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Chapter 1

Introduction

In modern times, smartphones assumed a role of growing relevance and presence
in our lives, providing not only a communication tool, but also various function-
alities that are easily accessible. For example, users could read their emails and
immediately insert and event on Calendar, while also chatting with a friend on
Telegram.

Recently, a large literature production focused on analyzing smartphone usage
and its consequences under different aspects. For example, the results reported in [1]
highlighted connections between application categories (as defined by the Android
Market), considering apps that are used during the same phone usage session (i.e.,
between a screen unlock and a screen lock), which can also be categorized based on
location and time. Other researches, instead, focus on the feelings and experiences
of users when interacting with the smartphone, and how to characterize addictive
mobile apps and behaviors [2, 3].

Among all these study directions, one emerging and interesting field of research
regards the so-called app switching behavior, i.e., “transitioning from one app to
another in the same usage session to consume content” [4]. To this end, several
works have shown the relevance and validity of this behavior, for example pointing
out how the last used app is a strong indicator for discovering the next apps that
the user is going to use [5], or analyzing various patterns that can characterize
an application chain, with several revisitations of the same content inside a single
session [6].

All these studies, however, proposed strategies and algorithms able to produce
only high-level features that could characterize phone sessions by gathering data
from different users and extracting off-line (i.e., not in real time) global usage
patterns. In order to solve this problem, a new methodology for automatically ex-
tracting and characterizing app switching behaviors and design novel interactions to
support these switches in modern smartphones was proposed, with the introduction
of RecApps, a recommendation system capable of analyzing the user’s smartphone
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usage, and then extract association rules representing habitual switching behaviors,
using them as links to other apps [4].

Despite the good results in predicting the next app to use, based on contextual
information shown by the methods and models proposed in previous works, they
tend to not take into consideration information about the user, possibly disregarding
their digital wellbeing, i.e., “a state where individual comfort is preserved despite
an environment characterized by the overabundance of digital communication” [7].

Furthermore, given the ease with which users reflect about their usage habits, and
also their will to take effective actions to monitor and control such behaviors, more
care should be taken when designing the suggestion process of a recommendation
system, in order to promote only those transitions that the user finds useful and
meaningful, and limit the frequency of those that would bring unhealthy and
addictive behaviors.

Ignoring this fundamental aspect may lead to the development of negative and
unhealthy usage behaviors in users, and even consolidate them when reinforced and
reiterated through a system that facilitates such app switches, since they would
encourage the user to continuously and even mindlessly switch from one app to
another.

1.1 Goal
The goal of this thesis is to design and implement a new approach for a recommen-
dation system, which is able to improve users’ digital wellbeing while also proposing
useful suggestions. The literature analysis and design phases were aimed at finding
the most useful features of digital wellbeing apps, and adapt them to the new
recommendation system. The main focus was on devising a strategy for integrating
some information given by each user inside the recommendations extraction process,
in order to better adapt the suggestions given to each user to their feelings and
experiences.

The starting point for this new system was the RecApps mobile application, which
consisted in a data analysis methodology based on association rules extraction, and
a floating widget to show the resulting suggestions based on contextual information.

Given the objective nature of the existing collected information, an approach
based on proactive feedback given by the user, and attached to each phone session,
was considered, in order to guide the transition extraction procedure and include
also some contribution of the user in the entire analysis.

The resulting improved suggestions should reflect users’ feedback and their
perception of meaningful interactions and phone sessions, and thus leading to
switching behaviors that do not reinforce addictive or unhealthy behaviors, but
instead promote useful transitions, based on the contextual information that make
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the user mark a phone session as positive.
After the design and implementation phases, an in-the-wild user study was

conducted to assess whether the adopted strategy and the resulting application were
effective in supporting meaningful interactions and switching behaviors. Results
were obtained through the use of objective metrics on the collected data, and also
the analysis of the final interviews to the participants.

The analysis of the results, obtained through the use of objective metrics on
the collected data, and also the analysis of the final interviews to the participants,
allowed to come to the conclusion that considering users’ feedback in the recommen-
dation process is a useful strategy, since it allows them to control the suggestions
they receive, and conduct more meaningful interactions with their smartphone.

1.2 Thesis Organization
This thesis is organized in the following chapters:

• Chapter 2 introduces the state of the art for what concerns app-switching
systems, the initial version of RecApps and its internal mechanisms, and and
overview about app to support digital wellbeing;

• Chapter 3 describes the design phase of the new version of RecApps, articulated
through the analysis of previous literature about digital wellbeing apps and
their useful features, the definition of the proposed solution of including
proactive user feedback in the association rule mining procedure, and the
description of the updated algorithm to implement into the application;

• Chapter 4 provides a report of how the chosen strategies were actually imple-
mented inside the new version of RecApps;

• Chapter 5 describes the user study that was conducted after the development
of the application was concluded, its characteristics and the kind of information
that needed to be extracted;

• Chapter 6 provides the analysis of the results of the user study;

• Chapter 7 presents a final discussion about this work’s results, its found
limitations and potential changes and improvements.
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Chapter 2

Background

This chapter provides an introduction about the main concepts addressed in this
thesis: app switching techniques, which are the first goal of the newly implemented
system, the behavior of the original RecApps application, that served as a starting
point for such work, and digital wellbeing, which is the key argument that inspired
the most important design decisions.

2.1 App Switching, Strategies and Tools

App switching behaviors (i.e., “transitioning from one app to another in the same
usage session to consume content” [4]) provide an interesting tool for understanding
dependencies between applications [8], by analyzing the apps that are used in a
single phone usage session (i.e., between the screen unlock and the next lock).

One interesting aspect to consider is how these correlations can be extracted
from recent usage data of the user, and analyzed to build a recommendation system
to facilitate the switch between apps [5, 9, 10]. Another strong use for this kind of
information is to preload an application in order to save time and resources when
that app needs to be actually launched, like the model proposed in [11].

When dealing with the topic of app switching, there are several solutions
and studies that provide ways to describe interactions and correlations among
applications used in a single phone usage session (i.e., between the screen unlock
and the next lock), like the algorithm implemented in [8]. Another interesting
aspect to consider is how these correlations can be extracted from recent usage data
of the user, and used to build a recommendation system to facilitate the switch
between apps [11, 5, 9, 10].
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2.1.1 Interactions Between Mobile Applications
Several recent works explored the topic of correlations between used apps in a
single phone session, under different aspects. One interesting example is [8], which
explored the differences in mobile usage sessions when they include a search engine
application or not. With the use of two applications designed for the study,
AppLogger to track usage events (e.g., app launches, turning the screen on and
off, unlocking the phone, and accessing the home screen), and MSearch to embed
a search engine and collect data about search queries and search interactions,
interesting correlations were found between app usage and search interactions.

The results of this work have shown that sessions characterized by a mobile search
tend to include more applications than those without a search interaction, and also
that the applications used after the search interactions mostly involved actions
related to the search (e.g., sharing content, links, or screenshots). Furthermore,
search interactions seemed to derive directly from the content of the applications
used before in the same session.

Another study that investigated how different apps are used together during
the same usage session is [1]. With the installation of a background service as part
of an existing application, a large amount of usage and contextual information
was gathered from thousands of users, and information about apps was further
characterized with the addition of a category (i.e., the same that was found for
each application in the Android Market).

Then, statistics about chains of app usage (i.e. sequences of apps that are used
during a period of time of at least 30 seconds, during which the smartphone did
not go in standby mode) were extracted and analyzed. This allowed to observe
some interesting patterns in the probability of transitioning from one category of
applications to another, with “Communication” being the most frequent category
users switch to, while coming from a different one. Some other notable unique
connections include going from a “Lifestyle” application to a “Shopping” one.

Finally, another interesting finding is that, in the context of the same phone ses-
sion, users tend to open again some apps that were previously opened, highlighting
the usefulness of better supporting this kind of behavior with built-in mechanisms
inside the smartphone.

2.1.2 App Prediction in Switching Behaviors
A prediction and recommendation system [11, 5, 9, 10] can help the users in
reaching a desired app more quickly (they could be put in a more visible place,
because the system recognizes that it is among the next apps that the user will
use) or making it open faster (if the system is able to put them in a prelaunch state).
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The problem that should be solved is an app prediction problem, whose gen-
eral description could be stated as follows: “Given a list of installed apps {au1,
au2,..., aun} by a user u on his/her phone and the user’s spatiotemporal con-
text C, the problem of app usage prediction is to find an app aui

that has the
largest probability of being used under C. Specifically, we aim to solve the problem:
maxaui

P (aui|C, u), ∀i, 1 ≤ i ≤ n;” [10]
A system that is able to answer to this kind of problem should also consider

several aspects, in order to formulate predictions and take actions [5], summarized
by these factors:

• the kind of contextual information that is relevant to characterize applications
involved in the prediction procedure;

• the methodology used to extract said information and represent it as the
context for a phone session (i.e., a series of applications);

• how different context sources can be combined together to predict app usage
in an effective way.

The most common features that are used to describe application usage (and also
group them into sessions, between a screen unlock and the next lock) are location
and time, while features specific to the different proposed systems include sensor
signals (e.g., accelerometer, gyroscope, light sensors) [11], latest used app (building
on the idea that there should be a major correlation between two sequential used
apps) and user profile configuration (which, in the authors’ opinion, could give
hints about some needs or mood of the user, or a special customization of the
phone) [5], or charge cable and audio cable [10].

All the methods and models proposed in the analyzed works have shown good
results in predicting an app based on contextual information, but they tend to
not take into consideration information about the user, possibly disregarding
their digital wellbeing. Moreover, the majority of the previous works exploited
representational contexts, which are defined before the user interacts, thus not
taking into consideration the current context and phone usage session.

2.2 The Original RecApps Algorithm
Despite a large production in HCI literature covering smartphone usage, there
are no certain guidelines about how to support common and habitual switching
behaviors on smartphones. The first step in this direction should address the
problem of being able to detect and reproduce the typical app switching behaviors
performed by each user.
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While previous works mainly highlighted only high-level trends (for example,
regarding the general category of the used apps and their connections), the work
presented in [4] introduced RecApps (from Recommending Apps), an interactive
floating widget with the goal of proactively supporting the user transitions from
one app to another. Transitions are supported by showing suggestions about which
apps the user could probably use next, each time a new app is opened on the
smartphone.

The suggestions for the next app are computed periodically, in the form of
association rules that match an antecedent app and contextual information (e.g.,
location, physical activity, time) to other consequent apps, in order to show those
same apps when the context is met again.

Furthermore, the resulting recommendations are directly based on the usage
habits of each user, instead of mixing together data from different users and
analyzing off-line global usage patterns.

2.2.1 Data Collection and Phone Sessions

The first main step of the RecApps algorithm is the extraction of smartphone usage
data, in terms of phone-related information, such as screen and app events, and
other contextual information, like time or activity and location events. A phone
session is temporally delimited by a pair of consecutive lock-unlock events, to
identify the start and the end of each session, and these temporal boundaries are
then used to isolate all the events related to the same phone session.

Table 2.1 contains the information that RecApps collects and considers when
building a phone session.

The collected information is then transformed in a transactional format, i.e., a
vector representation in which each entry associates the value 1 to the presence
of a specific item (e.g., an app) in the corresponding transactional session, and
the value 0 to the absence of an item in that session. Figure 2.1 shows a possible
representation of a phone session in a transactional format.

Figure 2.1: An example of a phone session represented in a transactional format.
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Table 2.1: The different types of information that RecApps used to model the
phone usage sessions.

Information Description

Activity Events Start/stop a given activity, i.e., still, walking, running, cycling,
and on vehicle. Each activity event includes a timestamp, an
activity, and the type of the event, i.e., start or stop.

Location Events Enter/exit a given location area. The application forces users to
define at least their home and work locations. Each location event
includes a timestamp, a location, and the type of the event, i.e.,
enter or exit.

Screen Events Lock/unlock the smartphone screen. Each screen event includes a
timestamp and the type of the event, i.e., lock or unlock.

App Events Open/close a given mobile app. Each app event includes a times-
tamp and the type of the event, i.e., open or close.

Note: From “Understanding and Streamlining App Switching Experiences in Mobile
Interaction”, by Alberto Monge Roffarello and Luigi De Russis, 2022, International
Journal of Human-Computer Studies [4]

2.2.2 Smartphone Habits Extraction
The obtained dataset of phone sessions is then used as input for the Apriori
algorithm [12] to mine and extract association rules, representing smartphone
habits.

The Apriori algorithm employs a level-wise approach for generating association
rules (each level represents the number of items in the consequent of the rule).
Initially, only rules with one item in the consequent, and high enough confidence,
are extracted, and are then used to extract new candidate rules for the next level.

For example, if {acd} → {b} and {abd} → {c} are high confidence rules for the
first level, then the candidate rule {ad} → {bc} can be generated by merging the
consequents of both rules.

For each level, the candidate rules are then pruned based on their confidence,
avoiding to generate new candidate rules if said metric is too low.

As an example, if the confidence for {bcd} → {a} is low, then all the rules
containing a in their consequent, including {cd} → {ab}, {bd} → {ac}, {bc} →
{ad}, and {d} → {abc} can be discarded [13].

The obtained results are then filtered to find promising association rules, by
using common metrics for association rules evaluation (e.g., support, confidence, lift)
in order to prune uncorrelated combinations and negatively correlated combinations.
Furthermore, all habits that do not include an app in the antecedent are excluded,
since they do not represent a proper switching behavior.
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An example of smartphone habits that can be extracted through the RecApps
methodology are shown in Figure 2.2, which present the way in which RecApps
links the information about app usage and contextual information to the usage of
the next apps.

