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Abstract

Throughout recent History Model-Based controllers dominated the scene of flight
controller design and their effectiveness has been proven several times. Despite
that, their reliance on the accuracy of the mathematical model used in order to
represent real plant might lead to an explosion of the complexity of the problem in
case of strongly non-linear systems such as UAVs. In the following work, we are
going to propose an alternative approach for the design of flight controllers based
on the use of ANN and their capabilities of being universal approximators in order
to overcome some of the flaws of standard Model-Based controllers. We are going
to investigate the effectiveness of a mixed approach of both Data and Information
Driven techniques using Physics-Guided Neural Networks for the approximation
of the real plant dynamics. Moreover, we are going to implement the Dynamics
inversion of the plant using such techniques in order to design a flight controller based
on feedback linearization. For the simulation of the plant and the data collection
needed in order to train and validate the ML models we made use of Microsoft
Arisim flight simulator while the ANN Development has been made through the
Pytorch Framework. The Flight controller connection with the Quadrotor in the
Airsim Environment uses the PX4 firmware and Mavlink communication protocol.
The model we implemented is able to invert the Dynamics of the drone starting
from a set of measurements and targets at given time instance(such as RPY angles,
Velocities and accelerations in the body frame) and computes with good accuracy
the set of forces applied on each vertex on the quad-rotor. Different Architectures
has been tested, mainly LSTM and FeedForward, using both the standard Data-
Driven procedure and Data-Information mixed procedure, and in each case the
latter always improved the RMSE loss with respect to the counter-part of about
10%-20% with faster convergence.
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Chapter 1

State of Art

Before the beginning of the analysis, a brief overview is given about the state
of art relative to ANN implemented in UAV and Aircraft engineering literature,
as discussed in [1]. The effectiveness of ANNs regarding the approximation of
unknown model parameters, adaptive compensation of external disturbances and
inversion error are documented extensively in the available literature.
In most of these cases ANNs are implemented alongside other controllers designed
with traditional techniques to complement the control action, despite that, there are
also instances of ANNs trained to mimic the control action of standard model-based
controllers, and achieved acceptable results.
The aim of this work is also to investigate the effectiveness of data-infromation
driven hybrid models for the implementation of an high level position control for
UAVs.
A general overview about some practical implementations documented in literature
for this class of hybrid models is given.
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State of Art

1.1 Feedback Linearization

In [2] 1997, ANN are used in order to implement adaptive control augmentation.
Three feedforward networks consisting in 21 RBF units and 40 sigma-pi units
complemented the control action of a fixed wing aircraft, resulting in the cancellation
of the model inversion error without the full knowledge of the uncertanties related
to high-g, fixed throttle manouvers. The algorithm used in order to ensure the
convergence of the model’s weights has been derived using Lyapunov theory, in
order to ensure the boundedness of all the signals in the loop. Similarly, in [3]
2002 a two layer feed forward network with 5 hidden neurons has been used
in order to perform adaptive control augmentation, although the performances
where satisfactory the behaviour of the system has not been investigated under
uncertainties and disturbances. Further improvements have been achieved in [4]2011
tackling a similar problem for adaptive augmentation for helicopters to reduce the
model inversion error, but improving the convergence and tracking performances
through Concurrent-learning. In [5] 2015 a two-layer feedforward network with 50
hidden neurons has been used in a similar fashion for adaptive control augmentation
with remarkable results.

1.2 Optimal feedback control

In 2012 [6] a two layer FFNN has been trained offline in order to mimic the outputs
produced by a controller implementing the optimal feedback control low. Since the
model’s training phase has been done in an offline fashion, it is highly dependent
on the operating conditions in relative to the training set. Repeated training is
needed if such conditions are considerably different.

1.3 Sliding mode control

In [7] 2015, the RBFNN architecture has been used in order to develop an un-
certainty observer of an 8-rotor coaxial UAV, used for the reduction of external
disturbances and inertia matrix uncertainties. This observer has been used along-
side a Backstepping sliding mode controller. Another observer has been developed
in [8]2016, used for the position estimation and attitude estimation, since the
quadrotor controlled through a double-loop Integral Sliding Mode controller, was
subjected to disturbances and also compensate parametric uncertainties.
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1.4 Backstepping control
In [9] 2008 MLPs where used for the flight control of an helicopter, using these
models for the estimation of unknown physical parameters of the model. Also
in this case network weights were updated in an online fashion, using lyapunov
stability theory to ensure convergence.

1.5 PGNN usage examples
In [10] 2018, PGNNs are used for the approximation PDE solution of the Scrhodiger
equations, using a set of points generated by the integration of the following
equations in order to observe measurements relative to the initial conditions across
multiple points in space {hi, xi}, along with randomly generated points across the
time periodic boundaries {ti, xi}. The goal is to approximate the complex valued
solution, h(t,x) given the non-linear Schrodinger equations with periodic boundary
conditions:

i
∂h

∂t
+ 0.5∂

2h

∂2x
+ |h|2h = 0

h0,x = 2sech(x)
h(t,−5) = h(t,5)

∂h

∂x (t,5)
= ∂h

∂x (t,−5)

The complex valued neural network is able to approximate h, providing two
outputs equal to the real and imaginary part of the solution, given x and t. This
model is obtained by the minimization of the following loss function:

MSE = MSE0 +MSEb +MSEf (1.1)

Where MSE0 is the mean square error with respect to the initial condition points,
MSEb is the mean square error relative to the points evaluated in the periodic
boundaries and MSEf is a penalty term related to the Schrodinger equation not
being satisfied across randmly generated collocation points.
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Another interesting use of PGNNs is the data-driven discovery PDEs, e.g. in the
same paper such networks are used for the approximation of a latent function ψ(t,x,y),
such that u = ∂ψ

∂y
, v = −∂ψ

∂x
and the pressure pt,x,y relative to the 2-dimensional

Navier-Stokes equations, with u and v being the x and y components of the fluid
velocity field.

