
POLITECNICO DI TORINO

Master degree course in Data Science and Engineering

Master Degree Thesis

Differentiable Neural
Architecture Search Algorithms

for MLPerf Tiny benchmarks

Supervisors
Prof. Daniele Jahier Pagliari
Dr. Matteo Risso
Dr. Alessio Burrello

Candidate
Fabio Eterno

matricola: 286787

Anno accademico 2021-2022

A Isabella e Ugo

Summary

Nowadays, Artificial Intelligence (AI), especially in the form of Machine
Learning (ML) and Deep Learning (DL), is becoming the go-to approach
to solve complex problems in several sectors such as Computer Vision (CV),
Speech Recognition, Natural Language Processing (NLP) and many others.
Despite the huge effort spent by public and private actors to reach state-of-
the-art results, the design of Deep Neural Networks (DNNs) is still a manual
process heavily based on empirical rules and heuristics, thus requiring de-
signers with strong expertise.

This inspired researchers to define a new set of algorithms called Neural
Architecture Search (NAS). NAS algorithms are becoming very popular in
the MLPerf Tiny/TinyDL domain where the choice of the specific ML/DL
model structure is of primal importance. Indeed, deploying DNNs on tiny
devices (e.g., small microcontrollers, IoT nodes, etc.) requires considering
not only the final accuracy reached by the model, but also the hardware
constraints in terms of memory footprint, latency, and energy consumption
related to the target device.

This thesis focuses on the development of a toolkit to facilitate future
developers in the training and evaluation phases of a family of state-of-the-art
NAS techniques called mask-based Differentiable NAS (DNAS) for MLPerf
Tiny use-cases.

First, this thesis pursues the development of FlexNAS i.e., a flexible li-
brary for testing and comparing different DNAS techniques. In particular, a
complete set of unit-tests has been designed to verify the correct behavior of
different steps involved in the search-phase of DNAS.

Second, we consider the industrial grade MLPerf-Tiny benchmark suite.
The tasks therein represent industrial-relevant use-cases for which it is rel-
evant to explore and measure the trade-offs between accuracy, latency, and
energy of DL networks when deployed on embedded devices. This bench-
mark suite has been originally developed in TensorFlow. Due to the different

4

libraries involved (PyTorch for FlexNAS and TensorFlow for MLPerf Tiny
benchmarks), a complete refactor of MLPerf-Tiny scripts has been necessary
to make them compatible with the FlexNAS ecosystem.

The final library allows the user to easily compare FlexNAS over MLPerf
Tiny datasets, and it is designed to be easily extended to other NAS-able
models and benchmarks, constituting a solid basis for future research.

5

Acknowledgements

Ripensando a questo percorso universitario è facile fare parallelismi con il
mondo sportivo. In questo senso, il ciclismo secondo me è quello che si accosta
meglio a questa esperienza. Uno sport dove viene premiata la costanza, dove
l’aspetto mentale è importante quanto quello fisico, uno sport di squadra e
allo stesso tempo tremendamente individuale.

Del percorso appena concluso le prime persone che voglio ringraziare sono
i miei relatori di tesi Daniele Jahier Pagliari, Matteo Risso e Alessio Burrello.
Grazie per avermi dato la possibilità di approfondire il tema della Neural Ar-
chitecture Search, ho apprezzato moltissimo la disponibilità, la competenza
e l’aiuto fornitomi durante questi mesi di tesi.

Voglio ringraziare il mio capo Giuseppe Gennaro per avermi dato la pos-
sibilità di mettere in pratica nel mondo lavorativo le tecnologie apprese in
questo corso di laurea e i miei colleghi d’ufficio in Reale Ites.

Grazie a mia mamma Piera e alle mie tre sorelle Cristina, Martina e Agnese
per essermi sempre state a ruota e avermi "tirato" nei momenti difficili.

Grazie a tutta la mia famiglia, da San Maurizio Canavese a Specchia,
passando per gli zii di Torino, per avermi sempre sostenuto in questo percorso.
Un pensiero a nonna Maria Teresa, che voleva essere sempre aggiornata su
come andavano gli esami quando scendevo, sarà contenta di sapere che mi
sono laureato.

Grazie a mia moglie Isabella, paragonabile all’ammiraglia nel gergo del
ciclismo. Esattamente come in una grande corsa a tappe, senza di te rag-
giungere il traguardo non sarebbe stato possibile, letteralmente. Grazie per
avermi supportato e sopportato sempre, soprattutto nei momenti più com-
plicati.

Grazie a mio papà Ugo, che è stato uno studente lavoratore prima di me
e senza smart working. Spero tu sia orgoglioso di me.

Vorrei chiudere con un pensiero ai miei nipoti Alice, Beatrice, Anita, Giulio
e Lorenzo. Spero che il vostro percorso scolastico vi aiuti a realizzarvi come
persone e ad essere felici.

6

Contents

List of Tables 9

List of Figures 10

1 Introduction 13

2 Background 19
2.1 Neural Network fundamentals 19

2.1.1 Neuron . 19
2.1.2 Activation Functions 20
2.1.3 Loss Functions . 22
2.1.4 Gradient-Based Learning 23
2.1.5 Regularization Techniques 26

2.2 Multi Layer Perceptron . 28
2.3 Convolutional Neural Networks 29

2.3.1 Convolutional Layer 29
2.3.2 Pooling Layer . 31
2.3.3 Normalization Layer 31

2.4 Temporal Convolutional Networks 33

3 Related works 35
3.1 Reinforcement Learning NAS 35
3.2 SuperNet-based Differentiable NAS 37
3.3 Mask-based Differentiable NAS 39

3.3.1 MorphNet . 39
3.3.2 FBNetV2 . 41

4 Neural Architecture Search (NAS) 45
4.1 Pruning In Time (PIT) . 45

4.1.1 Channels Search . 46

7

4.1.2 Receptive Field Search 47
4.1.3 Dilation Search . 48
4.1.4 Regularization . 50
4.1.5 Training procedure . 51

4.2 Library organization . 52
4.2.1 Flexnas . 53

5 MLPerf Tiny Benchmarks 57
5.1 Anomaly Detection . 59
5.2 Image Classification . 61
5.3 Visual Wake Words . 62
5.4 Keyword Spotting . 64
5.5 Library organization . 66

5.5.1 Pytorch benchmarks 66
5.5.2 NAS Application Code 70

6 Experimental Results 71
6.1 Anomaly Detection . 71
6.2 Image Classification . 74
6.3 Visual Wake Words . 77
6.4 Keyword Spotting . 79

7 Conclusion and future works 81

Bibliography 83

8

List of Tables

6.1 Pruning In Time algorithm outcomes for the Anomaly Detec-
tion benchmark (Pareto points highlighted in bold). 72

6.2 Pruning In Time algorithm outcomes for the CIFAR-10 dataset
(Pareto points highlighted in bold). 75

6.3 Pruning In Time algorithm outcomes for the Visual Wake
Words benchmark (Pareto points highlighted in bold). 77

6.4 Pruning In Time algorithm outcomes for the Keyword Spot-
ting benchmark (Pareto points highlighted in bold). 79

9

List of Figures

2.1 Most common activation functions. 20
2.2 Learning rate behaviors. 24
2.3 Dropout [16] application during the training phase. 27
2.4 Multi Layer Perceptron (MLP). 28
2.5 Convolutional Neural Network [17]. 29
2.6 Convolutional Layer [17]. 30
2.7 Max Pooling Layer [17]. 31
2.8 Dilated causal convolution with filter size k = 3 and dilation

factors d = 1,2,4 [19]. 33
3.1 Neural Architecture Search with Reinforcement Learning [20]. 35
3.2 Neural Network layers generation process [20]. 36
3.3 DARTS [23] architectural overview. 38
3.4 Examples of NN architectures shaped by MorphNet [24]. . . . 40
3.5 FBNetV2 [14] channels search overview. 42
3.6 FBNetV2 [14] input resolution search overview. 43
4.1 Example of output channels search [15]. Each ΘA,m = 0 elim-

inates the corresponding channel. 47
4.2 Example of receptive field search [15]. Each ΘB,i = 0 elim-

inates the contribution of 1 time step from the convolution
output. 49

4.3 Example of dilation search [15]. Each Γi = 0 increases the
dilation by a factor of 2. 49

4.4 The main two subdirectories of Flexnas library. 53
4.5 Unit test folder of Flexnas library. 54
4.6 Normal training loop (left) vs PIT training loop (right) 54
5.1 The MLPerf Tiny Machine Learning Stack summary [26] dis-

plays how challenging is a standardization. 58
5.2 General deep autoencoder architecture. 60
5.3 CIFAR-10 [31] dataset samples. 62
5.4 Visual Wake Words [33] dataset samples. 63

10

5.5 Speech recognition Deep Learning model [36]. 65
5.6 Pytorch-benchmark library structure. 67
5.7 The folder structure of the benchmarks package. 68
5.8 Image Classification (left) and Visual Wake Words (right) im-

plementation comparison. 69
6.1 Pareto chart in the AUC vs Number of Parameters space for

Anomaly Detection. 73
6.2 Pareto chart in the Accuracy vs Number of Parameters space

for Image Classification. 75
6.3 Pareto chart in the Accuracy vs Number of Parameters space

for Visual Wake Words. 78
6.4 Pareto chart in the Accuracy vs Number of Parameters space

for Keyword Spotting. 80

11

12

Chapter 1

Introduction

In the last few decades, the global society has experienced a revolution in
the sector of information technology. The rapid pace of progress in com-
munication and computing technologies is shaping new scenarios, creating
opportunities that were unthinkable a few years ago. This period has been
defined as the fourth industrial revolution [1]. Recalling the previous in-
dustrial revolutions, it is evident that the speed at which the last one is
progressing is far way much higher than the previous three. In 1765 the
invention of the steam engine and the massive extraction of coal moved the
economy from agriculture to industry, introducing the mechanization of the
work. The second industrial revolution started a century later, around 1870,
and it has been driven by the discovery of electricity, gas, and oil that led to
the development of the combustion engine. It is necessary to wait another
century before seeing the third industrial revolution, that started in 1969
with nuclear energy and electronics.

The advent of internet and information technology broke the precedent
status quo. Before the internet, information goods were following the rules
of the physical goods, with many constraints in terms of storage, distribu-
tion and transportation. Internet transformed the information goods into
non-rivalry goods making negligible the costs of storage, distribution and
replication.

Within this domain, we can identify several enabling technologies that are
fueling the fourth industrial revolution:

• cloud computing which breaks the link between the physical hardware
infrastructure and the software.

13

1 – Introduction

• big data architectures which paired to the cloud computing allow a hor-
izontal scalability.

• internet of things (IoT) which is supported by an increasing coverage of
the mobile broadband.

Nevertheless, today the main innovation driver is represented by AI. His-
torically different disciplines have been recognized as AI. Nowadays, the term
is mainly used as a synonym for Machine Learning and Deep Learning. Ma-
chine Learning (ML) identifies a set of algorithms whose goal is to solve in
an automatic way tasks of various kinds: in a classification task the output is
a label, in a regression task the output is a number, in a clustering task the
objective is to find group of objects with similar characteristics. In general,
a ML model is trained to identify patterns and extract meaningful analyt-
ics on data. Usually, conventional ML techniques require several sequential
steps such as preprocessing, feature extraction and feature selection. Those
steps usually are strictly related to the domain and the type of problem to
be solved and a long and manual preliminary design phase is required.

Deep Learning (DL) [2] represents an evolution of ML algorithms where
the feature engineering phase is performed automatically within the training
of the model. In this way, there is no need of human intervention avoiding
possible harmful biases during features selection. In the last few years, DL
models started to outperform ML techniques achieving new state-of-the-art
results in many different sectors such as Computer Vision (CV) [3], Natural
Language Process (NLP) and Time Series Analysis [4, 5].

The DL models productivity keeps increasing thanks to the availability of
huge amount of data and with the improvement of the parallel computational
power allowing the solution of tasks of increasing complexity. In the past,
Graphic Processing Units (GPUs) were special-purpose application acceler-
ators, developed mainly for graphical applications. Modern GPUs are fully
programmable for general-purpose data intensive processing [6] reinvigorat-
ing the academic and industial research in DL and reducing the time required
for the training of the models compared to the usage of Central Processing
Units (CPUs).

