
POLITECNICO DI TORINO
Master’s Degree in Automation and cyber intelligent

physical systems

Master’s Degree Thesis

Drone to human pose estimation with
deep neural networks

Supervisors

Prof. DANIELE JAHIER PAGLIARI

Prof. DANIELE PALOSSI

Prof. CHRISTIAN PILATO

Candidate

LUCA CRUPI

10/2022

Summary

Nano-drones are capable of performing a vast amount of tasks that are not doable
in any other, comparably versatile, way, including: indoor surveillance, safe and
rescue and inspection.
The reduced size and cost, as well as the limitation in power supply for compu-
tational purposes (under 100 mW) and computational capabilities make running
deep learning models on these devices particularly challenging.
The aim of this work is to study automated ways to design and deploy sufficiently
shrank Neural Network (NN) architectures, reducing the number of parameters,
number of operations of an input seed network. In order to address this task we
employed a novel Network Architecture Search (NAS) technique called, Pruning
In Time (PIT) [1]. PIT was previously design and tested on 1D networks and
TCNs, but with this thesis we extended its use to 2D models and demonstrate its
capabilities on a Drone-to-human pose estimation task on the Crazyflie 2.1 nano
drone where, the prediction variables are x, y, z and ϕ (angle of rotation around z).
The main interest for this NAS relies on the fact that its search time is approxi-
mately equal to the time of training the actual network.
Since the GAP8 System-on-Chip (SoC), mounted onboard the Crazyflie, has only
512 KB of L2 memory, model size reduction was crucial in order to avoid an increase
of the latency due to accesses in the off-chip DRAM memory. The architectures
obtained from the NAS, that belong to the Pareto front of the cycle-performance
analysis, have been carefully tested on testset images and in on-field experiments.
Starting from two different seeds, FrontNet and MobileNet v1, we were able to
obtain up to 5.6x size reduction that helped in providing up to 50% faster inference.
Performance improved by 5% with respect to FrontNet [2], evaluated through the
Mean Absolute Error (MAE) of the distance between predictions and ground truth
relative pose of the x, y, z and ϕ variables.
Training and testing images and, corresponding labels, were acquired in the Manno
(CH) laboratory and used for the selection of the various networks as well as a first
attempt performance analysis. In field tests instead were performed in a never seen
before environment, namely, the Lugano (CH) laboratory. Our NAS technology was
able to design networks that perform up to 48% better with respect to FrontNet in

ii

the new environment, in terms of MAE on the most challenging variable to predict
(ϕ).
In the on-field experiments the control performance of the drone improved by 32%
in terms of absolute distance and 24% for what concerns the yaw control angle. It is
worth noting that the path walked for testing, in the never seen before environment,
was completed only by the architectures obtained by PIT starting from a MobileNet
seed. FrontNet seed and derived models were not able to conclude the path and,
on a three experiments average, they completed at most 85% of it.
In summary, the thesis demonstrates that efficient NAS techniques can be success-
fully employed to optimize deep learning models on constrained robotic platforms,
reducing the size and complexity of networks while simultaneously improving their
predictive performance.

iii

Acknowledgements

This project was realized thanks to the efforts of many people. I express my
gratitude to my supervisors Daniele Jahier Pagliari, Daniele Palossi, Christian
Pilato, Alessio Burrello, Matteo Risso and Elia Cereda, who devoted much time to
guide my work for the sake of the best possible results.

Thanks to the Polytechnic University of Turin and Dalle Molle Institute for Artifi-
cial Intelligence that provided me with this challenging opportunity.

And, last but not least, thanks to my family and godfather, my girlfriend, my best
friends and all the close people, who have always supported me and were ready to
help in every moment through this complicated path.

Sincerely, thank you.

“A person who never made a mistake never tried anything new”.
Albert Einstein

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xiii

1 Introduction 1
1.1 Background and Motivation . 1

2 Related works 4
2.1 Introduction to NAS . 4

2.1.1 MnasNet . 6
2.1.2 ProxylessNAS . 8
2.1.3 MorphNet . 9
2.1.4 FBNetV2 . 10
2.1.5 Pruning in Time . 12
2.1.6 Main takeaways . 15

2.2 Networks building blocks . 15
2.2.1 Convolution . 15
2.2.2 Batch normalization . 16
2.2.3 Depthwise separable convolution 17
2.2.4 Pooling blocks . 18
2.2.5 Fully connected layer . 19
2.2.6 Activation functions . 19
2.2.7 Dropout . 23

3 Methodology 24
3.1 NAS application to the visual pose estimation task 24

3.1.1 Task . 24
3.1.2 NAS integration for 2D convolutions 25
3.1.3 Seed networks and searches with NAS 25

vi

3.2 Network implementation on SoC . 27
3.2.1 NEMO: NEural Minimization for pytorch 28
3.2.2 DORY: Deployment Oriented to memoRY 28

3.3 Setup . 31
3.3.1 Drone . 31
3.3.2 Software pipeline . 36
3.3.3 Environment for recordings and dataset 37
3.3.4 Testing setup . 39

4 Results 41
4.1 Models’ search with PIT . 41

4.1.1 Frontnet . 41
4.1.2 MobileNet . 46
4.1.3 Criterion of selection . 56

4.2 Results: power viewpoint and throughput 60
4.3 Results: control accuracy and generalization standpoints 65

4.3.1 Frontnetseed . 66
4.3.2 Frontnetsmall . 68
4.3.3 MobileNet0.25

small . 70
4.3.4 MobileNet1.0

small . 72
4.3.5 Cross tests validation with flying drone 75
4.3.6 Infield tests summary . 84

5 Conclusions and future works 86

A Metrics of evaluation 87
A.1 MSE . 87
A.2 MAE . 88
A.3 R2 . 89
A.4 The Pearson Coefficient . 90

Bibliography 92

vii

List of Tables

3.1 MobileNet v1 base architecture . 26

4.1 Models with changing strength, x and y performance 42
4.2 Models with changing strength, z and ϕ performance 42
4.3 Non quantized vs quantized FQ FrontNet models 43
4.4 Non quantized vs quantized ID FrontNet models 45
4.5 Models with changing strength, x and y performance 47
4.6 Models with changing strength, z and ϕ performance 48
4.7 Non quantized vs quantized FQ MobileNet v1 0.25 models 48
4.8 MobileNet v1 models, width multiplier = 0.25, Integer Deployable

performance . 50
4.9 Models with changing strength, x and y performance 52
4.10 Models with changing strength, z and ϕ performance 52
4.11 Non quantized vs quantized FQ MobileNet v1 1.0 models 53
4.12 MobileNet v1 models, width multiplier = 1, Integer deployable . . . 55
4.13 Computation and memory footprint for inference on one frame (F:

PULP-Frontnet, M: MobileNet). 63
4.14 MAE and MSE variable x . 77
4.15 MAE and MSE variable y . 79
4.16 MAE and MSE variable z . 81
4.17 MAE and MSE variable ϕ . 83
4.18 In-field experiment results (* run that does not end the path) . . . 85

A.1 Correlation types . 90

viii

List of Figures

2.1 Representation of the L1 Loss in R2 5
2.2 Representation of the L2 Loss in R2 5
2.3 MnasNet high level schema with multi-objective reward. 7
2.4 Factorized Hierarchical Search Space. Network layers are grouped

into a number of predefined skeletons, called blocks, based on their
input resolutions and filter sizes. Each block contains a variable
number of repeated identical layers where only the first layer has
stride 2 if input/output resolutions are different but all other layers
have stride 1. For each block, we search for the operations and
connections for a single layer and the number of layers N, then the
same layer is repeated N times (e.g., Layer 4-1 to 4-N4 are the same).
Layers from different blocks (e.g., Layer 2-1 and 4-1) can be different. 8

2.5 Proxy NAS and ProxylessNAS. 8
2.6 ProxylessNAS over parameterized network training. 9
2.7 MorphNet channels pruning . 10
2.8 FBNetV2 channels pruning. 11
2.9 FBNetV2 channels pruning . 12
2.10 Filtering dilation and channels. 13
2.11 Training PIT . 14
2.12 Average pooling example, 2 x 2 filter case 18
2.13 Max pooling example, 2 x 2 filter case 18
2.14 Sigmoidal function and its derivative 20
2.15 ReLU function . 21
2.16 ReLU function derivative . 21
2.17 Leaky ReLU function . 22
2.18 Leaky ReLU function derivative . 22

3.1 Frontnet building blocks. 26
3.2 UniBo flow for DNNs deployment. 27
3.3 DORY data movement between L2 and L1 memory. Credits Alessio

Burrello . 30

ix

3.4 Crazyflie 2.1 nano-drone (Credits bitcraze.io) 32
3.5 Drone and camera frame with references 32
3.6 Flowdeck v2 (Credits bitcraze.io) 33
3.7 AI deck (Credits bitcraze.io) . 34
3.8 GAP8 components schema (Credits Greenwaves technology.) 35
3.9 GAP8 and STM32 building blocks 36
3.10 Sample image from the dataset . 37
3.11 Definition of angle θ on the crazyflie 38
3.12 Physical vs synthetic pitch . 38
3.13 Path used during the experiments. 39

4.1 MSE of non-quantized vs quantized FQ FrontNet models 43
4.2 MAE of non-quantized vs quantized FQ FrontNet models 44
4.3 R2 score of non-quantized vs quantized FQ FrontNet models 44
4.4 MSE of non-quantized vs quantized ID FrontNet models 45
4.5 MAE of non-quantized vs quantized ID FrontNet models 46
4.6 R2 score of non-quantized vs quantized ID FrontNet models 46
4.7 MSE of non-quantized vs quantized FQ Mobilenet v1 0.25 models . 49
4.8 MAE of non-quantized vs quantized FQ Mobilenet v1 0.25 models . 49
4.9 R2 score of non-quantized vs quantized FQ Mobilenet v1 0.25 models 49
4.10 MSE of non quantized vs quantized ID Mobilenet v1 0.25 models . 50
4.11 MAE of non quantized vs quantized ID Mobilenet v1 0.25 models . 51
4.12 R2 score of non-quantized vs quantized ID Mobilenet v1 0.25 models 51
4.13 MSE of non quantized vs quantized FQ Mobilenet v1 1.0 models . . 53
4.14 MAE of non quantized vs quantized FQ Mobilenet v1 1.0 models . 54
4.15 R2 score of non-quantized vs quantized FQ Mobilenet v1 1.0 models 54
4.16 MSE of non quantized vs quantized ID Mobilenet v1 1.0 models . . 55
4.17 MAE of non-quantized vs quantized ID Mobilenet v1 1.0 models . . 56
4.18 R2 score of non-quantized vs quantized ID Mobilenet v1 1.0 models 56
4.19 Average of FLOPs and size to average R2 x, y, z score FrontNet . . 57
4.20 Average of FLOPs and size to average R2 x, y, z score MobileNet v1

1.0 . 58
4.21 Average of FLOPs and size to average R2 x, y, z score MobileNet v1

0.25 . 59
4.22 Pareto curves of the networks extracted from the NAS in the clock

cycles vs. MAE space (lower is better). 59
4.23 R2 of non-quantized vs quantized ID models (higher is better). . . . 60
4.24 Power consumption breakdown of the Crazyflie 2.1 with inference

onboard (Mobilenet0.25
small) . 61

4.25 Throughput vs. power consumption for the four models at three
different frequencies operating points (FC/CL). 62

x

4.26 Power consumption of all the configurations. 62
4.27 Frontnet seed power profiling . 64
4.28 Frontnetsmall power profiling . 64
4.29 MobileNet0.25

small power profiling . 64
4.30 MobileNet1.0

small power profiling . 65
4.31 Onboard camera’s images in two different environments 65
4.32 Mocap controlled drone path . 66
4.33 Frontnetseed path . 67
4.34 Frontnet seed scatterplot . 68
4.35 Frontnetsmall scatterplot . 69
4.36 MobileNet0.25

small path . 70
4.37 MobileNet0.25

small scatterplot . 71
4.38 MobileNet0.25

small tracking performance in time (from frame 400 has
been performed the in-place rotation of the target) 72

4.39 MobileNet1.0
small path . 73

4.40 MobileNet1.0
small scatterplot . 74

4.41 MobileNet1.0
small tracking performance in time (from frame 400 has

been performed the in place rotation of the target) 75
4.42 x predictions in time with changing network 76
4.43 GT vs predictions x . 77
4.44 y predictions in time with changing network 78
4.45 GT vs predictions y . 79
4.46 z predictions in time with changing network 80
4.47 GT vs predictions z . 81
4.48 ϕ predictions in time with changing network 82
4.49 GT vs predictions ϕ . 83
4.50 In-field control errors distribution (lower is better). Boxplot whiskers

mark the 5th and 95th percentile of data. 84

A.1 Representation of the meaning of MSE through area of squares . . . 88
A.2 Representation of the meaning of MAE through segments 89
A.3 Correlation cases helpful for this work. 91

xi

Acronyms

AI
artificial intelligence

IoT
Internet of Things

ML
Machine Learning

SoC
System on Chip

CL
Cluster

FC
Fabric Controller

fps
frame per second

NAS
Network Architecture Search

MACs
Multiply and accumulate operations

SoA
state-of-the-art

xiii

MAE
Mean Average Error

MSE
Mean Squared Error

ToF
Time of Flight

FoV
Field of View

ROI
Region of interest

FPU
Floating Point Unit

PULP
parallel ultra low power

DMA
Direct Memory Access

NN
Neural Network

TCN
Temporal Convolutional Network

PIT
Pruning in Time

GT
Ground Truth

RELU
REctified Linear Unit

xiv

NEMO
NEural Minimization for pytorch

DORY
Deployment Oriented to memoRY

CNN
Convolutional Neural Network

SGD
Stochastic gradient descent

BN
Batch Normalization

DNAS
Differentiable NAS

FLOPS
Floating Point Operation Per Second

MLP
Multilayer Perceptron

FQ
Fake quantized

xv

Chapter 1

Introduction

1.1 Background and Motivation

Robotics platforms and Internet of Things (IoT) devices are pervasive instruments
nowadays since people around the world are continuously helped by them. In
particular, considering how simple is to be surrounded by these objects, smartphones,
watches, cars, home assistant robots and many more types of machines are constant
parts of our lives.
With the advent of Machine Learning (ML), the focus switched from the creation
of the aforementioned systems to the automatization of them, with the final aim of
creating autonomous machines, an evergreen dream of humankind.
In this regard, ML may be seen as a way to let machines improve their behavior (as
measured by quantitative metrics) thanks to the use of labeled or unlabeled data.
In order to perform ML tasks, these devices need a conspicuous power budget and
in activities that require mobility, there are usually strict constraints of energy
which is provided in general by battery systems. Furthermore, latency should be
considered a crucial aspect for systems that perform real-time control and tracking
as in the case of this thesis. On the other side, if energy is not a constraint, memory
size may be the limit and efficiency should be pursued anyway to be economically
attractive for industrial applications.
Considering these crucial needs Network Architecture Search (NAS) poses a broad
solution to obtain an energy-efficient system, a sufficiently tiny network, or whatever
optimization metrics may be needed without reducing performance and providing
an automatic way to perform the network design.
Memory and energy optimization is fundamental in the case the deployment
platform is a nano-drone or an IoT device that has to perform inference for
controlling purposes. These kinds of devices have in general a reduced amount
of memory and computational power. This is the case also for the platform

