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Summary

In the last decade, a new computing paradigm, which is gaining a lot of attention,
has been proposed: Quantum Computing. Through quantum computing, it would
be possible to execute a set of algorithms in several seconds, rather than hundreds
or even thousands of years on classical computers.

The basic information in quantum computers, equivalent to a bit in classical
ones, is the quantum bit, called qubit. While the bit can be 0 or 1, the qubit can
be 1 and 0, according to a certain probability, and it can be in a superposition of
both states, at the same time. This state can be described through the usage of
the Bloch sphere, as shown in figure 1.

Quantum algorithms are described using quantum circuits. It is possible to act
on a qubit in three ways: applying a gate, measuring the qubit, or resetting it. All
these elements can be visualized as blocks on a staff, where each line represents a
qubit, following the execution order.

For the probabilistic nature of quantum computation, executions on quantum
devices are repeated more than once, associating each obtained output with a
probability. In the end, the one which the highest probability will be picked as the
actual result.

Real quantum computers, that consist of qubits and gates that are not perfect,
are placed in a laboratory, in the presence of noise. Quantum errors can be
uncorrelated or correlated. Uncorrelated errors happen independently from time
and space and they can be suppressed using techniques of quantum error correction,
QEC, based on repetition code, where more than one physical qubits is used to
generate one logical qubit.
While the uncorrelated errors can be exponentially suppressed with the scaling
devices, the correlated ones affect almost all the qubits simultaneously, causing
logical faults. On superconducting qubits, based on silicon and widely used today,
cosmic rays are one of the main causes of this problem. They are heavy particles
that impact the coherence of the superconducting qubits, generating quasiparticles,
which may cause the collapse of the qubit or a transient shift of the state.

Google researchers made a very interesting experiment, using superconducting
qubits of a real quantum processor, demonstrating how difficult is to deal with this
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type of error. A simple quantum circuit has been built to initially set all the qubits
to an excited state, |1⟩, and then to measure them, re-executing this operation
periodically. Instead of measuring all 1s, as expected, they measured always some
0s, because of uncorrelated errors. At a certain point, all qubits in the device have
been measured as 0s for a while. This behaviour has been caused by correlated
errors and it has lasted for around 25 ms, generating a transient fault. With all
qubits affected is impossible to apply currently existing QEC techniques!
In this thesis, this particular behaviour of quantum transient faults, which tended
to collapse all the qubits to ground state, |0⟩.

To detect the presence of these transient faults, a specific circuitry, called
Transient Fault Detector ??TFD), has been designed. These ??s are put at the
beginning and at the end of each algorithm circuit, wrapping it. The basic idea
consists in creating a circuit that measures always the same output. If the measured
values are different with respect to the expected ones, it is probable that a correlated
error has arisen in the circuit.

Different kinds of wrappers have been tested with different results. The purpose
of each of them is to move along all the possible positions inside the Bloch sphere
(figure 1.2), which represent all the possible superpositions of the qubit, trying to
catch an unwanted shift state, highlighted by the ??s. In order to do this, following
the experiment of Google’s team, the qubit starts from state |0⟩ to arrive at |1⟩,
trying to cover the whole surface of the sphere. If an error is detected, the final
result measured at the barriers will be no more |1⟩, but |0⟩.

To better understand how these errors can affect the circuit and the efficiency
of ??s, transient faults have been simulated by software, using the QuFI (Quantum
Fault Injector) framework. Through QuFI it has been possible to tune the phase
shift magnitude based on the proximity of the qubit to the particle strike location,
to see how the fault is propagated throughout the circuit.

The effect of transient faults is evaluated using a metric called Quantum Vul-
nerability Factor, QVF. It is based on Michelson Contrast, which gives a measure
of distinguishable between two objects that belong to the same family. In this
case, QVF has been used to see the differences between a faulty-free system and
one with an injected fault. The minimum value of QVF is 0, which means that,
nevertheless the injected fault, the correct result has still the same probability to
be measured, while the highest value of QVF is 1, which means that the injected
fault makes the probability of observing the correct result equal to 0.

Because the quantum outputs are probabilistic, the values of the measured ??s
are probabilistic as well. A threshold percentage is set to distinguish between
detected faults and not detected ones.
The faults marked as not detected by barriers could belong to one of these error
classes.

• Undetectable, with a QVF between 0 and 0.3.
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• Silent corruption, with a QVF between 0.3 and 0.7.

• Untriggered, with a QVF between 0.7 and 1.

Instead, the faults marked as detected by barriers could belong to one of these
error classes.

• False positive, with a QVF between 0 and 0.3.

• Detectable 0, with a QVF between 0.3 and 0.7.

• Detectable 1, with a QVF between 0.7 and 1.

QuFI has been used to evaluate two types of wrappers, using several quantum
circuits.
A first type of wrapper has been tested using QuFI, where each of the injected
faults consists of a shift of the qubit state. It is more suitable for detecting errors
described using a more general representation, like angle combinations.
A second type of wrapper has been tested using QuFI, where each of the injected
faults consists of a reset gate. It is more suitable for detecting errors described
using Google’s model, where in case of fault the qubit state collapsed to the ground.

For each quantum circuit, the cardinality of all error classes has been evaluated,
using different threshold percentages. On average, a good portion of injected faults
has been detected, although there is a certain amount of false positives, while the
number of silent and untriggered faults is pretty low. In table 1 there are the
most significant threshold percentages set for the ??s, assigned to test a wrapped
quantum circuit, and their respective percentage of error classes.

According to these results, it is possible to understand that these ??s, which
add some extra gates useless for elaboration, could be a good tool to improve the
reliability of quantum computers.
Different ??s have been proposed and others could be designed to better cover
different types of errors. Actually, there are no valid methods used to efficiently
detect if transient faults occur in quantum circuits and this seems to be one of few
methods, if not the only one, able to do so.
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% Undetectable Silent Untriggered False Detectable 0 Detectable 1
20% 48.2% 19.6% 7.3% 14.0% 5.2% 5.7%
25% 44.4% 17.4% 5.3% 17.8% 7.4% 7.7%
30% 42.5% 16.0% 4.9% 19.7% 8.8% 8.1%
35% 38.8% 12.4% 4.3% 23.4% 12.4% 8.7%
40% 36.8% 10.2% 4.1% 25.4% 14.6% 8.9%
45% 31.9% 5.4% 3.5% 30.3% 19.4% 9.4%
50% 29.8% 2.9% 3.3% 32.4% 21.9% 9.7%
55% 26.4% 0.6% 2.7% 35.8% 24.2% 10.3%
60% 24.0% 0.1% 2.3% 38.2% 24.7% 10.7%
65% 19.4% 0.0% 1.7% 42.8% 24.8% 11.3%
70% 16.3% 0.0% 1.2% 45.9% 24.8% 11.8%
75% 12.9% 0.0% 0.7% 49.3% 24.8% 12.2%
80% 8.7% 0.0% 0.3% 53.5% 24.8% 12.7%
85% 0.1% 0.0% 0.0% 62.1% 24.8% 13.0%
90% 0.0% 0.0% 0.0% 62.2% 24.8% 13.0%

Table 1: The main percentages of error classes, obtained by testing a circuit
wrapped with the first type of Detector Barrier.
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Figure 1: Bloch sphere visualization of a qubit state |Ψ⟩.
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Chapter 1

Introduction to Quantum
Computing

In the last years, a new computing paradigm has been proposed, which is gaining
a lot of attention: Quantum Computing. Through quantum programming, it is
possible to speed up a set of algorithms that on classical computers would require
years to be performed.

1.1 Computers history
The history of computers starts two hundred years ago. The first computers
were based on mechanical components that allowed the execution of arithmetic
operations through the usage of gears and levers. Mechanical computers started
to be used during War World II, for military applications, and one of the most
famous machines was the Enigma, a cipher device used for encryption or decryption
messages by Nazi Germany [1].

In ’70, mechanical computers were replaced by electrical ones, based on vacuum
tubes. The most famous was ENIAC (Electronic Numerical Integrator and Com-
puter), completed in 1945, it was the primary programmable, electronic, all-purpose
computing device. It was expensive, it costed 400.000$, it occupied an entire room,
and it generated 174 kilowatts of heat. Besides ENIAC, all other computers that
supported this technology were massive and consumed a huge amount of power [2].

Nowadays, the fundamental component of each modern electronic device is
the transistor, a digital switch that is exploited to build advanced operations.
Compared with vacuum tubes they are smaller and use considerably less power
to work, generating less heat to dissipate [3]. A particular class of transistors,
called MOS transistors, uses even less power and, for this reason, they’re used
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in large-scale production. Thanks to MOS, which are so small to be invisible to
human eyes, it is possible to create processors consisting of millions or even billions
of transistors.

Over the years, transistors’ dimension shrank, increasing speed and reducing
power dissipation. This evolution has been predicted by Moore’s Law, enunciated
by Gordon Moore in 1965, which observed that the number of transistors on a chip
doubles every 2 years. Moore’s Law has driven the semiconductor factories for
almost 50 years, as a reference for targeting technology to study and develop. The
graph in figure 1.1 demonstrates that Moore’s Law wasn’t wrong.

Experts say that Moore’s law will reach an end within a few years. The length of
the last transistors based on silicon is 5 nm that, in the coming years, can become
2 nm, approaching more and more the size of a silicon atom, which is 0.2 nm. New
materials, such as graphene, can be used to design transistors, being able to push
their dimension below 1 nm [4, 5, 6].

Transistors can’t shrink any further, going under the size of the atom. To solve
this problem, different programming paradigms have been proposed.
Over the years one of the most successful is Quantum Computing.

1.2 Quantum Computers
The quantum computing paradigm is based on quantum mechanics, which is the
science that takes care of the physical properties of atomic and subatomic particles,
boned to explain phenomena that don’t follow the rule of classical physics.

In the beginning, quantum systems ran on classical computers, using quantum
simulators. In 1982, Richard Feynman and Yuri Manin at MIT affirmed that
classical computers are not able to simulate quantum systems efficiently and to
solve this problem they proposed Quantum Computers, able to simulate quantum
systems in a faster way. Unluckily, this proposal did not generate much interest in
quantum computing. Only in the ’90, after 10 years, quantum programming has
begun to be taken into consideration thanks to Shor’s algorithm.

Peter Shor developed an efficient quantum algorithm able to factorize large
integer numbers with exponential speedup with respect to classical computers [8].
The slowness of factorization is the key that guarantees the security of asymmetric
cryptography algorithms. On classical computers, this operation will require billions
of years while quantum computers can do that in a couple of hours. This made
quantum computers fascinating and put them under the attention of many big
companies.

The basic information in quantum computers, equivalent to a bit in classical
computers, is the quantum bit, called qubit. While the bit can be 0 or 1, the qubit
can be 1 and 0, according to a certain probability, and it can be in a superposition
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Figure 1.1: A logarithmic graph showing the timeline of how transistor counts in
microchips almost doubled every two years from 1970 to 2020; Moore’s Law [7]

of both states, at the same time. This phenomenon is called superposition.
Another important property is the entanglement, which describes a strong

interaction between two or more qubits. Qubits in entanglement can influence
each other. Superposition and entanglement are the two properties which allow
quantum computers to create algorithms with an exponential speed up.

Quantum algorithms are described using quantum circuits [9]. It is possible to
act on a qubit in three ways: applying a gate, measuring the qubit, or resetting it.
All these elements can be visualized as blocks on a staff, where each line represents
a qubit, following the execution order.

For the probabilistic nature of quantum computation, executions on quantum
devices are repeated more than once, associating each obtained output with a
probability. In the end, the one which the highest probability will be picked as the
actual result.

The first quantum computers has been built in 1998, with only two qubits, and
it was able to solve only a simple algorithm called Grover’s algorithm. Nowadays
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much more qubits are available on quantum devices and much more companies are
involved in researching this field. The main ones are IBM, Google, D-Wave and
Amazon. Actually, the biggest quantum computer has almost 500 qubits, but it’s
just a prototype, used only for research. IBM, probably the more involved in this
topic, has announced that in 2026 it will be able to produce quantum computers
with a number of qubits that goes from 10 thousand to 100 thousand.
Some fields where quantum computers could be revolutionary are:

• Artificial Intelligence and Machine Learning

• Computational Chemistry

• Drug Design & Development

• Financial Modelling

• Logistics Optimisation

• Weather Forecasting

1.3 From bit to qubit
Quantum information theory is the science that studies the state of a quantum
system. As well as in classical computers the basic unit is 0 and 1, in quantum
computing two pure states are defined, that generally are |0⟩ (ket-zero) and |1⟩
(ket-one), representing vectors and shown in 1.1. These basis states are used to
represent the quantum information.

|0⟩ =
A

1
0

B
|1⟩ =

A
0
1

B
(1.1)

The qubit is able to handle these two states simultaneously, in superposition.
Two states in superposition are described by a linear combination of them, as shown
in 1.2. Through this property, operations can be executed much faster because it’s
possible to have different states at the same time.

|Ψ⟩ = α |0⟩ + β |1⟩ (1.2)

For example, three bits in classical computers can be used to represent 8 numbers,
from 0 to 7. Instead, three quantum bits can represent 8 quantum states at the
same moment.

