
POLITECNICO DI TORINO

Master’s Degree in Electronic Engeneering

Master’s Degree Thesis

Design of an edge-oriented vector
accelerator based on the RISC-V “V”

extension

Supervisors
Prof. Maurizio MARTINA
Prof. Guido MASERA
Dott. Michele CAON
Dott. Walid WALID

Candidate
Francesca SICA

October 2022

Abstract

In the last decade, the ever-increasing diffusion of machine learning algorithms for
digital signal processing has drastically changed the hardware processing requirements
for edge devices. These systems have to manage a large amount of data while often
still responding to some events in real-time.
To elaborate the information acquired by these systems, a suitable paradigm can be
edge computing: instead of directly sending raw data to remote central servers, this
can be partially processed close to where it is collected so that a smaller amount of
elaborated data is sent to central systems, reducing the response time, the network-
overloading and the overall power budget required.
To manage such a high quantity of data, it is important to choose efficient architectures
exploiting parallel computing: vector processors have demonstrated to be a promising
solution. Among the advantageous aspects, there is the reduction of the overhead
caused by instruction fetch from memory (Von Neumann Bottleneck), which is
typical of scalar processors when dealing with data-driven workloads: a single
vector instruction can be used to process a very large vector. Moreover, vector
processors are characterized by high flexibility since they are programmable: to
change functionalities for different application targets, it is sufficient to modify and
recompile the code. This cannot be done on custom hardware accelerators that
arise for a single specific application. Certainly, the versatility of vector processors
inherently brings some area and power consumption overhead.
Considering the most recent ISAs, some allow having “hardware-agnostic” software,
such that the same code can run on vector architectures with different parallelism.
Among these, RISC-V is one of the most promising: its vector extension (“V”) allows
to evince the physical length of vectors and elements at run time. So, the same
code can be used on processors featuring different vector register sizes, allowing high
performance and great versatility in different application domains.
In this thesis, a scalable and highly configurable vector processor based on the
RISC-V “V” extension is designed and implemented. Most of its components
(i.e., vector register file and processing elements) is made up of a set of identical
lanes, each processing different elements of a vector independently from the others.
The advantage of this structure is that, depending on the application and power
consumption target, priority can be either given to performance using a higher
number of lanes and arithmetic operators, or to the area and power having a less
performing yet smaller processor.
The performance of the processor is evaluated on a representative workload of
machine learning algorithms: matrix convolution is used as case study, considering
a 4x4 matrix and a 2x2 filter with 32-bit elements. With a 256-bit vector register
and 2 lanes, results show a latency of 412 clock cycles to terminate the program,
with a throughput of 128 bits/cycle; from synthesis results, the total cell area is
about 1 137 755 µm2, and the clock frequency is 510 MHz. The same code is run with
different hardware configuration: as expected, throughput and area scale almost
linearly with the number of lanes.
In conclusion, the designed vector processor is potentially very versatile: it implements
a subset of standard instructions used in most use cases; then, it is scalable and
highly configurable, being able to choose the number of resources and consequently
optimizing the throughput.

Acknowledgements

Vorrei ringraziare i professori Maurizio Martina e Guido Masera per avermi dato la
grande opportunità di lavorare a questo progetto.

Un grazie speciale va a Michele, per la disponibilità ed il supporto costante che mi
hanno permesso di portare a termine il progetto nel migliore dei modi.

Un grande ringraziamento va a tutta la mia famiglia e a i miei amici per avermi
sempre sostenuto ed aiutato, dandomi preziosi consigli e stando al mio fianco in

questi anni impegnativi.

ii

Table of Contents

List of Tables v

List of Figures vi

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis organization . 4

2 Background 5
2.1 Data Level Parallelism . 5
2.2 Architectural models . 6

2.2.1 Packed-SIMD architecture 6
2.2.2 Vector processors . 8

2.3 Related works . 9

3 Design and Implementation 13
3.1 Top level architecture . 13

3.1.1 Design parameters . 17
3.1.2 Design choices . 20

3.2 Instruction Decoder . 25
3.3 Instruction Status Table . 29
3.4 Scheduling Logic . 33

3.4.1 Hazard Detection Unit . 34
3.4.2 Operand Requester . 38

3.5 Vector Register File . 52
3.6 Source and Destination Tables . 58

3.6.1 Source Table . 60
3.6.2 Destination Table . 60
3.6.3 Position Index Table . 63
3.6.4 Source and Destination Tables Counters 63

3.7 Processing Element . 65

iii

3.7.1 Arithmetic unit . 67
3.7.2 Reduction unit . 72

3.8 Load-Store Unit . 74
3.8.1 Load-store emulator . 75
3.8.2 Load-store unit preliminary design 79

4 Testing and synthesis 87
4.1 Testing methodology . 87
4.2 Case study . 89
4.3 Testing and synthesis results . 90

4.3.1 Baseline . 91
4.3.2 Results comparison by changing parameters 93

5 Conclusion 101
5.1 Future improvements . 102

A Matrix convolution pseudo-code 105

Acronyms 107

Bibliography 109

iv

List of Tables

4.1 Results with VLEN = 64 bits and NUM_LANE = 1. 91
4.2 Results from the simulations. For each combination, the latency

(expressed in clock cycles) and throughput (expressed in bit/cycle)
are reported. 95

4.3 Results from the synthesis. For each combination, the area and cycle
time (Tck) are reported. 95

v

List of Figures

2.1 Vector processor block scheme. The red box highlights the operations
that can be executed simultaneously and the chaining implementation. 9

2.2 Packed-SIMD architecture block scheme. The red box highlights the
operations that can be executed simultaneously. 9

3.1 Top-level view of the vector processing unit 16
3.2 instruction decoder block diagram 26
3.3 RISC-V vector extension instruction format (taken from the RISC-V

“V” specifications [9]) . 27
3.4 instruction status table block diagram 30
3.5 scheduling logic block diagram . 33
3.6 hazard detection unit block diagram 34
3.7 Output generator of the processing element status table 37
3.8 operand requester block diagram . 39
3.9 activation instruction buffer CU flow chart 40
3.10 Example of how the register sections to read are distributed in the

lanes . 41
3.11 arithmetic instruction buffer block diagram 43
3.12 Data exchange between arithmetic instructions buffers for widening

operations . 45
3.13 arithmetic instruction buffer CU flow chart 47
3.14 load-store instruction buffer block diagram 49
3.15 Example of vector register file configuration with two banks for each

lane . 52
3.16 Example of vector register file configuration, starting from EEW = SEW

and arriving to EEW = 2 · SEW. 54
3.17 vector register file lane block diagram 56
3.18 source table and destination table allocation 58
3.19 source table and destination table block diagram 59
3.20 processing element block diagram 66
3.21 arithmetic unit block diagram . 68

vi

3.22 ALU block diagram . 70
3.23 Multiplier and divider block diagram 71
3.24 reduction unit block diagram . 73
3.25 Example of strided load-store operation 74
3.26 Flow chart of the control unit inside the load-store unit 78
3.27 load-store unit block diagram . 80
3.28 L1 Data Cache arbiter . 82
3.29 Load strided unit block diagram . 85

4.1 Matrix convolution example with 16x16 input matrix, an 8x8 filter
and a 9x9 resulting matrix. 90

4.2 Area composition considering NUM_LANE = 1 and VLEN = 64 bits. . . 92
4.3 Surface chart showing the trend of the area as a function of VLEN

and NUM_LANE. 96
4.4 Surface chart showing the trend of the cycle time as a function of

VLEN and NUM_LANE. 96
4.5 Surface chart showing the trend of the throughput as a function of

VLEN and NUM_LANE. 97
4.6 Trend of area and throughput by varying NUM_LANE while fixing

VLEN = 1024 bits. 98
4.7 Trend of area and throughput varying VLEN and fixing NUM_LANE = 2. 99

vii

Chapter 1

Introduction

The aim of the thesis project is to design and implement a scalable and highly
configurable edge-oriented accelerator based on the RISC-V vector extension (V).
It works as a co-processor intended to be integrated inside the LEN5 core, a
modular 64-bit out-of-order (OoO) RISC-V core developed at Politecnico di Torino.
The code of the vector processing unit is available on GitLab [1].

1.1 Motivation
Nowadays machine learning [2] and digital signal processing [3] are widespread
in different Artificial Intelligence applications, like image and speech recognition,
robotics, gameplay and medicine.
These systems must handle a large amount of data while often still responding to
some events in real time (for example in applications such as autonomous vehicles,
drone navigation and robotics). The raw data collected by these systems can be
elaborated in two ways: the first one considers to send data to remote central
servers (usually far from the data source), such that the latter can process it
returning subsequently the response to the system (cloud computing paradigm);
the second one considers to partially elaborate data close where it is collected so
that a smaller amount of processed data is sent to central servers (edge computing
paradigm).
Considering data-driven systems, the cloud computing paradigm can lead to high
latency and network-overloading problems due to the transmission delay of the
network and to the massive quantity of data to be managed. Moreover, taking into
account the large distance between the system and the remote central servers, this
does not represent an optimal solution from the energy efficiency point of view,
since the overall power required to transfer such a high quantity of data over long
distances is quite large.

1

Introduction

A better solution can be the edge computing paradigm, which can overcome some
limits of cloud computing [4]. Since data is partially elaborated close to the system,
only a smaller quantity of data is sent to remote central servers allowing to minimize
the bandwidth of the network; then, the shorter distances lead to a faster response
time (by decreasing the transmission delay) and a reduction of the overall power
budget required to transfer data.

In order to manage a high quantity of data, it is important to choose efficient
solutions exploiting parallel computing.
In 1974 Robert Dennard observed that power density was constant as transistors
got smaller [5]. Thus chips could be designed to operate faster and still use
less power. However, Dennard scaling ended 30 years after it was observed, not
because transistors didn’t continue to get smaller but because the threshold voltage
decreased so much that static power became a significant part of overall power.
Processor frequencies reach a saturation point, leading to an increasing interest in
parallel multi-core architectures.
With the MIMD paradigm, instead of a single processor, multiple efficient cores are
used, which fetch their own instructions and operate on their own data independently
from the others. However, multi-core architectures fail to exploit the regularity of
data-parallel applications, as cores execute copies of the same instructions across
multiple data elements and the fetch mechanism is one of the most expensive
components of processor due to the Von Neumann Bottleneck (VNB) [6]. This
term describes the disparity between the speed of computation and the speed of
memory access in processors designed using the Von Neumann architecture. The
imbalance arises because the speed at which a CPU can perform computation is
significantly higher than the speed of memory access. So MIMD paradigm is not
the best solution for data-parallel applications. Moreover, MIMD architectures
in general can achieve high performance by having multiple cores but they have
higher costs in terms of area and power consumption and this is not in line with
an edge-oriented solution, where the architecture needs to have a reduced area and
power budget to be almost integrated into the system. So, also considering that
the multiple cores would execute copies of the same instructions, having multiple
fetch units would be a waste of area and energy.
A way to relax the VNB is to exploit the SIMD paradigm which shares the fetch
operation among multiple processing units, so instructions operate on vectors of
operands. This solution has a very low cost in terms of implementation, then
it is potentially energy-efficient since a single instruction can launch many data
operations and, finally, it can achieve a smaller area having only one fetch unit for
all processing units. The problem introduced by this type of architecture is that
it requires dedicated instructions for each combination of element and array size,
as well as specific code and compiler optimizations to properly store and load the

2

1.1 – Motivation

data to be processed. As a consequence, hundreds of instructions should be added
to the ISA and decoded by the microarchitecture, while a significant overhead in
terms of code size is paid at programming or compilation time, often significantly
reducing the effectiveness of this approach.
In order to overcome the problems mentioned above and satisfy requirements like
high performance and energy efficiency, the right solution to manage data-parallel
applications can be the use of vector processors [7]. In this architecture, a single
vector instruction can be used to process a very large vector, thereby amortizing
the instruction fetch overhead. Moreover, vector processors are characterized by
high flexibility since they are programmable: to change functionalities for different
application targets, it is sufficient to modify and recompile the code. This cannot
be done on custom hardware accelerators that arise for a single specific application.
Certainly, the versatility of vector processors inherently brings some area and power
consumption overhead.

Along with the processor architecture, it is important to select a suitable Instruction
Set Architecture (ISA). RISC-V is an ISA born in UC Berkley in 2011 [8] which
is gaining popularity over the years both in academic and industrial fields due
to some key points that differentiate it from ISA of other processor architectures
(e.i. Intel’s x86 and ARM ISA). An important aspect is that it is a completely
open-source ISA, allowing smaller developers and manufacturers to design and
build hardware without the cost of licensing proprietary ISA and paying royalties.
This feature has also gained interest in the academic world.
Even though RISC-V is thought for Von Neumann architectures which consequently
suffer from the VNB, it features a modular design where, starting from a base ISA,
different extensions (among which there is the vector “V” one) can be added in
order to accelerate computationally expensive tasks and provide better support
for operating systems. This structure makes RISC-V suitable for different kinds of
applications ranging from simple, low-power microcontrollers to application-specific
processors and high-performance computers.
Another important aspect that makes RISC-V one of the most promising ISA is
that it allows having “hardware-agnostic” software, such that the same code can
run on vector architectures with different parallelism. Its vector extension (“V”)
allows to evince the physical length of vectors and elements at run time so the same
code can be used on processors featuring different vector register sizes, allowing
high performance and great versatility in different application domains.

Taking into account all the previous considerations, it was decided to start a thesis
project in order to design an edge-oriented accelerator based on the RISC-V vector
extension (RV64V).
The version 1.0 of the specifications [9] was followed: it has been frozen for public
review so it is stable enough to begin implementations since it is not expected to

3

Introduction

have incompatible changes in future versions.
Starting from the basic motivations, the intent of this work was to perform a
horizontal design of the processor architecture starting from scratch, such that
it was able to process a subset of the RV64V ISA including instructions used in
most of the use cases. So a first working architecture was implemented without
optimizing it internally, but this is a good starting point for future work.

1.2 Thesis organization
The thesis work is organized as follows:

• This is the first introductory chapter including the motivations behind the
project.

• The second chapter is focused on giving general information about Data Level
Parallelism (DLP), looking at different architectures exploiting it.
Then, a summary of existing vector processor architectures already imple-
mented in the past is presented.

• The third chapter is about the object of the thesis, namely the design and
implementation of the vector processing unit, explaining the structure and
the behavior of each module inside it.

• The fourth chapter is focused on the simulation and synthesis results in order
to evaluate the performance. For this purpose, the matrix convolution is
used as case study, where the same code is run with different implementation
parameters in order to compare performance in terms of area and throughput.

• In the fifth chapter the final conclusions are presented, together with some
further improvements for the future.

4

Chapter 2

Background

2.1 Data Level Parallelism
In order to manage high quantity of data in data-driven systems, it is necessary to
exploit Data Level Parallelism (DLP). With this approach, a processor architecture
can operate on multiple elements of data simultaneously.
Among the class of processors working with a DLP approach, there are the MIMD
and SIMD architectures. The first one, exploited for example by GPUs, provides
multiple efficient cores which fetch their own instructions and operate on their own
data independently from the others. This type of architectures is out of the scope of
this project as it certainly achieves high performance but it has higher costs in terms
of area and power and this is not in line with the goal of having an edge-oriented
processor. Also, as mentioned in the motivation section 1.1, MIMD architectures
may also suffer from VNB when each core executes a different instruction stream
and therefore it has to perform the expensive instruction fetch from memory.
The SIMD architectures, on the other hand, overcome the VNB since they are
divided in multiple identical processing units, each of them sharing the instruction
fetch and working independently from the others. So all processing units execute
the same instruction, each on different data with the advantage of processing a
high quantity of data in parallel while accessing to the memory only one time for
the instruction fetch. Then, they are potentially energy-efficient since a single
instruction can launch many data operations and they can achieve smaller area
having only one fecth unit for all processing units.

5

Background

Going into more details in order to see the advatages of DLP, we can define the
performance of a processor as

Performance = 1
CPU time

(2.1)

where the CPU time is the time required by the processor to complete a given task,
not including the time waiting for I/O or running other programs [5].
Then, the CPU time is defined as

CPU time = N · CPI · Tck (2.2)

where

• N is the number of instructions executed in the task.

• CPI (Cycles Per Instruction) is the average number of clock cycles required to
execute a single instruction.

• Tck is the clock period.

The DLP paradigm allows reducing the N factor since a single instruction can
process a large number of elements. However, this can increase the CPI, since a
single instruction can take more cycles to complete. Although the reduction of the
N factor comes with an increase in the CPI term of the equation, the parallelism
implicit in each vector instruction can drastically reduce the CPI factor, simply by
adding parallel functional units that process the instruction.
In this way, by reducing the number of instructions and incrementing the num-
ber of processing units, the CPU time can be drastically reduced improving the
performance.

2.2 Architectural models
In this section different SIMD processor architectural models exploiting DLP are
briefly presented.
As already mentioned, this model expects to have a processor divided in multiple
identical processing units, each of them executing a single instruction on multiple
data in parallel while sharing a single instruction memory and control unit.

2.2.1 Packed-SIMD architecture
This type of processor architecture has several independent and identical processing
units, each of them handling a subset of a data vector. So the number of processing

6

2.2 – Architectural models

units determines the vector length (a block scheme of the packed-SIMD architecture
can be seen in figure 2.2).
The advantage of this architecture is that it requires low costs in terms of imple-
mentation but the drawback is that the vector length is fixed by establishing the
number of processing units. Since the vector length is commonly encoded in the
instruction, this model requires dedicated instructions for different vector size. As
a consequence, hundreds of instructions should be added to the ISA and decoded
by the microarchitecture, while a significant overhead in terms of code size is paid
at programming or compilation time. Certainly this consequence places limits on
the maximum vector size so as not to be forced to add a very large amount of
instructions.
Some examples of existing solutions requiring different extensions depending on
the vector length include Intel’s AVX [10], AVX2 [11] and AVX-512 [12] extensions,
where the last was used in Intel Xeon Phi product family x200 based on the Knights
Landing or Knights Mill architectures. They are used for supercomputers and
servers but also for machine learning applications, image elaboration and data com-
pression. The main difference between the AVX/AVX2 and AVX-512 extensions
is the vector length: in the former case, it is 256-bit wide, while in the last one
it is 512-bit wide, leading to a change of the architecture parallelism (registers
widths, functional units parallelism exc.). Moreover, in the AVX-512 extension,
the number of registers is doubled and more functionalities are supported, like
embedded masking, embedded floating-point rounding control and fault suppres-
sion, scatter instructions and high speed math instructions. In all extensions the
vector length is fixed either to 256 bits or to 512 bits, while the vector’s element
length can be configured (for example, if the vector is 256-bits wide, it can contain
thirty-two 8-bit elements, sixteen 16-bit elements, eight 32-bit elements or four
64-bit elements).
Another example of packed-SIMD extension is Neon [13], which is produced by
ARM and implemented in Cortex-A and Cortex-R series of processors in order to
improve use cases on mobile devices, such as multimedia encoding/decoding, user
interface and 2D/3D graphics and gaming. Neon registers are 128-bits wide and
they are considered as vectors of elements that are processed simultaneously: each
register can contain two 64-bit, four 32-bit, eight 16-bit or sixteen 8-bit integer
data elements since multiple data types are supported by the technology.
The main limitation of these solutions is given by the fixed length of the vectors,
so that, from one extension to the other, new instructions are introduced since the
vector length is encoded in the instruction itself; then, the code to be run on the
processor must be changed and re-compiled.

7

Background

2.2.2 Vector processors
Vector processors, like packed-SIMD architectures, provide a single instruction
working on vectors of data. They have vector functional units with multiple parallel
pipelines (or lanes) that process simultaneously different elements of vectors (a
block scheme of the vector architecture can be seen in figure 2.1).

Differently from the packed-SIMD architecture, with vector instructions we abstract
away how many lanes we have from the number of elements in the vector. In
particular, one of the common approaches to manage vector elements is “stripmin-
ing”: usually, considering an application, the size of the vector to be processed is
greater then the physical parallelism of the processor; then multiple iterations are
performed, each processing a subset of the original vector, until all elements of
the latter have been handled. For example, if a vector is made up by 16 elements
and there are only two lanes, a vector processor will simply cycle through all the
elements until all of them are processed. So, it performs eight iterations, each of
them processing two elements (one for each lane). Considering the same example,
in a a packed-SIMD architecture, the number of lanes determines the vector size
so that only vectors of 2 elements would be allowed (each lane would manage one
element).
So, the advantage of vector processors is that the vector length and the elements
length can be dynamically configured. Then the same code can be used featur-
ing different number of lanes, allowing a great versatility in different application
domains, from simple microcontrollers to high-performance computers.

The fact that the element width can be configured at run time implies that arith-
metic units able to perform sub-word parallel computations are the most convenient
choice for this architecture. This means that, giving a fixed parallelism of the
arithmetic unit, it can process in parallel multiple elements with a parallelism that
is smaller than the maximum one.
An example is shown in [14], where a 32-bit arithmetic unit can operate on four
8-bit integer numbers, two 16-bit integer numbers or one 32-bit integer number.
This is possible because the datapath is made up by four 8-bit Processing Elements.
Each PE accepts two 8-bit operands and outputs a 16-bit result. For the addition-
s/subtractions, two PEs are carry-linked to perform 16-bit operations and four PEs
are carry-linked to perform 32-bit operations. For the multiplications, larger data
level multiplications are decomposed into small data level multiplications and then
the partial products are added together by a 64-bit partitionable adder made up
by two 32-bit Kogge-Stone adders.

In order to further improve the performance of a vector processor, chaining can
be implemented. It is like data forwarding for element-dependent operations from

8

2.3 – Related works

one vector functional unit to another. It allows a vector operation to start as soon
as the individual elements of its vector source operand become available, without
waiting for the update of the entire vector: the results from the first functional unit
in the chain are “forwarded” to the second functional unit and so on. An example
of chaining can be seen in the figure 2.1: in the same clock cycle (red box), while
element 2 is loaded, the element 1 (loaded on previous clock cycle) is multiplied
and the element 0 (loaded two clock cycles ago, multiplied on the previous clock
cycle) is added.
This technique cannot be applied in packed-SIMD processors as it can been seen
in figure 2.2: it cannot start the multiplication until the load is done for all the
elements of the vector.

LOAD MULTIPLIER ADDER

LOAD 0

LOAD 1

LOAD 2

MUL 0

MUL 1

MUL 2

ADD 0

ADD 1

ADD 2

tim
e

Figure 2.1: Vector processor block
scheme. The red box highlights the op-
erations that can be executed simultane-
ously and the chaining implementation.