1

Introduction

used for this thesis, the crazyflie 2.1, and the AI-deck based on GAP8 system
on chip (SoC). In fact with only 512 kB of L2 memory and less than 1 GOPs
of computational power a NAS system may be particularly interesting for this
kind of device and as a consequence for the entire field of research, allowing the
deployment of more and more complex networks without sacrificing performance.
Furthermore, considering that drones are gaining interest and more applications
arise continuously a toolchain to develop and deploy efficient Neural Networks
(NN) may be a significant breakthrough allowing more and more development. In
particular, nano-drones are needed for indoor applications such as indoor security,
safety and rescue as well as inspection of high buildings and complex systems.
In this environment, considering the absence of GPS-based tracking services, NN
visual navigation systems are a convenient and portable solution, independent from
the environment and the subject.
This thesis propose an integrated solution employing NAS to develop a NN that
can solve a pose estimation task between the crazyflie 2.1 nano-drone and a human
using only an Himax camera and the computational capabilities present onboard.
The aim of the work is to reduce the originally designed architecture Frontnet
and provide an improved version of it while also testing two Mobilenet-based
architectures.
Furthermore, every network has been tested on the GAP8 SoC and deployed in
an 8-bit quantized fashion in order to limit as much as possible the computational
overhead. As a result, a full pipeline is provided from the design of the neural
network with the NAS to the deployment onboard, passing through quantization
and tiling.
Several NAS techniques have been explored in detail, as reported in chapter 2
and, from this analysis Pruning in Time (PIT) have been chosen and employed for
this work. Since PIT was originally designed for temporal convolutional networks
(TCNs) some adaptations have been performed, including a 2D domain adaptation
in order to perform operations and inferences on images.
The focus was then brought to the NAS research using PIT and to the exploration
of the solution space changing the strength value λ. This parameter allows the
balancing of the algorithm between task performance and the hardware cost metric.
λ is inversely proportional, in this case, to the number of parameter in the network
thus larger values of the parameter corresponding to tighter networks. With all
the results obtained from the solution space exploration, a pareto analysis has
been done and the architectures to be tested onfield were chosen from the front
according to the methodology described in chapter 3.
Every NN selected has been tested onfield with a defined and reproducible path,
described in section 3.3.4. A position tracking system has been employed that
allowed the precise 3D tracking of the person and the drone in order to understand
the capabilities of each network. The results that included the streaming of the

2

Introduction

camera have been also tested in post-processing mode as described in section 4.3.5.
In order to perform every test and acquire data the pipeline detailed in section
3.3.2 has been used, providing a reliable and consistent way of testing the networks
both in closed loop with the controller and post-processing images.
The method proposed by this thesis was able to perform the drone-to-human pose
estimation task with a reduction of 32% of the horizontal displacement error while
providing a network that is up to 1.5× faster and up to 5.6× smaller with respect
to the original Frontnet network. Furthermore, the networks reached about 50 Hz
using only 90 mW of average power consumption.
The results obtained in this work have been submitted in a paper at the International
Conference on Robotics and Automation (ICRA).

3

Chapter 2

Related works

2.1 Introduction to NAS

Since the beginning designing neural networks was more an art than a science, most
of the development tools should be learned with practice and applied according to
trial and error or previous experience. Even if the procedure may be successful, it
may take an extended amount of time and resources to develop a working model.
In the early days, manual research was the main choice since Neural Networks were
not well established. Since the neural network proved to be very successful in their
ability to adapt to a plethora of tasks, several automatic techniques have been
developed in order to explore the spaces of hyper-parameters. The necessity of such
automation lead to the development of an emergent research field, the so-called
Neural Architecture Search (NAS).
A NAS typically works on a search space, which contains all the possible NNs
variants that we want to explore.
Several strategies have been proposed in order to perform automatic searches and
optimization of networks. Although it is not a proper NAS search, one of the first
methods to shrink networks was an L1 term (reported in equation 2.1). This term
when summed to the task loss function promotes sparsity. It was introduced in [3]
and in [4].

L1Loss =
Ø

|ytrue − ypredicted| (2.1)

2.1: L1 loss function

4

Related works

x

y

Figure 2.1: Representation of the L1 Loss in R2

x

y

Figure 2.2: Representation of the L2 Loss in R2

As an example, if the optimization over the line depicted in figure 2.1 is con-
sidered, a solution that has at least one zero component is obtained. Instead in
the case of L2 loss, reported in equation 2.2, is practically impossible to have a
sparse solution as depicted in figure 2.2. The L1 term induces less relevant weights
to decrease in the norm. However, this term does not target a specific resource
to optimize and in general is not guaranteed to provide an efficient solution for
modern accelerated hardware such as GPUs. The introduction of such a complexity
thus does not provide reasonable assurance of a speedup in practice.
Other than weights as proposed by Optimal Brain Damage [5], also entire neurons
have been an object of optimization and reduction with dedicated techniques. Even

5

Related works

in this case, there was not a method to target specifically a resource, such as FLOPs
or size, so other methods have been explored.
The broad topic of Neural Architecture Search (NAS) has the main aim of creating

L2Loss =
Ø

(ytrue − ypredicted)2 (2.2)

2.2: L2 loss function

a NN automatically taking into account constraints on size, FLOPs, or any metric
properly modeled.
As a first attempt, NAS was designed considering them as a meta-learning process
and guiding the exploration thanks to a meta-controller (for example a Recurrent
Neural Network) that is therefore trained at each iteration.
On the one hand, this approach should lead to a complete exploration of space,
and as so, the best-performing network may be found for the task.
On the other side, such a method need several thousand hours of GPUs in order to
train a single model, this may be a problem since the time to get a reliable solution
increase with the dimension of the task.
As a consequence, the need for automatically designed NN models and the ob-
jective of saving computational resources in the training phase is leading to the
development of novel techniques for the exploration of architectural spaces.
Some effort has been devoted to the improvement of the meta-learning process in
order to reduce the time required to obtain a network. A solution that shares the
weights has been proposed in Pham et al. (2018) [6], another solution realized in
[7] obtains such a goal with a hyper network to generate the weights, avoiding also
the training phase.
Orthogonally to the NAS techniques, several nonarchitectural reduction methods
have been proposed. As an example, low-bit quantization reduces the size of the
network representing weights with 8 bits. Other techniques may include methods
that design the entire network instead of pruning an already built one.
Several solutions to the problem started to be proposed in 2018. The most interest-
ing for the sake of this thesis are MnasNet, ProxylessNAS, MorphNet, FBNetV2,
and PIT. These NASes are respectively explored in more detail in section 2.1.1,
section 2.1.2, section 2.1.3, section 2.1.4 and section 2.1.5.

2.1.1 MnasNet
MnasNet formulates the design problem as a multi-objective optimization, as
described in figure 2.3 that considers both the accuracy and inference latency of
CNN models. Unlike previous work [36, 26, 21] that uses FLOPS to approximate
inference latency, for MnasNet direct latency measures on real-world devices have

6

Related works

been done, overcoming the problem that considering FLOPS as a proxy of the
latency is consistently inaccurate as the case of MobileNet and NASNet, where that
have similar FLOPS (575M vs. 564M) even if they have quite different latencies
(113ms vs. 183ms).
Another important aspect is the fact that techniques previously developed search
for a few types of cells and then stack them through the network, resulting in a
simplification of the search space and consequently a restriction that prevents the
research of specifical computationally efficient solutions.
This NAS technique explores a novel factorized hierarchical search space that
enables layer diversity. In particular, the CNN is factorized into unique blocks,
as depicted in figure 2.4, and then analyzed per block separately in order to find
different architectures in different blocks. The search space is thus reduced by
several orders of magnitude depending on the number of blocks B, the number
of layers per block N, and search space size S. A typical case reported in [8] is
a reduction of 1026 in the search space dimension obtained with a search space
size S=432, B=5, and N=3. In the case of a complete search with a per-layer
search the size should be SB∗N and using MnasNet it becomes SB. Constraining
the target accuracy, then a model obtained through MnasNet was 1.8× faster than
MobileNetV2 and 2.3× faster than NASNet [36] with better accuracy. Compared
to the widely used ResNet-50 [9], MnasNet-based model achieves slightly higher
accuracy with 4.8× fewer parameters and 10× fewer multiply-add operations.

Figure 2.3: MnasNet high level schema with multi-objective reward.

7

Related works

Figure 2.4: Factorized Hierarchical Search Space. Network layers are grouped into
a number of predefined skeletons, called blocks, based on their input resolutions
and filter sizes. Each block contains a variable number of repeated identical layers
where only the first layer has stride 2 if input/output resolutions are different but
all other layers have stride 1. For each block, we search for the operations and
connections for a single layer and the number of layers N, then the same layer is
repeated N times (e.g., Layer 4-1 to 4-N4 are the same). Layers from different
blocks (e.g., Layer 2-1 and 4-1) can be different.

2.1.2 ProxylessNAS
In order to solve the search task in a reduced amount of time, several proxy
techniques have been introduced limiting for example the number of training
samples, the number of blocks in the exploration, or searching for NN with reduced
datasets. These approaches produce novel and possibly more accurate architectures
but they are not guaranteed to be optimal since the space explored is limited.
ProxylessNAS [9], a DNAS, achieves the same goal without using any type of proxy,
exploring the full search space. In fact, it directly learns the architectures on the
target task and hardware as depicted in figure 2.5.

Figure 2.5: Proxy NAS and ProxylessNAS.

This NAS obtained better results than previous proxy-based approaches while

8

Related works

also reducing to 200 hours of GPU the computational cost for training a network
(200× fewer than MnasNet for ImageNet task). Instead, it achieved the same
performance as a MobileNetV2 while being 1.8× faster. The search is performed
as a path-level pruning process inspired by [10] and ???[11] as reported in figure
2.6, training an over-parameterized network that contains all paths, with different
layers (diff convolutional kernels, depthwise convolution, pooling, skip connections,
...), and are then pruned at the end of the training phase.
The experiments performed on CIFAR-10 and ImageNet achieved respectively
2.08% error with only 5.7M parameters and 75.01% top-1 accuracy which is 3.1%
better if compared with MobileNetV2 while being 1.2×faster.

Figure 2.6: ProxylessNAS over parameterized network training.

2.1.3 MorphNet
MorphNet is a NAS that iteratively shrinks and expands a seed NN. In fact, if
the NASes previously described exploring a predefined search space defined by the
designer, MorphNet searches for architectures in a subspace of the NN.
The shrinkage phase happens thanks to a resource-weighted sparsifying regularizer
that acts on the γ parameter of the batch normalization that consequently produces
a modification in the activations. The expansions happen by means of a uniform
multiplicative factor on all layers.
For embedded tasks as well as for industrial applications, power consumption and
inference speed become of crucial importance. As a consequence, the need of
targeting specific resources, such as FLOPs per inference, arises. The main aim was
the design of NN autonomously and that achieve comparable or improved results
from the accuracy point of view while reducing specific metrics.
The solution proposed with MorphNet [12] is able to scale to large models and
large datasets.
Scalability and NAS performance may be seen in the case of the JFT dataset, with

9

Related works

more than 350M images and 20K classes, where the NAS is able to accomplish the
task with a 2.1% improvement in evaluation MAP while obtaining the same number
of FLOPs per inference. The training and the research of the new architecture
require slightly greater resources if compared to the single model training.
The approach proposed is extremely scalable since it usually requires only a small
constant number, 2 in general, of automated trial and error attempts.
The approach uses batch normalization parameters to selectively eliminate channels
from a convolutional layer. The NAS employs a regularization loss to force γ in
the batch normalization reported in equation 2.7 to small values and then prune
them if they are under a certain threshold T as reported in figure 2.7. The crucial
limitation that this tool has is the requirement of a batch normalization layer that
is not always present. Furthermore, it applies the masks to the output activations.

Figure 2.7: MorphNet channels pruning

The experiments performed on ImageNet achieved a 1.1% test accuracy error
with respect to Inception V2 and provies 1% improvement also with respect to
MobileNet targeting FLOPS as a constraint. This is worth of notice since MobileNet
was already designed targetting computational resources.

2.1.4 FBNetV2
FBNetV2 is a DMaskingNAS that was designed with the specific aim of enlarging
the constrained search space that commonly used DNASs have, considering that all
candidate networks should be listed explicitly. As an example, in order to search for
channels between 1 and 32 in a layer, all the possibilities should be listed resulting

10

Related works

in 32 different paths in the search space for just one layer.
The algorithm proposed by FBNetV2 [13] expands the search space by up to 1014×
over conventional DNAS approaches supporting searches over spatial and channel
dimensions that are otherwise prohibitively expensive.
The NAS obtained up to 421× less search cost while obtaining higher accuracy if
compared to MobileNet V3.
In order to increase the search space, the method proposes a representation through
masks that allow compact storage in memory. In particular, this method is used
for channels and input resolutions. The algorithm jointly optimizes over multiple
input resolutions and channel options simultaneously, increasing memory cost only
negligibly as the number of options grows.

Figure 2.8: FBNetV2 channels pruning.

Previously developed DNAS approaches instantiate a block for every channel
option in the supergraph.
These approaches present two main issues, the output of each block should have the
same number of channels otherwise the combination is not possible and the DNAS
could not perform the weighted sum. The second issue is slower training with
growing options, which should be run separately thus resulting in O(k) increase in

11

Related works

FLOPS.
In order to address the incompatibility problem, a zero padding is introduced in
order to reach the maximum number of channels k as reported in figure 2.8 Step B.
This is equivalent to performing an increase in the number of filters for all the
convolutions to k as reported in 2.8 Step C.
Since all blocks have the same number of filters we can approximate by sharing
weights as depicted in Step D of figure 2.8. Finally, this is equivalent to computing
the aggregate mask and running the block b only once as reported in figure 2.8
Step E.
This allows the NAS to perform the channel search for any block including related
architectural decisions.

Figure 2.9: FBNetV2 channels pruning

Also in the case of FBNetV2 the pruning is done on the output activations
and, as shown by figure 2.9, it requires a set of predefined masks to explore the
full granularity can become noisy due to the Gumbel softmax operator [14] and
generate suboptimal solutions. Furthermore, FBNetV2 is able to eliminate only a
portion of the final output channels of a layer.

2.1.5 Pruning in Time
PIT is the first architecture optimizer that targets dilation as a hyperparameter.
Also, this NAS is a DMaskingNAS, even if the application is different, targetting
mainly TCNs with a focus mainly on 1D convolutions and fully connected layers
since they are the most demanding in terms of OPs and Memory.
The method’s first issue to assess is how to embed the dilation factors in metrics
that is differentiable and thus can be optimized during training. The additional
trainable parameter added by the tool is named γ.

12

Related works

The exploration done by PIT for what concerns the dilation factor and the receptive
field allows only the use of dilations which are the power of 2 (2, 4, 8, etc.).
For each temporal convolution PIT, being rfmax the maximum receptive field,
defines a vector of binary parameters γ containing L = ⌊log2(rfmax − 1)⌋ + 1
elements.
In order to perform the search only with regular dilation patterns, the trainable
parameters in γ are combined as reported in figure 2.10a and according to 2.3. Γ
parameters act as a selector for the timeslice to be included or not. The mask
vector has L elements and each element is then multiplied with all filter weights to
perform the actual masking.

(a) Dilation (b) Channels

Figure 2.10: Filtering dilation and channels.

Γi =
L−1−iÙ

k=0
γk (2.3)

The NAS explores the channels’ search space with a novel masking approach
compared to the previously described methods. The main difference is the position
in which the masks are applied, in fact, PIT apply them on the weights tensor
allowing a seamless implementation of the research of dilation and the receptive
field.
The searches done with the tool may provide a completly customized channels
structure allowing the presence or the elimination of any channel in any layer
of the network and thus achieving maximum flexibility. In order to perform the
selection, each element of the output tensor is binarized and then multiplied with
one convolutional filter.
PIT then performs a standard training, as reported in figure 2.11, where the loss
function is augmented with a L1 regularization term to promote sparsity of γ.

13

Related works

In this case, the training loss is the sum of a loss given by the accuracy of the
actual prediction and a term described in 2.4 that accounts for the dimension of
the network found. C

(l)
in and C

(l)
out are the input and output channel dimension for

the layer l. The equation reported in 2.5 reports the full training loss.