Figure 2.2: Two habits that can be found through the explained RecApps method-
ology. The habit (B) is a habitual app switching behavior between WhatsApp
and Twitter that happens when the user is at home, while the habit (A) does not
represent a switching behavior, since it does not include an app in the antecedent.

2.2.3 RecApps Implementation and Evaluation
The first developed version of RecApps was implemented as an Android app,
employing the explained data analytic to find recurring switching behaviors in the
user’s smartphone usage sessions, and present them in the form of suggestions
inside a floating widget.

The app continuously collects usage info in background and, when available, it
associates contextual information to the created phone sessions. The information
about physical activities (i.e., still, walking, running, cycling, and on vehicle) can
be detected through the Google Activity Recognition APIs [14], while locations
of interest are defined by the user at the startup of the application or in a later
moment.

RecApps periodically employs the collected phone usage data to recalculate
association rules that model habitual app switching behaviors of the user. The
result of this computation is a set of recommendations that are then proactively
shown to the user in a floating widget, when the antecedent app of a transition
is opened and the other contextual information are verified to be the same as in
the candidate transition. Each suggested app serves as a shortcut to open the
corresponding application.

In [4], the authors explain the results of a three week in-the-wild user study, to
evaluate the developed application and the data analytic method it implements
in a real-world setting. During the first week, RecApps ran in the background,
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silently collecting data about phone usage sessions of the users. After obtaining
enough data, the recommendations started to be computed, and for the remaining
two weeks the widget started showing up, containing the most relevant suggestions,
based on the context of each phone session. During the recommendations phase, the
association rules were periodically recomputed, in order to take into consideration
the most recent information that RecApps was collecting.

The metrics evaluated with the test, and the results of the final interviews with
the participants of the experiment, had shown that RecApps was able to support a
quick reproduction of habitual switching behaviors, while also producing rules that
reflected less frequent habits.

2.3 Digital Wellbeing and technology overuse

The ubiquitous presence of smartphones in our daily routine has enabled an
abundance of new opportunities for users, ranging from help in navigation and
getting directions to real-time share of content and events. However, the pervasive
use of smartphones in nearly every moment of our life but their increasing use
represents also an increasing source of distraction, with an excessive use leading
to problems for mental health and social interactions [15], or even social anxiety
regarding overuse and dependence from such devices [16].

For this reason, HCI research is starting to focus on the topic of intentional
“non-use” of technology, and in investigating and potentially avoiding smartphone
addiction. Many mobile applications can provide tools for changing users’ behavior
with smartphones, and even Google and Apple have announced tools for promoting
a more responsible use of smartphones. This brought Google to summarize its
commitment with the term “Digital Wellbeing” :

“We’re committed to giving everyone the tools they need to develop their own sense
of digital wellbeing. So that life, not the technology in it, stays front and center.”

[17] [15]

Despite the available tools and their effects, many smartphone users recognize
that they engage in compulsive and habitual behaviors that they later on find
frustrating [16], making them wish to limit some aspects of their smartphone use
[3]. For this reason, the new system presented in this work focused on the idea of
promoting meaningful interactions for the user, in order to not bring them in an
endless cycle of potentially useless app switches, eventually reinforcing addictive
behaviors.
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2.3.1 Digital Self-Control Tools and Habit Formation

In order to support and promote people’s digital wellbeing, the last few years
brought to life various examples of the so-called Digital Self-Control Tools (DSCTs),
with the goal of supporting users’ self-control over their technology use, by allowing
them to monitor and track their device usage, and also to apply some preventive
actions (e.g., timers or lock-out mechanisms when certain time thresholds are
reached). DSCTs are intended to help users improve their behavior with technology,
and can serve as digital interventions for behavior change [18].

People often analyze themselves their excessive smartphone use and consider it
problematic, and for this reason they are willing to try and adopt different strategies
to mitigate these behaviors. One accessible solution is found in “digital wellbeing
assistants” apps that can be easily downloaded and installed on the smartphone.

They offer several features, ranging from tracking the general usage of the phone
to monitoring the usage of other apps. More in detail, the available features include
phone summaries (i.e., a recap screen with statistics about the usage time of the
smartphone), app summaries (i.e., a recap screen with statistics about the usage
time of other applications), home-screen widgets and e-mail summaries to present
information.

In addition to the basic features for tracking and observing usage data, digital
wellbeing apps often offer interventions mechanisms to reduce addictive usage of
phone and applications. Some of these tools include app timers or app blockers, in
order to be notified when a certain threshold of use time is reached, or to directly
block the usage of a given app under the same conditions.

Other relevant features that some apps include involve supporting users through
motivational quotes, and rewarding them if they engage and succeed in some
"digital wellebing challenge". These characteristics are seen as an effective strategy
to support motivation of the user, by also adding metaphors and gamification
principles to the promotion of healthier behaviors with the smartphone.

Furthermore, a few apps are capable of automatically extract information
from user data regarding the most problematic apps or behavior, and instantiate
interventions or even redesign the phone UI, to randomize the location of some
apps in order to prevent opening and use out of habit of those apps.

Another aspect of the analysis conducted in [15] refers to the thoughts and
comments of the interested users regarding digital wellbeing applications. From a
general perspective, users like using digital wellbeing apps and find them useful
tools, being more satisfied with using them the more they are accurate in tracking
usage information such as screen time, unlocks, or app usage time.

Users also point out that these apps were found useful in many different use
cases, ranging from studying and working, to parental control or sleep. On the
topic of specific features of digital wellbeing apps, restrictive actions prove useful
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to control and monitor some unhealthy behaviors, which can also be identified
through the use of statistics.

Another interesting aspect that was analyzed is how users consider their dig-
ital wellbeing apps as self-monitoring tools, that they can use to discover and
comprehend how they use their smartphones. In this way, they can also improve
their awareness of potential addictive behaviors, and thus they can employ these
same tools to break unhealthy habits and learn how to use their smartphone in a
conscious and responsible way.

While many users enjoy using digital wellbeing apps and appreciate their char-
acteristics, there are other reasons that make users dislike these kinds of apps. One
recurring example is that some of the interventions are not restrictive enough, mak-
ing them permissive and ignorable, and bypassable in some ways. This brings users
to propose other strategies to make the limitations imposed by digital wellbeing
apps more difficult to be avoided.

Despite many users of digital wellbeing apps find these products a useful tool for
tracking and monitoring potential unhealthy behaviors regarding their smartphone
usage, they do not promote the formation of new habits [15].

The work presented in [19], however, follows the idea that applications and
technology-based interventions represent a potential tool to provide real habit sup-
port, and also presents some design guidelines for interventions based on contextual
cues and implementation intentions, to effectively provide habit formation.

Habits can be described as automatic responses to contextual cues (e.g., current
location, routine events, or preceding actions). This association between the cues
and the task form automatically through repetition, and can be used as trigger
for events that should drive the behavior that will become the formed habit.
This process can be directed in a more effective way by forming implementation
intentions, which are action plans in the format “When situation X arises, I will
perform response Y”. They help in connecting the forming habit with an existing
routine and transform it into a event-based task (easier to remember than time-based
tasks). The whole procedure builds on the idea that each repetition of the task,
with an explicit relationship with its cues, will reinforce the association, leading to
a more efficient action initiation and increased automaticity of the behavior.

Another decisive aspect for habit formation is positive reinforcement, which aims
at increasing the feeling of satisfaction with each successful repetition of the habit
action, eventually reinforcing the need to repeat said action in the future.

Given these founding elements in habit formation, the authors of [19] analyzed
the features of several habit formation apps, under the aspects of functionality
(i.e., which strategies they implement to promote habit formation), habit formation
support (i.e., which elements of habit formation are explicitly implemented by the
apps) and behavior change techniques (i.e., the mechanisms that each app employed
to make users reinforce their new habits).
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The functionality review that the author performed showed that the considered
apps focus mainly on implementing features that support self-tracking, without
any explicit design effort to support habit formation. Even if self-monitoring is
crucial in the beginning of the habit formation process, it does not help users in
forming associations between the task and the environment, or in improving the
automaticity of performing a certain task.

Given these limitations of the existing habit formation apps, the authors proposed
some guidelines for future design of similar apps:

• Support trigger event, in order to set a goal (the forming habit) and a trigger
condition (e.g., "I will do X after eating breakfast"), also monitoring the
completion of the objective;

• Use reminders to reinforce implementation intentions, by setting alerts and
notifications before the trigger event, since they can help in form the association
between the goal and the trigger, possibly encouraging users to remember it
themselves;

• Avoid features that teach users to rely on technology, since having the users
rely on a technological solution can interfere with the habit formation process,
making it more difficult to form associations between contextual cues and the
task.

2.3.2 Compulsive Phone Use and Addicting Apps
In the most recent years, the theme of excessive phone use has become a prevalent
problem, and this often has brought a negative impact on social interaction and
mental health [2]. Technology-related addictions have been classified as “behavioral
additions”, since technological devices such as smartphones reinforce features that
may lead to addictive tendencies.

Recent research has rarely focused on individual apps when addressing the prob-
lem of smartphone addiction. Moreover, problematic smartphone use was usually
detected through the aid of self-reported questionnaires, and only recently some
computational strategies started to be employed (e.g., classification by modeling
device-level usage information, or predictions through app usage patterns analysis).

Some work instead focused on understanding addictive behaviors to individual
apps, and model their features [2]. Results shown that the categories of apps that
are considered the most addictive are social and communication apps, with web
browsers as the next category in order. Interestingly, the addiction to a web browser
app reflects the addiction to the kind of content it accesses (e.g., social websites).

The study also investigated the aspect of withdrawal from the use of applications,
and it demonstrated how it is easier to uninstall a social app, but more difficult to
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do the same with communication apps, since users are more attached to the latter
than to the former.

Finally, the same work also proposed four types of usage features of each app,
that may help in identifying problematic addictive behaviors to said app. The
choice followed the assumptions that users’ addiction to an application grows with
several aspects:

• the more time they use the app;

• the more frequently they open the app compulsively, instead of only reacting
to notifications;

• the more heavily they are triggered by external notifications to use the app;

• the more regularly they use the app every day;

• the more places where they use the app.

As many users engage in compulsive smartphone usage and checking and find it
frustrating, it may be interesting to investigate which are the triggers and situations
that lead to compulsive use and also cause these behaviors to end [16].

Users independently tend to reflect on their compulsive smartphone usage and
act by sometimes deleting apps that drive their compulsive checking without any
necessary meaning.

Participants of the study conducted in [16] (which involved a think-aloud usage
session for each user, where the most problematic apps were highlighted by them)
explained that habitual phone checking fills almost every moment of downtime,
often engaging in these behaviors without awareness. The cited work tried to define
a set of common triggers that pull users in compulsive checking and another set of
factors that lead them to stop the compulsive checking.

The most common triggering events for a compulsive phone checking behavior
include:

• Downtime, defined as a moment of free time without any other evident source
of stimulation or demand for active engagement for the user;

• Tedious Tasks, which make users check their phone compulsively or contin-
uously due to the repetitive or tedious nature of the task they should be
doing;

• Social Awkwardness, such as situations in which participants may find they
have nothing to say, of feel embarassed about being idle, that bring them to
check in with low-demand apps;
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• Anticipation, an urge to check an app expecting some social or informational
reward, with the same behavior repeating with short time intervals;

• Nothing, since often the compulsive checking of the phone seemed to not
require a trigger to start, making users check the phone without any specific
reason or condition.

On the topic of triggers that tend to end an instance of compulsive checking
behavior, the study discovered what was called the “30-Minute Ick Factor”. This
term summarized a recurring sense of disgust and regret after spending some time
checking the phone without any particular goal or reason. Many participants cited
durations close to 30 minutes as cadence for moment of self-reflection that made
them realize the mismatch between the excessive time investment and the relatively
low sense of meaning, that made them break the usage session.

When combining the scope of app switching with the ones of addictive apps
and compulsive behaviors, it is clear that a system which is able to support app
transitions while also paying attention to the digital wellbeing of the users should
try to make them recognize which are the apps that cause the most addictive
behaviors, in order to not reinforce such negative patterns.

2.3.3 Meaningfulness in Smartphone Use
A large portion of past research production has stated that many people with
they could limit some aspects of their interaction use. They often tend to judge
their usage of the smartphone as meaningless, a choice that could be based on the
intentions that drive them to use the phone, and the kind of use they make of it [3].

The Uses and Gratifications (U&G) perspective allows to analyze media usage
and consumption as active choice of the users, which can be driven by the need of
obtaining certain rewards or to reach specific goals. This allows to examine the
motivations that draw people to use particular technological tools and medias.

From a general point of view, the typical gratifications that users seek from
media can fall under two motivations: instrumental motivation, i.e., the one in
which users engage with technology to obtain a specific result or goal, and habitual
motivation, i.e., when users engage with technology out of habit to pass the time.

Following a similar approach, based on associations between certain U&Gs for
different apps to the perceived degree of meaningfulness, the authors of [3] described
some common features that help describing how users tend to label their experience
with smartphones as meaningful or meaningless.

Among the most frequent characteristics of meaningful interactions, users report
that using the smartphone for productivity purposes (i.e., "getting things done or
self-improvement") makes it easier to associate it with a sense of meaning. Another
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instance of meaningful and positive associations involved active communication,
often regardless of the "official" app category that was declared on the stores.

On the contrary, regarding meaningless interactions and usage, almost all
participants reported social media as a meaningless category of applications to use.
Some users, however, reflected on the fact that using social media in a more active
way could bring the judgment to a meaningful result (e.g., using a social app to
share some interesting content that was previously obtained). Similarly, also the
entertainment category was sometimes seen as meaningless, since it provided a way
to entertain mindlessly.