PROCESSING
UNIT 0

PROCESSING
UNIT 1

PROCESSING
UNIT 2

LOAD 0

MUL 0

ADD 0

LOAD 1

MUL 1

ADD 1

LOAD 2

MUL 2

ADD 2

tim
e

Figure 2.2: Packed-SIMD architecture
block scheme. The red box highlights the
operations that can be executed simulta-
neously.

2.3 Related works
In order to understand the context where the thesis project can be placed, in this
section different existing solutions of processor architectures implementing the
vector extension are presented.

• ARM developed two vector extensions: SVE [15] and SVE2 [16], introduced
respectively in Armv8.2-A and Armv9-A architectures [17].
They do not define the size of the vector registers, but constrains it to a range
of possible values, from a minimum of 128 bits up to a maximum of 2048, with
the constraint of being a power of two and a multiple of 128 bits. Therefore,

9

Background

by choosing the vector register size, these extensions can be implemented
in architectures belonging to different application domains. A 512-bit SVE
variant has already been implemented on the world’s fastest supercomputer
of 2020 Fugaku using the Fujitsu A64FX ARM processor, born from the
collaboration of Fujitsu with ARM.
A second key point is that it is also possible to configure the length of the vector,
provided it is a multiple of 128 bits and does not exceed the architectural
maximum of 2048 bits. The vector length can be configured dynamically
by writing some vector control registers and each vector can hold 64, 32,
16, and 8-bit elements. The main advantage is that SVE/SVE2 extensions
guarantees that the same code can run on different implementations that
support SVE/SVE2, without the need to recompile the code.
The difference between SVE and SVE2 is that SVE is designed for high-
performace computing and machine learning applications; SVE2 extends the
SVE instruction set to accelerate the common algorithms that are used in
applications like computer vision, multimedia, genomics and general-purpose
software.

• RISC-V features a vector extension providing that the parallelism of vector
registers can be chosen from a minimum value of 32 bits to a maximum value
of 216, with the constraint of being a power of 2. Then, depending on the
application domain in which the processor will work, a different register size
can be chosen. Since the range of the possible parallelism is very large, this
makes this extension versatile for very different purposes.
An important aspect of the RISC-V extension is that the vector and element
width can be dynamically configured by writing some control registers. The
elements can have four different sizes: 8 bits, 16 bits, 32 bits or 64 bits; the
vector length is very flexible since it can exceed the vector register size, thus
leading to consider groups of registers as a single vector.
The RISC-V vector extension has been implemented on Ara [18], a 64-bit
vector processor based on the version 0.5 draft of RISC-V ’s vector extension
(V). It works as a co-processor for Ariane, an open-source, in-order, single-issue,
64-bit application-class processor implementing RV64GC. It is designed for
high-performance computing, aiming to reach high clock frequencies, maximize
the use of functional units while maintaining good energy efficiency.
Ara is a scalable architecture, since it is made up by a set of identical lanes,
each hosting part of the vector register file and functional units. In this way,
each lane processes different elements of a vector independently from the
others. There are other units (like the load/store unit) that communicate
with all lanes, since they execute instructions needing all elements of vectors.
These units represent the weak points when it comes to scalability, because

10

2.3 – Related works

they get wider when the vector length increases and therefore as the number
of lanes increases.
Talking about performance, Ara achieves up to 97% FPU utilization when
running a 256 × 256 double precision matrix multiplication on sixteen lanes.
It runs at more than 1GHz, achieving a performance up to 33DP-GFLOPS.
In terms of energy efficiency, Ara achieves up to 41DP-GFLOPS/W under the
same conditions, which is slightly superior to other vector processors.

11

12

Chapter 3

Design and Implementation

In this chapter, the design of the LEN5 vector processing unit is presented.
It is a scalable and configurable co-processor implementing a subset of the RISC-V
vector extension (RV64V); the different categories of supported instructions are
reported in section 3.1.2.
The hardware description language used to describe the processor architecture is
SystemVerilog: it is suitable to model and synthesize digital systems, allowing a
higher level of abstraction and consequently a more compact code. In addition,
SystemVerilog supports critical features for design verification, including SystemVer-
ilog Assertions (SVA), thus making this language suitable for both design and
verification (further details about the testing methodology are given in section 4.1).

3.1 Top level architecture
The vector processor is characterized by a scalable architecture: most of its compo-
nents are made up of a set of identical lanes, each processing different elements of
a vector independently from the others. In particular, both the vector register file
and the processing element are divided into lanes together with the structures to
support them. In this way, each lane in the vector register file contains a portion
of a vector and the latter will be processed by the corresponding lane inside the
processing element. The advantage of this structure is that, even for long vectors,
high performance can be achieved since a lot of elements can be simultaneously
processed in parallel.
For example, if a vector is made up of 16 elements and there are four lanes, lane
0 in the vector register file contains the first four elements of the vector; these
are processed by lane 0 of the processing element. At the same time, lane 1 will
process the second four elements of the vector which are stored in lane 1 of the
vector register file and so on for the other lanes.

13

Design and Implementation

On the other side, there are other units (like the load-store unit or the reduction
unit) that execute instructions needing all elements of vectors so they require data
coming from all lanes of the vector register file. Surely, since they cannot perform
parallel operations, their speed is lower than the one of the components exploiting
the parallelism of lanes.

Another important aspect is the configurability: many implementation parameters
can be set, from the number of lanes and physical vector register size to the number
of processing elements and arithmetic operators.
Moreover, the vector and element width can be dynamically configured by writing
some control registers. Elements can have four different sizes: 8 bits, 16 bits, 32
bits or 64 bits, while the vector length can be set to be lower, equal or even greater
than the physical size of a vector register.
A detailed explanation of the parameters configuration is in the section 3.1.1.

The vector processing unit uses the same handshake protocol of the scalar core
(LEN5). It is an AXI-like protocol (without being AXI-compliant), based on valid
and ready signals. This protocol allows having a modular design supporting variable
latency components. Further details are reported in section 3.1.2.

In this paragraph, a brief overview of all components present in the vector processing
unit is exposed. Then, from section 3.2, a deeper description along with some block
schemes is reported for each module.

• Instruction Decoder: It receives the vector instruction from the scalar core
along with the scalar operands coming from the scalar register file (if needed
by the vector instruction); it decomposes the instruction in different fields
depending on its type and sends it to the instruction status table.

• Instruction Status Table: It is a FIFO that keeps track of the status of
instructions under execution. It receives the instructions from the instruction
decoder and it sends them to the hazard detection unit in order to verify if
they can be executed without hazards; if this happens, then the instruction
status table sends them to the scheduling logic for the operands fetch.
When an instruction is completed, it is removed from the instruction status
table.

• Scheduling Logic: It is made up of two units, the hazard detection unit
and the operand requester . The first one is in charge of checking for data
and structural hazards related to the instruction needing to be executed;
the second one performs the operands fetch from the vector register file for
instructions that passed the hazard check. The operand requester is divided
into lanes, such that each lane makes a request for the data stored in the

14

3.1 – Top level architecture

corresponding lane of the vector register file. Once the operands are ready,
if the instruction is arithmetic, each lane of the operand requester sends
the data to the corresponding source table and it allocates one entry in the
corresponding destination table; for the load-store instructions, the operand
requester sends the data directly to the load-store unit.

• Vector Register File: It contains 32 registers (v0 - v31). The parallelism
of the registers is parametric and it can be chosen from a minimum value
of 64 bits to a maximum value of 216, with the constraint of being a power
of 2. Each vector register is divided into lanes: each of them is 64-bit wide
(LANE_WIDTH) and it contains different elements of a vector. The total width
of a vector register corresponds to the maximum amount of data that can be
processed at the same time by a processing element.

• Source Table: It is a FIFO that stores arithmetic instructions with their
operands waiting to be sent to the processing element for execution.
There is one source table for each lane, such that each one receives the
instructions from the corresponding lane of the operand requester and sends
data to the corresponding lane inside the processing element.

• Processing Element: It performs the real arithmetic instruction execution;
it is divided into lanes, such that each one contains one arithmetic unit made
up of multiple ALUs, multipliers and dividers. Each source table sends data to
the corresponding arithmetic unit; once the results are ready, each arithmetic
unit sends them to its destination table.
In addition to the arithmetic units, there is also a single reduction unit
performing the reduction operations. Since this type of instruction needs all
elements of a vector, the reduction unit receives the data from all source tables.

• Destination Table: It is a FIFO which contains the results of arithmetic
instructions waiting to be sent to the vector register file for the write-back
operation. There is one destination table for each lane, which receives the
instruction results from the corresponding arithmetic unit inside the processing
element; each destination table sends the results to the corresponding lane
inside the vector register file.

• Load-Store Unit: It is in charge of performing load-store instructions. Once
it receives the data from the operand requester , the load-store unit executes
the instruction; for the load operations, it directly performs the write-back
operation in the vector register file without passing through the destination
tables.

The top-level architecture of the vector processing unit is reported in figure 3.1.

15

Design and Implementation

SO
U

R
C

E TA
B

LE 0

D
ESTIN

ATIO
N

 TA
B

LE N
-1

D
ESTIN

ATIO
N

 TA
B

LE 0

PE 0

...
R

ED
U

C
TIO

N

U
N

IT

VEC
TO

R

R
EG

ISTER
 FILE

D
EC

O
D

ER

SC
H

ED
U

LIN
G

 LO
G

IC

LA
N

E
 0

LA
N

E
 N

-1

PE k-1

...
R

ED
U

C
TIO

N

U
N

IT

SO
U

R
C

E TA
B

LE N
-1

IN
STR

U
C

TIO
N

 STATU
S TA

B
LE

L1 DATA

CACHE

SC
A

LA
R

 C
O

R
E

A
R

ITH

U
N

IT

LA
N

E
N

-1

A
R

ITH
.

U
N

IT

LA
N

E
 0

A
R

ITH

U
N

IT

LA
N

E
N

-1

A
R

ITH
.

U
N

IT

LA
N

E
 0

LO
A

D
-STO

R
E

U
N

IT

V
E

C
TO

R
 P

R
O

C
E

S
S

IN
G

U

N
IT

Figure 3.1: Top-level view of the vector processing unit

16

3.1 – Top level architecture

3.1.1 Design parameters
Before entering into details of the single modules inside the vector processing unit,
it is important to see the main parameters that can be set and that characterize
the processor.

The main implementation-defined parameters that remain constant at run-time
are (the parameters name is the same of the one used in the SystemVerilog code):

• VLEN: number of bits in a single vector register. It can be chosen from a
minimum value of 64 bits to a maximum value of 216, with the constraint of
being a power of 2.

• NUM_PE : number of processing elements.

• NUM_LANE: number of lanes.

• NUM_ALU_PER_LANE : number of ALUs inside each arithmetic unit (there is
one arithunit for each lane).

• NUM_MUL_PER_LANE : number of multipliers inside each arithmetic unit.

• NUM_DIV_PER_LANE : number of dividers inside each arithmetic unit.

• IST_DEPTH : depth of the instruction status table.

• ST_DT_DEPTH : depth of each source table and destination table.

• NUM_VRF_PORTS: number of read/write ports of each vector register file’s lane.

Parameters that can change at run-time can be set through a set of configuration
instructions, which will modify some Control and Status Registers (CSRs) inside
the scalar LEN5 core. These parameters are:

• SEW: It is the selected element width and it can assume four values: 8 bits, 16
bits, 32 bits or 64 bits. By default, a vector register is divided into VLEN/SEW
elements.

• LMUL: A single vector instruction can operate on multiple vector registers. So
a vector register group refers to one or more vector registers used as a single
operand to a vector instruction. The vector length multiplier, LMUL represents
the default number of vector registers that are combined to form a vector
register group. It can be any value among 1, 2, 4 and 8.

17

Design and Implementation

• VL: It represents the number of elements to be updated with results of a vector
instruction.
One of the common approaches to manage a large number of elements is
“stripmining”: considering an application, each iteration of a loop handles
some number of elements; iterations continue until all elements have been
processed. The application specifies the total number of elements to be
processed (the application vector length or AVL) as a candidate value for VL,
and the hardware responds via a general-purpose register with the (frequently
smaller) number of elements that the hardware will handle per iteration, based
on the architectural structure. Considering VLMAX as the maximum number of
elements that can be processed with a single vector instruction and depending
on the current iteration, VL can be smaller or equal to VLMAX = LMUL·VLEN/SEW.

In addition to the parameters that can be set dynamically, it is important to
consider that each vector operand has an effective element width (EEW) and an
effective LMUL (EMUL) that are used to determine the size and location of all the
elements within a vector register group. By default, most of the instructions are
single-width, meaning that EEW = SEW and EMUL = LMUL. However, some vector
instructions have source and destination vector operands with the same number
of elements but with different widths, so EEW and EMUL differ from SEW and LMUL
respectively, but EEW/EMUL = SEW/LMUL.
There are two types of arithmetic instructions where it is possible to see this feature:

• Widening arithmetic instructions: they have a source group with EEW = SEW
and EMUL = LMUL but they have a destination group with EEW = 2 · SEW and
EMUL = 2 · LMUL.
There is a second variant in which they have the source group of the first
operand with EEW = 2 ·SEW and the one of the second operand with EEW = SEW;
they have a destination group with EEW = 2 · SEW and EMUL = 2 · LMUL.

• Narrowing arithmetic instructions: they have a source group with EEW =
2 · SEW and EMUL = 2 · LMUL but they have a destination group with EEW = SEW
and EMUL = LMUL.

Considering the load-store operations, they have EEW encoded directly in the
instruction; then there is the nf parameter which identifies one less than the
number of registers groups (each one made up of EMUL registers) involved in one
instruction.

18

3.1 – Top level architecture

The important thing is that the maximum number of registers involved in one
instruction can be equal to 8. From this, it follows that for arithmetic operations

EMUL ≤ 8 (3.1)

and for load-store operations

EMUL · (nf + 1) ≤ 8 (3.2)

The configuration instructions used to set the dynamic parameters (SEW, LMUL and
VL) are not executed by the vector processing unit. Since the vector processor is a
co-processor thought to be integrated inside a scalar core, all CSRs (both vector
and scalar) are included in the scalar core.
It is expected that all instructions (both vector and scalar) are sent to the scalar
core; the latter performs a first decoding in order to identify the type of instruction.
If it is a configuration instruction for the vector processing unit, the scalar core
will execute it modifying the CSRs and sending to the vector processing unit the
updated parameters. Unfortunately, the integration of the vector processing unit in
the scalar core has not been done yet, so the design was tested by directly sending
the CSR values to the vector processor through the testbench.
Since this type of instructions changes the configuration of the processor, it is
important that, when there is a change of the dynamic parameters, the instructions
with the new configuration do not start their execution until all instructions with the
previous configuration are completed. This allows to correctly complete the older
instruction with the previous configuration while the newer ones are temporarily
stalled. This behaviour is inherently enforced by the microarchitecture of the scalar
LEN5 core.

19

Design and Implementation

3.1.2 Design choices
In this section, some design choices are discussed before entering into details of the
single units present in the vector processing unit.
In particular, it is reported the types of supported instructions and how the load-
store unit has been implemented; then some common features of most of the
units inside the vector processor are presented, like the control model of the data
structures and the handshake protocol.

Supported instruction subset

The subset of supported instructions from the RISC-V vector extension (V) includes:

• Integer arithmetic instructions:

– Addition, Subtraction, Multiplication, Multiply-Accumulate, Division (For
the first four types it is supported the single-width and the widening
variant).

– Logic operations: AND, OR, XOR.
– Shift operations: logical shift left, logical and arithmetic shift right,

narrowing shift right.
– Comparison operations: equal, not equal, lower, lower or equal, greater.
– Extension operations: it executes a zero or sign extension of a source

vector integer operand with EEW less than SEW to fill SEW-sized elements
in the destination. The EEW of the source is 1/2, 1/4, or 1/8 of SEW, while
the destination has EEW equal to SEW and EMUL equal to LMUL.

– Move operations: vector integer move instructions copy a vector source
operand to a vector register group, while the integer scalar read/write
instructions transfer a single value between a scalar register and element
0 of a vector register.

– Min/Max operations: they find the minimum or maximum between two
signed/unsigned integer operands.

• Integer reduction instructions: Vector reduction operations take a vector
register group and a scalar held in element 0 of a vector register; they perform
a reduction using some binary operators to produce a scalar result in element
0 of the destination vector register.
The supported reduction operations are: addition (both single-width and
widening variant), logic operations (AND, OR, XOR), minimum and maximum.

• Strided load-store instructions: it is supported the constant-stride and
unit-stride addressing mode. Vector unit-stride operations access elements

20

3.1 – Top level architecture

stored contiguously in memory starting from the base effective address. Vec-
tor constant-strided operations access the first memory element at the base
effective address, and then access subsequent elements at address increments
given by a byte offset (the following paragraph 3.1.2 is dedicated on the choice
of the Load-store unit implementation).

Vector instructions expect these possible type of source operands:

• VECTOR: the operand is a vector coming form the vector register file. It
has EEW and EMUL used to determine the size and location of all the elements
within a vector register group.

• SCALAR: the operand is a scalar value coming from the scalar register file.

• IMMEDIATE: the operand an immediate encoded in the vector instruction.

Vector instructions expect these possible type of destinations:

• VECTOR: the destination is a vector so, once the instruction result is available,
it is saved in the vector register file.

• SCALAR: the destination is a scalar value so, once the instruction result is
available, it is sent to the scalar core.

Among the unsupported instructions, there are:

• Vector mask operations: vector mask-register operations work on mask regis-
ters. The latter are vector registers where each element is a single bit, so these
instructions all operate on single vector registers regardless of the setting of
SEW and LMUL.

• Addition with carry and Subtraction with borrow: they are addition (subtrac-
tions) which consider also the carry (borrow) input and the carry (borrow)
output. The carry inputs and outputs are represented using the mask register
layout, so each carry fills one bit of a mask register.

• Merge operation: they combine two source operands based on a mask. For
elements where the mask value is zero, the first operand is copied to the
destination element, otherwise the second operand is copied to the destination
element.

• Permutation operations: they are used to move elements around within the
vector registers (from this category, only the integer scalar move is supported).

21

Design and Implementation

• Indexed load-store operations: each element stored in memory is at the effective
address given by the sum of a base address to an offset stored in each element
of a vector source operand.

• Floating-point operations.

The way in which the vector processing unit is structured would lead to not exe-
cuting these types of instructions efficiently. The processor architecture is thought
to be divided into lanes, each of them processing different elements of a vector. So,
lanes work in parallel and each of them does not interact with the others.
The unsupported instructions would involve data exchange between different lanes,
leading to implement a complex connection logic in order to support different ele-
ment widths. For example, considering a situation in which LMUL = 1 and SEW = 16
bits, each lane contains four elements of a vector (LANE_WIDTH/SEW = 64/16 = 4).
If we want to execute instructions involving masks like addition with carry, each
mask element is one bit so each lane contains 64 mask elements. In order to process
four elements for each lane, we need to spread the mask elements such that only four
mask elements remain in each lane. Obviously, this reasoning must be extended to
all possible element widths (SEW). So, instructions involving massive interaction
between lanes (like masking operations or permutations) are not implemented; the
best solution is to implement a separate unit that handles this type of instructions
in a more optimized way.
There are only two exceptions which include operations involving interaction be-
tween different lanes and they are the widening or narrowing variant of some
instructions and the extension operations. They work with operands with two
times (widening, narrowing, extension by two), four times (extension by four) or
eight times (extension by eight) the element width, so it is needed to extend the
operands and spread them in different lanes. However, this can be done with a
quite regular structure since the possible movements between lanes are limited
having few extension factors.
A second reason behind the exclusion of some instruction types relies on the possible
applications that can take advantage of a vector processor. For example, considering
deep learning applications using neural networks, the operations most commonly
executed by the algorithms concern sums, multiplications and above all MACs.
This is further explained in [2], which considers also the possibility of enabling
efficient processing of deep neural networks by reducing the precision of operations
and operands. This can be achieved by moving from floating-point to fixed-point
or even integer operations, which reduces the energy and area cost and it does not
have a significant impact on accuracy if managed in the right way.
In the face of these considerations, attention has been focused on the most common
integer operations for this type of applications.

22

3.1 – Top level architecture

Load-store unit implementation

In the vector processor, the load-store unit has been implemented with an emulator
which cannot be synthesized. It executes strided load-store instructions, interacting
with a memory emulated with a SystemVerilog class and a file.
This choice comes from the fact that, usually, the way in which the load-store unit
is implemented strongly depends on the final application in which the processor
will have to work and the host memory architecture. In this way, depending on
the target of the processor, the load-store unit can be optimized in a suitable way.
Since this is a project not aimed at a specific application yet, it was decided to
implement an emulator for the load-store unit in order to describe at a higher
level the functions that this unit must perform and focus more attention on the
implementation of other components.
This is a preliminary discussion about the load-store unit implementation, but a
detailed explanation of this module is reported in the section 3.8.

Handshake protocol

In order to be compliant and synchronized with LEN5 (and possibly with other
modular systems), the vector processing unit follows its same handshake protocol
both for the communication between the internal units and for the interface with
the scalar core itself. This protocol allows to have a modular design with latency-
independent components: different sub-units can have a variable latency and,
thanks to the handshake signals, all communications remain synchronized.
So, the vector processing unit uses an AXI-like handshake protocol (without being
AXI-compliant), based on two main signals:

• valid: the sender sends this signal to inform the receiver that the data on the
bus is valid in this clock cycle.

• ready: the receiver sends this signal to inform the sender that it can accept
the data.

The data is considered transferred only when both the valid and the ready signals
are asserted in the same clock cycle.
For further details, the complete explanation of this handshake protocol is reported
in LEN5 execution pipeline design [19].

Control model

As for the handshake protocol, also for the control model of most components
inside the vector processing unit, the same methodology of LEN5 is followed.
The idea is that Moore FSMs is not the best solution in order to control different

23

Design and Implementation

data structures efficiently. In a Moore FSM, the input signals of the control unit
(i.e. status signals of the data structure) are used to update the state of the FSM
through the next state generation combinational network. On the next clock cycle,
the output evaluation network generates the control signals for the data structure.
This mechanism requires two cycles to update the data structure and this leads to
increase the latency and consequently to performance degradation.
For most of the data structures inside the vector processing unit, the adopted
solution considers that the operation to be performed is decided based on the status
of the data structure itself: there is a combinational network that produces the
control signals based on the status signals of the data structure and the requests of
other components. So, modules can be seen as FSMs where the status is encoded in
the data structure itself, without being explicitly defined. Since the data structure
is a sequential block, its status is always updated synchronously so this separates
the input signals of the control combinational network from its output signals, as
it happens in a Moore FSM. Then, the updated status and values will be available
from the next cycle, thus reducing the latency from two clock cycles of the FSMs
to one clock cycle.
For further details, always refer to LEN5 execution pipeline design [19].

