation for the management of data transfer within the
library, the main characteristics of the AXI4 protocol will be briefly explained, which must
be kept in mind to proceed with the discussion. Specifically, in the following paragraphs,
we will describe the handshake processes regarding reading and write operations, the
response channels (both read and write), and finally, the burst.

Excluded from the following discussion are all the more controlling signals and will not be
used in the subsequent implementation. Specifically, the signals that will not be treated
are the following: xLOCK, xCACHE, xPROT, xQOS, xREGION, and xUSER.

Finally, it should be noted that the following is a quick explanation of some mechanics
that will be used for understanding future chapters. These explanations should not be
understood as exhaustive or a substitute for what is explained in the original document.

2.1 Specification
2.1.1 Handshake process

In this chapter, the protocols that will be dealt with interfere with a master component
and a slave and treat in a very general manner. No information will be given on the
channel in question or the type of data to be sent. Precisely because of this sense of
generality, only three signals will be mentioned: valid, ready, and information, the latter
in particular indicating both the sending of an address and a piece of data.

What is important to understand is that the valid signal is asserted by the block that is
to send something, while the receiving block asserts the ready signal. The valid signal
should only be asserted high when we are sure of the type of information we want to send.
Finally, for communication between the two blocks, these two signals must be asserted
high together.

Therefore, all that remains is to understand how to interface these two signals to establish
communication.

Figure 2: VALID before READY handshake

In this first case, the receiving block is always available, and as soon as the sanding block
is sure of the information, the vali signal is also asserted. Communication between the
two blocks takes place.

9

Smart Object LDPC 5G decoder implementation for EMBB project

Figure 3: READY before VALID handshake

In this second case, the opposite occurs, so the sending block is ready to send the
information but is waiting for the receiving block’s signal.

Figure 4: VALID with READY handshake

This last case shows the case in which the two segals are asserted simultaneously.

For the implementation shown here, the third case will never be used. In almost all blocks,
communication will be as described in the first case, i.e., the valid signal will only be
asserted when we are sure that there is a block on the other side that is ready to receive
the information to be sent.
Only in the communication between the arbiter’s block and the block that precedes it is
used the communication shown in the second handshake process; in fact, it is necessary
that each sending block immediately declares the need to send information. In this way,
the arbiter will evaluate whether there is a case of conflict and decide which block to give
precedence.

2.1.2 Burst

The burst is a method of performing several data transfers with a single instruction. The
following three signals manage their use within the AXI4 protocol:

• SIZE: which manages the maximum number of bytes that can be transferred in a
single data transfer. The values that this signal can assume are described in the
following table:

10

Smart Object LDPC 5G decoder implementation for EMBB project

AxSIZE[2:0] Bytes in transfer
0b000 1
0b001 2
0b010 4
0b011 8
0b100 16
0b101 32
0b110 64
0b111 128

Table 1: Different encodings for transmission size.

• LEN: manages the maximum length of the transfer and the number of data sent in
a single burst. The following formula describes the method of representation:

Burst Length = AxLEN[7:0] + 1 (1)

• TYPE: manages the type of burst that it is wanted to perform, the difference lies
only in the method for calculating the next address, and there are three types of
burst, although, for the case study, we will use only the first two:

* FIXED: the address always remains the same. This type of burst is used when
interacting with a FIFO memory, and therefore, the address is always the same,
and then the device will manage the data inside it.

* INCREMENTAL: the address is incremented from time to time following the
law:

New Address = Old Address + SIZE (2)

This type of burst is used, for example, for a RAM-type memory where it is
necessary to increment the address each time before reading or writing the data.

Before proceeding, it is necessary to underline that these three signals must be added, as
information for the burst generation, the signal that indicates the starting address, which
will remain as it is or will be increased according to the type of burst used.

However, the above parameters are subject to some limitations, which can be found in the
specifications and are listed below:

• for wrapping bursts, the burst length must be 2, 4, 8, or 16,

• a burst must not cross a 4KB address boundary,

11

Smart Object LDPC 5G decoder implementation for EMBB project

• early termination of bursts it not supported.

Since this project’s applications do not require burst wrapping, only two essential rules
remain, and only the second one is a limitation.
Given that in the chapter on the DMA, it will be necessary to generate a burst request, it
is useful in this paragraph to analyze the limitations that exist for the generation of this
and how they should be managed, for which three parameters must be taken into account:

• il massimo address boundary (4kB),

• il massimo valore di lenght (256 ∆ 28),

• il massimo valore di size {1, 2, 4, 8, 16, 32, 64, 128} ∆ {20, 21, 22, 23, 24, 25, 26, 27}.

Among these three parameters, only the last one has variable values (the other two can
also vary, but in this case, we are considering their maximum limits). What we want to
study is the variation of the maximum value of the burst length as the length value varies,
trying to obtain, when possible, a transfer of 4kB.
The link between these three values is as follows:

ADDR BOUND = LEN · SIZE (3)

From which we can deduce that:

max LEN = max ADDR BOUND
SIZE = 4 · 1024

SIZE = 212

SIZE (4)

Now all that remains is to vary the value of SIZE and study the trend of max LEN :

max LEN = 212

SIZE =

Y
_____]

_____[

32(25), if SIZE = 128 (27)
64(26), if SIZE = 64 (26)
128(27), if SIZE = 32 (25)
256(28), if SIZE = 16 (24)

(5)

It is possible to deduce that the maximum limit to obtain the max LEN is to have SIZE
Æ 16. Moreover, SIZE = 16 is the only combination with which it is possible to obtain
both the max LEN and the max ADDR BOUND, in fact, without showing it, for SIZE
values lower than 16, it will not be possible to reach the max ADDR BOUND, since in
this case the upper limit is set by the length.

These observations will be taken up during the description of the burst generator block,
which has the task of generating burst signals with the length and size parameters available.

12

Smart Object LDPC 5G decoder implementation for EMBB project

2.1.3 Differences with the lite protocol

For the implementation of the following blocks the AXI4 lite protocol will also be used,
which unlike the AXI4, removes all control signals and the possibility of generating a burst,
focusing only on the signals used to manage transfers.

In concrete terms, as far as this document is concerned, since all the control signals have
not been treated, the management of transfers remains the same since the handshake
protocols are unchanged. It must be remembered that the management of the ID signal is
eliminated. So, in the end, the only element that can no longer be used is the burst.

13

Smart Object LDPC 5G decoder implementation for EMBB project

2.2 Implementation
This part of the project is based on the design of two entities: a DMA (Direct Memory
Access) and a arbiter. The first element receives signals from the CSS and has to process
them to manage transfers; in particular, its task is to retrieve data and perform read and
write operations in the blocks described by the CSS. This block is responsible for the
generation and management of the AXI4 protocol to generate signals that can optimize
the data transfer process.