DL models are resource hungry not only regarding computing power, but
also pose high requirements in terms of memory (RAM and storage disk)
and energy consumption. These two latter aspects are usually less moni-
tored when the computation is executed on a powerful cloud server where the
hardware is assumed sufficient. In fact, the possibility to change on demand
the underlying physical hardware thanks to virtualization to better serve the

14

1 – Introduction

actual workload is a key aspect of the success of cloud computing. However,
hardware constraints gain a huge importance in the context of the Internet
of Things. The application of Deep Learning in low-power embedded devices
and IoT sensors due to their constrained nature can be significantly chal-
lenging. In fact, the optimal solution needs to be found within the complex
envelope of contrastive requirements in terms of accuracy, memory footprint,
latency and energy requirements.

The declination of the previous problem is the definition of the best trade-
off between two opposite approaches: a completely centralized computation,
where all the inferences are calculated on a cloud server, and a completely de-
centralized approach, where all the inferences are performed by edge devices.
In the first approach, all the raw data are sent from the edge to the cloud
server, despite the latter has not hardware constraints some other aspects
should be considered. The amount of information needed to be transmit-
ted may require a huge bandwidth stressing a lot the network capacity. This
problem is particularly true for computer vision tasks. Moreover, the latency
between a request by the edge device and a response by the cloud is hardly
predictable. For this reason low latency applications are not suitable in such
scenario. Furthermore, the transmission of large amount of data through
the network has an high energy consumption. While the required energy
for computations is progressively diminishing, the same is not true for the
transmission task where the required energy does not decrease at the same
rate. Moreover, there are also privacy aspects to consider since transmitting
raw data can create some concerns in terms of data protection.

On the other hand a completely decentralized approach is extremely chal-
lenging due to the hardware limitations related to IoT devices.

The best compromise is founding deep learning algorithms suitable to be
deployed on low-power embedded devices in order to perform locally the
inferences and reduce the amount of data to be transmitted to the cloud
server. The advantages are a significant reduction of the latency and energy
requirements and a higher level of protection of data.

Several optimizations have been proposed in the literature to tackle this
challenge. Quantization techniques reduce the complexity of the numerical
operations. A common and well-established quantization strategy consist in
passing from floating point to fixed point representations [7, 8]. Another
orthogonal direction of optimization regards modifying the model’s architec-
ture. DL architectures are highly redundant, with over-parametrized designs
that try to have enough capacity to solve complex task. Pruning techniques

15

1 – Introduction

aim to remove unimportant parts to reduce the size of the network at a neg-
ligible cost in terms of accuracy [9, 10]. Another way to shrink the hardware
demand by DL models is the applications of more efficient layers capable to
reduce the number of parameters involved [11, 12].

The work of this thesis will focus on a family of optimizations techniques
denoted as Neural Architecture Search (NAS) [13, 14]. Neural Networks
(NN) present a high number of hyper-parameters whose selection is tricky
and based on empirical intuitions and rules of thumb. The purpose of NAS
is the optimization of the network topology to achieve the best accuracy
with the simplest possible architecture. In particular, in the context of this
thesis we will start from a state-of-the-art NAS, namely Pruning In Time
(PIT) [15]. PIT during the training phase progressively tries to change the
values of the network hyper-parameters such as number of output channels,
receptive field size and dilation in order to minimize the memory footprint
and the number of multiply-accumulate operations (MACs).

This NAS technique has been inserted into a novel library called FlexNAS.
PIT is the first algorithm added into FlexNAS, but the objective of this work
is to built a standard framework capable of easily integrate different NAS
algorithms and evaluate them over several training datasets.

The high variety of neural networks provides a plethora of possible combi-
nations among any type of layers. FlexNAS takes as input a Pytorch model
and it substitutes the layers of interest into specific custom objects containing
trainable architectural parameters.

To increase FlexNAS stability a set of unit tests has been designed to
check different peculiarities:

• the correct translation of 1D and 2D convolutional layers, fully-connected
layers and depthwise separable layers.

• the values of the masks to train the number of channels, the receptive
field size and the dilation.

• the possibility to exclude specific layers from NAS search.

• the behavior of the regularization loss.

• the export of PIT model into a standard Pytorch model.

The second main part of this thesis is related to the MLPerf Tiny industrial
benchmark library. MLPerf Tiny presents four use-cases specifically designed
to evaluate both the accuracy and efficiency of deep learning models. Each

16

1 – Introduction

benchmark is based on a specific dataset and uses TensorFlow library to train
and test a reference model. Our final purpose is testing the developed NAS
library over these four tasks. In this thesis PIT will demonstrate its ability to
discover new models capable to reach higher accuracy with less parameters.

A conditio sine qua non for the compatibility between FlexNAS and
MLPerf Tiny suite has been the porting of MLPerf Tiny framework from
TensorFlow to Pytorch, since FlexNAS accepts only the latter one. For each
benchmark the data collection, the preprocessing phase, the model definition
and the training and testing phase has been redesigned.

To demonstrate the reliability of the Pytorch version each benchmark has
been equipped with an example script. The pytorch model performance
are completely verifiable and replicable, and of course the final results are
compliant with the original TensorFlow version.

To facilitate future extensions to other benchmarks a standard group of
functions have been defined in order to provide a uniform interface. In this
way the complexity has been handled at lower level and final users can easily
evaluate the same technique passing from one benchmark to another.

The developed FlexNAS version of PIT has been tested over the four tasks
within the benchmark library. The obtained results will be further described
in Chapter 6.

17

18

Chapter 2

Background

Machine Learning refers to a set of technologies and algorithms able to learn
autonomously how to solve a task starting from a set of input examples. The
goal is to extract the knowledge contained into data to solve specific tasks.
ML is typically applied to automate repetitive jobs, usually performed by
humans. Moreover, ML can be exploited to handle tasks which cannot be
managed by humans due to the huge size and complexity of the input data
(i.e., it would be unfeasible carry out an efficient fraud detection activity
using human resources to check all the transactions).

Deep Learning denotes a subset of Machine Learning algorithms where the
feature engineering phase is completely automatized. DL models achieved
great results especially in fields where the manual extraction of features is a
strong limitation in terms of performance. This is particularly true in fields
such as Computer Vision and Speech Recognition.

In the following section the mathematical foundations of DL models are
detailed.

2.1 Neural Network fundamentals

2.1.1 Neuron
The neuron is the basic unit of neural networks. A DL neuron is an atomic
component which performs a weighted sum of the input data xi followed by
a non-linear activation function h which returns a scalar output y:

y = h(
Ø

i

wixi + b) (2.1)

19

2 – Background

where wi and bi are commonly identified as weights and biases. These
terms are tuned in the training process in order to obtain a properly trained
NN.

2.1.2 Activation Functions
The activation function h of Eq. 2.1 represents a crucial element of neurons
and, in general, in DL architectures. In particular, an activation function
bounds the output of the weighted sum and introduces non-linearity in the
training process. This aspect is fundamental to learn non-linear mappings
within input data and the particular task to be solved.

Figure 2.1: Most common activation functions.

The most common activation functions are:

• Step Function, represented in Figure 2.1 in green, is the first activation
function proposed in the literature:

f(x) =
0, x < 0

1, x > 0
(2.2)

Today, this step function is not used anymore due to the non-derivable
point in x = 0. As will be described in Sec. 2.1.4, in order to properly
train a NN is important avoiding non-differentiable functions.

20

2.1 – Neural Network fundamentals

• Sigmoid Function, represented in Figure 2.1 in orange, has been de-
signed to substitute the previous step function. The sigmoid output
range is between [0,1] and it is fully derivable.

f(x) = 1
1 + e−x

(2.3)

It bounds any functions given in input preventing the explosion of the
gradients. The drawback of this activation function is the low response
to inputs which are close to the positive and negative extremes of the
function. If the input values are not close to 0 the sigmoid response
saturates and this causes the so-called vanishing gradient problem, ham-
pering the training of weights and biases. For these reasons, the sigmoid
is no more used inside architectures but is only applied as output layer
in binary classification tasks.

• Hyperbolic Tangent Function (tanh): The tanh has a s-shape as
the sigmoid but it ranges between [-1, +1] (it is represented in Figure
2.1 in fuchsia).

tanh(x) = ex − e−x

ex + e−x
(2.4)

The tanh can be described as a sigmoid function with an extended
codomain. This provides more stable gradients and better performance,
however also the tanh suffers of vanishing gradient. Furthermore, the
tanh solves the non-centrality problem of the sigmoid, indeed while the
sigmoid(0)=1

2 the tanh(0) = 0, so the negative inputs remain mapped
to the negative domain while in the sigmoid all the inputs are mapped
to the positive domain. In the latter case, all the weights associated to a
given sigmoid will be updated in the same manner (requiring more steps
to converge), while with tanh during backpropagation phase (which will
be described in Sec. 2.1.4) the weights are updated differently based on
their original domain, either negative or positive. Moreover the deriva-
tives of tanh around zero is greater compared to sigmoid, providing a
better flow gradient.

• Rectified Linear Unit (ReLU): ReLU , represented in Figure 2.1 in
blue, is nowadays the most applied activation function of neural net-
works.

21

2 – Background

f(x) =
0, x < 0

x, x > 0
(2.5)

Differently from sigmoid and tanh, the ReLU function does not show a
saturating behavior avoiding the vanishing gradient problem. Nonethe-
less, this function is not upper bounded and may suffer of the dual
problem of exploding gradients. ReLU looks like a linear function in
the positive and negative domain, but it is nonlinear thanks to the non-
derivable point in x = 0. The main drawback of the ReLU is related
to kill neurons whose outputs are all negative since the ReLU ’s output
would be 0. To overcome this problem a different version of the ReLU
has been designed called Leaky ReLU in which the negative outputs are
put to values close to 0.

2.1.3 Loss Functions
In order to update iteratively the network parameters a function to evaluate
the actual set of parameters is needed. This function is commonly known as
loss function.

The objective of the training algorithm is to learn the best set of weights
and biases in order to minimize the error computed through the loss function.
A neural network is trained to match the distribution of input data. The loss
function computes how similar is the predicted distribution with the respect
to the target distribution of training data.

There is not a unique loss function, the choice depends on the typology of
the task to be solved. The most common loss functions are:

• The cross-entropy loss evaluates the performance of a classification
model which returns a probability value between 0 and 1 and it is defined
as:

H(p, q) = −
Ø

x∈X

p(x) log(q(x)) (2.6)

where p is the predicted probability and q the ground truth.

• The Mean Square Error (MSE) is the loss function usually used in
the regression tasks. It minimizes the squared difference between the
predicted and the correct target values:

22

2.1 – Neural Network fundamentals

L(y, ȳ) = 1
N

NØ
i=0

(y − ȳ)2 (2.7)

where ȳ are the predicted values.

• The Mean Absolute Error (MAE) is another common loss function
for regression tasks, the main difference with the respect to the MSE is
the use of the absolute value instead of the power of 2:

L(y, ȳ) = 1
N

NØ
i=0
|y − ȳ| (2.8)

The MSE in general is preferred because it does not treat the errors in
the same ways, but it penalizes more bigger errors while do not emphasize
too much small errors. Another reason to choose MSE is because MAE
has a non derivable point in 0. The choice of MAE is more convenient in
outlier detection scenario where the outlier error will be much greater than
the normal sample.

2.1.4 Gradient-Based Learning
Training a neural network means finding iteratively the best set of model
parameters capable to minimize the loss function. The high cardinality of the
number of parameters to be trained make unfeasible a brute-force approach.

The first idea is to perform a random local search, so applying a little
random perturbation to the weights values and comparing the loss function
results before and after this action.

To choose which is the best direction along which update the model pa-
rameters the gradient of the loss function is computed. The gradient is the
vector of the partial derivatives in each dimension and it corresponds to
the direction of the steepest descent, the direction along with is possible to
minimize the loss function.

f(x, y) = xy ∇f = [δf

δx
,
δf

δy
] = [y, x] (2.9)

The Gradient Descent algorithm provides the instrument to solve this
optimization problem and it is defined as:

θnew = θold − η∇θL(θ) (2.10)

23

2 – Background

where θ represents the network parameters, η is the learning rate, L(θ) is
the loss function associated to θ and ∇ the corresponding gradient.