Lsize
R (γ) = λ

layersØ
l=1

C
(l)
in · C

(l)
out

L−1Ø
i=1

round(rfmax − 1
2L−i

)|γ̂(l)
i | (2.4)

LP IT (W,γ) = Lperf (W) + Lsize
R (γ) (2.5)

Figure 2.11: Training PIT

Even if Pruning in Time (PIT) was originally designed in order to perform
architecture search on TCNs, in this work it was adapted in order to assess explo-
ration of the architecture space for 2D convolutional networks employed for image
processing tasks.
Although the NAS is able to perform searches on all the parameters’ space the
focus was clustered on channels exploration as reported in figure 2.10b.
In the experiments reported, PIT was able to reduce the training time of more

14

Related works

than 10.4× in the case of TEMPONet medium size resulting in training only 1.4×
slower than without the NAS research.
With TCNs based networks, PIT is able to produce Pareto optimal solutions and
reaches a reduction in the number of parameters up to 54% without affecting
performance. Furthermore, it reduced the inference latency (on the GAP8) and
the model size up to 3× and 7.4× respectively.
The tool here analyzed may be integrated with other Network Architecture Search
based on DMaskingNAS techniques that affect different hyperparameters.

2.1.6 Main takeaways
The NAS used for this thesis is PIT since it explores the widest solution space but
still maintains a reduced computational cost and requires only a fraction of the
total computations needed by a traditional, not masked NAS. Furthermore, PIT
does not need a Batch normalization layer to perform the optimization and thus is
far more general and has further levels of application.
PIT maintains the possibility to prune any channel within the layer and it masks
the weights and not the feature maps as it is for MorphNet and FBNetV2.

2.2 Networks building blocks
In this section are described the building blocks of the architectures that are
analyzed in section 3.1.3 and 3.1.3.

2.2.1 Convolution
The convolution layer represents the main portion in the computational load of a
CNN.
This layer performs a product between a sliding matrix and another matrix. The
sliding matrix, namely the kernel, may have more than one channel in order to
extract different features in one step. In order to perform inference, the kernel slides
all over the fixed matrix, an image in the case of this thesis providing an activation
map. The steps between one position and the next one of the convolutions is called
stride.
The output width dimension, in the case of convolutions, is reported in equation 2.6.
The complete output dimension for squared input and kernel is Wout · Wout · Dout

where Dout is the number of channels.

15

Related works

Wout = W − F + 2P

S
+ 1 (2.6)

where

W is the width and height of the input matrix assuming it is squared
F is the size of the kernel
P is the padding
S is the stride

The fundamental reasons behind the use of convolutions are sparse interaction,
parameter sharing, and equivariant representation.
Sparse interaction allows CNN to be statistically effective in storing fewer parame-
ters and as such reducing also memory requirement. This is obtained using kernels
that are smaller than the input.
Multilayer Perceptron MLP, networks realized stacking fully connected layers, use
the weights only once, instead CNNs reuse the same parameters and, weights
applied to inputs are always the same and so, in this case, parameters are shared.
Since the weights are shared changing the input means consequently modifying the
output resulting in a property named equivariance to translation.

2.2.2 Batch normalization

Batch normalization takes a step towards reducing internal covariance shift, and
in doing so dramatically accelerates the training of the deep neural networks [15].
This layer is able to do so thanks to a normalization shift that fixes the means and
the variances of a layer’s input. Doing this, also the Stochastic Gradient Descent
(SGD), the algorithm used to optimize the weights of the network, has significant
advantages since the gradient flow is less likely to saturate and less dependent by
the scale of values involved hence, the value of the learning rate may be significantly
higher.
For each activation xi a shift and scale parameters are obtained and so, the activation
is transformed according to 2.7 over a mini-batch of dimension m applying Batch
Normalization (BN).
ϵ is added to equation 2.7 in the computation of x̂i for numerical stability.

yi = γx̂i + β (2.7)

16

Related works

where

x̂i = xi − µBñ
σ2

B + ϵ

σ2
B = 1

m

Ø
(xi − µB)2

µb = 1
m

Ø
xi

2.2.3 Depthwise separable convolution

Depthwise separable convolutions may be factorized in two parts: a depthwise
convolution and a pointwise convolution. The depthwise convolution has the
effect of filtering the input data and the pointwise convolution act as a combining
layer allowing the extraction of new features. The effect is an extremely reduced
computational footprint and model size with respect to standard convolutions.
In particular, standard convolutions have a computational cost proportional to
DK · DK · M · N · DF · DF , where M represents the number of input channels, N the
number of output channels, DK · DK is the kernel size and DF · DF is the feature
map size.
Depthwise convolutions instead have a computational cost of DK · DK · M · DF · DF

but it performs only the filtering operation, so in order to perform also the combining
operation a further M · N · DF · DF need to be employed for pointwise convolutions.
The total cost for depthwise separable convolutions is DK · DK · M · DF · DF + M ·
N · DF · DF .
By comparing the cost obtained for depthwise separable convolutions with the
cost of standard convolutions a reduction in cost proportional to 1

N
+ 1

D2
K

may
be observed, and in particular for the case of MobileNet v1 with 3 x 3 conv the
reduction in computational cost is around 8 times.

MobileNet v1 has two parameters that can be tuned by the designer in order
to reduce the size and the computational cost of the networks depending on the
application.
The first one, namely the width multiplier α is devoted to reducing the thickness
of the model uniformly at each layer. The second one is the resolution multiplier,
represented as ρ, and is set to change the size of the input image. The complete
computational cost is DK · DK · αM · ρDF · ρDF + αM · αN · ρDF · ρDF . By taking
into account the two parameters α and ρ the complete cost is proportional to α2

and ρ2.

17

Related works

2.2.4 Pooling blocks

In the standard structure, three further blocks may be observed: an average pooling
layer, a fully connected layer, and a softmax.
Average pooling blocks are used in order to reduce the features considered in
subsequent layers. This layer takes as input a feature map (in the case of MobileNet
7 x 7) and provides as output an average of the various cells. In figure 2.12 an
example of average pooling is reported.

15 50 75 71
61 56 17 13
23 8 11 33
12 33 22 56

45.5 44
19 30.5

Figure 2.12: Average pooling example, 2 x 2 filter case

On the other hand, max pooling, extracts the maximum value in each window
of the filter. An example of this type of pooling is reported in figure 2.13.

15 50 75 71
61 56 17 13
23 8 11 33
12 33 22 56

61 75
33 56

Figure 2.13: Max pooling example, 2 x 2 filter case

Both, max and average pooling are used in order to reduce the number of features
and simplify the representation by providing a reduced size output according to
equation 2.8.

Wout = W − F

S
+ 1 (2.8)

18

Related works

where

W is the width and height of the input matrix assuming it is squared
F is the size of the kernel
S is the stride

2.2.5 Fully connected layer
Fully connected layers are composed of a linear transformation and a nonlinear
transformation. The linear transformation is applied to the input vector via a dot
product between the vector and a matrix of weights according to 2.9.

yjk(x) = σ(
nHØ
i=1

wjkxi + wj0) (2.9)

where

σ is the non linear function also named activation function.

2.2.6 Activation functions
All the layers previously reported are exploited at first with a forward pass in order
to perform inference and, then, with a back propagation step in order to modify
the weights and perform the learning activity of networks.
Given f(θ, x) a function that describes a fully connected network where x is the
input and θ are the learnable weights. Then the backpropagation algorithm com-
putes ∂f

∂θ
.

The function σ applied to the value obtained with the linear combination is called
an activation function and, in particular, is a nonlinear function. Even though
many activation functions exist, two common examples are the Sigmoid and the
Rectified Linear Unit (ReLU).
The function for the Sigmoidal function is reported in 2.10

S(x) = 1
1 + e−x

(2.10)

19

Related works

−6 −4 −2 0 2 4 6

0.5

1

σ(x)
σ′(x)

Figure 2.14: Sigmoidal function and its derivative

From figure 2.14 some peculiar characteristic of the Sigmoidal functions may
be observed, in particular, the function θ is prone to saturation outside the [-4, 4]
range and, as so, its derivative is equal to the derivative of a constant function
(almost 0) outside that range. This can generate problems when the network has
to learn with backpropagation. The presence of a derivative equal to 0 results in
the vanishing gradient problem. The network in this case has no ability to learn.
In order to solve this issue, many other activation functions have been proposed,
an example is the ReLU and its variant, the leaky ReLU.
The ReLU function is reported in equation 2.11.

relu(x) = max(0, x). (2.11)

20

Related works

−6 −4 −2 0 2 4 6

0

2

4

6

Figure 2.15: ReLU function

−6 −4 −2 0 2 4 6

0

0.5

1

1.5

Figure 2.16: ReLU function derivative

The ReLU function may create some issues whenever x < 0 resulting in the
dead neuron phenomenon. In order to solve the problem reported before the leaky
ReLU has been proposed. In most of its part, the leaky ReLU is equal to the ReLU
but, in the case of x < 0 it allows a slight upgrade of the value of the weight.

relu(x) = max(0.01x, x). (2.12)

21

Related works

−6 −4 −2 0 2 4 6

0

2

4

6

Figure 2.17: Leaky ReLU function

−6 −4 −2 0 2 4 6

0

0.5

1

1.5

Figure 2.18: Leaky ReLU function derivative

In general, MobileNet networks may end with a softmax but, in this case, since
the purpose of the network is not classification, this layer has been deleted. The
last fully connected layer has been modified in order to output 4 values namely
x, y, z, ϕ

22

Related works

2.2.7 Dropout
Dropout is a technique that solves two main issues: model combination and data
scarcity. On the one hand it asses the problem of model combination, in fact
creating different architectures by means of the dropping of units in the NN. On the
other side skipping the irrelevant part of the network allows reducing the overfitting
when the data are insufficient.
Dropping a unit means removing it from the architecture with a probability p, p
is chosen using a validation set or a set by default at 0.5. Applying dropout to a
neural network amounts to sampling a "thinned" network from it [16].

23

Chapter 3

Methodology

The main aim of this work is to prove the functionalities of PIT in reducing the
seed networks in the number of parameter without affecting the accuracy.
In order to do so, three seed NNs have been explored: one based on Frontnet
network and two based on MobileNet. The first has a reduced depth and it does
not contain any depthwise separable convolution. The latter instead have been
explored in two fashions, considering a 1.0 and a 0.25 width multiplier.
The networks have been reduced using the technique described above and tested
on the drone detailed in section 3.3.1.
In section 3.2 the tools used for deployment have been detailed while, section 3.3.2
reports the software pipeline used for all the tests.
Finally, sections 3.3.3 and 3.3.4 respectively report how the training dataset has
been acquired and how the experiment has been run.

3.1 NAS application to the visual pose estimation
task

3.1.1 Task
Nano drones are extremely useful for indoor applications and, given their reduced
size, they can interact easily and without any risk with humans. In order to allow
an easier and more consistent interaction, the correct estimation of the distance
between the human and the drone is of crucial interest.
In order to assess the visual pose estimation problem, Frontnet was created and
tested in 2021.
The presence of grayscale images that are 2D streams of data, requires the use of
2D convolutional networks to perform the pose estimation.

24

Methodology

3.1.2 NAS integration for 2D convolutions
Given that the NAS selected in chapter 2, namely PIT, does not perform the
exploration for 2D layers in the current implementation some adaptations have
been performed.
The extension proposed by this work accounts only for channel-wise exploration
and allows the research of the architecture channels space in 2D convolutions. This
is possible thanks to the development of a novel searchable layer that performs 2D
convolutions instead of the previous one that allowed only 1D convolutions.
The searches are done with particular attention to the coherence of networks, in
fact, the channel number is a tunable parameter, but it needs to be constant
between one layer and the next one in the same network.

3.1.3 Seed networks and searches with NAS
Frontnet

PULP-FrontNet was introduced in 2021 with the aim of estimating the distance
between a drone and a human in order to allow the drone to follow the person. It
extracts 4 different real values that represent x, y, z, and ϕ estimates. The original
network features 7 convolutional layers with a total of 304k parameters.
The main blocks included in this architecture, as displayed in figure 3.1, are the
convolution layer, max pooling, batch normalization, RELU, Dropout, and a fully
connected layer.
In order to perform the searches with NAS the parameter λ, namely the strength
has been changed with values between λ =0 and λ = 10−10.

MobileNet

MobileNet, designed in 2017 by Google, was conceived as a lightweight convolutional
neural network capable of performing visual tasks with reduced latency.
As embedded in the name, the network is devoted to mobile applications and as
a consequence is particularly suited for robotics use, in particular in the case of
constrained resources environments.
A vast amount of experiments have been conducted as reported in [17]. In each
of those cases, remarkable performance has been obtained, in particular, on the
ImageNet task, the result has been slightly worse than VGG16 but using a 32×
smaller network and 27× fewer operations.
Since our task doesn’t need classification the standard network reported in table
3.1 has been modified to obtain 4 real numbers describing the relative position
between the drone and the person in x, y, z, and phi.

25

Methodology

The base structure is summarized in table 3.1.

Table 3.1: MobileNet v1 base architecture

Type / Stride Filter Shape Input Size
Conv / s2 3×3×3×32 224×224×3
Conv dw / s1 3×3×32 dw 112×112×32
Conv / s1 1×1×32×64 112×112×32
Conv dw / s2 3×3×64 dw 112×112×64
Conv / s1 1×1×64×128 56×56×64
Conv dw / s1 3×3×128 dw 56×56×128
Conv / s1 1×1×128×128 56×56×128
Conv dw / s2 3×3×128 dw 56×56×128
Conv / s1 1×1×128×256 28×28×128
Conv dw / s1 3×3×256 dw 28×28×256
Conv / s1 1×1×256×256 28×28×256
Conv dw / s2 3×3×256 dw 28×28×256
Conv / s1 1×1×256×512 14×14×256

5× Conv dw / s1
Conv / s1

3 × 3 × 512 dw
1×1×512×512

14×14×512
14×14×512

Conv dw /s2 3×3×512 dw 14×14×512
Conv / s1 1×1×512×1024 7×7×512
Conv dw /s2 3×3×1024 dw 7×7×1024
Conv / s1 1×1×1024×1024 7×7×1024
Avg Pool / s1 Pool 7 × 7 7×7×1024
FC / s1 1024 × 1000 1×1×1024
Softmax / s1 Classifier 1×1×1000

This model is based on depthwise separable convolutions, a particular type of
convolutions further analyzed in section 2.2.3.

Figure 3.1: Frontnet building blocks.

26

Methodology

For the sake of this thesis two values of α have been employed in order to
perform a wider number of searches and provide a more accurate definition of
NAS performance. In particular experiments with α = 1.0 and α = 0.25 have
been reported, resulting in a couple of staring MobileNet, the first with 3 million
parameters and the second one with 300 thousand parameters. With this remarkable
gap in the number of parameters the first network is more prone to overfitting but
gives extended flexibility to PIT exploration.
In all the cases considered the value of ρ has been kept constant, namely ρ = 0.714
which results in using an input image with a 160-pixel width instead of the standard
224-pixel of MobileNet. The size of the images (160x96) is the same as the other
network architecture considered in this work, namely Frontnet. In these cases,
the searches have been done with parameter λ ranging between 0 and 10−5 for
MobileNet with width multiplier 1.0 while, for MobileNet with width multiplier
0.25, the parameter ranges between 0 and λ = 5 · 10−5.

3.2 Network implementation on SoC
The conversion of DNNs to low-level instruction, directly utilizable on the drone,
is still a challenge. Considering the on-chip memory there is a size constraint since
the L2 memory space is smaller than 1MB. Furthermore, the AI deck illustrated in
section 3.3.1 has only an Arithmetic Logic Unit that performs integer computations,
as a consequence, the networks with weights and operations have to be converted
from floating point to INT8. If the conversion is not performed, there is the
possibility of emulating the floating point unit but, in this case, almost 100 times
more computations need to be done resulting in an extremely slow inference
throughput that is practically not employable for the sake of controlling the drone.
To perform the conversion and integrate the generated code into the control pipeline
the UniBo flow is adopted. It consists of 3 main parts: NEural Minimization for
PyTorch (NEMO), Deployment Oriented to memoRY (DORY), and integration in
the Parallel Ultra Low Power (PULP) architecture.