The arbiter is a block placed halfway between the DMA and the MSS. The need for this
block arises from having several blocks trying to access the same memory bank. Specifically,
the two blocks are the DMA and the SYS, so this block has the purpose of deciding, in
case of conflict, which of the two requests takes precedence.

Before proceeding with a detailed description of the following blocks, it is worth saying
a few words about an implementation choice that affects all the code to be described.
During the block design, in order to have a more readable code, it has been decided to
separate the five channels present in the AXI4 interface (ar, r, aw, w and b), so that each
of them can be managed independently from the others. For this reason, in addition to
the records referring to the public interface, the axi pkg.vhd code also contains records,
called slice, containing only the five channels, which in turn contain the signals connected
to them.
In addition to making the code more readable, this choice further emphasizes the indepen-
dence of these channels from each other.

We begin with describing all the blocks necessary for data transfer, starting with the DMA
block and arriving at the block that precedes the MSS.

2.3 DMA
This block’s primary function is the generation and management of burst signals; in fact, it
receives parameters from the CSS to manage transfers that generally exceed the maximum
size allowed for a burst transfer.
Therefore, we can divide the task of this block into two fundamental parts: generation of
burst signals and management of transfers. The first task has been wholly entrusted to
another block that is allocated inside the DMA, but that, unlike it, is purely combinatorial
and is called burst generator.
After acquiring the CSS signals, the first task to be carried out is the generation of the
burst signals.

2.3.1 Burst Generator

This block has the purpose of generating burst requests. This need arises from the fact
that the CSS’s length parameter is greater than the length that can be requested with a
single burst, which makes it necessary to generate many intermediate bursts.
For the generation of these bursts, the block in question is based on the previous paragraph’s
theory. Taking as input the total length and size parameters, we try to define the maximum
value of burst len that can be set to obtain a maximum transfer of 4kB.

14

Smart Object LDPC 5G decoder implementation for EMBB project

For this purpose, a case is carried out on the size parameter and the value of max LEN
is deduced. Once this value has been defined, all that remains is to define whether or
not the value of max LEN is less than the total length. If this is not the case, the burst
length value will be equal to the total length. Otherwise, it will be equal to the value of
max LEN, and the value of the total length will be updated, and the same analysis will
be carried out at the subsequent burst request. The generation of a fresh burst is carried
out by activating an input signal managed by the DMA.

In addition to generating the burst, this block generates the burst size, the burst type, and
the address from which the burst must start. In particular, the new address calculation is
based on the type of burst, which for our project can only be of fixed or incremental type.
This block will continue generating new bursts until the value of max LEN is greater than
or equal to the value of total LEN, in which case it will not only generate the last burst
but will also set high the signal that warns that this is the last one and that all the read
or write requests have been sent.
Having seen in detail how the burst signals are generated, all that remains is understanding
how they are managed, returning to the DMA block. Given the previously mentioned
division into channels, there will be two BURST GENERATORS in the DMA: managing
read bursts and one for managing write bursts. The need to use two of these blocks arises
from performing, in most cases, reading and writing operations simultaneously. Therefore,
the best thing would be to separate the two channels and manage them independently,
also from the point of view of burst generation.

At this point, we can concentrate on the second function of this block: transfer management.
Through some input signals, the CSS can request two possible cases:

1. Write-only: this usually occurs when a memory is initialized, in fact, in this case,
the data to be written passed directly from the CSS and will therefore remain the
same for all memory addresses. In this particular case, the DMA will not use any
read channel and will limit itself to writing consistent data through the AW, W, and
B channels.

2. READ and WRITE: In this case, no data is passed to the DMA, but instructions
are given to read them. In this case, all five channels will be used, and the read data
will be stored inside a FIFO that will be managed in writing by the R channel and
in reading by the W channel. It is also used to manage the rready signal that will
be asserted high until the memory is full. In this case, the signal will be asserted
low, and the read reception will be blocked until at least one data is read from the
FIFO, freeing a new place to receive new data.

In addition to the separation into channels, a recent separation must be considered between
signals that manage the request’s sending (AR, AW, and W) and signals that manage the
response (R and B).
Those in the first type are strictly related to the burst generator. In fact, the axvalid
signals are raised only when a new burst is requested and asserted to zero in all other
cases. It is important to remember that the block that deals with burst generation is
purely combinatorial, and therefore the signals (the new burst request) can be obtained in
the same clock stroke in which the request is made.

15

Smart Object LDPC 5G decoder implementation for EMBB project

However, it is necessary to highlight the difference between reading and write burst requests.
In the first case, new burst requests will be made when the block being communicated
with is ready to receive a new burst request. This happens because the new request must
take place once several data equal to the length of the burst have been sent, and the
management of these values will be entrusted to this channel. In contrast, the AW channel
only understands when a new burst request takes place and asserts the awvalid signal.

The signals that deal with both read and write responses are used to ensure that there are
no errors. The management of the status signal will finally tell the CSS how all transfers
(both reads and writes) went. If errors occur, it is necessary to wait until all the burst
signals that have already been started have finished and to acknowledge the done signal
by updating the status signal with the type of error received. In case no error occurs,
channel B will take care of the done signal since channel B responses will always arrive
after channel R responses.

An essential difference between the read and write responses is that the rlast signal’s
assertion determines the end of the former’s reading process. In contrast, there is no such
signal for the B channel, so to understand when all the write operations have been carried
out, it is necessary to use a counter that is used at the initial length passed by the CSS.

Figure 5: Final structure of the DMA

2.4 AXI2lite
This block is placed as a link between the DMA or SYS and the arbiter and has the purpose
of receiving signals from an AXI4 protocol and converting them to AXI lite. As mentioned
in the previous chapter, the difference we are interested in in this project between an AXI
and its lite counterpart is essentially removing the burst and the ID segments.

16

Smart Object LDPC 5G decoder implementation for EMBB project

This block takes care of receiving incoming burst requests and creating from them all
the addresses and from time to time each new single request generated until the burst is
exhausted and requesting a new one. For this purpose, similarly to what we have seen in
the DMA block, a combinatorial process is allocated inside this block that takes care of
generating these addresses: the addr generator.

2.4.1 Addr generator

This block receives all burst signals as input, and its purpose is to generate two outputs:
the address to write or read the data to, and the signal that generates the last address
referred to the received burst parameters.
The generation of a new address occurs only if the ’next addr’ signal is asserted high; in
fact, once an address has been generated, before generating the next one, it is necessary
to make sure that the previous address has been correctly sent to the arbiter.
This process continues until the counter linked to the length of the burst is zeroed, in
which case the last addr signal is also raised along with the new address, indicating the
end of this burst management request
Returning to the AXI2lite block, the management of protocol conversion remains, in
particular, the situation is very similar to that already studied in the case of the DMA, in
fact also in this case, it will be necessary to have FIFO memories used for storing read
and response data.
This block also considers the management of any errors; in the event of a reading or
writing error, it is necessary to complete a burst request that has already been started.
For this reason, in the event of an error, the generation of new addresses will continue
until the burst request is completed. However, unlike the normal situation, no new burst
will be requested, and instead, the error will be sent, so that the DMA can then inform
the general control block.