As convection, any quantum state has to be normalized, so that its inner product
must be equal to 1, as sown in 1.3. For instance, in the case of equal superposition
(α = β), it’s needed to normalize like in formula 1.4.
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⟨Ψ|Ψ⟩ = 1 (1.3)

|Ψ⟩ = 1√
2

(|0⟩ + |1⟩) =
A 1√

2
1√
2

B
(1.4)

Different mathematical methods can be employed to describe quantum states.

1.3.1 Dirac notation
Let’s remember that the conjugate of a complex number a ∈ C, indicated as a∗, is
obtained by inverting the sign of the imaginary. If a = x + yi, then a∗ = x − yi.
Let’s be a and b two complex numbers; a, b ∈ C2:

• ket is |a⟩ =
A
a0
a1

B

• bra is ⟨b| = |b⟩† =
A
b0
b1

B†

=
1
b∗

0 b∗
1

2
• bra-ket: ⟨b|a⟩ = a0b

∗
0 + a1b

∗
1 = ⟨a⟩ b∗

• ket-bra: |a⟩ ⟨b| =
A
a0b

∗
0 a0b

∗
1

a1b
∗
0 a1b

∗
1

B

This method of representation is called Dirac Notation. The ket-bra resulting
from the combinations of all basis states are the following:

• |0⟩ ⟨0| =
1
1 0

2
·
A

1
0

B
=
A

1 0
0 0

B

• |0⟩ ⟨1| =
1
1 0

2
·
A

0
1

B
=
A

0 1
0 0

B

• |1⟩ ⟨0| =
1
0 1

2
·
A

1
0

B
=
A

0 0
1 0

B

• |1⟩ ⟨1| =
1
0 1

2
·
A

0
1

B
=
A

0 0
0 1

B

In this way, any matrix can be described through the Dirac notation, as demon-
strated in 1.5.

ρ =
A
ρ00 ρ01
ρ10 ρ11

B
= ρ00 · |0⟩ ⟨0| + ρ01 · |0⟩ ⟨1| + ρ10 · |1⟩ ⟨0| + ρ11 · |1⟩ ⟨1| (1.5)
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1.3.2 Density matrices
Let’s remember that a trace of a matrix A, usually defined as tr(A), can be defined
only for a square matrix and it is defined as the sum of all elements in the main
diagonal, as shown in 1.6.

A =

a00 a01 a02
a10 a11 a12
a20 a21 a22

 → tr(A) = a00 + a11 + a22 (1.6)

All quantum states, in any superposition, can be described by density matrices,
usually identify as ρ, with the following properties:

• normalized, which means that the trace of matrices is 1.

tr(ρ) = ρ00 + ρ11 = 1 (1.7)

• almost positivity, it means that sandwich a density matrices between any
arbitrary vector Ψ, the result will be greater or equal to zero. This is equal to
having all eigenvalues greater or equal to zero.

⟨Ψ|ρ|Ψ⟩ ⩾ 0, ∀ |Ψ⟩ (1.8)

• Hermitian operators, it means that the transpose of the conjugate matrices,
ρ∗, is equal to ρ. This means that ρ00 and ρ11 need to be real.

ρ† =
A
ρ∗

00 ρ∗
10

ρ∗
01 ρ∗

11

B
= ρ (1.9)

Every density matrix ρ has a spectral decomposition such that, defining orthog-
onal basis |i⟩, it is possible to define the matrix ρ as qi λi |i⟩ ⟨i|, where |i⟩ are the
eigenstates and λi are the eigenvalues.
The sum of all eigenvalues is equal to 1, qi λi = 1.

A matrix is pure if can be written as ρ = ⟨Ψ| |Ψ⟩, otherwise it is called mixed.
Knowing that is always possible to find a decomposition, where the sum of all
eigenvalues is equal to 1, if ρ is pure, there will be one eigenvalue equal to 1 and
all the others equal to zero. This means that the trays of the squared matrix is
equal to one, tr(ρ2) = q

i λ
2
i = 1. In case of mixed matrix, it will be lower than 1,

tr(ρ2) < 1.
Pure matrix is associated to pure state and likewise for mixed state. Look at the
following examples which use as basis states |0⟩ and |1⟩.
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• they are pure states because both have one eigenvalue equal to 1 and all the
others equal to 0.

ρ =
A

1 0
0 0

B
= |0⟩ ⟨0| ρ =

A
0 0
0 1

B
= |1⟩ ⟨1| (1.10)

• in this case the trace matrix is 1. Through the spectrum decomposition is
possible to see that there are two eigenvalues equal to 1

2 . The sum of their
square value is smaller then 1 and so this is a mixed state.

ρ = 1
2

A
1 0
0 1

B
= 1

2(|0⟩ ⟨0| + |1⟩ ⟨1|) (1.11)

• it’ possible to notice that the 1.12 can be rewritten as 1.13, where is evident
the form of a pure state, ⟨Ψ|Ψ⟩.

ρ = 1
2

A
1 −1

−1 1

B
= 1

2(|0⟩ ⟨0| − |0⟩ ⟨1| − |1⟩ ⟨0| + |1⟩ ⟨1|) (1.12)

ρ = 1
2

A
1 −1

−1 1

B
= 1√

2
(⟨0| − ⟨1|) · (|0⟩ − |1⟩) 1√

2
= ⟨Ψ|Ψ⟩ (1.13)

1.4 Measurements
The measurements are state projections on the bases. To measure a quantum state,
orthogonal bases are chosen, which usually are |0⟩ and |1⟩, orthogonal to each
other, as demonstrated in 1.14.

Choosing orthogonal bases means that, if the qubit state is |Ψ⟩, then it is
impossible to measure |Φ⟩, and vice versa. In this way, there is no ambiguity in
the result.

⟨0|1⟩ = 1 · 0 + 0 · 1 = 0 (1.14)
To the project of the qubit state on basis state can be done with the σz matrix,

defines as 1.15. This is called Z-measurement. The final result could be either 1 or
-1, which correspond respectively to |0⟩ (0) and |1⟩ (1).

σz =
A

1 0
0 −1

B
(1.15)

Infinite different bases exist, but only some of them are commonly used, such
as 1.16 and 1.17, which correspond respectively to σx, X-measurement, and σy,
Y-measurement.
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{|+⟩ = 1√
2

(|0⟩ + |1⟩), |−⟩ = 1√
2

(|0⟩ − |1⟩)} (1.16)

{|+i⟩ = 1√
2

(|0⟩ + i |1⟩), |−i⟩ = 1√
2

(|0⟩ − i |1⟩)} (1.17)

1.4.1 Born rule
When a measurement is executed the qubit state collapses. The Born rule affirms
that, given the state |Ψ⟩ and the state basis {|x⟩ , |x⊥⟩}, orthogonal to each other,
during measurements, the probability that it collapses onto the state |x⟩ is given
by the formula 1.18.

P (xi) = | ⟨xi|Ψ⟩ |2,
Ø

i

P (xi) = 1 (1.18)

Let’s make an example. If the state |Ψ⟩, in 1.19 must be measured in the basis
{|0⟩ , |1⟩}, then the probability of |0⟩ will be 1.20, while the probability of |1⟩ will
be 1.21. As expected, the sum of the two probabilities is 1.

|Ψ⟩ = 1√
3

(|0⟩ +
√

2 |1⟩) (1.19)

P (0) = | ⟨0| 1√
3

(|0⟩ +
√

2 |1⟩)⟩ |2 = | 1√
3

⟨0|0⟩ +
√

2√
3

⟨0|1⟩ |2 = 1
3 (1.20)

P (1) = | ⟨1| 1√
3

(|0⟩ +
√

2 |1⟩)⟩ |2 = | 1√
3

⟨1|0⟩ +
√

2√
3

⟨1|1⟩ |2 = 2
3 (1.21)

Now let’s measure the state |Ψ⟩, in 1.22 the basis {|+⟩ , |−⟩}, then the probability
of |+⟩ will be 1.23, while the probability of |−⟩ will be 1.24. The |Ψ⟩ is equal to
|−⟩ and so the final result will be respectively 0 and 1.

|Ψ⟩ = 1√
2

(|0⟩ − |1⟩) (1.22)

P (+) = | ⟨+|Ψ⟩ |2 = | 1√
2

(⟨0| + ⟨1|) · 1√
2

(|0⟩ − |1⟩)|2 =

1
4 | ⟨0|0⟩ − ⟨0|1⟩ + ⟨1|0⟩ − ⟨1|1⟩ |2 = 0

(1.23)

P (−) = | ⟨−|Ψ⟩ |2 = | 1√
2

(⟨0| − ⟨1|) · 1√
2

(|0⟩ − |1⟩)|2 =

1
4 | ⟨0|0⟩ − ⟨0|1⟩ − ⟨1|0⟩ + ⟨1|1⟩ |2 = 1

(1.24)
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1.5 Bloch sphere
Any pure normalized state can be represented through the formula 1.25, where
φ ∈ [0, 2π) is the relative phase, which describes the relative phase between the
two states, and θ ∈ [0, π], which determines the probability to measure 0 or 1,
according to the formula 1.26.

|Ψ⟩ = cos θ2 |0⟩ + eiφ sin θ2 |1⟩ (1.25)

P (0) = cos2 θ

2 , P (1) = sin2 θ

2 (1.26)

In this case, using only two variables, it is possible to show the qubit state on
the surface of a sphere, with a radius equal to 1, |r⃗ = 1|, due to normalization. It’s
called the Bloch sphere, and it is shown in figure 1.2.

ϕ

θ

x̂

ŷ

ẑ = |0⟩

−ẑ = |1⟩

|ψ⟩

Figure 1.2: Bloch sphere visualization of a qubit state |Ψ⟩.

The coordinates are given by the block vector, and typical are spherical coordi-
nates, described as 1.27.

r⃗ =

sin θ cosϕ
sin θ sinϕ

cos θ

 (1.27)

Some examples to better understand the comparison between the matrix repre-
sentation and the Bloch sphere.

• |0⟩ has θ = 0 and φ arbitrary. The block vector become 1.28.

r⃗ =

0
0
1

 (1.28)
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• |1⟩ has θ = ϕ and φ arbitrary. The block vector become 1.29.

r⃗ =

 0
0

−1

 (1.29)

• |+⟩ has θ = ϕ
2 and φ = 0. The block vector become 1.30.

r⃗ =

1
0
0

 (1.30)

• |−⟩ has θ = ϕ
2 and φ = ϕ. The block vector become 1.31..

r⃗ =

−1
0
0

 (1.31)

• |+i⟩ has θ = ϕ
2 and φ = ϕ

2 . The block vector become 1.32..

r⃗ =

0
1
0

 (1.32)

• |−i⟩ has θ = ϕ
2 and φ = 3ϕ

2 . The block vector become 1.33.

r⃗ =

 0
−1
0

 (1.33)

On the Bloch sphere, angles are twice then their representation in Hilbert space,
the mathematical environment used to describe these vectors. For example, the
|0⟩ and |1⟩ are orthogonal but, on the Bloch sphere, their angles are 180°, both
represented on the same axis. So θ is the angle in the Bloch sphere, while θ

2 is the
actual angle in the Hilbert space.

Through this interpretation of the space is also clear that a Z-measurement
corresponds to a projection on the z-axis. The same thing is valid for X and Y
measurements.
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1.6 Gates
In quantum circuit are present a sequence of building blocks, called gates, which
are employed in elementary operations. Gates can act on single or multiple qubits.

In linear algebra, especially in quantum mechanics, a complex square matrix, U ,
is unitary if the product with its Hermitian, U †, it’s equal to the identity matrix,
1, as in 1.34. Since quantum theory is unitary, also quantum gates are based on
unitary matrices.

U †U = UU † = 1 (1.34)

1.6.1 Pauli-X
It’s the simplest gate, described by the following matrix 1.35.

σX =
A

0 1
1 0

B
= |0⟩ ⟨1| + |1⟩ ⟨0| (1.35)

As shown in 1.36 and 1.37, this gate executes a bit flip. On the Bloch sphere,
this computation is translated as a rotation of 180° around the x-axis.