Figure 3.2: UniBo flow for DNNs deployment.

27

Methodology

3.2.1 NEMO: NEural Minimization for pytorch
NEMO operations in the UniBo pipeline consist of the quantization of networks
and the consequent generation of architectures that are employable by DORY for
the generation of a code that manages the memory in a proper manner.
The software provides commands for the quantization of already trained networks
and for quantization-aware training. It takes as input a PyTorch model or an onnx
model and it quantizes the graph and provides the tools to reduce the precision of
different layers to a different number of bits ranging from 2 to 16 bits. Although
NEMO provides such flexibility, DORY requires as input an 8-bit network and so,
the quantization has been done considering 8 bits weights and operations.
NEMO also provides the functions to do the entire retraining of the network after
the quantization.
The tool is able to perform the linear quantization of all the tensors inside the
graph, but the structure needs to respect particular characteristics. In fact, it
uses batch normalization and the RELU to quantize all the graphs dividing them
into multiplications additions, and shifts. A single tensor is first translated into a
fixed point tensor and then to an integer tensor that is multiplied by a quantum
(smallest value representable).
DORY needs an integer deployable network in order to perform the tiling and so
no fixed point or floating point architectures may be used as input for this end tool.
During inferences, the only operations allowed are multiplications and shifts.
The quants around the network are automatically changed during the training and,
after the training of the network has been performed, NEMO is employed in order
to provide the final code to be used onboard. The operations done by NEMO
are split into two parts: the first is a quantization from FP32 to fake quantized
(reported also as FQ), and the second one is a quantization from Fake quantized to
UINT8. The tables and figures in sections 4.1.1, 4.1.2, 4.1.2, 4.1.1 and 4.1.2, 4.1.2
report the results relative to these two different steps.

3.2.2 DORY: Deployment Oriented to memoRY
DORY starting from the INT8 quantized networks performs the tiling and the code
generation with primitives contained in the PULP-NN library.
The software starts from an ONNX file generated by NEMO or Quantlab for
example and provides the final c-code that needs to be deployed. In order to
do so, it analyzes the ONNX and provides the graphs with the basic blocks if
they are contained in the backend tool. Subsequently, each node is analyzed. If a
block is recognized there are two possibilities, create a new node or stick it to the
previous one, the choice is performed in order to create the most efficient block on
a computational cost level. Operators introduced by the software that does not
have the corresponding version in hardware are not considered. This is the case

28

Methodology

with casts.
An example of unsupported operations may be found looking at the maxpool
layer, in fact, it cannot be fused in the previous convolution (in the current
implementation) since in the current backend there is not a node that does the
work together with convolutions.
From the ONNX a set of properties of the various nodes is extracted and stored, then
inputs and outputs are read in order to link to other nodes and support branches
and residual connections useful in specifical architecture, such as MobileNet v2,
but not for the sake of this thesis.
As of September 2022, the tiling is done by the software layer by layer looking inside
each node and understanding how much memory is necessary for the node and
how to allocate it, respecting the 64kB L1 maximum size, the 512kB L2 memory
constraint and the 64MB L3 memory constraint.
DORY takes from the external (L3) memory a tile and copies it to the internal
(L1) one then it processes it and put it back in the external one. Weights instead
are just copied in and used for the computations, they are not copied back since is
not of interest and they do not change in the computations.
The tool is able to do L3/L2 tiling as well as L2/L1 tiling. The former enables
the execution of big networks but slows down the execution substantially since the
memory bandwidth between the external Hyperram and the internal chip memory
is lower compared to the bandwidth between the two internal L2 and L1 memories.
Fortunately it is not always necessary as in the cases considered here where all
the networks fit in L2 memory. The latter type of tiling is always used since
architectures need to be very tight to fit in L1 and it is used for this thesis since the
occupation in memory of the architectures is in the order of the hundreds of kB.
As stated above the L2/L1 tiling is almost always necessary since just 64kB of L1
memory are present on the chip and the tiles need to be switched from the L2
memory of 512 kB to the 64 kB one. For this tiling since is much smaller, the 3D
transfers are enabled. The tiles movement is performed solving an optimization
problem, solved using the ORTools library, instead of using a greedy scheme. The
equations to be optimized and the constraints to be respected are reported here in
equations 3.1, 3.2, 3.3 and 3.4, optimized in order to occupy as much as possible of
the L1 memory.

cost = maxSize(Wtile) + Size(xtile) + Size(ytile) (3.1)

3.1: Cost function

29

Methodology

Size(Wtile) + Size(xtile) + Size(ytile) < L1size (3.2)

3.2: Constraint on memory dimension

{ytile[chout] = Wtile[chout], ...} (3.3)

3.3: Geometry constraint

cost′ = cost + {ytile[chout] divisible by 4, ...} (3.4)

3.4: Geometry constraint

PULP-nn parallelizes its workload on the height dimension of the image so one
of the heuristics to maximize is to always have the height a multiple of 8 so that
the workload is balanced between cores.

Figure 3.3: DORY data movement between L2 and L1 memory. Credits Alessio
Burrello

As described in figure 3.3 at t0 we transfer input tiles and weights tiles. While
the computation is performed an async call to the DMA is made in order to copy

30

Methodology

the next tile and use the double buffering (i.e., doing in-parallel computation and
data transfers through two different IPs) to hide the cost of transfers behind the
computations. In fact, as described in the t1 part, the convolutions completely
hide the in copy and the out copy. Out tiles are then transferred to L2 memory
and in the meanwhile computations of the next tiles are performed. DORY knows
all the nodes and the various memory dimensions of every block and is able to
compute how to allocate the memory in the three levels. The next step consists of
the compilation of a layer template, this template is filled with the parameters in
the pulp graphs generated previously. The first tile performs just acquisition and
then starts the actual tiles’ loop that is the core of the execution where the in and
out memory transfers are hidden by the convolutions.
Finally, the network generation is performed. It starts with a loop over the layers
of the graph and the copy from the L3 to the L2 memory of all the weights. This
is done in general for larger networks than the ones considered in this thesis, in the
cases studied here all the architectures fit in L2. At this step, it is independent of
the network size since DORY assumes that the first time it compiles the architecture
it is stored in the flash of the chip. Also, this copy, even if it is not part of layers,
is double buffered. L2 memory management then allocates and deallocates the
buffers of the networks in order to minimize the usage of memory.
The main target in this case is the maximization of the data in the register file
with the exploitation of the 8 cores at its maximum.

3.3 Setup

3.3.1 Drone

The Crazyflie is an open-source nano-quadrotor drone (figure 3.4) produced by
bitcraze with a weight of only 27 g. The hardware is fully expandable and for the
purpose of this work three main parts are used: the crazyflie drone structure that
features an STM32, the flow deck, and the AI deck.

31

Methodology

Figure 3.4: Crazyflie 2.1 nano-drone (Credits bitcraze.io)

In order to track the position of the drone, several markers have been applied to
the structure in an asymmetric manner. As a consequence of the asymmetry, the
optitrack system is able to solve an optimization problem and provide the accurate
3D positioning of the drone in the room and the orientation angles. Figure 3.5 is
present a representation of the system of reference in the camera frame and in the
drone odometry.

(a) (b)

Figure 3.5: Drone and camera frame with references

Crazyflie 2.1

The Crazyflie is the structure of the drone, it features four motors, a battery, an
antenna for radio transmission, and several connections. On board, it is equipped

32

Methodology

with an STM32F405 with a maximum frequency of 168 MHz that takes charge
of the control system computations. It has a flash memory of 1 Mb and 192 Kb
SRAM. Furthermore, a BMI088 IMU and a high-precision pressure sensor are
mounted onboard. Thanks to several pins a number of expansion boards can be
plugged into the drone, they range from the Flow deck to the AI deck but, also
proximity sensors or other kinds of sensors.

Flow deck

The flowdeck is an expansion board that includes a Time of Flight (ToF) sensor
and an optical flow for visual odometry navigation.
The ToF VL53L1x integrates a receiving array as well as a 940nm invisible laser
emitter that thanks to the novel technology included allows the measurement of
the absolute distance whatever the target color and reflectance. It features a
customizable ROI on the receiving array that reflects in the sensor’s FoV reduction.
It provides a stable and reliable estimation of the height from the ground.
On the other side, the PMW3901 optical flow allows the recognition of the movement
in any direction as long as the distance from the ground is at least 80mm. The
behavior of this sensor is similar to the ones mounted on computer’s mouses.

Figure 3.6: Flowdeck v2 (Credits bitcraze.io)

33

Methodology

AI deck

Figure 3.7: AI deck (Credits bitcraze.io)

The AI deck is an expansion board that allows the deployment of neural network
models. It features a camera and a WiFi radio, and the actual heart is the GAP8
SoC.
In the case of this application, the camera employed is a grayscale Himax HM01B0
that provides images up to a 320x320 pixels resolution. Applying bounding tech-
niques the camera is able to produce 160x160 pixels images that are then used by
the networks cropped to 160x96 pixels. The Himax HM01B0 is an ultra-low power
camera that only accounts for 3.9 mW in the total power budget.
The ESP32 WiFi provides WiFi connectivity and is used in this work for what
concerns the streaming of the images.
Another crucial part of the AI deck is the GAP8, a SoC that provides the capa-
bilities of running reduced-size neural networks (The biggest model tested in this
thesis is in the order of 300k parameters) without using the off-chip RAM and using
only the L1 and L2 memories. This SoC has two main blocks, a Fabric Controller
(FC) and a Cluster (CL) which have two completely different power domains as
depicted in figure 3.8. The FC has the objective to orchestrate computations and
provides access to the actual CL with specific instructions that allow operations
on it. The basic core unit that composes the FC and the CL is the same but, in
the case of FC there is a single core architecture and, in the case of CL there are 8
cores.
GAP8 has only an Integer Unit for computation and, so arises the necessity of

34

Methodology

quantizing the weights and biases of the networks to INT8 in order to maintain
high performance and avoid the emulation of the floating point unit (FPU) that
requires 100 times the computational time required by integer computations.
The idea behind the development of the SoC found its ground in the fact that
allowing computation at the edge and transmit just the result, may reduce the
power consumption and as such enhance the capabilities of such IoT devices. The
processor is realized following the parallel ultra-low power (PULP) paradigm that
fosters the low frequencies and low voltage chips. As a result, the image processing
in the case of a MobileNet employed for image processing that has been analyzed
by greenwaves reports only 1.5mJ@66fps. Tensions in fact are close to the thresh-
old voltage of transistors in order to limit them as much as possible the power
used. Further details may be seen in figure 3.8, such as the cluster DMA and the
µDMA that provides a convenient mechanism to access memory also in the case of
peripherals without providing further load to the processor.
The instructions’ set has been evolved from RI5CY to RISC-V and the next model
of GAP processor will include an FPU.

Figure 3.8: GAP8 components schema (Credits Greenwaves technology.)

35

Methodology

3.3.2 Software pipeline

Figure 3.9: GAP8 and STM32 building blocks

The Software is split in two main parts, the first and, the one mostly interesting for
this work, lives in the GAP8 while the other part resides in the STM32 as reported
in figure 3.9.
For what concerns the GAP8, two loops may be observed. The first acquires images
from the Himax camera and crops it to 160x96 pixels. The second instead waits
for the image acquisition loop to provide a figure and then passes it to the cluster
in order to process it and provide the inference output. These two cycles work
simultaneously and as such, they have synchronized thanks to waiting procedures
performed by the GAP8 loop.
On the other side, the STM32 waits for the inferences on the UART port, and
whenever a message with the proper header arrives, it updates the target estimation
and the set points. The set points are subsequently used by the low-level control
loop in order to update the stability control. Finally, the state estimation is
updated.
The decomposition of the entire pipeline in these logical blocks provides a fully
customizable and adaptable infrastructure that allows the implementation of any
type of network. It is in fact sufficient to change the inference part in the GAP8
loop in order to perform a different task or use a different NN.
As a result of the isolated loops, even the controller can be replaced easily providing
access to any sort of customization and needs that may arise. As the work of
this thesis concerns more the NN part, the controller has been maintained as the

36

Methodology

standard one and used with the functions, provided by bitcraze, in order to set a
target position or a target speed.

3.3.3 Environment for recordings and dataset
The dataset employed for the task of this thesis is composed of more than 66k
images paired with the relative position between a person and the drone. It was
developed at the "Dalle Molle Institute for Artificial Intelligence" by means of a
tracking system composed by 12 Optitrack PM13 cameras, disposed in a square
room of 10m x 10m, each able to locate a target with a specific marker in its field
of view.
The Optitrack PM13 camera is a 1.3 MP camera able to produce frames up to 1000
FPS with a 3D accuracy of ±0.20 mm. This system is used to perform the tracking
of the drone and its target identifying markers previously attached to the drone
and to the person. In the case of the FrontNet dataset the images were acquired
thanks to the Himax, grayscale, camera mounted onboard the AI deck of the drone
and streamed via WiFi to a base station. Some samples of figures recorded by the
Himax camera are displayed in figure 3.10.
The images are then paired with the data of the relative position to form the
dataset used.

Figure 3.10: Sample image from the dataset

The dataset is composed of 6557 samples, acquired in roughly 25 minutes of
recording at a 4.5 fps rate. For the sake of data variety, 10 different subjects were
recorded with and without face masks and sunglasses. Each person was recorded
for 150 s. From these ten recordings, six are used for training purposes and four for
validation, this division ensures the correctness of the tests avoiding all overfitting
problems that may occur considering the same person in the training and validation
phase. A further 20% of the training set is separated and is used just to validate
the performance while training and to apply the early stopping.
Each image is paired with a four values tuple, namely the coordinate x, y, and z in
space and θ, the angle depicted in figure 3.11. In order to increase the plethora of
data, several data augmentation techniques have been applied. In particular, for
what concerns the pitch the augmentation consists in cropping the initial 160 x 160
pixels frame in more frame 160 x 96 pixels frames removing the upper and lower
parts of the image, and simulating the pitch movement of the drone. A comparison
of real pitch and synthetic pitch augmentation may be observed in figure 3.12. In

37

Methodology

the figure below, the first two images on the left were recorded with physical pitch
and cropped from a 160 x 160 pixels image removing the first 32 rows and the last
32. The two frames on the right instead were cropped from 160x160 removing the
lower 64 rows of each image, simulating a pitch of 14°. Some differences may be
perceived in the perspective but considering the resolution of the Himax camera
as well as, the average distance between the drone and the subject, the effect
was considered irrelevant. In order to further increase the strength of networks,
augmentations on a photometric and optical basis have been performed introducing:
contrast, brightness, gamma correction, synthetic vignetting, and blurring.
The set of images was increased by performing a horizontal flip, namely negating y
and θ variables. The result is a dataset with more than 66000 training instances
that has already proved sufficient for the case of FrontNet discussed in chapter
3.1.3.

Figure 3.11: Definition of angle θ on the crazyflie

Figure 3.12: Physical vs synthetic pitch

All this dataset was acquired in the laboratory of Manno (CH), but for the
tests, a new environment was used, the Lugano (CH) labs. As a consequence, novel
conditions of lights, backgrounds, and disturbances are present.

38

Methodology

3.3.4 Testing setup

Figure 3.13: Path used during the experiments.