2.5 Arbiter
This block can manage any conflicts that may occur when two blocks try to access the
internal memory block in reading or write simultaneously.
This conflict is managed by the sel machine block, which generates a signal to decide which
of the two blocks should take precedence. This signal should consider the number of times
a peripheral has gained access concerning the other and guarantee a certain regularity
between transfers. However, for this project, the block in question has been managed so
that the DMA block is always chosen.

Apart from managing the conflict employing the signal sent by the sel machine, this block
sends the requests received to the next block. In this case, there is no protocol conversion.
Therefore the only influential factor is that the read or write requests are stored inside
FIFOs, and also, in this case, the signal that determines when a FIFO is full will manage
whether the block can accept new requests. In contrast, the signal that indicates whether
or not the FIFO is empty manages the possibility of sending new requests.

As far as response management is concerned, the block has at its disposal other FIFOs to
save the read data and response, in case of reading, or only the response in writing. The
additional detail is that a bit is added to these responses to represent which of the two

17

Smart Object LDPC 5G decoder implementation for EMBB project

blocks (DMA or SYS) the response should be sent to the arbiter must keep track of the
order of the requests accepted and which block they came from to manage the sending of
the response.

2.6 lite2RAM
This final block deals with converting the signals from the AXI4 lite protocol to the
interface used for the MSS block. At this point, many of the mechanisms previously
exposed are repeated. In particular, in this block, there are FIFOs to store the read or
write requests, which manage the AR, AW, and W channels.

.
These are flanked by two other FIFOs that store the read data and the responses connected
to them; these FIFOs are used to manage the R and B channels connected to the response.
The B channel is of particular interest, since the way the interface with the memory is set
up, there is no response in the case of a write request; the operation must be considered
successful if the memory is ready for a new request at the next clock.

So it is now possible to review the totality of the blocks that make up the arbiter block:

Figure 6: VALID with READY handshake

18

Smart Object LDPC 5G decoder implementation for EMBB project

3 LDPC
3.1 Algorithm
This section will be exposed the criteria used for the implementation and optimization of
the LDPC block.

Before starting with it, however, it is good to emphasize that in this document, there will
be no mention of theories related to the LDPC algorithm, neither related to its historical
importance nor related to how or why its use is gradually increasing over time. This choice
is because the choices that follow are related only to implementing an algorithm that is
created. All its optimization is related to hardware observations and not related to the
theory of LDPC.
If it is interested in knowing more about this algorithm’s theory, it is possible to read the
thesis in the references section.

As for the information necessary to continue the discussion, it is exposed that the LDPC
algorithm whose implementation is required is described as follows:

19

Smart Object LDPC 5G decoder implementation for EMBB project

Figure 7: LDPC Algorithm

The algorithm just seen is the result of various optimizations implemented on the original
LDPC algorithm, and the definition of the Beta function mentioned within it is as follows:

20

Smart Object LDPC 5G decoder implementation for EMBB project

Figure 8: Beta function

The only thing left to do is to understand how the block will receive the data needed for
processing and if it is necessary to perform some information on them.

21

Smart Object LDPC 5G decoder implementation for EMBB project

3.2 Algorithm implementation
In this session, we will discuss implementing the Process Sub System (PSS) and, therefore,
the accurate datapath dealing with decoding using the LDPC algorithm for 5G. The figure
below shows the final structure that the PSS will assume, and in the following chapters,
each of the blocks contained in it will be examined in detail.

Figure 9: General overview of the PSS

Before proceeding, it is necessary to make a few notes about the first and second blocks,
ROM and PRAM respectively, these two blocks are closely related to what was explained
in the chapter on AXI4 since both these blocks take data from the MSS. In ROM’s case,
this type of representation is used for simplicity and to make the simulation of the PSS
independent from that of the whole library. The ROM is used for storing all the control
signals that will be read by the ROM control and sent to the various blocks.
In the final realization, instead, the control signals will be directly stored inside the MSS.
So the above representation serves to show the purpose of the ROM block, storing the
PSS control signals. However, its role remains the same since, in the final implementation,
this information will be directly taken from the MSS.

There is an extensive memory inside it for the PRAM block, whose role and operation will
be discussed later. All the values needed for decoding, taken from the MSS, will be stored
in this GBIGRAM. This initialization will be carried out before starting decoding by the
general control block, which will take the data being received from the memory and store
them inside the GBIGRAM.

So far, what has been said has the purpose of emphasizing the link between the PSS and
the MSS. Secondly, we want to bring to the reader’s attention that a correct representation
of the PSS block is as follows:

22

Smart Object LDPC 5G decoder implementation for EMBB project

Figure 10: Overview of how the PSS interacts with the MSS

To simplify the discussion and make the simulation of the PSS block independent from
that of the AXI4, we will continue to refer to the block in the TODO figure (link to the
inserted figure), initializing the values in the ROM and GBIGRAM by reading the files.

At this point, the basis for implementing the LDPC decoding block for 5G has been
laid. The discussion will follow the same Project flow, starting from the rightmost block
(Processing Element) and going backward, identifying all the signals necessary for the
block’s correct functioning, which will be saved inside the ROM..

23

Smart Object LDPC 5G decoder implementation for EMBB project

3.3 Implementation of the three main blocks
3.3.1 PE

The initial structure of this block, based on what the algorithm describes, is as follows:

Figure 11: First Processing Element representation

The figure shows the simplest structure that can be thought of from the algorithm. This
structure is controlled first by the phase control signal, which determines which type of
phase the algorithm is in: the first phase, second phase, or zero phase (no data is being
processed). This signal is followed by the relative index value, which is used within each
phase for processing the Beta function and for reading or writing the information within
the GRAM. Inside GRAM, the gamma values elaborated in the first phase are saved and
will be used in the second phase for error correction and, therefore, for the calculation of
the new gamma value.

Finally, two signals manage when to take the values to read in output from the R NEW REGISTER
and the RRAM or when to adopt the default parameters. Specifically, the default value
of the RRAM will be used for all the first iteration, therefore, until all the values to be
analyzed. The first time is read, while the default value of R NEW REGISTER is used
only at the beginning of each first phase since the value is calculated for each line.

In addition to the control signals that interact with the combinatorial part of the block,
there are also control signals that act on the memory blocks.
0.3cm
The simplest of these is the R NEW register, which stores all the algorithm’s procedure
values. The only control signal connected to it is the load signal, which must be asserted
high whenever the first phase is active; during this phase, the values to be stored in this
register are calculated.

