
POLITECNICO DI TORINO

Master’s Degree
in Mechatronics Engineering

Master’s Degree Thesis

Trajectory Planning for Self-Driving Cars

Supervisor Candidate
prof. Stefano Malan Viglietti Claudia

Academic Year 2021-2022

The core challenge is to put a
safe and reliable automated
driving system on the road

Dr. Stephan Hönle

1

Abstract

This thesis aims to achieve a better understanding about trajectory and path plan-
ning in self-driving. The author participated to the Bosch Future Mobility Challenge
2022 (BFMC 2022), a challenge proposed by Bosch Romania in which students are
asked to develop autonomous driving and connectivity algorithms on 1 : 10 scaled
vehicles. In the competition, the car must perform specific tasks:

1. lane follow;

2. lane keeping;

3. intersection detection;

4. traffic sign and traffic light recognition;

5. parking manoeuvre;

6. overtake manoeuvre;

7. object detection;

8. trajectory and path planning based on graphs and GPS connection.

At the beginning, all members of the team worked together to make the vehicle able
to fulfill the first 6 tasks. Next, each one had its own assignment and the author
job was studying the localisation system and trajectory planning; path planning was
studied additionally after the competition to complete a methodological study. The
objective of this work is to find a predefined path where the car is able to perform
all the tasks required by the challenge and to go deeper into comprehend how to
find the shortest path knowing the starting and final points.

2

Contents

1 Introduction 6
1.1 Motivation . 6
1.2 Autonomous driving . 6
1.3 Levels driving automation . 8
1.4 Thesis outline . 8

2 Bosch Future Mobility Challenge 10
2.1 Introduction . 10
2.2 The Competition . 10
2.3 The Car-Kit . 13
2.4 The Project . 14

2.4.1 Competition Documentation and First Steps 14
2.4.2 Brain Project . 15
2.4.3 Embedded Project . 15
2.4.4 GITHUB . 16

2.5 The Structure behind the Algorithms 16

3 Files communication 18
3.1 Parallelism, Thread and Processes 18
3.2 The Main.py file . 21
3.3 Server Communication and UDP . 22

4 Technology behind autonomous driving 26
4.1 Sensors . 26
4.2 Detailed study about sensors . 27

4.2.1 Camera . 27
4.2.2 LiDar . 28
4.2.3 Ultrasonic . 31
4.2.4 ATM103 Encoder . 34
4.2.5 IMU Sensor . 34

4.3 Localisation . 36
4.3.1 Localisation and mapping for BFMC2022 37
4.3.2 V2X for BFMC2022 . 42

5 Trajectory and path planning 48
5.1 Trajectory planning . 48

5.1.1 Trajectory planning used in competition 48
5.2 Path planning . 53

5.2.1 Dijkstra Algorithm . 56
5.2.2 A* Algorithm . 60

6 Parking 66
6.1 Parking at competition . 66

7 Conclusion and future development 69

3

List of Figures

1 Timeline of autonomous vehicles . 7
2 Automation levels of Society of Automotive Engineers (SAE). 8
3 Car of the team to the finals. 9
4 PoliTron team logo. 10
5 Test Track. 11
6 Bosch Future Mobility Challenge 2022 - Timeline. 12
7 Bosch Future Mobility Challenge 2022 - Best New Participating Team

Award. 13
8 Car with the listed Components. 14
9 BFMC website - Layout of the Shared Documentation. 14
10 Architecture of the completed project. 17
11 Threads parallelism. 19
12 Comparison between TCP and UDP protocols. 23
13 Fundamentals of UDP socket programming. 25
14 Autonomous Driving Sensors . 26
15 Pi Camera module v2.1 . 28
16 Schematic of ToF principle . 30
17 LiDar mounted on the car of the team. 30
18 Overtake manoeuvre . 33
19 IMU sensor BNO055 . 35
20 V2V real life representation . 37
21 Table of Node and Connections [1]. 38
22 Competition track with nodes and connections [1]. 39
23 Example of trajectories in autonomous vehicle [2]. 48
24 Competition track with the designed path. 50
25 Car of the team at intersection with grades of IMU sensor specified. 52
26 Example of different paths on the same map. 53
27 Sampling based approaches with the main advantages and drawbacks