σX |0⟩ =
A

0 1
1 0

B
·
A

1
0

B
=
A

0
1

B
= |1⟩ (1.36)

σX |1⟩ =
A

0 1
1 0

B
·
A

0
1

B
=
A

1
0

B
= |0⟩ (1.37)

On the Bloch sphere, this computation is translated as a rotation of 180° around
the x-axis.

1.6.2 Pauli-Z
This gate is described by the matrix 1.15, shown previously in the chapter 1.4.

As shown in 1.38 and 1.39 this gate executes a phase flip. On the Bloch sphere,
this computation is translated as a rotation of 180° around the z-axis.

σz |+⟩ =
A

1 0
0 −1

B
· 1√

2

A
1
1

B
= 1√

2

A
1

−1

B
= |−⟩ (1.38)

σz |−⟩ =
A

1 0
0 −1

B
· 1√

2

A
1

−1

B
= 1√

2

A
1
1

B
= |+⟩ (1.39)
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1.6.3 Pauli-Y
This gate is described by the following matrix 1.40.

σy =
A

0 −i
i 0

B
= i · σxσz (1.40)

As reported in 1.41 and 1.42 this gate executes a phase flip and a bit flip. On
the Bloch sphere, this computation is translated as a rotation of 180° around the
y-axis.

σy |i⟩ =
A

0 −i
i 0

B
· 1√

2

A
1
i

B
= 1√

2

A
1

−i

B
= |−i⟩ (1.41)

σz |−i⟩ =
A

0 −i
i 0

B
· 1√

2

A
1

−i

B
= 1√

2

A
1
i

B
= |i⟩ (1.42)

1.6.4 Pauli matrices
All the matrices shown above are called Pauli matrices. The square of each of
them is equal to the identity matrix, as shown in 1.43. If identity is multiplied by
another matrix, then nothing happens, A1 = 1A = A.
This means that, if all these Pauli matrices are applied twice, on the same qubit
line, this will correspond to applying the identity matrix, which will be the same
as not performing operations. Indeed, a rotation of 360° around the Bloch sphere
will be executed, which will take the qubit state back to the original position.

σ2
i = 1 =

A
1 0
0 1

B
(1.43)

Pauli matrices and identity together form a basis of 2 × 2 matrices. This means
that any qubit rotation can be written as a combination of them.

1.6.5 Hadamard gate
This is the most famous and important gate and it is used to the creation of
superposition in a qubit. It’s described by the matrix in 1.44.

H = 1√
2

A
1 1
1 −1

B
= |0⟩ ⟨0| + |0⟩ ⟨1| + |1⟩ ⟨0| − |1⟩ ⟨1| (1.44)

Applying Hadamard gate to state |0⟩ or to state |1⟩, superposition is generated,
according to 1.45 and 1.46.
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H |0⟩ = 1√
2

A
1 1
1 −1

B
·
A

1
0

B
= 1√

2

A
1
1

B
= |+⟩ (1.45)

H |1⟩ = 1√
2

A
1 1
1 −1

B
·
A

0
1

B
= 1√

2

A
1

−1

B
= |−⟩ (1.46)

If the gate is used again to |+⟩ and to |−⟩, they will come to the original state,
as demonstrated in 1.47 and 1.48.

H |+⟩ = 1√
2

A
1 1
1 −1

B
· 1√

2

A
1
1

B
=
A

1
0

B
= |0⟩ (1.47)

H |−⟩ = 1√
2

A
1 1
1 −1

B
· 1√

2

A
1

−1

B
=
A

0
1

B
= |1⟩ (1.48)

1.6.6 S gate
S gate adds 90° to the phase φ, and the matrix associated is the 1.49. S gate is
used to change from Z to Y axis, as shown 1.50 and 1.51.

S =
A

1 0
0 i

B
(1.49)

S |+⟩ =
A

1 0
0 i

B
·
A

1
1

B
=
A

1
i

B
= |i⟩ (1.50)

S |−⟩ =
A

1 0
0 i

B
·
A

1
−1

B
=
A

1
−i

B
= |−i⟩ (1.51)

1.6.7 U gate
The U gate is a gate that modifies the state of a qubit through a rotation in the
Bloch sphere, according to three angles: θ, λ and ϕ. The matrix of U gate is shown
in 1.52.

U3(θ, ϕ, λ) =
 cos

1
θ
2

2
−eiλ sin

1
θ
2

2
eiϕ sin

1
θ
2

2
ei(ϕ+λ) cos

1
θ
2

2 (1.52)

It can be used as a general gate and it can replicate all the other ones. It is
possible to have an X gate just by putting the parameters in the correct way, as
shown in the example 1.53.

U(π, π, π2 ) =
A

0 1
1 0

B
= X (1.53)
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1.7 Multiparty Quantum States
More than one qubit can be used to describe a state. For this purpose, tensor
products are used, as shown in 1.54.

|a⟩ ⊗ |b⟩ =
A
a0
a1

B
⊗
A
b0
b1

B
=


a0b0
a0b1
a1b0
a1b1

 (1.54)

Let’s make an example where system A is in the state |1⟩A and system B in
the state |0⟩B. The total bipartite state, which indicates the quantum information
shared between two parties, can be written as |10⟩AB, better represents in 1.55.
Values in system A don’t depend on values in system B. These states are not
correlated with each other and are called uncorrelated.

|10⟩AB := |1⟩A ⊗ |0⟩B

A
0
1

B
⊗
A

1
0

B
=


0
0
1
0

 (1.55)

There are some bipartite states that can’t be written as a tensor product. They
are called correlated states. If this correlation is very strong it’s called entangled.
Quantum entanglement is the physical phenomenon that occurs when a group of
particles are generated, interacting or sharing spatial proximity in such a way that
all the particles depend on each other.

1.8 Two qubits gates
In classical computers, most of the gates used have at least two input ports. For
example, in the XOR gate, where if the input bits are equal the output is 0,
otherwise it is 1.

The limit with classical gates is that they are irreversible, after computing the
result is no longer possible to reconstruct the original input. This is in contraposition
to the unitary property of quantum theory. For this reason, only reversible gates
are considered to get a quantum version of classical ones.

1.8.1 CNOT
CNOT is the most famous two qubits gate, described by the matrix in 1.56 or
through Dirac notation in 1.57.
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CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (1.56)

CNOT = |00⟩ ⟨00| + |01⟩ ⟨01| + |10⟩ ⟨11| + |11⟩ ⟨10| (1.57)
The CNOT gate in a quantum circuit is represented in figure 1.3. The first

qubit is called the control bit because, if it is set to 1, the second bit, called the
target bit, will change.

x • x
y y ⊕ x

Figure 1.3: CNOT gate

Table 1.1 is the truth table of CNOT. From this table is possible to notice that
the first qubit never changes its state, while the second one is 1 if both are different
or 0 if they are equal, like the XOR gate.

The presence of the first qubit, which remains always the same, makes this gate
reversible and so compatible with the unitary property of quantum theory.

Input Output
x y x y
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Table 1.1: CNOT truth table

Every function can be described by a reversible circuit, just adding more output
that will keep track of initial information. This means that every quantum circuit
can be used to perform the same function as classical computers.

1.9 Entanglement
Entanglement, after superposition, is the second big feature of quantum computing.
It is a very strong correlation between qubits that can’t be described classically,

15
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with the usage of the tensor product.
The Bell states represent the simplest form of quantum entanglement.

1.9.1 Bell states
The Bell states are four quantum states, each of which is built on two qubits and
based on the basis |0⟩ and |1⟩. Different ways to evaluate the entanglement exist
and, for each of them, Bell states reach always the maximum score.

• Bell state 1
|Ψ00⟩ := 1√

2
(|00⟩ + |11⟩) (1.58)

• Bell state 2
|Ψ01⟩ := 1√

2
(|01⟩ + |10⟩) (1.59)

• Bell state 3
|Ψ10⟩ := 1√

2
(|00⟩ − |11⟩) (1.60)

• Bell state 4
|Ψ11⟩ := 1√

2
(|01⟩ − |10⟩) (1.61)

A general form to write them can be 1.62, which is a more compact representation.

|Ψij⟩ := (1 ⊗ σj
xσ

i
z) |Ψ00⟩ (1.62)

To create them it’s needed to have two qubits that implement the circuit shown in
figure 1.4.

|i⟩A H •

|j⟩B

 |Ψij⟩

Figure 1.4: Quantum circuit to create Bell states.

This quantum circuit can be combine with the basis state in order to obtain the
following results.
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• Bell state 1 transaction

|00⟩ HA−−−−−→
1√
2

(|00⟩ + |10⟩) CNOTB−−−−−−−−−→
1√
2

(|00⟩ + |11⟩) (1.63)

• Bell state 2 transaction

|01⟩ HA−−−−−→
1√
2

(|01⟩ + |11⟩) CNOTB−−−−−−−−−→
1√
2

(|01⟩ + |10⟩) (1.64)

• Bell state 3 transaction

|10⟩ HA−−−−−→
1√
2

(|00⟩ − |10⟩) CNOTB−−−−−−−−−→
1√
2

(|00⟩ − |11⟩) (1.65)

• Bell state 4 transaction

|11⟩ HA−−−−−→
1√
2

(|01⟩ − |11⟩) CNOTB−−−−−−−−−→
1√
2

(|01⟩ − |10⟩) (1.66)

Through the circuit implemented in figure 1.5, called Bell measurement, is
possible to determine in which Bell state two qubits are.

|Ψij⟩

 • H i

j

Figure 1.5: Bell measurement.

1.10 Teleportation
Teleportation is a quantum algorithm, which goal is to send the state |ϕ⟩S :=
α |0⟩S + β |1⟩S of a system A to a system B, where system A can only send to B
classical bits. To do that the two systems must share the maximally entangled
state, |Ψij⟩AB, in order to allow the exchange of data.

In summary, the Teleportation algorithm is used to transfer quantum information
[10]. The initial state of the whole system is described by the following formulas.

In figure 1.6 is drawn the circuit used to implement this algorithm.
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|ϕ⟩S • H •

|Ψ⟩A

|Ψ⟩B H • X Z |ϕ⟩S

i j

Figure 1.6: Teleportation circuit.

Let’s start with both systems A and B sharing the state |Ψij⟩. System A has
another state, |ϕ⟩S, which wants to share with system B. To exchange quantum
information there are three main steps.

• System A performs a Bell measurement between |Ψ⟩A and |ϕ⟩S, to know the
state of system B, obtaining i and j.

• Then system A sends classical bits, i and j, to system B.

• System B, applying i and j, such that σi
z and σj

x, to its qubit, is able to get
the state |ϕ⟩S.

It’s important to notice that the state |ϕ⟩S, because of Bell measurement,
collapses and no longer has its initial state |ϕ⟩S.
This phenomenon is called the no-cloning theorem which states that quantum
states cannot be copied [11].

1.11 Quantum algorithms
Some of the most know quantum circuits, used in the tests of this thesis as well,
are the following ones:

• Deutsch Jozsa, this algorithm is able to recognize if a function is constant or
balanced;

• Bernstein Vazirani, this algorithm is an extension of Deutsch Jozsa and it is
able to recognize the string encoded in a function;

• Grover, this algorithm can find the unique sequence of input which, given a
function, is able to produce a certain output.

These are some of the first algorithms that have demonstrated the power of quantum
computing over classical computing.
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1.12 How use Quantum computer
To access a quantum computer is necessary to sign in to an online service. Starting
from our laptop, information is sent to the cloud, which is used to configure the
quantum circuit according to the need.

In order to do this, specific tools exist that allow to simulate quantum hardware
on classical computers. The most famous are:

• Qiskit, developed by IBM, allows access to real quantum computers for
everyone;

• Cirq, developed by Google, allows access to real quantum computers only for
some research teams;

• Pennylane, developed mainly for quantum machine learning.
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Qiskit is the one used in this thesis because it allows placing measurement
operations in the middle of a quantum circuit. This feature is not always present
in these tools, which usually have only terminal measurements.

1.12.1 Transpilation
Quantum circuits can be defined using a wide range of gates. However, most of
these abstract gates cannot be directly implemented on real quantum hardware.
Transpilation is the process where abstract quantum circuits are turned into
quantum circuits that can be directly implemented on a specific quantum computer,
within the limitations of that hardware.
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Chapter 2

Qubit physical
implementations

2.1 Hilbert Space
Qubit superposition states are typically described using the two basis states, |0⟩ and
|1⟩, that can be represented through ket-bra notation or through Dirac notation.
Such basis states belong to Hilbert’s space, a special kind of vector space that
satisfies the following ones in addition to all classical properties:

1. It has an inner product (dot product), ⟨ψ1|ψ2⟩ ∈ C, that satisfy certain
condition.

(a) Conjugate symmetry.

⟨ψ1|ψ2⟩ = ⟨ψ2|ψ1⟩∗ (2.1)

(b) Linearity with respect to 2nd vector.