The RRAM memory is a singular access RAM, and it is, therefore, possible to access it
either in reading or write through the control signal rram rnw (read not write signal).
During the first phase processing, the algorithm needs to access it always in reading, except

24

Smart Object LDPC 5G decoder implementation for EMBB project

for the last index of the first phase, in which the value calculated during the same phase
must be written. Once this has been done, from the beginning of the second phase, it is
possible to reaccess this memory in reading mode by setting the following line as the read
address, thus having the data ready to process the next first phase.

Figure 12: Timing Diagram showing the behavior of RRAM and RNEW at phase variation

The GRAM, which is also a single-access RAM, alternates between reading and writing
phases. During the first phase, it is used to write all the values of the new ranges being
analyzed, while in the second phase, the same memory is used to read these values. During
the first phase, it is used to write all the new gamma values being analyzed, while in the
second phase, the same memory is used to read these values,

Since we must always consider the latency time between the request to read a data and the
actual reception, it is evident that the first and second phase cannot follow one another
without the presence of at least one clock stroke in which no data is processed. The
GRAM is accessed in reading mode. This stopped state, called phase zero, is needed
because the GRAM memory is accessed in writing for the whole period of the first phase.
Therefore, it is not possible to initialize the data to be read before the end of the first
phase’s processing.

25

Smart Object LDPC 5G decoder implementation for EMBB project

Figure 13: Timing Diagram of GRAM’s behavior in phase variation

Optimisations The structure just described represents the basic implementation of the
algorithm. The task now is to see how it can be optimized to make the decoding process
as fast as possible.
The first possible optimization starts directly from GRAM’s last observation and the
limitation of having a single access memory. In fact, by replacing this memory with a
dual-port memory, it will be possible to eliminate the zero-phase presence due to the wait
when reading the gamma value from memory. Therefore, this memory will be replaced by
the memory shown in the figure:

Figure 14: GRAM dual port

This first optimization eliminates phase zero and, from the GRAM point of view, makes
the first phase independent of the second phase. With the introduction of a dual-port
RAM, it would be possible to process a new first phase while processing the second phase
of the previously processed line. The limitation of this optimization lies in the fact that it
will never be possible to process several first phases while processing a second phase.
For example: once the first phase related to row n has been processed, it will be possible to
process simultaneously a new first phase related to row n+1 and the second phase related
to row n. This fact is due to the possibility of writing the new gamma value in the same
address to which the second phase has already accessed in reading mode and has already
read the data.

What said above implies that the limitation of this optimization resides in the impossibility
to process a first phase linked to the line n+2 during the processing of the second phase
linked to the line n. Since this process would lead to the overwriting of the gamma values
saved during the first phase linked to the line n+1, the second phase has not yet been
read since the processing linked to the line n is ending.

From this observation, we proceed with the optimization of the block in order to have the
possibility to elaborate in parallel the first and the second phase, always keeping in mind
the constraint according to which it is not possible to start a second phase at two rows
away from the row elaborated by the second phase.
Therefore, taking up the example previously given, if the second phase is still processing
the data relative to line n and the first phase should have finished the computation relative
to line n+1, the system must suspend the activation of the first phase until the second
phase reads the first value saved in the GRAM relative to line n+1.

26

Smart Object LDPC 5G decoder implementation for EMBB project

Figure 15: Timing Diagram showing the behavior of GRAM dual-port as the phases
change

At this point, we must study how to extend this optimization to the rest of the block. First
of all, instead of having a single block representing the processing of the first or second
phase, managed by the control signals phase and phase index, it is possible to divide this
block into two. This takes care of the first and second phase processing and respectively
receives the control signals st phase, phase1 index, and nd phase and phase2 index as
input.
At this point, two important observations remain to be made:

• Access to the RRAM memory, both for reading and writing, is managed during the
first phase. However, the problem is that, while previously we thought of writing
new data into this memory at the end of the first phase, since then we would have
had all the time of the second phase to access the next data in reading, now this
reasoning can no longer be carried out. Since at the end of the first phase, the next
one will be immediately started, which needs to read the RRAM value relative to
the following address. Therefore this reading phase must take place when the last
index of the first phase is processed.
Unfortunately, this is the same instant in which this memory is accessed to write
the new processed value.

As a first optimization, it would be possible to think about introducing, also in this
case, a double-access memory, but unlike GRAM. This possibility of reading and
writing at the same time would be used only at the end of each iteration, all this at
the cost of having to occupy more hardware to implement a double-access memory
than what is required only on a precise occasion.

For this reason, the solution adopted consists of leaving the RRAM memory at single
access and take the input data of it not from the input of the R NEW REG but its
output. In this way, it will be possible to write the new value inside the memory at

27

Smart Object LDPC 5G decoder implementation for EMBB project

the beginning of the new first phase, while at the end of the previous first phase, it
will be accessed in reading.

Figure 16: Timing Diagram showing the behavior of RRAM and RNEW at phase changes

• The second consideration must be addressed to the second phase and, more specifi-
cally, because it requires using the value saved in R NEW REG at the end of the
first phase. In the previous block, this was not a problem, since, with the alternation
of the first and second phase, the value calculated during the first phase was then
taken from the second phase directly by the R NEW REG, which kept the value
inside it unchanged for the duration of the first phase.
This falls in the type of block that allows parallelization. During the second phase
processing, that of a first phase relative to a subsequent line will take place in parallel,
which will continue to vary the value inside this register. Therefore, it is necessary
to find a way to save this value to use it during the second phase.

The first thing you might notice is that this value is the same as the one we discussed
in the previous point and that it must therefore be saved inside the RRAM, so
it would be legitimate to take this data from the RRAM memory, but this would
require the use of a dual-port for the RRAM.
This hypothesis has already been ruled out in the previous point. The data in
question must be ready at the beginning of the second phase of processing; while
using the RRAM, it would be necessary first to write and then read this data. Thus
bringing back the project from two points of view: the first would be reintroducing

28

Smart Object LDPC 5G decoder implementation for EMBB project

a phase zero clock stroke for the RRAM reading, which implies a no longer total
individuality between the first and the second phase.

To solve this problem, we proceeded with introducing a register similar to R
R NEW REG, which takes the name of G NEW REG and which aims to save
the value of r new calculated at the end of each first phase.

This means that during the processing of the last index of each first phase, the block
will be responsible for reading the RRAM read request and assert the high load
signal for g NEW REG, while the first index of the new first phase must be asserted
the value of gnew load and a write inside the RRAM.

It is finally interesting to note that technically it is not necessary to receive as input to
the block the signals st phase and nd phase. They can be used in the control block to
determine which types of signals should or should not be raised, but they have no use
inside the final block. The above is justified by choice of maintaining, in the case where
the first or second phase is not active, the same output of these previously processed,
without resetting an output in the case of no processing.
In this way, it is only necessary to make sure not to change the registers’ values during
the inactive phases. This consideration must be addressed to the first phase. Through
this phase, the parameters for writing or loading new data into the memories or registers
are activated or deactivated.