[3] . 55
28 Node-based optimal approaches with the main advantages and draw-

backs [3] . 56
29 Flowchart of Dijkstra algorithm . 57
30 Autonomous parking. 66
31 Autonomous parking in the competition. 67

4

List of Tables

1 Semaphore State [1] . 43
2 ID assignment for each obstacle [1] 44

5

1 Introduction

1.1 Motivation

Technology advances always faster and daily, humans use every kind of electronic
devices for various purposes reducing effort, lost time and danger. The production of
autonomous vehicles, robots or aircraft becomes a leading industry. The innovations
are helpful to improve both performance and safety.

The motivation of the thesis is to design a driver-less vehicle following the rules
of the Bosch Future Mobility challenge. In particular, automated vehicle, robot or
aircraft can move from a designated starting point to a destination one in a given
environment. In order to reach the final point, a path must be planned and there
are more methods to achieve the goal. The following approach are studied in deep:

• Trajectory planning is useful to design a predefined path that autonomous
system must follow in relation to a defined time law. For example, autonomous
car can perform a limited set of possible maneuvers and the planner has to
help it to keep the lane, parking or overtake.

• Path planning is used to complete the task in the shortest time with mini-
mum movement, save energy and improve efficiency as well. For instance, the
planner can try to choose the fastest path for an autonomous cart that has to
transports goods and deliver them.

Both methods are studied on a known environment given by Bosch.

1.2 Autonomous driving

Autonomous driving can provide a fundamental contribution to the solution of
greater road safety and climate change. A study of Waymo Simulated Driving
Behavior in Reconstructed Fatal Crashes within an Autonomous Vehicle Operating
Domain illustrates that the Waymo autonomous car prevents a collision with an
estimated of 82% better than an human driver, it reduces 10% of crash-level serious
injury risk and it has the same behaviour of a human driver with an estimated of
8% [4].

The World Health Organization evaluated that almost 1.3 million people die
each year due to road traffic crashes. A 2015 National Highway Traffic Safety Ad-
ministration report found that human error causes 94 percent of traffic accidents [5].
Number that is likely to decrease considerably because computers have no emotion,
they can not drink or being distracted consequentially they reduce and eliminate the
operator errors. Self-driving development depend above people’s trust and reliable
solutions and in order to work, a vehicle has to be able to perceive and understand its
surroundings (“Sense”), process the information, plan a driving strategy (“Think”),
and safely implement the planned driving strategy (“Act”).

Leonardo da Vinci (1500) designed a cart that is considered the world’s first
robot. The cart could move along a predetermined path without being pushed or
pulled; power is provided by springs under high tension and steering is set up in
advance.

Robert Whitehead (1869) invented a torpedo that propelled itself underwater
thanks to a pressurization system called “The Secret” for several hundred yards
underwater and maintained depth. Torpedo guidance led to a wide range of au-
tonomous devices.

6

Going forward, technology and knowledge advanced and autonomous projects
evolved (Fig. 1).

Nowadays, a lot of vehicles are considered semi-autonomous because they have a
wide range of safety features like braking systems, assisted parking and the ability to
drive, brake, steer and park themselves. Their technologies rely on GPS capabilities
and sensing systems to detect lanes, obstacles, road signs and traffic lights. Com-
panies are racing to build autonomous vehicles for a radically changing consumer
world.

Figure 1: Timeline of autonomous vehicles

7

1.3 Levels driving automation

The Society of Automotive Engineers (SAE J3016, 2018) provide six levels driving
automation from Level 0 to Level 5, from fully manual driving to fully autonomous
(Fig. 2):

• Level 0 (No Driving Automation): vehicles are manually controlled. Human
drivers control all the dynamic tasks associated with driving.

• Level 1 (Driver Assistance): human drivers are in full control of the vehicle but
they are assisted by the single automated system (steering or accelerating).

• Level 2 (Partial Driving Automation): the vehicle can control both steering
and accelerating/decelerating through advanced driver assistance systems or
ADAS but driver can still manage the car.