Even though for most of the modules the approach described above is used, in
some cases it has been decided to use explicit Moore FSMs. This is because in
some components the control part is very complex and/or more delicate, and a
Moore FSM is easier to describe and validate than a combinational control logic.
An example is given by the control unit of the operand requester for the arithmetic
instructions inside the scheduling logic. This is used to fetch the operands from the
vector register file in case of arithmetic operations. It iterates with the requests
until all needed registers belonging to a register group are read. Since it is necessary
to manage different types of instructions (widening, narrowing, extensions or other
categories of arithmetic operations) with different operand types (vector, scalar
or immediate), this FSM is divided into many branches, one for each type of
instruction “category”. In this way, each type of instruction can perform operands
fetch according to its needs.
Obviously, this leads to a FSM with a lot of states (170) and an average latency of
about 7 clock cycles. Certainly, this represents a bottleneck of the design and it
will have to be subject to future optimizations, but for a first implementation, the
use of a Moore FSM has allowed to easily describe the branches with all possible
instruction types making it much easier to debug this structure, which would have
been very difficult using combinational control logic.

From here on, all components of the vector processing unit are described with
further details.

24

3.2 – Instruction Decoder

3.2 Instruction Decoder
The instruction decoder is the first module of the vector processing unit, positioned
at the interface with the scalar core.
Since the vector processor is a co-processor thought to be integrated inside a scalar
core, it is expected that all instructions (both vector and scalar) are first sent to
the scalar core; the latter performs a first decoding in order to identify the type
of instruction. If it is a vector instruction, the scalar core understands if some
scalar operands are needed (rs1 and/or rs2); if this is the case, it executes the
scalar operands fetch from the scalar register file, or forwards them from the other
scalar units as soon as they are available. Another operation that it performs is
to allocate one entry in the Reorder Buffer (ROB) for the vector instruction: this
ensures the correct synchronization between the execution of scalar and vector
instructions, since, while the co-processor is executing vector instructions, the scalar
core can continue to execute scalar instructions and the ROB guarantees that all
instructions are committed in program order.
Once these operations are performed, the instruction is sent to the reservation
station dedicated to the vector instructions. Here, once all the scalar operands are
available (if needed), a valid signal is sent to the vector processing unit to notify it
that a new instruction is available; the valid is received by the instruction decoder ,
which propagates it to the instruction status table (the instruction decoder is purely
combinational, so handshake signals are simply forwarded to the upstream and
downstream hardware). When the instruction status table asserts a ready signal,
the instruction is sent to the vector processing unit along with scalar operands (if
needed) and the index of the ROB entry where the vector instruction is stored. At
this point, the instruction arrives at the instruction decoder , which decomposes
it in different fields depending on its type; after this operation, the instruction
decoder sends the instruction to the instruction status table.
A block scheme of the instruction decoder is shown in figure 3.2, where the handshake
signals valid and ready are shown in light blue.

Before describing how the instruction decoder works, some basic information about
the instructions format is presented.
RISC-V uses instructions with a fixed length of 32 bits; depending on its type,
each instruction is divided into different fields, holding distinct information. The
different formats to represent vector instructions can be seen in figure 3.3.
All instructions, both scalar and vector, have a 7-bit OPCODE (ins[6:0]) field,
which allows to distinguish between loads, stores and arithmetic operations.
Going into details of the different fields, the load and store instructions have:

• nf: it is used for the load-store segment instructions, which move multiple
contiguous fields in memory to and from consecutively vector registers. The

25

Design and Implementation

Decoder Combinational Logic

Instruction +

Scalar operands +

destination ROB index

CORE (Vector RS)

DECODER

INSTRUCTION STATUS
TABLE

Figure 3.2: instruction decoder block diagram

nf field is an unsigned integer that contains one less than the number of fields
per segment (i.e. one less than the number of registers groups involved in one
instruction).

• mop: it represents the addressing mode, so it allows to distinguish between
strided and indexed load-store operations.

• vs2/ rs2: for strided load-store operations, the scalar register rs2 contains
the stride, meaning the byte offset between subsequent elements in memory;
for indexed load-store operations, each element of the vector register vs2
contains the offset at which the element is present in memory.

• rs1: scalar register rs1 contains the base address; in order to find the effective
address it is needed to sum rs1 to rs2 for the strided operations and to each
element of vs2 for the indexed operations.

• width: vector loads and stores have EEW encoded directly in this field. Strided
instructions use EEW encoded in the instruction for the data values; indexed
instructions use the EEW encoded in the instruction for the index values and
SEW, coming from the CSRs, for the data values.

• vd/ vs3: for the load instructions, vd is the destination vector register; for
the store instructions, vs3 contains the elements to be stored in memory.

26

3.2 – Instruction Decoder

Figure 3.3: RISC-V vector extension instruction format (taken from the RISC-V
“V” specifications [9])

Looking at the different fields of the arithmetic instructions, we have:

• vs2: it is the first vector source operand.

• vs1/ rs1/ imm: it is the second operand, which can be the vector register vs1,
the scalar register rs2 or the immediate value.

• vd/ rd: it is the vector destination register vd or the scalar destination register
rd.

• funct6: it specifies the type of arithmetic operation to be executed.

27

Design and Implementation

• funct3: it specifies the operand types. The possible combinations are:
VECTOR-VECTOR, VECTOR-SCALAR, VECTOR-IMMEDIATE.

The instruction decoder receives the instruction from the scalar core and, starting
from the OPCODE field, it analyses the instruction according to its fields. Then,
it generates an output with all the information required to execute the instruction.
The data generated by the instruction decoder is made up of:

• vs1_idx and vs1_needed: index of vs1 register and if it has to be read.

• vs2_idx and vs2_needed: index of vs2 register and if it has to be read.

• vd_vs3_idx and vd_vs3_needed: index of vd or vs3 register and if vs3 has
to be read.

• operand_type: for the arithmetic operations it specifies the operand types
(funct3); for the load-store instructions it specifies the width.

• destination_type: it can be VECTOR or SCALAR for arithmetic instruc-
tions or LS_OP for load-store instructions.

• rs1_value: rs1 scalar value.

• rs2_value: rs2 scalar value.

• dest_rob_idx: index of the ROB entry where the vector instruction is stored
(in the scalar core).

• nf: it specifies nf for load-store instructions.

• ls_add_mode: it represents the addressing mode of load-store instructions,
STRIDED or INDEXED.

• imm: immediate value, already sign or zero extended to 64 bits depending on
the instruction type;

• func_unit_type: it specifies the type of the functional unit in charge of
executing the instruction: LOAD, STORE, ALU, MUL, DIV, MAC, RED
(reduction unit).

• operation: it specifies in details the type of arithmetic operation that must
be executed;

28

3.3 – Instruction Status Table

3.3 Instruction Status Table
The instruction status table is a FIFO buffer that keeps track of the status of
instructions under execution. If the instruction status table is ready to receive new
data and there is a valid instruction available from the scalar core in the same
clock cycle, then the instruction passes through the instruction decoder (where it
is analyzed) and is stored in the instruction status table.
Then, the hazard check is performed by accessing the hazard detection unit inside the
scheduling logic; if the instruction can be executed without hazards, the instruction
status table sets it as busy and sends it to the operand requester inside the scheduling
logic for the operands fetch. Each instruction is not removed by the instruction
status table until it completes its execution.

Going into further details of the data structure, the instruction status table is a
circular FIFO buffer where one entry contains a single instruction. Each entry
contains all information sent by the instruction decoder (see the previous section
3.2) with an additional field that encodes the state of the instruction. This status
can be:

• NOT_VALID: the entry does not contain any valid instruction.

• READY_HAZ_CHECK: the entry contains a valid instruction that is ready for the
hazard check.

• READY_EXEC: the entry contains a valid instruction that passed the hazard
check and it is ready to be executed.

• BUSY: the entry contains a valid instruction that is under execution.

• COMPLETED: the entry contains a valid instruction that is completed.

In addition to the FIFO structure, there are four modulus counters whose output
is used to address four entries of the buffer. In particular, there are:

• Tail counter: it points to the first free entry of the instruction status table.

• Head counter: it points to the entry storing the oldest instruction.

• Hazard counter: it points to the entry holding the instruction ready for the
hazard check.

• Execution counter: it points to the entry holding the instruction ready for
the execution.

29

Design and Implementation

In order to control these components, a combinational control logic is exploited
(refer to 3.1.2 for details related to its characterization). It generates the control
signals considering the status of the FIFO and the requests of contiguous units.
A block scheme of the instruction status table can be seen in figure 3.4.

Execution C
ounter

D
EC

O
D

ER

H
ead C

ounter

IN
STR

U
C

TIO
N

STATU

S TABLE

C
ontrol

C
om

binational
Logic

Tail C
ounter

status
C

ontrol signals

enable

enable

enable

H
azard C

ounter

R
EG

ISTER
STATU

S TA
B

LE
PR

O
C

ESSIN
G

ELEM
EN

T STATU
S

TA
B

LE

O
PER

A
N

D
R

EQ
U

ESTER

enable

DESTINATION
TABLE

Instruction

com

pleted

Control signals

Control signals

status signals

D
ata H

azard C
heck data

C
om

pletion data

C
om

pletion data
Structural H

azard C
heck data

(SC
H

ED
U

LIN
G

 LO
G

IC
)

Figure 3.4: instruction status table block diagram

30

3.3 – Instruction Status Table

In the following paragraphs, the different operations carried out by the control
logic are presented.

Push

If the entry pointed by the tail counter is NOT_VALID, the ready signal is asserted,
meaning that the instruction status table has a free space to store a new instruction.
If the valid signal coming from the scalar core and propagated through the instruc-
tion decoder is asserted in the same clock cycle, a PUSH operation is executed: the
instruction is saved in the free entry with the status of READY_HAZ_CHECK and the
tail counter is incremented.
If the instruction status table is full, it does not assert the ready; if in the same clock
cycle a valid is asserted by the scalar core, the instruction status table cannot accept
the instruction. In this case, no new instruction is pushed into the buffer, and
the tail counter is not incremented. In the next clock cycles, the same checks are
performed again until the entry pointed by the tail counter reaches the NOT_VALID
status.

Hazard check

When the entry pointed by the hazard counter is in READY_HAZ_CHECK status, it’s
time to perform both structural and data hazard checks.
For the data hazards, the instruction status table needs to access the register
status table inside the hazard detection unit in the scheduling logic, which keeps
track of what vector registers are available in the vector register file. If the register
groups1 related to the source operands are available in the vector register file, the
instruction passes the data hazard check; then, the register status table is updated
by setting the destination register group as not available in the vector register
file. In this way, RAW hazards are prevented: if a newer instruction has as source
operands the same registers as the destination of an older instruction, the newer
one cannot be executed since it sees its source operands as not available in the
vector register file.
For the structural hazards, the instruction status table needs to access the
processing element status table inside the hazard detection unit in the scheduling
logic, which keeps track, for each arithmetic operator inside each processing element
if it is available for executing the instruction. Then, the first available arithmetic
operator and processing element are assigned to the instruction pointed by the

1Since each vector instruction can involve from 1 to 8 source/destination registers depending
on nf, EEW and VL parameters, data hazard checks are performed on all the registers belonging to
a group. If one instruction has some scalar source operands, obviously they are not considered.

31

Design and Implementation

hazard counter and the processing element status table is updated by setting as
busy the assigned arithmetic operator. In the case of load-store instructions, these
are all directly assigned to the unique load-store unit so they do not access the
processing element status table.
The instruction remains in the READY_HAZ_CHECK state until all the hazard checks
are passed (the source operands are available in the vector register file and one
arithmetic operator is assigned to the instruction); once these operations are
performed successfully, the entry status of the instruction status table is set as
READY_EXEC and the hazard counter is incremented.

Execution

If the entry pointed by the execution counter is in the READY_EXEC status, the
valid signal is sent to the operand requester inside the scheduling logic. If the latter
asserts a ready in the same clock cycle, the instruction is sent to the scheduling
logic to start the operands fetch. Then, the entry status of the instruction status
table becomes BUSY and the execution counter is incremented.
If the operand requester does not assert the ready, the entry status of the instruction
status table remains in the READY_EXEC status and the execution counter is not
incremented. In the next clock cycles, the same checks are performed again until
the operand requester becomes ready to accept a new instruction.

Pop

An instruction passes from BUSY to COMPLETED once it finishes its execution. This
event is notified by the destination table, which sends a completion signal along
with the instruction status table entry’s index where the completed instruction is
stored.
If the entry pointed by the head counter is in the COMPLETED status, then its status
is set as NOT_VALID and the head counter is incremented. At the same time, the
register status table is updated by setting the destination register group of the
instruction as available in the vector register file; the processing element status table
is updated by setting the arithmetic operator used by the instruction as not busy.
In this way, the pop operation is performed, by definitely removing the instruction
from the instruction status table.

32

3.4 – Scheduling Logic

3.4 Scheduling Logic

The scheduling logic is a quite complex component, made up of two units: the
hazard detection unit contains the structures used for the hazard checks and the
operand requester contains the logic used for the operands fetch.
Considering the hazard detection unit, this is made up of the register status table
and the processing element status table: the first one is used for the data hazard
check, while the second one is used for the structural hazard check.
The operand requester performs the operands fetch from the vector register file for
instructions that passed the hazard check. The operand requester is divided into
lanes, such that each lane makes a request for the data stored in the corresponding
lane of the vector register file. Once the operands are ready, if the instruction is
arithmetic, each lane of the operand requester sends the data to the corresponding
source table and it allocates one entry in the corresponding destination table; for
the load-store instructions, the operand requester sends the data directly to the
load-store unit.
A block scheme of the scheduling logic can be seen in figure 3.5.

SCHEDULING LOGIC

Hazard Detection

Unit

INSTRUCTION STATUS TABLE

Register Status Table
Processing Element

Status Table

Operand

Requester

LOAD/STORE
UNIT

VECTOR

REGISTER FILE

SOURCE
TABLES

DESTINATION
TABLES

Figure 3.5: scheduling logic block diagram

33

Design and Implementation

3.4.1 Hazard Detection Unit
The hazard detection unit contains the structures to support the data and structural
hazard checks.
The register status table, used for the data hazard check, is a buffer holding the
information about the availability of registers in the vector register file.
The processing element status table, used for the structural hazard check, is a table
holding the information about the availability of the functional units and processing
element.
They are controlled by the control logic of the instruction status table and they
exchange data with it.
In the figure 3.6 it is possible to see a block diagram of the hazard detection unit and
in the following paragraphs the structure and the behavior of the two components
are presented.

PE 0

PE k-1

ALU0 MUL0

Processing Element Status Table

ALUx MULxDIV0 DIVx

INSTRUCTION STATUS TABLE

Register Status Table

VRF present
v0

v31

C
om

pl
et

io
n

da
ta

St

ru
ct

ur
al

 H
az

ar
d

C
he

ck
 d

at
a

C
on

tro
l s

ig
na

ls

Control signals

Data Hazard

Check data

Completion data

HAZARD DETECTION UNIT

RED

Output Generator

Figure 3.6: hazard detection unit block diagram

Register Status Table

The register status table is a buffer that stores, for each vector register, a 1-bit
information about a vector operand availability in the vector register file. In
particular, the bit is set to 1 if the register’s value is available in the register file; 0
if the value is being computed by an in-flight instruction.

34

3.4 – Scheduling Logic

Since each vector instruction can involve from 1 to 8 source/destination registers
depending on nf, EEW and VL parameters, data hazard checks are performed on all
the registers belonging to a group. In particular, arithmetic instructions considers
a number of registers equal to G

VL · EEW
VLEN

H
(3.3)

while load-store instructions consider a number of registers equal toG
VL · EEW

VLEN
· nf

H
(3.4)

Possible scalar operands are obviously not considered as they are handled by the
scalar pipeline.

In order to perform the data hazard check, the instruction pointed by the hazard
counter in the instruction status table sends its data to the register status table.
Depending on the type of instruction, the register status table checks if the source
register groups are available in the vector register file: if the bits corresponding to
all registers of the source groups are set to 1, then the hazard check is passed and
the instruction can be executed.
Once the data hazard check is passed, the register status table is updated by setting
the destination register group as not available in the vector register file, clearing the
corresponding bits. In this way, RAW hazards are prevented: if a newer instruction
has as source operand any register inside the destination register group of an older
instruction, the former cannot be executed until the latter commits its result(s) in
the vector register file.

Each time the instruction pointed by the head counter in the instruction status
table is completed, the register status table is updated by setting its destination
register group as present in the vector register file (the corresponding bits are set
to 1). In this way, if one instruction has the same registers as source operands, it
can continue with its execution, as explained in the previous paragraph.

Processing Element Status Table

The processing element status table is a memory structure modeled as a bi-
dimensional array that stores, for each processing element, what functional units
are available for executing one instruction. In case of load-store instructions, these
are all directly assigned to the unique load-store unit so they do not access to the
processing element status table and the latter contains only information related to
functional units for arithmetic instructions.
Each cell of the table holds a 1-bit information: the bit is equal 1 if the arithmetic

35

Design and Implementation

operator can execute one instruction; the bit is equal 0 if the arithmetic operator
is busy (i.e., assigned to a previous in-flight instruction). The size of the table is
parametric: the number of the rows is equal to the number of processing elements;
the number of the columns is equal to the number of all the functional units present
in each lane of the processing element.

The output generator network, shown in figure 3.7, selects the first available
arithmetic operator for the first available processing element. In particular:

• For ALU (MUL, DIV) instruction types, there is a first priority encoder
which selects the first processing element with at least one ALU (MUL, DIV)
available along with a valid output. Once the processing element is chosen, it
is necessary to select which ALU (MUL, DIV) will execute the instruction.
So, the output of the encoder is used as a selection signal for a multiplexer
that outputs all the ALUs (MULs, DIVs) for the chosen processing element.
They are sent to a second priority encoder which chooses the first ALU (MUL,
DIV) available.
Narrowing operations, instead, can be executed only by the first ALU. For this
reason, in the processing element status table there is one priority encoder that
selects the first processing element having the first ALU available. This allows
having, for each processing element, only one narrowing compressor which
halves the size of the output results from the ALU 0 (refer to the processing
element section 3.7 for further details).

• Multiply–accumulate (MAC) operations need both one multiplier (for the
multiplication) and one ALU (for the accumulation). In order to not have a
complex connection network between all ALUs and all MULs in the processing
element to allow all combinations of use, only the last ALU and the last MUL
can execute MAC instructions. Then, in the processing element status table a
priority encoder selects the first processing element which has both the last
ALU and the last MUL available.

• Reduction (RED) operations are executed by a single reduction unit inside
one processing element. For this reason, in the processing element status table
there is one priority encoder that selects the first processing element having
the reduction unit available.

In order to pass the structural hazard check, the instruction status table needs to
monitor the valid signals produced by the priority encoders. In particular, looking
at the type of instruction pointed by the hazard counter, it checks the valid signal
of the encoder processing the corresponding instruction type. If there is a valid
processing element, then this is assigned to the instruction along with the index of
the selected functional unit. Then, the processing element status table is updated

36

3.4 – Scheduling Logic

by setting as busy that functional unit (the bit is cleared).
When the instruction pointed by the head counter in the instruction status table is
completed, the processing element status table is updated by setting as available
the corresponding functional unit (the bit is set to 1).

A
LU

 P
rio

rit
y

E
nc

od
er

A
LU

 P
E

 P
rio

rit
y

E
nc

od
er

ALU PE valid

ALU PEPE0 ALU0 ALUx

PEk-1 ALU0 ALUx

M
U

L
P

E
 P

rio
rit

y
E

nc
od

er
D

IV
 P

E
 P

rio
rit

y
E

nc
od

er
M

A
C

 P
E

 P
rio

rit
y

E
nc

od
er

R
E

D
 P

E
P

rio
rit

y
E

nc
od

er

PE0 ALU0 ALUx

PEk-1 ALU0 ALUx

M
U

L
P

rio
rit

y
E

nc
od

er

PE0

PEk-1

D
IV

 P
rio

rit
y

E
nc

od
er

MUL0 MULx

MUL0 MULx

PE0

PEk-1

MUL0 MULx

MUL0 MULx

DIV0 DIVx

DIV0 DIVx

PE0

PEk-1

DIV0 DIVx

DIV0 DIVx

PE0

PEk-1

ALUx-1 MULx-1

ALUx-1 MULx-1

PE0

PEk-1

PE0

PEk-1

ALU

MUL PE valid

MUL PE

MUL

DIV PE valid

DIV PE

DIV

MAC PE valid

MAC PE

RED PE valid

RED PE

O
ut

pu
t G

en
er

at
or

RED

RED

IN
ST

R
U

C
TI

O
N

 S
TA

TU
S

TA
B

LE

N
ar

ro
w

 P
E

P
rio

rit
y

E
nc

od
er

PE0

PEk-1
Narrow PE valid

Narrow PE

ALU0

ALU0

Narrowing

operation

0

Figure 3.7: Output generator of the processing element status table

37

Design and Implementation

3.4.2 Operand Requester

The operand requester , which is shown in figure 3.8, is responsible for executing the
operands fetch from the vector register file. It has to manage both arithmetic and
load-store instructions: the arithmetic operations are handled by the arithmetic
instruction buffer , while the load-store operations are handled by the load-store
instruction buffer .
When an instruction arrives at the operand requester , the latter sends to the
position index table two information: the index of the ROB entry where the vector
instruction is stored (in the scalar core) and the index of the instruction status
table entry where the vector is stored. This allows to address information in the
correct positions of the data structures. Further details related to the position
index table are reported in section 3.6.3.

In the following paragraphs, each component of the operand requester is discussed
in further detail.

Activation Instruction Buffer CU

It is a Moore FSM, which waits for a valid instruction coming from the instruction
status table. Once the latter sends a valid signal, the CU sends a start signal to
the arithmetic instruction buffer or to the load-store instruction buffer , depending
on the type of instruction. Then it waits until the instruction is processed and
successively it returns to wait for new instructions.
A flow chart of this CU is reported in figure 3.9. Given that reporting CUs in
full would lead to illegible schemes, groups of states have been merged into macro
operations represented by the red boxes. In order give an idea of the latency, the
number of states in each group is reported at the bottom right of each macro state.

From how this CU is designed, it is clear that arithmetic and load-store instructions
cannot be processed in parallel (since the activation instruction buffer CU always
waits that both the instruction buffers are free before accepting a new instruction,
independently from its type). This is not an optimal solution but it is necessary in
order to keep the indispensable in-order instructions commit: the operand requester
is used to allocate the entries of the destination table, which is responsible for the
write-back operation in the vector register file. So, it is fundamental to compile the
destination table following the instructions order to consequently have an in-order
commit. For this reason, only one instruction at a time is processed by the operand
requester .