The same approach of evaluating the meaningfulness of a category of applications
may be employed by the new recommendation system, by assigning a U&G to
each potential transition, in order to promote those that represent a meaningful
interaction for the user.

16



Chapter 3

Design and Method

This chapter describes all the design phases and choices that characterized the design
of a new RecApps mobile application, with the goal of renewing and improving
the data collection strategy and also to make it producing suggestions that could
benefit the user’s digital wellbeing.

After an initial analysis of the literature regarding digital wellbeing and app
transitions strategies, a possible set of design directions to start from for the
redesign of RecApps was defined. In the end, the choice for the main changes and
additions to focus on, as reported in Table 3.6, was for designing and implementing
a system to account for user feedback regarding usage sessions, in order to consider
it when extracting association rules and suggestions for the user’s app switches.

The last section of the chapter describes the adopted methodology and algorithm
which exploits the feedback information, integrated inside the extracted recommen-
dations, in order to produce the final set of apps that will be displayed inside the
floating widget when an app is opened and a matching context is detected.

3.1 Literature Analysis and Design Directions
The first consideration comes directly from the analysis of the final interviews
for the user study of RecApps [4], where participants reported that, sometimes,
recommendations inspired some reflections regarding habitual behaviors that they
wish they could avoid. To support this, it may prove useful to let the user customize
the suggestions, so that some of them are always active, and others are prevented
from being shown.

By taking inspiration from the aspects of digital wellbeing apps that make users
like these tools [15], one feature that could be easily adapted to RecApps is that
DSCTs allow users to control unhealthy behaviors. By working on the kind of
suggestions that the app produces and shows to the users, it may make their app
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switching habits more meaningful, avoiding to get lost for long time periods using
useless apps.

Although it may be observed that RecApps is not able to implement restrictive
solutions by itself, this aspect does not represent a complete issue. Even if a
DSCT that puts effective restrictions on the smartphone usage of the users is
appreciated [15], it is also true that an exaggeration of these controls may lead to
a too restrictive tool, and this increases the risk of users abandoning the use of the
app itself [20]. This fact supports the idea that implementing a mechanism that
controls and improves the quality of the proposed transitions in order to promote
meaningful usage patterns is a good design direction, since it would provide some
limitations without being too restrictive.

By analyzing the statement that “smartphones, in particular, have been found
to be a source of distraction, and their excessive use can be a problem for mental
health and social interaction” [15], one of the possible strategies that was considered
involved identifying nearby Bluetooth devices (i.e., making them represent other
smartphones and, therefore, other people), and stop showing suggestions in these
situations. Similarly, the idea to limit suggestion to only apps with the same Uses
& Gratifications [3] with respect to the current context (e.g., only “productivity”
apps when at work), in order to reduce distractions and interference with daily
activities and tasks that extend over time.

However, an arguable downside of these strategies is that they risk to heavily
limit the amount of suggestions that are proposed to users, mainly due to the
presumably constant presence of other smartphones near the one on which RecApps
is running, even if there is no interaction between the two owners that may be
hindered in receiving app suggestions.

Following the U&G perspective described in [3] (i.e., a description and classi-
fication of people’s motivations for engaging with technology), one useful action
may be to let the user set (at the startup of RecApps, and possibly periodically
after the first time) which are the U&G they associate with the apps installed on
the device, in order to consider this information along with the collected one when
extracting the association rules.

From the same article, it may be useful to extract the concept of “meaningfulness”
and exploit it to filter some of the suggestions, in order to have the users switch
only towards apps they find useful. One example could be when dealing with a
potential transition that has a social app in the antecedent or, especially, in the
consequent. These apps are often seen as examples of meaningless smartphone
use, but avoiding to show them at all may go against the opportunities of active
communication that social network apps sometimes represent.

One of the most interesting aspects analyzed in [16], regarding the triggers that
end compulsive smartphone use, is the “30-Minute Ick Factor”, which reflects a
typical time duration after which users start to reflect about the waste of time
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that their last usage session represented. Based on this principle, one of the most
promising strategies that was considered involved providing users with a sort of
“30-Minute Ick Factor Button”, through which they can inform the system that
their last phone session is not meaningful, and so it is to be excluded from the data
collection and the resulting analysis.

On the contrary, it may also happen that the user finds meaningful some pattern
that the system automatically labeled as negative, and as such would not be
suggested in order to not reinforce it. To solve this potential problem, the user
can be provided with a mechanism to set some exceptions to the decisions of the
system, in order to not loose completely some transitions that the system may
associate with compulsive behaviors (and as such would avoid to suggest). This
follows the concept that, in the end, the meaningfulness of smartphone use is a
subjective evaluation.

The last aspect that could be useful to analyze is the topic of addictive apps
[2]. Through the data collected by RecApps, it may be possible to identify a
priori which are the apps that provoke addictive behaviors by the user, and then
the shortcuts to said apps may be disabled by default, and users may be able to
manually enable them.

Moreover, following users’ impressions that withdrawing from using an appli-
cation is easier than controlling the time spent on it, simply avoiding certain
suggestions may go along the same principle. Despite not actively reducing the
time the users spend on certain applications, this strategy should be able to not
increase it.

Finally, the features used to describe addictive apps, and the assumptions from
which they derive, all represent information that can be retrieved from the one
that RecApps extracts from each phone session.

To sum up the main strategies that were considered as possible design directions
to extend and improve the existing RecApps application:

• users could be able to influence the possible suggestions that they may be
shown, by making some of them permanent and disabling some others;

• suggestions could be disabled in certain situations or limited to those matching
a particular context;

• information regarding the typical use associated with each application should
be specified by users, in order to be considered in the rule extraction process;

• suggestions should reflect the kind of usage that users find meaningful, in
order to guide them towards apps that they find useful;

• users may be able to explicitly mark a phone session as meaningless, in order
to exclude it from the data analysis procedure;
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• users could set some exceptions to potential compulsive behaviors, provided
they find them useful and meaningful;

• potential addictive apps could be identified through an analysis of the infor-
mation collected by RecApps.

Most of these design ideas include a direct interaction by the users, or some
other actions that involves them. This contrasts the old version of RecApps’ data
analysis and recommendation system, since it only exploits information that can
be directly extracted by the smartphone alone.

3.2 User Feedback to Guide Transitions Extrac-
tion

The original behavior of RecApps did not account at all for the intervention of users
inside the algorithm and in the operations that generated the recommendations,
and the analyzed literature gave a large amount of design ideas that involved a
direct contribution by the user.

For these two reasons, the final choice consisted in a union of some of the
previous ones, in the form of a system able to collect user feedback and consider it
during the rule extraction process and suggestions presentation step. The choice
was made so that each user’s contribution could help in better modeling their
habits, and adapt the rule generation procedure in a more efficient way to each
one. By considering these feedback elements inside the Apriori algorithm for rule
generation, suggestions will not take into consideration only objective phone usage
data, but also emotions and feelings of the users, with the goal of reinforcing those
transitions that came from positive sessions.

To properly assess the role of user feedback inside the recommendation process,
some aspects needed to be defined and analyzed:

• what information makes up the feedback?

• how to ask for user feedback and with which frequency?

• how to integrate the received feedback and the already available information
to generate association rules?

• how to exploit the obtained result to improve recommendations?

3.2.1 Feedback Description and Retrieval
When designing the general characterization for the user feedback to include in the
new recommendation system, one possibility that was explored was to relate each
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feedback instance to an entire phone usage session that has just ended. This was
useful to associate feedback elements to the same “information aggregation unit”
(i.e., a phone session) that was already collected and manipulated in the original
RecApps application. Another possible motivation to support this implementation
is that the user can figure out the whole picture when expressing its opinion.

The first fundamental aspect to consider and retrieve is a general assessment
about the meaningfulness of the phone session. The definition of “meaningfulness”
may not be expanded when asking the user a rating, since this may leave to the
users the task of interpret the term in a personal way, and based on their life and
experience.

The first design on how to retrieve this information about meaningfulness
involved a 5-points Likert scale (i.e., from Not at all meaningful to Very meaningful),
based on the question “How much do you feel like you have spent your time on
something meaningful?”. An alternative formulation, and the final choice, consisted
in a binary judgement (e.g., good/bad), in order to be more immediate and easily
characterize the content of a session, and the opinion of the user about it. Another
motivation that led to prefer the second solution is that too many possible choices
for the meaningfulness feedback may have caused the associations between apps
and/or contextual information and the feedback element to be too weak, and thus
produce less accurate transitions and suggestions.

Table 3.1 presents a brief overview on the considered possibilities to repre-
sent meaningfulness information, together with their analyzed advantages and
disadvantages.

Table 3.1: A summary for the explored alternatives to extract information about
Meaningfulness.

Proposed strategy Advantages Disadvantages

5-points Likert scale More precise evaluation Too many choices may cause
the association rules to be-
come too weak and less ac-
curate

Binary evaluation More immediate, easier to
understand the opinion of
the user about the session

More confusing about the
link between the evaluation
and the meaningfulness

A second interesting source of information about the user’s feedback on a phone
session can be the U&G they associate the most to the entire phone session.
According to [3], it is possible to define U&G for the motivation of the interaction
with the smartphone (e.g., instrumental or habitual), and about the type of usage
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(e.g., productivity, information, entertainment and so on).
As a last aspect, also inspecting the kind of emotions that each user associates to

the phone session may be a good way to better characterize each phone session, and
improve the data analysis. The first set of possible emotions from which users could
choose were inspired by P. Ekman’s basic emotions (anger, disgust, sadness, joy,
fear, and surprise) [21] and some of the secondary ones (amusement, excitement,
relief, satisfaction, and shame). Given the large amount of choices that it would
have been necessary to include to provide users with an equal set of positive and
negative emotions, the emotions defined by R. Plutchik (joy, sadness, trust, disgust,
anger, fear, surprise, anticipation) [22].

Despite the usefulness of having a limited set of emotions to choose from, in order
to simplify any further analysis of the results, neither of the two alternatives seemed
to be able to effectively describe the possible emotions that users could perceive
while using their smartphones. Therefore, the final choice of possible emotions to
include in the feedback retrieval procedure included sociality (connection with other
people, social reciprocity, building relationships), satisfaction (both immmediate
and temporary, and enduring, from things that may come useful in the future),
regret (the same concepts of the “30-Minute Ick Factor”) and boredom (described as
a trigger behavior for compulsive smartphone usage) [16]. Some of these alternatives
found some confirmations also in another previous work, that associated smartphone
usage features and their patterns with the possible emotions that users could feel
[23].

The overall considerations about each possible strategy that was examined in
order to define the set of choices about the emotions felt during the phone sessions,
along with advantages and disadvantages for each option, is presented in table 3.2.

The final composition of feedback features and their possible values that was
chosen includes:

• EMOTION, with values sociality, satisfaction, regret, boredom, and the possi-
bility to enter a custom value, and re-use it for future sessions;

• USAGE, with values productivity, information, entertainment, communication,
and social media;

• OVERALL, with values positive and negative.

Table 3.2 reports a brief summary of the considered options for describing the
content of the user feedback regarding a recent phone session, along with their
analyzed advantages and disadvantages.

The way of retrieving all the chosen information that has been considered from
the beginning involved the compilation of a short survey, divided in three sections
(i.e., one for each type of information to retrieve). Along with the interface to show
the questions and the possible options, also some information regarding the past
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Table 3.2: A summary for the explored alternatives to extract information about
Emotions.

Proposed strategy Advantages Disadvantages

Ekman’s basic emotions An large set of options to
describe emotions

Too many options required
to balance “positive” and
“negative” emotions

Plutchik’s emotions A balanced set of emotions,
easier to analyze and form
correlations

Inaccurate to describe feel-
ings of users about smart-
phone usage

Choices from literature Taken from studies that
analyzed people’s reactions
and experiences when using
their smartphones

Limited set of choices, cus-
tom option needed

phone session (e.g., the used apps) should be provided, in order to allow the user
to keep some context regarding the session for which the feedback is retrieved.

Apart from an initial screen to present the feedback procedure and give the
user the possibility to skip the feedback gathering for the last session, two alter-
native designs were considered for the possible organization of the interface and
presentation of the options.

The first possible layout involved a separate screen for each feedback element to
retrieve. This disposition allows the user to separately answer each question, and
visualize the full set of possible answers each time, but of course the time spent
each time the form is shown is higher (the result is shown in Figure 3.1).

The other disposition placed all the form inputs inside a single screen, making
it more compact and therefore quicker to compile, but in order to properly arrange
the elements in the available space, the options needed to be collapsed inside other
form elements, and so in this way the users could not see all the available answers
(the result is shown in Figure 3.2).

Table 3.3 gathers the two possible alternative designs that were considered for
the feedback form interface, which should be presented to users in order to retrieve
all the feedback information.

In the end, the version of the feedback form design that was chosen as a starting
point for the actual implementation was the first one, for the reason that having
more dedicated screen space for each kind of feedback elements would have allowed
to enrich the presentation of the possible options (e.g., with some icons to associate
to each choice).
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(a) Emotion (b) Usage (c) Overall

Figure 3.1: The first alternative version of the feedback form, in which each
feedback element is retrieved in a different screen.

3.2.2 Feedback Form Proposition
After deciding the layout for the feedback form, another fundamental aspect for
the user feedback system addressed the frequency and the way in which the form
was shown to the user. Although asking a feedback to the user at the end of each

Table 3.3: A summary for the explored alternatives to arrange the feedback form
interface.