• Level 3 (Conditional Driving Automation): vehicles can take some decisions
such as emergency braking without human judgment using sensors such as
LiDar. They still require human that must be on standby in case the system
is unable to execute the task.

• Level 4 (High Driving Automation): vehicles can make decisions and can in-
tervene if there is a system failure. They do not need human interaction in
most circumstances but driver still has option to manually override and they
can move only within a limited area. This is known as geofencing.

• Level 5 (Full Driving Automation): vehicles do not require human interactions
and they can go anywhere being free from geofencing.

Figure 2: Automation levels of Society of Automotive Engineers (SAE).

1.4 Thesis outline

In this thesis, trajectory planning and path planning are studied in deep. Chapters
are organised as follows:

Chapter 2: Introduction to Bosch Future Mobility Challenge (Fig. 3) and details
about the project, including software and hardware components.

8

Chapter 3: Explanation of the communication between files, including crucial
Python utilities and communication with LAN and UDP.

Chapter 4: Information about technology behind autonomous driving with a deep-
ening on sensors and localization system. Description of sensors, explanation
of the localisation system and corresponding algorithms used for competition.

Chapter 5: Technicality and algorithms about trajectory and path planning. Ex-
planation of trajectory planning algorithm used in competition. Deepening of
Dijkstra algorithm and A* algorithm and code explanation.

Chapter 6: Introduction to the parking task and description of parking algorithm
used for the challenge.

Chapter 7: Conclusions and future development about the work are reported.

Figure 3: Car of the team to the finals.

9

2 Bosch Future Mobility Challenge

2.1 Introduction

This work has been realized based on the effort and the assignments performed dur-
ing the participation to the so-called Bosch Future Mobility Challenge (BFMC): it
is an international autonomous driving and connectivity competition for bachelor
and master students organized by Bosch Engineering Centre Cluj since 2017. The
competition invites student teams from all over the world every year to develop au-
tonomous driving and connectivity algorithms on 1 : 10 scaled vehicles, provided by
the company, to navigate in a designated environment simulating a miniature smart
city. The students work on their projects in collaboration with Bosch experts and
academic professors for several months to develop the best-performing algorithms.

The author of this work has joined the challenge under the team PoliTron (Fig.
4) composed by 4 other colleagues from the master’s degree program in Mechatronic
Engineering of the Polytechnic of Turin, with the guidance of the supervisor himself,
Professor Stefano Malan.

Figure 4: PoliTron team logo.

The job to carry out during the challenge, which lasts from November to May,
consists in developing the algorithms involved in the realization of the autonomous
car guide and implementing them into the received car, therefore it commits both the
software and the hardware parts. All in all, it is a real and complete accomplishment
of self-driving car.

2.2 The Competition

The competition requires that, in addition to the activities carried out by the teams
to achieve the final objective, participating teams send a monthly periodic status
via the competition website containing the followings to show their progress to the
Bosch representatives:

• A technical report describing the development in the last sprint.

• A project plan alongside with the project architecture.

• A video file emphasizing with visual aid the contributions from the past
month activity (already present in the report and project plan).

In the middle of the competition, on middle March, a first eliminatory phase
takes place, the Mid-Season Quality Gate, in which each team is requested to send
a 3-minutes (at most) long video in which the car must perform the following tasks
in a single autonomous run:

1. Lane keeping.

2. Intersection crossing.

10

3. Complete manoeuvre after the following signs:

3.1. Stop sign – the car must stop for at least 3 s.

3.2. Crosswalk sign - the car must visibly reduce the speed and if a pedestrian
is crossing, the car must stop.

3.3. Priority Road sign - act normal, you are on a priority road and any vehicle
coming from a non-priority road should stop.

3.4. Parking sign - it is found before and after a parking lot and, if empty,
can be used to perform the parking manoeuvre.

These tasks can be demonstrated by means of one of three possible alternatives:

• A video of the car performing the actions on a real-life like map.

• A video of the car in front of a Desktop, taking a video as a simulated input
and acting accordingly.

• A video of the car in front of a Desktop where the simulator is running, taking
as visual input the one from the camera inside the simulator.