In order to perform reliable and reproducible experiments, a path has been designed.
Since the one designed for Frontnet was complete and challenges several use cases,
it was adapted for the sake of this thesis. The experiment starts with the drone
in position D0 at 30° of rotation and the person begins standing in H0. In the
beginning, the drone is able to see the subject in its field of view. The inference
is started and the subject stands for 5s in position H0 in order to let the drone
position at the target distance (1.3 m in this case) facing the subject. Then the
person performs a walk in the front direction composed of 6 steps, each of 1 second,
to cover a total distance of 2.4 m. Subsequently, the individual walks back to
position H0. After this movement immediately begins a sidewalk on the left side of
the person, even this time composed of 6 steps performed left side and right side
back to position H0. Also in this case the distance is 2.4 m and the steps are 6 for
every direction, they are performed each in 1 second. In order to further challenge

39

Methodology

the phi estimation, an arc of 90° is performed moving on a circumference with
the center in the position previously reached on the left side (2.4 from H0). The
movement is performed rigidly in order to let the drone perform a translation and
a rotation at the same time. Finally, after the person has reached the final point
she rotates in place 180° and stands still for 5s in order to let the drone complete
the maneuver.
The experimental setup is realized in a new environment never seen from the
networks in order to verify how they generalize. In particular, the test field is
reported in figure 3.13. The background in the test environment is dived into two
parts, the first has several difficulties with various monitors and shelves in the back.
The second on the other hand has a white background that is closer to the training
one.

40

Chapter 4

Results

This chapter discusses the research with the NAS in section 4.1, section 4.2 presents
the deployment on the GAPuino SoC with an analysis of the power consumption
of each network and section 4.3 reports the infield results with the control task
performed onboard the drone.

4.1 Models’ search with PIT

This section reports the searches done with PIT in order to create the Pareto
front for the selection of the networks to deploy infield. Section 4.1.1 presents
the networks obtained using Frontnet as seed network. Section 4.1.2 presents the
analysis on the two seed networks considered for MobileNet with changing width
multiplier, respectively α = 0.25 and α = 1.0. Each section present also the analysis
of the quantization performed on the networks.

4.1.1 Frontnet

The search space of Frontnet has been explored using PIT, explained in more detail
in section 2.1.5 in the extended version useful for this work. Various values of the
strength parameter λ have been used. In particular, starting from the seed network
(equivalent to λ = 0) the exploration has gone through increasing strength values
arriving at the maximum value of λ = 1 · 10−10. Tables 4.1 and 4.2 report the
results in MSE, MAE and R2 for x, y, z and ϕ.

41

Results

Table 4.1: Models with changing strength, x and y performance

Strength
x y

MSE MAE R2 MSE MAE R2
0 0.0621 0.1870 0.8035 0.0805 0.1837 0.6532
1 · 10−20 0.0690 0.1987 0.7815 0.0941 0.1960 0.5950
1 · 10−15 0.0580 0.1853 0.8164 0.0896 0.1929 0.6141
1 · 10−12 0.0639 0.1976 0.7977 0.0727 0.1753 0.6870
1 · 10−11 0.0663 0.1968 0.7889 0.0882 0.1787 0.6202
1.5 · 10−11 0.0748 0.2090 0.7630 0.0959 0.2084 0.5871
2 · 10−11 0.0704 0.2049 0.7772 0.0911 0.1901 0.6078
2.5 · 10−11 0.0668 0.1957 0.7885 0.0815 0.1943 0.6489
5 · 10−11 0.0703 0.2043 0.7773 0.1035 0.2218 0.5545
1 · 10−10 0.1398 0.2779 0.5571 0.2999 0.3737 -0.2915

Table 4.2: Models with changing strength, z and ϕ performance

Strength
z ϕ

MSE MAE R2 MSE MAE R2
0 0.0166 0.0927 0.5481 0.3244 0.4367 0.2585
1 · 10−20 0.0185 0.0931 0.4950 0.3144 0.4403 0.2813
1 · 10−15 0.0183 0.0974 0.5004 0.3543 0.4578 0.1900
1 · 10−12 0.0180 0.0966 0.5095 0.3591 0.4629 0.1791
1 · 10−11 0.0192 0.0959 0.4775 0.3212 0.4374 0.2657
1.5 · 10−11 0.0201 0.0988 0.4509 0.3266 0.4486 0.2534
2 · 10−11 0.0216 0.1005 0.4095 0.3604 0.4603 0.1763
2.5 · 10−11 0.0179 0.0893 0.5128 0.3315 0.4437 0.2423
5 · 10−11 0.0374 0.1360 -0.0210 0.4398 0.5233 -0.0054
1 · 10−10 0.0370 0.1263 -0.0103 0.4312 0.5355 0.0142

Quantization of FrontNet models: Fake quantized (FQ)

The results of the quantization with NEMO of FrontNet’s models are reported in
table 4.4 and further expanded in the graphs 4.1, 4.2 and 4.3. In this case, no
downgrade of performance between FP32 and FQ can be observed for any of the
networks. Also comparing the quantized networks with the plain FrontNet FP32

42

Results

the results are satisfactory on the test set.
The use of the same data type as the original network provides a solid base for a
comparison with the results reported in ’Fully Onboard AI-powered Human-Drone
Pose Estimation on Ultra-low Power Autonomous Flying Nano-UAVs’. Even more,
using such data type allow the system to perform at the fastest rate possible,
avoiding Floating point emulation which usually results in a slowdown in the order
of 100x, unacceptable in the case of the power-constrained environment of the
Crazyflie 2.1 nano drone in exam.

Table 4.3: Non quantized vs quantized FQ FrontNet models

Name
1
7 FrontNet

FP32
1
7 FrontNet
UINT8 FQ

1
3 FrontNet

FP32
1
3 FrontNet
UINT8 FQ

FrontNet
FP32

Strength 2.5E-11 2.5E-11 1E-11 1E-11 0
FLOPS 7.6 · 106 7.6 · 106 1.03 · 107 1.03 · 107 1.47 · 107

Par size [MB] 0.17 0.17 0.37 0.37 0
par 44545 44545 95860 95860 304356

MSE x 0.0668 0.0721 0.0633 0.0637 0.0621
MSE y 0.0815 0.0776 0.0704 0.0685 0.0805
MSE z 0.0179 0.0178 0.0170 0.0172 0.0166
MSE phi 0.3315 0.3160 0.3565 0.3387 0.3244

MAE x 0.1957 0.2038 0.1970 0.1982 0.187
MAE y 0.1943 0.1867 0.1793 0.1740 0.1837
MAE z 0.0893 0.0905 0.0931 0.0931 0.0927
MAE phi 0.4437 0.4327 0.4598 0.4478 0.4367

R2 x 0.7885 0.7716 0.7995 0.7983 0.8035
R2 y 0.6489 0.6659 0.6969 0.7052 0.6532
R2 z 0.5128 0.5135 0.5352 0.5300 0.5481
R2 phi 0.2423 0.2776 0.1852 0.2257 0.2585

x y z phi

0

0.1

0.2

0.3

0.4

M
SE

1
7 FrontNet FP32 1

7 FrontNet UINT8 1
3 FrontNet FP32

1
3 FrontNet UINT8 FrontNet FP32

Figure 4.1: MSE of non-quantized vs quantized FQ FrontNet models

43

Results

x y z phi

0.1

0.2

0.3

0.4

0.5

M
A

E

1
7 FrontNet FP32 1

7 FrontNet UINT8 1
3 FrontNet FP32

1
3 FrontNet UINT8 FrontNet FP32

Figure 4.2: MAE of non-quantized vs quantized FQ FrontNet models

H

x y z phi

0.2

0.4

0.6

0.8

R
2

sc
or

e

1
7 FrontNet FP32 1

7 FrontNet UINT8 1
3 FrontNet FP32

1
3 FrontNet UINT8 FrontNet FP32

Figure 4.3: R2 score of non-quantized vs quantized FQ FrontNet models

Quantization of FrontNet models: Integer deployable

The next step in the quantization consists in the switch from fake quantized
networks to integer deployable ones. In this case, there is no loss of performance in
any of the cases reported below. Details may be found in table 4.4 and graphs 4.4,
4.5 and ??.

44

Results

Table 4.4: Non quantized vs quantized ID FrontNet models

Name
1
7 FrontNet

FP32
1
7 FrontNet

UINT8
1
3 FrontNet

FP32
1
3 FrontNet

UINT8
FrontNet

FP32

Strength 2.5E-11 2.5E-11 1E-11 1E-11 0
FLOPS 7.6 · 106 7.6 · 106 1.03 · 107 1.03 · 107 1.47 · 107

Par size [MB] 0.17 0.17 0.37 0.37 0
par 44545 44545 95860 95860 304356

MSE x 0.0668 0.0702 0.0633 0.0644 0.0621
MSE y 0.0815 0.0794 0.0704 0.0654 0.0805
MSE z 0.0179 0.0173 0.0170 0.0174 0.0166
MSE phi 0.3315 0.3275 0.3565 0.3492 0.3244

MAE x 0.1957 0.2016 0.1970 0.1999 0.187
MAE y 0.1943 0.1901 0.1793 0.1699 0.1837
MAE z 0.0893 0.0891 0.0931 0.0955 0.0927
MAE phi 0.4437 0.4407 0.4598 0.4544 0.4367

R2 x 0.7885 0.7776 0.7995 0.7962 0.8035
R2 y 0.6489 0.6683 0.6969 0.7182 0.6532
R2 z 0.5128 0.5274 0.5352 0.5246 0.5481
R2 phi 0.2423 0.2514 0.1852 0.2018 0.2585

x y z phi

0

0.1

0.2

0.3

0.4

M
SE

1
7 FrontNet FP32 1

7 FrontNet UINT8 ID 1
3 FrontNet FP32

1
3 FrontNet UINT8 ID FrontNet FP32

Figure 4.4: MSE of non-quantized vs quantized ID FrontNet models

45

Results

x y z phi

0.1

0.2

0.3

0.4

0.5

M
A

E
1
7 FrontNet FP32 1

7 FrontNet UINT8 ID 1
3 FrontNet FP32

1
3 FrontNet UINT8 ID FrontNet FP32

Figure 4.5: MAE of non-quantized vs quantized ID FrontNet models

x y z phi

0.2

0.4

0.6

0.8

R
2

sc
or

e

1
7 FrontNet FP32 1

7 FrontNet UINT8 ID 1
3 FrontNet FP32

1
3 FrontNet UINT8 ID FrontNet FP32

Figure 4.6: R2 score of non-quantized vs quantized ID FrontNet models

4.1.2 MobileNet
Employing PIT a plethora of models have been researched, and the objective of
optimization was the number of parameters (size of the network). In order to
discover various architectures the strength parameter λ has been modified. In the
section 4.1.2 the experiments done with MobileNet v1 with α = 0.25 have been
reported, instead in section 4.1.2 are displayed the experiments with MobileNet v1
with α = 1.0.

MobileNet v1 α = 0.25

In the case of MobileNet v1 with α = 0.25, the research with PIT has been done
with 9 different values of strength (λ), in particular the values of λ employed and

46

Results

the respective results are listed in table 4.5 for x and y while, table 4.6 for z and ϕ.
The values of λ used have been chosen to start from λ = 0 and iteratively increased
in order to reach smaller networks. Starting from a total number of parameters
equal to 213956 for the original MobileNet v1 with α = 0.25, the most compact
reached has 5824 parameters.
In the following graphs, the networks with λ = 1 · 10−8, λ = 5 · 10−8,λ = 1 · 10−10

are referred respectively as 1
7 MobileNet, 1

5 MobileNet, 1
4 MobileNet in order to

further stress the reduction in dimension with respect to the original model.

Table 4.5: Models with changing strength, x and y performance

Strength
x y

MSE MAE R2 MSE MAE R2
0 0.0459 0.1594 0.8546 0.1223 0.2125 0.4733
5 · 10−11 0.0529 0.1751 0.8326 0.0837 0.1916 0.6395
1 · 10−10 0.0510 0.1709 0.8384 0.0850 0.2018 0.6340
1 · 10−8 0.0604 0.1841 0.8086 0.0742 0.1822 0.6803
5 · 10−8 0.0373 0.1431 0.8819 0.0730 0.1917 0.6858
1 · 10−7 0.0566 0.1787 0.8209 0.0801 0.1858 0.6552
5 · 10−7 0.0404 0.1492 0.8720 0.1162 0.2007 0.4996
5 · 10−6 0.0539 0.1770 0.8294 0.0804 0.1923 0.6539
1 · 10−5 0.0459 0.1641 0.8548 0.0740 0.1904 0.6815
5 · 10−5 0.0689 0.1952 0.7817 0.0751 0.1886 0.6766

47

Results

Table 4.6: Models with changing strength, z and ϕ performance

Strength
z ϕ

MSE MAE R2 MSE MAE R2
0 0.0145 0.0838 0.6038 0.3547 0.4548 0.1892
5 · 10−11 0.0170 0.0895 0.5365 0.3788 0.4738 0.1342
1 · 10−10 0.0139 0.0813 0.6198 0.3428 0.4401 0.2163
1 · 10−8 0.0210 0.1015 0.4272 0.4643 0.5330 -0.0612
5 · 10−8 0.0140 0.0797 0.6192 0.3986 0.4835 0.0889
1 · 10−7 0.0388 0.1424 -0.0591 0.3986 0.4835 0.0889
5 · 10−7 0.0134 0.0785 0.6334 0.4944 0.5473 -0.1301
5 · 10−6 0.0391 0.1374 -0.0667 0.3898 0.4826 0.1089
1 · 10−5 0.0394 0.1388 -0.0743 0.3821 0.4721 0.1265
5 · 10−5 0.0389 0.1339 -0.0611 0.3317 0.4459 0.2418

Quantization of MobileNet v1 0.25 models: Fake quantized

Table 4.7 and figures 4.7, 4.8 and 4.9 report the results for MobileNet v1 0.25.
Also, in this case, the lose in performance is sufficiently low and all the networks
maintain the results of the FP32 test set.

Table 4.7: Non quantized vs quantized FQ MobileNet v1 0.25 models

Name
1
7 Mobile

FP32
1
7 Mobile
UINT8

1
5 Mobile

FP32
1
5 Mobile
UINT8

1
4 Mobile

FP32
1
4 Mobile
UINT8

FrontNet
FP32

Strength 1E-8 1E-8 5E-8 5E-8 1E-10 1E-10 0
FLOPS 4.06 · 106 4.06 · 106 5.37 · 106 5.37 · 106 7.40 · 106 7.40 · 107 1.47 · 107

Par [MB] 0.11 0.11 0.14 0.14 0.21 0.21 1.14
par 29281 29281 37709 37709 56302 56302 304356

MSE x 0.0604 0.0850 0.0373 0.0390 0.0510 0.0519 0.0621
MSE y 0.0742 0.0670 0.0730 0.0735 0.0850 0.0927 0.0805
MSE z 0.0210 0.0197 0.0140 0.0134 0.0139 0.0140 0.0166
MSE phi 0.4643 0.4587 0.4806 0.4739 0.3428 0.3644 0.3244

MAE x 0.1841 0.2282 0.1431 0.1478 0.1709 0.1714 0.187
MAE y 0.1822 0.1726 0.1917 0.1731 0.2018 0.2118 0.1837
MAE z 0.1015 0.1002 0.0797 0.0793 0.0813 0.0823 0.0927
MAE phi 0.5330 0.5298 0.5389 0.5353 0.4401 0.4526 0.4367

R2 x 0.8086 0.7309 0.8819 0.8765 0.8384 0.8356 0.8035
R2 y 0.6803 0.7117 0.6858 0.6835 0.6340 0.6010 0.6532
R2 z 0.4272 0.4628 0.6192 0.6351 0.6198 0.6192 0.5481
R2 phi -0.0612 -0.0486 -0.0985 -0.0832 0.2163 0.1670 0.2585

48

Results

H

x y z phi

0

0.1

0.2

0.3

0.4

0.5

M
SE

1
7 Mobile FP32 1

7 Mobile UINT8 1
5 Mobile FP32 1

5 Mobile UINT8
1
4 Mobile FP32 1

4 Mobile UINT8 FrontNet FP32

Figure 4.7: MSE of non-quantized vs quantized FQ Mobilenet v1 0.25 models

H

x y z phi

0.1

0.2

0.3

0.4

0.5

0.6

M
A

E

1
7 Mobile FP32 1

7 Mobile UINT8 1
5 Mobile FP32 1

5 Mobile UINT8
1
4 Mobile FP32 1

4 Mobile UINT8 FrontNet FP32

Figure 4.8: MAE of non-quantized vs quantized FQ Mobilenet v1 0.25 models

x y z phi

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

R
2

sc
or

e

1
7 Mobile FP32 1

7 Mobile UINT8 1
5 Mobile FP32 1

5 Mobile UINT8
1
4 Mobile FP32 1

4 Mobile UINT8 FrontNet FP32

Figure 4.9: R2 score of non-quantized vs quantized FQ Mobilenet v1 0.25 models

49

Results

Quantization of MobileNet v1 0.25 models: Integer deployable

Finally in the case of MobileNet v1 0.25 in the step from fake quantized to integer
deployable there is no loss of performance in any of the cases reported below.
Details may be found in table 4.8 and graphs 4.10, 4.11 and 4.12.