⟨ψ1|aψ2 + bψ3⟩ = a ⟨ψ1|ψ2⟩ + b ⟨ψ1|ψ3⟩ (2.2)

(c) Anti linearity with respect to 1st vector.

⟨aψ1 + bψ2|ψ3⟩ = a∗ ⟨ψ1|ψ3⟩ + b∗ ⟨ψ2|ψ3⟩ (2.3)

(d) Positive definiteness.
⟨ψ|ψ⟩ = |ψ|2 ≥ 0 (2.4)

(e) Distance between two vectors.

|ψ2 − ψ1| =
ñ

⟨ψ2 − ψ1|ψ1 − ψ2⟩ (2.5)
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2. Hilbert space is separable, so it contains a countable, dense, subset. In this
way, if a countable subset S contain a vector ϕn, (S = {ϕn}), it is possible to
count the numbers of elements in that subset. Instead, a subset is dense if
every element in the Hilbert space is either a member of that subset S or can
be made arbitrarily close to one where closeness is determined according to
distance formula 2.5.

3. Hilbert space is complete, there aren’t gaps. For instance, in Q there are gaps
that are occupied by elements in R, which is a complete space. Every Cauchy
sequence 2.6 converges to an element ϕ in Hilbert space 2.7.

lim
n,m→∞

|ψm − ψn| = 0 (2.6)

lim
n,→∞

|ϕ− ψn| = 0 (2.7)

2.2 Qubit real implementation
The qubit idea is to represent the basis states using energy level. The minimum
level of energy is associated with|0⟩, while the maximum level of energy is associated
with |1⟩. To realize these two levels in practice the characteristics of atoms are
exploited.

2.2.1 Atom
Let’s make an experiment where a cloud of atoms has been put under some
excitations, such as a voltage source, will shine producing light. If this light passes
through some lens, hitting a prism, will be possible to observe different colours
separated by a specific distance. Different atoms have different colour configurations
but, regardless of the type of atom taken under consideration, the same colours
appear always in the same position.

Niels Bohr proposed to treat atoms, not as part of classical physic but, instead,
considering their energy as discretized, according to some specific levels and amounts
[12]. In this way is possible to explain, in the previous experiment, the discrete
emission of the atom colours, where each of the colours represents a different energy
level. This phenom is easily recognised in fireworks.

In a regular system, the energy between the nuclear atom and the electron is
inversely proportional to the distance (2.8). In quantum systems, these levels are
quantized and it’s not possible to stay in the middle.

V (r) ≃ 1
r

(2.8)
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Energy levels are quantized in a special way, called anharmonic, where the
distance between them is not equally, as shown in figure 2.1.

Figure 2.1: Atom energy levels.

If a microwave light, at a certain frequency, is applied to the atom, which starts
from the ground state, |0⟩, then that atom is subjected to a force. If the frequency
is equal to a precise value, called transition frequency, then the energy level of the
atoms moves to |1⟩.

It will be impossible for the atoms to move to the upper levels, because of
anharmonic, which also determines that different frequencies are needed to move
between levels.
Once reached the |1⟩ energy level, the transition frequency needed to move to the
next layer isn’t the same and so atoms remain in |1⟩. This means that it is possible
to take under consideration the only lowest two energy levels to isolate the qubit
subspace.

2.3 Circuit Quantum Electrondynamics
Atoms energetic behavior can be generated artificially, through electromagnetic
circuits made by a capacitor and an inductor. In this way, the electron magnetic
energy levels created are harmonic, all separate by the same distance, and it is
impossible to separate |0⟩ and |1⟩. To avoid this problem it’s possible to introduce
a non-linear inductor, called Joseph junction, which allows the creation of an
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anharmonic oscillator. All these basic circuit elements are used to create a Circuit
Quantum Electrondynamics (cQED).

Superconducting qubits [13] are a class of qubits which exploit superconductivity
[14, 15], a property that allows some materials to conduct current without any loss
of energy.
To give them superconductivity the following elements are needed:

• Nominally zero intrinsic dissipation and heat

• Nominally temperature far below energy level splitting

• Non-linear, robust Josephson tunnel junction effect

Transmon qubits are a type of superconducting qubits [16], implemented on
dielectric, usually silicon. They are widely used nowadays and consist of:

• A substrate, composed of a dielectric, such as silicon.

• Two metal pads on top of the substrate.

• A non-linear inductor that connects the two pads, just like a Josephson
junction.

An image of a simplified transmon qubit is shown in the figure 2.2. One pad has
a positive charge while the other one has a negative charge. Electrons condense
in superconducting pairs, creating Cooper Pairs, where they move without energy
dissipation. This happens because the entire system is kept at a very low temperate,
almost zero kelvin.

Figure 2.2: Transmon qubit, image taken from Zlatko Minev presentation.
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Two electric charges in a dielectric create an electric field, which can be used to
define a voltage between the two pads.

v(t) = −
Ú r⃗b

r⃗a

E⃗(r⃗, t) · d⃗l(r⃗) v ∈ [−∞,+∞] (2.9)

The pads can be modelled as a simple capacitor. If a charge moves across the
junction a current is generated which creates a magnetic field. A lot of magnetic
fields create a magnetic flux.

d

dt
Q(t) = i(t) Q(t) =

Ú t

−∞
v(τ)dτ Q(−∞) = 0 (2.10)

d

dt
Φ(t) = v(t) Φ(t) =

Ú t

−∞
v(τ)dτ Φ(−∞) = 0 (2.11)

Q(t) = Cv(t) C ∈ [0,+∞] (2.12)

Φ(t) = Li(t) L ∈ [0,+∞] (2.13)

The energy stored in a component, like a capacitor or an inductor, has a rate
of change which determine the power from which it’s possible to retrieve energy,
using formula 2.14. According to this formula, it’s possible to calculate the energy
associated with a capacitor, formula 2.15, ad the one associated with an inductor,
formula 2.16.

d

dt
ε(t) = p(t) = v(t)i(t) ε(t) =

Ú −∞

t
p(τ)dτ ε(−∞) = 0 (2.14)

εcap(Φ̇) = 1
2CΦ̇2 (2.15)

εcap(Φ) = Φ2

2L (2.16)

In the circuit in figure 2.3, both the inductor and the capacitor have an associated
charge and magnetic flux, related to each other.
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L C
+

-

v

i

ΦCΦL

Figure 2.3: LC circuit

According to Kirchhoff’s current law, the charge in the capacitor must be equal
to the charge in the inductor, so that the sum of the currents must be zero, like in
formula 2.17.

Q̇C + Q̇L = 0 (2.17)

According to Kirchhoff’s voltage law, also the sum of voltages across the branches
must be zero, as in formula 2.18. From this assumption can be derived that the
voltage across the capacitor is the same as the one across the inductor.

Φ̇C − Φ̇L = 0 Φ̇C = Φ̇L = Φ (2.18)

Thus, the charge on the capacitor, described by the formula 2.12, has its derivate
equal to formula 2.19.

Q̇ = CΦ̈c (2.19)

The inductor instead, has flux equal to 2.13, from which can be derivate the
formula 2.20.

Φ = LQ̇L (2.20)

By replacing in the formula 2.13 the 2.19 and 2.20, a new one is obtained, the
formula 2.21, in which it is possible to observe an oscillator analogy.

CΦ̈ + L−1Φ = 0 (2.21)

The resonance frequency, w0, and the classical oscillator equation are given by
formulas 2.22. The flux oscillates according to the formula 2.23.
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Φ̈ = −w2
0Φ, w0 = 1

LC
(2.22)

Φ(t) = Φ0e
−iw0t (2.23)

Looking at a mass-spring harmonic oscillator it is possible to make a comparison.
In the spring, the equilibrium position x(t) = 0 is the equivalent of Φ(t) = 0 in the
cQED. From Kirchhoff’s observation, can derive an equation of motion to describe
how magnetic flux oscillates.

Charge Q, in the formula 2.22, is no longer present, there is only variable Φ,
which represents the position, while Φ̇(t) is the velocity. This is mechanics and
regular tools can be used to describe this dynamic system. Given a configuration
space, the Lagrangian is the difference between the kinetic energy, due to the
capacitor, and potential energy, due to the inductance, in formula 2.24 [17].

L(Φ, Φ̇) = εcap(Φ̇) − εind(Φ) = 1
2CΦ̇2 − Φ2

2L (2.24)

In the Lagrangian is very simple to take the value of a conserved quantity [17],
while in mechanics it is the momentum, in circuits it is the charge. It can be
derived in the following way, according to formula 2.25.

Q = ∂L

∂Φ̇
= CΦ̇ (2.25)

For further confirmation, using the Euler-Lagrange equation 2.26 [17], it’s
possible to derive the one that describes the oscillation 2.22.

d

dt

∂L

∂Φ̇
= ∂L

∂Φ (2.26)

After all this mathematical observation it is possible to use the charge, intends like
momentum, and the magnetic flux, intends like position, to define the Hamiltonian
of an LC circuit, defined in formula 2.27 [18]. It is defined as the sum of kinetic
energy and potential energy, which are respectively expressed in terms of charge
(momentum) and magnetic flux (position).

H(Φ, Q) = Q2

2C + Φ2

2L (2.27)

The Hamiltonian is the total energy of the system. In Hamiltonian, a particle
describes the parable on which can move at a certain velocity. Hamiltonian describes
how the total energy is distributed between kinetic energy, on the capacitor, and
potential energy, on the inductor, as shown in figure 2.4.
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En
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εind(Φ)

Φ

εcap(Φ) = Q2/(2C)

Figure 2.4: LC classical harmonic oscillator

The speed of movement is given by εcap(Q) while the position is given by εind(Φ),
respectively the kinetic energy and the potential energy.

Now let’s suppose to have C = L = 1, just for simplicity. It’s possible to express
the discretized energy of a quantum harmonic oscillator as in formula 2.28. In this
way, through Plank’s constant ℏ, a quantum action has been introduced, while w0
is the resonance frequency of the oscillator.

The energy of the quantum oscillator can be put equal to the formula of classical
energy, described in terms of Hamiltonian in formula 2.27, to represent the quantum
system.

E = ℏw0

3
n+ 1

2

4
= 1

2(Q2 + Φ2) (2.28)

If the energy is fixed, in a space of Q and Φ, the trajectory gives a circle, which
changes according to the chosen n, used to move along the rings. In classical physic
is not mandatory to stay in one of these rings, but it’s allowed to stay in between.
In quantum, this is not possible.

From the Hamiltonian equation of motion, which is another way to rewrite
Kirchhoff’s law, it’s possible to see how the electric charges move in the circuit,
passing through the capacitor and the inductor and back and forth. To execute this
movement the charge Q and the magnetic flux Φ change describing rings according
to the graph in 2.5.

The movement in a ring can be described through complex numbers, using a
very helpfully variable, as shown in formula 2.29.
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Φ

Q

Figure 2.5: Particle trajectory in a space of Q and Φ, which represent the
movement between the capacitor and inductor.

α(t) =
ó

1
2hZ [Φ(t) + iZQ(t)] = a(0)e−iw0t Z = L

C
(2.29)

Rewriting the Hamiltonian using this new variable, it becomes just a function
of α and α∗. This α(t) is the base description of most of the transmon qubit.

H(α, α∗) = 1
2hw0(α∗α + αα∗) (2.30)

With these mathematical tools, it is possible to describe how the qubit is
originate and how they work.

2.4 Qubit in quantum computer
Quantum computers are kept inside very expensive fridges, able to reach almost 0
Kelvin, to assure that qubits work correctly, to remain in a state of superconductivity.
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Besides qubits, the other main components are wires and a lot of shields to prevent
environmental noise.

Qubit is coupled to a readout resonator, a transmission line which allow to guide
the microwave to force and to control the qubit [19]. It is also used to communicate
the result of qubit measurement to the external environment. The figure 2.6 shown
the schematic circuit used.

Qubit

Resonator

Signal

Envirioment

Readout

Figure 2.6: Standard qubit circuit setup.
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Chapter 3

Noise in Quantum
Computers

3.1 Noise problems
From a mathematical point of view, in the Hilbert’s space can be described as the
ideal behaviour of a qubit. Unlucky, executions of real quantum algorithms, on a
real quantum machine, are slightly different and it is impossible to avoid errors.

Quantum phenomena do not occur in a Hilbert space. They occur in a
laboratory. (Asher Peres, Quantum Theory: Concepts and Methods [20])

With the elements used to define quantum circuits, IBM has run a simple
experiment to demonstrate how errors affect quantum devices. In the experiment,
they create N quantum circuits, all set at |0⟩ at the beginning and with a Z-
measurement at the end. The n-circuit, where n is an integer number including
between 0 and N − 1, has in the middle n X-gates, like in figure 3.1.