The author’s team has chosen the first option, realizing physically the track
shown in Figure 5.

Figure 5: Test Track.

Based on the videos, the jury will decide which teams possess the right skills to
continue the competition and to go to the Bosch Engineering Centre site in Cluj-
Napoca (Romania) for the qualifications and possibly semifinals and finals in May.

During the race period in Romania, the teams will have to face two challenges:
the technical and the speed one. The former requests that the car can correctly
respect most of the road signs, such as traffic signs, traffic lights, lanes, intersections,
ramps, and roundabouts. Moreover, it must detect pedestrians and overtake other
cars present in the same lane. The latter asks the car to complete a determined

11

path in the shortest time possible, this time respecting only the lanes and the road
markings. In addition to this, the teams will make a presentation in front of the
jury.

Only a maximum of 8 teams will be selected to participate to the final race, in
which the first 3 qualified teams will win both a money prize and the car kit, and
another team, not included in the top 3, will be rewarded as the “best newcomer”,
meaning a team which did not take part to the competition in the previous year.
All the phases of the challenge are reported in Figure 6.

Figure 6: Bosch Future Mobility Challenge 2022 - Timeline.

The author’s team managed to reach the finals and competed with other 7 tal-
ented teams from Greece, Romania, Portugal and Italy and won the Best new par-
ticipating team award (Figure 7).

12

Figure 7: Bosch Future Mobility Challenge 2022 - Best New Participating Team
Award.

2.3 The Car-Kit

Going into the details of the car kit provided by Bosch, the following components
are to be found:

• Nucleo F401RE.

• Raspberry Pi 4 Model b.

• VNH5012 H-bridge Motor Driver.

• ATM103 Encoder.

• DC/DC converters.

• Servomotor.

• LiPo Battery.

• Chassis.

• Camera.

• IMU Sensor.

The fundamental components are shown in Figure 8.

13

Figure 8: Car with the listed Components.

In addition to these basic elements, the team decided to furnish the car with
a LiDAR sensor and an Ultrasonic sensor, placed respectively in the front and the
right-hand side of the car.

2.4 The Project

To start working on the project, the teams are provided with a complete documen-
tation necessary to understand better the structure of the project, especially the
hardware side and the base Python/C++ codes for the correct communication of
all the components of the car. The cited documentation is subdivided as shown in
Figure 9.

Figure 9: BFMC website - Layout of the Shared Documentation.

A brief explanation of the content of each section is reported in the following
subchapters.

2.4.1 Competition Documentation and First Steps

It includes:

• Connection diagram and description with official links to the components of
the car.

14

• Racetrack: the description of the provided racetrack and its elements, the
given components, and the diagrams, as well as a starting point and directions
of the knowledge required.

• V2X-Vehicle to everything: it includes localization, semaphore, environmental
server, and vehicle-to-vehicle communication.

• Printed components and circuit boards.

• Hardware improvements: it includes settings for the hardware components.

• Useful links for Raspberry Pi, ROS, and Python.

• Periodic status: project plan and architecture, reports and media.

2.4.2 Brain Project

The Brain Project describes the given code for the RPi platform. It includes the
start-up code and the documentation for the provided API’s, which will help the
interaction with the V2X systems. The project uses concepts of multi-processing
and distributed system, and it implements a basic flexible structure, which can be
extended with new features. This folder contains:

• Introduction: concept and architectures, in particular remote car control and
camera streaming, installation and configuration, IMU displayer.

• Utils layer: camera streamer, remote control.

• Hardware layer: camera, serial handler process and camera spoofer process.

• Data acquisition layer: traffic lights, localization system, environmental server.

The computer project is already implemented on the provided Raspberry Pi,
while the embedded project is already implemented on the Nucleo board. Together,
they give a good starting point for the project, providing a remote keyboard control,
remote camera stream, constant speed control of the given kit and others.

2.4.3 Embedded Project

This documentation describes the low-level application which runs on the micro-
controller Nucleo-F401RE. It aims at controlling the car movement and providing
an interface between higher level controllers and lower-level actuators and sensors.