The hyper-parameter η is one of the most crucial one and it defines the
size of the update step to be performed in the gradient direction. If the
learning rate is too low (as represented in Figure 2.2 with the blue line) it
would require a huge number of epochs before reaching the best result. On
the other side with a learning rate too high the training of the network would
diverge (as represented in Figure 2.2 with the yellow line) .

Figure 2.2: Learning rate behaviors.

From a theoretical point of view, the computation of the gradient would
require to evaluate the loss function on the entire training set for each iter-
ation. However, from a more pragmatic point of view this would require an
high cost in terms of time and computational effort.

Furthermore calculating the exact gradient value is not the goal of the
training phase, the most important purpose is discovering the best direction
along which update the model weights. To reduce the training time usually
the gradients are not computed over the whole training dataset, but using
only a random subset of the input data. This approach is known as Stochastic
Gradient Descent (SGD).

The training process follows the gradient direction applying the backprop-
agation algorithm, which is composed by two phases: the first one is the
forward pass, where the batch of the input data is fed to the network and
the value of the loss function is computed. The second phase is the backward
pass where the gradients are evaluated using the chain rule:

24

2.1 – Neural Network fundamentals

δf

δx
= δf

δq

δq

δx
(2.11)

The chain rule allows to compute the desired partial derivative through
the multiplication of the intermediate gradients.

25

2 – Background

2.1.5 Regularization Techniques
An underestimated aspect of neural networks is the necessity of quite large
datasets to achieve satisfactory results. The more a given dataset is represen-
tative of the real distribution of the data, the higher will be the performance
of the trained model.

However, the models are often trained over datasets which are not large
enough or not capable to incorporate a representative sample of the target
distribution, these cause the so-called overfitting.

The overfitting happens when a general machine learning algorithm (not
only neural networks, but also decision trees, support vector machines...)
gains a very high accuracy over the training set, but then it performs very
poorly with real input data. The explanation is quite simple, when the model
is overfitted the network parameters have been trained such that the model
can correctly recognize only data belonging to the training set without the
capability to generalize to new cases and scenario.

To prevent overfitting usually an additional term is added to the loss
function, called regularization loss. The purpose of this term is to somehow
makes a bit harder the training of the NN in order to prevent the model to
overfit the training set.

There are different regularization techniques:

• L2 regularization: L2 is the most common regularization technique
and it consists in adding the squared magnitude of all the parameters in
the loss function:

L2 = λ||θ||22 = λ
Ø

θ2
i (2.12)

L2 regularization discourages the accumulation of large weights in few
neurons, it encourages a more regular diffusion of the network parame-
ters fostering a uniform weights utilization.

• L1 regularization: L1 consists in adding to the loss function the L
norm of the model parameters:

L1 = λ||θ||1 = λ
Ø
|θ|i (2.13)

The main effect of the L1 regularization is to make more sparse the
weight vector during the optimization, for this reason in general the L2
technique provides better performance.

26

2.1 – Neural Network fundamentals

• Dropout: the Dropout [16] is a regularization technique which simply
turns off with probability p each neuron during the training of the model.
The basic intuition is to force the network to improve its accuracy at
each epoch with different configurations, decreasing the risk of overfitting
because the final trained model is an averaged outcome of an ensemble
of different networks.

Figure 2.3: Dropout [16] application during the training phase.

27

2 – Background

2.2 Multi Layer Perceptron
The first and simplest neural network is the Multi Layer Perceptron (MLP)
where several different neurons build a more complex architecture. Neural
Networks are designed as Directed Acyclic Graph (DAG) to avoid circle that
would generate an infinite loop in the forward pass. In MLP the neurons
are divided into fully-connected layers such that two adjacent layers are fully
pairwise connected with no connection between neurons belonging to the
same layer. The MLP is composed by three types of layers: input, hidden
and output layers.

The input layer is composed by a number of neurons equal to the number
of samples composing a single training datum.

The hidden layer contains all the intermediate layers which separate the in-
put and the output layers. These represent the engine of networks, collecting
most of the model parameters. Originally the networks were shallow because
they were composed by a single hidden layer. Nowadays the number of the
hidden layers is progressively increasing thanks to hardware improvements
and the model’s depth has grown, founding the Deep Learning.

The output layer structure depends on the type of task: if it is a regres-
sion task, the output layer is composed by a single neuron returning a single
value, if it is a classification task instead for each output class there is a cor-
responding output neuron, so the final result will be a vector of probabilities,
where each value represents the confidence score computed by the network
for the each class. Normally, the output higher in magnitude is taken as the
final network prediction.

Figure 2.4: Multi Layer Perceptron (MLP).

28

2.3 – Convolutional Neural Networks

2.3 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) [17] are actually the de-facto stan-
dard architecture for Computer Vision tasks. MLP networks cannot handle
in an efficient manner images as input data. In a MLP network each input
neuron is connected with each input data. This requires to associate an input
neuron to every pixel in the input image. For instance, considering an RGB
image of resolution 200 × 200, the resulting number of neurons would be
200×200×3 = 120.000. For this reason, a fully-connected NN is not able to
scale, allowing to process only images with very poor resolution. Moreover,
in an image each pixel tends to have an high correlation with its neighbors.
Associating a single parameter to each one the MLP’s inputs completely
ignores this correlation.

A Convolutional Neural Network is composed by different type of layers (as
shown in Figure 2.5): the convolutional layer which performs a convolution
operation, the pooling layer, the normalization layer and the dense layer,
which is a fully-connected layer typically used as last layer to output the
class scores.

Figure 2.5: Convolutional Neural Network [17].

2.3.1 Convolutional Layer
The convolutional layer is based on a set of trainable filters, the most common
in CV tasks is the 2D convolutional layer. These special neurons are defined
considering 3 dimensions: width, height and depth. A convolutional filter
does not cover completely the entire portion of the image, otherwise the
same problem of the fully-connected layer would occur. Conversely, the filter

29

2 – Background

is applied over a small portion of the input image (for instance a region of
3× 3 pixels) and the sum of the dot products is computed between the filter
weights and the pixels values over the different channels (e.g., RGB) of the
input image (as depicted in Figure 2.6).

Since the entire input image must be processed, the filter (whose size is
usually defined as kernel) slides over the entire input with a step parame-
ter defined as stride. The convolutional layer takes into account the local
correlation between pixels close one to each other, furthermore it is always
applied to the full depth of the input data, which in case of an image is
generally 3 (red, green and blue channels). The dilation parameter describes
the distance between two adjacent weights inside the kernel, in general the
default value is equal to 1.

The main advantage of a convolutional layer is its parameters sharing
feature: each neuron in a single depth slice uses the same weights and biases,
reducing the total number of parameters needed and the total amount of
time needed in the training phase.

Figure 2.6: Convolutional Layer [17].

30

2.3 – Convolutional Neural Networks

2.3.2 Pooling Layer
The pooling layer performs a down-sampling operation over the input feature
map reducing the output spatial size, which corresponds to a reduction of
the number of operations in subsequent layers. The pooling layer applies a
sliding filter independently on every depth slice, as the convolutional layer,
and it extracts a single value for window using the max or the average oper-
ation. The pooling progressively shrinks the spatial dimension of the feature
maps providing a more compact representation of the knowledge extracted.
The pooling is also a technique useful in order to reduce the overfitting and
increase the model generalization capability.

Figure 2.7: Max Pooling Layer [17].

2.3.3 Normalization Layer
A good practice during NN training and inference phase is to normalize
the values of the input data in order to reduce phenomenon like exploding
gradients. However the normalization is applied not only to input data, but
also after the activation function over the intermediate feature maps in order
to improve converge (thus reducing training time) and overfitting.

The most famous normalization technique is the Batch Normalization
(BN) [18]. For a d dimensional layer x = (x(1), ..., x(d)) the BN layer nor-
malizes each dimension:

31

2 – Background

y(k) = γ(k) x(k) − E[x(k)]ñ
Var[x(k)] + ϵ

+ β(k) (2.14)

where the expected value E[x(k)] and the variance Var[x(k)] are not calcu-
lated over the entire training set, but over a single batch. ϵ is a small number
added to the denominator to avoid divisions by 0. Then the normalized in-
put data with 0 mean and unit variance are further elaborated with the two
trainable parameters γ and β.

32

2.4 – Temporal Convolutional Networks

2.4 Temporal Convolutional Networks
Similarly to CNNs which became the reference architecture in CV tasks where
the input data are images, in the field of one dimensional time series the
RNNs emerged as the stardard structure to solve those tasks.

A new kind of network called Temporal Neural Network (TCN) [19] has
been designed in order to achieve state-of-the-arts results with significant
advantages from the computational aspect.

Time series data represent sequence of data points indexed in time order.
Given an input vector at time t the inference yt can be performed using only
the inputs available at that given instant, so x0, ..., xt.

To satisfy this requirement the TCN is composed by causal convolutions,
where in order to infer an output at instant t only the previous elements in
time are considered as source.

The main problem of causal convolution is the ability at looking back in
time with a capacity linearly proportional to the depth of the network. This
means that a high number of hidden layer or a large window filter is needed
to increase the amount of history taken into account, with the consequent
high overhead in terms of parameters and computations.

Figure 2.8: Dilated causal convolution with filter size k = 3 and dilation
factors d = 1,2,4 [19].

The second peculiarity of TCNs is the definition of a dilation param-
eter different than 1 (as shown in Figure 2.8). This is exactly the same
hyper-parameter of any convolutional layer, but in this scenario the data

33

2 – Background

are 1-dimensional instead of 2-dimensional. Increasing the value of the dila-
tion allows to obtain larger receptive field without increasing the number of
weights. As best practise the dilation parameter is increased following the
powers of 2 based on the depth of the architecture, so for a given layer at
level i the corresponding dilation d is set to d = 2i.

TCN provides remarkable advantages: it allows the parallel computation
of the convolution differently from RNN increasing the training speed of the
model. It gives the possibility to easily tune the receptive field size acting
on the number of stacked causal convolutions or on the dilation parameter
while maintaining the capability of accepting inputs of variable length like
in the RNNs.

34

Chapter 3

Related works

3.1 Reinforcement Learning NAS

The first NAS approach proposed to tackle the challenge of exploring in
an automatic manner many different network configurations was based on
Reinforcement Learning [20]. At each iteration of the algorithm, a network
is selected among all the explorable ones by a model known as controller.
This network is trained on the training set and provides an accuracy result
over the validation set. The accuracy is used as reward signal to update the
policy gradient of the controller. The controller, in the next passage will
sample with higher probability an architecture configuration with improved
performance.

Figure 3.1: Neural Architecture Search with Reinforcement Learning [20].

35

3 – Related works

As depicted in Figure 3.1 the controller generates architectural hyper-
parameters of a DNN by means of a RNN. The NAS technique proposed in
[20] is specifically designed for CNN. At each time step the network predicts
the structure of a single layer (number of channels, kernel size etc...) which
is the input of the layer that will be generated in the following timestep as
shown in Figure 3.2:

Figure 3.2: Neural Network layers generation process [20].

The list of steps necessary for the controller to define a network architec-
ture can be defined as a list of actions a1:T . The performance of the resulting
network is measured with the computation of an accuracy score R over the
validation set. The controller aims to maximize the expected reward to dis-
cover the best architecture:

J(θc) = E
P (a1:T ;θc)

[R] (3.1)

The REINFORCE rule [21] is used to define a policy gradient method
which update iteratively θc since the reward signal R is not differentiable:

∇θcJ(θc) =
TØ

t=1
E

P (a1:T ;θc)
[∇θc log P (at|at−1:1; θc)R] (3.2)

The previous quantity 3.2 is empirically approximated as:

1
m

mØ
k=1

TØ
t=1
∇θc log P (at|at−1:1; θc)Rk (3.3)

In this approximation, m represents the total number of different neural
networks sampled by the controller in a single batch, T is the number of

36

3.2 – SuperNet-based Differentiable NAS

hyperparameters predicted by the controller in the design of the architecture
and Rk is the validation accuracy of the k-th neural network obtained after
the training.

The quantity in 3.3 is an unbiased estimate with high variance. To reduce
the variance, a baseline b is subtracted to the reward accuracy RK . In this
application b is the exponential moving average of the previous architectures
accuracy RK :

1
m

mØ
k=1

TØ
t=1
∇θc log P (at|at−1:1; θc)(Rk − b) (3.4)

The usage of a RNN as controller provides flexibility in the search of
variable-length architectures.