With this chain of X-gates, the qubit states change continuously from |0⟩ to
|1⟩ and vice versa. If the n-circuit has a paired number of X-gates, the measured
value is -1, otherwise, if the number of X-gates is odd, it is 1, as explained for
Z-measurement in chapter 1.4.

In an ideal simulation, the results obtained from several runs are all 1s or all
-1s, according to the depth of the circuit, as shown in the graph 3.2. Instead, on
a real quantum device, no circuit has all results equal to 1 or -1, as shown in the
graph 3.3.

From graph 3.3 it is possible to observe a kind of oscillation, related to the depth
of the circuit, which highlights a relation with the number of the X-gates placed.
This behaviour is characteristic of coherent quantum noise. All real gates have a
fixed error ϵ, which is added each time a gate is employed and it is responsible for
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d = 0 : |0⟩

d = 1 : |0⟩ X

d = 2 : |0⟩ X X

d = 3 : |0⟩ X X X

d = 3 : |0⟩ X X X

d =
Figure 3.1: Different circuits with a variable number of X gates, identify as the
depth of the circuit.

Figure 3.2: Experiment runs in an
ideal case.

Figure 3.3: Experiment run in a real
case.

the oscillation described above. Even when no gates are presented, the measurement
is not perfect because the apparatus of measurement is quite noisy.

In addition, it is also possible to notice a decaying trend with the increase
of depth, called incoherent noise, which represents the random dynamics of the
quantum system.

Only by understanding how quantum noise acts on quantum computers, it is
possible to avoid it, conceiving strategies and methods able to undo these processes
in order to mitigate or completely delete these errors.
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3.2 Quantum Error Correction
Quantum algorithms are designed without considering noise. During each com-
putation quantum circuits are constantly affected by errors and, at the end, the
correct result must be picked among all the wrong ones. Sometimes it is not so
easy to make this choice, as show in figure 3.4.
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Figure 3.4: Output probabilities of a quantum execution where it is not easy to
choose the correct result.

Quantum error correction, QEC is a useful set of techniques used to protect
quantum information from noise. The basic idea of QEC is to use more than one
physical qubits in order to create a logical qubit. Ideal qubits are called logical
qubits, which represent perfectly the ideal qubit, in absence of noise. Instead, the
real qubit, the one psychically present inside quantum computers, is called physical
qubit. The more physical qubits are used, the more accurate the logical qubit will
be.

This qubit overhead could be a drawback, especially in quantum machines that
don’t have a lot of psychical qubit available. Even the most recent and advanced
quantum computers are still not able to perform such corrections to allow the
execution of useful quantum algorithms.

Despite this, QEC protocols are continually proposed in order to create more
reliably quantum devices.

3.2.1 Encoding and decoding
Decoding and encoding procedures are at the base of any protocol of quantum
error correction.
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The algorithms used for encoding and decoding must be known, respectively by
the encoder and decoder, and must be chosen in order to make the message more
robust against noise. To do that different elements are needed:

• Input, which is the information that must be protected.

• Encoding, which is the process that transforms the basic information, using
more bits than in the beginning, to protect them.

• Error, which is a perturbation that randomly affects the encoded message. Of
course, this element is not always present.

• Decoding, in this step the encoded message is recomposed to recreate the
original input. It can understand if an error arises and how to correct it.

This approach fits very well for transmission data, where the encoding and
decoding are applied only once at the beginning and at the end of the transmission.
In quantum circuits, errors can occur at each operation performed and so, to avoid
them, decoding and re-encoding must be performed for each operation. To be more
efficiently these steps are not executed completely, but just in part in order to find
and fix the faults.

3.2.2 Repetition code
Repetition code is the simplest technique of error correction [21].

A message sends through a nosy channel, can arrive damaged to the destination
with a probability p. Sending the message more than once, the probability, P , to
get a wrong message exponentially decreases whit the increase of the number of
repetitions, according to formula 3.1, where d is the number of repetitions and d/2
is the minimum number of probability needed to create problem in the system.

P =
[d/2]Ø
n=0

A
d

n

B
pn(1 − p)d−n ∼

A
p

1 − p

B[d/2]

(3.1)

Among all the received messages, the one with the highest recurrence will be
choosen. Until d/2 − 1 repetitions have an error, the correct value will be still
confirmed by the other d/2 + 1 ones. While, if d/2 + 1 repetitions have an error,
then the system could be no longer able to pick the correct value.

Repetition code works great for classical bits but could cause problems for
qubits. Let’s encode a superposition state as 3.2, where the used qubits have been
triplicated compared to the beginning.

α |0⟩ + β |1⟩ → α |000⟩ + β |111⟩ (3.2)
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The decoding step requires measurement, which implies the destruction of
superposition of the qubit, a side effect that can cause other types of problems and
that must be avoided. The purpose of this measurement is to discover the presence
of possible errors and not measure the qubit to know in which state it is. In order
to do this, it is only needed to understand which are the qubits that have different
values.

This can be done by putting some extra qubits in the circuit, called ancilla, one
for each pair of near qubits. Then a couple of CNOT gates are placed to detect
possible differences between repetitions. One CNOT gate is controlled by the first
qubit of the pair while the other is controlled by the second one, as in figure 3.5.

data: |0⟩ •
ancilla: |0⟩ 0

data: |0⟩ • •
ancilla: |0⟩ 1

data: |1⟩ •
Figure 3.5: This circuit implements the repetition code and check the differences
between qubits without collapsing the qubit state. In the third data qubit an error
arises and it is detected by second ancilla qubit.

Let’s analyze the case example in figure 3.5. In the first pair, both qubits are 0
and so the CNOT gate doesn’t flip the ancilla qubit and, in the end, it measures 0.
In case both qubits were 1, both CNOT gates flip the ancilla qubit and it measures
always 0. Instead, in the second pair the qubits are different and, while the first
qubit does nothing, the second one, which is a 1, flips the ancilla bit and, in the
end, it measures 1, detecting the presence of an error.

The difference between qubits is highlighted when a 1 is measured on the ancilla
bit. Moreover, the value measured on the ancilla bit can be used to drive an X-gate
that compensates for the error.

Using this technique it is possible to avoid the collapse of the qubit states to
know if there are some differences between repetitions.

3.2.3 Surface code
Surface code is the most popular and widely used technique of error correction in
quantum computers. It is based on stabilizer code.

The stabilizer code is a type of encoding where a parity check is executed in
order to take information about which type of error has affected the quantum
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circuit [22]. In figure 3.6 and 3.7 are representing two circuits that respectively
represent an X error detector, to detect a bit flip error, and a Z error detector, to
detect a phase shift error. All the other errors are a combination of these ones. In
case of an error, the ancilla qubit will report it.

X •
•

•
•

data

ancilla |0⟩ X
Figure 3.6: Circuit used to report an X error on one of the four qubits

•
Z •

•
•

data

ancilla |+⟩ H X
Figure 3.7: Circuit used to report a Z error on one of the four qubits

Error correction can detect just a subset of errors and it is particularly effective
to correct errors on a single qubit but not errors that affect two or more. The basic
idea in error correction is to find and correct the most likely errors while the less
probably ones could be not identified.

In surface code, all the physical qubits, used to create a logic one, can be directly
linked together on a 2D planar surface through local connections. Different type of
encoding of surface code exists, which convert k logical qubits into n physical ones,
where n is greater than k. The main characteristic is the distance, which indicates
the number of errors that a specific surface code encoding is able to correct. A
code with a distance d is able to correct up to d

2 errors.
Conventional computers have error rates lower than 10−17 while, current quantum

devices, have error rates greater than 10−2 [23]. Through surface code will be
possible to reach a very low error rate [24, 25], still far from the actual numbers of
digital devices but, with the increased number of physical qubits, an acceptable
error rate could be achieved which will allow the execution of useful quantum
algorithms.
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3.3 Correlated error
Quantum computers have intrinsic errors that must be reduced in order to allow
the execution of useful algorithms, which employ a lot of gates. To fix these types
of errors, called uncorrelated because they appear independently from time and
space, the techniques explained before are used.

While the uncorrelated errors can be exponentially suppressed with the scaling
devices, the correlated ones affect almost all the qubits simultaneously [26], causing
logical faults [27], making useless techniques of QEC, like surface code [26, 28].
They are the main challenge for today’s quantum computers.

Energetic radiations cause these correlated errors, in particular Cosmic rays,
heavy particles coming from the sun at nearly the speed of light [29], are the main
reason. Hitting the Earth’s atmosphere, they generate secondary particles that
increase the amount of radiation in the biosphere[30, 31, 26].

Superconducting qubits, which are the most used ones, are built using Silicon. It
is well known, from the studies on semiconductor reliability [32], that the interaction
of energetic particles with Silicon generates electron-hole pairs, which cause a non-
equilibrium in the qubit. Cosmic rays impact the coherence of the qubit by broken
Cooper pairs, generating quasiparticles [33, 34, 35], which may cause the collapse
of the qubit or a transient change of the state [35, 36, 37, 38, 39, 40].

Figure 3.8: Impact of radiation on superconducting qubits [41], adapt from [33].

To avoid correlated errors quantum devices are placed in underground facilities,
shielded by lead cryostat, in order to prevent the burst of quasiparticles [42, 34].
Other valid techniques do not yet exist.

3.3.1 Google research
Google researchers made a very interesting experiment where they show up how
difficult is to deal with transient faults and all the problems caused by them [28].

They used a subset of qubits of Google Sycamore, a quantum process with 53
qubits [16], composed of 26 qubits. On each of them, a simple quantum circuit has
been built to, first of all, set the quantum state to |1⟩ and then, after an idle time
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of 1 µs, to measure the qubits state, all at the same time. These operations have
been executed periodically on the qubits with an interval of 100 µs.

In an ideal world, the expected result is made up of all 1s but, on Google
quantum processor, each time qubits are measured, around 4 of 26 of them are 0.
This is the expected behaviour caused by uncorrelated errors that can be detected
and repaired by QEC strategies.

This experiment lasted 30 s and, at a certain point, all qubits have been measured
as 0. The peak of errors lasts around 25 ms, generating a transient fault in the
system, that survives even after reset and measurement operations. This is a clear
signature of quasiparticle poisoning throughout the chip, caused by correlated error.

In figure 3.9 is drawn the implemented circuit and the design of the quantum
processor. There is also a graph of the errors on qubits along the time, with a
zoom in the interesting zone.

It is evident how, when a transient fault arises, it spreads out in all processor
qubits, making useless QEC because all qubits are faulty, and it last longer than
the QEC takes.

The same experiment has been performed also by setting qubits to |0⟩ and then
measuring them. Proceeding in this way no correlated error has been detected,
confirming the presence of quasiparticles in the Joseph junction. This conclusion
can be asserted because quasiparticles lead to a decay of the qubit states to ground
and so, when qubits are set to |0⟩, in case of a transient fault arises, they remain
in the ground state.

This behaviour model of the Google Sycamore processor has been exploited in
the chapter 5 to design a sensor able to discover the presence of correlated errors.

38



Noise in Quantum Computers

Figure 3.9: Google experiment results that have been used to model the behaviour
of transient fault in quantum circuits [28].

3.4 QuFI
To better understand how these errors can affect the circuit, transient faults have
been simulated by software, using the QuFI (Quantum Fault Injector) framework
[41]. Through QuFI it has been possible to tune the phase shift magnitude based
on the proximity of the qubit to the particle strike location, to see how the fault is
propagated throughout the circuit.

3.4.1 Model of transient fault
When a superconducting qubit is affected by a charged deposition, its state starts
to change. In order to model this error, a U gate, described by the matrix in 1.52,
has been used to mimic the shift of the qubit state, by setting ϕ and θ values.

In all the possible points of the circuit, combinations of different parameters of
the U gate, referred as error gate, have been injected to see which are the effects
caused by different possible faults. In figure 3.10 is possible to observe an example
of error gate injection. The range of values used by U gate as parameters are the
following:
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|ϕ⟩S • H •

|Ψ⟩A

|Ψ⟩B H • U X Z |ϕ⟩S

i j

Figure 3.10: Teleportation circuit with an injected fault, simulated by a U gate.

• ϕ = [0,2π[, with a step of π
12 ;

• θ = [0, π], with a step of π
12 ;

• λ = 0

3.4.2 Quantum Vulnerability Factor
To evaluate the effect of transient fault on a quantum circuit is used a parameter
called Quantum Vulnerability Factor, QVF.

QVF describes the probability that a transient fault has to propagate to the
output and which are the consequences. It is based on Michelson Contrast [43],
which gives a measure of distinguishable between two objects that belong to the
same family. It can be used for colours, luminous or, as in this case, to see the
differences between a faulty-free system and one with an injected fault.