The project has four parts:

• Tools for development containing the instructions to upload the codes related
to the correct functioning of the Nucleo.

• Brain layer contains the state machine of the Nucleo (speed and steering).

• Hardware package includes the drivers for actuator and sensors.

• Signal, utils and periodics namespace: ‘signal’ includes libraries for processing
signals, ‘utils’ package incorporates some util functionalities and ‘periodics’
layer includes some periodic tasks.

15

2.4.4 GITHUB

Bosch provided their own link of GitHub in which all the Python/C++ codes related
to the topics described above are held. Specifically:

• Brain and Brain ROS: the project includes the software already present on
the development board (Raspberry Pi) for controlling the car remotely, use
the API’s and test the simulated servers, respectively for Raspbian and ROS.

• Startup_C: the project includes some of the scripts transcribed in C++ lan-
guage from the startup project.

• Embedded_Platform: the project includes the software already present on
the Embedded platform (Nucleo board). It describes all the low-level software
for controlling the speed and steering of the car.

• Simulator: the project includes the software for the Gazebo simulator, which
is the official on-line environment of the competition.

• Documentation: the project includes all the general documentation of the
competition environment, guides, diagrams, car components, etc.

2.5 The Structure behind the Algorithms

The tasks to perform by the end of the competition are the following:

• Lane Keeping and Following.

• Intersection Detection and crossing.

• Correct manoeuvres under the detection of the following traffic signs: stop,
priority, crosswalk, parking, roundabout, highway entrance and highway exit,
one-way, no entry.

• Parallel and perpendicular parking.

• Object Detection: pedestrian and overtake of a static and/or moving vehicle.

• Navigation by means of nodes and localization system (GPS).

The brain of the car must be inserted in the Raspberry Pi which, basing on the
tasks to perform, sends the commands to the Nucleo which, in turn, acts on the
motor and on the servo motor to regulate both the speed and steer. More in details,
in order to process the image, the Raspberry takes as input the camera frame and
the IMU data for the position of the vehicle, runs the specific control algorithms and
sends the corresponding output commands to the Nucleo; for example, an increased
speed in presence of a ramp which signs the entrance to the highway, a decreased
speed and a specific steer when traveling along a tight curve and a zero speed when
the traffic light turns red. The correlation between all the project components,
the sensors, the algorithms and the vehicle actuation is represented in the project
architecture shown in Figure 10.

16

Sensing
and input

Perception and
scene
understanding

Behaviour and
motion plan

Vehicle
control

Acutation

Figure 10: Architecture of the completed project.

The project presented in this chapter sinks the roots for the work developed
by three members of team PoliTron: specifically, Cristina Chicca deals with the
image processing part, Gianmarco Picariello’s work consists in the development of
MPC controllers in this context and Claudia Viglietti’s thesis concerns optimization
algorithms for path planning.

17

3 Files communication

Before diving into the algorithms dealing with the paper matter, it is of particular
interest to define appropriately how the files shown in Figure 10 communicate, both
by means of Python3 and using a given server responsible for the car localisation
system.

3.1 Parallelism, Thread and Processes

The whole project is composed by processes and threads which ensure that all the
algorithms present on the Raspberry Pi run correctly and in parallel since the car,
to perform a correct self-drive, needs to execute them concurrently: for example, it
has to always follow the lane while respecting traffic and road signs, checking for
pedestrians crossing the street etc.

Python multiprocessing library offers two ways to implement process-based par-
allelism:

• Process: used when functions-based parallelism is required.

• Pool: offers a convenient means of parallelizing the execution of a function
across multiple input values, distributing the input data across processes (data-
based parallelism).

In this project case, the Process method has been used: when it is run, it has
a specific address on the memory and all the used variables are accessible only by
the same process, so they cannot be read by another process unless a pipe is used.

A Pipe is a method to pass information from one process to another one: it offers
only one-way communication and the passed information is held by the system until
it is read by the receiving process. What is returned from the pipe() function is a
pair of file descriptors (r,w) usable for reading and writing respectively.