3.2 SuperNet-based Differentiable NAS
Although NAS algorithms based on RL have been extensively applied in
many research activities, rapidly the impracticability of the computational
aspect pushed the researchers to envisage more efficient methods. For in-
stance, to discover state-of-the-arts neural networks for a standard dataset
such as CIFAR-10 the computational effort reported in [22] required 500
GPUs across 4 days resulting in 2.000 GPU-days.

The main reason of inefficiency about this typology of NAS algorithms is
related to the discrete search-space domain. The training needs many trials
to find the best network and each of this attempt requires tons of GPUs hours.
A different approach is needed to allow scalability over bigger datasets and
bigger search-spaces.

A new generation of NAS was born with the creation of DARTS [23]
(Differentiable ARchiTecture Search). DARTS’ main novelty is the capacity
of translate a discrete domain into a continuous one and exploit a gradient-
based optimization approach which is much more efficient than the previous
one. DARTS achieves state-of-the-art performance with orders of magnitude
less computational resources, providing at the same time a rich search-space
among which discover the best configuration.

DARTS builds a directed acyclic graph composed by several building block
connected by edges. A node x(i) depicts a data representation (e.g. a set of
feature maps in a convolutional network) while an edge (i, j) is related to a
specific data transformation step o(i,j). Each node is connected by different
edges, as shown in Figure 3.3. The idea is to train a model able to find the

37

3 – Related works

path which leads to the best NN and, at the same time, learn the trainable
weights of the network.

Figure 3.3: DARTS [23] architectural overview.

Given a set of possible operationsO, in order to define a continuous search-
space, a softmax over all the candidate operations is computed and a param-
eter vector ō(i,j) is obtained:

ō(i,j)(x) =
Ø
o∈O

exp(α(i,j)
o)q

o′∈O exp(α(i,j)
o′)

o(x) (3.5)

Each edge (i, j) is associated to a parameter α (as depicted in the equation
3.5) which is updated during the training phase. At the end a softmax is
applied and the path associated to the highest value is chosen.

The equation 3.5 provides a set of continuous variables α = {α(i,j)} which
can be trained in combination with the set of weights w. In this way it is not
necessary to completely separate the two phases such as in RL, defining first
a complete fixed structure and train it from scratch, but these two groups of
parameters α and w can be learnt in combination.

The final purpose is to discover the set of architectural parameters α∗ that
minimizes the validation loss Lval(w∗, α∗), where the weights w∗ minimize the
training loss of that specific architecture:

38

3.3 – Mask-based Differentiable NAS

min
α
Lval(w∗(α), α) s.t. w∗(α) = arg min

w
Ltrain(w, α) (3.6)

However the exact calculation of w∗(α) can be not affordable in some cases.
Instead of completely training until convergence equation 3.6 is possible to
approximate w∗(α) considering the weights w after a single training step.

At the end of the training, a single discrete architecture is extracted re-
placing the vector of possible edge operations ō(i,j) with the most probable
one o(i,j) = arg maxo∈O α(i,j)

o .

3.3 Mask-based Differentiable NAS
Neural Architecture Search techniques based on Reinforcement Learning [20]
were the forerunners in this field, however they need a huge amount of compu-
tational resources and a high number of trial-and-error attempts. The result
is an unsustainable amount of time and computational power whenever the
size of the datasets grow in volume and complexity.

SuperNet DNAS-based techniques provide a feasible and scalable algo-
rithm based on the choice of the best path between multiple edges represent-
ing each one a different operation. The SuperNet drawback is mainly related
to the dimension of the search-space: indeed compared to other techniques it
is quite narrow and it requires the definition in memory of all the candidate
edges.

To overcome this issue a new kind of Differentiable NAS has been proposed
called DMaskingNAS or mask-based DNAS. MorphNet [24] and FBNetV2
[14] belong to this category. The main idea is to search over the spatial and
channel dimensions which the previous techniques did not consider, this is
practically done applying some masks to the layers in order to make their
parameters trainable as the weights of the network. In section 3.3.1 and 3.3.2
MorphNet and FBNetV2 DMaskingNAS algorithms are described.

3.3.1 MorphNet
MorphNet [24] aims to provide a simple approach to build automatically
neural network architectures taking into account some constraints required
to deploy the final model on edge devices.

The proposed approach is scalable to large datasets and models, and allows
the optimization of a DNN with the respect to some specific requirements,

39

3 – Related works

Figure 3.4: Examples of NN architectures shaped by MorphNet [24].

such as the number of parameters or the FLOPs per inference, and further-
more it does not need an auxiliary network to discover a more accurate and
efficient architecture.

MorphNet focuses on the optimization of the output widths of all the lay-
ers. An initial seed network Oo

1:M is defined where M is the number of lay-
ers. The network constraints F are bounded by a threshold ζ fixed initially:
F(O1:M) ≤ ζ. In general the optimization problem solved by MorphNet has
the following form:

O∗
1:M = arg min

F(O1:M)≤ζ
min

θ
L(θ) (3.7)

where θ represents the ensemble of the parameters of the network and L
is the loss function. L combines the loss computed based on the task of the
DNN and the loss calculated considering the network constraints.

Algorithm 1 The MorphNet Algorithm
1: Train the network to find θ∗ = arg minθ{L(θ) + λG(θ)}.
2: Find the new widths O

′

1:M based on θ∗.
3: Find the largest ω s.t. F(ω ·O′

1:M) ≤ ζ
4: Set Oo

1:M = ω ·O′

1:M and repeat from step 1 as many times desired.
5: return ω ·O′

1:M

The network structure is shaped by means of the width multiplier ω,
already used in MobileNet [35]. The purpose is to find the highest ω such
that F(O1:M) ≤ ζ. However the application of this naive approach leads to
a significant loss in terms of accuracy which must be compensated.

40

3.3 – Mask-based Differentiable NAS

A more articulated approach to increase the sparsity in the network con-
sists in the definition of an additional regularization term G(θ) which assigns
a higher cost to the neurons which concur more the constraint F(O1:M). This
additional term allows to train the weights of the network finding the best
trade-off between the accuracy provided by L and the constraints given by
F . However the new sets of weights θ∗ = arg minθ{L(θ) + λG(θ)} does not
guarantee the respect of F(O1:M) ≤ ζ.

MorphNet algorithm detects the best architecture with an iterative process
where the size of the network decreases in the first two steps and increases
in the third step.

The novelty of this new methodology is the capacity to shape the network
structure during the training phase reducing the computational requirements
and determine some boundary constraints to be respected in order to deploy
over small memory devices.

3.3.2 FBNetV2
FBNetV2 [14] aims to improve SuperNet-based DNAS algorithms proposing
new solutions for its weak spots. The first drawback to be adressed is related
to the amount of memory required to train the model: since all the possible
candidate layers must reside in the GPU for the training phase, there is a
physical constraint which limits the dimension of the architectural search-
space. Furthermore, each additional candidate layer increases the compu-
tational cost linearly, preventing the model to scale up to bigger datasets.
Instead of creating a complex sets of candidates layers, the intuition at the
basis of FBNetV2 is to start from a seed network and add some masking and
shape propagation mechanisms in order to tune the number of parameters of
each layer during the training of the model.

To augment the architecture search-space the first novelty in FBNetV2 is
the Channel Search. To learn the optimal number of channels there are some
aspects to consider: the shape of the channels must be compatible between
adjacent layers in order to obtain a working model (Figure 3.5, Step A). The
most straightforward solution would be to set the number of channels of all
the layers equal to the highest value, however this is costly and inefficient
(Figure 3.5, Step B).

There is a much more efficient method to make the layers compatible,
which is multiplying the layers with a column vector composed by i leading
1 and k− i trailing zeros (Figure 3.5, Step C). Since the layers have the same
number of filters is it possible to make an approximation and use the same

41

3 – Related works

Figure 3.5: FBNetV2 [14] channels search overview.

weights over all these layers (Figure 3.5, Step D) and define the expression:

y =
kØ

i=1
gi(b(x) ◦ 1i) (3.8)

In equation 3.8 1i represents the column vector with i leading 1, b a block
composed by i filters and gi the Gumbel softmax weights. This can be further
simplified (Figure 3.5, Step E) summing all the masks and compute once the
multiplication with the layers to prune the channels corresponding to 0 in
the column vector. The requirements for this last step are only one forward
step and one feature map, so it is very lightweight and effective at the same
time.

The second novelty of this technique is the Input Resolution Search. Dif-
ferent features maps after the masking mechanism could be incompatible for
their pixel resolutions (Figure 3.6, Step A).

To solve this issue the size of the feature maps is augmented with a zero-
pad interspersed spatially (Figure 3.6, Step C). In fact the application of
a simple zero padding around the layers (Figure 3.6, Step B) would not
solve the incompatibility problem. Another question to be managed is the
misalignment between receptive fields. Applying the same receptive field

42

3.3 – Mask-based Differentiable NAS

Figure 3.6: FBNetV2 [14] input resolution search overview.

to the new padded feature map would reduce the resulting receptive field
(Figure 3.6, Step D), for this reason the convolution is calculated over an
input subsample (Figure 3.6, Step E).

43

44

Chapter 4

Neural Architecture
Search (NAS)

4.1 Pruning In Time (PIT)

This thesis starts from the work presented in the Pruning In Time [15]. PIT
belongs to the family of DMaskingNAS, and similarly to MorphNet starts
from a seed network and progressively balances the network complexity with
accuracy with a structured pruning of weights.

PIT introduces two novelties in its approach: first of all it is the first
work which focuses specifically in the optimization of Temporal Convolu-
tional Networks which represent a good alternative to RNNs for time-series
processing tasks as explained in Sec. 2.4. The vast majority of NAS literature
focuses on the optimization of 2D-CNN for Computer Vision tasks, although
there are many use-cases related to edge-computing whose input source is
a uni-dimensional time dependent signal (keyword spotting, anomaly detec-
tion, etc.). Secondly, PIT is the only mask-based DNAS algorithm able to
optimize the dilation factor.

PIT target layers originally were fully-connected layers and 1D convolu-
tional layers. Nevertheless, the original algorithm has been extended in order
to apply a PIT-like NAS also for also for CV tasks such as Image Classifica-
tion and Visual Wake Words.

PIT, as other DMaskingNAS algorithms, is not capable to choose between
different kind of layers, instead it defines a seed network which is progressively
pruned. However, the advantages of this choice are multiple: first, it achieves
a significant reduction of the search-time and of the computational resources

45

4 – Neural Architecture Search (NAS)

needed; second, it explores an huge and fine-grained search-space.
Each fully-connected and convolutional layer are transformed into a so-

called PIT layer. Each layer of this type can be represented as a function
Ln(W (n); θ(n)), where W (n) refers to the original weights tensor of the layer,
while θ(n) denotes a new set of architectural parameters. In general, given a
network with N layers, the PIT search-space is defined as:

S = {Ln(W (n); θ(n))}N−1
n=0 (4.1)

For each convolutional layer PIT explores different hyper-parameters set-
tings. In particular, the NAS optimizes the number of output channels (Cout)
controlled by the parameters α(n), the receptive field (F) controlled by the
parameters β(n), and the dilation factor (d) controlled by the parameters γ(n).
The binary masks used to remove specific portion of the weights tensor are
derived from these three sets of parameters and are treated independently
providing the possibility to optimize the parameters jointly or in a separate
way. The joint search-space has the following size:

|S| ≈ ΠN−1
n=0 (C(n)

out,seed · F
(n)
seed · ⌈log2(F

(n)
seed)⌉) (4.2)

The logarithmic term associated to the dilation factor in Eq. 4.2 is due to
the choice of consider only power-of-2 dilation factors.

4.1.1 Channels Search
To optimize the number of output channels, PIT treats each channel inde-
pendently by means of a specific parameter α. Each fully-connected or con-
volutional layer has associated an array of parameters α of the same length
of the original number of output neurons or output channels. For the sake
of simplicity from now on the term output channels will be used to identify
also the output neurons.

The pruning of the output channels is based on a binary mask ΘA which
is obtained applying a Heaviside binarization function H to the parameters
α with a fixed threshold th = 0.5:

H(x, th) =
1, if x > th

0, otherwise
(4.3)

ΘA = H(|α|) (4.4)

46

4.1 – Pruning In Time (PIT)

Figure 4.1: Example of output channels search [15]. Each ΘA,m = 0 elimi-
nates the corresponding channel.