∂u

∂t
+ λ1(u

∂u

∂x
+ v

∂u

∂y
) = −∂p

∂x
+ λ2(

∂2u

∂2x
+ ∂2u

∂2y
)

∂v

∂t
+ λ1(u

∂v

∂x
+ v

∂v

∂y
) = −∂p

∂x
+ λ2(

∂2v

∂2x
+ ∂2v

∂2y
)

Given Noisy measurements {ti, xi, yi, ui, vi}Ni=1, the network is optimized minimizing
the MSE relative to the partial derivatives of the the output ψ and the expected
values given ti, xi, yi, moreover, a additional penalties are added to the overall
loss function, depending on the consistency of the predicted outputs with the
Nevier-Stokes equations discussed previously.

In both instances these networks showed remarkable results and the effectiveness
in both the improvement of performances and avoiding overfitting led are object of
further research.
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Chapter 2

Quadrotor Kinematics and
Dynamics

This chapter describes the coordinates systems and reference frames used in order
to represent the quadrotor’s[11] kynematic and dynamic Quantities used for the
analisys made in this thesis.

• The Newton’s equations of motion are given in the non inertial frame positioned
in the quadrotor’s center of mass.

• The aerodynamic forces and torques are expressed in the inertial frame.

Section 2.1 refers to the coordinates systems, the reference frames and transforma-
tions related to the drone position and attitude in space. In section 2.2 a description
of the quadrotor kynematics is given using RFs used in section 2.1. The analysis of
the quadrotor’s Dynamics is made in section 2.3.

2.1 Quadrotor coordinates Systems
Given a point in space, its position can be represented with respect to different
reference frames. In figure 2.1, e.g. given R1 = {u,v,w, O1}, with u,v,w ∈ R3

unitary vectors and R2 = {x,y, z, O2}, with x,y, z ∈ R3 unitary vectors, the
position vector of point Pi is different depending on which reference frame it is
represented in. A reference frame can be represented with respect to another,
through the homogeneous transformation that transform the first frame in the
second one.
This transformation is a rototranslation, which can be expressed using an analytic
form i.e. six-dimensional vector using the centers relative position and Euler’s
angles, or a geometric form, i.e. a 4x4 rototranslation matrix. Considering the
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frames, e.g. R1 and R2, if the second one is represented with respect the first, the
resulting vector is P12 := [tT12,ΦT

12]T ∈ R6, where t12 := [tu, tv, tw, ]T is the distance
O1O2 and Φ12 := [α, β, γ]T is the set of Euler’s angles for the attitude of the second
frame.
As shown in figure 2.1, the position ofPi can be represented in both R1 and R2 with
two different set of coordinates, p1

i := [ui, vi, wi]T in frame R1 and p2
i := [xi, yi, zi]T

in frame R2.
Given these two reference frames, through the transformation defined previously
i.e. T2

1, it is possible to transform the homogeneous vector P 1
i := [ui, vi, wi, 1]T =

[p1
i
T
,1]T into the homogeneous vector P 2

i := [xi, yi, zi, 1]T = [p2
i
T
, 1]T according to

the equation:
P 1
i = T 2

1 P 2
i (2.1)

where T 2
1 ∈ R4×4 is the homogeneous Roto-Translation matrix defined as:

T 2
1 =

C
R2

1(Φ) t12

0T 1

D
with R2

1(Φ) ∈ R3×3 as the rotation matrix obtained from the

set of Euler’s angles Φ12 and 0 := [0, 0, 0]T ∈ R3.

Figure 2.1: Representation of RFs R1 and R2 in space

For the purposes of this work, all the Kynematic and Dynamic quantities analyzed
in the following chapters are going to be represented it two RFs:

• The envoironment Reference Frame Re, which is a fixed reference frame in
space used in order to represent drone quantities as seen by an external
observer in a determined position. This frame is a right-handed frame oriented
according to NED convention (north-east-down), where the x axis of this frame
is oriented toward the north direction, the y axis towards the east direction
and the z axis complements the set.
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• The body Reference Frame Rb, which is a mobile non-inertial frame attached
to the drone’s center of mass. The attitude of this frame is represented in
Re using ϕ(roll), θ(pitch), and ψ(yaw) angles. The roll angle expresses a
counterclockwise rotation along the x axis, the pitch angle a counterclockwise
rotation along the y axis and the yaw angle expresses a counterclockwise
rotation along the z axis, such that:

Rb
e(ϕ,θ,ψ) = Rx(ϕ)Ry(θ)Rz(ψ) (2.2)

2.2 Quadrotor Kynematics
Using the RFs that has been introduced in section 2.1 the following set of state

variables can be chosen in order to represent the Kynematic state of the quadrotor:

• xe the quadrotor’s x position in Re

• ye the quadrotor’s y position in Re

• ze the quadrotor’s z position in Re

• u the quadrotor’s velocity along the x axis in Rb

• v the quadrotor’s velocity along the y axis in Rb

• w the quadrotor’s velocity along the z axis in Rb

• ϕ is roll angle defined in section 2.1

• θ is pitch angle defined in section 2.1

• ψ is yaw angle defined in section 2.1

• p is the roll rate represented in frameRb

• q is the pitch rate represented in frameRb

• r is the yaw rate represented in frameRb

Given this set of state variables we can put in relation the position state variables
expressed in the inertial frame Re, pe := [xe, ye, ze]T and the velocity state
variables expressed in the body frame Rb, vb = [u, v, w]T according to equation 2.3:

dpe
dt

= Re
bvb = RbT

e vb = (Rx(ϕ)Ry(θ)Rz(ψ))Tvb (2.3)

7
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Considering also the angular quantities, the rpy angles Φ := [ϕ, θ, ψ]T are
quantities expressed in Re meanwhile, angular rates ωb := [p, q, r]T are expressed
in Rb.

ωb = Rx(ϕ̇)[ϕ̇,0,0]T +Rx(ϕ)Ry(θ̇)[0, θ̇,0]T +Rx(ϕ)Ry(θ)Rz(ψ̇)[0,0, ψ̇]T (2.4)

considering that Rx(ϕ̇) ≈ Ry(θ̇) ≈ Rz(ψ̇) ≈ I3×3:

ωb ≈ [ϕ̇,0,0]T +Rx(ϕ)[0, θ̇,0]T +Rx(ϕ)Ry(θ)[0,0, ψ̇]T (2.5)

2.3 Quadrotor Dynamics
Given The Newton’s second law, the quadrotor’s acceleration ae(t) in Re can be
computed according to:

Mae = Mdve
dt

= Fe (2.6)

where M is the total mass of the drone and Fe = qN
i=0 fie, with fie as an external

force represented in Re applied to the drone and N is total number of external
forces applied to the drone. Since vb is a state variable defined in section 2.2, using
the Coriolis equation and equation 2.6 a relation can be obtained:

ab = dvb
dt

= 1
M

Fb + [rv − qw, pw − ru, qu− pv]T (2.7)

Considering rotational motion, the general form of Euler’s equation can be used:

M = Iω̇b + ωb ×L = Iω̇b + ωb × (Iωb) (2.8)

With M as the total external torque applied to the body, L is the quadrotor’s
total angular momentum and I is the central Inertia matrix of the quadrotor
which, considering its symmetry and the masses condensed in the center and the
vertexes:

I =


2M0r2

5 + 2ml2 0 0
0 2M0r2

5 + 2ml2 0
0 0 2M0r2

5 + 2ml2

 (2.9)
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and so,

I−1 =


1

2M0r2
5 +2ml2

0 0
0 1

2M0r2
5 +2ml2

0
0 0 1

2M0r2
5 +2ml2

 (2.10)

with M1 as the mass in the center, R as the centerbox size and l as the arm length.
Equation 2.8 can rearrange in order to get ω̇b as follows:

ω̇b =


1
Jx

0 0
0 1

Jy
0

0 0 1
Jz




 0 r −q
−r 0 p
q −p 0


Jx 0 0

0 Jy 0
0 0 Jz

 ωb + τ

 (2.11)

with, Jx = Jy = Jz = 2M0r2

5 + 2ml2

Figure 2.2: Quadrotor mass distribution model

2.4 Forces and Torques
Following the discussions made in section 2.4 the quadrotor dynamics is now
analyzed. Since there are no aerodynamic lifting sources for sake of simplcity, the
forces and torques considered for this model are the ones due to gravity and
propellers.
As represented in figure 2.3 the total force, or thrust, generated by the propellers
is Fp = F1 + F2 + F3 + F4, which are always negative and parallel to the zB axis.
Propellers aside, the other external force applied on the drone is the gravity force
Fg = mg, always negative and parallel to ze axis.

Fb = Fp +Re
bFg (2.12)

Considering the torques acting on the Drone, as expressed in figure 2.3:

L = F1l − F2l − F3l + F4l (2.13)

9



Quadrotor Kinematics and Dynamics

Figure 2.3: Forces and Torques acting on quadrotor

M = −F1l + F2l − F3l + F4l (2.14)

N = −T1 − T2 + T3 + T4 (2.15)

τ = (L,M,N)T (2.16)

Considering equations 2.7 and 2.11 in section 2.3:

ab = dvb
dt

= 1
M

(Fp +Re
bFg) +

rv − qwpw − ru
qu− pv

 (2.17)