Proposed strategy Advantages Disadvantages

Separate tabs Each section has more avail-
able space to present all the
options, even adding icons
to describe each choice

It takes longer to compile
the form, or eventually to
skip until the end to avoid
giving feedback

Single tab More compact and quicker
to compile

The user do not immedi-
ately see all the options for
the emotion and usage sec-
tions

24



Design and Method

(a) General appear-
ance

(b) Emotion (c) Usage

Figure 3.2: The second alternative version of the feedback form, in which all the
form input elements are placed inside the same screen.

phone session could enrich each session with additional information, it would result
in an annoying behavior from the user’s point of view.

One partial solution could be to introduce a probability of showing the feed-
back form, leaving the user with the possibility of changing said probability (i.e.,
increasing or reducing the frequency of feedback collection).

Moreover, it could be useful to identify some sessions that represent candidates
to receive user feedback, in order to restrict the feedback collection procedure to
only these phone sessions. Such sessions may be found in two ways:

• consider usual or representative sessions, i.e., with a duration close to the
average duration of some sessions (this average could be computed considering
the day of week and the time slot);

• find the phone sessions that match some of the already computed association
rules, and collect feedback about those sessions, in order to assign feedback
to what the system has already produced (this would require to change the
starting time of the transitions computation, moving it earlier during the first
week of data collection).

The first approach would imply to wait at least a week before starting the
feedback collection (since an entire week is needed to compute an average duration
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for each day and time slot), making the first transitions ignore any possible feedback
from the user. The second approach, instead, allows to start the feedback extraction
earlier, making also the first recommendations benefit from the feedback and the
resulting rules.

Addressing the topic of how to make users receive the feedback form for compi-
lation, several alternatives were considered:

• the users could autonomously reach the interface for feedback collection and
compile it, however the risk is that users are not explicitly encouraged and
prompted to provide feedback, and it may happen that the feedback is given
for an ongoing session, loosing part of its potential future context;

• the form may appear in a blocking way as soon as the phone is unlocked (i.e.,
at the start of the next phone session), but this may result in an annoyance
for the user, in case they need to repeatedly deny the feedback form;

• a notification may inform that the user is able to compile the feedback form
for the last terminated phone session, and the user can use it to access the
form itself.

Table 3.4 shows the overview of the considered strategies to employ in order to
determine how often the form should be presented to the users, and with which
mechanisms.

The chosen configuration included the blocking strategy for showing the form, and
the probability strategy to limit the number of times the form is shown. Moreover,
to compensate for a potentially low number of sessions with feedback, a procedure
to propagate the feedback to past sessions with the same context (i.e., apps and
contextual information) was implemented.

3.2.3 Feedback Integration, the New Algorithm
After the users finishes the compilation of the feedback form, the information
gathered in this way need to be included among the attributes that characterize a
phone session, together with the used apps and other contextual details (i.e., time,
period, activity, and location), as shown in Figure 3.3.

To achieve this result, the collected data will be transformed in the same
transactional format that RecApps uses to express the available information as
input for the Apriori algorithm, i.e., an array of NamedItem objects, each one
consisting of a label to represent its value and another one to distinguish its type
(e.g., TIME or FEEDBACK_EMOTION).

Next up is the transition generation procedure, which needs to be revised to
consider new criteria for filtering the extracted association rules, since it now takes
into account also the feedback elements. As a general setting, elements which

26



Design and Method

Table 3.4: A summary for the explored alternatives to arrange the feedback form
frequency and the strategy with which it is presented to the user.

Feedback form frequency
Proposed strategy Advantages Disadvantages

At the end of each ses-
sion

All the sessions are enriched
with feedback information

The task of giving feedback
to each phone session be-
come tedious for the user

Probability of showing
after a session

Being less frequent, the user
will not grow weary of being
asked to give feedback

If the user sets a low prob-
ability, very few session
will receive feedback, which
needs to be propagated in
order to be more frequent

Feedback form proposition
Proposed strategy Advantages Disadvantages

Manual insertion by user Does not require any kind of
proposition by the system

It is easier to ignore the new
feedback aspect of the sys-
tem

Blocking proposition in
the next session

The user is always presented
with the request to compile
the feedback form

The user needs to explicitly
refuse to complete the form

Notification for inserting
feedback

It is not intrusive, so it could
be always asked, does not
require explicit actions to
deny the feedback insertion

Each notification is related
to one session, so each time
a new notification is shown,
the previous one is lost

Figure 3.3: An example of the new phone session, integrated with feedback
information from the user, represented in a transactional format.

describe the meaningfulness of the session/transition will appear in the consequent
of the rule, while the other two kinds of information (i.e., about the emotion and
the usage) will enrich the rule’s antecedent.

This means that rules containing a feedback element of type FEEDBACK_OVERALL
in their antecedent and those that include an element of type FEEDBACK_EMOTION
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or FEEDBACK_USAGE in the consequent need to be excluded.
Another interesting feature that was designed to further exploit the information

retrieved through user feedback was the computation of some special “feedback
rules”, i.e., association rules that considered only feedback information extracted
from phone sessions. This allowed to take into account the most frequent cor-
relations that each user made between elements of type FEEDBACK_EMOTION or
FEEDBACK_USAGE with the general judgement, of type FEEDBACK_OVERALL.

The result of this phase will produce improved transitions, that will include
information regarding the feedback that the user associated to previous phone
sessions, and that was considered to be frequently associated to other elements like
applications and contextual information (an example of the renewed transitions
generation procedure is given in Figure 3.4).

Figure 3.4: The complete data analysis procedure, with the integration of user
feedback and the new extracted transitions.

After defining the details regarding how the new feedback information had to be
integrated with the pre-existing information, a new strategy for showing suggestions
to users, based on an algorithm that took into account also the feedback, had to
be designed. To this end, two alternative solutions were considered and analyzed,
based on two different usages for user feedback.

The first hypothesis was based on the “traditional” rule extraction phase, and ex-
ploited the eventual feedback elements included inside the transitions to implement
a sorting criterion for evaluating the relevance of each proposed transition. The
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sorting operation and decision about which apps to include as suggestions inside
the widget are performed after the set of potential transitions (i.e., the transitions
that reflect the app context and the other contextual information) is computed, in
order to restrict the decisions only on those transitions that could be effectively
used and shown.

The “relevance score” starts at 0 by default, and is computed based on these
criteria:

• the value of the FEEDBACK_OVERALL element determines a contribution of +1
(if Positive) or −1 (if Negative);

• the value of the FEEDBACK_EMOTION element determines, based on the conse-
quent of the eventual feedback rule in which it is involved, a contribution of
+1 (if the consequent is Positive) or −1 (if it is Negative);

• the value of the FEEDBACK_USAGE element determines, based on the consequent
of the eventual feedback rule in which it is involved, a contribution of +1 (if
the consequent is Positive) or −1 (if it is Negative).

After the score is assigned to each potential transition, those transitions with a
negative score are automatically excluded from being shown on the widget, while
the others are sorted, based on their score, and passed to the widget in the same
order. This allows to eventually limit the number of icons to show inside the widget,
and thus propose only the most relevant transitions for the user, under a certain
context.

As an example, suppose that, after the execution of the rule extraction procedure,
the following transitions:

T1 : {WhatsApp, Home, 10 − 12, Entertainment} → {Y ouTube, Positive},
T2 : {WhatsApp, Home, SocialMedia, Satisfaction} → {Instagram, Positive},

...
TN : {WhatsApp, 10 − 12, SocialMedia, Regret} → {Facebook, Negative}

and the following feedback rules:

FR1 : {Entertainment} → {Positive},
...

FRM−1 : {Regret} → {Negative},
FRM : {SocialMedia} → {Negative}

are computed.
When the user opens the WhatsApp app on his smartphone, while at home

at 11:00 (which is considered to be inside the time slot 10 − 12), a set of “active”
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transitions is extracted, and those transitions undergo the ranking procedure
through the computation of the relevance score.

Transition T1 receives a +1 for the Positive element in the consequent, and a +1
for the association FR1 between Entertainment and Positive. Transition T2 receives
a +1 for the Positive element in the consequent, and a −1 for the association
FRM between Social Media and Negative. Finally, transition TN receives a −1 for
the Negative element in the consequent, a −1 for the association FRM−1 between
Regret and Negative, and a −1 for the association FRM between Social Media and
Negative.

Summing up, the possible apps that could be included in the widget, and their
relevance scores are:

A1 : Y ouTube → +2,
A2 : Instagram → 0,
A3 : Facebook → −3

which means that Facebook will be immediately removed from the possible apps to
show in the widget, while YouTube and Instagram will be passed to the widget
instance and placed inside it (eventually, if a maximum size of 1 is specified, only
YouTube will be shown, since it has a greater relevance score).

The second possible alternative exploits the feedback elements to prune the
sessions from which to extract association rules, in order to preserve only those
that were meaningful to the user. The general procedure includes two steps:

• computing a relevance score for each phone session, by weighing the eventual
values of each category of feedback element, obtaining:

S = WE ∗ REi
+ WUi

∗ RU + WO ∗ Oi,

where WE, WU and WO are the weights associated with each feedback element,
REi

is a contribution based on the eventual consequent of a feedback rule
involving emotion i (+1 if Positive or −1 if Negative), RUi

is a contribution
based on the eventual consequent of a feedback rule involving usage i (+1 if
Positive or −1 if Negative), and Oi is a contribution based on the value of the
FEEDBACK_OVERALL element i (+1 if Positive or −1 if Negative);

• applying a selection criterion (e.g., a score threshold of preserving the first
N sessions) to form a set of phone sessions that serve as the input for the
Apriori algorithm.

This approach suffers from the fact that, given that phone sessions with similar
apps and context, but not all with some feedback associated to them, will receive
different scores, it is possible that some of these sessions will be included in the
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final set for the rule extraction phase, and some others will not. Therefore, this
may cause some possible habits to not be frequent enough (i.e., with high enough
confidence) to be included in the set of association rules that will then generate
the transitions.

For this reason, the solution to propagate the feedback given by the user to one
phone session to all other similar past sessions (i.e., with the same used apps and
the same context) was introduced.

Another important aspect that this strategy would imply refers to the choice of
the weights WE, WU and WO, to be multiplied by each feedback contribution, in
order to produce the final score S.

When making a comparison between the two different approaches, the second
one seems to make a lesser use of the user feedback information, since in that
case it act more as a filtering mechanism than a way to improve and guide the
recommendations. Moreover, reducing the number of available phone sessions for
the Apriori algorithm may reduce as well the variety of associations and transitions
that are extracted (e.g., a discarded phone session could have reinforced one or
more habits that involve some of its used apps).

The first algorithm, instead, focuses more on exploiting all the available infor-
mation from the retrieved phone sessions, and only after use this new information
to perform more accurate suggestions. More in general, this first solution focuses
on promoting transitions that reflect meaningful interactions for the user, while
the second one builds upon the phone sessions that the users find more useful.

The definitive alternatives that were analyzed to choose the version of the
“feedback algorithm” to use in order to include the feedback information in the
transition extraction phase are exposed in Table 3.5.

Table 3.5: A summary for the explored alternatives to integrate feedback infor-
mation inside the computed transitions and recommendations.

Proposed strategy Advantages Disadvantages

Ranking the transitions Focuses on the relevance of
the suggested transitions

Does not directly influence
the existing algorithm to
generate transitions

Pruning the phone ses-
sions

Only the most meaningful
phone sessions are consid-
ered in the Apriori algo-
rithm

Risk to exclude too many
phone sessions from the rule
extraction phase

In the end, the final decision was to implement the first alternative for the
feedback algorithm, in order to focus more on the meaningfulness of the proposed
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switches between apps, rather than only on using the best phone sessions according
to the user to produce transitions. Furthermore, this choice allows to preserve the
entirety of the phone sessions, and exploit more data to detect frequent patterns,
whether they reflect good habits for the user or not.

Table 3.6 shows a summary of all the different alternatives that were considered
for all the aspects of the user feedback implementation in the new recommendation
system, also providing a report of all the confirmed choices.

Table 3.6: A summary of all the design alternatives for various aspects of the
new feedback algorithm. In bold all the options that were considered in the
implementation phase.

Meaningfulness assessment

Proposed strategy Advantages Disadvantages

5-points Likert scale More precise evaluation Too many choices may
cause the association rules
to become too weak and
less accurate

Binary evaluation More immediate, easier to
understand the opinion of
the user about the session

More confusing about the
link between the evalua-
tion and the meaningful-
ness

Emotions

Proposed strategy Advantages Disadvantages

Ekman’s basic emo-
tions

An large set of options to
describe emotions

Too many options re-
quired to balance “posi-
tive” and “negative” emo-
tions

Plutchik’s emotions A balanced set of emo-
tions, easier to analyze
and form correlations

Inaccurate to describe feel-
ings of users about smart-
phone usage
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Choices from litera-
ture

Taken from studies
that analyzed people’s
reactions and experi-
ences when using their
smartphones

Limited set of choices, cus-
tom option needed

Feedback form interface

Proposed strategy Advantages Disadvantages

Separate tabs Each section has more
available space to present
all the options, even
adding icons to describe
each choice

It takes longer to compile
the form, or eventually to
skip until the end to avoid
giving feedback

Single tab More compact and quicker
to compile

The user do not immedi-
ately see all the options
for the emotion and usage
sections

Feedback form frequency

Proposed strategy Advantages Disadvantages

At the end of each ses-
sion

All the sessions are en-
riched with feedback infor-
mation

The task of giving feed-
back to each phone ses-
sion become tedious for
the user

Probability of show-
ing after a session

Being less frequent, the
user will not grow weary
of being asked to give feed-
back

If the user sets a low
probability, very few ses-
sion will receive feedback,
which needs to be propa-
gated in order to be more
frequent

Feedback form proposition

Proposed strategy Advantages Disadvantages

Manual insertion by
user

Does not require any kind
of proposition by the sys-
tem

It is easier to ignore the
new feedback aspect of the
system
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Blocking proposi-
tion in the next
session

The user is always pre-
sented with the request to
compile the feedback form

The user needs to explic-
itly refuse to complete the
form

Notification for insert-
ing feedback

It is not intrusive, so it
could be always asked,
does not require explicit
actions to deny the feed-
back insertion

Each notification is re-
lated to one session, so
each time a new notifica-
tion is shown, the previous
one is lost

Feedback integration strategy

Proposed strategy Advantages Disadvantages

Ranking the transi-
tions

Focuses on the relevance
of the suggested transi-
tions

Does not directly influ-
ence the existing algo-
rithm to generate transi-
tions

Pruning the phone ses-
sions

Only the most meaningful
phone sessions are consid-
ered in the Apriori algo-
rithm

Risk to exclude too many
phone sessions from the
rule extraction phase
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Chapter 4

Implementation

This chapter summarizes the results of the implementation phase for the new rec-
ommendation system, which focused on adapting the previously designed feedback
strategy to the existing RecApps mobile application.