Table 4.8: MobileNet v1 models, width multiplier = 0.25, Integer Deployable
performance

Name
1
7 Mobile

FP32
1
7 Mobile
UINT8

1
5 Mobile

FP32
1
5 Mobile
UINT8

1
4 Mobile

FP32
1
4 Mobile
UINT8

FrontNet
FP32

Strength 1E-8 1E-8 5E-8 5E-8 1E-10 1E-10 0
FLOPS 4.06 · 106 4.06 · 106 5.37 · 106 5.37 · 106 7.40 · 106 7.40 · 107 1.47 · 107

Par [MB] 0.11 0.11 0.14 0.14 0.21 0.21 1.14
par 29281 29281 37709 37709 56302 56302 304356

MSE x 0.0604 0.0621 0.0373 0.0584 0.0510 0.0543 0.0621
MSE y 0.0742 0.0750 0.0730 0.0654 0.0850 0.0822 0.0805
MSE z 0.0210 0.0229 0.0140 0.0159 0.0139 0.0147 0.0166
MSE phi 0.4643 0.4633 0.4806 0.4759 0.3428 0.3428 0.3244

MAE x 0.1841 0.1900 0.1431 0.1838 0.1709 0.1778 0.187
MAE y 0.1822 0.1786 0.1917 0.1739 0.2018 0.1904 0.1837
MAE z 0.1015 0.1071 0.0797 0.0839 0.0813 0.0840 0.0927
MAE phi 0.5330 0.5332 0.5389 0.5369 0.4401 0.4415 0.4367

R2 x 0.8086 0.8032 0.8819 0.8152 0.8384 0.8280 0.8035
R2 y 0.6803 0.6769 0.6858 0.7184 0.6340 0.6460 0.6532
R2 z 0.4272 0.3763 0.6192 0.5661 0.6198 0.5990 0.5481
R2 phi -0.0612 -0.0591 -0.0985 -0.0878 0.2163 0.2163 0.2585

x y z phi

0

0.1

0.2

0.3

0.4

0.5

M
SE

1
7 Mobile FP32 1

7 Mobile UINT8 1
5 Mobile FP32 1

5 Mobile UINT8
1
4 Mobile FP32 1

4 Mobile UINT8 FrontNet FP32

Figure 4.10: MSE of non quantized vs quantized ID Mobilenet v1 0.25 models

50

Results

x y z phi

0.1

0.2

0.3

0.4

0.5

0.6

M
A

E

1
7 Mobile FP32 1

7 Mobile UINT8 1
5 Mobile FP32 1

5 Mobile UINT8
1
4 Mobile FP32 1

4 Mobile UINT8 FrontNet FP32

Figure 4.11: MAE of non quantized vs quantized ID Mobilenet v1 0.25 models

x y z phi

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

R
2

sc
or

e

1
7 Mobile FP32 1

7 Mobile UINT8 1
5 Mobile FP32 1

5 Mobile UINT8
1
4 Mobile FP32 1

4 Mobile UINT8 FrontNet FP32

Figure 4.12: R2 score of non-quantized vs quantized ID Mobilenet v1 0.25 models

MobileNet v1 α = 1.0

In the case of MobileNet v1 with α = 1.0, the research with PIT has been done
with 9 different values of strength (λ), in particular the values of λ employed and
the respective results are listed in table 4.9 for x and y while, table 4.10 for z and ϕ.
The values of λ used have been chosen to start from λ = 0 and iteratively increased
in order to reach smaller networks. Starting from a total number of parameters
equal to 213956 for the original MobileNet v1 with α = 0.25, the most compact
reached has 5824 parameters.
In the following graphs, the networks with λ = 1 · 10−8, λ = 5 · 10−8,λ = 1 · 10−10

are referred respectively as 1
7 MobileNet, 1

5 MobileNet, 1
4 MobileNet in order to

further stress the reduction in dimension with respect to the original model.

51

Results

Table 4.9: Models with changing strength, x and y performance

Strength
x y

MSE MAE R2 MSE MAE R2
0 0.0602 0.1818 0.8093 0.1466 0.2462 0.3686
1 · 10−11 0.0591 0.1817 0.8129 0.0887 0.1990 0.6182
1 · 10−10 0.0586 0.1786 0.8146 0.0598 0.1668 0.7425
1 · 10−9 0.0565 0.1802 0.8211 0.0705 0.1790 0.6965
1 · 10−8 0.0502 0.1692 0.8411 0.0852 0.2014 0.6330
5 · 10−8 0.0529 0.1754 0.8326 0.0786 0.1998 0.6617
5 · 10−7 0.0517 0.1769 0.8364 0.0721 0.1940 0.6895
1 · 10−6 0.0442 0.1632 0.8599 0.0894 0.2119 0.6151
1 · 10−5 0.0470 0.1660 0.8513 0.0955 0.1975 0.5887

Table 4.10: Models with changing strength, z and ϕ performance

Strength
z ϕ

MSE MAE R2 MSE MAE R2
0 0.0239 0.1092 0.3472 0.4472 0.5126 -0.0223
1 · 10−11 0.0171 0.0909 0.5335 0.3475 0.4506 0.2056
1 · 10−10 0.0151 0.0869 0.5885 0.3865 0.4717 0.1165
1 · 10−9 0.0142 0.0844 0.6132 0.3003 0.4190 0.3135
1 · 10−8 0.0159 0.0872 0.5664 0.2664 0.3944 0.3912
5 · 10−8 0.0141 0.0811 0.6154 0.2938 0.4205 0.3285
5 · 10−7 0.0144 0.0819 0.6076 0.3319 0.4438 0.2414
1 · 10−6 0.0146 0.0844 0.6016 0.3259 0.4333 0.2550
1 · 10−5 0.0172 0.0865 0.5308 0.3134 0.4291 0.2835

Quantization of MobileNet v1 1.0 models: Fake quantized

Table 4.11 and figures 4.13, 4.14 and 4.15 report the results for MobileNet v1 1.0.
Also, in this case, the loss in performance is sufficiently low and all the networks
maintain the results of the FP32 test set.

52

Results

Table 4.11: Non quantized vs quantized FQ MobileNet v1 1.0 models

Name 1
185 Mobile 1

185 Mobile 8 1
75 Mobile 1

75 Mobile 8 1
70 Mobile 1

70 Mobile 8 FrontNet

Strength 1E-5 1E-5 1E-6 1E-6 5E-7 5E-7 0
FLOPS 6.3 · 106 6.3 · 106 1.17 · 107 1.17 · 107 1.24 · 107 1.24 · 107 1.47 · 107

Par [MB] 0.07 0.07 0.16 0.16 0.18 0.18 1.14
par 17603 17603 41566 41566 46256 46256 304356

MSE x 0.0470 0.0463 0.0442 0.0505 0.0517 0.0609 0.0621
MSE y 0.0955 0.0976 0.0894 0.1172 0.0721 0.0631 0.0805
MSE z 0.0172 0.0181 0.0146 0.0142 0.0144 0.0138 0.0166
MSE phi 0.3134 0.3112 0.3259 0.3230 0.3319 0.3307 0.3244

MAE x 0.1660 0.1664 0.1632 0.1729 0.1769 0.1956 0.187
MAE y 0.1975 0.1984 0.2119 0.2682 0.1940 0.1779 0.1837
MAE z 0.0865 0.0913 0.0844 0.0836 0.0819 0.0803 0.0927
MAE phi 0.4291 0.4225 0.4333 0.4312 0.4438 0.4399 0.4367

R2 x 0.8513 0.8535 0.8599 0.8401 0.8364 0.8070 0.8035
R2 y 0.5887 0.5799 0.6151 0.4953 0.6895 0.7283 0.6532
R2 z 0.5308 0.5066 0.6016 0.6114 0.6076 0.6239 0.5481
R2 phi 0.2835 0.2887 0.2550 0.2618 0.2414 0.2440 0.2585

H

x y z phi

0

0.1

0.2

0.3

M
SE

1
185 Mobile FP32 1

185 Mobile UINT8 1
75 Mobile FP32 1

75 Mobile UINT8
1
70 Mobile FP32 1

70 Mobile UINT8 FrontNet FP32

Figure 4.13: MSE of non quantized vs quantized FQ Mobilenet v1 1.0 models

53

Results

x y z phi

0.1

0.2

0.3

0.4

0.5

M
A

E

1
185 Mobile FP32 1

185 Mobile UINT8 1
75 Mobile FP32 1

75 Mobile UINT8
1
70 Mobile FP32 1

70 Mobile UINT8 FrontNet FP32

Figure 4.14: MAE of non quantized vs quantized FQ Mobilenet v1 1.0 models

x y z phi

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
2

sc
or

e

1
185 Mobile FP32 1

185 Mobile UINT8 1
75 Mobile FP32 1

75 Mobile UINT8
1
70 Mobile FP32 1

70 Mobile UINT8 FrontNet FP32

Figure 4.15: R2 score of non-quantized vs quantized FQ Mobilenet v1 1.0 models

Quantization of MobileNet v1 1.0 models: Integer deployable

Even in the case of MobileNet v1 1.0 in the step from fake quantized to integer
deployable there is no loss of performance in any of the cases reported below.
Details may be found in table 4.12 and graphs 4.16, 4.17 and 4.18.

54

Results

Table 4.12: MobileNet v1 models, width multiplier = 1, Integer deployable

Name 1
185 Mobile 1

185 Mobile 8 1
75 Mobile 1

75 Mobile 8 1
70 Mobile 1

70 Mobile 8 FrontNet

Strength 1E-5 1E-5 1E-6 1E-6 5E-7 5E-7 0
FLOPS 6.3 · 106 6.3 · 106 1.17 · 107 1.17 · 107 1.24 · 107 1.24 · 107 1.47 · 107

Par [MB] 0.07 0.07 0.16 0.16 0.18 0.18 1.14
par 17603 17603 41566 41566 46256 46256 304356

MSE x 0.0470 0.0461 0.0442 0.0580 0.0517 0.0613 0.0621
MSE y 0.0955 0.0818 0.0894 0.0790 0.0721 0.0761 0.0805
MSE z 0.0172 0.0173 0.0146 0.0148 0.0144 0.0148 0.0166
MSE phi 0.3134 0.3037 0.3259 0.3344 0.3319 0.3153 0.3244

MAE x 0.1660 0.1650 0.1632 0.1886 0.1769 0.1935 0.187
MAE y 0.1975 0.1791 0.2119 0.1965 0.1940 0.1912 0.1837
MAE z 0.0865 0.0885 0.0844 0.0851 0.0819 0.0824 0.0927
MAE phi 0.4291 0.4214 0.4333 0.4407 0.4438 0.4301 0.4367

R2 x 0.8513 0.8540 0.8599 0.8164 0.8364 0.8060 0.8035
R2 y 0.5887 0.6476 0.6151 0.6600 0.6895 0.6723 0.6532
R2 z 0.5308 0.5286 0.6016 0.5974 0.6076 0.5968 0.5481
R2 phi 0.2835 0.3058 0.2550 0.2357 0.2414 0.2793 0.2585

x y z phi

0

0.1

0.2

0.3

M
SE

1
185 Mobile FP32 1

185 Mobile UINT8 1
75 Mobile FP32 1

75 Mobile UINT8
1
70 Mobile FP32 1

70 Mobile UINT8 FrontNet FP32

Figure 4.16: MSE of non quantized vs quantized ID Mobilenet v1 1.0 models

55

Results

x y z phi

0.1

0.2

0.3

0.4

0.5

M
A

E

1
185 Mobile FP32 1

185 Mobile UINT8 1
75 Mobile FP32 1

75 Mobile UINT8
1
70 Mobile FP32 1

70 Mobile UINT8 FrontNet FP32

Figure 4.17: MAE of non-quantized vs quantized ID Mobilenet v1 1.0 models

x y z phi

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
2

sc
or

e

1
185 Mobile FP32 1

185 Mobile UINT8 1
75 Mobile FP32 1

75 Mobile UINT8
1
70 Mobile FP32 1

70 Mobile UINT8 FrontNet FP32

Figure 4.18: R2 score of non-quantized vs quantized ID Mobilenet v1 1.0 models

4.1.3 Criterion of selection
With the aim of optimizing the speed and reducing swaps from memory, without
losing performance, a number of CNN have been chosen. Further attention to the
selection of the networks was used in order to reduce the number of FLOPs and
maintain elevated network execution performance. The models here selected are
chosen between the networks explained in the space of solutions explored in the
previous chapters. In particular the main considered are networks with a number
of parameters lower than 300 thousand. This number of parameters is considered
given the dimension of the L2 memory of the target GAP8 device, which is 512
KB, but should also contain the code of the program (∼ 150k).
All the performance reported in this section have been obtained on the test set.

56

Results

The networks obtained from the searches done with PIT have been quantized in
order to obtain avoid possible performance degradation after the choice of the
networks to deploy. Figures 4.19, 4.21 and 4.20 report the average R2 performance
(computed on x, y and z) for all the NNs and highlight in green the architectures
reported in the tables and graphs below while, in blue are represented the seed
Frontnet.

All the networks found by the NAS that belong to the Pareto front created
analyzing inference cycles with respect to MAE were reported in figure 4.22 stressing
the seed networks derivation with different colors. Considering all the architectures
reported in figure 4.22 the deployed ones have been chosen picking the one with
the highest performance in each seed network subset.
The network here reported as Fseed is Frontnet seed, Fsmall is the architecture with
strength λ = 2.5 · 10−11 that is 1

7 of the original Frontnet in size.
MobileNet networks that are referred as M0.25

small is 1
4 of the seed MobileNet with

width multiplier 0.25 and have been obtained with strength λ = 10−10 while, M1.0
small

is 1
70 of the seed network MobileNet with width multiplier 1.0 that has a strength

λ = 5 · 10−7. Although every network has been quantized, only the ones obtained
through this selective approach have been reported in the next sections and have
been tested infield.

Avg R2 FrontNet
original

Selected
model

-0.2

0

0.2

0.4

0.6

0.8

Av
er

ag
e

R
2

sc
or

e

1
7
Fro

ntN
et

1
3
Fro

ntN
et

Fro
ntN

et

Figure 4.19: Average of FLOPs and size to average R2 x, y, z score FrontNet

57

Results

Avg R2 FrontNet
original

Selected
model

-0.2

0

0.2

0.4

0.6

0.8
Av

er
ag

e
R

2
sc

or
e

1
18

5
Mob

ileN
et

v1
1.0

1
75
Mob

ileN
et

v1
1.0

1
70
Mob

ileN
et

v1
1.0

Fro
ntN

et

Figure 4.20: Average of FLOPs and size to average R2 x, y, z score MobileNet v1
1.0

58

Results

Avg R2 FrontNet
original

Selected
model

-0.2

0

0.2

0.4

0.6

0.8
Av

er
ag

e
R

2
sc

or
e

1
7
Mob

ileN
et

v1
0.2

5

1
5
Mob

ileN
et

v1
0.2

5

1
4
Mob

ileN
et

v1
0.2

5

Mob
ilN

et
v1

0.2
5

Fro
ntN

et

Figure 4.21: Average of FLOPs and size to average R2 x, y, z score MobileNet v1
0.25

Figure 4.22: Pareto curves of the networks extracted from the NAS in the clock
cycles vs. MAE space (lower is better).