In addition to the Process module, the multiprocessing module offers the thread-
ing module. The Thread class represents an activity that is run in a separate thread
of control. This function represents the capability of Python to handle different tasks
at the same moment: to sum up, it is a separate flow of execution in the sense that
Python script appears to have more threads happening at once. Its syntax is the
following:

Thread(group=None, target=None, name=None, args=(), kwargs=, *, dae-
mon=None)

In particular, target is the callable object to be invoked by the run() method,
name is the thread name and args is the argument tuple for the target invocation.
Moreover, the .daemon property ensures that the daemon thread does not block the
main thread from exiting and continues to run in the background.

Multiple threads work in parallel as shown in Figure 11.

18

Figure 11: Threads parallelism.

In order to give an idea of how all these functions are related to one another
inside a working script, an example in the context of autonomous drive follows: it
is necessary to set the commands to send to the STM32 Nucleo microcontroller on
a dedicated process and, by means of a pipe, these commands are sent to the Seri-
alHandlerProcess, which deals with the communication with the Nucleo. It imple-
ments the WriteThread function to send commands to Nucleo and the ReadThread
function to receive data from Nucleo. The commands are generated after having
processed the images which come from the CameraProcess implementing the Rasp-
berry Pi Cam and they are sent to the LaneDetectionProcess, responsible for the
lane detection. This means that LaneDetectionProcess has to receive two pipes, one
for receiving the images and one for sending the commands.

The project contains many processes, each defining a particular algorithm for
the self-driving control: the definitions explained until now are useful to outline a
structure in common with all these processes, which is shown below.

class Name(WorkerProcess):

def __init__(self, inPs, outPs):

""" Process used for sending images over the network to a targeted

IP via UDP protocol (no feedback

required). The image is compressed before sending it.

Used for visualizing your raspicam images on remote PC.

Parameters

inPs : list(Pipe)

List of input pipes, only the first pipe is used to transfer the

captured frames.

outPs : list(Pipe)

List of output pipes

In this section you can also define the variables initialization.

"""

super(MainLaneDetectionProcess, self).__init__(inPs, outPs)

19

def run(self):

""" Apply the initializing methods and start the threads. """

super(MainLaneDetectionProcess, self).run()

def _init_threads(self):

""" Initialize the sending thread. """

Thread for elaborating the received frames:

receiveFrameT = Thread(name=’receiveFrameThread’,

target=self._generate_Output,

args=(self.inPs, self.outPs,))

receiveFrameT.daemon = True

self.threads.append(receiveFrameT)

After creating the class whose name is subjective (in this case it is called Name),
the utilized functions and methods are the following:

• init : takes as input self, inPs and outPs which correspond to the
list of input pipes and the list of output pipes respectively. This function is
called when a class is “instantiated”, meaning when the class is declared and
any argument withing this function will also be the same argument when in-
stantiating the class object. These initial arguments are the data manipulated
throughout the class object. Under this function, some instance attributes are
defined and assigned to self to be manipulated later on with other functions.

• super(): it inherits, uses code from the base (existing) class (i.e., Worker-
Process) to define the structure of the new class (i.e., Name) – it guarantees
the access methods from a parent class within a child class reducing repetitions
in the code.

• run(): function that initializes the sending thread for the processing of re-
ceived frames.

• .append(): adds a single item to the existing list. It does not return a new
list of items, but it will modify the original list by adding the item to the
end of the list. After executing the method append on the list, the list size
increases by one.

All of them send their output to a particular process called MovCarProcess: it is
responsible for setting the correct values of steer and speed of the car according to
the road situation, e.g the value of the lane curve, the detected traffic sign, the inter-
section etc.. These values are integers representative of the manoeuvre: for example,
a value of 999 corresponds to speed equal to 0 in the SpeedThread. Summarizing,
MovCarProcess sets the representative value according to the output received from
the control processes, whereas SpeedThread and SteerThread contain the actual com-
mand sent to the Nucleo for, respectively, speed (action 1) and steer (action 2). An
example is given by the code shown below, in which the MovCarProcess sets the
value by means of which the car stops in presence of a STOP or CROSSWALK sign
and both SpeedThread and SteerThread actually build the physical command.