After an initial introduction of the main original components of RecApps, the
implementation steps needed for the feedback collection and the algorithm to include
the extracted feedback in the recommendation procedure are explained. Finally,
the last section presents some further additions that were introduced in RecApps
to better integrate the newly designed system in the application.

4.1 The Original RecApps Structure
RecApps is implemented as an Android mobile application, written in Java. It
provides a simple user interface to interact with the main aspects of the underlying
system (e.g., the recent recommendations or the last visited locations), modeled
through the use of a MainActivity class that hosts several other Fragments.

4.1.1 Classes and Database Entities
The main information that is retrieved and managed inside RecApps is represented
through Java classes and their corresponding Entities in the internal database.

The PhoneSession class brings together information regarding all the contex-
tual information and app events that were detected between the start and end
timestamps, including:

• an array of AppEvent objects, representing the used apps inside the session;

• an array of NamedItem objects, a class that represents the collected information
in a proper format for applying the Apriori algorithm;
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• two timestamps for the start and end of the phone session (corresponding to
the two last detected PhoneEvent objects);

• a series of strings representing contextual information (i.e., location, activity,
time, and period).

The extracted association rules and their representation as app transitions are
contained into objects of the AppTransition class. This class is characterized by
the same set of potential contextual information that is contained in a phone session
(i.e., to represent the context under which a transition is considered to be active),
an app context (i.e., the application that should trigger the recommendation of the
transition) and the rule consequent, in the form of a HashMap object to associate
each potential app to a flag that determines which app was used, if any.

All the presented classes and their instances are collected and stored inside the
internal database of the application, implemented through the Room Persistence
Library [24]. All the classes that represent persisted data are labeled as Entities,
in order to be mapped to a table in the database (each instance of an Entity class
is treated as a row in the corresponding table).

The AppDatabase class offers a static singleton instance, which is used to retrieve,
store and manipulate the maintained data entities. The access to the content of
a single table is made possible through the use of a DAO (Data Access Object),
an interface whose methods are mapped to queries in the underlying database
table. The AppDatabase instance implements the methods that are invoked by the
application, which in turn invoke the proper method of the corresponding DAO
instance.

4.1.2 Listeners and services
A Listener is an instance of the BroadcastReceiver class, whose role is to “wait”
for external messages, whether they are produced by the operative system or by
other applications.

The kind of messages that RecApps declares the intention to receive are related
to GPS, WiFi and screen events.

The ScreenListener class is the component that detects, in the onReceive()
method, a screen event (i.e., a screen lock or unlock). When such an event is notified,
based on the type of action (i.e., ACTION_SCREEN_ON or ACTION_SCREEN_OFF) a
PhoneEvent of the appropriate type is created and stored inside the local database
. In the case of a screen lock event, a PhoneSession object is instantiated and
its attributes are assigned based on all the app and contextual events that were
detected during the usage period.

A Service is an application component that performs operations in the back-
ground, without providing any user interface. Inside RecApps, there are three
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types of operations that are performed through services:

• current location and physical activity recognition;

• periodic upload of the collected data on Cloud Firestore and computation of
association rules;

• accessibility events detection and transition management.

The core service and component of the application is represented by the
AppMonitor service. This class is in charge of registering the listeners when it gets
connected, refreshing the current geofences (i.e., a feature of the Android location
APIs to monitor user location and proximity [25]), and intercept the opening of
a new application and check if there are transitions that can be shown inside the
floating widget. This last operation is performed in the onAccessibilityEvent()
method, which is triggered after a new application reaches the foreground. Then,
all the transitions that have the last opened app as the antecedent are retrieved,
and a search for the active ones is made. These transitions are passed to the widget
instance in order to show their icons as links to perform an app switch.

4.1.3 Utility Features and Methods
The StatsManager static class implements the buildPhoneSession() method,
which is used to retrieve all the collected information regarding apps and contextual
data that was detected between the start and end timestamps.

Another interesting class, that provides several utility methods, is the Utils
class. Some examples include the getFirstCalculationTimestamp() method, to
retrieve the timestamp of the first execution of the Apriori algorithm for extract-
ing association rules (i.e., one week after the installation of RecApps), and the
getTransitionCalculationDelay() method, which allows to retrieve the delay
for the first schedule of the AppTransitionWorker job.

4.2 The System for Feedback Collection
When dealing with the topic of implementing the chosen strategy for collecting
user feedback, great care was taken in order to integrate it as much as possible with
the existing classes and procedures that were already used inside RecApps, in order
reduce and optimize the amount of changes that needed to be done.

First, some attributes needed to be added to the PhoneSession class to represent
the newly acquired information, along with some flags to give further details about
the status of the session, and to the ContextType enumeration, in order to include
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other kinds of contextual information (i.e., the type of feedback element) inside the
content of the session.

The next challenge that was faced addressed the problem of designing an effective
interface for showing to the user the feedback form, in order to give an appropriate
amount of information regarding the past session, and present the possible options
in a clear and interesting way.

After the interface was completed, the application logic to determine if the form
needed to be shown to the user, and to propagate feedback information between
similar phone sessions was added to the operations performed when the phone is
unlocked, and a new phone session is about to start.

4.2.1 Changes to the Entity Classes
The PhoneSession class is the one that received the most changes and integrations
during the development of the new recommendation system, since it had to contain
various information about the user feedback, along with other utility flags and
attributes.

The values of the feedback elements that are assigned by the user after the
feedback form is shown are stored inside three String variables. Moreover, the day
attribute is used to compute the information about the day in which the phone
session was stored (i.e., from 0 to 21, the duration of the user study).

Finally, three boolean flags were introduced:

• completed to determine a session that already received feedback (or for which
the decision to not ask the feedback was taken);

• userFeedback to recover the sessions for which the user gave a feedback (used
in the user study analysis);

• changed to reflect potential changes to the local instance also on the remote
one stored in Firestore.

The ContextType enumeration received some updates as well, in the form
of the new values for distinguishing the different feedback elements in the ar-
ray of NamedItem elements inside each phone session. Specifically, the values
FEEDBACK_EMOTION, FEEDBACK_USAGE, and FEEDBACK_OVERALL were added.

The AppTransition class was changed to reflect the new additions to the content
of the phone session. More in detail, the same attributes used in the PhoneSession
class to represent feedback elements that are considered frequent inside the rule are
added, along with the relevanceScore attribute, to represent the ranking score
that is used when determining which active transitions are kept to show inside the
widget.
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Moreover, also the constructor of the class was updated, in order to store the new
information regarding feedback inside the attributes and the consequent, and the
compareTo() method was added in order to implement the Comparable interface
and provide a mechanism to sort the transitions based on the relevance score.

Finally, an implementation decision was taken in order to consider as valid
transitions also those that do not have an app inside their antecedent (e.g.,
{Home, 10 − 12, Entertainment} → {Y ouTube, Positive}), since they would rep-
resent a starting recommendation for when the user opens the home screen of the
smartphone.

To support this change, the getTransitionsWithoutAppContext() method
was added to the TransitionDao interface, in order to provide as output a List
containing only the transitions that do not start with another app.

4.2.2 The Form for Inserting Feedback
When developing an implementation for the feedback form that was previously
designed, the focus was on creating an interface that could appear over the usual
screen content, so that the user could receive the form regardless of the application
that was currently shown on the screen.

This consideration led to use a “Dialog Activity” approach, i.e., to show the
entire content of an Activity inside the space of a Dialog, which is usually smaller
than the entire screen size. This allowed to not cover the entire screen space while
showing the form, but to achieve a good amount of available space to show the
interface.

The FeedbackActivity class describes the user interface in which the feedback
form is shown. It keeps track of the choices of the user regarding feedback elements,
the referenced PhoneSession object, the available custom emotions (i.e., emotions
that were inserted by the user in previous answers to the feedback form) and the
used apps.

Its onCreate() method is used to complete the layout of the interface (i.e.,
giving it the right background and rounded borders), load the reference to the last
phone session and retrieve the previously inserted custom emotions.

The retrieval of the custom emotions has to be performed inside an AsyncTask
execution, because the database cannot be accessed from the main thread of the
application, due to potential long wait times.

The values of the feedback elements related to the last phone session, the
content of the session itself, and the other maintained values can be retrieved
and updated through some getter and setter methods, e.g., setUsage() and
getCustomEmotions().

Inside the activity layout, a single NavHostFragment element is placed. This
serves as a navigation controller, to transition between different fragments that
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show the different parts of the feedback form.
The navigation flow is implemented thanks to the Jetpack Navigation Library

[26], which allows to define navigation in a declarative way, as an XML resource
file describing a graph of screens. A transition between two fragments is expressed
through a navigation arc, which is labeled in order to be referenced in code.

Five Fragment instances are used to implement the layout of the feedback form:

• FragmentIntro shows a recap of the apps used in the last phone session, and
the possibility to start or skip the compilation of the feedback form;

• FragmentEmotion allows to choose an emotion value for the feedback, and
also to insert a custom emotion (both new or chosen among the ones that
were previously inserted);

• FragmentUsage allows to choose an usage value for the feedback;

• FragmentOverall allows to choose an overall judgement for the feedback
regarding the last phone session, ending the feedback collection procedure;

• FragmentFinal is the last shown fragment, and shows a brief animation while
the transitions are recomputed based on the last given feedback.

Forward navigation is made possible by either selecting one of the available
options within one of the screens, or with the “SKIP” button, which allows to
proceed without applying a value for one of the feedback elements in the phone
session. Back navigation, instead, is always performed with the “BACK” button,
which returns to the previous screen, while also resetting the selection, if there was
one.

The FragmentIntro class implements the graphic interface for the first fragment
of the navigation flow. It is used to provide an introduction to the feedback collection
to the user, and to allow the user to observe all the apps that were used inside the
considered phone session.

This, together with the usage time of each app, will give the user the possibility
to reflect about the last session, and to give a more precise feedback regarding its
content.

To recover the information about the used apps and their duration, the im-
plementation of the generateUsedApps() method, was considered. It generates
a HashMap object that associates each app with the a string that represents its
duration. This object is updated by each pair of corresponding AppEvent objects
contained in the input session (i.e., one for when the app is opened and the other
for when it is closed).

After each app usage time is computed, the map entries are formatted in order
to show the duration with both minutes and seconds.
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After the duration of each used app is computed, the resulting map is passed as
input to an AppUsageAdapter instance, a subclass of a RecyclerView, in order to
show them in a scrollable list. Each element to show is bound to a ViewHolder,
a graphical element that contains the details about a single data item. Figure
4.2a shows an example of the presented information about a phone session in the
introductory section of the feedback form.

The next fragment that is shown to the user is the FragmentEmotion (Fig-
ure 4.2b), in which the options for the FEEDBACK_EMOTION feedback element are
presented.

In this screen, the user has the possibility to insert an emotion that is not
present among the predefined ones. This can be done with the “Other” icon, which
in turn opens a CustomEmotionDialogFragment instance, as shown in Figure 4.1.

Figure 4.1: The content of the CustomEmotionDialogFragment, showing a
proposition for a custom emotion.

The interface shows an AutoCompleteTextView field, in which the user can type
in a value for the custom emotion. The object receives an ArrayAdapter of strings,
containing previous values of custom emotions that the user already inserted, so
that they can be proposed after the first character of the new emotion is inserted
(in order to avoid misspelling or case errors, and have always the same format for
the same emotion).
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The next two fragments are used to retrieve information about the main phone
usage during the session (FragmentUsage, Figure 4.2c) and the overall opinion
regarding the entire phone session (FragmentOverall, Figure 4.2d). After the last
screen is reached, and either an option is chosen or the selection is skipped, the
feedback collection for the considered phone session is completed, and the retrieved
information is prepared in order to be saved inside the PhoneSession instance.
Figure 4.2 shows the appearance of all the fragments that compose the feedback
form interface.

(a) FragmentIntro (b) FragmentEmo-
tion

(c) FragmentUsage (d) FragmentOver-
all

Figure 4.2: The complete layout of the four main fragments of the feedback form.

After the feedback collection procedure reaches the final step, the compu-
tation proceeds with the invocation of the finalizeResults() method of the
FeedbackActivity class. Its operations have the effect of inserting the feedback
information inside the PhoneSession object that was received by the Activity (i.e.,
both the attributes for the feedback values and the NamedItems to represent the
new information as input for the Apriori algorithm).

Next, if a custom emotion was inserted, its value is inserted into the local
database, in order to be suggested in future instances of the form. After this
operation, the phone session is updated inside the database, and the inserted
feedback is propagated to similar phone sessions that did not already have feedback
values.