Therefore, it will only be necessary to manage, within the control block, all the information
needed to prevent unwanted writes to the memory elements of the block.

All the above observations lead to a distortion of the block initially shown in the figure,
arriving at the latest and final representation of the PE block:

Figure 17: Final Processing Element schematic

29

Smart Object LDPC 5G decoder implementation for EMBB project

Figure 18: Timing diagram representing generic Processing element processing

3.3.2 PRAM

This block deals with the management of the inputs and outputs of the PE, in particular,
all the data to be sent as input to the PE are stored inside the GBIGRAM, they must be
taken from it, rotated, and then sent to the PE. This block’s description is inevitably much
simpler than that of the PE, but this does not make it any less suitable for optimization.

30

Smart Object LDPC 5G decoder implementation for EMBB project

Figure 19: Schematic of PRAM block

The figure shows the connections made between the main blocks; the presence of two
barrel shifter is necessary to guarantee the possibility of processing the first and second
phases simultaneously, which would be impossible if only one barrel shifter were used.

Optimisations The only major optimization that can be applied to this block is the
insertion of a bypass, i.e., introducing the possibility of taking the output data from the
second barrel shifter and bringing it directly to the first input.
This optimization would make it possible not to rewrite the data in the GBIGRAM and
then reread it, thus improving terms of power. The only thing needed to use the bypass is
to introduce a MUX that a control block will then manage.

To conclude the observations on this block, it is necessary to remember that if a bypass
operation is carried out, the barrel shifter that handles the PE output must carry out
a rotation that considers both the old rotation and the new one. On the other hand, if
bypass operation is not used, the data should be rotated to bring it back to its original
state.
For this reason, it has been decided to use two barrel shifters with opposite rotations.
The input barrel shifter to the PE will have a rotation to the right, while the output
barrel shifter will have a rotation to the left. In this way, when the bypass is not used,
the rotation to be used will simply be the same as that of the input, while in the case of
bypass the new rotation will be given by the following formula:

BY PASS ROT = |NEW ROT ≠ OLD ROT | (6)

Figure 20: Schematic of PRAM block with bypass insertion

31

Smart Object LDPC 5G decoder implementation for EMBB project

3.3.3 Generation of control signals

This chapter will not deal with the ROM hardware structure since it is a simple Read-Only
Memory, which is used in the simulation phase and then removed from the final block
since the information stored in it will be directly taken from the MSS. More interesting
instead is the discussion behind generating the control signals, which will then be saved in
the ROM.

The control signals generation will not be done by hardware, but it will need a software
implementation, so we created the Python code rom generator.py, which simulates the
whole PSS and manages the input and output of each block.

When launching the code, it is possible to insert various parameters, including five
parameters that determine whether or not registers are present in the structure. The
meanings associated with these values are shown below, dividing them into two groups:

• Presence or absence of an output register: this is the case of the output of the
GBIGRAM and the input and output of the PE. This variable’s value can be chosen
between zero and one to simulate the presence or absence of a register at these
points is chosen. By default, the values are chosen to register at the output of the
GBIGRAM since it is a synchronous block.
A register is put before the PE to simulate the PRAM block’s synchronicity, i.e., the
delay between the request of data and obtaining the same. In contrast, no register
has been inserted at the output of the PE. Therefore, any value calculated during
the second phase will be directly sent to the left barrel shifter present inside the
PRAM block.

• Pipeline presence: this case concerns the two barrel shifters since they have to
manage a very high workload. Their combinatorial nature could be fatal at the
throttle level, finding the critical path in the rotation process. For this reason, the
possibility of inserting pipelines in the barrel shifters have been considered in the
code.
The value of delay that can be inserted for these barrel shifters goes from 0 to 3. For
the simulation has been chosen to consider barrel shifters without pipelines.

To summarise what has been said so far, the figure that the code will simulate and that
will therefore generate the control signals is as follows:

Figure 21: Simulation diagram for generating control signals

32

Smart Object LDPC 5G decoder implementation for EMBB project

It is essential to underline that the simulation carried out by this code considers that all
the signals generated arrive simultaneously to both blocks (PRAM and PE). Therefore, the
control signals reading must be read simultaneously by both PRAM CTRL and PE CTRL
since it contains information that can not be delayed.

The remaining parameters must define the type of file to be read to extrapolate the data
from the matrix, which will provide the values to be processed and the value of the rotation
to be performed. Finally, it is possible to choose the name of the file in which all the
control values generated during the simulation will be written.

Having defined the parameters to be inserted during the launch of the code, it is now
possible to move on to the simulation description and the various optimizations inserted
throughout its duration.
First of all, the code reads the file containing the reference matrix, and from it, it will
extrapolate. Only the columns with a value different from zerowill be considered associated
with the rotation value for each row.

There will be a first phase processing and a second phase waiting for the end of the latter
in the initial situation. So we start by reading columns with non-zero values, and the
values sent will then be the read addresses for the GBIGRAM. Every time a data item is
read in the GBIGRAM, it is necessary to remember that it will be present in the output
only after one clock stroke.
Therefore the rotation value must be delayed by one clock stroke. Moreover, another
register is placed between the output of the right barrel shifter and the PE input. Therefore,
compared to the data’s reading, the signal that asserts the effective start of the first phase
will be delayed by two clock strokes.
In particular, the situation that occurs during the processing of the first line is the following:

Figure 22: Figure for the study of data propagation within the simulation

INPUT GBIGRAM BARREL SHIFTER INPUT PE
0 — —
1 0 —
2 1 0
3 2 1

The figure shown in the figure emphasizes the concept relating to delays discussed at the
beginning of this paragraph and will then be continued throughout the simulation. Once

33

Smart Object LDPC 5G decoder implementation for EMBB project

this element of delay has been assimilated, the first line’s simulation proceeds in the same
way without any particular point of interest. The noteworthy facts reappear during the
elaboration of the second line; in this case, always taking into account the delays, we have
the actual termination of the first phase and the beginning of the second phase. This
second phase is referring to values relative to the first line, while the first phase refers to
values of the second line.

This precise situation offers several points of observation that can be converted into
optimization and on which it is indeed worth dwelling.

• The first point to consider is the possibility, discussed above, of carrying out the
first phase during a second phase. This decision optimizes the system by far, but in
turn, lends itself to further optimization. Considering the matrix in the appendix is
possible to note that the various rows that follow each other have several different
columns with non-regular values other than zero; sometimes, these numbers are close
to each other. In contrast, there is a drastic increase or decrease in the number of
columns in other cases.
The most obvious case is the transition from the third row to the fourth row. We
pass from a situation of three rows containing all nineteen columns each to a row
containing only three columns.