38

3.4 – Scheduling Logic

O
PE

R
AN

D

R
EQ

U
ES

TE
R

C
U

C
on

tro
l s

ig
na

ls
st

at
us

AR
IT

H
M

ET
IC

 IN
ST

R
U

C
TI

O
N

 B
U

FF
ER

La
ne

 0

R
ea

d
R

eq
ue

st
Va

lid

So
ur

ce
 R

eg
is

te
rs

in

de
xe

s
an

d
ba

nk
s

D
at

a
to

D

es
tin

at
io

n
Ta

bl
e

D
at

a
to

So

ur
ce

 T
ab

le

C
U

C
on

tro
l s

ig
na

ls
st

at
us

LO
AD

-S
TO

R
E

IN

ST
R

U
C

TI
O

N
 B

U
FF

ER

R
eg

is
te

r S
ec

tio
ns

to
 R

ea
d

C
om

pu
ta

tio
n

Lo
gi

c

Ac
tiv

at
io

n
In

st
ru

ct
io

n
Bu

ffe
r C

U

PO
SI

TI
O

N
 IN

D
EX

 B
U

FF
ER

VE
C

TO
R

R

EG
IS

TE
R

 F
IL

E

SO

U
R

C
E

TA
B

LE
S

D
ES

TI
N

AT
IO

N
TA

B
LE

S
PO

SI
TI

O
N

IN
D

EX
TA

B
LE

IN
ST

R
U

C
TI

O
N

 S
TA

TU
S

TA
B

LE

LO
A

D
/S

TO
R

E
U

N
IT

La
ne

 N
-1

Figure 3.8: operand requester block diagram

39

Design and Implementation

Wait for a valid
instruction

START

no yes
Valid from

Instruction Status

Table?

yes noArithmetic

instruction?

Process instruction in the
Arithmetic Instruction Buffer

yesno
Instruction

Buffers contains valid

data?

yes no
Instruction

Buffers contains valid

data?

1

3

Process instruction in the
Load-Store Instruction

Buffer 3

Figure 3.9: activation instruction buffer CU flow chart

Register Sections to Read Computation Logic

In order to perform the operands fetch, it is necessary to know what registers
need to be read from the vector register file. As already mentioned in the previous
sections, one instruction can involve not only a single vector register, but a group
of maximum eight registers. Moreover, the vector register file is divided into lanes,
each of them being 64-bit wide (i.e. LANE_WIDTH) and containing different elements
of a vector.
An additional information concerns how a vector register is represented in the lanes
of vector register file and, to simplify the explanation, an example is described.
Let’s consider a parameters configuration with VLEN = 512 bits and NUM_LANE = 4,
then we should have a LANE_WIDTH = 512/4 =128 bits to fit the register in the
lanes. But this is not possible since the lane width is fixed to 64 bits. In order
to solve the situation in which a physical vector register does not fit lanes with
LANE_WIDTH = 64 bits, it is thought to design each lane as a group of banks: each

40

3.4 – Scheduling Logic

bank in one lane contains different elements of the same vector register. Considering
the previous example, we will have VLEN = 512 bits, NUM_LANE = 4 and two banks
for each lane in order to have a LANE_WIDTH = 512/(4 · 2) = 64 bits. The complete
explanation of how the vector register file is structured is in the section 3.5.

The register sections to read computation logic first computes how many LANE_WIDTH
sections contained in each source register group must be read and this is equal to

Total reg. sec. to read =
G

VL · EEW
LANE_WIDTH

H
(3.5)

Then, this number is divided between all lanes in order to find the number of
registers sections to read for each lane.
The figure 3.10 reports an example that can clarify the explanation. Let’s consider
a small register file with four registers, each with a size of VLEN = 256 bits. By
setting the number of lanes to two, we can derive that the number of banks for each
lane is also equal to two. Each vector has EEW = 16 bits so it contains 16 elements.
If we want to read 26 elements from the register file, first of all it is necessary to
consider a group of two registers (v0 and v1); then, we need to read a total of seven
LANE_WIDTH sections, four of which from lane 0 and three from lane 1.

V0	 B0

V0	 B1

V1	 B0

V1	 B1

0 1 2 3
16 17 18 19

8 9 10 11
24 25

4 5 6 7
20 21 22 23

12 13 14 15

V2	 B0

V2	 B1

V3	 B0

V3	 B1

LANE 0 LANE 1

VLEN 		 = 256 bits

NUM_LANE 	 = 2

EEW 		 = 16 bits

VL 	 	 = 26

NUM_BANKS_PER_LANE = 2

Total register sections to read = 7

Register sections in Lane 0 = 4

Register sections in Lane 1 = 3

LANE_WIDTH

Figure 3.10: Example of how the register sections to read are distributed in the
lanes

This module sends the number of LANE_WIDTH sections to read for each lane to the
arithmetic instruction buffer and load-store instruction buffer so they can correctly
iterate with the requests to the vector register file until all elements are read.

In this module it is also computed the number of bytes inside each LANE_WIDTH
section which must be considered as valid data for the future instruction execution.
Considering the example 3.10, from bank 1 of lane 0 of vector v1 it is necessary
to consider only two elements, so only the first four bytes must be processed by

41

Design and Implementation

the processing element. In the same way, the destination register will receive the
results, which will be written in the first four bytes of the LANE_WIDTH section,
leaving the others unchanged.

Arithmetic Instruction Buffer

The arithmetic instruction buffer is responsible for executing the operands fetch
for the arithmetic instructions.
This data structure is replicated for each lane so that each arithmetic instruction
buffer performs a requests for source operands2 to the corresponding lane of the
vector register file. Once the fetch operation is executed, each arithmetic instruction
buffer sends the data to the corresponding source table and it allocates one entry
in the corresponding destination table.
From here to the end of the paragraph, the arithmetic instruction buffer of a single
lane is described and its block scheme is in figure 3.11.

The module is made up of:

• One buffer storing the instruction and the source operands values read from
the vector register file. An important notice is that each time the arithmetic
instruction buffer makes a request to the vector register file, the latter, if it is
ready, outputs a data value that is LANE_WIDTH wide. So this data, which is
saved in the buffer, can contain one 64-bit element, two 32-bit elements, four
16-bit elements or eight 8-bit elements depending on the element width.

• Four counters:

– vs1_banks_counter: it iterates on the banks of a single register belonging
to vs1 register group. The output of the counter is sent to the vector
register file in order to read the correct bank of vs1.

– vs2_banks_counter: it iterates on the banks of a single register belonging
to vs2 register group. The output of the counter is sent to the vector
register file in order to read the correct bank of vs2.

– vd_banks_counter: it iterates on the banks of a single register belonging
to vd register group. The output of the counter is sent to both the vector
register file and destination table: if vd is a source operand, it is used to
read the correct bank inside the vector register file; if vd is a destination,
it is used to know the correct bank in which the result has to be stored.

2For arithmetic operations, the first source operand is vs2 and the second can be vs1, rs1 or
imm; it is possible to have a third operand for the MAC instructions and it is represented by vd.

42

3.4 – Scheduling Logic

A
rit

hm
et

ic
 In

st
ru

ct
io

n
B

uf
fe

r
C

U

A
R

IT
H

M
E

TI
C

IN

S
TR

U
C

TI
O

N

B
U

FF
E

R

A
ct

iv
at

io
n

In
st

ru
ct

io
n

B
uf

fe
r C

U

R
eg

is
te

r S
ec

tio
ns

 to
R

ea
d

C
om

pu
ta

tio
n

Lo
gi

c
INSTRUCTION

STATUS TABLE

C
ou

nt
er

s

E
xt

en
si

on
ne

tw
or

k

VE
C

TO
R

R

EG
IS

TE
R

FI
LE

 L
A

N
E

SO
U

R
C

E
TA

B
LE

D

ES
TI

N
AT

IO
N

TA
B

LE

O
P

E
R

A
N

D
E

X
TE

N
D

E
R

O
P

E
R

A
N

D
E

X
TE

N
D

E
R

O
P

E
R

A
N

D
E

X
TE

N
D

E
R

SO
U

R
C

E
TA

B
LE

vs
2

va
lu

e

Figure 3.11: arithmetic instruction buffer block diagram

43

Design and Implementation

– reg_sec_counter: it iterates on the total number of LANE_WIDTH register
sections inside a register group. This counter is loaded with the value
computed by the register sections to read computation logic.

• An extension network at the output of the buffer, used to possibly sign- or
zero- extend the values of the source operands before they are sent to the
source table.

• A Moore FSM used for the control of the data structure.

Considering the extension network, this is used for widening, narrowing and
extension operations where the element width of the result is different from the
element width of the operands. The necessity of extending the data has the
consequence of possibly transferring them between different lanes and therefore
between different arithmetic instruction buffers.
An example, which is reported in figure 3.12, considers NUM_LANE = 2 and SEW = 32
bits, so in each LANE_WIDTH section there are two elements, for a total of four
elements. If we have to double them for a widening operation, we should have
two elements with EEW = 64 bits in each arithmetic instruction buffer . But this is
not possible (always because it would exceed the maximum size of 64 bits), so the
solution assumes that two iterations are needed in order to correctly manage the
data. The first iteration considers the elements in lane 0: the element 0 remains in
arithmetic instruction buffer 0 where it is extended to 64 bits, while the element 1
is sent to arithmetic instruction buffer 1 where it is extended. The second iteration
considers the elements in lane 1: the element 2 is sent to the arithmetic instruction
buffer 0, while the element 3 remains in the arithmetic instruction buffer 1. The
consequence is that it takes twice as long to manage the widening operations. Then,
the different arithmetic instruction buffers are connected to each other so that they
can exchange data before extending them.
To support this mechanism, a 2-way multiplexer, a 4-way multiplexer and an
8-way multiplexer are present in each arithmetic instruction buffer in order to
select the correct part of the LANE_WIDTH section coming from either the same
arithmetic instruction buffer or from other arithmetic instructions buffers. The
2-way multiplexer handles widening, narrowing3 and extension by 2 operations,
so it manages 32-bit values (which can be seen as one 32-bit element, two 16-bit
elements or four 8-bit elements). The 4-way and the 8-way multiplexers handle the

3Narrowing operations have the first operand with EEW = 2 · SEW and the second operand with
EEW = SEW, while the result must have EEW = SEW. During the operands fetch, they are managed
as widening operations so the second operand is extended; then, the processing element executes
the instruction with a double parallelism and, at the output, the result is compressed by the
narrowing compressor , which halves its size (refer to section 3.7 for further details).

44

3.4 – Scheduling Logic

0 1 2 3

0

2

1

3

ARITHMETIC INSTRUCTION

BUFFER 0

ARITHMETIC INSTRUCTION

BUFFER 1

SOURCE TABLE 0 SOURCE TABLE 1

32-bit

64-bit

Figure 3.12: Data exchange between arithmetic instructions buffers for widening
operations

operations of extension by 4 and extension by 8 respectively, so the first one manages
16-bit values (which can be seen as one 16-bit element or two 8-bit elements) and
the second one 8-bit values. The output of multiplexers is then extended to 64
bits maintaining the same number of elements. After the extension, an additional
multiplexer selects the correct 64-bit data from either the extended ones or from
the LANE_WIDTH section directly read from the vector register file.

The arithmetic instruction buffer control unit is a Moore FSM, whose state
diagram is summarized in the flow chart 3.13 (as in the previous flow chart, it does
not show all the possible states, but only the macro states).
Once it receives the start signal from the activation instruction buffer CU , a new
instruction is saved in the buffer and the reg_sec_counter is loaded with the
value computed by the register sections to read computation logic. The output of
the latter is used as the iteration count of the control unit.
Then, the control unit sends a read request to the vector register file with the source
registers’ indexes and banks and it waits until it asserts a ready signal. When this
happens, the operands’ values are stored in the buffer.
At this point, data has to be sent to the source table. Since different types of
operations need to be managed in different ways, the control unit is divided into
multiple branches, each dedicated to a specific “category” of instructions. Each

45

Design and Implementation

branch has a different latency4 but its average is about 4 clock cycles. So, in
each branch, the control unit sends a valid to the destination table. If the latter
is ready, the instruction and source operand values are sent to the source table
and one entry is allocated in the destination table with the information for the
write-back operation (like the destination register’s index and bank). In this way,
the allocation of the source table and destination table provides that each entry
contains information about a specific bank of a vector register inside the group and
that each entry of the source table stores the operands for the instruction which
produces the result for the corresponding entry of the destination table. A note to
highlight concerns the fact that the valid signal is sent only to the destination table
and not also to the source table: this is discussed in the section 3.6, but the point
is that source table and destination table are FIFO sharing the same tail counter so
if there is a free entry in one table, the same happens for the other. So it is enough
to send the valid only to one of them.
At this point the control unit checks the value of the reg_sec_counter: if other
LANE_WIDTH register sections must be read, it updates the all counters (it can
increment the bank counters to read the next bank or it can clear them, while incre-
menting the source register’s index, in order to read the first bank of the following
register inside the source register group; it decrements the reg_sec_counter for
the next iteration), otherwise the operands fetch is terminated and the control unit
can return to wait for a new valid instruction.

Since it is necessary to manage different types of instructions (widening, narrowing,
extensions or other categories of arithmetic operations) with different operand
types (vector, scalar or immediate), there is a quite large number of branches. This
leads to a FSM with a lot of states (170) and an average latency of about 7 clock
cycles. Certainly, this represents a bottleneck of the design and it will need to be
optimized but, for a first implementation, it makes debugging easier.

Another point that can limit the performance concerns the allocation of the source
tables. As already mentioned, they have one common tail counter and the problem
occurs when not all arithmetic instruction buffers are ready to send new data to the
source tables because some lanes of the vector register file are not ready for the fetch
operation. In this case, the ready arithmetic instruction buffers are stalled until
the fetch operation is completed for all the others before sending the instruction
to the source tables. At this point, all source tables can receive synchronously the
instruction and the tail counter is incremented.

4For example, if we consider the widening instructions, they will have a latency equal to twice
the single-width instruction, as explained in the previous paragraph.
In the flow chart 3.13 the different latency of the branches is reported through different letters.

46

3.4 – Scheduling Logic

Wait for a valid
instruction

START

no yes
Valid from

Activation

CU?

2

Read request to
Vector Register

File 1

no yes
Vector

register file

ready?

Send data to
Source Table

K

Send data to
Source Table

M

Send data to
Source Table

N

no yes
Other

register sections to
read?

yes no
Other

register sections to
read?

no yes
Other

register sections to
read?

WAIT FOR

A VALID

INSTRUCTION

READ REQUEST

TO VECTOR

REGISTER FILE

WAIT FOR

A VALID

INSTRUCTION

READ REQUEST

TO VECTOR

REGISTER FILE

Figure 3.13: arithmetic instruction buffer CU flow chart

47

Design and Implementation

Load-store Instruction Buffer

The load-store instruction buffer is responsible for executing the operands fetch for
the load-store instructions.
Also in this case, the structure is divided into lanes such that each lane performs a
requests for source operands5 to the corresponding lane of the vector register file.
Once the fetch operation is executed, data are sent directly to the load-store unit.
For each instruction, the load-store instruction buffer allocates only one entry in
the destination table: since the write-back operation in the vector register file is
executed by the load-store unit, it is not necessary to pass through the destination
table; in any case, it is important to allocate one entry for each load-store operation
to maintain the order of instructions in the destination table for the indispensable
in-order commit.

The module, whose block scheme is in figure 3.14, is made up of:

• a sub-unit for each lane containing:

– A register data buffer with the information related to the source registers’
indexes (vs2 and vs3).

– Two banks buffers (one for vs2 and the other for vs3) containing the data
read from the vector register file related to all banks of a single register
inside its source register group.

– Five counters:
∗ vs2_banks_counter and vs3_banks_counter: they iterates on the

banks of a single register belonging to respectively vs2 and vs3 register
group.

∗ iter_vs2_counter and iter_vs3_counter: it iterates on the total
number of LANE_WIDTH register sections inside respectively vs2 and
vs3 register groups. This counter is loaded with the values computed
by the register sections to read computation logic. In this case, the two
values can be different because strided instructions use EEW encoded
in the instruction for the data values and indexed instructions use EEW
encoded in the instruction for the index values and SEW for the data
values, so the number of LANE_WIDTH register sections of vs2 can be
different from the one of vs3.

5For load-store operations the source operands are rs1 for the base address, rs2 for the stride
offset of strided operations, vs2 for the indexes of indexed operations and vs3 for the data to be
stored in memory.

48

3.4 – Scheduling Logic

LS
U

In
st

ru
ct

io
n

B
uf

fe
r C

U

LS
U

 In
te

rfa
ce

C
U TA

G
C

ou
nt

er

LS
U

 IN
S

TR
U

C
TI

O
N

B

U
FF

E
R

C
om

m
on

 d
at

a

Fa
th

er
In

st
ru

ct
io

n
B

uf
fe

r C
U

LS
U

 In
st

ru
ct

io
n

B
uf

fe
r C

U

C
hi

ld

vs
3

C
U

C
hi

ld

vs
3

S
to

re
In

de
xe

d
C

U

C
hi

ld

vs
2

C
U

C
hi

ld

vs
2

S
to

re
In

de
xe

d
C

U

La
ne

 0

R
eg

is
te

r d
at

a

La
ne

 N
-1

vs
2

- v
s3

 b
an

ks
 b

uf
fe

r

VE
C

TO
R

R

EG
IS

TE
R

 F
IL

E

INSTRUCTION

STATUS TABLE

LO
A

D
/S

TO
R

E
U

N
IT

A
ct

iv
at

io
n

In
st

ru
ct

io
n

B
uf

fe
r C

U

R
eg

is
te

r S
ec

tio
ns

 to
R

ea
d

C
om

pu
ta

tio
n

Lo
gi

c

C
ou

nt
er

s

D
ES

TI
N

AT
IO

N
TA

B
LE

S

Figure 3.14: load-store instruction buffer block diagram

49

Design and Implementation

∗ nf_counter: it iterates of nf parameter used for the segment load-
store instructions.

– LSU instruction buffer CU , which is a Moore FSM used for the control of
the data structures described above, interacting with the vector register
file and with the destination table.

• A buffer containing the data in common with all lanes, like rs1, rs2, nf and
other information needed to execute the instruction.

• A counter (tag_counter) used to mark each instruction with a tag (i.e. the
output value of the counter). It should be used in the load-store unit to
maintain a correct order of memory access for different instructions (at the
moment, the load-store emulator, described in section 3.8.1, does not use it
since it executes one instruction at a time, so there is no problem of memory
access conflicts; the role of the counter is discussed in the section 3.8.2 about
the preliminary design of the load-store unit).

• The LSU interface CU used to control the two components described above,
interacting with the load-store unit.

Let’s consider the LSU instruction buffer CU . It is made up of a “father” CU which
can activate one or more “children” CUs depending on the type of instruction to
be processed.
Once the father CU receives the start signal from the activation instruction buffer
CU , a new instruction is saved in the register data buffer and the counters are
loaded. Then it sends a valid to the destination table and, when the latter asserts
a ready, it allocates one entry in both the source table and destination table.
Next, if the instruction requires vector operands, the father CU sends a read
request to the vector register file and waits until it asserts a ready signal. When
this happens, the operands’ values are stored in the two bank buffers.
At this point, the father CU branches into four parts:

• the first one is dedicated to the load-strided instructions. In this case, no
vector operand is required so the father CU waits that the instruction is sent
to the load-store unit and then it returns to the waiting state for a new start
signal.

• the second one is dedicated to the store-strided instructions, which need vs3
as vector operand. In this branch, the father CU activates the child vs3 CU.
The latter checks if all banks of a single register have been read: if this is the
case, it waits until they are sent to the load-store unit. Then, it updates the
counters related to vs3 and nf and it returns in idle.

50

3.4 – Scheduling Logic

The father CU, who was waiting for the term of child vs3 CU, returns to the
operand request state if not all the registers sections have been read; otherwise,
it returns to the waiting state for a new start signal.

• the third one is dedicated to the load-indexed instructions, which need vs2 as
vector operand. In this branch, the father CU activates the child vs2 CU and
then the same operations of the previous branch are executed.

• the fourth one is dedicated to the store-indexed instructions, which need vs2
and vs3 as vector operands. In this branch, the father CU activates the
children vs2 Store-Indexed CU and vs3 Store-Indexed CU. These two last
CUs have the same behavior as the child vs2 CU and child vs3 CU but they
do not update the nf_counter. The latter is updated by the father CU once
the children have finished. This happens because indexed instructions use EEW
encoded in the instruction for the index values and SEW for the data values
so the number of LANE_WIDTH register sections of vs2 can be different from
the one of vs3 and so the number of iterations of the children CUs can be
different. In this way, for segment instructions which require a number of
register groups equal to nf, it is ensured that one group related to vs2 and
one related to vs3 have been fetched and sent to the load-store unit before
starting to fetch a new group.

Finally, the last control unit is the LSU interface CU . Once it receives the start
signal from the activation instruction buffer CU , information related to the new
instruction is saved in the buffer containing the data in common with all lanes.
Then, also this control unit branches into four parts: they perform the same
operations but they consider either vs2 or vs3 depending on the type of instruction.
Basically, each branch waits until all banks of a single register have been fetched
from the vector register file. Once this happens, it sends a valid to the load-store
unit. If the latter asserts a ready, then the data are sent to the load-store unit and
the LSU interface CU returns to wait for new data to be sent. Once all source
register groups have been sent to the load-store unit, it enables the tag_counter
and it returns to the waiting state for a new start signal.

51

Design and Implementation

3.5 Vector Register File
The vector register file is made up of 32 registers (v0 - v31). The registers’ size is
parametric and it can be set through the VLEN parameter. The vector register file
is divided into lanes: each of them is 64-bit wide (LANE_WIDTH) and it contains
different elements of a vector.
Once the parameters VLEN and NUM_LANE are fixed, then it is necessary to represent
the physical vector register inside the lanes. For example, if we want to have
VLEN = 512 bits and NUM_LANE = 4, we should have LANE_WIDTH = 512/4 = 128
bits in order to represent the register in all lanes. But this is not possible since the
lane width is fixed to 64 bits. In other words, in order to manage a 512-bit register
with LANE_WIDTH lanes, we should have NUM_LANE = 8.
In order to solve the situation in which the size of a physical register is too large to
fit lanes with LANE_WIDTH = 64 bits, it is thought to design each lane as a group
of banks: each bank in one lane contains different elements of the same vector
register. In this way, it’s like the excess part of the register that should require
additional lanes is moved into the available ones.
So, the number of banks for each lane can be computed as

NUM_BANKS_PER_LANE = VLEN
LANE_WIDTH · NUM_LANE

(3.6)

Considering the previous example, we will have VLEN = 512 bits, NUM_LANE = 4
and NUM_BANKS_PER_LANE = 2. The figure 3.15 represents the vector register file
structure for the current example.