ω̇b =


1
Jx

0 0
0 1

Jy
0

0 0 1
Jz




(Iz − Iy)qr
(Ix− Iz)pr
(Iy − Ix)pq

 ωb +

L
M
N


 (2.18)
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Chapter 3

Artificial Neural Networks

Artificial Neural Networks[12] have been developed in order to generalize
mathematical models of biological nervous systems. This complex models are used
as universal approximators and their capabilities for handling complex task has
been proved multiple times. This kind of models can be used in order to tackle
both classification and regression problems but the computation of the correct
parameters needed for the approximation or the estimation of an unknown
function cannot be computed in closed form. In order to get a good approximation
of such parameters, the initial problem can be converted into an optimization
problem relative to a specific objective function, using a large dataset of
information relative to the function itself that we are trying to approximate or
estimate. Such objective function elaborate the outputs that the model produce
given each specific input in a given optimization step. This class of Data-driven
models are called Machine-Learning[12] (ML) models, as in each step of the
optimization process, the model "learns" how to improve itself in order to
accomplish a specific task. Both supervised and unsupervised learning problems
can be tackled using this models, but, for the purposes of this work, models
optimized through supervised learning are going to be considered.
In this scenario, the expected output the model shall produce given each specific
input in the dataset collected, is known. The objective function to be optimized in
this case is typically a loss function related to the error between the output of the
model and the expected result. Different Loss function can be used, depending on
the kind of problem that has been considered, for example the MSE loss[12] or the
L1 loss[12] for regression models or cross entropy for classification problems. In
section 3.1 the basic elements of the ANN model are analyzed, starting from the
perceptron [12] model. In section 3.2 the Feed-forward[12] architecture is
summarized, which is the simplest model of ANN. In the following sections some
more advanced architectures are discussed, such as the LSTM[13] architecture in
section 3.3 and an hybrid model (information and data-driven) such as PINN in

11
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section 3.4

3.1 Perceptron
The perceptron[12] is the basic processing element for ANNs. Given a set of input
features D = {Xn

1 ,X
n
2 , ...,X

n
N} such that Xn

i ∈D ⊂ Rn and a set of expected
results Y = {Y m

1 ,Y m
2 , ...,Y m

N } such that Y m
i ∈ Bm = {0,1}m, this mathematical

model is a non linear function P (XN
i ) : Rn → Bm which maps the input tensor an

output. This model is practically equivalent to a single layer FFNN, which is going
to be analyzed in section 3.2. This models can be used for classification problems
although it is able to perform accurately for problems in which the classes are
linearly separable.
For the sake of simplicity numeric features are considered in this section,
nevertheless , the following analysis can easily be extended to other kind of inputs,
such as text based features. The function is composed by three elements:

• A tensor of weights w ∈ Rm×n which constains different scale parameters
relative to each element in the input tensor Xn

i with respect to each output
in the expected result tensor Y n .

• The bias b is an offset parameter.

• An activation function f(): Rm → Rm which is going to provide the
perceptron’s output. Different activation functions can be chosen( hyperbolic
tangent, Rectified linear unit, sigmoid etc...) according to the kind of
problem the perceptron is going to be optimized for.

This elements are combined according to following equation:

P (Xn
i ) = h(f(wXn

i + b)) = Ŷ m
i , (3.1)

Were h() is a multidimensional step function centered in the origin.

Figure 3.1: perceptron model

12
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Considering this structure, the w tensor and b are parameters of the optimization
problem. In each step the loss function can be evaluated according to the output
of the model Ŷ m

i and the expected result Y n
i given the input tensor Xn

i and the
weights can be updated according to the following rule :

δwi = η(Ŷ m
i − Y n

i )XnT

i (3.2)

Please note that equation 3.2 implies that the weights are updated only if the
expected result and the predicted output don’t match. The parameter η ∈ R+ is
an hyper parameter[12] denominated learning rate. This Hyper parameter defines
the convergence speed to the optimization problem’s final solution and must be
accurately tuned in order to regulate the speed of convergence and the error with
respect to the optimal solution for the optimization problem.

Figure 3.2: Linearly separable classes

3.2 Neural Networks and Feedforward Neural
Networks

The fundamental element of NNs is the neuron: It can be considered as a
mathematical abstraction of the biological neuron which, in a similar fashion as
what has been described in section 3.1, provides a response based on the input
feed into it. These artificial Neurons are connected and organized in layers, where
every layer collects the outputs from the preceding one and providing its response
as input to the next one. The connection between each neuron is represented by

13



Artificial Neural Networks

the Matrix of weights related to each output of the previous layer that, added to a
specific bias, are feed into each neuron’s activation function: As described in
section 3.1 the perceptron model can be considered as a single layer neural network.
The basic architecture of ANNs consists of three types of layers: input, hidden and
output layers. In Feedforward Neural Networks (FFNN) the propagation of each
the model’s input information is strictly performed in a feedforward fashion, so the
output of each layer cannot be propagated towards the preceding layers, in
constrast with what happens in RNNs and LSTM described in section 3.3. In a
Similar fashion to section 3.1, the model’s parameter for each layer li are the
matrix of weight wi and the vector of biases bi. The supervised training procedure
is performed using an appropriate loss function (for example MSE in regression
problems) in order to compute a good approximation of the optimal values for the
model’s parameters. The loss function L() : Rm → R is evaluated through each
step of the optimization algorithm in order to compute ∇w,bL(net(Xn

i )).
Since the overall network function is the combination of all the hidden layers
inputs and outputs, such gradient can be computed using the chain rule for
multivariate functions:
Given h(x) = f(g(x)): Rn1 → R, f(y) Rn2 → R, g(x) Rn1 → Rn2, x ∈ Rn1