After these operations are executed, a new screen is presented in the graphical
interface, the FragmentFinal class. It has the purpose of giving the user some
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visible feedback about a recalculation of the transitions and the feedback rules. An
animation and a message alerting the user that the recalculation is taking place are
shown, and after the operation is competed, another message reporting the success
of the procedure is presented. Figure 4.3 shows the two states of the screen.

(a) Recalculation in
progress

(b) Recalculation com-
pleted

Figure 4.3: A visual feedback informing the user that the recommendations are
being recalculated.

If the user does not start the feedback form compilation, the system reacts by
invoking the exitWithoutFeedback() method in the FeedbackActivity. Its pur-
pose is to assign a provisional null value to all the feedback elements of the session,
and then search for a candidate session from which to propagate the given feedback.
This last operation is performed thanks to the propagateFeedbackToSession()
method.

Another important feature was implemented in order to give users a clear visual
indication of the effect of their negative feedback. This means that, whenever
an overall negative feedback is given to a phone session, the apps that were used
inside that session are removed from the recommendations shown in the widget,
if present. The removeNegativeAppsFromWidget() method is invoked after the
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phone session is updated, and only if the user inserted the Negative value for the
FEEDBACK_OVERALL element.

This behavior, together with the visual feedback for the recalculation of the
transitions, has the purpose to make the user aware that the collected information
have a concrete impact on the computed rules and the suggested transitions.

4.2.3 Feedback Propagation to Other Sessions
As discussed in the Design chapter, asking the user for feedback only a limited
amount of times (i.e., based on a probability) would leave a small number of phone
sessions with feedback information, thus leading to rules involving this additional
information that are not frequent, and for this reason excluded.

These considerations supported the need to include a mechanism to propagate
the feedback that users give to a single phone session, in order to make it more
frequent among the collected data and include it into the resulting transitions.

Two similar mechanisms for feedback propagation were implemented, one for
“backward” propagation (i.e., from the considered session to past sessions) and the
other for “forward” propagation (i.e., from a past session to the considered session,
if left without any feedback).

After the user has inserted values for the feedback elements related to the
last phone session, those values are propagated to similar past sessions, with the
invocation of the propagatePhoneSessionContext() method.

The method retrieves from the internal database all the phone sessions without
any value for the feedback elements, and for each of them determines if the context
is similar with the one of the last phone session. If such comparison is successful,
the same values of the feedback elements of the last session are assigned to the
similar past sessions, which are then updated in the database.

The propagatePhoneSessionContext() takes advantage of two utility methods,
compareContext() and compareApps(), which are used together to determine if
the last phone session and one of the previous ones share the same contextual
information and the same used apps.

The compareContext() method performs a comparison between the two context
elements passed as arguments in String format. Such comparison is considered to
be satisfied if and only if the two values are the same, or if they both are null.

The compareApps() method, instead, needs to determine if the used apps in
the two considered sessions are the same. The first operation is to retrieve an
ArrayList of strings containing the names of the used apps for both sessions. Then,
the sizes of the two arrays are compared, in order to immediately return false if
the number of used apps is different between the two sessions.

If the number of used apps is the same, each app used in the first session is
then searched among those of the other session, returning false in case one of
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these searches does not find a match. If, after the loop ends, the method has not
terminated yet, it means that the two sessions have the same number of used apps,
and those apps are the same.

The propagateFeedbackToSession() method is intended for the “forward”
propagation, and works similarly to the previous method. The key difference is that
the list of candidate sessions is directly extracted from the ones that match the exact
same contextual information as the original session. This selection is performed
thanks to the getPhoneSessionsMatching() method of the PhoneSessionDao
interface.

After the sessions with similar context are found, each of them has its used apps
compared with the original session, and the feedback values of the first matching
session are propagated. This is done in order to propagate the feedback of the most
recent similar session.

4.2.4 The Logic for Showing the Form

After the interface for the feedback form and the strategies to propagate the
collected feedback were defined, the next implementation topic addressed the logic
to consider to decide whether to show the form or not.

Accordingly to the design choices, the adopted methodology involves a probability
to use in order to limit the frequency with which the form is shown.

The implementation influenced the onReceive() method of the ScreenListener
class, more specifically the part in which the ACTION_SCREEN_ON event is received,
since it corresponds to the start of a new phone session, and thus the feedback
form can be shown for the last terminated session. Its implementation is presented
in Listing 4.1

After the last phone session inserted in the database is retrieved, and the
probability to show the form is computed based on the settings managed by the
user, the checks to determine if the form can be presented are performed. First,
the considered session must not already have some feedback elements (i.e., to avoid
considering multiple times the same session, if the last one was not inserted), then,
the conditions for showing the form are evaluated, along with the extraction of a
random number to test against the feedback probability.

If all the checks are passed, a new Intent for the FeedbackActivity is created,
and the last phone session is passed as an extra argument. If, instead, the feedback
form is not shown for the selected phone session, and that sessions did not already
received any feedback, a search for candidate sessions from which to propagate the
feedback is performed, through the propagateFeedbackToSession() method.
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1 public void onReceive (final Context context , Intent intent ) {
2 if ( intent . getAction (). equals ( Intent . ACTION_SCREEN_ON )) {
3 /* ... */
4 PhoneSession last = AppDatabase . getLastPhoneSession (

context );
5 if (last != null) {
6 double feedbackProb = 5 * PreferenceManager .

getDefaultSharedPreferences ( context ). getInt (" feedback_freq ",
Constants . DEFAULT_FEEDBACK_FREQUENCY ) / ( double ) 100;

7 if ( PreferenceManager . getDefaultSharedPreferences (
context ). getBoolean (" feedback_always ", false))

8 feedbackProb = Constants .
TEST_FEEDBACK_PROBABILITY_ALWAYS ;

9 if (! last. isCompleted ()) {
10 if ( FeedbackAlgorithm . canIShowFeedbackForm ( context

)) {
11 if (Math. random () <= feedbackProb ) {
12 Intent feedbackIntent = new Intent ( context

. getApplicationContext (), FeedbackActivity .class);
13 feedbackIntent . addFlags ( Intent .

FLAG_ACTIVITY_CLEAR_TASK | Intent . FLAG_ACTIVITY_CLEAR_TOP |
Intent . FLAG_ACTIVITY_NEW_TASK );

14 feedbackIntent . putExtra (" session ", last);
15 context . startActivity ( feedbackIntent );
16 } else {
17 last. setCompleted (true);
18 FeedbackAlgorithm .

propagateFeedbackToSession (last , context );
19 }
20 } else {
21 last. setCompleted (true);
22 FeedbackAlgorithm . propagateFeedbackToSession (

last , context );
23 }
24 }
25 }
26 /* ... */
27 }

Listing 4.1: the additional content of the onReceive() method of the ScreenListener
class.

46



Implementation

4.3 Integrating Feedback into the Algorithm
To properly exploit the collected feedback information through the dedicated
interface shown to the user at the start of a new phone session, some changes needed
to be applied to the rule extraction procedure, specifically in the StatsManager
class.

The additional implementations addressed how the rules are filtered, based
on the new available information that can be contained inside them, the newly
introduced “feedback rules” to compute correlations between feedback elements, and
the algorithm to compute the relevance of the available transitions, and determine
the most meaningful content to fill the widget with.

4.3.1 Adding feedback to association rules
The buildTransitions() method is in charge of producing the association rules,
by means of the Apriori algorithm, from the collected PhoneSession objects. A
fundamental change was implemented in order to exclude from the entire procedure
those sessions that are not completed yet, i.e., for which a decision on whether or
not to ask for feedback has not been taken.

This result can be obtained by checking the isCompleted() method of the
PhoneSession class, which is a getter method for the completed property.

While the getRules() method, used to generate the association rules from
the NamedItem object inside each session, remained unchanged, additional checks
needed to be implemented in the filterRules() method, since the presence of
new kinds of information inside the rules could lead to badly formatted rules that
made no sense.

To detect and exclude wrong rules, other boolean flags were added inside the
method, and tested at the end of its execution to check if the rule could be added
to the rule set. Specifically, the new conditions included:

• rules with an element of type FEEDBACK_OVERALL inside the body (indicated
by the flag overallInBody) are excluded, since that kind of information is
the consequence of all the other contextual elements;

• rules that have no apps inside the head (flag noAppsInHead) are excluded, a
plausible situation now that new elements other than those of type APP can
appear inside a rule’s head;

• rules with an element of type FEEDBACK_EMOTION or FEEDBACK_USAGE inside
the head (flag contextHead) are excluded, since those kinds of information
serve as context for the elements in the rule’s consequent;
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• rules with at least an element of type FEEDBACK_EMOTION or FEEDBACK_USAGE
inside the body (flag contextInBody) are allowed, since now the rules with
no apps in the context are considered to be valid.

After all the tests are executed and the value of each flag is assigned, the final
condition checks if all the flags are false, with the exception of contextInBody,
since it represents a situation that should be accepted. If the final check is satisfied,
the rule is added to the final set, that is finally returned.

Another additional implementation introduced the FeedbackRule class, a spe-
cialized association rule that describes correlations between feedback elements
in phone sessions. Specifically, the antecedent can contain a single element of
type FEEDBACK_EMOTION or FEEDBACK_USAGE, while the consequent is represented
through an element of type FEEDBACK_OVERALL.

The procedure for generating these new rules is almost the same as for the
traditional association rules, but the confidence threshold was lowered to a smaller
value, in order to compensate the smaller amount of available feedback information.

Inside the buildFeedbackRules() method, only the phone sessions with at
least a feedback element are kept and passed to the Apriori algorithm. Then the
resulting set of sessions is used to extract the feedback rules that will generate the
AppTransition objects to store in the internal database.

Similarly to the traditional rules, the new feedback rules need to be filtered, once
extracted, in order to exclude potential results that have no meaning, such as rules
with a FEEDBACK_OVERALL element in the antecedent or with the other two kinds
of elements in the consequent, since the purpose of feedback rules is to evaluate
the relationship between a specific feedback element and the “general” evaluation
given by the user.

Both the extracted transitions and the feedback rules are saved in the local
database with the dedicated methods, which are the refreshTransitions() and
refreshFeedbackRules() methods.

4.3.2 Using feedback to promote meaningful Suggestions
The second fundamental aspect to consider in order to implement an effective
integration mechanism for the collected feedback information inside the recommen-
dation procedure is to define how the feedback influences the process of showing
certain app switching suggestions inside the floating widget.

As decided in the design phase, the chosen methodology to implement this
behavior was to rank all the possible transitions according to their “relevance”, i.e.,
how much they reflect behaviors and habits that are positive and meaningful for
the user.

This strategy exploits some of the methods implemented inside the newly added
FeedbackAlgorithm static class, which owns also the other methods that are used
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in the previous phases of the feedback collection procedure.
The root of this entire logic is in the onAccessibilityEvent() method of

the AppMonitor service, in which the opening of a new app is detected, and the
potential transitions that should be activated given that app and the current context
are passed to the widget in order to show their icons.

First of all, the procedure should be made able to continue even if the opened
app is the launcher application of the smartphone. This is done by testing the
result of the amItheLauncher() method of the AppUsageStatistics static class.

Next, the set of available FeedbackRule objects is retrieved, along with the
appropriate set of candidate AppTransition, based on whether the detected app
was the launcher or not, which are also filtered to leave only the active ones (i.e.,
for which the contextual information matches the current ones).

After this loading phase, the “feedback algorithm” is actually executed, with
the invocation of the computeBestTransitions() method.

The computeRelevanceScore() method, reported in Listing 4.2, is the one in
charge of determining the score to assign to each transition, which will determine
its position in the final ranking to take only some of them and show them in the
widget. Its code considers each feedback element of the transition, one at a time,
and determines its contribution to the score. The overall value directly brings a
+1 or −1 to the score, while the emotion and usage values are searched inside the
body of the feedback rules, and if a match is found, then the value of the consequent
(retrieved through the isPositive() method) determines the contribution.

Since different transitions with different values for their relevance score can
instead suggest the same app, thus potentially excluding some potential recommen-
dations from the final list, it is important to remove any duplicate transition from
the list prior to making this selection.

This operation is performed inside the removeDuplicates() method, which
loops over all the transitions, and for each of them searches for other transitions
with the same app in the consequent. Each found transition is removed from the
candidate list, since it has a lower relevance score than the original one.

4.4 Further changes to the app
In addition to the main design and implementation for improving the meaningfulness
of the recommendations in the new system, other utility features were considered
and implemented inside RecApps.

4.4.1 A screen for recent sessions
This screen was designed by taking into consideration the possibility that the user
would not immediately answer to the feedback form, thus depriving the system of
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28 private static Integer computeRelevanceScore ( AppTransition
transition , ArrayList < FeedbackRule > feedbackRules , Context
context ){

29 Integer score = 0;
30 if( transition . getEmotion () != null){
31 String emotion = transition . getEmotion ();
32 for( FeedbackRule rule : feedbackRules ) {
33 if ( emotion . equals (rule. getBody (). getName ())) {
34 if (rule. isPositive ( context ))
35 score ++;
36 else
37 score --;
38 }
39 }
40 }
41 if( transition . getUsage () != null){
42 String usage = transition . getUsage ();
43 for( FeedbackRule rule : feedbackRules ) {
44 if (usage. equals (rule. getBody (). getName ())) {
45 if (rule. isPositive ( context ))
46 score ++;
47 else
48 score --;
49 }
50 }
51 }
52 for( String el : transition . getConsequent (). keySet ()){
53 if(el. equals ( context . getString (R. string .

feedback_overall_positive )))
54 score ++;
55 else if (el. equals ( context . getString (R. string .

feedback_overall_negative )))
56 score --;
57 }
58 return score;
59 }

Listing 4.2: the computeRelevanceScore() method.
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important additional information that can improve the future transitions.
This is also reinforced by the fact that the feedback form does not have a

100% probability of being proposed to users, and so loosing information not only
because of the limited frequency with which it is collected, but also due to the
unwillingness of the user to provide the feedback would have proven too harmful
for the procedure.