Figure 23: Row number three and four of the matrix

This fact will inevitably weigh on performance since it is essential to remember that
it is not possible to finish the first phase until the second phase is finished since, at
the end of the first phase, the value is saved inside the G NEW REG. Therefore, it
is not possible to alter that value until the second phase that is using it is finished.

34

Smart Object LDPC 5G decoder implementation for EMBB project

This fact will inevitably lead to a system block until all the second phase relative to
the fourth line is processed. Moreover, in the following line, the number of colons to
analyze increases again, leading to some states in which the second phase relative to
the fourth line will be completed. Therefore for some clock strokes, no second phase
will be processed and then recovered in the future.

Figure 24: Row number four and five of the matrix

The above reasoning leads us to look for a solution to avoid this situation and not
have, or at least limit, the cases in which the System does not use the Maximum
Performance.
For this case, the solution is straightforward. It consists of reordering the rows
according to a decreasing criterion, starting from those with the maximum number
of columns (19) up to those with the lowest number (3). From this point onwards,
we consider that the order of the columns is ordered in descending order at the
beginning of the algorithm to apply this optimization.

Before moving on to the following optimization, it is worth pointing out that it
reduces partial non-use of the PE block by 50% but does not eliminate these cases.
The second phase will always remain unused during the first row, and every now,
and then the first phase will need to be stopped when the number of columns to be
analyzed decreases from one row to another.

• A further improvement is a possibility of using the bypass, i.e., a System that allows
the PE output to be used as input directly, provided that the correct value rotates it.
Apart from the possibility of using this bypass or not, the fact remains that many
times two consecutive rows need to take data from the same Column. Therefore, it
is necessary to wait for that Column to be correctly processed by the second phase.
In this case, we take the first two rows as an example since the previously discussed
optimization will not change their order since they both have nineteen columns to
be analyzed.

35

Smart Object LDPC 5G decoder implementation for EMBB project

Figure 25: Row number zero and one of the matrix

As it is possible to see, these rows have many columns in common; specifically they
are the following: [0, 2, 3, 5, 9, 11, 12, 15, 16, 19, 21, 22, 23] while the new columns
are [4, 7, 8, 14, 17, 24].

It is possible to notice the disparity between old and new columns and that most of
the first columns to be analyzed are all part of the columns already analyzed in the
previous column. Therefore, it still needs to be processed by the second phase of the
PE to be used again.
If this order of columns is maintained, there will inevitably be new wait statements in
the system, since even to use the bypass, it is necessary to wait for the second phase
to be processed. Moreover, there would be clock strikes in which an old Column
is accessed, possibly losing the possibility of using the bypass to follow the order
initially chosen.

At this point, it is also possible to reorder the columns; this reordering assumes that

36

Smart Object LDPC 5G decoder implementation for EMBB project

the simulation of this code takes into account the columns processed previously and
those processed in this new row and creates an order for the processing of the second
phase so that the columns that are to be used in this new row are processed first,
and then those that will not be used in this row are rewritten in the bigram.

Unlike the previous reordering, the one proposed now has consequences that need to
be managed. The main consequence is that before this change, during the first phase,
the gram was accessed by merely increasing the index value by one and resetting it
to zero for each new row, and this method would also be used for the second phase.
Now it is no longer possible to do this since, during the second phase, the values are
not accessed in consecutive order but by processing first the columns that can be
used for the bypass and then the others.
Without taking this into account, there is a risk of writing a value into the gram
during the first phase that has not yet been processed in the second phase, as shown
in the figure below.

RADDR WADDR WDATA DATA(0) DATA(1) DATA(2) RDATA
0 0 O’“(0) O“(0) O“(1) O“(2) —
2 1 O’“(1) O’“(0) O“(1) O“(2) O“(0)
3 2 O’“(2) O’“(0) O’“(1) O“(2) O“(2)

This problem can be solved by assigning the same index as the write address of the
gram in the first phase, as the value used for reading in the second phase. In this
way, it is always confident that the value to be overwritten has been read previously,
thus obtaining the following situation:

RADDR WADDR WDATA DATA(0) DATA(1) DATA(2) RDATA
0 0 O’“(0) O“(0) O“(1) O“(2) —
2 2 O’“(1) O’“(0) O“(1) O“(2) O“(0)
3 3 O’“(2) O’“(0) O“(1) O’“(1) O“(2)

Finally, thanks to the reordering of the columns in the second phase, the situation
will be such that when using the bypass, it will continue to be used until all the
columns in common between the new and old rows have been processed, and then
proceed with processing the columns not present in the previous row. Simultaneously,
the new values of the columns present in the old row but not in the new one are
saved in the GBIGRAM.

• A final consideration must be made regarding the use of the bypass: what must
be borne in mind is that, at the moment in which the bypass is used, the entire
structure that is usually used for the PE input must remain frozen for the entire
duration of the bypass.
A first optimization consists of not changing the GBIGRAM reading address’s value,
which allows starting from where you left off as soon as the bypass is complete and

37

Smart Object LDPC 5G decoder implementation for EMBB project

reduces any power consumption you might have had by setting the value to zero. It
is also essential to think about the case where the right barrel shifter needs to be
pipelined. In such a situation, the data inside the right barrel shifter would be lost,
as shown in the figure below:

Figure 26: Data propagation in a pipelined barrel shifter

BYPASS INPUT BS DATA BS OUTPUT BS
0 O“(0)[rot(0)] — —-
0 O“(1)[rot(1)] O“(0)[rot(0)] —
0 O“(2)[rot(2)] O“(1)[rot(1)] O“(0)[rot(0)]
0 O“(3)[rot(3)] O“(2)[rot(2)] O“(1)[rot(1)]
1 O“(4)[rot(4)] O“(3)[rot(3)] O“(2)[rot(2)]
1 O“(4)[rot(4)] O“(4)[rot(4)] O“(3)[rot(3)]
1 O“(4)[rot(4)] O“(4)[rot(4)] O“(4)[rot(4)]

Table 2: Example of execution with bypass, data is lost.

To prevent this from happening, it is necessary to disable the enable chip of this
barrel shifter for the duration of the bypass so that no data would be lost, and once
the bypass is over, you can proceed from the same point where you left off.

38

Smart Object LDPC 5G decoder implementation for EMBB project

BYPASS CE INPUT BS DATA BS OUTPUT BS
0 1 O“(0)[rot(0)] — —-
0 1 O“(1)[rot(1)] O“(0)[rot(0)] —
0 1 O“(2)[rot(2)] O“(1)[rot(1)] O“(0)[rot(0)]
0 1 O“(3)[rot(3)] O“(2)[rot(2)] O“(1)[rot(1)]
1 0 O“(4)[rot(4)] O“(3)[rot(3)] O“(2)[rot(2)]
1 0 O“(4)[rot(4)] O“(3)[rot(3)] O“(2)[rot(2)]
1 0 O“(4)[rot(4)] O“(3)[rot(3)] O“(2)[rot(2)]

Table 3: Thanks to the enable chip, there is no more data loss.