δh

δxi
=

n2Ø
j=0

δf

δgj

gj
xi

(3.3)

where δf
δgj

is the j-th partial derivative of f with respect to g. This rule can be used
recursively considering the dependencies between each layer’s outputs and inputs
in order to compute the loss function’s gradient with respect to each layer’s
parameters. This algorithm computes the gradients starting from the last layer
and uses the result in order to compute the loss function’s gradient for the layer
that precede it, iterating up to the input layer, for this reason it’s named
backpropagation[12]. Once the loss function’s gradient are computed for each
layer, all the model’s parameter can be updated through an optimization rule, for
example:
Given wnk wich is the weights matrix for the k-th layer in the n-th iteration, for
each element wnk

ij

∆wn+1k
ij = −η δL

δwnkij
+ α∆wnkij (3.4)

with η as learning rate, and α as momentum, a parameter which represent the
influence of the increment in the current optimization step of the previous one.
This training procedure can be performed also in batch mode, where the update of
the parameters is performed with the average of the gradients evaluated with
multiple samples. The batch size is another hyper parameter which must be tuned
depending on the specific dataset the network is trained with.
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Figure 3.3: Feedforward Neural Network scheme

3.3 Recurrent Neural Networks and Long Short
Term Memory Networks

In opposite fashion with FFNNs, the RNN[12] architecture’s core element is the
capacity to keep memory of the previous outputs the network produced. This
design is extremely suited for time series tasks such as forecasting and for
simulation of dynamical systems. The RNN cell output is both function of the
input and its hidden state, function of the previous output. The parameters in this
architecture are:

• The input weight matrix wi

• The output bias vector by

• The hidden state weight matrix wh

• The output weight matrix wy

• The hidden state bias vector bh

• The hidden state activation function σh()

• The output activation function σy()

15
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The RNN cell produces its output and hidden layer vector according to equation:

ht = σh(wixt + whht−1 + bi) (3.5)

yt = σy(wyht + by) (3.6)

Figure 3.4: RNN cell

Multiple hidden RNN cells can be stacked in order to process sequences of date
over a predefined time window, initializing the first hidden state with zeros or
random values. This is architecture is effective but not free from some flaws, such
as the problem of vanishing gradients during the training phase, especially for very
long sequences of data.

Figure 3.5: Recurrent neural network

Different architectures evolved from the basic RNN and one of the most successful
model is the Long Short Term Memory Network[12]. This networks improved the
RNN’s basic architecture mainly by introducing internal gates that are able to
stop the data flows inside the cell. There are three different gates, the input, forget
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and output gates. This gates are implemented through sigmoid activation function
which are multiplied element-wise with the data flaw. The LSTM’s input output
and hidden layer can be expressed as:

ft = σg(wfxt + Ufht−1 + bf ) (3.7)

it = σg(wixt + Uiht−1 + bi) (3.8)

ot = σg(woxt + Uoht−1 + bo) (3.9)

c̃t = σh(wcxt + Ucht−1 + bc) (3.10)

ct = c̃t ⊙ it + ct−1 ⊙ ft (3.11)

ht = ct ⊙ ot (3.12)

Figure 3.6: Long-Short Term Memory cell

3.4 Physics Informed Neural Networks
All the models described in the previous sections are mainly data driven models,
optimized for simulation and prediction purposes, mainly based on the information
that can be extrapolated from the dataset used for the model’s training phase.
This approach is effective, but, the training process could be incredibly
Data-Hungry and could also lead to very slow convergence to the model
parameter’s optimal value. Overcoming this flaws is possible using an Hybrid
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approach, which introduces in the model some prior knowledge related to the
system’s behaviour. This approach is implemented in Physics-Guided Nerual
Networks[10], which introduce in the model the constraints related to the physical
laws involved in the system which is source of the Dataset used in the training
phase. This models are used in different field of physics and the evidence shows
that such model improved both from the number of samples required for the
convergence of the model and also in the accuracy of the resulting model. The key
for the development for this class of models resides in the construnction of a
physics based loss function, which is then used for the training of the model itself.
The physics based loss function is built through the introduction of physcal
constraints that can involve both inputs and the outputs generated by the model,
and also their derivatives. The typical physics based loss function’s structure can
be expressed as:

Loss(Ŷ N
i ,Y N

i ) = Lossemp(Ŷ n
i ,Y

n
i ) + λphyLossphy(Ŷ n

i ,X
n
i ) + λR(wnet) (3.13)

Figure 3.7: Physics guided neural network optimiztion
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Chapter 4

Quadrotor PGNN model

The focus of this work is the design of an high level position control based on
model inversion through an ANN, using IMU data collected from the drone’s
onboard sensors. Through the position error, the controller is going to generate
reference values for the acceleration measured in the body frame a∗

b ∈ R3.
The reference a∗

b is then fed along with the current kynematic state to the ANN,
which provides as output the reference value u∗ ∈ R4 for the actuators in each
vertex. The references provided by the Network are then fed into a low level
control algorithm. In this chapter the ANN’s design is going to be analyzed deeply.