For this reason, a new screen providing information regarding the most recent
phone sessions was implemented and added to RecApps, in order to give users a
tool for reviewing past sessions and eventually give feedback to some of them.

The SessionsFragment class is an instance of Fragment that shows a list of
the 10 most recent retrieved PhoneSession objects. The interface exploits a
SessionsListAdapter, an instance of the RecyclerView class, in order to show
the details of each session, e.g., the used apps, the contextual information and
the eventual feedback that was assigned to the session. Figure 4.4a shows the
appearance and content of the SessionsFragment layout.

The behavior of allowing the user to edit or add the feedback for a past phone
session is obtained by showing an instance of the UpdateFeedbackDialogFragment.
Its content shows three inputs that initially contain the original value for each
feedback element (or the “No value” placeholder), which can be changed in order
to update the feedback.

The new updated values for the feedback elements of a session will be propagated
“backwards” in all the previous phone sessions that did not already receive the
feedback, and only if those sessions match the context and used apps of the modified
one.

Figure 4.4b shows the appearance of the UpdateFeedbackDialogFragment that
appears when the user selects one of the past phone sessions to change or assign
the values regarding its feedback.

The logic for reacting to the confirmation of the new values for the feedback
elements of a phone session is contained inside the onDialogPositiveClick()
method, implemented by the SessionsListAdapter that displays the details of
each phone session. The first operations to perform are the substitutions of the old
feedback values with the new ones. Together with this, also the NamedItem related
to the old feedback value needs to be removed, and eventually replaced with a new
instance derived from the new value.

After the local update, the phone session needs to be updated also in the
database, and the new inserted values are propagated to other sessions. Next,
the most recent phone sessions are retrieved again, and a procedure aimed at
updating the visual content of the list is executed. This algorithm is based on the
DiffUtils callback, which computes the differences between two lists of objects,
and propagates the appropriate changes to the visualized elements in order to
represent the second set of values.
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(a) SessionsFragment (b) UpdateFeedback
DialogFragment

Figure 4.4: The interface of the SessionsFragment (a) and the DialogFragment
used to update the feedback for a phone session (b).

4.4.2 The settings screen

The last major addition that was put inside the original RecApps application in
order to implement the new and improved recommendation system was a settings
page, through the SettingsFragment class (Figure 4.5).

The need for such a tool comes from the fact that some of the other implementa-
tions require some form of control by the user, in order to customize their behavior
and adapt it to the user’s needs.

For example, the user may want to reduce the probability with which the feedback
form, since they find it to intrusive for the normal phone usage. Another case that
supports the introduction of a settings page can be found in the original RecApps
study, which reported that the average number of applications that could be found
inside the widget was 3, and when the number of icons was higher, this caused
issues with usability of the entire smartphone screen [4].

A plausible solution to the problem is to give users the possibility to limit the
number of recommendations shown inside the widget, in order to avoid accidental
use and to fully exploit the functionalities of the feedback algorithm, which is able
to select the best N transitions to fill the widget.

The RecApps preference screen was implemented with the root_preferences
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Figure 4.5: The newly added settings screen of RecApps.

XML file that describes the various controls and their properties, which are then
displayed inside the SettingsFragment class.

The chosen options that the user is able to control include:

• the probability of showing the feedback form, in a scale from 1 to 5 (each unit
corresponds to 5%, so the range of probabilities is 5% − 25%;

• the number of recommendations to show inside the widget, form a minimum
of 1 to a maximum of 3, based on the conclusions emerged in the previous
RecApps study;

• the number of sessions to show in the SessionsFragment

To retrieve and use the value of one of the preferences, the PreferenceManager
class is used, in order to get the value of one of the properties given its key, that is
defined in the XML configuration file.
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User Study

This chapter presents the structure ad goal of the user study that was conducted
after the developing of the new recommendation system was completed.

The goal of the study was to evaluate how the newly designed feedback algorithm
and its method and classes would influence the transitions generation procedure,
and help in promoting more meaningful suggestions, potentially improving the
quality of the time spent using the smartphone.

Since the new system for recommendations was developed by taking the original
RecApps mobile application as a starting point, the study to assess its effectiveness
was structured in the same way as the one that was presented in [4].

Indeed, most of the initial preparation (e.g., number of participants, study
structure and data collection) followed the same strategies of the original study.

However, the main focus was not on whether users would interact with the
system, but if the introduction of the feedback collection procedure helped in
producing suggestions that reflected the participants’ idea of meaningful usage,
thus contributing to their digital wellbeing.

5.1 Participants
The participants for the study were recruited exclusively by contacting personal
acquaintances, for a total of 16 people (8 male and 8 female).

Participants were on average 28.06 years old (SD = 11.52), and their profession
was almost equally distributed between university students (9) and workers (7).

5.2 Method
The study was run between July and August 2022, for a total duration of three
weeks. The RecApps apk was distributed to participants through communication
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apps, along with instructions on how to proceed with the installation and give all
the needed permissions, and then installed on their smartphone.

The study structure was the same as the original one, with the first week
(baseline phase) dedicated only to the background collection of phone sessions and
feedback, and the last two weeks (RecApps phase) in which suggestions were shown
inside the widget, and periodically recalculated based on more recent data and
feedback information.

5.2.1 Data Collection and Metrics
During the entire duration of the study, usage data of the participants was collected
in an anonymous form and stored inside Cloud Firestore [27], a document-based,
NoSQL database owned and supported by Google. Each day, periodically, the app
uploaded all the local usage data on the Firestore instance associated with the
RecApps project, inside the collections corresponding to the correct user.

The collected data was organized for each participant, and included information
about each phone session (e.g, timestamps, used apps, contextual information,
added feedback), and the transitions that were proposed as icons in the widget (e.g.,
the contextual information of the transition, the consequent apps, the associated
feedback information, a flag to determine if the transition was used).

After the three weeks of data collection, the available information was analyzed
to extract values for some objective metrics regarding the phone sessions and used
transitions, which included:

• Duration, i.e., of the average duration of smartphone sessions performed by
users;

• Unique Apps, i.e., the number of distinct apps that were opened and used
during a single phone session;

• App Openings, i.e., the average number of times an app was opened by a user
during a phone session;

• Used Widgets (%), i.e., the percentage of occurrences of an app that was
opened by using the corresponding icon when shown inside the widget.

In addition to the presented metrics, further analysis was conducted in order to
analyze the effectiveness of the feedback system, specifically:

• Suggestions impact on feedback, i.e., comparing the percentage of negative or
positive feedback between week 1 and weeks 2-3;

• Suggestions impact on switching behaviors, i.e., determining if using the widget
during a positive session prevented from replicating a similar negative session;
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• Feedback impact on future suggestions, i.e., determining if, after a positive
(negative) feedback, the suggested apps that were involved in the corresponding
session were proposed more (less) frequently.

5.2.2 Qualitative Feedback from Users
After the three weeks of the study were concluded, a final survey was proposed to
the participants, in order to gather qualitative feedback about their experience with
the app and the proposed recommendations. The first questions were inspired by
the ones that were included in the original study, while others were added in order
to obtain information about the feedback collection.

The complete list of open-ended questions is the following:

• How was your overall experience with RecApps? Did you like it? Did you find
any advantages or disadvantages?

• Did you use the recommendations that were proposed in order to open apps
or to switch between two of them?

• Has RecApps changed the way in which you use your smartphone?

• What do you think about the feedback collection of RecApps? Did you find
necessary to lower its frequency? Do you think that the proposed questions
and options best described your opinion regarding the phone session?

• It seemed to you that the received recommendations reflected the feedback
that you were giving?

• Do you have any suggestions to improve RecApps?
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Results

The following chapter covers the results obtained from the user study conducted
to evaluate the effectiveness of the new recommendation system based on using
feedback in order to improve the meaningfulness of the proposed transitions.

First, the objective metrics derived directly from the analysis of the collected
data of the participants is discussed, and then a summary of the qualitative feedback
provided by participants in the final interview after the study is reported.

6.1 Results given from Objective Metrics
In this section, the analysis of the objective metrics extracted from the collected
user data is divided into two parts:

• the evaluation of the same metrics that were used in the first RecApps study
[4], in order to maintain continuity and verify how the newly designed system
performs compared with the original version;

• the evaluation of the new metrics related to the feedback elements and their
effects on recommendations and phone sessions.

6.1.1 Evaluation of the Original Metrics
On average, each participant used the widget to open a suggested application
(both from the home screen and from another app) 69.69 times (SD = 56.41,
median = 53.00) and, on a daily basis, the average amount of used widgets was of
6.88 (SD = 7.75, median = 5.00). Furthermore, the overall usage percentage of
the widget, considering all the users, resulted in a value of 3.18%.

As shown in Figure 6.1, the percentage of daily usage of the widget seemed
to slowly decrease over time, as the study progressed. Since it does not reach
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values too far from the average, this trend should not be caused by malfunctions
of the algorithm, but rather because of a sense of frustration due to the widget
covering important portions of the screen, as reported in many answers in the final
interview:

“The only negative aspect that I noticed is that the widget with the
recommendations is always displayed on the screen, it would be nice
to be able to hide it entirely in some occasions.” (P3)
“A quite obvious disadvantage was the combined presence of the RecApps’
widget and another overlay interface that is displayed when using mobile
games, since they occupied two different portions of the screen. Sometimes,
I needed to act in positions of the screen where the widget was placed,
and so its presence disturbed the experience a bit.” (P9)

Figure 6.1: The daily percentage of used widgets, showing a slightly decreasing
trend for this metric throughout the study.

Focusing on the number of displayed icons inside the widget, the majority of
the widgets was shown with 1 or 2 icons inside it (∼ 30% and ∼ 40% respectively),
as reported in Figure 6.2a.

Unfortunately, despite the use of the shared preferences inside the application, in
order to let the user set the maximum number of recommendations to show inside
the widget (or fixing it to a default value of 2), some widgets of size greater than
3 were displayed during the two weeks of recommendations. These occurrences,
however, can be seen as outlier cases, since their total percentage is very low.

The number of icons displayed inside the widget was found to influence the
probability of using the widget when it had that amount of apps shown inside.
Figure 6.2b shows that the widget was used the most when it contained 2 or 3
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apps, with the percentage quickly decreasing when the number of apps was higher.
This behavior is once again confirmed by the final interviews of the users, which
highlighted how the widget could sometimes appear in uncomfortable positions
inside the screen.

“One single issue that I experienced is that the buttons with the icons
sometimes appears in inconvenient positions.” (P4)

“Having a widget with many apps always visible on the screen sometimes
obstructed the viewing of other content, like when using YouTube or
Netflix.” (P8)

(a) Distribution of widget size

(b) Usage of the widget given its size

Figure 6.2: The analyzed information about the widgets’ size: the overall distri-
bution of the various sizes (a) and the percentage of use of each widget in relation
with its size (b).
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Another part of the analysis that was conducted as a parallel with the original
study addressed if and how the introduction of the widget and the recommendations
shown therein affected the smartphone usage by the participants.

The median duration of a phone session slightly changed from 4.01 minutes
during the first week of the study (the baseline phase) to 4.83 minutes during
the following two weeks (the RecApps phase). However, the result of a Wilcoxon
Signed-Ranks test [28] (i.e., a nonparametric test that compares two correlated
data groups, with the goal of rejecting the null hypothesis that there is no difference
between the two groups) did not reveal notable differences between the two sets of
values. The summary of the analysis about sessions’ duration is reported in Table
6.1.

Table 6.1: The effect of RecApps and its widget on the average duration of the
collected phone sessions, along with the p value of the Wilcoxon Signed-Ranks test.

Baseline RecApps

Median Range Median Range p

Duration [min] 4.01 [1.97 - 66.77] 4.83 [2.36 - 44.62] 0.231

Looking at the changes in the average number of unique apps in a single session
(i.e., the set of distinct applications that a user opened during a phone session)
and the average number of app openings inside a session (i.e., the number of apps
that were shown in the foreground during a smartphone usage session), the former
slightly increased from 1.61 (SD = 0.18) to 1.70 (SD = 0.13), and a similar trend
was also followed by the latter, moving from 6.31 (SD = 1.58) to 6.54 (SD = 3.73).
Again, the resulting p values of the Wicloxon Signed-Ranks tests performed on the
two sets of statistics did not point out any relevant correlation.

Table 6.2 brings together the results regarding the statistics of unique app
openings and total app openings inside a phone session.

Finally, the influence of RecApps on the frequency of the most common app
switches was taken into account. The three most common patterns that were
considered resulted to be:

• WhatsApp to Instagram and vice versa (shown in a total of 2,677 widgets);

• Facebook to WhastApp and vice versa (shown in a total of 2,246 widgets);

• Telegram to WhatsApp and vice versa (shown in a total of 1,339 widgets).

Out of the three analyzed transitions, only the one involving switching between
Facebook and WhastApp resulted to be more frequent on average during the
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Table 6.2: The effect of RecApps and its widget on the average numbers of unique
app openings and overall app openings, along with the p values of the Wilcoxon
Signed-Ranks tests.

Baseline RecApps

M SD M SD p

Unique app openings [#] 1.61 0.18 1.70 0.13 0.632

Overall app openings [#] 6.31 1.58 6.54 3.73 0.159

RecApps phase (M = 2.43, SD = 2.50 vs. M = 4.17, SD = 6.49). However, no
statistical relevance was found in this increase (p > 0.05).