The binary masks Θ(n) eliminate part of the network computing the Hadamard
product between the weights W (n) and the binary masks themselves. When
an output channel is multiplied by a 0-mask is pruned, as shown in Fig. 4.2.
The pruning steps update the PIT model as follows:

Ŝ = {Ln(W (n) ⊙Θ(n))}N−1
n=0 (4.5)

However to perform a standard gradient training to learn both the weights
W (n) and the architectural parameters θ(n) the binary values generated by
the Heaviside function should not be used in the backward pass. To allow a
correct gradient flow the Straight-Through Estimator (STE) [25] technique
have been applied: the binary values are computed applying the Heaviside
function only in the forward pass, while in the backward pass the step func-
tion is replaced by the identity function making the gradient flow possible.

In principle, during the training phase an entire layer could be pruned by
the PIT algorithm. To avoid this situation at least one output channel for
each layer is preserved.

4.1.2 Receptive Field Search
The second hyper-parameter explored by PIT is the receptive field F . In a
classical convolution the receptive field coincides with the kernel size, however
when the dilation factor d is > 1 then the general relation is given by F =

47

4 – Neural Architecture Search (NAS)

(K − 1) · d + 1. The optimization of the receptive field F and of the dilation
factor d indirectly leads to optimize also the filter dimension K.

Similarly to the output channels search, an array of trainable parameters
β(n) of length Fseed is associated to each layer to optimize.

The pruning step in this scenario should take into account also the causal-
ity characteristic of the TCN. The receptive field cannot be shrunk arbitrarily,
the pruning must start from the oldest slice of F and follow the time order.

The binary mask ΘB is obtained by combining the parameters β with the
following form:

ΘB,i = H(
Fseed−iØ

j=1
|βFseed−j|) (4.6)

During the forward pass a time-slice of the tensor W is multiplied with
ΘB,i. With this approach the first weight to be pruned is always the oldest
in time since with i > j then ΘB,i ≤ ΘB,j. To ensure at least one time step
as input the parameter β0 is always fixed to 1.

Practically, the binary mask ΘB is obtained by means of the product
between an upper triangular matrix of 1s generated at the beginning and the
parameters β. The product is then binarized with the Heaviside function H:

ΘB = H(Cβ · |β|) (4.7)

4.1.3 Dilation Search
The optimization of the dilation hyperparameter is an innovation introduced
by the PIT algorithm. As previously mentioned, only power-of-2 dilation fac-
tor are taken into consideration, this is because the majority of the inference
libraries apply this approach in order to generate regular access pattern to
the memory, which allows the deployment of more efficient models on edge
devices.

Analogously to the two previous search, also for the dilation optimiza-
tion an array of trainable parameters γ is defined with length len(γ) =
⌈log2(Fseed)⌉.

Before obtaining a binary mask ΘΓ it is necessary the computation of an
intermediate array Γ defined as:

Γi = H(
len(γ)−iØ

j=1
|γlen(γ)−j|) (4.8)

48

4.1 – Pruning In Time (PIT)

Figure 4.2: Example of receptive field search [15]. Each ΘB,i = 0 eliminates
the contribution of 1 time step from the convolution output.

Figure 4.3: Example of dilation search [15]. Each Γi = 0 increases the dilation
by a factor of 2.

Then, the Kronecker’s Delta function δ is used to define the final binary
masks ΘΓ,i:

ΘΓ,i = Θk(i) (4.9)

49

4 – Neural Architecture Search (NAS)

where

k(i) =
len(γ)Ø
p=1

1− δ(i mod 2p, 0) (4.10)

and with

δij =
0 if i /= j

1 if i = j
(4.11)

Practically, each time a Γi is equal to 0 the dilation factor increases of
a factor of 2. To prevent a resulting dilation hyperparamter equal to 0,
similarly to the channel and receptive field search, the parameter γ0 is a
fixed constant equal to 1.

The binary mask ΘΓ is computed with a simple matrix multiplication
between a constant matrix Cγ of 0s and 1s, which can be retrieved by the
value of Fseed, and the array of parameters γ:

Θγ = H(Cγ · |γ|) (4.12)

4.1.4 Regularization
PIT training aims to find the best possible trade-off between the highest
accuracy and the simplest architecture to minimize memory or number of
operations. These two aspects are implemented in the NAS loss function
which sums the loss Ltask related to the task of the network with a regular-
ization term R which encodes the hardware costs:

L = Ltask(W ; θ) + λR(θ) (4.13)

The regularization termR can be of two types: Rsize computes the number
of effective parameters of the pruned network, Rops calculates the number of
operations required for an inference step.

The number of effective channels C(n)
out,eff and the effective kernel size K(n)

eff

given a n-th layer are defined as:

C(n)
out,eff =

C(n)
out,seed−1Ø

i=0
Θ̃(n)

A,i (4.14)

K(n)
eff =

F
(n)
seed−1Ø
i=0

Θ̃(n)
B,i

Fseed − i
·

Θ̃(n)
Γ,i

len(γ)− k(i) (4.15)

50

4.1 – Pruning In Time (PIT)

It is worth pointing out in the computation of the effective kernel size
K(n)

eff the normalization of the binary masks Θ̃Γ,B in order to not obtain a
cost greater than the real filter size.

The total number of effective parameters Rsize left in the resulting archi-
tecture is computed by:

Rsize =
N−1Ø
n=0

(R(n)
size) =

N−1Ø
n=0
C(n−1)

out.eff · C
(n)
out.eff · K

(n)
eff (4.16)

The total number of operations Rops is given by weighting the number of
parameters of each n-th layer layer with the output sequence length T :

Rops =
NØ

n=1
(R(n)

size · T (n)) (4.17)

The λ parameter (equation 4.13) defines the strength of the regularization
term, the higher is the more PIT will try to create a more constrained network
preferring hw-related metrics to the inference accuracy. On the other side
the lower is λ the lower will be the pruning of the network and the lower will
be the loss in terms of accuracy.

4.1.5 Training procedure
The training is divided in three phases: the warmup loop, the search loop
and the fine-tuning loop.

Algorithm 2 PIT Algorithm
1: for i← 1, ...,Stepswu do warmup loop
2: Update W based on ∇WLtask(W)
3: end for
4: while not converged do search loop
5: Update W and θ based on ∇W,θ(Ltask(W ; θ) + λR(θ))
6: end while
7: for i← 1, ...,Stepsft do fine-tuning loop
8: Update W based on ∇WLtask(W)
9: end for

In the warmup phase the architectural parameters θ (i.e: α, β, γ) are ini-
tialized to 1 and frozen, so the binary masks Θ will be composed by all

51

4 – Neural Architecture Search (NAS)

1s. The warmup loop coincides with a classical training of the seed network
based on minimizing only the task loss function Ltask.

In the second phase, the search loop, the PIT algorithm enters in action
to learn the best architectural parameters θ and the best network weights W
to minimize the global loss function obtained by the sum between the task
loss and the regularization term described in Eq. 4.13. The search goes on
until the value of the task loss function Ltask on the validation set does not
decrease for 20 epochs.

In the last phase, the architectural parameters θ are frozen and a new
architecture is built. Then the network weights W are retrained from scratch
or fine-tuned considering only the task loss function Ltask.

The described algorithm can be repeated with many different values of λ
in order to obtain a collection of Pareto points in the accuracy vs cost space.

4.2 Library organization
The PIT algorithm previously described has been refactored and included
in the flexnas library. The purpose of this section is to provide an overall
overview on how the code is organized.

The development of a collection of unit tests has been fundamental to
discover the software bugs. The main aspects covered by the unit tests are:

• The conversion of the fully-connected and convolutional layers into PIT
layers. In particular some problems in the output channels calculation
occurred for the depthwise separable convolutional layers.

• The definition of the masks associated to number of output channels,
receptive field size and dilation. Based on the architecture some layers
should share the same mask (i.e., two convolutional layers after an add
operation will share the same mask). To cover the highest number of
possibilities different small NNs have been designed in order to check
the expected behavior. Moreover, another functionality which has been
covered by the unit tests is the possibility to enable the NAS targeting
a specific architectural aspect (i.e., searching the best number of output
channels without modifying the receptive fields size and dilation).

• The update of the model weights and masks values by the loss function.
In particular many tests have been conducted to analyze the impact of
the regularization term R during the training.

52

4.2 – Library organization

• The conversion of the trained PIT model into a standard Pytorch model
with the new architectural layout.

4.2.1 Flexnas
The main code of flexnas is organized as follows:

Figure 4.4: The main two subdirectories of Flexnas library.

• dnas_base: an abstract class containing the common code for generic
Differentiable NAS algorithms. It takes as attributes the model to be
optimized, the name of the supported cost regularization functions and
the name and type of layers that should be excluded by the neural ar-
chitecture search.

• pit: the specific Pruning In Time implementation. The PIT class re-
ceives the Pytorch model to optimize and then it searches for the NAS-
able target layers, which are the fully-connected and the convolutional
layers. Each of these layer is transformed into a PITLayer, an abstract
class which provides the interface implemented by all the possible PIT
layers. Then each specific layer requires a specific implementation, so the
following classes are implemented: PITLinear, PITConv1d, PITConv2d,
PITBatchNorm1d, PITBatchNorm2d. The conversion is handled by the
pit_converter script and each set of architectural hyperparameters
α, β, γ is managed by a specific class. The number of effective out-
put channels is trained with PITFeaturesMasker class, the size of the
receptive field by PITTimestepMasker class and the dilation search by
PITDilationMasker.

Beside the PIT implementation in FlexNAS, a complete set of unit tests
has been developed to increase the reliability, testability and to quickly spot
harmful bugs. Since this algorithm could be applied to any kind of neu-
ral networks, in the models folder a collection of neural networks has been

53

4 – Neural Architecture Search (NAS)

Figure 4.5: Unit test folder of Flexnas library.

defined. The purpose is to cover as much as possible all the different combi-
nation between layers and connections of layers in order to check the proper
behavior of the NAS algorithm. These networks, which have been defined
as Toy models, are quite small and their goal is to study the PIT response
with many different layer structures. The toy models are then recalled into
the full test panel defined inside the test_methods directory. The unit tests
are divided in different typologies to clearly identified the tests which are
targeting the masking aspect from the ones applied to the conversion phase.
The test_utils folder contains tests related to complementary aspects such
as the conversion of the model into a networkx directed graph.

One of the most important aspect that has been pursued during the devel-
opment is the definition of an easy to use library to facilitate the integration
of new algorithms and to improve the user-friendliness.

Figure 4.6: Normal training loop (left) vs PIT training loop (right)

Indeed, Figure 4.6 shows how easy is to apply the PIT technique with
respect to a standard training loop concerning any kind of model. With
FlexNAS, a laborious refactor of the code is absolutely not needed, Figure
4.6 higlights with squared red boxes the 3 small differences: first, to trans-
form the Pytorch model into a NAS-able model is sufficient to call the PIT
class and pass as argument the model to be translated. Then the new PIT
model can be trained regularly as any Pytorch model computing the loss

54

4.2 – Library organization

function and backpropagating the gradient. In order to train not only the
model parameters such as weights and biases, but also the architectural pa-
rameters a simple regularization term needs to be added. As reported in the
second red square box in Figure 4.6, when the overall loss is calculated the
contribution of the regularization term is considered and added to the task
loss by simply calling the get_regularization_loss() function. To return
back to a standard Pytorch model and extract the new discovered network
the arch_export() function is applied over the PIT model.

55

56

Chapter 5

MLPerf Tiny Benchmarks

The technology progression of low-power Machine Learning systems and the
data privacy concerns are pushing to set higher quality stardards for DL
applications deployed on the edge.

Considering IoT scenarios the focus of the decentralization is centered
exclusively around the inference phase. In fact, the main goal in this case
is preserving the best possible performance at the minimum cost in terms of
hardware resources.

In order to evaluate the impact of optimization techniques aimed at run-
ning ML models on IoT devices, the availability of standard benchmarks is
fundamental; it permits to assess and compare the effectiveness of different
optimizations on a common set of relevant use-cases, and in identical con-
ditions. MLPerf Tiny [26] is the outcome of a collaboration among more
than 50 industrial and academic actors to define the first industry-standard
benchmark suite for ultra-low-power tiny ML systems. Since the network op-
timization must take into account the accuracy, the latency and the energy a
direct comparison of different solutions is not straightforward. MLPerf Tiny
is an open-source inference benchmark suite which provides four standards
benchmarks: Anomaly Detection, Image Classification, Visual Wake Words
and Keyword Spotting. The challenges faced by MLPerf Tiny are several:

• Low Power: the power consumption of a ML model is one of the most
critical aspect to consider to deploy it on an edge device.