V0	 B0

V0	 B1

V1	 B0

V1	 B1

0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

16 17 18 19
16 17 18 19
16 17 18 19
16 17 18 19
16 17 18 19

V31	 B0

V31	 B1

LANE 0 LANE 1

 VLEN 	 = 512 bits

 NUM_LANE 	 = 4

 EEW 	 = 16 bits

 NUM_BANKS_PER_LANE = 2

LANE 2 LANE 3

4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7
4 5 6 7

20 21 22 23
20 21 22 23
20 21 22 23
20 21 22 23
20 21 22 23

8 9 10 11
8 9 10 11
8 9 10 11
8 9 10 11
8 9 10 11

24 25 26 27
24 25 26 27
24 25 26 27
24 25 26 27
24 25 26 27

12 13 14 15
12 13 14 15
12 13 14 15
12 13 14 15
12 13 14 15
28 29 30 31
28 29 30 31
28 29 30 31
28 29 30 31
28 29 30 31

64-bits

Figure 3.15: Example of vector register file configuration with two banks for each
lane

52

3.5 – Vector Register File

Then, since the element width can be dynamically configured, each lane can contain
eight 8-bit elements, four 16-bit elements, two 32-bit elements or one 64-bit element.
In the example of figure 3.15, we have EEW = 16 bits, so each lane contains four
16-bit elements and the total number of elements in each physical vector register is
equal to 32: 16 elements are in the first bank, while the others are in the second
bank.

At this point, it is necessary to consider also that a single vector instruction can
operate on multiple vector registers. So, a vector register group refers to one
or more vector registers used as a single operand in a vector instruction. The
parameter LMUL represents the default number of vector registers that are combined
to form a vector register group and it can assume four values: 1, 2, 4 and 8.
In order to understand this point, another example is presented. Let’s consider
LMUL = 2, SEW = 16 bits and VLEN = 512 bits. In this case, considering LMUL, two
physical vector registers are grouped in order to form a single vector operand.
Then, it is necessary to consider the effective number of registers inside a group6,
which is

EMUL = LMUL · EEW
SEW

(3.7)

If we have EEW = 32 bits, it means that EMUL = 4, then each register group doubles
its size, since it is made by four physical registers.
However, the maximum number of elements inside the group is always equal to

VLMAX = LMUL · VLEN
SEW

= EMUL · VLEN
EEW

= 64 (3.8)

So, this means that the number of elements involved in the instruction is always
the same but, since each element doubles its size, the number of physical registers
needed to store them must double.
The change of vector register file configuration, when considering EEW, can be seen
in figure 3.16.

6In any case, the total number of physical vector registers involved in each instruction cannot
be greater than 8.

53

Design and Implementation

V0	 B0

V0	 B1

V1	 B0

V1	 B1

0 1 2 3
32 33 34 35

0 1 2 3
32 33 34 35
16 17 18 19
48 49 50 51

16 17 18 19
48 49 50 51

V30	 B0

V31	 B1

LANE 0 LANE 1

 VLEN 	 = 512 bits

 NUM_LANE 	 = 4

 SEW	 	 = 16 bits

 LMUL 	 	 = 2

 NUM_BANKS_PER_LANE = 2

LANE 2 LANE 3

V31	 B0

V30	 B1

V0	 B0
V1	 B0

V30	 B0
V31	 B0

V2	 B0
V3	 B0

V28	 B0
V29	 B0

V0	 B1
V1	 B1

V30	 B1
V31	 B1

V2	 B1
V3	 B1

V28	 B1
V29	 B1

4 5 6 7
36 37 38 39

4 5 6 7
36 37 38 39
20 21 22 23
52 53 54 55

20 21 22 23
52 53 54 55

8 9 10 11
40 41 42 43

8 9 10 11
40 41 42 43
24 25 26 27
56 57 58 59

24 25 26 27
56 57 58 59

12 13 14 15
44 45 46 47

12 13 14 15
44 45 46 47
28 29 30 31
60 61 62 63

28 29 30 31
60 61 62 63

0 1
16 17
32 33
48 49

0 1
16 17
32 33
48 49
8 9

24 25
40 41
56 57

8 9
24 25
40 41
56 57

2 3
18 19
34 35
50 51

2 3
18 19
34 35
50 51
10 11
26 27
42 43
58 59

10 11
26 27
42 43
58 59

4 5
20 21
36 37
52 53

4 5
20 21
36 37
52 53
12 13
28 29
44 45
60 61

12 13
28 29
44 45
60 61

6 7
22 23
38 39
54 55

6 7
22 23
38 39
54 55
14 15
30 31
46 47
62 63

14 15
30 31
46 47
62 63

 VLEN 	 = 512 bits

 NUM_LANE 	 = 4

 SEW	 	 = 16 bits

 LMUL 	 	 = 2

 EEW	 	 = 32 bits

 EMUL	 	 = 4

 NUM_BANKS_PER_LANE = 2

Figure 3.16: Example of vector register file configuration, starting from EEW = SEW
and arriving to EEW = 2 · SEW.

54

3.5 – Vector Register File

Once the organization of the vector register file has been clarified, it’s time to go
into the details of how the data structure is implemented. From here to the end of
the paragraph, the structure of a single lane of the vector register file is described,
given that all lanes are implemented in the same way.

In order to arrive at the structure of each lane, it is necessary to start with a
consideration. Each lane is possibly made up of several banks, each of them
containing 32 LANE_WIDTH register sections (one for each vector register). Accessing
all the banks of all the registers simultaneously would require very large access
ports since each would be connected to 32 · NUM_BANKS_PER_LANE inputs, resulting
in a significant impact on area and power consumption.
This problem is solved by providing each lane with a limited number of read/write
ports, such that each port is connected to a subset of registers7. In this way, not all
registers and banks can be accessed at the same time since on a single port only one
bank of one register can be read or written in a certain clock cycle. This solution
has the advantage of reducing the overall complexity of the network; the limitation
of having multiple registers mapped on the same port is partially bypassed by
mapping on the same port registers that are not expected to be used at the same
time. For example, a compiler may try to map an instruction’s source operands on
consecutive registers, like v2 = v1 + v0. Following this assumption, it is preferable
to map consecutive registers on different access ports, so all the operands can be
fetched in a single cycle. The proposed architecture follows this assumption to map
the 32 vector registers to the available access ports. Thus, each lane is divided
into a number of slices equal to NUM_VRF_PORTS. Each slice contains a port and a
portion of the register file made up of all banks of a vector registers’ subset. The
number of registers inside each slice is equal to

NUM_REG_PER_SLICE = 32
NUM_VRF_PORTS

(3.9)

while the number of entries in each slice is equal to

SLICE_DEPTH = NUM_REG_PER_SLICE · NUM_BANKS_PER_LANE (3.10)

To clarify the explanation, let’s consider an example, which is shown in figure 3.17.
If NUM_VRF_PORTS = 8 and NUM_BANKS_PER_LANE = 2, the lane is made up of 8
slices (one for each port), each of them containing all banks of four registers (so its
depth is equal to 8). Then, the first slice holds the banks of registers v0, v8, v16
and v24; the second one holds the banks of registers v1, v9, v17 and v25 and so on
for the others.

7All the banks of a single register are mapped to the same access port.

55

Design and Implementation

D
EC

O
D

ER

vs1 idxvs1 valid

request

07

D
EC

O
D

ER

vs2 idxvs2 valid

request

07

D
EC

O
D

ER

vd / vs3

 idx

vd/vs3 valid

read request

07

D
EC

O
D

ER

vd idxvd valid

write request

07

 Arbiter Valid

 inputs

vd idx

vd Bank

D
ata in

 Arbiter R
eady outputs

vs1

Ready

vs2

Ready

vd/vs3

Ready

vd Write

Ready

vs1 idx

vs1 value

vs2 idx

vs2 value

vd/vs3 idx

vd/vs3 value

D
EC

O
D

ER

Write enable

Write Enable

VEC
TO

R
 R

EG
ISTER

 FILE

LAN

E

AR
BITER

v0	
B0

v8	
B0

v16	B0
v24	B0
v0	

B1
v8	

B1
v16	B1
v24	B1

vs1 idx

vs1 Bank

vs2 idx

vs2 Bank

vd/vs3 idx

vd/vs3 Bank

SLIC
E 0

PO
R

T 0

SLIC
E 0

SLIC
E 7

 Arbiter R
eady outputs

 Arbiter Valid inputs

Figure 3.17: vector register file lane block diagram

56

3.5 – Vector Register File

Read operation

In order to perform the read operation, there are three decoders (respectively for
vs1, vs2, vs3/vd) that receive the read requests (valid signals) and the registers’
indexes from the operand requester . Based on the indexes, each of them propagates
the request to the correct slice.
Each port receives the requests, which are processed by an arbiter. The latter
selects what operation must be executed on the slice if multiple requests arrive on
the same port. In the case of multiple read requests, vs1 has higher priority with
respect to vs2 and vs2 has higher priority with respect to vs3. In case there is a
read request and a write request at the same time, write priority is higher than
read priority. So, the arbiter outputs the ready signals related to the input requests,
such that only the one of the selected operation will be at 1. Then, two multiplexers
inside each port are used to select the correct entry of the slice containing the data
to be read, based on the selected source register index and bank.
Then, data at the output of the ports are sent to other three multiplexers (re-
spectively for vs1, vs2, vs3/vd), which select data coming from the correct ports.
Finally, there are three logic OR ports that take the ready signals generated by the
arbiters in all ports and they generate as outputs the ready related to the requests.
In this way, data with their relative ready signals are sent to the operand requester .

Write operation

In order to perform the write operation, there is a first decoder which receive the
write request (valid signal) and the index of vd from the destination table. Based
on the index, it propagates the request to the correct slice. Then a second decoder,
based on the register’s index and bank, selects the correct entry of the slice where
to write the data.
Each port receives the request from the first decoder, which is processed by an
arbiter in the same way described above. When one arbiter selects the write
operation, it sends to the slice a valid signal that, together with the output of the
second decoder, allows to write the data coming from the destination table in the
correct entry and slice.
Finally, there is a logic OR port that takes the ready signals of the write operation
generated by the arbiters of all ports. It generates as output the ready related to
the request, which is sent to the destination table.
One note to highlight is that, together with the data, the destination table sends
also the number of bytes to be written in the LANE_WIDTH register section. This is
already explained in the section 3.4.2: if VL · EEW is not multiple of LANE_WIDTH,
the last elements of a vector fill only a fraction of a LANE_WIDTH register section.
Then, it is necessary to modify only that portion of the register section with the
results of the instruction, leaving the other part unchanged.

57

Design and Implementation

3.6 Source and Destination Tables
This module is made up of four components: source tables, destination tables,
position index table and source and destination table counters.
There is one source table and destination table for each lane and, together with the
position index table, they are all FIFO buffers. The counters used to point to their
entries are all in the source and destination table counters, taking into account that
all FIFOs share the same tail counter; then there is a single head counter for all
source tables and a single head counter and write-back counter for all destination
tables (the first one is used also by the position index table).

This structure allows the allocation of the FIFOs such that each entry of the source
table stores the operands for the instruction which produces the result for the
corresponding entry of the destination table.
In order to be more clear, an example is shown in figure 3.18. Let’s consider the
operation v2 = v0 op v1 and a configuration of the parameters such that VL = 10,
VLEN = 256 bits, NUM_LANE = 2 and EEW = 16 bits. Then, entry 0 of source table 0
stores the first four source elements coming from bank 0 of v0 and v1; entry 0 of
destination table 0 will store the first four destination elements with the result of
the operation, which will be written in bank 0 of v2. The same happens for entry 0
of source table 1 and destination table 1, which consider other four elements.
Regarding the bank 1, only three elements must be processed. So, entry 1 of source
table 0 stores the three operands and entry 1 of destination table 0 will receive
the results; then, since the elements are finished, entry 1 of source table 1 and
destination table 1 will not receive anything so their status remains not valid.

0 1 2 3 VALID

8 9 10 VALID

NOT VALID

NOT VALID

SOURCE TABLE 0 SOURCE TABLE 1 DESTINATION TABLE 0 DESTINATION TABLE 1

4 5 6 7 VALID

NOT VALID

NOT VALID

NOT VALID

V0	 B0

V0	 B1

V1	 B0

V1	 B1

4 5 6 7
4 5 6 7
4 5 6 7

0 1 2 3
0 1 2 3
0 1 2 3

8 9 10
8 9 10
8 9 10

V2	 B0

V2	 B1

V3	 B0

V3	 B1

LANE 0 LANE 1

 VLEN = 256 bits

 NUM_LANE = 2

 EEW = 16 bits

 VL 	 = 10

0 1 2 3 VALID

8 9 10 VALID

NOT VALID

NOT VALID

4 5 6 7 VALID

NOT VALID

NOT VALID

NOT VALID

0
1
2
3

Figure 3.18: source table and destination table allocation

58

3.6 – Source and Destination Tables

The block diagram of the module is represented in figure 3.19.

S
O

U
R

C
E

 T
A

B
LE

C
on

tro
l

C
om

bi
na

tio
na

l
Lo

gi
c

st
at

us

C
on

tro
l s

ig
na

ls

Ta
il

co
un

t

S
T

H
ea

d
co

un
t

D
E

S
TI

N
AT

IO
N

 T
A

B
LE

C
on

tro
l

C
om

bi
na

tio
na

l
Lo

gi
c

st
at

us

W
rit

e
B

ac
k

co
un

t

C
on

tro
l s

ig
na

ls

Ta
il

co
un

t

D
T

H
ea

d
co

un
t

R
es

ul
t

A
dd

re
ss

in
g

Lo
gi

c
0

LS
U

R
es

ul
t

A
dd

re
ss

in
g

Lo
gi

c

D
E

P
TH

 -1

P
O

S
IT

IO
N

 IN
D

E
X

 T
A

B
LE

Ta

il
co

un
t

D
T

H
ea

d
co

un
t

C
on

tro
l C

om
bi

na
tio

na
l L

og
ic

Ta
il

C
ou

nt
er

W
rit

e
B

ac
k

C
ou

nt
er

D
T

H
ea

d
C

ou
nt

er
S

T
H

ea
d

C
ou

nt
er

S
O

U
R

C
E

/D
E

S
TI

N
AT

IO
N

 T
A

B
LE

S
 C

O
U

N
TE

R
S

La
ne

 0

La
ne

 N
-1

VE
C

TO
R

R

EG
IS

TE
R

 F
IL

E

O
PE

R
A

N
D

R
EQ

U
ES

TE
R

IN
ST

R
U

C
TI

O
N

ST
AT

U
S

TA
B

LE
C

D
B

PE
 0

PE
 k

-1

In
st

ru
ct

io
n

co
m

pl
et

ed

S
O

U
R

C
E

 A
N

D
 D

E
S

TI
N

AT
IO

N
 T

A
B

LE
S

Figure 3.19: source table and destination table block diagram

59

Design and Implementation

3.6.1 Source Table
It is a FIFO controlled by a combinational control logic, which stores arithmetic
instructions with their operands waiting to be sent to the processing element for
execution. There is one source table for each lane, such that each one receives
instructions from the corresponding lane of the operand requester and it sends data
to the corresponding lane (arithmetic unit) in the correct processing element.
Considering the data structure, each source table is a circular FIFO buffer where
each entry stores the instruction to be executed. In particular, the main information
concern:

• source operand values required by the instruction (each vector operand is a
LANE_WIDTH section belonging to a specific bank of a vector register, which
can contain from one 64-bit element to eight 8-bit elements).

• processing element and functional unit where to execute the instruction.

• type of operation to be performed.

• source table status: it can be valid (ST_VALID) or not valid (ST_NOT_VALID).

Push

The push operation is not controlled by the combinational control logic of the
source table: it is the destination table that sends a push control signal to the
source table in order to store a new instruction in the entry pointed by the tail
counter. Once the instruction is stored, the entry is marked as ST_VALID.

Pop

If the entry pointed by the source table head counter has a ST_VALID status, then
the control logic checks the type of the instruction: if it is an arithmetic operation,
it sends a valid signal to the arithmetic unit inside the correct processing element
and, if the latter asserts a ready in the same clock cycle, the instruction is sent
to it for the execution and the status of the entry is set as ST_NOT_VALID; if it
is a load-store operation, the entry is directly set as ST_NOT_VALID, since these
instructions must be executed by the load-store unit and not by the processing
element.

3.6.2 Destination Table
It is a FIFO controlled by a combinational control logic, which is firstly allocated
by the operand requester and then it receives the results of arithmetic instructions
waiting to be sent to the vector register file for the write-back operation. There is

60

3.6 – Source and Destination Tables

one destination table for each lane, such that each one receives results from the
corresponding arithmetic unit inside the processing element. Each destination table
sends the results to the corresponding lane inside the vector register file.
Considering the data structure, each destination table is a circular FIFO buffer
where each entry stores the following main information:

• destination register’s index and bank for instructions with a vector destination.

• LANE_WIDTH data for the result of the instruction.

• destination table status: it can be

– DT_NOT_VALID : the entry is not valid.
– DT_VALID: the entry contains a valid content after it is allocated by the

operand requester , so it waits for the result of the instruction.
– DT_READY_WB: the entry has received the result of the instruction and it

waits for the write-back operation (if it has a vector destination).
– DT_WB_COMPLETED: the commit of the instruction stored in the entry has

been executed.

Push

If the entry pointed by the tail counter has a DT_NOT_VALID status, the ready signal
is asserted. If the valid signal coming from the operand requester ’s lane is asserted
in the same clock cycle, a new instruction is saved in the free entry with the status
DT_VALID.
At the same time, a push control signal is sent to the source table and position
index table, such that they can store the new instruction too.
The valid signal from the operand requester ’s lane is sent only to the destination
table and not also to the source table because they share the same tail counter so,
if there is a free entry in one buffer, the same happens for the other. So the valid
is sent to the destination table and the latter propagates the push control signal to
the source table and position index table.

Write back

When one entry is in the DT_VALID status, three possibilities open up:

• if the instruction has a vector destination type, once the entry receives the
result of the instruction, its status becomes DT_READY_WB so it is ready for the
write-back. A note to highlight is that the destination table is always ready to
receive the results of instructions and a result address logic is used to select
the correct entry of the destination table where to store the results.

61

Design and Implementation

• if the instruction has a scalar destination type, once the entry receives the
result of the instruction, its status becomes DT_WB_COMPLETED since it does
not have to write the result in the vector register file but it has to send it to
the scalar core.

• if the instruction is a load-store, once the entry receives a signal notifying
that the load-store unit finishes performing the operation, the status is set as
DT_WB_COMPLETED. This happens because the load-store unit directly performs
the write-back operation.

At this point, if the entry pointed by the write-back counter falls into the first
category having a DT_READY_WB status, a valid is sent to the vector register file’s
lane and, if the latter asserts a ready, the write-back is executed and the entry
status is set to DT_WB_COMPLETED.

Pop

The pop operation is not directly controlled by the combinational control logic of
the destination table. If the entry pointed by the destination table head counter is
in DT_WB_COMPLETED status, there are three possibilities:

• if the instruction has a vector destination type and the entry stored the result
related to the last LANE_WIDTH register section involved in the instruction, a
signal of instruction completion is sent to source and destination table counters,
since all elements of the destination register have been written in the vector
register file.

• if the instruction has a vector destination type and the entry stored the result
not related to the last LANE_WIDTH register section involved in the instruction, a
signal of write-back completion is sent to source and destination table counters
since other elements of the destination register must be written in the vector
register file (they are in other entries of the destination table).

• if the instruction has not a vector destination type (either it has a scalar
destination or it is a load-store instruction), a signal of instruction completion
is sent to source and destination table counters. A note to highlight is that,
for instructions with a scalar destination type, the scalar result is sent to
the output of the destination table so that it can be sent to the CDB at the
interface with the scalar core.

Then, the source and destination table counters analyzes these signals and can send
a pop control signal to the destination table: when it is asserted, the status of the
entry pointed by the destination table head counter is set as DT_NOT_VALID.

62

3.6 – Source and Destination Tables

3.6.3 Position Index Table
It is a single FIFO buffer that stores information in common to all lanes and it has
the same number of entries of the source table and destination table. In particular,
it contains the index of the ROB entry and the index of the instruction status table
entry where the instruction is stored.
It uses the tail counter of the source table and destination table to point to the
first free entry and the destination table head counter to point to the oldest one.
The data of the entry pointed by the destination table head counter is sent at the
output of this buffer.
It does not have a control logic, since the push control signal arrives from the
destination table and the pop operation coincides with the one of the destination
table.
When the position index table receives the push control signal, the two information
sent by the operand requester is saved in the entry pointed by the tail counter.
When the instruction pointed by the destination table head counter is completed,
meaning that the destination table asserts the instruction completion signal, the
position index table sends to the CDB the index of the ROB entry and it sends to
the instruction status table the index of the entry where the completed instruction
is stored. At the same time, the source and destination table counters exchanges
handshake signals with the CDB and it sends a completion signal to the instruction
status table.

3.6.4 Source and Destination Tables Counters
This module contains all counters needed to point to the entries of the source tables,
destination tables and position index table. These are controlled by a combinational
control logic, which enables them depending on the requests of contiguous units
and on the status of source tables and destination tables.
The counters present inside this module are:

• Tail counter: it is in common with all source tables, destination tables and
position index table. It is used to point to the first free entry of the FIFOs.

• Source table head counter: it is in common with source tables and it points
to the entry holding the oldest instruction.

• Write-back counter: it is in common with all destination tables and it
points to the entry holding the instruction that must execute the write-back
operation.

• Destination table head counter: it is in common with all destination
tables and it points to the oldest instruction.

63

Design and Implementation

The control combinational logic drives the counters in this way:

• For the tail counter enable, the control logic monitors the handshake between
the destination tables and the operand requester . When there is at least one
valid signal from the lanes of the operand requester and all destination tables
assert a ready, the tail counter is enabled.

• For the source table head counter enable, the control logic monitors the
handshake between the source tables and the processing element. When there
is at least one valid signal from a source table and all the arithmetic units
inside the processing element assert a ready, the source table head counter is
enabled.
For load-store instructions, the control logic checks if at least one entry pointed
by the source table head counter has a valid content and if the operation is a
load-store; in this case, the counter is enabled.