To better understand the plausible cause of these trends, also the feedback
given to the phone sessions including each pair of apps was considered. The results
highlighted that, for example, in the case of the “WhatsApp-Instagram” transition,
there was not a clear majority of positive feedback, probably not high enough to
cause an evident increase of propositions of that transition.

A more definite difference was instead found for the “Facebook-WhatsApp”
transition, thus potentially explaining why the number of transitions from one app
to the other increased over time.

As of the last considered transition, “Telegram-WhatsApp”, the high difference
between the positive and negative feedback was due to the scarce amount of
feedback information related to the sessions that included said transition.

The results obtained from the analysis of the most common switching behaviors
and the effect of RecApps over those transitions are reported in Table 6.3.

Table 6.3: The effect of RecApps and its widget on the most common app
switching behaviors of the participants, , along with the p values of the Wilcoxon
Signed-Ranks tests.

Baseline RecApps Feedback

M SD M SD POS NEG p

{WhatsApp, Instagram} [#] 5.59 7.90 4.48 7.64 63.43% 34.57% 0.588

{Facebook, WhatsApp} [#] 2.43 2.50 4.17 6.49 80.00% 20.00% 1.000

{Telegram, WhatsApp} [#] 4.46 4.59 2.31 1.61 98.04% 1.96% 0.203

The last interesting analyzed aspect refers to the “overlooked transitions”, i.e.,
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those transitions that were not directly activated by users through the widget, but
whose consequent app was manually opened at the same time that the app was
shown in the widget.

This means that, by considering both the amount of used transitions and
“overlooked” ones, a global overview of the system’s ability to represent and recognize
users’ behaviors and usage patterns can be obtained.

Overall, 11.01% of transitions were “overlooked” by users and, on average, each
of them ignored 241.19 (SD = 325.52) transitions, while still manually opening the
suggested app. Combining this result with the overall frequency of use leads to a
total of 14.19% of the suggestions that were either used or “overlooked”, giving an
overall estimate of the accuracy of the obtained system.

6.1.2 Evaluation of Metrics Related to Feedback
Overall, participants answered to the form for feedback collection 8.51% of the
times. Such a limited interest in providing feedback information for the recent
phone sessions could be caused by the fact that the methodology with which the
form was shown to users was (almost) totally statistical (i.e., based on a probability).
In fact, there was no dependency with the current context or with the content of
the phone session that enriched the decision process, and this may have led users
to skip the form more easily, as reported in some of the final interviews:

“I sometimes skipped the feedback form entirely, by lack of will or by
accident, since I was already tapping on the screen to do other actions
and tapped on the ‘Exit’ button instead.” (P2)
“The feedback collection was undoubtedly important, but I did not always
provided the feedback when asked for, especially if I was at work.” (P4)
“Sometimes the feedback requests appeared in moments in which I was in
a hurry, and could not answer.” (P5)

Analyzing the impact of RecApps on the overall feedback given by users, no
evident effects emerged, as shown in Table 6.4. On average, both the number of
positive and negative feedbacks given by users slightly decreased (32.06 vs. 31.44
and 5.69 vs. 4.94). The fact that the negative feedbacks did not decrease may be
explained by the will of the users to “guide” more accurately the recommendation
process, giving negative feedback to avoid certain apps among the suggested ones
inside the widget.

Focusing on whether the presence of the widget managed to avoid the repetition
of switching behaviors that were considered negative by users, no results were
obtained, due to data scarcity. Unfortunately, the collected amount of data about
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Table 6.4: The effect of RecApps and its widget on the overall feedback given
by users to the collected phone sessions, along with the p value of the Wilcoxon
Signed-Ranks test.

Baseline RecApps

M SD M SD p

Positive sessions [#] 32.06 46.51 31.44 32.00 0.821

Negative sessions [#] 5.69 12.39 4.94 10.08 0.553

sessions and transitions was not enough to provide results, given the restrictive
conditions that were needed to extract the results.

In fact, the procedure needed to find all the sessions with positive feedback and
in which a widget was used (only a total of 126), and for each of them extract the
transitions that were used and the apps that were opened before the widget was
activated. Then, for all the negative sessions that were completed before the first
one, only the ones whose apps all appeared in the original session contributed to
the total count.

This complex procedure led to a total of 0 avoided negative switches, but
probably this result was caused due to the small amount of available data compared
to the precision needed by the search.

Finally, the effectiveness of the feedback mechanism for replicating positive
sessions and avoiding negative sessions was evaluated. The goal of this analysis was
to determine if, after a positive feedback on a phone session, the apps involved in
that phone session were used more often, potentially due to the recommendations
taking into account the positive feedback, and also testing the reverse conditions
for negative feedbacks.

The results confirm the expected trend, with apps included in a positive session
being used on average 854.5 (SD = 2142.82) times before the feedback and 1272.5
(SD = 2104.74) times after the same feedback, and on the other hand the apps
included in a negative session being used on average 1555.0 (SD = 1771.44) times
before the feedback and 1370.0 (SD = 1925.77) times after the feedback. Moreover,
a Wilcoxon Signed-Ranks test revealed significant differences (p < 0.05) in number
of apps used before and after a positive feedback, when considering the effects of
RecApps.

Table 6.5 shows summarizes the results of this analysis, showing how a positive
or negative feedback effectively influenced the number of sessions that contained
the same apps.

The analysis of this last metric provided results that support the idea that

63



Results

Table 6.5: The effect of RecApps and its feedback mechanism on the amount of
sessions that included the same apps of the evaluated session, along with the p
value of the Wilcoxon Signed-Ranks test.

Before After

Median SD Median SD p

Positive feedback [# of uses] 854.5 2142.82 1272.5 2104.74 0.018

Negative feedback [# of uses] 1555.0 1771.44 1370.0 1925.77 0.704

including feedback in the recommendations of the system helped in supporting the
interactions that the participants found most useful.

6.2 Results Given from Qualitative Feedback
Out of the 16 participants to the user study, only two of them reported a neutral
or mostly negative experience with the use of RecApps. This was, as stated by
them, mostly due to technical problems that were found during the test, or for
having the app installed on an old smartphone.

“Personally, I did not find RecApps excessively useful, since I tend to use
a few apps that I already have close together on the screen. Overall, it
was useful to ease switching between different apps, but I also experienced
some malfunctions, like when recalculating the recommendations or having
large delays when moving the widget on the side of the screen.” (P1)
“I had a mixed experienced with RecApps. I liked the app itself, but some
negative aspects made me feel a mostly negative experience. My device is
quite old and has very little available RAM, so having RecApps always
active cause several crashes and freezes for the entire phone.” (P8)

Aside from the issues that worsened the perceived experience, the rest of the
participants found RecApps a very useful tool to move quickly between certain
applications, with some of them even stating that they would not mind having the
app always installed on their smartphone (U2, U7 and U9).

Regarding the precision of the recommendations and the capability of the
system to “learn” the participants’ habits and reproduce them based on contextual
information, all the participants were satisfied.

“I tended to use the recommendations almost each time they were showing
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an app that I would have used. The more I was using certain apps, the
more easily those apps were included among the suggested ones.” (P3)
“After a week or so I started to receive suggestions, and after a few days
they became even more adherent to my habits.” (P5)
“I managed to ‘get the app used’ to my habits, so that it could recommend
them to me. In fact, I often managed to use RecApps to switch from one
communication app to another, to the mailbox and, sometimes, a social
app.” (P9)

Some users even found the experience with RecApps useful to reflect on their
habits when using the smartphone (P4, P5, P6), or at least confirmed some patterns
and behaviors that the user was already aware of (P2).

The general perception about the added feedback mechanisms was that it
proved able to improve the recommendations, which in turn were able to match
the provided feedback.

6.2.1 Feedback Frequency
Most of the participants found that the default frequency with which RecApps
asked for feedback was adequate, while some others (P1, P8, P12) decided to lower
it immediately.

“I lowered the frequency for the feedback, since due to some problems the
entire procedure was becoming slower and slower, and if I needed to do
something with the smartphone it would have become problematic to wait
for so long.” (P1)

Other participants, instead, opted to lower the frequency after some time had
already passed, in order to let the algorithm collect more initial feedback to produce
the first recommendations:

“I lowered the frequency after the algorithm had received a good amount
of information.” (P7)
“After a week from the beginning of the recommendations, I changed the
rate of the feedbacks, since I found that the app combinations that were
present at that time were useful enough.” (P9)

Another interesting comment addressed the possibility to not ask immediately
for feedbacks (i.e., once the next phone session begins), but to send a notification
each day to bring the user to the screen with all the recent phone sessions, and let
the user manually insert the feedback in that way.
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6.2.2 Content of the Feedback Form
The content of the feedback form (i.e., the questions that were asked to collect each
kind of feedback information, and the available options) was considered adequate
in most of the occasions, although some participants found it difficult to describe
their experience in certain occasions through the available answers.

Participant P1, for example, reflected on the fact that some of the options for
the same question could have been merged together, while P11 felt like a “neutral”
option for the overall feedback regarding a phone session was missing.

6.2.3 Feedback Effectiveness on Recommendations
Adding feedback information to the collected data proved useful in order to promote
more meaningful interactions with the smartphone.

Thanks to the analysis of the feedback and its integration in the recommending
phase, it was possible for certain users to avoid some behaviors that they detected
and considered negative.

“I often performed some ‘compulsive’ checking on certain applications,
and of course those apps were included in the phone sessions. Thanks to
giving a negative feedback to those sessions, those apps were not suggested
when I opened the other ones.” (P2)

In other occasions, the recommendations were used as a sort of “memo” in order
to remember to open certain apps in certain conditions.

“I found this app useful as a ‘memo’ tool, that reminded me to use certain
apps that were shown in the widget, in some situations in which I had to
do something important, like a phone call.” (P10)

Overall, participants were satisfied with how the inclusion of feedback managed to
influence the received recommendations, and keep them from receiving suggestions
about apps that they judged in a negative way.

6.2.4 Suggestions to Improve RecApps
Although they were mostly satisfied with their experience with RecApps, many
participants were eager to share some tips that they found useful to further improve
the recommendation system.

For example, a common thought addressed the possibility to hide the floating
widget (or temporarily “suspend” its presence on the screen) when using certain
applications. Despite working against the core mechanism of RecApps (i.e., to show
the widget with the recommended apps as soon as a new application is opened),
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users reasoned on the fact that, in certain situations (e.g., when watching a video
on YouTube), having the widget still present on the screen even if it has been
closed is somewhat unnecessary.

Another interesting improvement that the participants thought of involved the
possibility to differentiate the feedback for each app included in a single phone
session, in order to better formulate the transitions and apply separate feedbacks
to different portions of that session.

Finally, an alternative design for the feedback interface and collection method
was proposed, in the form of a less intrusive interface, with less questions and
options. Specifically, participant P2 suggested that the collected feedback may only
include the overall opinion, which should be asked through a simpler and smaller
interface, in order to take less time to compile, and potentially make it easier for
users to provide a feedback.
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Chapter 7

Conclusions and Discussion

This thesis provided a combined perspective on the topics of app switching and
digital wellbeing, highlighting how the works that address the former subject tend
to not take into consideration the latter. More specifically, usual app switching and
recommendation systems tend to work without including information coming from
the final user, thus potentially disregarding their digital wellbeing and promoting
unhealthy behaviors that will instead be consolidated.

The new recommendation system based on the RecApps application that was
presented and evaluated for this thesis, was designed with a greater focus on how to
privilege users’ digital wellbeing, and how to find effective mechanisms to improve
and make the suggested shortcuts more meaningful for them.

After a literature analysis on the topic of digital wellbeing and technology overuse,
which helped establish the most useful criteria that a system for monitoring and
improving the smartphone usage, the chosen strategy was to collect user feedback
regarding single phone usage sessions, and include it in the procedure that produced
the transitions to show inside the floating widget.

The resulting system was evaluated during a three-week in-the-wild user study
with 16 participants, and the results shown that the newly implemented features
and mechanisms were considered useful by most of the users. Specifically, being
able to receive recommendations that matched the given feedback, and potentially
control the content of the suggestions through the appropriate feedback, helped
the users both in spending their time with the smartphone in a more meaningful
way, and in reflecting about how much time is potentially wasted when using the
smartphone, thus making the decision to reduce it.
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7.1 Limitations and potential improvements
Despite being appreciated by the participants of the study, and having proved
the effectiveness and usefulness of the implemented strategies, the presented rec-
ommendation system still had some limitations, that could be resolved in future
versions, along with potential and useful improvements that could be performed on
the resulting system.

First of all, as many participants reported, the possibility to hide or disable the
floating widget for limited amounts of time, or when using specific applications,
may prove to be useful. Despite going against the core mechanisms or RecApps
(i.e., present a set of possible apps to transition to, after a new application is
opened), this may have a positive impact on users’ digital wellbeing, since it would
improve their experience when using certain applications, instead of making them
feel frustrated since the content is obstructed with a floating widget that they are
not using.

Next, even if the feedback strategy was considered useful and effective in order to
restrict the set of possible transitions that are proposed to users, and keep only the
most meaningful ones, according to them, there is still some space for fine-tuning
it. Even if its purpose and effectiveness were clear to users, they also reported that
they often avoided providing feedback due to the interface appearing in moments
during which they had other important matters to attend with their smartphones.
This suggests that a smaller and simpler interface for a quicker feedback could be
used more frequently by users, since it would not obstruct more important usages of
the phone, and may also encourage them to provide their feedback more frequently.

Another interesting modification should address the possibility to assign different
feedbacks to distinct sets of apps inside the same phone session. This should improve
the precision of the algorithm, since it would have more precise feedback at its
disposal, making it even easier to detect negative and meaningless patterns, and
instead promote those that users consider the most useful.
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