After the execution of a quantum circuit, different outputs will be obtained,
with different probabilities associated. If P (A) is the probability of the correct
result and P (B) is the highest probability between the wrong outputs, then the
Contrast is calculated as in the formula 3.3.

Contrast = P (A) − P (B)
P (A) + P (B) (3.3)

The Contrast value is included between -1, if P (B) = 1 and P (A) = 0, and 1,
if P (A) = 1 and P (B) = 0. To normalize it to the range [0,1], in order to obtain
QVF, the Contrast value is converted as in formula 3.4.

QV F = 1 − (Contrast+ 1)/2 (3.4)

A QVF value tending to 0 means that the correct result can be clearly identified
among the wrong ones. Otherwise, a QVF tending to 1 means that an incorrect
output has a probability much higher than the correct one. Instead, a QVF around
0.5 means that the correct and the wrong result has almost the same probability.
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Figure 3.11: How to calculate Contrast for QVF evaluation, image taken from
[44].

The effect that an injected fault produces on the circuit is evaluated through
the value of QVF, in the following way:

• QV F < 0.45, the fault doesn’t have a big impact on the circuit and the correct
result is still the most probable one.

• QV F > 0.55, the fault has a big impact on the circuit and an incorrect result
is of sure the most probable one.

• 0.45 < QV F < 0.55, the fault has not a big impact on the circuit and the
correct result and an incorrect one have a similar probability, in this situation
the output becomes dubious.

At the same point in the circuit, all angle combinations for the U gate are
generated, with the parameters shown above. For each point of in the circuit, the
QVF values of all angle combinations have been calculated and then put together
in a heatmap, as in figure 3.12.

In figure 3.12 the green squares (QV F < 0.45) represent the faults which don’t
have an effect on the circuit and don’t produce any misbehaviour, they are harmless
to the circuit execution. Red squares (QV F > 0.55) represent dangerous faults that
create problems and they must be mitigated. White squares (0.45 < QV F < 0.55)
indicate that more outputs have the same probability and it’s not easy to determine
which is the correct one.
Heatmaps with more green and white squares indicate more fault-tolerant circuits,
more robust to transient faults.
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Figure 3.12: QVF heatmap example.

3.4.3 QuFI modification
As shown in chapter 3.3.1, after a reset or a measurement operation, transient
errors are still there and last for several milliseconds.

In the previous version of QuFI, the error gates were placed in the circuit without
checking the presence of a reset or a measurement operation.

To implement also this feature in QuFI, some controls have been inserted. For
each error gate, placed on a specific qubit and at a precise point of the circuit, a
check is performed to see if a reset or a measurement operation is present, always
on the same qubit but after that point. If it is so, a further error gate is added to
propagate the fault, as shown in figure 3.13. In this way, the simulator behaviour
is much more realistic, as demonstrated by Google research.

3.5 NISQ era
With the passing of the years, quantum computers are becoming a more concrete
reality. A lot of new algorithms have been designed to be executed on these devices
with an exponential speed-up. One of the problems, that does not allow yet their
execution, is the sensitivity of qubits to noise. Running a big useful algorithm will
require a large number of qubits, still not available on modern quantum computers,
and many operations that could lead to a spread of errors in the quantum circuit.
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Old QuFI version: X U X

New QuFI version: X U X U

Figure 3.13: On the new version of QuFI is possible to see how the error gate
is propagated also after the measurement operation. In the case of reset, the
behaviour is the same.

Another issue is that nowadays qubits can store data only for a few milliseconds.
This problem is called decoherence and determines the decline of the qubit states
over an amount of time. The decoherence process can be measured at two different
times:

• T1 also called energy relaxation, is the time taken for the excited state, |1⟩,
to decay toward the ground state, |0⟩;

• T2, called dephasing, describes how long the phase of a qubit can remain
intact.

Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the
near future, with quantum processors that will have a much greater number of
qubits available, more accurate gates and eventually, fully, or almost, fault-tolerant
quantum computers[45]. In this way, useful algorithms will be able to be executed
without any problems.
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Chapter 4

Technique to mitigate
transient Fault in quantum
computers

4.1 Comparison with digital circuit
In digital circuits, transient faults, which occur in a random way, are caused mainly
by environmental perturbations. These perturbations arise because of the radiation
source. The radiation-induced particles can hit atoms of semiconductor devices
transferring their energy by means of ionizing or non-ionizing processes. Depending
on the energy and flow of the particles, the effects of such energy on devices based
on MOS technology can be transient, permanent, cumulative, or even destructive.

The no-deterministic nature of these errors makes them not easy to deal with.
To avoid this problem the following techniques are used:

• hardened technologies;

• hardened by design techniques.

4.2 Hardened technologies
Human beings know how to be robust to radiation. In testing, a hardened technology
is a method which makes hardware reliable with respect to the faults of concern.
Using this technology should be a guarantee that a set of faults cannot happen
during the lifetime of the systems [46, 47].

Commercial devices didn’t use this kind of technology because it has a huge cost
and also performance limitations. The hardened technologies method is mainly
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used for integrated circuits designed for space, where reliability must be guaranteed.
An example is the New Horizions, a NASA mission which aims to reach Pluto,
launched in 2006 that is still going [48].

4.3 Hardened by design techniques
Hardened by design techniques are based on three main features:

• hardware redundancy;

• information redundancy;

• time redundancy.

4.3.1 Hardware redundancy
In hardware redundancy, there is an area overhead in order for dealing with transient
faults.
A widely used technique is the Triple Modular Redundancy (TMR) [49], where
3 processors receive the same input and work synchronously, executing the same
operations. In the end, a voter checks the three outputs to determine the correct
result. If all processors produce the same result, it means that there are no errors
in any processor and it is easy to determine the correct output. If only two of
them produce the same result, it means that there is one or more errors in one
processor, but the other two are used to confirm the correct output. If all produce
a different result, it means that there are errors in at least two processors and it
is not possible to determine the correct output. However, the latter situation has
a very low probability of occurring, and the probability that two faulty systems
producing the same result is even less.

Processor 1

Processor 2

Processor 3

Input Voter result

Figure 4.1: Triple Modular Redundancy (TMR) schematic implementation.
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It is also possible to simply duplicate the processor, comparing only the two
results. In this case, if the two results are different, it will be only possible to detect
a problem, without performing any kind of correction. This technique is called
Duplication With Comparison (DWC) and the two devices used could not be the
same.

Increasing the number of hardware repetitions means that, the probability to
get the wrong result, because of transient faults, decreases. Unfortunately, this
also means more area overhead.

4.3.2 Information redundancy
Information redundancy is often used to improve the reliability of memories and
communication channels. Repeating the same data more than once, it is possible
to detect, and sometimes even correct, errors affecting the original information.

The original data D is encoded, over N bits, through an encoded function
F () that, according to input, produces the encoded information K (codeword),
as shown in 4.1. From the codeword, it is possible to retrieve the original data
D, through a decoding function F−1, as shown in4.2. The bits used to encode
information, to improve the reliability of the system, are greater than those used
in the original data.

K = F (D) (4.1)

D = F−1(K) (4.2)
F() is such that errors transform a codeword K in a non-codeword K∗ so that

for each D of the system, K∗ /= F (D). According to the F () chosen, the code
becomes resilient to a set of faults. More bits are used for encoding and bigger will
be the cardinality of this set.
Examples of information redundancy are the following:

• Parity codes: N bits are encoded in N+1 bits, wherein the extra bit stores
the parity computation. If the number of 1s in data is even it becomes 1,
otherwise, if it is odd, it becomes 0. This technique is able to detect all the
situations where a pair number of qubits are affected by a fault. Any single
error in the codeword can be detected but not corrected.

• Hamming codes: using more bits for error correction, it is possible to discover
faulty bits. Hamming (11, 7) is also known as single error correction and
double error detection (SEC/DEC). Using 11 bits to encode 7 bits, and through
a specific encoded function F (), is possible not only to detect errors, in case
of single or double faulty bits, but it is even capable to correct the error, in
case of a single faulty bit.

46



Technique to mitigate transient Fault in quantum computers

4.3.3 Time redundancy
In time redundancy more time than necessary is used for processing inputs. The
same operations are executed more than once, on the same device, but in different
slots of time.

In a precise moment, a transient fault could appear, changing the expected
result for that slot of time. The slot intervals are chosen in order to avoid the same
fault affecting two slots. In the end, all the outputs feed a voter that, in case of
double execution, just checks if an error arises while, in case of triple execution,
decides the correct result among all the outputs.

This is similar to the hardware redundancy method but, in this case, less area
is used while more time is spent. According to the implementation constrained,
one of the two mechanisms can be selected, according to the need.

4.4 Use digital techniques on quantum computers
In quantum computers, the effects of transient faults are slightly different than
in classical computers. However, the techniques explained above could be usable,
with some adaptation.

While in classical computers it is known how to shield bits from radiation, it
is not yet clear how to do the same thing for qubits. Qubits are very sensitive
to environmental perturbations and so, in real quantum devices, all the available
hardened techniques are employed to achieve better reliability. Nowadays, hardened
technology is probably the most efficient way to protect quantum computers from
noise [50].

Trying to implement techniques of time redundancy is still not possible. Qubits
coherence time is still low, sometimes it is not even enough for one execution [51].

Information redundancy is a technique widely used in quantum computation
that allows detecting, and in some cases also correcting faults. An example is the
repetition code. Unluckily, in quantum devices is not always possible to apply these
methods. The number of qubits available in the latest quantum computers is not
enough for simple elaborations, let alone for repeated codes.

The previous proposal’s techniques don’t fit very well with modern quantum
computers, which can’t still implement the same strategies used to avoid transient
faults in digital devices.

To solve this problem, in this thesis, new methods have been developed, able to
detect the presence of transient faults. It’s called Transient Fault Detector and it
is better explained in the chapter 5.
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Quantum Transient Fault
Detector

5.1 How they work
According to Google’s paper, when in a superconducting qubit a transient fault
arises and its state is |1⟩, then it decays to |0⟩ [28]. This behaviour can be described,
in a more general way, as a phase shift of the qubit state and it can be simulated
through QuFI [41].

In this research, this phenomenon is exploited in order to recognize the presence
of transient faults. To do that the initial circuit is wrapped whit a particularly
circuitry, called Transient Fault Detector (TFD).

These TFDs are added at the beginning and at the end of the initial circuit.
A circuit modified in this way is called wrapped circuit, and its representation is
shown in figure 5.1.

TFD can be added to all qubits used in the circuit algorithm, but also to all the
unused ones that are still available in the quantum computer. These redundant
gates have the purpose to put the qubit state at |1⟩, starting from |0⟩, and then
measuring always a 1.

It is important to notice that, after the execution of the start TFD, the qubit
state must be set to |0⟩ and, even after the execution of the general circuit, the
qubit state must be set to |0⟩ before to beginning with the elaboration of end TFD.
This could be achieved by exploited or the unitary property of the quantum gate,
using the inverse circuit, or through reset gates.

In wrapped circuits, the final results will contain the values coming from the
quantum circuit that implements the algorithm, referred as the algorithm circuit,
and the ones coming from the two barriers. In the end, only the results containing
all 1s in the classical bits used to measure TFD will be taken into consideration,
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Figure 5.1: General wrapper implementation to detected faults.

the others will be marked as faulty.

5.1.1 Example

Let’s suppose that the final result, of the not wrapped circuit, is xxxx, where x is
a general value that could be 1 or 0. Instead, if the circuit is wrapped, then the
final correct result becomes 1111xxxx1111, where the two groups of 1s ensure the
absence of faults and represent the bit of TFD.

5.2 Wrappers

Different kinds of wrappers have been tested with different results. The purpose of
each of them is to move along all the possible positions inside the Bloch sphere,
which represent all the possible superpositions of the qubit, trying to catch an
unwanted shift state, highlighted by the TFD.

If an error is detected, the final qubit state that will be measured at the barriers
will be no more |1⟩, but |0⟩. In order to do this, following the experiment of
Google’s team, the qubit starts from state |0⟩ to arrive at |1⟩, trying to cover the
whole surface of the sphere. If an error is detected, the final state that will be
measured at the barriers will be no more |1⟩, but |0⟩

Different wrappers are better to cover different types of errors, that will be
mimicked through the use of QuFI [41].
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5.2.1 Wrapper 1

The circuitry used for this scope is represented in figure 5.2. The result_1 are the
classical bits used to save the result while the others, star_1 and end_1, are used
to detect possible errors, respectively at the beginning and at the end of the circuit.

In this wrapper the start Barrier Detector, to reset the end of the qubits for the
algorithm circuit, uses the inverse circuit, while, the end Barrier Detector uses the
reset gate.
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Figure 5.2: A first type of wrapper.