• Hardware Heterogeneity: MLPerf Tiny tackles the problem of hard-
ware heterogeneity between different Micro Controller Units (MCUs).

• Software Heterogeneity: MLPerf Tiny offers different model deploy-
ment options based on TensorFlow framework.

57

5 – MLPerf Tiny Benchmarks

• Limited Memory: Low-power MCUs have a really reduced memory
size, this represents a pain point for the deployment of the NN in the
devices.

• Cross Product: the huge differentiation at each level of the techno-
logical stack, as shown in Fig. 5.1, constitutes a big issue to perform
correctly comparison between different tools and approaches.

Figure 5.1: The MLPerf Tiny Machine Learning Stack summary [26] displays
how challenging is a standardization.

A modular approach has been applied in the development of the MLPerf
Tiny. Each benchmark presents a reference implementation which contains
everything from the training scripts to the reference hardware framework.
The reference submission provides baseline results which allows researchers
to demonstrate the quality of their novel algorithms. Furthermore, due to the
collaborative nature of the suite, everyone can submit its own implementation
to improve the baseline performance. Next, we describe each of the four
benchmarks that compose the MLPerf Tiny suite in detail.

58

5.1 – Anomaly Detection

5.1 Anomaly Detection
Anomaly Detection [27] refers to the process of recognition and separation of
data points that significantly deviate from the vast majority of the instances.

One of the most famous applications of outlier detection are fraud detec-
tion algorithms, but the range of possibilities is very wide: healthcare, finan-
cial surveillance, risk management and industrial manufacturing are only few
examples of possible use-cases for Anomaly Detection.

Indeed, in the industrial sector the predictive maintenance is a topic in
which many big companies are investing. The detection of early machine
anomalies provides many benefits in terms of cost reduction, increase of pro-
duction and safety.

The Anomaly Detection process has to face many aspects which make very
difficult the outliers discovery: first of all, anomalies are associated to un-
known and abrupt behaviors and distributions. Due to their nature, anoma-
lies may present completely different characteristics from one to another, i.e.,
are heterogeneous. The rarity and the sparsity of anomalies creates a high
imbalance in the classes of the dataset, which in turn makes harder a cor-
rect learning process by ML and DL algorithms. Consequently often outlier
detection processes suffer of low detection rate and many false positives.

Due the high complexity and unpredictability a fully supervised learning
method is often unfeasible, since new types of anomalies not present in the
training dataset can always occur. The complexity of labeling and designing
representative datasets moved most of the research efforts in the direction
of unsupervised learning methods, where the labels relative to anomalous
samples are not present during training.

The training dataset in the MLPerf Tiny benchmark is the ToyADMOS
[28] (Anomaly Detection in Machine Operating Sounds) in which machine-
operating sounds and environmental noise are individually recorded for sim-
ulating various noise levels. The samples are related to three different tasks:
product inspection, fault diagnosis for a fixed machine and fault diagnosis
for a moving machine. In each task multiple machines of the same class are
used to obtain a more representative set. The released dataset contains more
than 180 hours of normal machine-operating sounds and over 4000 samples
of anomalous sounds collected with four microphones at a 48-kHz sampling
rate for each task.

The reference architecture is an AutoEncoder (AE) which aims to learn a
low-dimensional feature representation space where the given data samples
can be well reconstructed. The main idea is to force the model to learn how

59

5 – MLPerf Tiny Benchmarks

to extracts features which contain most of the important regularities of the
data. Since the outliers are very different from the main distribution of the
input instances the reconstruction error for an anomaly is expected to be
much bigger than the one for a normal sample.

Figure 5.2: General deep autoencoder architecture.

The AutoEncoder is the reference model for the majority of the literature
on anomaly detection tasks. The AE used in this benchmark is constituted
by only fully-connected (FC) layers, convolutional layers have not been ap-
plied. The encoder and the decoder have the same structure composed by 4
FC layers with 128 units each, all followed by BatchNorm layer and ReLU
activation. The bottleneck has 8 units.

The model is not directly applied on the audio samples, but rather to some
features extracted with a preliminary preprocessing step. In particular, the
log-spectrogram with 128 bands and 32 ms of frame size is extracted from
each recording, then the model is applied over a sliding windows of 5 frames.

The anomaly score is computed considering the Mean Square Error of
the reconstruction error averaged over the central 6.4 seconds part of the
spectrogram. To obtain a binary classification outcome it is necessary to set
a threshold that allows to separate normal from anomaly scores. To obtain
an output quality metric that does not depend on the specific threshold
value selected, the AUC-ROC (Area Under The Curve, Receiver Operating

60

5.2 – Image Classification

Characteristics) has been used. The proposed AutoEncoder model reaches a
AUC-ROC value of 85.5%.

5.2 Image Classification
The boom of Deep Learning models in Computer Vision tasks started with
the ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC-
2012). The dataset [29] of the competition is composed by more than 1
million of images and 1000 classes. In that occasion for the first time a con-
volutional neural network has been used to solve that classification challenge
[30]. The network AlexNet achieved a top-5 error of 15.3%, more than 10.8
percentage points lower than the one of the runner up.

This event showed to the entire world the potentiality of Deep Learning
whose training had been made feasible parallelizing the computation with
GPUs. Computer Vision is one of the field of major success and application
of DL because all the preceding ML techniques were not able to reach that
level of performance.

While the ImageNet dataset is still the main reference benchmark for
Computer Vision networks in the high performance domain, it is too large
and complex to be representative of the typical tasks that can be solved by
IoT devices. Therefore, the MLPerf Tiny suite includes a simpler classical
computer vision benchmark called CIFAR-10 [31] composed by 60000 32x32
RGB images, with 6000 images per class. The 10 different classes represent
airplanes, cars, birds, cats, deers, dogs, frogs, horses, ships and trucks. The
dataset is split in 5 training batches and 1 testing batch, each one contains
10000 images.

The reference model is a ResNet-8 architecture [32]. This family of DL
models was proposed to improve the training behavior when the number of
layers starts to grow. The novelty introduced are residual skip connections
which simply performs an identity mapping whose output is added to the
output of some stacked layers. Identity layers do not add trainable parame-
ters. This intuition brought huge improvements in the performance achieved.
ResNet won the ILSVRC 2015 competition and made feasible the training of
deeper networks.

The accuracy reached by the reference model provided by MLPerf Tiny
over a set of 200 CIFAR-10 images is 88%. Since CIFAR-10 has been histor-
ically used as target dataset in many TinyML systems, MLPerf Tiny devel-
opers decided to create a reference target set to compare future works with

61

5 – MLPerf Tiny Benchmarks

previous ones.

Figure 5.3: CIFAR-10 [31] dataset samples.

5.3 Visual Wake Words
The Visual Wakewords benchmark [33] is a binary classification task based
on detecting whether at least one person is in an image. To facilitate the
development of models suitable for microcontrollers, the Visual Wake Words
benchmark provides a dataset specifically designed for a typical MCU use-
case, which is sensing whether a person is present in the camera field of view
or not. The detection of an object of interest can trigger an alert or simply
be collected for further analysis.

Image sensor are becoming very popular in the equipment of IoT devices
since the price is quite affordable and the range of application goes from
industrial to home automation.

62

5.3 – Visual Wake Words

However, the vast majority of image datasets are not suited for a mi-
crocontroller use case. ImageNet [29] has too many classes for a classical
microcontroller use-case and it does not provide samples of a person class.
CIFAR-10 [31] dataset is designed to train models that perform inferences
on the edge but it has some drawbacks. The limited resolution of the images
(32x32) limits the capacity of the models trained over it.

Therefore, the Visual WakeWord MLPerfTiny benchmark uses a subset
of the public MSCOCO dataset and is composed by 115k images divided
in training and validation subsets, each containing examples of person and
not-person images. The original MSCOCO dataset (Microsoft COCO Com-
mon Objects in COntext) [34] is a very popular benchmark for segmentation
and object detection tasks. It contains 91 object categories and more than
2.5 million labeled instances gathering complex everyday scenes presenting
common objects in their natural context.

The researchers called the MLPerf Tiny version of this dataset Visual Wake
Words because, similarly to how keywords are used in Speech Recognition,
the images allow the MCU to wake up if a person is spotted. Starting from
the COCO dataset if an image contains a bounding box with a person greater
than the 2.5% of the area, that image is categorized under the “person” label,
otherwise it becomes a “non-person” picture as shown in Fig. 5.4.

Figure 5.4: Visual Wake Words [33] dataset samples.

The baseline architecture is a MobileNet [35] network. MobileNet has
been specifically designed to build small and low-latency models for mobile
and embedded vision scenarios. The cornerstones of this network are three:

63

5 – MLPerf Tiny Benchmarks

depthwise separable convolutions, the width multiplier and the resolution mul-
tiplier.

Depthwise separable convolutions are composed by two layers: a depthwise
convolution and a pointwise convolution. This separation allows to decrease
the number of parameters involved and to augment the efficiency of the
network.

The second novelty introduced is the width multiplier, which is a simple
parameter α ∈ (0,1] that multiplies the number of input and output channels
of each layer. With an α < 1 the number of parameter and the computational
cost is reduced of around α2.

The third new aspect is the resolution multiplier parameter ρ ∈ (0,1].
This parameter reduces the resolution of the input images and consequently
the internal representations of the following layers. Exactly as the width
multiplier, also the resolution multiplier cuts the computational cost of ρ2.

The baseline accuracy for this benchmark is 83.32%.

5.4 Keyword Spotting
Nowadays speech technologies recognition are omnipresent, especially with
the huge proliferation of voice assistants such as Apple’s Siri, Amazon’s Alexa
and Google’s Assistant. An important aspect of such application is the power
consumption. To maximize the battery life, the complete set of functionalities
of these models is not always available.

By default, voice assistants monitor the audio streams looking for specific
wake-up words. Once a specific keyword is detected the model becomes fully
operative and a larger processor is enabled to support it. Keyword Spotting
[36] is defined as the task of identifying keywords in audio streams comprising
speech. In this way during the inactivity period the energy consumption is
reduced to the minimum. Deep Learning models outperform previous Ma-
chine Learning techniques in Speech Recognition, similarly to the Computer
Vision field, therefore the majority of today’s systems are based on DL ar-
chitectures.

A general pipeline of a modern keyword spotting deep learning system is
composed by the following steps: a speech feature extractor which converts
the input signal from time domain to frequency domain with the Short Time
Fourier Transformation (STFT) and produces the spectrogram. Human ears
do not perceive the differences in Hertz scale linearly. The log-Mel scale
is a non-linear transformation of the frequency scale designed to mimic the

64

5.4 – Keyword Spotting

human perception. It emphasizes the lower frequency region more than the
higher frequencies. The computed magnitude spectrogram is mapped to a
Mel scale and to a log operator to compute the log-Mel spectrogram. Once
finished this preprocessing step, the spectrogram becomes the input of the
model.

Figure 5.5: Speech recognition Deep Learning model [36].

The MLPerf Tiny benchmark for keyword spotting uses the Speech Com-
mands dataset [37]. Its primary goal is to provide a manner to train and
test small models to detect when a given word is spoken between a set of
ten or fewer words. Since most of the input audio is silence or background
noise, the false positives must be minimized to achieve good performance.
Furthermore, the models must deal with low quality equipments, noisy en-
vironments, people talking and conversational speechs. To create a dataset
as faithful all possible to these situations, all samples have been recorded
through laptop or phone microphones. The utterances were captured by
many different subjects to reduce as much as possible the personalization
and build speaker-independent models. Any personally-identifiable informa-
tion, like gender or ethnicity, has not been collected to guarantee the privacy
of the subjects involved. To facilitate the training and testing phases, each
word has been captured in isolation and each sample has a standard duration
of 1 second. The vocabulary in this scenario is composed by 10 words: “Yes”,
“No”, “Up”, “Down”, “Left”, “Right”, “On”, “Off”, “Stop”, and “Go”, which
are very common in IoT scenarios, plus the 2 additional classes “Silence” and
“Unknown”.