• For the write-back counter enable, the control logic monitors the handshake
between the destination tables and the vector register file. When there is
at least one valid signal from a destination table and all the lanes of vector
register file which received the valid assert a ready, the write-back counter is
enabled.
For load-store instructions, the control logic waits for a signal coming from
the load-store unit which states the write-back completion for the instruction
pointed by the write-back counter. Once this happens, the counter is enabled.
This ensures a correct in-order commit, avoiding WAW hazards between
arithmetic instructions and load-store instructions.

• For the destination table head counter enable, the control logic monitors the
status signals sent by the destination tables, described in paragraph 3.6.2. If
the destination tables with a valid content send a write-back completion signal,
the counter is enabled and a pop control signal is sent to them. Otherwise, if
they send an instruction completion signal, the control logic sends a valid to
the Common Data Bus (CDB) at the interface with the scalar core in order
to inform it that the vector instruction has been completed. When the CDB
asserts a ready, the counter is enabled and a pop control signal is sent to the
destination tables. At the same time, a signal of instruction completion is sent
to the instruction status table so that the instruction can be removed from
the latter.

64

3.7 – Processing Element

3.7 Processing Element
The processing element is the module responsible for the arithmetic instruction
execution. The number of PEs is parametric and it can be set through the NUM_PE
parameter.
The processing element is divided into lanes, such that each one contains an
arithmetic unit which processes in parallel different elements of a vector. Each
arithmetic unit is made up of multiple ALUs, multipliers and dividers.
In addition to the arithmetic units, the processing element contains also a single
reduction unit performing the reduction operations.

The processing element receives a valid signal from each source table storing a valid
data. This signal arrives at a decoder that, depending on the type of the functional
unit in charge of executing the instruction, propagates it either to the reduction
unit or to the set of ALUs, multipliers or dividers inside the arithmetic unit. If the
functional unit is ready, the instruction can start its execution.
An important note is that reduction operations need all elements of a vector, so
the reduction unit receives the valid signal and the data from all the source tables.
Once the instruction is completed, each arithmetic unit sends a valid signal and
the result to the corresponding destination table.
Considering the narrowing instruction, the arithmetic units execute it with double
parallelism, so the resulting vector has elements with EEW = 2 ·SEW, as it is discussed
in section 3.4.2. Since narrowing operations require the destination vector to have
elements with EEW = SEW, the results coming from the ALU0 of all arithmetic
units are sent to a narrowing compressor which halves the size of the elements.
Then, only for the ALU0, there is a multiplexer in order to select the results to be
sent to the destination tables from either the compressed data or from the direct
output of ALU0. The results of the other ALUs are directly sent to the destination
tables without passing through the narrowing compressor since they cannot execute
narrowing operations. This allows reducing the area and power consumption by
having only one narrowing compressor for the ALU0 and not one for each ALU.
For the reduction operations, the reduction unit sends both the valid and the result
to all destination tables. In the section 3.7.2, related to the latter unit, this point
is discussed with further details.

A block scheme of the processing element is shown in the figure 3.20; in the following
sections, the arithmetic unit and the reduction unit are described.

65

Design and Implementation

SOURCE TABLE N-1

ARITHMETIC
UNIT 0

ARITHMETIC
UNIT N-1

REDUCTION
UNIT

SOURCE TABLE 0

DECODER N-1

DESTINATION TABLE N-1DESTINATION TABLE 0

DECODER 0

Functional unit type

(ALU,MUL,RED,..)

Functional unit type

(ALU,MUL,RED,..)

PE

NARROWING
COMPRESSOR

N
ar

ro
w

in
g

op
er

at
io

n

Figure 3.20: processing element block diagram

66

3.7 – Processing Element

3.7.1 Arithmetic unit
This module is replicated for all lanes, such that each arithmetic unit processes a
subset of vector elements.
Each arithmetic unit is made up of a set of ALUs, multipliers and dividers.
The number of these operators is parametric and it can be set through the
NUM_ALU_PER_LANE, NUM_MUL_PER_LANE and NUM_DIV_PER_LANE parameters.
In addition to ALU operations, multiplications and divisions, it is necessary to
execute the MAC instructions. They take the form result = ± (op1 · op2) + op3, so
they require both one multiplication and one addition. In order to execute them,
it is used the last multiplier and the last ALU.

If there is a new instruction to be processed, the arithmetic unit receives three
valid signals, one for each functional unit type (ALU, MUL or DIV). Depending
on the operation to be executed, only one of them will be asserted at a time.
Each valid signal is sent to a decoder that, looking at the index of the functional
unit assigned to the instruction, propagates it to the correct operator. If the latter
is ready, the instruction coming from the source table can start its execution.
Once the operator computes the result, it sends a signal of instruction completion
to the destination table; the latter, which is always ready, will store the data.
For the MAC instructions, it is necessary to first execute the multiplication, so,
among the three valid inputs, the multiplication one is asserted. Then, the decoder
propagates it to the last multiplier, which executes the multiplication. At this
point, instead of sending a completion signal to the destination table, the multiplier
sends a valid signal to an arbiter connected to the last ALU. This arbiter selects
either the data at the output of the last multiplier or the data coming from the
source table. In the case of MAC instructions, the first one has higher priority
so the result of the multiplication is sent to the last ALU, which can finish the
instruction by performing the addition. Finally, the ALU can send the result to
the destination table.
The choice of using only the last multiplier and the last ALU for the MAC operations
is made in order to not have a complex connection network between all ALUs and
all multipliers allowing all combinations of use. This would require more arbiters
and multiplexers, increasing the area and power consumption. Certainly, if the
number of MACs to be processed would be considerably greater than other types
of instructions, a solution could be to enable other operators for its execution.

A block scheme of the arithmetic unit is shown in figure 3.21.

67

Design and Implementation

ALU VALID
PROPAGATION

DECODER

MUL VALID
PROPAGATION

DECODER

DIV VALID
PROPAGATION

DECODER

ARBITER

ALU0 ALUx MUL0 MULx DIV0 DIVx

DESTINATION TABLE

Unit index

SOURCE TABLE

ARITHMETIC UNIT

A
LU

 Valid

M
U

L Valid

D
IV

 Valid

Figure 3.21: arithmetic unit block diagram

ALU

The ALU performs arithmetic instructions like additions, subtractions, comparisons,
logic, and shift operations (see the section 3.1.2 with the supported instruction
subset).
As already explained, the data coming from the source table with the source
operands8 is LANE_WIDTH wide, so it can contain from one 64-bit element to eight
8-bit elements. The aim is to process these elements in parallel producing a
LANE_WIDTH wide result with the same number of elements of the input. In order

8Considering the operands, instructions have
• vs2 as the first operand.
• vs1, rs1 or imm as the second operand. In the last two cases, the value is replicated to all

elements of the input vector operand (vs2).

68

3.7 – Processing Element

to do that, it is instantiated:

• one 64-bit ALU to process one 64-bit element.

• two 32-bits ALUs to process two 32-bit elements.

• four 16-bits ALUs to process four 16-bit elements.

• eight 8-bits ALUs to process eight 8-bit elements.

Depending on EEW, only one set of them is enabled for each instruction. Inside the
selected set of ALUs, the correct number of operators is enabled depending on the
number of elements to be processed: for example, if we have EEW = 8 bits and in
one LANE_WIDTH section only four elements must be processed, only four ALUs out
of eight are enabled inside the set containing eight 8-bit ALUs.
This is not a definitive solution, as the fact of implementing four sets of ALUs
of which only one will be active at a time, leads to a great waste of area. A
future optimization will be to implement a single run-time reconfigurable ALU
able to perform sub-word parallel computations. This means that, giving a fixed
parallelism of the ALU, it can process in parallel multiple elements with parallelism
that is smaller than the maximum one. An example of such operators is proposed
in [14].

At the output of the ALU there is a spill cell to store the result of the operation.
The spill cell is a module used to interrupt a combinational handshaking path. It
contains two registers and one multiplexer to choose which of the two registers’
content send to the output, all handled by a control unit. Normally, if the
downstream hardware is ready to accept new data, the spill cell sends it a valid
signal in the next cycle after it receives some data (i.e., a valid signal) from the
upstream hardware. If in a certain cycle, the downstream hardware lowers its ready
signal, the incoming data from the upstream hardware is still stored in the second
register of the spill cell and the ready output for the upstream hardware is lowered
in the next clock cycle and until the downstream hardware becomes ready again.
At this point, the oldest data inside the spill cell registers is sent to the downstream
hardware, and the spill cell becomes ready again.
Currently, in the case of the ALU, the spill cell is used as a normal output register,
since the destination table is always ready to accept new data. When there is a
new instruction to be executed, the valid coming from the source table is sent to
the spill cell and the ready output of the spill cell is sent to the source table.
The instruction is processed by one set of ALUs with a latency of one clock cycle.
The result at the output of each set of ALUs is sent to a multiplexer, which selects
the correct one depending on EEW. Then the data arrives at the spill cell; at the
next clock cycle, the latter sends it to the destination table, along with a completion
signal.

69

Design and Implementation

The block diagram of the ALU is represented in figure 3.22.

64-bit ALU 32-bit ALU 16-bit ALU 8-bit ALU

Spill Cell

SOURCE TABLE

DESTINATION TABLE

ALU

EEW

Figure 3.22: ALU block diagram

Multiplier and divider

The multiplier and divider are discussed together since they are managed in the
same way, with the only difference being the performed arithmetic operation.
The structure is similar to the one of the ALU, so there are four sets of multipliers
(dividers) for the different element widths (refer to the previous paragraph 3.7.1
for the complete description).
The difference with respect to the ALU is that the multiplier and divider have a
latency greater than one clock cycle:

• The multiplier, which performs signed and unsigned multiplications, is de-
scribed in a behavioral way (with the ‘*’ operator) and a set of pipeline
registers are positioned at the output so that retiming can be performed dur-
ing the synthesis (the synthesizer can move the position of registers to reduce
the critical path of the multiplier). Each set of multipliers has a pipeline
depth that depends on the size of the multiplier: it is more likely that the
number of registers increases with the increasing multiplier’s size. The number
of pipeline registers can be set through parameters.

70

3.7 – Processing Element

• The divider is taken from [20]. It is a serial divider9 with a latency equal to
the data width of the dividend and divisor. So the four sets of dividers have a
latency equal to the four possible element widths.

Each set of multipliers (dividers) has another pipeline with the same latency as the
operators. This pipeline propagates information like the index of the destination
table where the result must be stored and the valid signal to be sent to the output
spill cell, communicating the instruction completion. In this way, the result of the
operation and the data at the output of this pipeline are synchronized: the first
one goes at the input of the multiplexer and the second one goes at the input of
an encoder. The latter selects the input with the valid asserted and it drives the
selection signal of the multiplexer. In this way, the data with the correct element
width is selected and this is sent to the spill cell.

The block diagram of the multiplier (divider) is represented in figure 3.22.

Spill Cell

Encoder

64-bit

MUL / DIV

32-bit
MUL / DIV

8-bit

MUL / DIV

16-bit

MUL / DIV

SOURCE TABLE

DESTINATION TABLE

MUL - DIV

Figure 3.23: Multiplier and divider block diagram

9The choice of a smaller, serial divider implementation better suits an edge-oriented microar-
chitecture, especially in applications where division is seldom used.

71

Design and Implementation

3.7.2 Reduction unit
The reduction unit is in charge of performing reduction operations.
These instructions take a vector register group and a scalar held in element 0 of a
vector register; they perform a reduction using some binary operators to produce
a scalar result in element 0 of the destination vector register. So, the type of the
instruction is like vd[0] = op(vs1[0], vs2[∗]).
The supported reduction operations are addition (both single-width and widening
variants), logic operations (AND, OR, XOR), minimum, and maximum.

Since the instruction requires all the elements of a vector, the reduction unit receives
the valid signal and the data from all source tables. A note to highlight is that all
the required elements of vs2 can be stored in multiple entries of the source tables
if the configuration of the processor considers multiple banks (refer to figure 3.18
for an example).
Once the reduction unit finishes processing all the elements, the module sends
both the valid and the result to all destination tables even though the instruction
must only update the element 0 of vd, which is contained in lane 0. This is not
a problem because, for a reduction, destination table 0 has the entry related to
that operation with a valid status, while the other destination tables have the same
entries not valid; so, only the first one will effectively store the result.

Going into details of the data structure, there are four single reduction operators
to process the four different element widths. Only one of them will be enabled for
each instruction, depending on EEW.
Each operator has a shift register at the input with a number of registers equal to

NUM_LANE · LANE_WIDTH
EEW

(3.11)

where the second factor represents the number of elements in one LANE_WIDTH
register section.
This is used to store the elements (related to vs2) belonging to one bank of all
lanes, coming from one entry of all source tables. So, the data coming from the
source tables having the valid signals asserted, are pushed in the shift register.
Then, at the beginning, if data come from the first bank, the elements vs2[0] and
vs1[0] are processed; later, at each clock cycle, the other elements of vs2 are shifted
by one position and the one at the output is processed by the operator together
with the result of the previous iteration (which is stored in a register).
So, this unit iterates until all elements inside the shift register are processed. Then,
if not all banks have been handled, it waits for other valid signals from the source
tables. Certainly, the reduction unit has a high latency equal to the number of
elements to be processed (VL), since it does not exploit the parallelism of operators

72

3.7 – Processing Element

and lanes.
In parallel to each set of reduction operators, there is a small pipeline made up of
two registers. It is used to propagate information like the index of the destination
table where the result must be stored and the valid signal to be sent to the spill
cell. It is loaded when the first bank is processed and it is enabled when all the
elements of all banks have been processed except the last one. In this way, in the
following cycle, the final result of the reduction and the data at the output of the
pipeline are synchronized: the first one goes at the input of the multiplexer and the
second one goes at the input of the encoder. From this point, the same behavior of
the multiplier and divider is followed (refer to section 3.7.1).

A block diagram of the reduction unit is shown in figure 3.24.

64-bit RED 32-bit RED 16-bit RED 8-bit RED

Spill Cell

DESTINATION TABLE N-1

SOURCE TABLE 0 SOURCE TABLE N-1

Encoder

DESTINATION TABLE 0

REDUCTION
OPERATION

vs2 vs1

vs2 vs1 vs2 vs1 vs2 vs1 vs2 vs1

REDUCTION UNIT

Figure 3.24: reduction unit block diagram

73

Design and Implementation

3.8 Load-Store Unit
The load-store unit is in charge of performing strided load-store operations (indexed
operations are not supported yet). This type of instructions provide that the first
memory element to be accessed is at the base address specified by rs1; then, the
subsequent elements are at address increments given by a byte offset specified by
rs2 (stride). The size of the elements to be accessed in memory (EEW) is encoded
directly in the instruction.
In addition, there is another type of operations, named load-store segment instruc-
tions, which move multiple contiguous fields in memory to and from multiple vector
register groups. The nf parameter contains one less than the number of fields
per segment (in other words, one less than the number of register groups involved
in one instruction) and the VL parameter gives the number of segments to move,
which is equal to the number of elements transferred to each vector register group.
To be more clear, an example is shown in figure 3.25.

V0	 B0
V1	 B0

V31	 B0

V2	 B0
V3	 B0

V0	 B1
V1	 B1

V31	 B1

V2	 B1
V3	 B1

0 1
16 17
0 1

16 17

8 9
24 25
8 9

24 25

 VLEN 	 = 512 bits

 NUM_LANE 	 = 4

 VL 	 	 = 28

 EEW	 	 = 32 bits

 EMUL	 	 = 2

 NF 	 	 = 1 (NFIELDS = 2)

 NUM_BANKS_PER_LANE = 2

2 3
18 19
2 3

18 19

10 11
26 27
10 11
26 27

4 5
20 21
4 5

20 21

12 13

12 13

6 7
22 23
6 7

22 23

14 15

14 15

VECTOR REGISTER FILE

STRIDE

base

address

MEMORY SEGMENT

0 0 1 1 2 2 3 3 27 27

Figure 3.25: Example of strided load-store operation

74

3.8 – Load-Store Unit

Here, memory contains the elements equally spaced by the stride value. Then, nf
parameter is equal to 1, meaning that each segment contains two fields: the first
one belongs to the first vector register group (made up of registers v0 and v1, since
EMUL = 2), while the second one belongs to the second register group (made up of
registers v2 and v3). So, with this segment operation, 28 elements are transferred
for each register group, involving a total of 4 registers.
Obviously, if nf is equal to 0, this means that a single field is contained in each
segment and then it becomes a normal load-store operation that involve a single
vector register group.
As already mentioned, one important note is that, considering the possible combina-
tions of EMUL and nf, the maximum number of registers accessed in one instruction
cannot be greater than 8.

3.8.1 Load-store emulator
The load-store unit has been implemented with an emulator which cannot be
synthesized (refer to the section 3.1.2 for further details about this choice). It
executes strided load-store instructions, interacting with a memory emulated with
a SystemVerilog class and an ASCII file. The latter contains a fixed number of
lines, each of them containing a hexadecimal 64-address and a byte word.
The memory class is made up of attributes and methods used for the memory
read and write operations, which involve one bank related to all lanes of a vector
register.
The two main methods inside the memory class are:

• ReadBank(): it is used for load operations and it accesses memory for reading
a number of elements (each at the effective address given by the base address
plus the stride) that fits in one bank related to all lanes of a vector register.

• WriteBank(data): it is used for store operations and it accesses memory for
writing elements belonging to one bank related to all lanes of a vector register.
The elements to be stored are in the vs3 register group and a note to highlight
is that the operand requester , at each time, sends all banks of a single register
belonging to a group.

Going into further details about the implementation, the emulator receives the
instructions from the load-store instruction buffer inside the operand requester ; for
the load operations, it directly performs the write-back in the vector register file,
without passing through the destination tables. Once the instruction is completed,
the emulator sends a completion signal to the destination tables.
The load-store emulator is controlled by a Moore FSM, whose flow chart is reported
in figure 3.26.

75

Design and Implementation

At the beginning, the control unit is in a sampling state waiting for a valid
instruction to be executed, so the ready signal towards the operand requester is
asserted. Once the latter sends a valid signal, two branches open up:

• if it is a load instruction, the control unit goes into a waiting state and
it remains there until the load can be executed. This is necessary to avoid
WAW hazards between arithmetic instructions and load-store instructions.
In fact, the first ones are committed by the destination table, while the
second ones by the load-store unit: in order to ensure a correct in-order
commit, each load instruction cannot start its execution until all the previous
arithmetic instructions have already finished the commit in the vector register
file. So, once the write-back counter of the destination table points to the
entry containing the load instruction, it means that the load is authorized to
access the vector register file and then it can start its execution.
At this point, the control unit enters to a bank request state where the emulator
calls the ReadBank() method of the memory class, which returns data to fit
in one bank related to all lanes of a vector register. Then, the control unit
sends a valid signal to the vector register file and, when the latter asserts a
ready, the write-back is executed and the remaining number of elements to be
loaded is updated (VL is decremented by the number of loaded elements).
Then, some checks are executed in order to know if the instruction is completed:

– if not all VL elements have been loaded (so VL > 0), the following parame-
ters used to correctly access the vector register file are updated:

∗ if not all banks of a single register have already been read from memory,
the bank index is incremented

∗ if all banks have already been read from memory, the bank index
is cleared and the register index is incremented (new register of the
group).

After, the control unit returns to the bank request state.
– if all elements have been loaded (so VL = 0), the control unit checks the

nf value and, if it is greater than 0, it means that there is a new vector
register group waiting for other VL elements to be loaded. So, parameters
are updated: the bank index is cleared, the register index is incremented
and the remaining number of elements is restored to VL. At this point,
the control unit returns to the bank request state. If nf is equal to 0,
it means that the instruction is completed, so the control unit sends a
signal of instruction completion to the destination tables and it returns to
sample a new instruction.

• if it is a store instruction, the control unit enters into a write bank state
where the emulator calls the WriteBank(data) method of the memory class,

76

3.8 – Load-Store Unit

passing one bank of vs3 as input parameter. Then, the remaining number of
elements to be stored is updated (VL is decremented by the number of stored
elements) and some checks are executed in order to know if the instruction is
completed:

– if not all VL elements have been stored (so VL > 0):
∗ if not all banks of a single register have already been written in memory,

the bank index is incremented in order to take the following bank of
vs3 (already present in the load-store unit).

∗ if all banks have already been written in memory, the bank index
is cleared and the control unit waits for a new register of the group
coming from the operand requester .

After, the control unit returns into the write bank state.
– if all elements have been stored (so VL = 0), the control unit checks the nf

value and, if it is greater than 0, it means that a new vector register group
must be written in memory. So, the bank index is cleared, the number of
elements is restored to VL and the control unit waits for a new register
coming from the operand requester . After, it returns into the write bank
state. If nf is equal to 0, it means that the instruction is completed, so
the control unit sends a signal of instruction completion to the destination
tables and it returns to sample a new instruction.

77

Design and Implementation

W
ait for a valid
instruction

S
TA

R
T

no
yes

Valid from

O
p. R

eq.?yes
no

Load

 Instruction?

W
ait for

execution

1

1
W

rite bank2

no
yes

Load authorized

to access to V

R
F?

B
ank request

and valid to V
R

F2

no
yes

R
eady from

V

R
F?

no
yes

V
L > 0 ?

no
yes

N
F > 0 ?

U
pdate

param
ater

1

Valid to
D

estination
Table

1

yes
no

V
L > 0 ?

no
yes

N
F > 0 ?

U
pdate

param
ater1

Valid to

D

estination

Table

1

no
yes

N
ew

 register
required?

W
ait for a

new
 register

no
yes

Valid from

O
p. R

eq.? 1

U
pdate

param
eters and

W
ait for a new

register

no
yes

Valid from

O
p. R

eq.?

2

W
R

ITE
 B

A
N

K
W

R
ITE

 B
A

N
K

W
R

ITE
 B

A
N

K

Figure 3.26: Flow chart of the control unit inside the load-store unit

78

3.8 – Load-Store Unit

3.8.2 Load-store unit preliminary design
In order to test and work on the processor, the load-store emulator has been
used. However, a preliminary design for a synthesizable load-store unit has been
developed and it is discussed in this section. This is a first draft, not described in
SystemVerilog yet, which can be used as a starting point for a future, optimized
implementation.
Since there are four types of load-store operations which can be executed depending
on the addressing mode, the load-store unit is made up of four sub-units:

• Load Strided Unit

• Store Strided Unit

• Load Indexed Unit

• Store Indexed Unit

The valid signal sent by the load-store instruction buffer , notifying a new instruction,
arrives at a decoder which propagates it to the correct sub-unit depending on the
addressing mode of the incoming instruction. Then, if the ready of the sub-unit is
asserted, the instruction can be executed.
All four modules interface with a L1 data cache: load units perform requests to
read cache lines; store units execute instructions in two phases, so they first read
the required cache lines and, after the latter are modified by writing the values
required by the instruction, they perform requests to write them in the cache (so
each store operation is made up of a first load and then by a store).
Since all sub-units need to send requests to the cache, there is an arbiter that
selects which of them is authorized to access by propagating its valid signal to
the cache; then, the arbiter receives the ready signal from the cache stating if the
latter is ready to accept the request. On the other hand, the cache will send a valid
signal to the sub-unit once it is ready to send the cache line.
For load operations, the two load sub-units perform the write-back in the vector
register file, so also in this case there is an arbiter to select which of them can
access the vector register file.
Once the instruction is completed, the sub-unit that executed it sends a completion
signal to the destination table along with the index of the entry in which the
instruction is stored.
The block scheme of the load-store unit is reported in figure 3.27.