To explain how these barriers work, the following images show the qubit state,
using Bloch sphere representation, associated with the position in the circuit.

In figure 5.3 the qubit starts from |0⟩, independently if it is at the beginning or
at the end of the circuit.

Figure 5.3: The first step of wrapper 1.

Then, through a Hadamard gate, it is put in superposition, figure 5.4, to try to
detect all the possible errors that could modify the qubit position along the x-axis
and y-axis.
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Figure 5.4: The second step of wrapper 1.

In the third step, in figure 5.5, the qubit position is moved in the opposite
direction, with ϵ equal to 180°, trying to discover errors along the equator of the
Bloch sphere.

Figure 5.5: The third step of wrapper 1.

In the fourth step, in figure 5.6, seems like no action has been performed but, if
a fault is present, it executes a shift of θ along the z-axis, changing the qubit state.
The current qubit state will be reflected in the opposite hemisphere of the sphere.
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Figure 5.6: The fourth step of wrapper 1.

In the last step, figure 5.7, if no error occurs in the circuit then, through a
Hadamard gate, the qubit will reach easily the |1⟩ state. However, in case of
problems, the probability of measured |0⟩ increases, indicating that an error is
affecting the circuit.

Figure 5.7: The fifth step of wrapper 1.

5.2.2 Wrapper 2

This kind of wrapper, shown in figure 5.8, has been derived from the transient
faults model of Google research [28].
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Figure 5.8: A second type of wrapper to detect faults.

A real hardware implementation of this kind of barrier has been already evaluated
on Google Sycamore quantum processor [28], demonstrating its effective operation.
In this wrapper, the TFDs implement the same circuit used in the Google experiment
to highlight the presence of transient faults.

Even in this case the start Barrier Detector uses the inverse circuit, while the
end Barrier Detector uses the reset gate.

5.3 QVF Taxonomy
To evaluate the efficiency of the wrappers the Quantum Vulnerability Factor has
been used. QVF determine how many final results obtained, composed of quantum
barrier measurements and circuit algorithm measurements, are affected by injected
faults.

When in the classical bits, used to measure the TFD, a 0 is present, it means
that a fault has been detected in the system. With the presence of that 0 the
probability to get the correct output result, the one with all 1s in classical Detector
barrier bits, decrease, while the probability to get a wrong result increase. In this
way the also QVF values increase, as explained in the chapter 3.4.2.

QVF could be used to understand which is the efficiency of the wrapper against
the injected fault. For each fault, it’s possible to mark a label, according to the
obtained QVF value:

• good, QVF values between 0.0 and 0.45, the green square in the heatmap,
when it is sure of the absence of a fault;

• faulty not detect, QVF values between 0.45 and 0.55, the white, or almost,
squares in the heatmap, when it is not sure of the presence of a fault;

• faulty detect, QVF values between 0.55 and 1.0, the red squares in the
heatmap, when it is sure the presence of a fault.
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5.3.1 Example 1

Image to have the following circuit, shown in figure 5.9, and to transpile it, as in
figure 5.10. Then the circuit has been wrapped like in the figure 5.11.
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Figure 5.9: Bernstein-Vazirani_4 circuit.
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Figure 5.10: Bernstein-Vazirani_4 transpiled circuit.

For fault simulation, the transpiled circuit has been preferred to better analyse all
the positions where a fault could be injected on the real hardware implementation
of the circuit algorithm.
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Figure 5.11: Bernstein-Vazirani_4 transpiled circuit with wrapper 1.

Now let’s analyze what happens if different faults occur in the same point of
the transpiled circuit, with and without the wrapper. In the unwrapped circuit,
the fault has been placed in position 5, as in figure , while in the wrapped one it
has been placed in position 53, as in figure 5.13.Global Phase: 3 /4
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Figure 5.12: Bernstein-Vazirani_4 transpiled circuit without wrapper where a
fault arise.
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Figure 5.13: Bernstein-Vazirani_4 transpiled circuit with wrapper where a fault
arise.

How it is possible to notice in the wrapped circuit, the error gate has been
inserted also after the reset, as already said in chapter 3.4, to better mimicked the
transient fault behaviour.
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The injected fault is a U gate, where different combinations of ϕ and θ have
been provided for different fault simulations. For each of them, has been calculated
the QVF for the unwrapped circuit, shown in figure 5.14, and for the wrapped one,
shown in figure 5.15.
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Figure 5.14: Heatmap of Bernstein-
Vazirani_4 transpiled circuit without
wrapper where a fault arises.
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Figure 5.15: Heatmap of Bernstein-
Vazirani_4 transpiled circuit with wrap-
per where a fault arises.

It’s possible to notice that the two heatmaps are slightly different. In the
heatmap related to the wrapper circuit, fewr white sections are present, while the
green ones are almost the same. Instead, the number of red squares is increased,
which indicated that different dangerous faults, through the wrappers, have been
recognised by barriers.

5.3.2 Example 2

Let’s analyze always the previous circuit, the one in figure 5.9, but now error arises
in a different position. For for the unwrapped circuit it has been placed in position
0, as shown in figure 5.16, while in the wrapped one it has been placed in position
48, as shown in figure 5.17.
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Figure 5.16: Bernstein-Vazirani_4 transpiled circuit without wrapper where a
generic fault arises in position 4.
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Figure 5.17: Bernstein-Vazirani_4 transpiled circuit with wrapper 1 where a
generic fault arises in position 48.

This time, analysing the two heatmaps, shown figure 5.18 and figure 5.19, it’s
possible to observe that the number of green squares has decreased while the red
and white ones have increased.

From the heatmap of the unwrapped circuit, the graph in 5.18, is evident that if
the injected fault has a θ value in the range [0, π/2[, then the probability of correct
output is still higher that the wrong ones. While, if the θ value is in the range
]π/2, π], the probability of correct output decreases.

Instead, in the heatmap of the unwrapped circuit, the graph in 5.19, it is possible
to see red squares where they used to be green. Some angle combinations, that
before were labelled as good (green squares), now have been labelled as fault
detected (red squares). The identification of these new faults happens because the
circuit used for the barriers detects the fault, even if it is harmless for the circuit,
as previously shown in the heatmap of the unwrapped circuit 5.18.
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Figure 5.18: Heatmap of Bernstein-
Vazirani_4 transpiled circuit without
the wrapper, where faults arise in posi-
tion 4.
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Figure 5.19: Heatmap of Bernstein-
Vazirani_4 transpiled circuit with
wrapper 1, where faults arise in position
48.

Likewise, also others angle combinations, that before were labelled as detected,
now are labelled as not detected. The presence of these new not detectable faults
happens because some angle combinations of injected fault can’t be recognized
by barriers. In this way, the classical bits measured associated with the barriers
remain all 1s, so the obtained QVF value decreases compared to the one coming
from the unwrapped circuit.

5.4 Real implementation taxonomy
Because the quantum outputs are probabilistic, the values of the measured TFD
are probabilistic as well. On real quantum circuits, the only way to see if a real
transient fault arises is by checking the percentage of the barriers that measure all
1s. A threshold percentage is set to distinguish between detected faults and not
detected ones, referred as threshold barrier percentage.

On the real hardware, QVF can’t be used as a metric to estimate if the final
elaboration is fault free or if it has been affected by a transient fault. Despite this,
QVF can be used to understand if the value of the threshold percentage chosen is
good or not.

Both for detected faults and for undetected faults, three classes have been
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defined, based on the QVF value, referred as error classes.
The faults marked as not detected by barriers could belong to one of these error
classes:

• Undetectable (Undet), when a fault does not create any problems with the
correct output. QVF is in the range [0.0,0.3[.

• Silent corruption (Silent), when a fault creates some problems with the correct
output. QVF is in the range [0.3,0.7].

• Untriggered (Untr), when a fault creates serious problems with the correct
output. QVF is in the range ]0.7,1.0].

Instead, the faults marked as detected by barriers could belong to one of these
error classes.

• False positive (False), when a fault does not create any problems with the
correct output. QVF is in the range [0.0,0.3[.

• Detectable 0 (Det 0), when a fault creates some problems with the correct
output. QVF is in the range [0.3,0.7].

• Detectable 1 (Det 1), when a fault creates serious problems with to the correct
output. QVF is in the range ]0.7,1.0].

The table 5.4summarizes all the possible combinations of these six classes that
could be assigned to a fault.

QVF range Barrier detected fault Barrier not detected fault

[0.0,0.3[ False Positive Undetectable

[0.3,0.7] Detectable 0 Silent corruption

]0.7,1.0] Detectable 1 Untriggered

Good wrappers have the lowest number of faults assigned to these error classes:

• Silent corruption, the barrier is not triggered but there is a possible dangerous
error which affects the circuit.

• Untriggered, the barrier is not triggered but there is a dangerous error which
affects the circuit.
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• False positive, the barrier is triggered but there is not a dangerous error which
affects the circuit.

Let’s analyze some circuits to see which could be the better threshold barrier
percentage to assign. In the following example, to simulate a quantum system has
been used Qiskit. This SDK can perform measurement operations in the middle
of the circuit. As backend simulation has been used fake Santiago, composed of 5
qubits.

5.4.1 Bernstein Vazirani 4

The initial circuit is the Bernstein Vazirani, based on 4 qubits, as shown in figure
5.9, which has been transpiled, as figure 5.10 and in the end has been wrapped,
using wrapper 1, as in figure 5.11.

In the graphs in 5.24 it is possible to see, according to the different threshold
barrier percentages, which are the percentages of each error class.

• With a threshold barrier percentage below 20%, less than 30% of the injected
errors are detected and around 10% of them are false positive, while 30% of
the faults not detected are silent or untriggered errors.

• Using a threshold barrier percentage equal to 55%, more than 60% of the
errors are detected, 35.8% of them are false positives while only around 3% of
the fault not detected are silent or untriggered errors.

• Using a threshold barrier percentage equal to 75%, silent or untriggered faults
are no longer detected, but almost 50% of detected fault is false positives.

• With a threshold barrier percentage beyond 80%, the percentage of TFD all
injected errors are detected and around 62% of them are false positives.
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Figure 5.20: Bernstein Vazirani 4
percentage 20%.
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Figure 5.21: Bernstein Vazirani 4
percentage 55%.
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Figure 5.22: Bernstein Vazirani 4
percentage 75%.
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Figure 5.23: Bernstein Vazirani 4
percentage 85%.

Figure 5.24: Bernstein Vazirani, 4 main percentage graphs.

Thr % Undet Silent Untr False Det 0 Det 1
5% 55.8% 24.0% 11.4% 6.4% 0.8% 1.6%
10% 53.0% 22.6% 9.9% 9.2% 2.3% 3.1%
15% 49.8% 20.9% 8.2% 12.4% 3.9% 4.7%
20% 48.2% 19.6% 7.3% 14.0% 5.2% 5.7%
25% 44.4% 17.4% 5.3% 17.8% 7.4% 7.7%
30% 42.5% 16.0% 4.9% 19.7% 8.8% 8.1%
35% 38.8% 12.4% 4.3% 23.4% 12.4% 8.7%
40% 36.8% 10.2% 4.1% 25.4% 14.6% 8.9%
45% 31.9% 5.4% 3.5% 30.3% 19.4% 9.4%
50% 29.8% 2.9% 3.3% 32.4% 21.9% 9.7%
55% 26.4% 0.6% 2.7% 35.8% 24.2% 10.3%
60% 24.0% 0.1% 2.3% 38.2% 24.7% 10.7%
65% 19.4% 0.0% 1.7% 42.8% 24.8% 11.3%
70% 16.3% 0.0% 1.2% 45.9% 24.8% 11.8%
75% 12.9% 0.0% 0.7% 49.3% 24.8% 12.2%
80% 8.7% 0.0% 0.3% 53.5% 24.8% 12.7%
85% 0.1% 0.0% 0.0% 62.1% 24.8% 13.0%
90% 0.0% 0.0% 0.0% 62.2% 24.8% 13.0%

Table 5.1: Bernstein Vazirani 4 percentage table.
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5.4.2 Deutsch Jozsa 4

The initial circuit is shown in figure 5.25, then it is transpiled, figure 5.26 and then
it is wrapped, using wrapper 1, as figure 5.27.
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Figure 5.25: Deutsch Jozsa 4
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Figure 5.26: Deutsch Jozsa 4 transpiled.
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Figure 5.27: Deutsch Jozsa 4 transpiled with wrapper 1.

In the graphs in 5.31 it is possible to see, according to the different threshold
barrier percentages, which are the percentages of each error class.
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Figure 5.28: Deutsch Jozsa 4
percentage 20%.
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Figure 5.29: Deutsch Jozsa 4
percentage 60%.
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Figure 5.30: Deutsch Jozsa 4
percentage 85%.