.

In figure 4.23 are reported the quantized integer deployable and the floating

59

Results

point version of the networks to be tested infield. In all the cases reported, as
reported above in the respective sections, there are no loss in performance.

Figure 4.23: R2 of non-quantized vs quantized ID models (higher is better).

4.2 Results: power viewpoint and throughput

In this section are reported the results of the extensive tests performed on the SoC
for the various networks.
All the networks reported below have been tested in the most power-hungry
configuration for the GAP8 SoC, namely FC@250 MHz and CL@170 MHz, since
in a robotic application the power requirement of the actual inference does not
represent a crucial part of the whole, as reported in figure 4.24. By increasing
the throughput the tracking performance improves consequently given that the
error and the variance of the error of each inference remain constant. In fact, just
86.9 mW corresponding to 1.15 % of the total power is used by the GAP8 in the
most performant version of networks employed (MobileNet0.25

small). The rest of the
power consumption is mainly due to the motors, accounting for more than 95% of
the total. A relevant portion of the total energy cost, equivalent to 3.6%, may be
considered for the crazyflie electronics. Finally, 4.3% of the power used by the AI
deck (0.05% of the total) is absorbed by the camera.

60

Results

Figure 4.24: Power consumption breakdown of the Crazyflie 2.1 with inference
onboard (Mobilenet0.25

small)
.

Figure 4.25 reports different power consumption and consequently fps, for each
network, depending on the frequencies used by the cluster and the fabric controller.
Although the infield test has been performed only for the most power-hungry con-
figuration, figure 4.25 and 4.26 report also the most energy efficient configuration
(FC@25 MHz and CL @ 75 MHz) and the configuration with the highest power
saving (FC@25 MHz and CL@25 MHz). Even though these two settings are not of
interest for the drone’s control application, they may be considered for standalone
pose estimation tasks through IoT devices, in which a long-lasting time is of crucial
importance.
The networks obtained thanks to the NAS need consistently less power (in the order
of 5%) if compared to the seed network. It is worth mentioning that MobileNet-
derived architectures need higher maximum power if compared to Frontnet cases.
Even if the NAS performs a reduction of all the networks it does not change the
peculiar energy characteristics of the networks that are almost immutated for a
specific seed architecture. In fact, acting on the channels the technique modifies
only the relative duration of each layer thus it results in a shortening or enlargement
of the power consumption of the specific layer.

61

Results

Figure 4.25: Throughput vs. power consumption for the four models at three
different frequencies operating points (FC/CL).

Figure 4.26: Power consumption of all the configurations.

62

Results

Table 4.13: Computation and memory footprint for inference on one frame (F:
PULP-Frontnet, M: MobileNet).

Network Params MAC Cycles Memory P [mW] T [fps]

Fseed 304 k 14.7 M 3.2 M 499 kB 92.2 45.3
Fsmall 44 k 7.6 M 1.5 M 231 kB 81.3 71.6
M0.25

small 65 k 7.4 M 2.2 M 591 kB 86.9 51.2
M1.0

small 54 k 12.4 M 3.7 M 415 kB 88.3 32.7

As reported in table 4.13 the NAS extended in this thesis was able not only to
reduce the size of the networks (evaluated considering the # of parameters) but
also to reduce MACs, cycles and the total memory employed.
The memory values reported in table 4.13 set an upper bound of the memory that
should be used if all the parameters and outputs of the various layers would be
maintained until the end of each inference.
MACs and cycles instead approach the computational complexity problem from
two different points. On the one hand, the MACs metric provides a measure that
is independent of the number of cores employed and from the SoC architecture.
On the other side, cycles are evaluated Specifically on the GAP8 and are directly
related to the time needed through the frequency at which the processor is used
In order to deeply understand the behaviors and differences of the networks power
profiling (at 64 kbps) has been performed for all the configurations reported above
by means of a GAPuino board located in ETH-Zurich laboratories.
All the power profiles are reported in figures 4.27a, 4.27b and 4.27c for Frontnet
seed networks, figures 4.28a, 4.28b and 4.28c concerning the reduced version of
Frontnet. Power profiles of MobileNet v1 networks are instead reported in figures
4.29a, 4.29b and 4.29c considering MobileNet0.25

small and in figures 4.30a, 4.30b and
4.30c for MobileNet1.0

small. Considering the figures reported below, a crucial difference
may be observed between Frontnet-based networks and MobileNet networks. All
the configurations of the first seed network have relatively long phases in which
the processor consumes a reduced amount of power but is active. On the other
side, the MobileNet-based networks have consistently higher power consumption.
This is phenomenon is due mainly to the higher number of layers in the MobileNet
networks and to the different types of convolution employed in the two architectures.

63

Results

(a) 250/170 (b) 25/75 (c) 25/25

Figure 4.27: Frontnet seed power profiling

(a) 250/170 (b) 25/75 (c) 25/25

Figure 4.28: Frontnetsmall power profiling

(a) 250/170 (b) 25/75 (c) 25/25

Figure 4.29: MobileNet0.25
small power profiling

64

Results

(a) 250/170 (b) 25/75 (c) 25/25

Figure 4.30: MobileNet1.0
small power profiling

4.3 Results: control accuracy and generalization
standpoints

For all the networks selected the in-field tests described in section 3.3.4 have been
performed providing accurate results on the inference and closed loop control
accuracy. Since the laboratories used for the trials were never seen in the training
phase these experiments should be considered valid also for generalization purposes.
Furthermore, the new laboratory presents difficult backgrounds with monitors,
windows, chairs, and tables that contribute to the validation of the generalization
statements. In figure 4.31 are reported two images taken from the onboard camera
of the drone of the two labs that depict the very different environment of testing if
compared to training.

(a) Training lab (b) Testing lab

Figure 4.31: Onboard camera’s images in two different environments

In the testing room, the approach developed in this work provides SoA results
allowing the networks to complete the whole path in contrast to the Frontnet seed
version that only completed 85% of it on a three runs average. Even more, derived
architectures were able to reduce the control error and the inference error evaluated
through the MAE between the distance obtained via the optitrack tracking system

65

Results

(position error < 0.2 mm) and the distance estimation onboard.
In order to provide an upper bound on the inference accuracy evaluated in the tests,
an experiment performed controlling the drone with the mocap’s pose measure has
been done. Figure 4.32 reports the path followed while, table 4.18, in the Mocap
row, provides some details on the control accuracy obtained.

Figure 4.32: Mocap controlled drone path

Mean pose errors in table 4.18 are obtained as the differences between the
drone’s desired pose and the actual drone pose, as a consequence these metrics
embed the control system error and, if the pose estimation is perfect, as in the case
of the mocap control, the metrics express the errors of the controller alone.

4.3.1 Frontnetseed

In the case of Frontnetseed only 140 s of total flight have been achieved compared to
a total of 165 s of the whole path, equivalent to 85% of the whole way. In particular,
the main weakness of Frontnet may be seen in the last part of the course, where
the ϕ prediction is stressed with an in-place rotation of the target.
The mean MAEs over the 4 runs are 0.33, 0.12, and 0.77 respectively for x, y, and
ϕ. Instead, for what concerns the controller errors, exy=0.72 m and eθ=0.78 rad,
representing an increase of more than 270% on the mocap test control errors. On
the one hand, exploring more in detail the scatter plot related to the ϕ variable, an

66

Results

almost random inference set may be seen with r=0.1196 as reported in figure 4.34d,
this clarifies the malfunctions of the prediction system in the rotation phase (part 6
in 3.13). On the other side, the others variable used for control, x and y reported in
figure 4.34a and 4.34b, show a relevant positive correlation with respective perfect
predictors. Finally, concerning z, a clusterized output mirrors the limited data
variability on the z-axis in the training set.

(a) Run 1 (b) Run 2

(c) Run 3 (d) Run streamer

Figure 4.33: Frontnetseed path

Considering these 4 experiments reported, Frontnetseed shows an incomplete
tracking with consequently poor MAE error metric’s performance that should be
linked to the reduced number of layers and to the elevated number of parameters

67

Results

that do not allow sufficient generalization performance.

(a) (b)

(c) (d)

Figure 4.34: Frontnet seed scatterplot

4.3.2 Frontnetsmall

The reduced version of Frontnet does not provide satisfactory results in the onfield
tests, in fact, it only reaches 35% of the complete path on a 4 runs average, although
with the testing set it provides comparable R2 and MAE score to Frontnetseed.
Further insights are provided by figures 4.35a, 4.35b, 4.35c and 4.35d which
respectively depict the scatterplot of variables x, y, z and ϕ.

68

Results

In the case of Frontnetsmall the problem in the tracking of the person seems due
to the insufficient prediction performance of x and y. The variable ϕ, considered
the weakness of the Frontnet model, is not stressed in these tests since the drone
barely tracks the person until phase 5 of figure 3.13 and as so it has a relatively
high regression performance (r=0.4068) since only the easier fraction of the angles’
range is present in the tests.
The reduced number of layers in combination with the reduced number of parameters
does not allow the network to perform correctly.

(a) (b)

(c) (d)

Figure 4.35: Frontnetsmall scatterplot

69

Results

4.3.3 MobileNet0.25
small

The network obtained from MobileNet with width-multiplier=0.25 is able to com-
plete the whole path and, it reaches satisfactory errors for what concerns the control.
In particular it achieves an exy=0.49 m and an eθ=0.59 rad. Instead, considering
the MAE performance this work achieved 0.25, 0.11 and 0.52 respectively on x, y
and ϕ. Figures 4.36a, 4.36b, 4.36c and 4.36d show the paths followed by the drone
and the target with the network under analysis.

(a) Run 1 (b) Run 2

(c) Run 3 (d) Run streamer

Figure 4.36: MobileNet0.25
small path

Figures 4.37a, 4.37b, 4.37c and 4.37d report the scatterplots of the predicted
features. In this case, x and y have a high correlation with the perfect predictors

70

Results

while ϕ has a sufficiently high correlation to perform in the proper way. On the
other side, the weak z performance confirms that the choice to fix z is proper.
Further details may be observed in figures 4.38a and 4.38b where an almost perfect
following happens.

(a) (b)

(c) (d)

Figure 4.37: MobileNet0.25
small scatterplot

In the case of this architecture, the elevated number of layers gives the correct
ability to learn and generalize correctly providing a reliable model that could be
ported into different environments. Further strength is given to the particular

71

Results

NN by the reduced number of parameters providing even more generalization
capabilities.
The improvement obtained with this network is particularly remarkable since from
the first Frontnet network the prediction accuracy of the angle ϕ was challenging
and in fact presented reduced MAE performance in the original work.

(a) x (b) y

Figure 4.38: MobileNet0.25
small tracking performance in time (from frame 400 has

been performed the in-place rotation of the target)

4.3.4 MobileNet1.0
small

Even this MobileNet-derived network is able to complete the whole path and, it
scores an MAE of 0.31, 0.13, and 0.52 respectively for x, y, and ϕ.
The control system errors are exy=0.58 m and eθ=0.59 rad. Figures 4.39a, 4.39b,
4.39c and 4.39d depict the paths obtained in the various runs.
Figures 4.40a, 4.40b, 4.40c and 4.40d report the scatterplots of the predicted
features. Also, in this case, x and y have a high correlation with respect to the
perfect predictors, ϕ has correlation=0.5156 that allows the tracking of the angle
to perform in the proper manner. Although, z performance seems to present a
positive correlation the vertical cluster at Ground truth=0.4m confirms that the
choice to fix z is proper.
Also in this case, the ability to complete the path showed by the architecture
allows the extension of the use cases to never seen environments and provides a
wider range of applications. Further details may be observed in figures 4.41a and
4.41b where an almost perfect following happens although some variability on the
x prediction may be observed with a relevant oscillation effect.
From frame 400, the inplace rotation has been performed as a consequence the
tracking performace seen in figures 4.41a and 4.41b seems to perform poorly.

72

Results

(a) Run 1 (b) Run 2

(c) Run 3 (d) Run streamer

Figure 4.39: MobileNet1.0
small path

73

Results

(a) (b)

(c) (d)

Figure 4.40: MobileNet1.0
small scatterplot

74

Results

(a) x (b) y

Figure 4.41: MobileNet1.0
small tracking performance in time (from frame 400 has

been performed the in place rotation of the target)

4.3.5 Cross tests validation with flying drone
Cross tests have been done in order to validate the performace and avoid a misleading
attribution of the error to the specific network, understanding how the others NNs
would have worked in a specific condition.
For these experiments only the runs with the streamer have been used since the
presence of images is crucial to perform post processing inferences.

Mocap control tests

These tests have been realized controlling the drone through the motion capture
system and, as such, reducing to almost 0 the prediction error of the drone relative
pose. In fact, controlling the drone through the mocap is practically equivalent to a
perfect prediction system. This cross test have been done in order to prove that the
errors in the predictions’ value are mostly related to the actual network rather then
caused by the pitch oscillation for example. During the test with the mocap, the
pitch oscillations are reduced to the minimum achieving the less variable system
that can be obtained with this particular controller.
Figure 4.42, 4.44, 4.46 and 4.48 provide a representation of the x, y, z and ϕ
behaviour of the various NNs in time while, figures 4.43, 4.45, 4.47 and 4.49 depict
the performance through a scatter plot comparing Ground Truths (GTs) and
predictions respectively for x, y, z and ϕ with changing architecture.
Tables 4.14, 4.15, 4.16 and 4.17 report MAE and MSE for every control variables.
In figure 4.42a is present an underestimation from frame 450 to frame 550 that
may lead the drone to acquire more distance and as such perform less if comprard
with figures 4.42b, 4.42c and 4.42d.
Analyzing instead the graphs concerning the y axis, 4.45c, namely the most accurate

75

Results

model in field MobileNet0.25
small seems the best performing network, although every

architecture performs sufficiently accurate prediction on this variable. The graphs
representing the z variables, 4.46 and 4.47, in particular with 4.47a display significant
and meaningful predictions for the z axis except for the Frontnetsmall version where
the inferences do not perform properly. Finally, for what concerns the ϕ variable,
the two versions of Frontnet present more than 50% of the sample in wrong areas,
namely the two red ones, resulting in incorrect predictions most of the time and
as such, they justify the absence of tracking in the experiments reported above in
figure 4.33 and also for the version of Frontnetsmall.