79

Design and Implementation

LS
U

O
utput

A
rbiter

Load
S

trided

U

nit

Load
Indexed

U
nit

S
tore

Indexed

U

nit

S
tore

S
trided

U

nit

L1 D
ata

C
ache

A
rbiter

add
add

add
add

LS
U

 D
ecoder

L1 D
ATA

 C
A

C
H

E

LSU
 IN

STR
U

C
TIO

N
B

U
FFER

VRFDESTINATION
TABLES

Instruction completed

LO
A

D
 - S

TO
R

E
 U

N
IT

Figure 3.27: load-store unit block diagram

80

3.8 – Load-Store Unit

Going into further details of the arbiters, let’s consider the L1 data cache arbiter (a
block scheme is reported in figure 3.28): it has to select which sub-unit can access
the cache. In this case, it is important to respect an access order given by the
program in order to not have memory hazards (RAW or WAW).
For this purpose, each load-store instruction is processed in order by the load-store
instruction buffer inside the operand requester and here it is marked with a tag
value (refer to 3.4.2 to know how this is performed). In the load-store unit, there is
a counter (head counter), whose output value is equal to the tag value of the oldest
instruction to be processed. So, once each sub-unit sends the request to the arbiter,
the latter propagates to the cache only the valid coming from the unit processing
the instruction which has its tag value equal to the head counter value (this means
that it is the oldest instruction to be processed). Once the oldest instruction does
not have to access the cache anymore, the head counter is incremented, so that
another sub-unit with the tag equal to the new value of the head counter can access.
In this way, the order of the requests follows the one of the instructions.
A note to highlight is that a single instruction often performs multiple requests
to the cache, depending on how many elements are involved and where they are
positioned in memory. Then, the head counter must be incremented after the
request related to the last cache line needed by the oldest instruction is accepted.
So, together with the address of the cache line, each sub-unit outputs a flag stating
if that address is the last one needed. When the flag is set and the handshake with
the cache completes, the head counter is enabled.
Then a similar behavior must be followed by the arbiter which selects the instruction
allowed to perform the write-back in the vector register file.

In order to give a description of components inside the sub-units, the load strided
unit is taken as a reference, considering that the other sub-units have modules which
behave similarly (for example, independently from the operation, it is necessary
to compute the addresses of the cache lines, so all sub-units will have an address
generator that will calculate the addresses in a different way depending on the
addressing mode).
So, the load strided unit is made up of the following components:

• Address generator: it computes all the addresses of the cache lines required
by the instruction. So, considering the base address specified by rs1 and the
stride specified by rs2, it computes the addresses of the lines containing all
VL elements. Most likely, depending on the stride, the elements are spread
in multiple cache lines that are not necessarily contiguous (for example, if
the stride is very large, there are some cache lines which do not contain any
element to be read). Then, the address generator outputs only the addresses
of the cache lines containing valid elements for the current instruction. In
particular, if the stride is larger than the cache line size, the number of required

81

Design and Implementation

Head
Counter

Load Stride

Unit

Store Stride

Unit

Store Indexed

Unit

Load Indexed

Unit

L1 Data Cache Arbiter

A
dd + Last_add_flag

A
dd + Last_add_flag

A
dd + Last_add_flag

A
dd + Last_add_flag

Last_add_flag

ValidReady

Valid
R

eady

Valid
R

eady

Valid
R

eady

Valid
R

eady

Head cnt

TA
G

TA
G

TA
G

TA
G

Add

L1 DATA CACHE

Head_cnt_en

TA
G

H
ead cnt

Valid

Effective Valid

Figure 3.28: L1 Data Cache arbiter

lines is equal to VL (each element is stored in a different line); otherwise it is
equal to G

(VL − 1) · stride + (nf + 1) · EEW_b
cache line size

H
(3.12)

where EEW_b is EEW expressed in byte.
When there is a new instruction to be executed, the address generator does not
start its computations until it receives a start signal from the data generator
buffer . At that point, it generates a new address; then, it sends a valid signal
to the address-data table and, if the latter asserts a ready, it can compute the
next one.

• Address-data table: it is a CAM-like structure which receives the addresses
from the address generator (it is ready to receive a new address when there it
has a free entry); then, it makes the requests to the cache arbiter sending a
valid in order to read a cache line and, when the cache is ready, it stores the
line near its address.
The address-data table has a similar behavior to a CAM: the data generator
sends to the address-data table the address of the required cache line; then,

82

3.8 – Load-Store Unit

the incoming address is compared with the ones present in the address-data
table and if there is a match and the corresponding cache line has already
been taken from the cache, the latter is sent to the data generator together
with a hit signal asserted.

• Data generator: it parses a cache line byte-by-byte and, considering the
stride, nf and EEW, it selects the correct bytes of the elements to be read.
Then, it sends one byte at a time to the data generator buffer in order to store
it in the correct vector destination register.
In particular, the data generator , for each byte inside each element (which is
EEW wide) belonging to each segment (each segment contains nf +1 elements
and the total number of segments is equal to VL), it recomputes the address of
the cache line which contains it. Then it sends the address to the address-data
table: if the latter returns a hit, the data generator takes the cache line and
selects the correct byte, considering that the last bits of the address contain
the offset of the cache line where the byte is positioned. Then, it sends the
latter together with a valid signal to the data generator buffer . Regarding
the valid signal, the data generator has 8 valid output signals, one for each
vector destination register that can receive the byte (as already explained,
each vector instruction cannot involve more than 8 registers). For each byte,
only the valid corresponding to the register that needs to receive it is asserted.
When there is a new instruction to be executed, the data generator does not
start its computations until it receives a start signal from the data generator
buffer . At that point, it begins the process described above until all VL
segments are sent to the data generator buffer . Certainly, considering that
many parameters can change (nf, EEW, stride and VL), this solution is the
easiest to handle. On the other hand, parsing iteratively one byte at a time
leads to a very long process. For this reason, it was decided to combine this
process with a way to speed up the common case of copying an entire cache line
within a whole vector destination register (this happens when EEW_b = stride).
So in this situation, when the cache line is taken from the address-data table,
it is directly addressed to the correct vector register in the data generator
buffer , without having to send one byte at a time.

• Data generator buffer: it is made up of eight buffers, one for each potential
destination register. Each buffer has a size equal to the physical vector register
size (VLEN) and it can receive either one byte at a time or the entire cache line
from the data generator . Each buffer has its write enable which comes from
the valid signal sent by the data generator : this allows writing the incoming
data in the correct buffer and, consequently, in the correct destination register.
When there is a new instruction to be executed, the valid signal coming from
the operand requester is sent to the data generator buffer . If the latter has all

83

Design and Implementation

buffers empty, it asserts the ready and sends a start signal to both the address
generator and data generator in order to process the new instruction. Then,
it waits for the data coming from the data generator and, after receiving the
valid signals from the latter, it stores it in the correct buffers. When all VL
segments have been stored, the data generator buffer starts to execute the
write-back in the vector register file. So, considering one buffer at a time (so
one destination register), it divides the content of the buffer in banks (the
number of banks in one physical register is equal to VLEN/LANE_WIDTH) and it
outputs one bank for each lane at a time along with a valid signal. The latter
is received by the arbiter that selects which unit can access the vector register
file. If the data generator buffer receives a ready, then the banks are written
in the vector register file and a new write request can be performed for the
other banks.
When the write-back is completed for all destination registers, a completion
signal is sent to the destination table and the data generator buffer returns to
wait for a new instruction.

A block scheme of the load strided unit is reported in figure 3.29.

84

3.8 – Load-Store Unit

A
dd

re
ss

 G
en

er
at

or

A
dd

re
ss

-D
at

a

Ta
bl

e

ad
d1

C
ac

he
 L

in
e

ad
d2 ...

ad
d8

C
on

tro
l

Lo
gi

c

C
on

tro
l

Lo
gi

c
C

on
tro

l
Lo

gi
c

D
at

a

G
en

er
at

or
D

at
a

G
en

er
at

or

B
uf

fe
r

A
dd

re
ss

 G
en

er
at

or
 L

og
ic

LS
U

 IN
ST

R
U

C
TI

O
N

B

U
FF

ER

L1
 D

AT
A

C
A

C
H

E
A

R
B

IT
ER

L1
 D

AT
A

C

A
C

H
E

status

D
at

a
G

en
er

at
or

 L
og

ic

LS
U

O
U

TP
U

T
A

R
B

IT
ER

LS
U

O
U

TP
U

T

LO
A

D
 S

TR
ID

E
D

 U
N

IT

LS
U

 D
EC

O
D

ER

C
on

tro
l

Lo
gi

c

status

D
ES

TI
N

AT
IO

N
TA

B
LE

S

Control

signals

Control

signals

status

Control

signals

status

Control

signals

Figure 3.29: Load strided unit block diagram

85

86

Chapter 4

Testing and synthesis

4.1 Testing methodology

In order to perform the functional verification of the vector processing unit, each
internal component was tested after it was designed and implemented.
So, a testbench that applies input stimuli is dedicated to each unit and to each
component within it (refer to sections 3.2 to 3.8 for a description of all the modules
inside the vector processing unit). The most relevant output signals are manually
verified by printing them on a simulation log; moreover, the waves of the simulator
are analyzed in order to verify if the content of the data structures and the internal
signals match the expected ones at each clock cycle.
In addition to the testbenches, some SVAs are inserted in the code in order to
automatically test specific and potentially critical situations. In fact, assertions
allow verifying at run-time some properties that a module should satisfy given
some boundary conditions. If a property is not met, an output error message may
pointing to the failing property is shown to the user, and the simulation can be
automatically interrupted.
One example is reported in the listing 4.1, which reports some of the assertions
from the instruction status table and, in particular, the ones related to the push
operation (for the explanation of the instruction status table behavior refer to the
section 3.3). Considering the first one, the property states that, if in a certain clock
cycle the entry of the instruction status table pointed by the tail counter has a
NOT_VALID status and the valid from the instruction decoder is asserted, then at
the next clock cycle the entry assumes a READY_HAZ_CHECK status because a push
is executed. This property must always be verified so if, during the simulation,
it is violated because the state of the entry is not updated, it means that there
are some errors in the implementation. The second assertion, instead, states that,
if the entry pointed by the tail counter has a status different from NOT_VALID,

87

Testing and synthesis

at the next clock cycle the tail counter value is unchanged, meaning that, if the
instruction status table is full, no new instructions can be accepted and therefore
the tail counter cannot be incremented.
Assertions obviously must not be synthesized since they are needed only to test
the functionalities of modules, so the ‘ifndef directive is inserted to prevent the
synthesizer from analyzing the test code.

1 // ----------
2 // ASSERTIONS
3 // ----------
4 `ifndef SYNTHESIS
5

6 /* Push operation => a new data is inserted in the entry
pointed by the tail counter */

7 property p_push ;
8 @(posedge clk_i)
9 ist_fifo [tail_cnt]. ist_status == NOT_VALID &&

decoder_valid_i |-> ##1
10 ist_fifo [$past(tail_cnt)]. ist_status == READY_HAZ_CHECK
11 endproperty
12 a_push : assert property (p_push);
13

14 /* Fifo full => Push cannot be executed */
15 property p_fifo_full ;
16 @(posedge clk_i)
17 ist_fifo [tail_cnt]. ist_status != NOT_VALID |-> ##1
18 $past(tail_cnt) == tail_cnt
19 endproperty
20 a_fifo_full : assert property (p_fifo_full);
21

22 `endif

Listing 4.1: Assertion example in the instruction status table

Finally, when the vector processing unit has been integrated by connecting all of its
modules, a final testbench has been created. Since the processor is not integrated in
the scalar core yet, the testbench must perform the same operations that the scalar
core would do. In particular, it takes the instructions to be sent to the processor
from a binary file and, at each clock cycle, it verifies if the vector processing unit
is ready to accept a new instruction: if this is the case, it sends to the processor
the instruction along with a valid signal; otherwise, it must wait until the vector
processing unit asserts a ready.
In the same way, the testbench directly provides the dynamic parameters (SEW and
VL) which should be set by the configuration instructions modifying the CSRs (refer

88

4.2 – Case study

to section 3.1.1 for further details). So, before sending instructions with a new
configuration of parameters, the testbench must wait for all running instructions
to complete (i.e. when all entries of instruction status table are NOT_VALID). This
allows to correctly complete the older instructions with the previous configuration
while the newer ones are temporarily stalled.
At the end of the testbench, the updated memory content is printed on a file in
order to verify if it contains the expected values.

4.2 Case study
In order to evaluate the performance of the vector processing unit, the matrix
convolution is used as case study. This is a representative workload of machine
learning algorithms as it is used, for example, in Convolutional Neural Networks
(CNNs), which are widespread in a variety of applications like image and speech
recognition, videogames, and robotics.

To give a brief description of the matrix convolution algorithm, let’s consider the
example in figure 4.1, which will be used for the processor performance evaluation.
Considering as a starting point a 16x16 input matrix (containing the data to be
elaborated) and an 8x8 filter matrix, the algorithm multiplies, element by element,
the filter by an 8x8 submatrix taken from the 16x16 input matrix (colored in light
blue in the figure); then, the resulting 64 products are accumulated together with
a reduction operation to find one element of the resulting matrix, which is a 9x9
matrix. The same operations are applied to every subsequent submatrix by sliding
by one position at a time, so every element of the output matrix is computed. In
this case, 81 iterations are needed to compute the 81 elements of the 9x9 output
matrix.

The vector processing unit is tested with the algorithm described above (the pseudo-
code is reported in the appendix A), considering 16-bit elements for all matrices
(SEW = 16 bits) and performing 81 iterations, each of them operating on 64 input
elements (VL = 64).
The filter is loaded in a vector register at the beginning of the execution; in each
iteration, an 8x8 input submatrix is loaded from the memory and multiplied by the
filter to generate the 64 output products that are accumulated with a reduction
operation in order to find one resulting element, which is successively stored in
memory.
Since the indexed load-store operations are not implemented yet, the memory,
instead of containing the original 16x16 matrix, contains all the submatrices already
formed, so there’s no need to gather only the first elements of each involved row.
All matrices contain elements with random values.

89

Testing and synthesis

MATRIX

FILTER

REDUCTION SUM

RESULTING MATRIX

Figure 4.1: Matrix convolution example with 16x16 input matrix, an 8x8 filter
and a 9x9 resulting matrix.

4.3 Testing and synthesis results
The performance achieved by the vector processing unit is evaluated considering
the results obtained from the simulation and synthesis1. In particular, taking into
account that the processor is highly configurable, multiple simulations and synthesis
can be run with different combinations of parameters. In this section, the attention
is mainly focused on two of them: VLEN (number of bits in a single vector register)
and NUM_LANE (number of lanes); so, the different simulations and synthesis are

1All results are obtained from the synthesis of the entire vector processing unit without the
load-store unit, since the latter is not implemented yet and the emulator is used only for simulation
purposes without being synthesizable.

90

4.3 – Testing and synthesis results

performed with changing the values of the latter. The other parameters, which are
listed below, are fixed:

• NUM_PE = 1

• NUM_ALU_PER_LANE = 2

• NUM_MUL_PER_LANE = 2

• NUM_DIV_PER_LANE = 2

• IST_DEPTH = 8

• ST_DT_DEPTH = 16

• NUM_VRF_PORTS = 8

4.3.1 Baseline
Let’s consider as a starting point a configuration with:

• VLEN = 64 bits

• NUM_LANE = 1

By setting these values, the resulting architecture can be seen as a (quite inefficient)
scalar processor with a 64-bit parallelism. The area and cycle time obtained from
the synthesis are reported in the table below.

Area Cycle time
[µm2] [ns]

623 529 1.96

Table 4.1: Results with VLEN = 64 bits and NUM_LANE = 1.

Certainly, the vector processing unit can work in these conditions but it must be
considered that, by fixing VLEN to such a low value, the total number of elements
that can be processed is limited even exploiting groups of registers (with EMUL = 8,
it can process a maximum of VLEN · 8 = 512 bits). Moreover, the execution takes a
long time to complete because the processor can process only a maximum of 64
bits at each clock cycle and so it is obliged to perform a lot of iterations to handle
all the data. Most importantly, the latency overhead of the complex control is not
compensated by an increased throughput.
The vector processing unit is designed to process a large amount of data (which is

91

Testing and synthesis

the main characteristic of data-driven systems), using multiple lanes to process as
many elements as possible in parallel, so this configuration is definitely not suitable
for this purpose. Then, to perform calculations like a scalar processor would, a
scalar processor itself is obviously more efficient as it is optimized for control flow
with low data parallelism.

Still, such minimal configuration is useful to provide a baseline in terms of resources
required by each module inside the vector processing unit. Such analysis is reported
in figure 4.2, that shows the contribution of each module to the total area. All the
values are obtained from the synthesis of the single modules always considering
VLEN = 64 bits and NUM_LANE = 1.

< 1%5%
3%

5%

71%

15%

Instruction decoder
Instruction status table
Scheduling logic
Vector register file
Processing element
Source and Destination tables

Figure 4.2: Area composition of the vector processing unit considering
NUM_LANE = 1 and VLEN = 64 bits.

As it can be seen from the chart, the module which occupies most of the area is the
processing element. This is reasonable because the latter contains all the arithmetic
operators. However, it must be also considered that, in order to support the four
different parallelisms of the elements, four sets of operators are instantiated for
each type of arithmetic operator (this is explained in detail in the section 3.7.1), so
the area is almost four times greater than the one it should theoretically occupy.

92

4.3 – Testing and synthesis results

Therefore, the area can be greatly reduced by implementing arithmetic operators
able to perform sub-word parallel computations so that a single operator with a
fixed parallelism can be used for processing in parallel multiple elements with a
parallelism that is smaller than the maximum one.
The area of the single modules is directly proportional to the number of lanes. The
only exception is the instruction decoder and the instruction status table, which
instead do not depend on the number of lanes, therefore representing a constant
contribution to the total area.
As already mentioned, the load-store unit does not appear in the graph since the
emulator is not synthesizable.

4.3.2 Results comparison by changing parameters
This section reports the results of sixteen simulations and synthesis, each running
with a different parameters configuration. In particular, the same matrix convolution
algorithm (see the appendix A for its pseudo-code) is run sixteen times, varying
VLEN between 128 bits and 1024 bits and NUM_LANE between 1 and 8.
Table 4.2 reports the simulation results for all the combinations of VLEN and
NUM_LANE, showing the number of clock cycles necessary to terminate the program
and the throughput, expressed as the average number of bits of the input matrix
that are processed, on average, in each clock cycle2.
Table 4.3 reports the results of the synthesis, showing the total area of the vector
processing unit and its cycle time (Tck).
For each table, it is reported also the number of banks for each lane of the vector
register file (NUM_BANKS_PER_LANE) and EMUL, which are resulting from the choice
of VLEN and NUM_LANE.
In addition, three surface charts are reported below in order to show the trend of
data present in the tables 4.2 and 4.3. All of them report a result as a function of
VLEN and NUM_LANE: the first one in figure 4.3 shows the area; the second one in
figure 4.4 reports the cycle time and the last one in figure 4.5 shows the throughput.

As expected, increasing VLEN and NUM_LANE results in a higher throughput and
thus a lower overall latency, since the possibility of processing many more elements
in parallel increases. So, considering the two extremes, we start from a throughput
of 0.23 bit/cycle when NUM_LANE = 1 and VLEN = 128 bits and we arrive to a
maximum throughput of 0.45 bit/cycle when VLEN = 1024 bits and NUM_LANE = 8.
On the other hand, if VLEN and NUM_LANE increase, the area increases as well
since more resources are needed in order to process more elements in parallel.

2This takes into account all the operations involved in the algorithm (i.e., load, arithmetic,
and store instructions).

93

Testing and synthesis

So, always considering the two extremes, we start from an area of 673 173 µm2

when NUM_LANE = 1 and VLEN = 128 bits and reach an area of 4 649 253 µm2 when
NUM_LANE = 8 and VLEN = 1024 bits.
On the other hand, the cycle time remains almost constant for all combinations
of VLEN and NUM_LANE. This is in line with the discussion about the DLP reported
in chapter 2: in architectures exploiting DLP, the CPU time can be reduced by
maintaining the same clock period while decreasing the number of instructions in
the program and adding parallel, independent functional units (lanes). In the case
of the designed vector processing unit, the cycle time is on average equal to 2 ns
leading to a clock frequency of about 500 MHz.

When NUM_LANE = 1, the area is minimized with respect to other cases but the
situation that arises is like having a 64-bit scalar processor, which must process
long vectors. So, it is certainly not an optimal situation, as the throughput is low
(0.23 bit/cycle) and the number of banks in the register file can be very high (since
VLEN reaches high values), therefore increasing the number of iterations needed
to process all elements but also the possibility of conflicts within the register file
(since all banks of a single register are mapped on the same access port).

Among the combinations of VLEN and NUM_LANE, there are some of them which
do not make sense to use as they do not bring any advantage either in terms of
throughput or in terms of area. This happens in the configurations listed below:

• VLEN = 128 bits and NUM_LANE = 4

• VLEN = 128 bits and NUM_LANE = 8

• VLEN = 256 bits and NUM_LANE = 8

Considering, for example, to fix VLEN = 128 bits, the throughput remains constant
to 0.32 bit/cycle even increasing NUM_LANE from 2 to 4 or 8 since the maximum
throughput achievable by the operators is equal to VLEN/cycle (meaning that all
elements of a vector can be processed in parallel in a single iteration). So, in this
case, the disadvantage is that throughput remains constant but the area increases
(since NUM_LANE increases). This means that, once VLEN is fixed, the number of lanes
must be set in order to minimize the area while still having the same throughput
(in this case the best choice when VLEN = 128 bits would be NUM_LANE = 2).
Considering the opposite reasoning, if we want to fix NUM_LANE = 8, the area
remains almost constant even increasing VLEN from 128 bits to 256 bits or 512 bits.
However, the number of elements that can potentially be processed in parallel is
higher than the one contained in a vector then, when VLEN =128 bits or 256 bits
some lanes are not used. Therefore once NUM_LANE is fixed, VLEN must be set in
order to maximize the throughput while still having the same area (in this case the
best choice when NUM_LANE = 8 would be VLEN = 512 bits).