Figure 5.31: Deutsch Jozsa, 3 main percentage graphs.

• With a threshold barrier percentage below 20%, less than 30% of the errors
are detected and around 10% of the errors are false positive, while 30% of the
faults not detected are or silent or untriggered errors.

• Using a threshold barrier percentage equal to 60%, almost 80% of the errors
injected are detected, 34.1% of them are false positives while only 2.5% of the
fault not detected are silent or untriggered errors.

• With a threshold barrier percentage beyond 85%, the percentage for TFD, all
errors are detected and around 57% of them are false positive.
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Thr % Undet Silent Untr False Det 0 Det 1
5% 51.7% 26.7% 13.3% 5.6% 0.8% 1.9%
10% 49.2% 25.5% 11.5% 8.1% 2.0% 3.7%
15% 46.4% 24.1% 9.4% 10.9% 3.4% 5.8%
20% 44.8% 23.0% 8.2% 12.5% 4.4% 7.1%
25% 41.5% 21.0% 5.7% 15.8% 6.5% 9.5%
30% 39.9% 19.4% 5.2% 17.4% 8.1% 10.0%
35% 36.5% 15.2% 4.6% 20.8% 12.2% 10.6%
40% 34.8% 12.5% 4.4% 22.5% 15.0% 10.9%
45% 30.4% 6.6% 3.8% 26.9% 20.9% 11.5%
50% 28.7% 3.9% 3.5% 28.7% 23.6% 11.8%
55% 25.6% 0.9% 2.9% 31.7% 26.5% 12.3%
60% 23.2% 0.1% 2.4% 34.1% 27.3% 12.8%
65% 18.7% 0.0% 1.8% 38.6% 27.4% 13.5%
70% 15.5% 0.0% 1.3% 41.8% 27.4% 13.9%
75% 12.0% 0.0% 0.8% 45.3% 27.4% 14.4%
80% 7.9% 0.0% 0.3% 49.4% 27.4% 15.0%
85% 0.1% 0.0% 0.0% 57.2% 27.4% 15.2%
90% 0.0% 0.0% 0.0% 57.3% 27.4% 15.2%

Table 5.2: Deutsch Jozsa percentage table.

5.4.3 Grover

The initial circuit is shown in figure 5.32, then it is transpiled, figure 5.33 and in
then it is wrapped, using wrapper 1, as figure 5.34.
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Figure 5.32: Grover quantum circuit.
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Figure 5.33: Grover transpiled.
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Figure 5.34: Grover transpiled with wrapper 1.

In the graphs in 5.39 it is possible to see, according to the different threshold
barrier percentages, which are the percentages of each error class.
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Figure 5.35: Grover percentage 15%.
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Figure 5.36: Grover percentage 55%.
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Figure 5.37: Grover percentage 75%.
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Figure 5.38: Grover percentage 85%.

Figure 5.39: Grover, 4 main percentage graph.

• With a threshold barrier percentage below 15%, less than 20% of the errors
are detected and around 10% of the errors are false positive, while around
20% of the faults not detected are or silent or untriggered errors.

• With a threshold barrier percentage equal to 55%, almost 80% of the errors
injected are detected, 47.2% of them are false positives while around 3% of
the faults not detected are silent or Untriggered errors.

• With a threshold barrier percentage equal to 75%, silent or untriggered errors
are no longer detected, but almost 61% of detected ones are false positives.

• With a threshold barrier percentage beyond 85%, all errors are detected and
around 74% of them are false positives.
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Thr % Undet Silent Untr False Det 0 Det 1
5% 66.8% 13.9% 10.4% 7.4% 0.4% 1.1%
10% 62.8% 13.2% 9.3% 11.3% 1.2% 2.3%
15% 58.4% 12.3% 8.0% 15.7% 2.0% 3.5%
20% 55.8% 11.7% 7.3% 18.3% 2.7% 4.3%
25% 50.5% 10.5% 5.8% 23.6% 3.8% 5.8%
30% 48.2% 9.7% 5.3% 26.0% 4.6% 6.3%
35% 43.1% 7.6% 4.6% 31.0% 6.7% 7.0%
40% 40.4% 6.2% 4.2% 33.7% 8.1% 7.3%
45% 34.0% 3.1% 3.5% 40.1% 11.2% 8.0%
50% 31.1% 1.7% 3.1% 43.1% 12.6% 8.4%
55% 27.0% 0.3% 2.6% 47.2% 14.0% 9.0%
60% 24.2% 0.0% 2.1% 49.9% 14.3% 9.4%
65% 19.7% 0.0% 1.5% 54.5% 14.3% 10.0%
70% 16.6% 0.0% 1.1% 57.5% 14.3% 10.4%
75% 13.1% 0.0% 0.7% 61.0% 14.3% 10.8%
80% 9.0% 0.0% 0.2% 65.1% 14.3% 11.3%
85% 0.1% 0.0% 0.0% 74.0% 14.3% 11.5%
90% 0.0% 0.0% 0.0% 74.1% 14.3% 11.5%

Table 5.3: Grover percentage table

5.5 Reset injection

As explained in Google’s paper [28], the presence of a transient leads to a decay of
the quantum state. This means that whatever is the state of the qubit, in case of
error, it will collapse to |0⟩.

To better mimic this behaviour, instead of injecting a U gate with different
angle combinations, a reset gate has been injected.

To better evaluate this model, for this experiment has been used the wrapper
number 2, which has already been proven to work against this transient fault model.

An example of a circuit using the second type of wrapper is shown in the image
5.40.
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Figure 5.40: Bernstein Vazirani 4 with wrapper 2, where an error arises.

5.5.1 Bernstein Vazirani 4

The initial circuit is shown in figure 5.32, then it is transpiled, figure 5.33 and then
it is wrapped, using wrapper 2, as in figure 5.41.
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Figure 5.41: Bernstein Vazirani 4 with wrapper 2.

In the graphs in 5.44 it is possible to see, according to the different threshold
barrier percentages, which are the percentages of each error class.

• With a threshold barrier percentage below 85%, 82.2% of the injected faults
are detected and 51.8% of them are false positives. No silent or untriggered
errors are present.

• With a threshold barrier percentage above 85%, all the injected faults are
detected and 69.6% of them are false positives.
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Figure 5.42: Bernstein Vazirani 4
percentage 80%.
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Figure 5.43: Bernstein Vazirani 4
percentage 85%.

Figure 5.44: Bernstein Vazirani, 2 main percentage graph using reset error gate.

Thr % Undet Silent Untr False Det 0 Det 1
5% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
10% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
15% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
20% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
25% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
30% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
35% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
40% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
45% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
50% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
55% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
60% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
65% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
70% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
75% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
80% 10(17.9%) 0(0.0%) 0(0.0%) 29(51.8%) 9(16.1%) 8(14.3%)
85% 0(0.0%) 0(0.0%) 0(0.0%) 39(69.6%) 9(16.1%) 8(14.3%)
90% 0(0.0%) 0(0.0%) 0(0.0%) 39(69.6%) 9(16.1%) 8(14.3%)

Table 5.4: Bernstein Vazirani, percentage table using reset error gate.
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5.5.2 Deutsch Jozsa 4

The initial circuit is shown in figure 5.25, then it is transpiled, figure 5.26 and the
it is wrapped, using wrapper 1, as in figure 5.45.
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Figure 5.45: Deutsch Jozsa 4 transpiled with wrapper 2.

In the graphs in 5.48 it is possible to see, according to the different threshold
barrier percentages, which are the percentages of each error class.
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Figure 5.46: Deutsch Jozsa 4
percentage 80%.

0 5 10 15 20 25 30 35 40
Number of fault

undetectable

silent

untriggered

false positive

detectable 0

detectable 1

1.4%

0.0%

0.0%

54.8%

30.1%

13.7%
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percentage 85%.

Figure 5.48: Deutsch Jozsa 4, 2 main percentage graph using reset error gate.

• With a threshold barrier percentage below 85%, 86.3% of the injected faults are
detected and around 42.4% of them are False positive. No silent or untriggered
errors are detected.

• With a threshold barrier percentage above the 85%, all injected faults are
detected as errors and around 55% of them are false positives.
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Thr % Undet Silent Untr False Det 0 Det 1
5% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
10% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
15% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
20% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
25% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
30% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
35% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
40% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
45% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
50% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
55% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
60% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
65% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
70% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
75% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
80% 10(13.7%) 0(0.0%) 0(0.0%) 31(42.5%) 22(30.1%) 10(13.7%)
85% 1(1.4%) 0(0.0%) 0(0.0%) 40(54.8%) 22(30.1%) 10(13.7%)
90% 0(0.0%) 0(0.0%) 0(0.0%) 41(56.2%) 22(30.1%) 10(13.7%)

Table 5.5: Deutsch Jozsa 4, percentage table using reset error gate.

5.5.3 Grove
The initial circuit is shown in figure 5.32, then it is transpiled, figure 5.33 and in
the end it is wrapped, using wrapper 2, as figure 5.49.
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Figure 5.49: Grover with wrapper 2.

In the graphs in 5.48 it is possible to see, according to the different threshold
barrier percentages, which are the percentages of each error class.

• With a threshold barrier percentage below 80%, 81.1% of the injected faults
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Figure 5.50: Grover percentage 75%.
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Figure 5.51: Grover percentage 80%.

Figure 5.52: Grover, 2 main percentage graph using reset error gate.

are detected as errors an around 50.9% of them are false positives. No silent
or untriggered errors are presented.

• With a threshold barrier percentage above 80%, all injected faults have been
detected as errors and around 70% of them are false positives.

5.6 Result analysis
For the first type of model error, the one which simulates the errors with the U
gates, using threshold percentage values in the range of 40% - 60% could be a good
choice. However, different percentages could be chosen to satisfy different needs.

For the second type of model error, the one which simulates the errors with the
reset gates, regardless of the chosen threshold percentage, no silent or untriggered
errors are identified. However, setting a threshold percentage value below around
80% means that some errors are identified as undetectable while, setting it above
around 80% means that all errors are detected.

The value of the chosen threshold percentage is a critical point for the final
evaluation of wrappers. A value too high means that much more errors will be
labelled as false positives, while a value too low will mean that much more errors
will be marked as silent or untriggered. To properly select the perfect value several
simulations, with different threshold percentages, must be run and then the best
value is selected, using properly criteria.
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Thr % Undet Silent Untr False Det 0 Det 1
5% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
10% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
15% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
20% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
25% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
30% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
35% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
40% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
45% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
50% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
55% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
60% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
65% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
70% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
75% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
80% 10(18.9%) 0(0.0%) 0(0.0%) 27(50.9%) 10(18.9%) 6(11.3%)
85% 1(1.9%) 0(0.0%) 0(0.0%) 36(67.9%) 10(18.9%) 6(11.3%)
90% 0(0.0%) 0(0.0%) 0(0.0%) 37(69.8%) 10(18.9%) 6(11.3%)

Table 5.6: Grover, percentage table using reset error gates.
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Chapter 6

Conclusion

The TFDs work as a sensor, able to discover the presence of transient faults.
Different types of wrappers can be realized and used to test different quantum

circuits. This study has been based on Sycamore quantum processor, developed
by Google. Indeed, the used wrapped in this research are based on the model of
Google transient fault.

On different devices, different models could appear and the effect of transient
faults could be strictly dependent on the type of hardware. Probably, qubits more
distance from each other could avoid a such spread out of quasiparticles in the
whole device!

It is also important to consider how qubits are implemented. Today, the most
used are the Transmon qubits, which are not yet an established technology that
may not be present in the future.

In this thesis, different TFDs have been proposed and others could be designed
to better cover different errors. The benchmarks executed in this thesis have
produced interesting results. A good amount of dangerous injected faults has been
discovered, even if a part of them are labelled as false positives. Even the number
of silent and untriggered faults is pretty low, meaning that this technique could be
an efficient mechanism against transient faults in quantum computers.

According to these results, it is possible to understand that these TFDs, which
add some extra gates useless for elaboration, could be a good tool to improve the
reliability of quantum computers.

6.1 Future Work
To improve the result obtained is possible to execute the following activity:

• tests the TFDs on real quantum hardware, such as Sycamore or also other
systems to see if this implementation works;
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Conclusion

• creates different types of wrappers, based on different models of correlated
errors, and evaluates them all;

• test the TFDs on uncorrelated errors.

Trying to implement TFDs, to discover the presence of general noise, could
be a valid solution to make quantum devices, even those that don’t have a lot of
physical qubits available, more reliable. Actually, there are no valid methods used
to efficiently detect if transient faults occur in quantum circuits and this seems to
be one of few methods, if not the only one, able to do so.
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