Having introduced these optimizations, it is now possible to proceed with the simulation
and arrive directly at the final phase. The processing of all the other lines will follow
the behavior described up to this point, making them unnoticeable. At the end of the
process, instead, it has been chosen to have a waiting situation in which all the processed
values from the second phase of the PE relative to the last analyzed line are stored again
following the new ordering.

At this point, you have all the signals you want, in fact, during the whole simulation, you
have kept track of all the signals, and at the end, there is the possibility to choose which
of them are considered necessary to store inside the ROM to control the whole PSS.
The choice of the signals to be extrapolated is divided as follows:

• Signals to be sent to the PE CTRL:

* last index: this signal is necessary to let the block know when the line related
to the first phase still under analysis ends, and therefore the load value of the
G NEW REG must be raised.

* st phase: this value is needed because, as discussed above, during the decoding
phase, it is necessary to know when the first phase is active or not. In case of
inactivity, it is necessary to disable we of the GBIGRAM and the load of the
R NEW REG.

* phase1 index: this index must be passed by the control because of the second
optimisation described.

* gram raddr: the control must always pass this address because of the second
optimization described. It will be delayed by one clock stroke and used as an
index of the second phase; in fact, the read address’s value must arrive one
clock stroke earlier, as the data will be read with one clock stroke delay.

• Signals to be sent to PRAM CTRL:

* gbigram raddr: to manage the reading of columns

39

Smart Object LDPC 5G decoder implementation for EMBB project

* gbigram we: to manage the writing of data processed by the PE
* gbigram waddr: to manage the writing of data processed by the PE
* right rot: to manage the rotation value of the right barrel shifter
* left rot: to manage the rotation value of the left barrel shifter
* bypass: to manage the sel of the mux which decides which data to pass, and

its negated value is used to manage the enable chip of the right barrel shifter.

Figure 27: List of signals generated by the control software

It is concluded the discussion of the three main blocks and proceeds to describe their three
control blocks.

3.4 Implementation of control blocks
Unlike the description of the three main blocks, which started from the last block and went
up to the first, the control blocks’ description will be in order from right to left. Before, it
was interesting to ask what kind of signals are needed to generate them; now, the PSS
flow is directly shown.

3.4.1 ROM CTRL

This block is initially in an IDLE state and waits for the start signal from the general
control block; in addition to the start signal, different signals will be sent to it, containing
information about the starting address at which to read the ROM and its length. Another
signal determines the value of the lifting size chosen and, finally, a feedback signal that
warns the block when decoding is complete.

Therefore, this block’s task is twofold: firstly, it must send information about the value of
the lifting size (z) to the pram ctrl block. Secondly, it must manage the ROM address
increase until the last address is read and then proceed to start again until the feedback
signal is received.

40

Smart Object LDPC 5G decoder implementation for EMBB project

Figure 28: Schematic of ROM CTRL

3.4.2 PRAM CTRL

This block receives as input the control signals coming from the ROM and the lifting size
value signal coming from the ROM CTRL, the output of this block consists in picking
up among all the control signals only those with information about the PRAM block and
adding the lifting size value.

Figure 29: Schematic of PRAM CTRL

3.4.3 PE CTRL

This control is the most complicated of the three; it receives the ROM output vector as
the only input and extrapolates from it the four values relative to its block. It will be
necessary to generate the values for all the signals not managed by the software.

The gram raddr signal must be sent as it is received for the value of the gram raddr. Its
value must also be delayed by one clock stroke and sent later as the value for the second
phase index. These two signals and the value stored inside the G NEW REG represent all
that is necessary to manage the second phase inside the PE.

This leaves the first phase management and, for this purpose, the last index, st phase, and
phase1 index signals. The last of these values will be sent to the PE as the index value of
phase one and will then be used for the gram waddr.

At this point, the two remaining signals flanked by a line counter will handle all remaining
parameters. The important points to keep in mind are the following:

• Last index: the PE must take care of the correct storing of the last R NEW value
calculated in G NEW REG and, therefore, the value of gnew load must be asserted

41

Smart Object LDPC 5G decoder implementation for EMBB project

high. It is also necessary to read the following RRAM address’s value, which must
be incremented by one unless it is at the last address. Therefore, it is necessary to
set the following to zero.

• First index: The value of gnew load has to be set to zero again, while the value
calculated in the previous step has to be written in the RRAM, so the value of
RRAM RNW has to be set high, and the signal st rnew has to be asserted.

• Others index: the RRAM must only be read, and the value of gnew load must be
set to zero.

In general, if the phase is active, gram we is enabled; otherwise, it is set to zero. In
addition to managing the RRAM addresses, the counter is used to understand when a
new iteration occurs and, therefore, set the st iter signal to zero.

Figure 30: Schematic of the PE CTRL

42

Smart Object LDPC 5G decoder implementation for EMBB project

3.4.4 Timing diagarm

Figure 31: Example of the execution of the first two lines by the PE

43

Smart Object LDPC 5G decoder implementation for EMBB project

The figure above shows the processing of the first and second columns of the matrix
inside the PE. What is described in this example is sufficient to understand the general
functioning of the PE. In fact, it contains all the peculiarities, except for the case in which,
when passing from one row to the next, the number of columns to be processed in it is
lower than in the previous row; however, as previously explained, this will only disable the
first phase until the second phase is finished, and then it will resume the behavior shown
in this example.
Once again, disabling the first phase disables all signals that modify the contents of
memory elements so that the following signals will be set to zero: gram we, r new load,
g new load, and the value of rram rnw will be set to one.

Once again, the peculiarities to be noted are all present in the area of the change between
two columns, in fact, what happens every time we switch to a new column, thus ending
the first phase and moving on to a new first phase and the processing of the second phase
following the first just processed. During this phase of change, it is good to note the
following elements:

• The management of reading and writing of the RRAM memory: as explained above,
at the end of a first phase and the beginning of the next, it is necessary first to
update the value read from the RRAM and then, at the first index of the new phase,
to write the value previously calculated to the previous address.

• GRAM memory management: this confirms the choice of a dual-port memory for
storing gamma values; in fact, it can be seen that not considering the first phase, this
memory is constantly accessed in both reading and writing. It is also worth noting
that the GRAM read address’s value is always provided one clock stroke earlier than
the index of the second phase.

• The management of the G NEW register: the value in this register is modified at
the end of the first phase. The new value contained in it is used during the second
phase.

• The management of the register R NEW: which continually updates the value inside
it as long as the first phase is active.