Figure 4.1: Quadrotor control scheme
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4.1 Drone Model
According to the analysis made in chapter 2 the following state space model can
be defined.

u(t) =


F1(t)
F2(t)
F3(t)
F4(t)

 ,X(t) =



u(t)
v(t)
w(t)
ϕ(t)
θ(t)
ψ(t)
p(t)
q(t)
r(t)


, Ẋ(t) =



u̇(t)
v̇(t)
ẇ(t)
ϕ̇(t)
θ̇(t)
ψ̇(t)
ṗ(t)
q̇(t)
ṙ(t)


,Y(t) =

ϕ(t)
θ(t)
ψ(t)

 (4.1)

Note that the position state is not relevant for the design of the dynamic inversion
model since the drone is not dependent on the actual drone’s position, so, for sake
of simplicity, it is omitted. Using the equations described in chapter 2 it is possible
obtain Ẋ(t). These equations don’t take into account the contributions relative to
non-linear forces and torques such as the aerodynamic effects related to turbulence,
wind and drag. Taking into account these factors, it is possible to express the
forces and torques applied on the quadrotor as:
Xt := X(t), ut := u(t)

ab = dvb
dt

= 1
M

(Fp +Re
bFg) +

rv − qwpw − ru
qu− pv

 + B1(X,u) (4.2)

ω̇b =


1
Jx

0 0
0 1

Jy
0

0 0 1
Jz




(Iz − Iy)qr
(Ix− Iz)pr
(Iy − Ix)pq

 ωb +

L
M
N


 + B2(X,u) (4.3)

with, B1(X,u) and B2(X,u) representing the non linear forces and torques
contributions that have been neglected in the analysis in chapter 2. The overall
function representing the model state derivative Ẋ(t) is:

Ẋ(t) = N(Xt,ut) (4.4)
where N(Xt,ut) is a generic unknown non-linear function dependent on the current
state and the current control input.
This model can be sampled in order to generate a large dataset used for the
ANN’s training. For each sample equation 4.5 is valid,since using 1-st order
taylor’s polynomial, the state in t+ ∆t is:

Xt+∆t ≃Xt +N(Xt,ut)∆t (4.5)
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4.2 Neural Network Inversion Model
Based on the control architecture discussed previously the ANN that has to be
designed, given measurements relative to the current state of the system and a
target acceleration, it has to provide the desired control input. Using the model
described in section 4.1 it can be assumed that a function f() that performs the
inversion of the dynamics of the system given Xt, at exists:

f(Xt,at) = ut (4.6)

since the objective is to compute the control input for instant t+∆t, equation 4.6
can be used imposing abt+∆T = a∗

b :

f(Xt+∆T ,a
∗
b) = ut+∆t = u∗ (4.7)

and then, using eq. 4.5:

f(Xt +N(Xt,ut)∆t,a∗
b) = u∗ (4.8)

This function must be approximated through the ANN model that is going to be
trained, but it’s still dependent on the actuation provided in the current
timestamp. This is not acceptable for the ANN training, since for small values of
∆t some of the input features (ut) are very close to the expected values (ut+∆t), so
in order to complete an effective training, it is mandatory to provide alternative
features which allow the network to reach a good level of approximation. so, using
eq. 4.6 again:

Ñ (Xt,a
∗
b ,abt,∆t) := f(Xt +N(Xt,f(Xt,abt))∆t,a∗

b) = u∗ (4.9)

where Ñ is the non-linear function the ANN must be trained to approximate.
Note that this function is only dependent on the the state, its derivative, the time
difference between the samples, the target and the current accelerations.
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4.3 Neural Network Architectures
After the model’s definition, a good dataset must be collected for the model’s
training phase. In order to achieve this goal, the AirSim simulator has been used,
collecting ground truth data from different quadrotor flights. Three different
flights have been collected, with duration of about 20 minutes each:

• Flight Fe, with some hover sections and gentile maneuvers executed at low
speed.

• Flight Fm, with sections of hover, gentle and harsh maneuvers.

• Flight Fh, with harsh maneuvers executed at high speed.

each flight has been sampled using the following structure:

F(n) =
è
t, abx, aby, abz, u, v, w, ϕ, θ, ψ, p, q, r, F1i

, F2i
, F3i

, F4i

é
(4.10)

from each flight, three different datasets D have been constructed , replicating
inputs and outputs of the function Ñ described in section4.2.
D = {X ,Y}

X(n) = [∆t, abxn , abyn , abzn , abxn+1 , abyn+1 , abzn+1 , un, vn, wn, ϕn, θn, ψn, pn, qn, rn]
(4.11)

Y(n) = [F1n+1 , F2n+1 , F3n+1 , F4n+1 ] (4.12)

These dataset is used to solve a supervised learning regression problem, where the
Network has to provide for each sample X(n) the correct output Y(n). The training
and the validation of all the models has been done using the Pytorch framwork for
python.
The performances of this models have been validated using cross validation,
splitting each of these datasets into subsets for training, test and validation sets.
There are mainly three categories of architectures that have been developed and
trained in this work:

• A FFNN[12] models with 4 layers and 3 ReLU[12] activation functions. The
input layer is of size 19 (ϕ, θ, ψ are encoded into sines and cosines)
meanwhile the hidden layers are of size 50, the output layer is size 16.

• A Deep FFNN model , with 5 layers of size 19, 50 and 16 for input, hidden
and output layers respectively.

• An LSTM[13] model made by 4 LSTM cells whose hidden state’s size is 4 and
hyperbolic tangent activation function. The output of the final cell is then fed
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into another linear layer of size 16 with a ReLU activatoin function; the
output layer is of size 4. This problem is a "many to one" problem, so, only
the output of the last cell is evaluated in the loss function.

All these architectures have been trained both in a data-driven and hybrid fashion
using RMSE[12] loss for the first and the physics based loss function described in
section 4.4. The choice for the optimizer to be used is discussed in chapter 5.