94

4.3 – Testing and synthesis results

VLEN NUM_LANE NUM_BANKS_PER_LANE EMUL Latency Throughput
[bit] [cycles] [bit/cycle]
128 1 2 8 18 013 0.23
256 1 4 4 18 013 0.23
512 1 8 2 18 013 0.23
1024 1 16 1 18 013 0.23
128 2 1 8 12 965 0.32
256 2 2 4 12 965 0.32
512 2 4 2 12 965 0.32
1024 2 8 1 12 965 0.32
128 4 1 8 12 965 0.32
256 4 1 4 10 441 0.39
512 4 2 2 10 441 0.39
1024 4 4 1 10 441 0.39
128 8 1 8 12 965 0.32
256 8 1 4 10 441 0.39
512 8 1 2 9181 0.45
1024 8 2 1 9181 0.45

Table 4.2: Results from the simulations. For each combination, the latency
(expressed in clock cycles) and throughput (expressed in bit/cycle) are reported.

VLEN NUM_LANE NUM_BANKS_PER_LANE EMUL Area Cycle time
[bit] [µm2] [ns]
128 1 2 8 673 173 1.95
256 1 4 4 736 882 1.87
512 1 8 2 832 838 1.91
1024 1 16 1 1 050 557 1.89
128 2 1 8 1 176 238 1.94
256 2 2 4 1 244 398 2.03
512 2 4 2 1 365 019 1.95
1024 2 8 1 1 584 953 2.04
128 4 1 8 2 255 266 1.96
256 4 1 4 2 247 760 2.01
512 4 2 2 2 374 615 2.08
1024 4 4 1 2 603 050 2.04
128 8 1 8 4 423 913 2.06
256 8 1 4 4 382 766 2.06
512 8 1 2 4 425 330 2.06
1024 8 2 1 4 649 253 2.03

Table 4.3: Results from the synthesis. For each combination, the area and cycle
time (Tck) are reported.

95

Testing and synthesis

0
0.4

10

0.8
1.2

9

1.6
2

8 1024

2.4

106
Ar

ea
 [

m
2]

7

2.8

896

3.2

6

3.6

NUM_LANE

768

4

5

4.4

VLEN [bit]
640

4.8

4 5123 3842 2561 128

Figure 4.3: Surface chart showing the trend of the area as a function of VLEN and
NUM_LANE.

0
0.2

10

0.4
0.6
0.8

9

1
1.2

8

1.4

1024

1.6

C
yc

le
 ti

m
e

[n
s]

7

1.8

896

2

6

2.2

NUM_LANE

768

2.4
2.6

5

VLEN [bit]

2.8

640

3

4 5123 3842 2561 128

Figure 4.4: Surface chart showing the trend of the cycle time as a function of
VLEN and NUM_LANE.

96

4.3 – Testing and synthesis results

0
0.04

10

0.08
0.12

9

0.16
0.2

8

0.24

1024

0.28

Th
ro

ug
hp

ut
 [b

its
/c

yc
le

]

7

0.32

896

0.36

6
NUM_LANE

768

0.4
0.44

5

VLEN [bit]

640

0.48

4 5123 3842 2561 128

Figure 4.5: Surface chart showing the trend of the throughput as a function of
VLEN and NUM_LANE.

Now, let’s consider two specific examples in order to discuss some further details.
The first situation considers fixing VLEN to 1024 bits: the chart 4.6 shows the trend
of the area and throughput by varying NUM_LANE. The second situation considers
fixing NUM_LANE to 2: the chart 4.7 shows the trend of the area and throughput by
varying VLEN.
Taking into account the first situation, if the number of lanes grows, the area linearly
increases (remember that most of the modules inside the processor are made up
as many sub-units as the number of lanes). On the other hand, the throughput
increases as well since, with a growth of NUM_LANE, the number of elements that
can be processed in parallel increases. At the same time, the latency to terminate
the program decreases since a lower number of iterations is needed to process all
elements. This is reflected by the required number of registers banks in each lane
of the vector register file: increasing the number of lanes, NUM_BANKS_PER_LANE
decreases and so the time to iterate on all banks decreases as well. Another
advantage is that, by having less banks, the possibility of conflicts within the
register file is reduced (since fewer register sections are mapped on the same port).

97

Testing and synthesis

0 1 2 3 4 5 6 7 8 9
NUM_LANE

0
0.03
0.06
0.09
0.12
0.15
0.18
0.21
0.24
0.27
0.3

0.33
0.36
0.39
0.42
0.45
0.48

Th
ro

ug
hp

ut
 [b

it/
cy

cl
e]

0
0.3
0.6
0.9
1.2
1.5
1.8
2.1
2.4
2.7
3
3.3
3.6
3.9
4.2
4.5
4.8

Ar
ea

 [
m

2]

106

Figure 4.6: Trend of area and throughput by varying NUM_LANE while fixing
VLEN = 1024 bits.

Considering the second situation, if VLEN grows, the area increases almost linearly
since NUM_BANKS_PER_LANE increases (more banks are needed to manage longer
vectors). On the other hand, the throughput remains constant at 0.32 bit/cycle,
which is fixed by the chosen number of lanes (each lane can process 64 bits at a time).
Then, also the latency remains constant and this happens because the number of
iterations necessary to process all elements is the same for all values of VLEN. To
understand this point, it is necessary to look at NUM_BANKS_PER_LANE and EMUL.
For example, a situation considering VLEN = 128 bits, NUM_BANKS_PER_LANE = 1
and EMUL = 8 leads having only one bank for each register, so each register can
manage 8 16-bit elements but, in order to process all elements of one vector (64
16-bit elements, as the matrix convolution algorithm asks), it is required to iterate
on a group of eight registers (so EMUL = 8). On the other hand, when VLEN = 1024
bits, NUM_BANKS_PER_LANE = 8 and EMUL = 1, meaning that VLEN value leads
having eight banks for each register, so each register can manage 64 16-bit elements

98

4.3 – Testing and synthesis results

iterating on its banks. Then, a single register is enough to process all elements
of one vector (so EMUL = 1). In conclusion, the latency is constant because the
number of total iterations is the same, either if we iterate on more registers with
less banks or if we iterate on less registers with more banks. Certainly having less
banks leads to the possibility of reducing conflicts within the register file (since
fewer register sections are mapped on the same port), but it is also necessary to
consider that EMUL cannot be greater than 8 and how many registers are required
by the algorithm to be run on the processor.

64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024
VLEN [bit]

0
0.03
0.06
0.09
0.12
0.15
0.18
0.21
0.24
0.27
0.3

0.33
0.36
0.39
0.42
0.45
0.48

Th
ro

ug
hp

ut
 [b

it/
cy

cl
e]

0
0.8
1.6
2.4
3.2
4
4.8
5.6
6.4
7.2
8
8.8
9.6
10.4
11.2
12
12.8
13.6
14.4
15.2
16
16.8

Ar
ea

 [
m

2]

105

Figure 4.7: Trend of area and throughput by varying VLEN while fixing
NUM_LANE = 2.

99

100

Chapter 5

Conclusion

This thesis project led to a first implementation of a vector processor used to
accelerate data-parallel applications.
As already discussed in the introduction, a vector processor has the advantage of
having high flexibility: it is programmable so it is easy to change functionalities for
different application targets. Up to now, attention has been focused on the matrix
convolution case study, but other types of algorithms can be surely considered in
the future.
The use of the RISC-V vector extension further increases the versatility of the
processor: the possibility of setting parameters as the element width (SEW) and the
number of elements to be processed (VL) at run time having a “hardware-agnostic”
software, leads to being able to use the processor featuring different vector register
sizes (VLEN), allowing high performance and great versatility in different application
domains.
Moreover, the designed processor is scalable and suitable for a variety of target
applications, since many implementation parameters can be set at synthesis time:
from the number of lanes and vector register size to the number of processing
elements and arithmetic operators. The advantage of this structure is that, de-
pending on the target performance and power consumption constraints, priority
can be either given to throughput, using a higher number of lanes and arithmetic
operators, or to area and power efficiency, having a less performing yet smaller
processor.
This represents a preliminary design and future developments will be necessary to
implement the missing parts and to optimize those already present.

101

Conclusion

5.1 Future improvements
In this section, some suggestions are given for possible future work:

• One missing part that should be implemented is the load-store unit. Until
now, the emulator is able to manage strided operations and it is used only
for simulation purposes without being synthesizable. So, it is necessary to
implement this unit in order to support both strided and indexed memory
operations.

• The designed vector processing unit supports only a subset of the RISC-V
vector extension so it is useful to design the hardware able to manage the
other kind of instructions. The types of non-supported instructions (which
are listed in the section 3.1.2) would involve massive interaction between lanes
in order to exchange data between them. The best solution is to implement
a separate unit that is able to handle these operations (like masking ones or
permutations) in an optimized way.

• The vector processing unit needs to be integrated into the scalar core LEN5 ,
so that the latter could send the instructions along with the scalar operands
to the vector processor; then, it could manage the configuration instructions
by modifying the CSRs in order to send to the vector processing unit the
updated dynamic parameters (SEW, VL and LMUL). At the moment, all these
operations are directly performed by the testbench.

• Some optimizations can be done in order to improve the performance. One
point which could be an object of revision is the control unit managing the
arithmetic instruction buffer , which has 170 states and an average latency of 7
clock cycles. Certainly, this leads the scheduling logic to represent a bottleneck
of the design considering also the fact that it can manage only one instruction
at a time. Then, for this first implementation, the use of this control unit
allowed to easily debug the structure but it can be optimized in the future.

• Another point always related to the possible optimizations concerns the
allocation of the source tables. Now they have one common tail counter and
the problem occurs when the scheduling logic is not ready to send a new
instruction only for some lanes because only some lanes of the vector register
file are not ready for the fetch operation. In this case, the scheduling logic
waits until the fetch operation is completed for all lanes before sending the
instruction to the source tables (even dough some lanes have already the
operands ready). At this point, all source tables receive synchronously the
instruction and the tail counter is incremented. This is certainly easy to
manage since all data in the different lanes are synchronized but, in this way

102

5.1 – Future improvements

the independence that lanes should theoretically have, is partially lost. So, a
solution can be to use one independent counter for each source table so that,
once the scheduling logic has some ready data, it can send it immediately to
the correct source table. In this way, the independence of lanes would be fully
exploited.

• The last point concerns the arithmetic operators. Now, in order to support
the four different parallelisms of the elements, four sets of operators are
instantiated for each type of arithmetic operator (this is explained in detail
in the section 3.7.1). A future work can be the implementation of arithmetic
operators able to perform sub-word parallel computations so that a single
operator with fixed parallelism can be used for processing in parallel multiple
elements with parallelism that is smaller than the maximum one. In this way,
the overall area of the vector processor could be greatly reduced.

103

104

Appendix A

Matrix convolution
pseudo-code

This appendix reports the pseudo-code describing the matrix convolution algorithm
which is used for the evaluation of processor performance.
As already discussed in chapter 5, the data to be elaborated is contained in a
16x16 input matrix and the filter is in an 8x8 matrix. Each iteration considers an
8x8 submatrix taken from the input matrix and it computes one element of the
resulting 9x9 matrix. All elements have 16-bit parallelism (SEW = 16 bits) and then
81 iterations (each of them managing 64 16-bit elements) are needed to compute
the 81 elements of the resulting matrix.
The pseudo-code listed in A.1 shows that the filter is first loaded in v0. Then, at
each iteration, a submatrix is loaded in v9 and the multiplication between v0 and v9
is performed (a note to highlight is that, depending on EMUL, the registers involved
in these operations can be from v0 to v7 for the filter and from v9 to v16 for the
submatrix). At this point, the multiplication resulting vector (potentially from v18
to v25) is subjected to the reduction operation.
The result of the reduction (i.e. the element of the resulting matrix) is not immedi-
ately stored in memory: the store operation is executed after the computation of
six resulting elements, which are temporally stored from register v26 to v31. Then,
a single segment store strided can be executed, by involving all six registers. The
fact of performing a store instruction for a group of resulting elements and not for
one element at a time allows reducing the latency of the program. This happens
because store instructions have VL = 1 (only one element of the register containing
the valid result for one iteration must be stored in memory), which is different from
the one of the other instructions (e.i. VL = 64). So the processor, before executing
a store instruction with a new configuration of dynamic parameters, is stalled
waiting that all previous instructions with VL = 64 terminate. Then, the overall

105

Matrix convolution pseudo-code

time in which the processor is stalled is reduced by grouping store operations.

1 // SEW = 16 bits
2

3 // Load filter in v0
4 Load unit - strided (vd = v0 , nf = 0) | vl = 64
5 // Compute the first 78 elements of the resulting matrix
6 for(i=0; i <13; i++) {
7 // Load matrix in v9
8 Load unit - strided (vd = v9 , nf = 0) | vl = 64
9 // Multiply the filter by the matrix

10 MUL (v18 <- v0 * v9) | vl = 64
11 // Sum all elements of the product matrix
12 RED SUM (v26 <- sum(v18)) | vl = 64
13 Load unit - strided (vd = v9 , nf = 0) | vl = 64
14 MUL (v18 <- v0 * v9) | vl = 64
15 RED SUM (v27 <- sum(v18)) | vl = 64
16 Load unit - strided (vd = v9 , nf = 0) | vl = 64
17 MUL (v18 <- v0 * v9) | vl = 64
18 RED SUM (v28 <- sum(v18)) | vl = 64
19 Load unit - strided (vd = v9 , nf = 0) | vl = 64
20 MUL (v18 <- v0 * v9) | vl = 64
21 RED SUM (v29 <- sum(v18)) | vl = 64
22 Load unit - strided (vd = v9 , nf = 0) | vl = 64
23 MUL (v18 <- v0 * v9) | vl = 64
24 RED SUM (v30 <- sum(v18)) | vl = 64
25 Load unit - strided (vd = v9 , nf = 0) | vl = 64
26 MUL (v18 <- v0 * v9) | vl = 64
27 RED SUM (v31 <- sum(v18)) | vl = 64
28 // Store 6 elements of the resulting matrix
29 Store unit - strided (v26 ,,v31 , nf = 5)| vl = 1
30 }
31 // Compute the last 3 elements of the resulting matrix
32 Load unit - strided (vd = v9 , nf = 0) | vl = 64
33 MUL (v18 <- v0 * v9) | vl = 64
34 RED SUM (v26 <- sum(v18)) | vl = 64
35 Load unit - strided (vd = v9 , nf = 0) | vl = 64
36 MUL (v18 <- v0 * v9) | vl = 64
37 RED SUM (v27 <- sum(v18)) | vl = 64
38 Load unit - strided (vd = v9 , nf = 0) | vl = 64
39 MUL (v18 <- v0 * v9) | vl = 64
40 RED SUM (v28 <- sum(v18)) | vl = 64
41 Store unit - strided (v26 ,,v28 , nf = 2)| vl = 1

Listing A.1: Pseudo-code describing the matrix convolution algorithm

106

Acronyms

ALU Arithmetic Logic Unit
AVX Advanced Vector Extension
AXI Advanced eXtensible Interface

CAM Content Addressable Memory
CDB Common Data Bus
CPI Cycles Per Instruction
CPU Central Processing Unit
CSR Control and Status Register

DLP Data Level Parallelism

FIFO First In First Out
FSM Finite State Machine

GPU Graphic Processing Unit

ISA Instruction Set Architecture

MAC Multiply - Accumulate
MIMD Multiple Instruction stream Multiple Data stream

PE Processing Element

RAW Read After Write
ROB Reorder Buffer

SIMD Single Instruction stream Multiple Data stream
SSE Streaming SIMD Extensions
SVA SystemVerilog Assertions
SVE Scalable Vector Extension

VNB Von Neumann Bottleneck

WAW Write After Write

107

108

Bibliography

[1] Len5-vector. url: https://git.vlsilab.polito.it/risc-v/len5/len5-
vector. (accessed: 19.08.2022) (cit. on p. 1).

[2] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. «Efficient
Processing of Deep Neural Networks: A Tutorial and Survey». In: Proceedings
of the IEEE 105.12 (Nov. 2017), pp. 2295–2329 (cit. on pp. 1, 22).

[3] Neeraj Magotra and Jim Larimer. «Energy Efficient Digital Signal Processing».
In: 2010 53rd IEEE International Midwest Symposium on Circuits and Systems
(2010), pp. 1053–1056 (cit. on p. 1).

[4] Mohammed Alrowaily and Zhuo Lu. «Secure Edge Computing in IoT Systems:
Review and Case Studies». In: 2018 IEEE/ACM Symposium on Edge Computing
(SEC) (2018), pp. 440–444 (cit. on p. 2).

[5] John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-
tative Approach. sixth edition. Morgan Kaufmann Publishers Inc., 2017 (cit. on
pp. 2, 6).

[6] John Backus. «Can Programming Be Liberated from the von Neumann Style?
A Functional Style and Its Algebra of Programs». In: Communications of the
ACM 21.8 (1978), pp. 613–641 (cit. on p. 2).

[7] Daniel Dabbelt, Colin Schmidt, Eric Love, Howard Mao, Sagar Karandikar, and
Krste Asanovic. «Vector Processors for Energy-Efficient Embedded Systems».
In: Proceedings of the Third ACM International Workshop on Many-Core
Embedded Systems (2016), pp. 10–16 (cit. on p. 3).

[8] RISC-V International. url: https://riscv.org/. (accessed: 08.08.2022) (cit.
on p. 3).

[9] Vector Extension 1.0, frozen for public review. url: https://github.com/
riscv/riscv-v-spec/releases/tag/v1.0. (accessed: 08.08.2022) (cit. on
pp. 3, 27).

109

https://git.vlsilab.polito.it/risc-v/len5/len5-vector
https://git.vlsilab.polito.it/risc-v/len5/len5-vector
https://riscv.org/
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0
https://github.com/riscv/riscv-v-spec/releases/tag/v1.0

BIBLIOGRAPHY

[10] Intrinsics for Intel Advanced Vector Extensions. url: https : / / www . int
el.com/content/www/us/en/develop/documentation/cpp- compiler-
developer-guide-and-reference/top/compiler-reference/intrinsics/
intrinsics- for- intel- advanced- vector- extensions.html. (accessed:
17.08.2022) (cit. on p. 7).

[11] Intrinsics for Intel Advanced Vector Extensions 2 (Intel AVX2). url: https:
//www.intel.com/content/www/us/en/develop/documentation/cpp-
compiler-developer-guide-and-reference/top/compiler-reference/
intrinsics/intrinsics- for- avx2.html. (accessed: 17.08.2022) (cit. on
p. 7).

[12] Intrinsics for Intel Advanced Vector Extensions 512 (Intel AVX-512) Instruc-
tions. url: https://www.intel.com/content/www/us/en/develop/docume
ntation/cpp-compiler-developer-guide-and-reference/top/compiler-
reference/intrinsics/intrinsics- for- avx- 512- instructions.html.
(accessed: 17.08.2022) (cit. on p. 7).

[13] What is NEON? url: https://developer.arm.com/documentation/dht0
002/a/Introducing-NEON/What-is-NEON-?lang=en. (accessed: 18.08.2022)
(cit. on p. 7).

[14] Yunan Xiang, R. Pettibon, and M. Margala. «A versatile computation module
for adaptable multimedia processors». In: 2006 IEEE International Symposium
on Circuits and Systems (ISCAS) (2006), pp. 4–60. doi: 10.1109/ISCAS.2006.
1692521 (cit. on pp. 8, 69).

[15] Introduction to SVE. url: https://developer.arm.com/documentation/
102476/0100/?lang=en. (accessed: 17.08.2022) (cit. on p. 9).

[16] Introduction to SVE2. url: https://developer.arm.com/documentation/
102340/0001/Introducing-SVE2?lang=en. (accessed: 17.08.2022) (cit. on
p. 9).

[17] Nigel Stephens et al. «The ARM scalable vector extension». In: IEEE micro
37.2 (2017), pp. 26–39 (cit. on p. 9).

[18] Matheus Cavalcante, Fabian Schuiki, Florian Zaruba, Michael Schaffner, and
Luca Benini. «Ara: A 1-GHz+ scalable and energy-efficient RISC-V vector
processor with multiprecision floating-point support in 22-nm FD-SOI». In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28.2 (2019),
pp. 530–543 (cit. on p. 10).

[19] Michele Caon. «Design of the execution pipeline for LEN5, a RISC-V Out-
of-Order processor». Master’s Thesis. Torino, Italia: Politecnico di Torino,
Academic year 2018-2019 (cit. on pp. 23, 24).

[20] Serial divider. url: https://github.com/skmtti/div. (accessed:08.09.2022)
(cit. on p. 71).

110

https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-intel-advanced-vector-extensions.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx-512-instructions.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx-512-instructions.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx-512-instructions.html
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/What-is-NEON-?lang=en
https://developer.arm.com/documentation/dht0002/a/Introducing-NEON/What-is-NEON-?lang=en
https://doi.org/10.1109/ISCAS.2006.1692521
https://doi.org/10.1109/ISCAS.2006.1692521
https://developer.arm.com/documentation/102476/0100/?lang=en
https://developer.arm.com/documentation/102476/0100/?lang=en
https://developer.arm.com/documentation/102340/0001/Introducing-SVE2?lang=en
https://developer.arm.com/documentation/102340/0001/Introducing-SVE2?lang=en
https://github.com/skmtti/div

	List of Tables
	List of Figures
	Introduction
	Motivation
	Thesis organization

	Background
	Data Level Parallelism
	Architectural models
	Packed-SIMD architecture
	Vector processors

	Related works

	Design and Implementation
	Top level architecture
	Design parameters
	Design choices

	Instruction Decoder
	Instruction Status Table
	Scheduling Logic
	Hazard Detection Unit
	Operand Requester

	Vector Register File
	Source and Destination Tables
	Source Table
	Destination Table
	Position Index Table
	Source and Destination Tables Counters

	Processing Element
	Arithmetic unit
	Reduction unit

	Load-Store Unit
	Load-store emulator
	Load-store unit preliminary design

	Testing and synthesis
	Testing methodology
	Case study
	Testing and synthesis results
	Baseline
	Results comparison by changing parameters

	Conclusion
	Future improvements

	Matrix convolution pseudo-code
	Acronyms
	Bibliography