65

5 – MLPerf Tiny Benchmarks

Similarly to the previous benchmark, Visual Wake Words, the reference
baseline model is a composed by depthwise separable convolutions with only
38.6K parameters, and reaches an accuracy of 91.88%.

5.5 Library organization
The MLPerf Tiny suite is only provided with code using the TensorFlow
deep learning framework, and without a unified API to work on different
tests using the same set of functions. Having such a common API would
greatly simplify the application and evaluation of optimization techniques,
and in particular, in the case of this thesis, of the PIT NAS, to all four
benchmarks included in the suite. Therefore, during the thesis, part of the
work has been devoted to porting the suite to the Pytorch framework, and
to the development of a common API to provide a standard approach to
evaluate different NAS algorithms over four MLPerf Tiny datasets.

The MLPerf Tiny benchmarks have been included in the library with a
dedicated subfolder containing the refactored MLPerf Tiny scripts in Py-
torch. Then in the library root folder the FlexNAS algorithm is applied over
the four different datasets. In the following two sections an overall description
of the organization and the structure of these two components is provided.
Moreover, the set of common functions of the API will be explained.

5.5.1 Pytorch benchmarks
The pytorch-benchmarks package developed during the thesis contains the
MLPerf Tiny benchmarks implementation in Pytorch. In this repository the
PIT algorithm is not called, the purpose of the folder is to reproduce exactly
the same results obtained with the original implementation in TensorFlow
using Pytorch.

A set of standard functions and scripts has been defined at the beginning
in order to facilitate the test and the evaluation of DNAS algorithms such
PIT through several different datasets without caring of the differences in
terms of shape of input data, reference neural networks etc.

Every benchmark is associated a corresponding subpackage, characterized
by the same set of python files: data.py, model.py and train.py. The data.py
module exports the functions responsible for data collection, data prepro-
cessing and data transformation.

In every data.py there are two functions:

66

5.5 – Library organization

Figure 5.6: Pytorch-benchmark library structure.

• get_data: this function, as the name suggest, is responsible for the
download of the dataset. To avoid loss of time this function checks if
the dataset has been already downloaded previously in order to save
time in the training phase. It returns three torch Datasets, the training
dataset, the validation dataset and the test dataset.

• build_dataloaders: The torch DataLoader is the structure over which
the training loop is executed. It takes as input a torch Dataset and it
allows to specify the batch size, the number of workers needed and if
the data should be shuffled or not. This methods returns three torch
Dataloaders, respectively training, validation and test.

The model.py submodule exports the functions needed to retrieve the ref-
erence neural network architecture used in the MLPerf Tiny benchmark, or in
some cases, also alternative architectures that achieve good results on a given
task. The main function to retrieve the model is get_reference_model:

• get_reference_model: this function takes as input parameter the name
of the Pytorch model to return, this allows to choose between different
architectures in the training phase.

67

5 – MLPerf Tiny Benchmarks

The train.py submodule exports the functions needed to retrieve the loss
function, the optimizer and the learning rate scheduler that are used in the
training loop of the original MLPerf Tiny benchmark. It provides also a
default training loop structure and a default evaluation function that could
be used when there are not specific modifications required in the training
phase:

• get_default_optimizer: this method returns the optimizer used in
MLPerf Tiny library with the learning rate and weight decay to apply.

• get_default_criterion: this method returns the loss function applied
in MLPerf Tiny benchmark.

• get_default_scheduler: this method takes as input the optimizer and
it returns a scheduler object to manage the learning rate scheduling.

• train_one_epoch: this function implements the training loop for a sin-
gle epoch using the standard protocol defined by the benchmark. It is
recalled by the main scripts for the number of epochs needed.

• evaluate: the standard evaluation function over the validation or test
set. This structure reproduces the standard evaluation method proposed
in the MLPerf Tiny benchmark.

The train_one_epoch and evaluate functions are not retrieved in the
NAS phase because they are not applying the regularization term.

Figure 5.7: The folder structure of the benchmarks package.

In the root folder of pytorch-benchmarks for each dataset a default imple-
mentation has been provided. This allows other developers to reproduce and

68

5.5 – Library organization

verify the results obtained by this library and it also shows how the standard
functions should been used in the scripts.

Figure 5.8: Image Classification (left) and Visual Wake Words (right) imple-
mentation comparison.

The application of a standard methodology allows to manage most of
the differences between the benchmarks within the package, in this case
inside the data.py, model.py and train.py scripts, and uniforms at high level
the code, providing a simple and uniform interface. In the Fig. 5.8 are
shown the implementation regarding Image Classification and Visual Wake
Words benchmarks. The code structure is exactly the same, to switch from
a benchmark to another a simple change of the package pointer, the number
of epochs and the name of the network is required.

69

5 – MLPerf Tiny Benchmarks

5.5.2 NAS Application Code
The NAS methods defined in flexnas and the uniform training and test-
ing API defined in the aforementioned benchmarks package are designed to
be easily combined together, thus facilitating the evaluation of new NAS
approaches. This is achieved by importing the flexnas repository and the
pytorch-benchmarks submodules to make available all the methods and func-
tionalities needed to perform the optimization search. A submodule is linked
to a specific commit of the repository. In this way the code execution re-
mains stable, and when some bugs have been corrected in the source code
the submodule is updated.

In the thesis, thanks to the uniform interface, we managed to apply the
NAS to all four MLPerf Tiny benchmarks. To this end, we developed four
similar search scripts. The given structure decouples the three sections and
it allows to extend separately each of the libraries autonomously.

In this way the implementation of each modules can proceed in parallel
and facilitate future developments.

70

Chapter 6

Experimental Results

In this chapter the experimental outcomes of the tested NAS algorithm are
shown. In particular, we show that, for all four MLPerf Tiny benchmarks,
PIT has been able to achieve better accuracy results compared to the baseline
model with a reduced number of parameters. The details for each benchmark
are reported in the following sections.

6.1 Anomaly Detection
The Anomaly Detection benchmark is an unsupervised classification task
whose baseline model is an AutoEncoder with 267928 parameters. As de-
scribed in Sec. 5.1 this is an unsupervised learning task where there are no
labels available during the training and validation phase, the performance
of the model are calculated considering the AUC-ROC curve. The refer-
ence top AUC value for the baseline architecture is 85.5%. In the Table 6.1
are reported the AUC-ROC results obtained by PIT with different lambda
regularization strength.

Lambda Auc # Parameters
8e-3 79.14 26370
8e-4 83.95 70031
5e-4 85.38 123567
3e-4 83.97 103396
8e-5 85.66 121375
3e-5 85.30 127954
8e-6 86.07 126615

71

6 – Experimental Results

Lambda Auc # Parameters
5e-6 85.10 137410
3e-6 84.53 125786
8e-7 85.29 141121
3e-7 84.16 125641
9e-8 84.10 125189
8e-8 85.35 128439
7e-8 84.81 130021
6e-8 84.14 126783
5e-8 85.19 122674
3e-8 86.66 135964
8e-9 85.15 131522
4e-9 85.34 129810
3e-9 85.74 147510
8e-10 84.83 147971
5e-10 85.65 147385
3e-10 85.14 148426
8e-11 85.62 152091
5e-11 85.65 154987
3e-11 85.15 152091
7e-12 84.17 189451
6e-12 85.02 203077
7e-13 84.54 267789
7e-14 86.35 265670
7e-15 84.36 267789
7e-16 85.38 267789

Table 6.1: Pruning In Time algorithm outcomes for the Anomaly Detection
benchmark (Pareto points highlighted in bold).

The Pareto points have been plotted in the AUC vs Number of Parameters
space in Fig. 6.1. The numbers close to each star correspond to the regular-
ization strength used to obtain it. With a lambda equal to 8e-5 PIT reached
an AUC value of 85.66% with only 121375 model parameters, a reduction of
-54.70% with the respect to the original model.

The highest AUC has been achieved by the PIT model with regulariza-
tion strength equal to 3e-8, with an AUC of 86.66%, 1.16% higher than the
reference value, and a model composed by 135964 parameters, which implies
a -49.25% of size reduction.

72

6.1 – Anomaly Detection

Figure 6.1: Pareto chart in the AUC vs Number of Parameters space for
Anomaly Detection.

In other words, this NAS algorithm discovered two new architectures able
to obtain the same or better results with roughly half of the size of the original
one. This is an important result especially considering further deployment
to constrained low memory devices.

73

6 – Experimental Results

6.2 Image Classification
The Image Classification benchmark is a supervised classification task where
the reference model is a ResNet-8 composed by 78052 parameters achieving
a top accuracy of 88%. During the testing phase 32 different regularization
strength have been applied in order to deeply evaluate the behavior of PIT. In
Table 6.2 are reported for each lambda the accuracy reached and the number
of parameters of the optimized architecture.

Lambda Accuracy # Parameters
5e-4 22.5 126
1e-4 65.5 2553
8e-5 66.5 4270
7e-5 72 6465
5e-5 76 9925
3e-5 84.5 19417
2e-5 80 19775
1e-5 87.5 26828
9e-6 86 25448
8e-6 86 47125
7e-6 84 28890
6e-6 86.5 31023
5e-6 89.5 57110
3e-6 89.5 68976
1e-6 87.5 68976
9e-7 87 54369
7e-7 88.5 66942
5e-7 87.5 61446
2e-7 87.5 77319
9e-8 89 74427
8e-8 88.5 74718
7e-8 89 72258
5e-8 89 72231
2e-8 88.5 74427
1e-8 87 70515
5e-9 89 69516
3e-9 90 71805
2e-9 88 70947

74

6.2 – Image Classification

Lambda Accuracy # Parameters
1e-9 89.5 75848
5e-10 88.5 70947
5e-11 89.5 76452
5e-12 87 69657

Table 6.2: Pruning In Time algorithm outcomes for the CIFAR-10 dataset
(Pareto points highlighted in bold).

Figure 6.2: Pareto chart in the Accuracy vs Number of Parameters space for
Image Classification.

The Pareto points have been plotted in the Accuracy vs Number of Pa-
rameters space in Fig. 6.2. PIT achieved an accuracy of 90% with 71805
parameters corresponding to a size reduction of -8%. Furthermore, applying

75

6 – Experimental Results

PIT with a lambda of 5e-6, the network found by the NAS reaches an accu-
racy of 89.5%, but with a significant reduction of -26.8% in the number of
parameters. Lastly, if we accept an accuracy degradation of -0.5%, PIT finds
a solution that only requires 26828 parameters, reducing the model size of
-65.63%.

76

6.3 – Visual Wake Words

6.3 Visual Wake Words
The Visual Wake Words benchmark is a supervised classification task where
the reference model is a MobileNet network composed by 213586 parameters
whose best result is an accuracy of 83.32%. Several regularization strength
have been tested in order to find the best architecture, the results have been
collected in following table:

Lambda Accuracy # Parameters
5e-4 51.99 242
4e-4 51.99 242
7e-5 78.47 1607
5e-5 80.80 2712
3e-5 80.80 2712
8e-6 82.66 4330
3e-6 84.08 8897
5e-7 84.86 17612
3e-7 85.23 18675
7e-8 85.28 19537
5e-8 84.87 19483
3e-8 84.18 19405
5e-9 85.04 19347
3e-9 84.99 19398
5e-10 84.90 19447
8e-10 84.86 19409

Table 6.3: Pruning In Time algorithm outcomes for the Visual Wake Words
benchmark (Pareto points highlighted in bold).

The Pareto points have been plotted in in the Accuracy vs Number of
Parameters space in Fig. 6.3. Applying a regularization strength of 5e-7
PIT discovered a new architecture able to obtain an accuracy of 84.86%,
1.54% higher than the baseline, with only 17612 parameters which implies a
global reduction of -91.75% of the original model size. The highest accuracy
(85.28%) has been reached with a regularization strength set to 7e-8. With
this lambda the obtained model is composed by 19537 parameters, reducing
the model size of -90.85% with respect to the baseline.

In this benchmark the architectures found by the NAS have been able
to improve the reference accuracy reducing the model size of one order of

77

6 – Experimental Results

Figure 6.3: Pareto chart in the Accuracy vs Number of Parameters space for
Visual Wake Words.

magnitude, indeed the novel networks contain less than 10% of the initial
number of parameters, providing a huge improvement for deployment on
edge devices.