4.4 Physics Based Loss function
Using the equations obtained in chapter 2, it’s possible to extend the architectures
discussed in section 4.3 for the development hybrid models. This task can be
achieved using physics based loss functions during the training phase of each
models.
The objective of the architectures proposed previously is to develop a model able
to produce reference values for the forces applied on each vertex on the quadrotor.
From section 2.4 it is possible to introduce a penalty term in the loss function in
order to introduce physical information in the optimization process. The physical
constraints put in relation the forces u(t) with ab(t),vb(t),Φ(t),ω(t), ω̇(t). During
each step of the control loop the network must provide the forces applied during
the next one, but the measurement for ω̇(t+∆t) are not available in the Airsim
environment, so, among the equations discussed in section 2.4, only the equation
relating the thrust(F1, F2, F3, F4) and the acceleration is suitable for the
implementation of the loss function.

ab = dvb

dt
= 1

M

1q4
i=1 uizb +Re

bFg

2
+

rv − qwpw − ru
qu− pv

 = fc(u,Φ,ω,vb)

The architecture proposed in section 4.3 can be trained and extended providing
both as output ut+∆t and Xt+∆t in order to evaluate fc. Using this method, the
physics based loss function becomes:
given u∗ and X∗ as the predicted command and state and u as expetcted
command,

L(u∗,X∗) = RMSE(u∗,u) + λMSE(ab(t+∆t), fc(u∗,X∗)) (4.13)
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Chapter 5

Training and Validation
Results

5.1 training framework
The models proposed in section 4.1 have been trained using the cross validation
technique. Each dataset has been split in three different parts:

• The training set is about 70% of the full set, it is used in order to optimize
the networks paramters during each epoch. The loss function evaluated in
each sample is the physics based loss function described in section 4.4.

• The validation is about 15% of the full set, it is used to compute the
validation loss after each epoch. Since our objective is to achieve the best
approximation for the expected forces, the evaluated loss function is the
RMSE loss with respect to the expected forces.

• The test set about 15% of the full set, it is new, unseen data which is used to
evaluate the performances of each model after the training and validation
procedure. The loss function evaluated is the same used for the validation set.

24



Training and Validation Results

Each subset is also shuffled randomly before each training, but, in order to remove
the stochastic component in the evaluation of each model, each training has been
performed with the same random seed. All the models have been trained for a
maximum 1000 epochs using early stopping in case of overfitting or if the model’s
validation loss stops to improve. The update of the model’s parameters is based on
adaptive moments estimation through the adam optimizer module provided in
PyTorch. The effectiveness of this algorithm has been proven in several articles
and also in this work, it performed better with respect to other algorithms, such as
SGD with Nesterov Momentum. The choiche of the batch size for all models is
1024 samples.
This value has been chosen in order to stabilize the the training and validation
errors, that for small batch sizes are extremely volatile and drastically increase the
time needed to optimize the model through each epoch. The learning rate
hyper-parameter λ has been tuned manually and is the same for both the
data-driven version and the hybrid version, in order to make the performances of
both models comparable for the evaluation of the improvements achieved through
physics based loss function with respect to the standard one. Of course this
models are not fully optimized yet, fine tuning wasn’t done(due to time issues) and
learning rate schedulers can be used to further improve the performances.
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Algorithm 1 Adam optimizer algorithm. All operations are element-wise, even
powers. Good values for the constants are α = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8.
ϵ is needed to guarantee numerical stability.

1: procedure Adam(α, β1, β2, f, θ0)
2: ▷ α is the stepsize
3: ▷ β1, β2 ∈ [0, 1) are the exponential decay rates for the moment estimates
4: ▷ f (θ) is the objective function to optimize
5: ▷ θ0 is the initial vector of parameters which will be optimized
6: ▷ Initialization
7: m0 ← 0 ▷ First moment estimate vector set to 0
8: v0 ← 0 ▷ Second moment estimate vector set to 0
9: t← 0 ▷ Timestep set to 0

10: ▷ Execution
11: while θt not converged do
12: t← t+ 1 ▷ Update timestep
13: ▷ Gradients are computed w.r.t the parameters to optimize
14: ▷ using the value of the objective function
15: ▷ at the previous timestep
16: gt ← ∇θf (θt−1)
17: ▷ Update of first-moment and second-moment estimates using
18: ▷ previous value and new gradients, biased
19: mt ← β1 ·mt−1 + (1− β1) · gt
20: vt ← β2 · vt−1 + (1− β2) · g2

t

21: ▷ Bias-correction of estimates
22: m̂t ←

mt

1− βt1
23: v̂t ←

vt
1− βt2

24: θt ← θt−1 − α ·
m̂t√
v̂t + ϵ

▷ Update parameters
25: end while
26: return θt ▷ Optimized parameters are returned
27: end procedure
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5.2 Low velocity flight Dataset results
It’s well evident that for this dataset, all the models are capable of reaching a good
level of approximation with an RMSE value between 0.1N-0.2N. The best results
are the ones obtained with the LSTM architecture. It’s also worth noticing that
the physics based loss function doesn’t improve the performances of any model.
The forces applied during this flight are almost constant and the total acceleration
and jerk are close to 0, so the data driven models reach very good level of
approximation,so the hybrid models perform with no noticeable improvements.