(a) Frontnetseed (b) Frontnetsmall

(c) MobileNet0.25
small (d) MobileNet1.0

small

Figure 4.42: x predictions in time with changing network

76

Results

(a) Frontnetseed (b) Frontnetsmall

(c) MobileNet0.25
small (d) MobileNet1.0

small

Figure 4.43: GT vs predictions x

Table 4.14: MAE and MSE variable x

Network MAE MSE

Fseed 0.21 0.09
Fsmall 0.16 0.06
M0.25

small 0.15 0.05
M1.0

small 0.14 0.04

77

Results

(a) Frontnetseed (b) Frontnetsmall

(c) MobileNet0.25
small (d) MobileNet1.0

small

Figure 4.44: y predictions in time with changing network

78

Results

(a) Frontnetseed (b) Frontnetsmall

(c) MobileNet0.25
small (d) MobileNet1.0

small

Figure 4.45: GT vs predictions y

Table 4.15: MAE and MSE variable y

Network MAE MSE

Fseed 0.08 0.01
Fsmall 0.08 0.02
M0.25

small 0.08 0.01
M1.0

small 0.06 0.01

79

Results

(a) Frontnetseed (b) Frontnetsmall

(c) MobileNet0.25
small (d) MobileNet1.0

small

Figure 4.46: z predictions in time with changing network

80

Results

(a) Frontnetseed (b) Frontnetsmall

(c) MobileNet0.25
small (d) MobileNet1.0

small

Figure 4.47: GT vs predictions z

Table 4.16: MAE and MSE variable z

Network MAE MSE

Fseed 0.08 0.01
Fsmall 0.11 0.02
M0.25

small 0.07 0.01
M1.0

small 0.06 0.01

81

Results

(a) Frontnetseed (b) Frontnetsmall

(c) MobileNet0.25
small (d) MobileNet1.0

small

Figure 4.48: ϕ predictions in time with changing network

82

Results

(a) Frontnetseed (b) Frontnetsmall

(c) MobileNet0.25
small (d) MobileNet1.0

small

Figure 4.49: GT vs predictions ϕ

Table 4.17: MAE and MSE variable ϕ

Network MAE MSE

Fseed 0.20 0.08
Fsmall 0.23 0.08
M0.25

small 0.24 0.09
M1.0

small 0.21 0.08

83

Results

4.3.6 Infield tests summary
The NAS extension proposed in this thesis was able to design two derived networks
from MobileNet v1 with width multipliers of 0.25 and 1.0 that track the person
for 100% of the whole path in all 4 runs, improving the state of the art network,
Frontnet, that follows the target for only 85% of the way. MobileNet0.25 based
networks achieved lower control errors and MAE, improving by 32% over the
state of the art for what concern the former and the ϕ MAE and thus allowing to
solve the main issue of Frontnetseed. Considering that the test environment was
never seen during the training phase, the NAS technique allows an improvement of
the generalization capabilities of the networks with a reduction of the number of
parameters, memory size and in the case of MobileNet0.25

small of cycles to perform the
inference.
MobileNet0.25

small is the best performing model considering all the aspects as reported
in table 4.18, in fact it scores the lowest MAE and Mean pose errors. Furthermore,
this network provides the smaller variance on the absolute position error exy as
reported in figure 4.50a. In order to evaluate the contribution of this thesis and
express it in a tangible way the difference between the Mean pose error of the
mocap and the one from Frontnetseed and MobileNet0.25

small have been calculated.
These errors can be expressed as the following values exy−inf−network = exy−network −
exy−mocap while for the angle error eθ−inf−network = eθ−network −eθ−mocap. As a result,
exy−inf−F rontnetseed

= 0.54, eθ−inf−F rontnetseed
= 0.57, exy−inf−MobileNet0.25 = 0.31,

eθ−inf−MobileNet0.25 = 0.38, exy−inf−MobileNet1.0 = 0.40 and eθ−inf−MobileNet1.0 = 0.38.
Considering the inference errors reported above, the improvements obtained through
this work can be up to 43% for the distance error and up to 33% for the angle error.
These achievements have particular importance since the percentage measures do
not consider the completion of the whole path and, they have been obtained in a
never seen before environment.

(a) (b)

Figure 4.50: In-field control errors distribution (lower is better). Boxplot whiskers
mark the 5th and 95th percentile of data.

84

Results

Table 4.18: In-field experiment results (* run that does not end the path)

Network Flight
time [s]

Completed
path [%]

MAE Mean pose error

x y ϕ exy [m] eθ [rad]

Mocap 165 100 0.0 0.0 0.0 0.18 0.21
Fseed 140 85 0.33* 0.12* 0.77* 0.72* 0.78*
Fsmall 58 35 0.81* 0.53* 0.55* 0.65* 0.42*
M0.25

small 165 100 0.25 0.11 0.52 0.49 0.59
M1.0

small 165 100 0.31 0.13 0.52 0.58 0.59

85

Chapter 5

Conclusions and future
works

The work verts on the extension of PIT with the integration of the 2D component
allowing to work with 2D convolutions for image recognition tasks and for the
sake of this thesis the processing of images to predict the pose of the human. The
NAS technology, here designed, should be considered as an enabler for future
ML architectures deployment on power/memory constrained on the edge devices.
Furthermore, this thesis provides a development pipeline from the design of NN
to the deployment onboard a Crazyflie 2.1 nano drone, proving the functionality
of the NAS with strict on-field tests and achieving tighter, faster, and more akin
to generalize networks that were able to perform the predictions and allow the
tracking in a never seen before environment.
Future extensions may include the optimization on other parameters except for
the channel number for the NAS that should lead to further optimized networks.
Even more, the results obtained with this thesis might be tested on a different
environment, setting, and tasks moving the focus from nano drones to smartphones
in order to save battery.
Other possibilities to increase the capabilities and tracking performance, as well as
the generalization may be brought to life with the integration of further sensors
such as a Time of Flight (ToF) multizone. Even more possibilities for generalization
in never seen environments may arise with continual learning techniques allowing
the nano drone to learn and adapt to new subjects in new locations.
Further work may be done in the direction of data acquisition in order to include
more variability on the z-axis thus, allowing the NN to perform correct predictions
when a person lowers or with different target heights. The inclusion of more
variability on the z-axis should lead the networks to learn and consequently predict
the variables for complete control in all directions.

86

Appendix A

Metrics of evaluation

The use of metrics of comparison for this work is strictly related to the evaluation of
models in order to provide a comparable solution and asses the performance of the
networks employed. Several metrics have been used, in particular Mean Squared
Error, Mean Average Error, R2 score and the regression coefficient, respectively
analyzed in section A.1, A.2, A.3 and A.4.

A.1 MSE

The MSE, namely Mean Squared Error, is the sum of the squared distances
between the predicted output (yi) and the true value (ŷi) averaged through all the
occurrences of the measure.

MSE =
q(yi − ŷi)2

n
(A.1)

A.1: Mean Squared Error

87

Metrics of evaluation

Actual value Predicted value

x

y

•

•

•

•

•

•
•

•

•

•

Figure A.1: Representation of the meaning of MSE through area of squares

Visualizing it trough geometry, it can be perceived as the average of the square
represented in figure A.1.

A.2 MAE

Mean Average Error, also known with its acronym MAE, is the average of all the
distances between predictions and labels. As reported in figure A.2 the MAE may
be perceived as the average of all the segments.

MAE = 1
n

Ø
(|yi − ŷi|) (A.2)

A.2: Mean Absolute Error

88

Metrics of evaluation

Actual value Predicted value

x

y

•

•

•

•

•

•
•

•

•

•

Figure A.2: Representation of the meaning of MAE through segments

A.3 R2
The most reliable measure of performance employed is the R2 score as reported in
equation A.3 but, this metric may result in negative values if constant errors are
present, even if they are of reduced magnitude.
For completeness the adjusted R2 score is reported in equation A.4, but for the
sake of this thesis the only R2 used is the one of equation A.3.

R2 = 1 − SSres

SStot

(A.3)

where

SSres =
Ø

i

(yi − f(xi))2 is the sum of residual squares.

SStot =
Ø

i

(yi − y)2 is the total sum of squares.

R2
adj = 1 − (1 − R2)(n − 1)

n − k − 1 (A.4)

where

k is the number of independent regressors

89

Metrics of evaluation

A.4 The Pearson Coefficient

The Pearson Coefficient determines how much two variables are related. The value
of the correlation coefficient, above indicated with r, ranges between +1 and -1.
Values near +1 mean high positive correlation, values near 0 represent the absence
of correlation and, instead close to -1 mean strong negative correlation.
Table A.1 and figure A.3 report common cases and a classification of them depending
on the value of the coefficient r.

r = n
q

xy − (q
x)(q

y)ñ
[n q

x2 − (q
x)2][n q

y2 − (q
y)2]

(A.5)

where

n is the number of elements
x and y are the variables on which the correlation has to be calculated

Table A.1: Correlation types

Pearson
correlation
coefficient

Value Direction

r > 0.5 Strong Positive
0.3 < r < 0.5 Moderate Positive
0 < r < 0.3 Weak Positive
0 No correlation No correlation
−0.3 < r < 0 Weak Negative
−0.5 < r < −0.3 Moderate Negative
r < −0.5 Strong Negative

90

Metrics of evaluation

(a) High positive correlation (b) Moderate positive correlation

(c) Weak positive correlation

Figure A.3: Correlation cases helpful for this work.

91

Bibliography

[1] Matteo Risso, Alessio Burrello, Daniele Jahier Pagliari, Francesco Conti,
Lorenzo Lamberti, Enrico Macii, Luca Benini, and Massimo Poncino. «Pruning
In Time (PIT): A Lightweight Network Architecture Optimizer for Temporal
Convolutional Networks». In: 2021 58th ACM/IEEE Design Automation
Conference (DAC). IEEE, Dec. 2021. doi: 10.1109/dac18074.2021.9586187.
url: https://doi.org/10.1109%2Fdac18074.2021.9586187 (cit. on p. ii).

[2] Daniele Palossi, Nicky Zimmerman, Alessio Burrello, Francesco Conti, Hanna
Müller, Luca Maria Gambardella, Luca Benini, Alessandro Giusti, and Jérôme
Guzzi. Fully Onboard AI-powered Human-Drone Pose Estimation on Ultra-low
Power Autonomous Flying Nano-UAVs. 2021. doi: 10.48550/ARXIV.2103.
10873. url: https://arxiv.org/abs/2103.10873 (cit. on p. ii).

[3] Peter M. Williams. «Bayesian Regularization and Pruning Using a Laplace
Prior». In: Neural Computation 7.1 (Jan. 1995), pp. 117–143. issn: 0899-7667.
doi: 10.1162/neco.1995.7.1.117. eprint: https://direct.mit.edu/
neco/article- pdf/7/1/117/812982/neco.1995.7.1.117.pdf. url:
https://doi.org/10.1162/neco.1995.7.1.117 (cit. on p. 4).

[4] R. Tibshirani. «Regression Shrinkage and Selection via the Lasso». In: Journal
of the Royal Statistical Society: Series B (1996) (cit. on p. 4).

[5] Yann LeCun, John Denker, and Sara Solla. «Optimal Brain Damage». In:
Advances in Neural Information Processing Systems. Ed. by D. Touretzky.
Vol. 2. Morgan-Kaufmann, 1989. url: https://proceedings.neurips.cc/
paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf (cit.
on p. 5).

[6] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean.
Efficient Neural Architecture Search via Parameter Sharing. 2018. doi: 10.
48550/ARXIV.1802.03268. url: https://arxiv.org/abs/1802.03268
(cit. on p. 6).

92

https://doi.org/10.1109/dac18074.2021.9586187
https://doi.org/10.1109%2Fdac18074.2021.9586187
https://doi.org/10.48550/ARXIV.2103.10873
https://doi.org/10.48550/ARXIV.2103.10873
https://arxiv.org/abs/2103.10873
https://doi.org/10.1162/neco.1995.7.1.117
https://direct.mit.edu/neco/article-pdf/7/1/117/812982/neco.1995.7.1.117.pdf
https://direct.mit.edu/neco/article-pdf/7/1/117/812982/neco.1995.7.1.117.pdf
https://doi.org/10.1162/neco.1995.7.1.117
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://doi.org/10.48550/ARXIV.1802.03268
https://doi.org/10.48550/ARXIV.1802.03268
https://arxiv.org/abs/1802.03268

BIBLIOGRAPHY

[7] Andrew Brock, Theodore Lim, J. M. Ritchie, and Nick Weston. SMASH:
One-Shot Model Architecture Search through HyperNetworks. 2017. doi: 10.
48550/ARXIV.1708.05344. url: https://arxiv.org/abs/1708.05344
(cit. on p. 6).

[8] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler,
Andrew Howard, and Quoc V. Le. «MnasNet: Platform-Aware Neural Archi-
tecture Search for Mobile». In: (2018). doi: 10.48550/ARXIV.1807.11626.
url: https://arxiv.org/abs/1807.11626 (cit. on p. 7).

[9] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct Neural Architecture
Search on Target Task and Hardware. 2018. doi: 10.48550/ARXIV.1812.
00332. url: https://arxiv.org/abs/1812.00332 (cit. on p. 8).

[10] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable
Architecture Search. 2018. doi: 10.48550/ARXIV.1806.09055. url: https:
//arxiv.org/abs/1806.09055 (cit. on p. 9).

[11] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and
Quoc V. Le. «Understanding and Simplifying One-Shot Architecture Search».
In: ICML. 2018 (cit. on p. 9).

[12] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang, and
Edward Choi. MorphNet: Fast and Simple Resource-Constrained Structure
Learning of Deep Networks. 2017. doi: 10.48550/ARXIV.1711.06798. url:
https://arxiv.org/abs/1711.06798 (cit. on p. 9).

[13] Alvin Wan et al. FBNetV2: Differentiable Neural Architecture Search for
Spatial and Channel Dimensions. 2020. doi: 10.48550/ARXIV.2004.05565.
url: https://arxiv.org/abs/2004.05565 (cit. on p. 11).

[14] Eric Jang, Shixiang Gu, and Ben Poole. Categorical Reparameterization with
Gumbel-Softmax. 2016. doi: 10.48550/ARXIV.1611.01144. url: https:
//arxiv.org/abs/1611.01144 (cit. on p. 12).

[15] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. 2015. doi: 10.48550/
ARXIV.1502.03167. url: https://arxiv.org/abs/1502.03167 (cit. on
p. 16).

[16] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. «Dropout: A Simple Way to Prevent Neural Networks
from Overfitting». In: Journal of Machine Learning Research 15.56 (2014),
pp. 1929–1958. url: http://jmlr.org/papers/v15/srivastava14a.html
(cit. on p. 23).

93

https://doi.org/10.48550/ARXIV.1708.05344
https://doi.org/10.48550/ARXIV.1708.05344
https://arxiv.org/abs/1708.05344
https://doi.org/10.48550/ARXIV.1807.11626
https://arxiv.org/abs/1807.11626
https://doi.org/10.48550/ARXIV.1812.00332
https://doi.org/10.48550/ARXIV.1812.00332
https://arxiv.org/abs/1812.00332
https://doi.org/10.48550/ARXIV.1806.09055
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1806.09055
https://doi.org/10.48550/ARXIV.1711.06798
https://arxiv.org/abs/1711.06798
https://doi.org/10.48550/ARXIV.2004.05565
https://arxiv.org/abs/2004.05565
https://doi.org/10.48550/ARXIV.1611.01144
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.48550/ARXIV.1502.03167
https://arxiv.org/abs/1502.03167
http://jmlr.org/papers/v15/srivastava14a.html

BIBLIOGRAPHY

[17] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. 2017.
doi: 10.48550/ARXIV.1704.04861. url: https://arxiv.org/abs/1704.
04861 (cit. on p. 25).

94

https://doi.org/10.48550/ARXIV.1704.04861
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1704.04861

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background and Motivation

	Related works
	Introduction to NAS
	MnasNet
	ProxylessNAS
	MorphNet
	FBNetV2
	Pruning in Time
	Main takeaways

	Networks building blocks
	Convolution
	Batch normalization
	Depthwise separable convolution
	Pooling blocks
	Fully connected layer
	Activation functions
	Dropout

	Methodology
	NAS application to the visual pose estimation task
	Task
	NAS integration for 2D convolutions
	Seed networks and searches with NAS

	Network implementation on SoC
	NEMO: NEural Minimization for pytorch
	DORY: Deployment Oriented to memoRY

	Setup
	Drone
	Software pipeline
	Environment for recordings and dataset
	Testing setup

	Results
	Models' search with PIT
	Frontnet
	MobileNet
	Criterion of selection

	Results: power viewpoint and throughput
	Results: control accuracy and generalization standpoints
	Frontnetseed
	Frontnetsmall
	MobileNetsmall0.25
	MobileNetsmall1.0
	Cross tests validation with flying drone
	Infield tests summary

	Conclusions and future works
	Metrics of evaluation
	MSE
	MAE
	R2
	The Pearson Coefficient

	Bibliography