• The value of the indices of the first and second phase. As discussed after the first
line, the value of the first phase’s indices will be set by the second phase and will no
longer follow a simple increment of them. This will ensure that old range values are
not overwritten before being processed by the second phase.

44

Smart Object LDPC 5G decoder implementation for EMBB project

Figure 32: Example of PRAM execution of the first two lines

45

Smart Object LDPC 5G decoder implementation for EMBB project

This diagram shows the PRAM trend during the execution of the first two lines. Again
the points of interest are in the passage from the first line to the second line. In particular,
the data of interest related to the possibility of using the bypass and studying how the
system reacts to it.

When the bypass is used, the reading address of the GBIGRAM remains constant so
that the same data can continue to be read. This choice is because instead of putting
a standard address for the bypass cases and then going back to the execution once it is
finished. Keep a constant address to avoid useless switching activity and have the data
ready when the bypass is no longer active.

Another factor to be considered is the rotation value that is used for all the columns that
benefit from the bypass. In fact, it should be noted that this value is not present in the
matrix since it must take into account both the rotation value that should have been
executed to restore the value of the data plus the new rotation value required for the
current row. At the end of the bypass process, the block continues to take the data from
the GBIGRAM and send them to the PE, saving in memory the values calculated on the
previous line.

46

Smart Object LDPC 5G decoder implementation for EMBB project

4 Conclusions
Finally, it is fair to conclude what has been done and highlight which points have not
been touched and could be future implementations to increase performance. Unlike
what has been done so far, in this last chapter, the two parts of the project will not be
treated separately since the considerations to be made on each of them, and the possible
implementations are valid for both projects.

For both projects, no simulations have been carried out that have led to concrete results.
For this reason, the first thing to do is to generate a simulation that can guarantee the
actual functioning and, in case of negative results, investigate what needs to be changed
in the code.

As far as the various optimizations made are concerned, they have been set out in the
best possible way during the process of creating these blocks; what we can recommend
introducing in a future version of this project is the implementation of a channel coding
for transmissions between the various blocks that make up the arbiter, in fact in these
blocks in the case of a read or write request with an incremental burst, different addresses
will be accessed successively, and therefore it is possible to introduce a coding that allows
the access address not to be changed as long as the addresses are successive. This small
optimization would avoid all the power consumption due to the switching activity on the
address bus.

It is different for the PSS, where different optimization techniques have been used, both
for power, such as not changing the data value when in a wait statement, and the various
optimizations made when generating the control signals. In this type of block one could
think rather than an optimization at the bus level to an introduction of clock gating levels,
this because during the use of the library implemented in this document can be divided
into three parts:

• Transfer of data to be analyzed inside the MSS and initialization of GBIGRAM

• processing the various iterations for decoding and writing the data inside the MSS.

• Transfer the data inside the MSS to another library op as output

With this subdivision in mind, it is possible to see that the PSS will be active for a little
more than a third of these activities (it must be considered that in the first phase, there is
also the initialization of GBIGRAM). Therefore, it would be a significant saving to disable
the clock during the data transfer phases.

Finally, it is worth noting that two important blocks still need to be added to the PSS
implementation:

• Feedback: This block has the role of evaluating, during the processing, the value of
the new product ranges and also monitoring the changes of the values during the
first phase. This monitoring has the purpose of understanding when the code has
been successfully decoded. Therefore, it is possible to terminate the processing and
save all the data in the GBIGRAM in the MSS by compressing each sample from
eight bits to a single bit.

47

Smart Object LDPC 5G decoder implementation for EMBB project

• General control: This block deals with the interaction of the PSS with the memory.
Specifically, it deals with the initialization of the GBIGRAM. This start signal starts
the processing, and once successfully decoded all the code, rewrite in memory the
values correctly decoded inside the GBIGRAM.

48

Smart Object LDPC 5G decoder implementation for EMBB project

5 References
[1] AMBA® AXI™ and ACE™ Protocol Specification, ARM.

[2] Aspects of Energy Efficient LDPC Decoders, Erick Amador, 2011.

[3] Architecture générique de décodeur de codes LDPC, Frédéric Guilloud, 2004.

[4] Efficient Hardware Implementations of LDPC Decoders, through Exploiting Imprecise-
ness in Message-Passing Decoding Algorithms, Thien Truong Nguyen Ly, 2018.

[5] 3GPP TS 38.212 V16.2.0, 2020.

[6] Low Density Parity Check decoder (LDPC) documentation, 2020.

49

Smart Object LDPC 5G decoder implementation for EMBB project

6 Annex

Figure 33: First part of the matrix from which the data will be extrapolated for the
generation of checkmarks

50

Smart Object LDPC 5G decoder implementation for EMBB project

Figure 34: Second part of the matrix from which the data will be extrapolated for the
generation of checkmarks

51

Smart Object LDPC 5G decoder implementation for EMBB project

Acknowledgement
The drafting of this thesis has been very demanding as it comes as the completion of
a long professional but above all personal journey that I have not always been able to
sustain on my own. I therefore occupy this space with the specific intention of thanking
the people who have supported me, helped me not to give up or even just helped me to
distract myself so that I could recharge my energy.

A special “Thank You” goes to my family to whom, in addition to dedicating this work, I
dedicate all my gratitude for having put up with me and supported me over the years.

Thanks go to my grandmother, Maria Teresa, for always bringing a smile to my face and
for funding my hobbies on a monthly basis.

Thanks to Andrea and Daniel, two friends with whom I can always feel at home and with
whom I have shared my passions and my life for more than ten years now.

Thanks to Matteo, a dear friend with whom I have shared the beginning of my career
path since my first year at university and with whom, I hope, I will be able to spend many
more years together. He is always able to give me a feeling of freshness and provide me
with a glimpse into a world far removed from my own.

Thanks to Nicolò, in him, I found a sincere friend in a place and experience that was new
and alienating for me, allowing me to have a serene memory of a dark period. Without
him my whole journey would have been very different, and I therefore owe much of the
satisfaction I have had to him.

Thanks to Angelo, with whom I share everything, the family degrees transcend when life
puts you in front of a person in whom you see so much of yourself again. I thank you for
the happiness you give me in each of our conversations.

Thanks to Arianna, a friend with whom I have shared so much, thank you for growing
together.

Thanks to Lorenzo and Giulia, two excellent housemates and friends, with whom I have
always enjoyed chatting over meals and sharing domestic space. In my time in Antibes, it
was always a pleasure to come home.

Thanks to Professor Pacalet, with whom I have had the honor of working closely, giving
me a glimpse of the person I would like to become in the future, both professionally and
personally.

Thanks to Professor Martina, with whom I collaborated on the final draft of this paper.
Thank you for your patience.

Finally, a thank you to all the people I have met throughout this journey, each of them
has given me something and will be a part of me forever.

52

Smart Object LDPC 5G decoder implementation for EMBB project

53