Low Velocity flight
Model λphy Validation Test ∆ L()%
LSTM 0 0.132 0.151 -
LSTM 1 0.129 0.151 0%
DFFNN 0 0.134 0.161 -
DFFNN 0.5 0.132 0.163 0%
FFNN 0 0.121 0.133 -
FFNN 0.01 0.131 0.147 0%

Figure 5.1: Low velocity LSTM prediction comparison

As figure 5.1 shows, the value of the expected output is almost constant, and the
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lstm network seems to follow predictions.

5.3 Mixed dataset results

The results obtained with this dataset are quite different from the ones analyzed in
section 5.2 and 5.4. Although the RMSE is worse than what achieved in section
5.2 the improvements achieved using hybrid models are significant, for both the
LSTM model, and FFNN with residual block model, with a riduction of the RMSE
of 10% and 15.7% respectively, compared with their data-driven counterparts.
The dynamics related to this dataset is harder to approximate and that is reflected
by the increase of RMSE value to 0.3N-0.6N. It is also worth of mentioning that
for all the models, the test loss is lower than the validation loss. This is due to an
higher presence of high speed maneuvers in the validation set. The lstm hybrid
model is the best model again, with an RMSE of 0.317N.

Mixed flight
Model λphy Validation Test ∆ L()%
LSTM 0 0.367 0.359 -
LSTM 0.3 0.355 0.317 10%
DFFNN 0 0.501 0.500 -
DFFNN 0.2 0.467 0.421 15.7%
FFNN 0 0.470 0.43 -
FFNN 0.01 0.450 0.480 0%

5.4 High velocity flight Dataset results

The loss of performance related to high velocity maneuvers is more evident using
this dataset. Even if the hybrid based model perform slightly better than the
data-driven ones, the influence of the information driven approach is minor(2%-5%
of RMSE reduction). This is related to an higher influence of the non-linear forces
which are not considered in the kyno-dynamic equations described in chapter 2. It
is also noticeable that that the LSTM model’s performances are much better than
the FFNN models with an error of 0.492N.
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Figure 5.2: Mixed flight LSTM prediction comparison

High velocity flight
Model λphy Validation Test ∆ L()%
LSTM 0 0.427 0.500 -
LSTM 0.001 0.419 0.492 2%
DFFNN 0 0.480 0.732 -
DFFNN 0.1 0.463 0.692 5.4 %
FFNN 0 0.514 1.169 -
FFNN 0.1 0.496 0.675 0%
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Figure 5.3: High velocity lstm predictoin comparison
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Chapter 6

Conclusions and further
work

6.1 Conclusions
After the analysis made in chapter 5 it’s well evident that the lstm model performs
better than the FFNN models, which confirms that this architecture is well suited
for time series problems. It is also worth noting the impact of the Physics based
loss function is significant, with decrease 10% RMSE and 15.7% decrease for the
lsmt and the FFNN with skip connection in the mixed dataset, which is the most
representative of the overall quadrotor’s dyanmics.
The effect of this hybrid based approach is more evident in the DFFNN with skip
connection architecture, where the complexity of the model can easily lead to
overfitting. On the other hand, simple model which easily underfit the data, such
as the FFNN, don’t benefit from this approach, since the loss in performances is
related to the low complexity of the architecture itself.
Overall the performances of the best among this models are acceptable, with the
lstm hybrid model that achieves 0.151N, 0.317N and 0.492N with the low velocity,
mixed, and high speed datasets respectively. This result prove that this
architectures are suitable for the approximation of inverse dynamics, and that,
PGNN improve the performances of models designed for the approximation of
strongly non linear models.
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6.2 Further work
The effectiveness of this control architecture must be in the airsim environment
through real time simulation. These architectures can be finely tuned to achieve
the best performances, and evaluate if the inference time of this models is
compatible with the time constant of the quadrotor system. The physical
constraints used for the physics based loss functions implemented in this work are
limited to the equations related to the acceleration in the body frame, since in the
airsim environment the real-time measurement of ω̇b is not available. The basic
control scheme can be extended using observers to obtain this measurement in real
time and further extend these physical constraints. It’s also worth mentioning that
the output provided by this network is still affected from errors, so an auxiliary PI
controller can complement the control action provided by this controller in order
to further improve the performances.
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Appendix A

PyTorch

labelsec:py PyThorch is a Python based framework aimed for production
implementation in machine learning, and its user friendliness with careful
performance consideration led to its popularity in the Deep Learning research
comunity. Its main purpose is the replacemnt of NumPy for handling complex
Matrix computation exploiting the advantages of High performance computation
with GPU and other accelerators. Another advantage of PyTorch provides is that
it can be used as an automatic Differentiation library, which is crucial for the
training of ANN models. These computation are made taking advantage of
dynamic computation graphs which allow an efficient computation of the gradients
relative to each tensor. The main element of this library is the tensor indeed, a
multidimensional object which stores additional information relative to the
gradients of each element. This objects can be used for the analysis of numbers,
vectors or matrices and allow efficient computations using GPU or CPU.

A.1 Modules
The main modules used in the development of the ML-models in this work are:

• The nn module, which include the classes necessary for the build of NN
models. All the NN modules used in python are subclasses of the nn module.

• Optim is the module that provides common algorithms for the optimizers
used to update the NN parameters.

• Autograd is the module that handles automatic differentiation that is
exploited in order to compute gradients during the forward pass in real time.
It generates a directed acyclic graph where the leaves are the input tensors
while the roots are the output tensors.
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