78

6.4 – Keyword Spotting

6.4 Keyword Spotting
The Keyword Spotting is a supervised learning tasks where the reference
model is a Depthwise Separable Convolutional Neural Network (DSCNN)
with 40396 parameters and achieving a top accuracy of 91.88%. The tested
regularization strength have been collected in the following table:

Lambda Accuracy # Parameters
5e-5 83.29 14749
3e-5 91.64 22079
8e-6 92.37 31547
5e-6 93.21 36123
3e-6 93.50 37541
8e-7 93.49 37541
5e-7 93.39 40255
3e-7 86.44 39973
3e-8 88.00 40396
3e-9 88.00 40396
5e-10 89.12 40396
3e-10 88.00 40396

Table 6.4: Pruning In Time algorithm outcomes for the Keyword Spotting
benchmark (Pareto points highlighted in bold).

With a regularization strength of 8e-6, the accuracy reached by PIT is
92.37% (0.49% better than the baseline) with a model containing 31547 pa-
rameters, i.e., a -21.90% size reduction.

The best accuracy (93.49%) is achieved with a regularization strength of
8e-7, with 37.541 parameters, corresponding to a size reduction of -7%. If we
accept an accuracy drop of -0.24%, then PIT finds a model with only 22079
parameters, i.e. -45% less than the baseline.

The DSCNN is designed with depthwise separable convolutional layers
which are more efficient layers to perform a convolutional operation. For
this reason the overall reduction in term of size and the global improvement
of the model have not reached huge results in absolute value like in other
benchmarks.

79

6 – Experimental Results

Figure 6.4: Pareto chart in the Accuracy vs Number of Parameters space for
Keyword Spotting.

80

Chapter 7

Conclusion and future
works

Artificial Intelligence is experiencing an exponential growth in terms of ap-
plications and performance. Deep Learning models nowadays reached a very
high popularity thanks to the capability to provide state-of-the-art solutions
to several problems in domains such as Computer Vision where the hand-
crafted feature engineering struggled to achieve acceptable performance.

Despite the astonishing results already obtained, there are many more
aspects where Deep Leaning needs further improvements. These aspects
foster the growth of new research fields.

A critical feature of DL is the design of the architecture. This task still
requires high experience and manual effort, a burden that researchers are
trying to alleviate with Neural Architecture Search tools. In particular, NAS
for constrained IoT devices tries to optimize the model architecture not only
from the perspective of its predictive performance, but also considering com-
plexity, often expressed in terms of number of model parameters or number
of Floating point Operations Per Second.

Part of the work of this thesis consisted in studying and reviewing the
current NAS literature, including early algorithms based on Reinforcement
Learning, and more lightweight Differentiable NAS techniques. Then, the
novel Pruning In Time NAS tool has been studied in more depth, since it
has been one of the building blocks of this work.

In fact, the purpose of this thesis has been the development of a library
to provide the possibility to evaluate PIT, or other similar NAS algorithms
over the four benchmarks defined in the MLPerf Tiny suite. A standard
background has been created by a complete refactor of the MLPerf Tiny

81

7 – Conclusion and future works

code using the Pytorch framework. Then a set of common functions has
been defined in order to provide a standardized API to the final user. Fu-
ture researchers or developers can easily evaluate and reproduce the PIT
algorithm results over the four datasets. This library has been specifically
built to facilitate the cross testing of several NAS algorithms and its modular
structure can be further extended by future works, constituting a solid basis
for fair and easy testing of TinyML models and optimization tools.

The results obtained over the four benchmarks demonstrated the capa-
bility of PIT to discover more efficient model architectures, able to obtain
better performance with a significant reduction in terms of number of pa-
rameters. As inference on the edge is growing its importance and use cases,
PIT constitutes a reliable techniques to deploy more efficient and accurate
neural networks on edge devices.

82

Bibliography

[1] XU, Min, et al. «The fourth industrial revolution: Opportunities and
challenges». In: International journal of financial research, 2018, 9.2: 90-
95. (cit. on p. 13).

[2] Alzubaidi, L., Zhang, J., Humaidi, A.J. et al. «Review of deep learning:
concepts, CNN architectures, challenges, applications, future directions».
In: J Big Data 8, 53 (2021) (cit. on p. 14).

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton., «Imagenet clas-
sification with deep convolutional neural networks». In: Communications
of the ACM 60.6 (2017) (cit. on p. 14).

[4] Zachary C Lipton, John Berkowitz, and Charles Elkan. «A critical review
of recurrent neural networks for sequence learning». In: arXiv preprint
arXiv:1506.00019 (2015) (cit. on p. 14).

[5] R. Sarikaya, G. E. Hinton and A. Deoras, «Application of Deep Belief
Networks for Natural Language Understanding». In: IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 22, no. 4, pp.
778-784, (2014) (cit. on p. 14).

[6] Harris, «Many-core GPU computing with NVIDIA CUDA». In: Int. Conf.
Supercomputing, (2008) (cit. on p. 14).

[7] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. «Quantized Neural Networks: Training Neural Networks
with Low Precision Weights and Activations». (2016) (cit. on p. 15).

[8] Shyam A Tailor, Javier Fernandez-Marques, and Nicholas D Lane.
«Degree-quant: Quantization-aware training for graph neural networks».
In: International Conference on Learning Representations. (2021) (cit. on
p. 15).

[9] Xin Dong, Shangyu Chen, and Sinno Jialin Pan. «Learning to prune deep
neural networks via layer-wise optimal brain surgeon». arXiv preprint
arXiv:1705.07565. (2017) (cit. on p. 16).

[10] Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue Huang, and

83

Bibliography

Baochang Zhang. «Accelerating convolutional networks via global & dy-
namic filter pruning». In: IJCAI, pages 2425–2432. (2018) (cit. on p. 16).

[11] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
«MobileNets: Efficient convolutional neural networks for mobile vision
applications». arXiv preprint arXiv:1704.04861, (2017) (cit. on p. 16).

[12] Yani Ioannou, Duncan Robertson, Roberto Cipolla, and Antonio Cri-
minisi. «Deep roots: Improving cnn efficiency with hierarchical filter
groups». In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1231–1240, (2017) (cit. on p. 16).

[13] Hanxiao Liu, Karen Simonyan, and Yiming Yang. «Darts: Differentiable
architecture search». In: arXiv preprint arXiv:1806.09055 (2018) (cit. on
p. 16).

[14] Alvin Wan et al. «Fbnetv2: Differentiable neural architecture search for
spatial and channel dimensions». In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 12965–12974.
(2020) (cit. on p. 16, 39, 41, 42, 43)

[15] M. Risso et al., «Pruning in time (pit): A light-weight network architec-
ture optimizer for temporal convolutional networks». In Proc. 58th DAC,
pp. 1–6. (2021) (cit. on p. 16, 45)

[16] Srivastava, Nitish, et al. «Dropout: a simple way to prevent neural net-
works from overfitting». The journal of machine learning research 15.1
(2014): 1929-1958 (cit. on p. 27).

[17] Qin, Zhuwei, et al. «How convolutional neural network see the world-
A survey of convolutional neural network visualization methods». arXiv
preprint arXiv:1804.11191 (2018) (cit. on p. 29, 30, 31).

[18] Sergey Ioffe and Christian Szegedy. «Batch normalization: Accelerating
deep network training by reducing internal covariate shift». In: arXiv
preprint arXiv:1502.03167 (2015) (cit. on p. 31).

[19] Bai, Shaojie, J. Zico Kolter, and Vladlen Koltun. «An empirical evalua-
tion of generic convolutional and recurrent networks for sequence model-
ing». arXiv preprint arXiv:1803.01271 (2018) (cit. on p. 33).

[20] B. Zoph and Q. V. Le, «Neural architecture search with reinforcement
learning». arXiv preprint arXiv:1611.01578, 2016. (cit. on p. 35, 36)

[21] Ronald J Williams. «Simple Statistical Gradient-Following Algorithms
for Connectionist Reinforcement Learning». Machine Learning, 8(3-4):
229–256, (1992) (cit. on p. 36)

[22] Zoph, Barret, et al. «Learning transferable architectures for scalable im-
age recognition». Proceedings of the IEEE conference on computer vision

84

Bibliography

and pattern recognition. 2018 (cit. on p. 37).
[23] H. Liu et al., «Darts: Differentiable architecture search».

arXiv:1806.09055, 2019 (cit. on p. 37).
[24] A. Gordon et al., «Morphnet: Fast & simple resource-constrained struc-

ture learning of deep networks». In: Proc. of the IEEE CVPR, pp.
1586–1595 (2018) (cit. on p. 39)

[25] M. Courbariaux et al., «Binarized neural networks: Training deep neural
networks with weights and activations constrained to+ 1 or-1». arXiv
preprint arXiv:1602.02830, 2016 (cit. on p. 47).

[26] Colby R. Banbury, Vijay Janapa Reddi, Peter Torelli, Jeremy Holleman
et al., «MLPerf Tiny Benchmark». In: Proceedings of the Neural Infor-
mation Processing Systems Track on Datasets and Benchmarks, (2021)
(cit. on p. 57)

[27] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton van den Hen-
gel. «Deep Learning for Anomaly Detection: A Review». ACM Comput.
Surv. 1, 1, Article 1, (2020) (cit. on p. 59)

[28] Y. Koizumi, S. Saito, H. Uematsu, N. Harada, and K. Imoto. «Toyadmos:
A dataset of miniature machine operating sounds for anomalous sound
detection». In: IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA), pages 313–317. (2019) (cit. on p. 59)

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. «ImageNet Large
Scale Visual Recognition Challenge». International Journal of Computer
Vision (IJCV), 115(3):211–252, (2015) (cit. on p. 61)

[30] Krizhevsky A, Sutskever I, Hinton GE «ImageNet Classification with
Deep Convolutional Neural Networks». NIPS’12 Proc 25th Int Conf Neu-
ral Inf Process Syst 1:1097–1105 (2012) (cit. on p. 61, 63)

[31] A. Krizhevsky, V. Nair, and G. Hinton. «Cifar-10».
(canadian institute for advanced research). (2009) URL:
http://www.cs.toronto.edu/ kriz/cifar.html. (cit. on p. 61, 63)

[32] K. He, X. Zhang, S. Ren, and J. Sun. «Deep residual learning for image
recognition». In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, (2016) (cit. on p. 62)

[33] A. Chowdhery, P. Warden, J. Shlens, A. Howard, and R. Rhodes.
«Visual wake words dataset». CoRR, abs/1906.05721, 2019. URL
http://arxiv.org/abs/1906.05721. (cit. on p. 62)

[34] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Per-
ona, Deva Ramanan, Piotr Dollar, and C Lawrence Zitnick. «Microsoft

85

Bibliography

coco: Common objects in context». In: European conference on computer
vision, pages 740–755. Springer, (2014) (cit. on p. 63)

[35] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T.
Weyand, M. Andreetto, and H. Adam. «Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications». arXiv preprint
arXiv:1704.04861, (2017) (cit. on p. 64)

[36] López-Espejo, Iván, et al. «Deep spoken keyword spotting: An
overview». IEEE Access (2021) (cit. on p. 64)

[37] Warden, Pete. «Speech commands: A dataset for limited-vocabulary
speech recognition». arXiv preprint arXiv:1804.03209 (2018) (cit. on p.
65)

86

	List of Tables
	List of Figures
	Introduction
	Background
	Neural Network fundamentals
	Neuron
	Activation Functions
	Loss Functions
	Gradient-Based Learning
	Regularization Techniques

	Multi Layer Perceptron
	Convolutional Neural Networks
	Convolutional Layer
	Pooling Layer
	Normalization Layer

	Temporal Convolutional Networks

	Related works
	Reinforcement Learning NAS
	SuperNet-based Differentiable NAS
	Mask-based Differentiable NAS
	MorphNet
	FBNetV2

	Neural Architecture Search (NAS)
	Pruning In Time (PIT)
	Channels Search
	Receptive Field Search
	Dilation Search
	Regularization
	Training procedure

	Library organization
	Flexnas

	MLPerf Tiny Benchmarks
	Anomaly Detection
	Image Classification
	Visual Wake Words
	Keyword Spotting
	Library organization
	Pytorch benchmarks
	NAS Application Code

	Experimental Results
	Anomaly Detection
	Image Classification
	Visual Wake Words
	Keyword Spotting

	Conclusion and future works
	Bibliography