""" Extract from MovCarProcess """

if STOP or CROSSWALK:

20

value = 999

""" Extract from SpeedThread """

#Stop

if curveVal == 999:

command = {’action’: ’1’, ’speed’: 0.0}

""" Extract from SteerThread """

#Stop

if curveVal == 999:

command = {’action’: ’2’, ’steerAngle’: 0.0}

Similarly, these threads will set speed and steer values different from 0 whenever
the car has to travel along the path, in absence of road and traffic signs that would
impede it.

3.2 The Main.py file

All the processes which have to be run on the Raspberry Pi, including their inputs
and outputs, the way in which they communicate, are described inside the main.py
file. As every main function, it has the job to put together the functions involved in
the autonomous-driving solution, searching them from their specific folder.

ArcShRead, ArcShSend = Pipe(duplex=False) # for serial handler

FrameRead1, FrameSend1 = Pipe(duplex=False) # Frame towards Lane

Detection

FrameRead2, FrameSend2 = Pipe(duplex=False) # Frame towards

Intersection Detection

FrameRead3, FrameSend3 = Pipe(duplex=False) # Frame towards Sign

Detection

FrameRead4, FrameSend4 = Pipe(duplex=False) # Frame towards

Localization Process

######## IMAGE PROCESSING ALGORITHMS ##########

curveValRead, curveValSend = Pipe(duplex=False)

IntersectionRead, IntersectionSend = Pipe(duplex=False)

SignDetRead, SignDetSend = Pipe(duplex=False)

######## LOCALISATION ALGORITHMS ##########

LocalizationRead1, LocalizationSend1 = Pipe(duplex=False)

######## PROCESSES ##########

AshProc = SerialHandlerProcess([ArcShRead], []) #receives the data from

MovCar and sends it to the Nucleo

allProcesses.append(AshProc)

AcamProc = CameraProcess([], [FrameSend1, FrameSend2, FrameSend3,

FrameSend4])

allProcesses.append(AcamProc)

ALaneProc = MainLaneDetectionProcess([FrameRead1], [curveValSend])

allProcesses.append(ALaneProc)

AInterProc = IntersectionDetectionProcess([FrameRead2],

21

[IntersectionSend])

allProcesses.append(AInterProc)

ASignProc = SignDetectionProcess([FrameRead3],[SignDetSend])

allProcesses.append(ASignProc)

AtrajProc = RaceTrajectoryProcessSO([FrameRead4], [LocalizationSend1])

allProcesses.append(AtrajProc)

AEnvProc = EnvironmentalProcessSO([LocalizationRead1], [])

allProcesses.append(AEnvProc)

AcurveValProc = MovCarProcess([curveValRead, IntersectionRead,

SignDetRead, LocalizationRead1],[ArcShSend])

allProcesses.append(AcurveValProc)

The example above shows an extract from the main.py file: a pipe is defined for
every process which has to receive the frame from the camera as input (in this case,
there are 4 processes which require it) and also, a pipe for localisation and serial han-
dler data is defined. Then, every process is declared, in the first brackets the inputs
are listed, whereas in the second brackets the outputs are listed. CameraProcess has
no input but only the frames to send as output, whereas SerialHandlerProcess has
the output of MovCarProcess as input and no output. It is important to highlight
that not all the processes receive as input the camera frames: EnvironmentalPro-
cess, responsible for sending the encountered objects to the server, receives as input
the coordinates of the car from the RaceTrajectoryProcess, whereas MovCarProcess
receives the inputs from the other processes (car localisation and objects detection)
and sends the commands to SerialHandlerProcess.

3.3 Server Communication and UDP

The car has an indoor localisation system which detects and sends by UDP con-
nection the relative position of itself and other cars present on the race track.

The UDP communications describe the programming for the User Datagram
Protocol provided in the TCP/IP to transfer datagrams over a network. Informally,
it is called ”Send and Pray” because it has no handshake, session or reliability,
meaning it does not verify that the protocol has reached the destination before it
sends data. UDP has a 8-byte header that includes source port, destination port,
packet length (header and data) and a simple (and optional) checksum.

The checksum, when utilized, provides limited integrity to the UDP header and
data since it is simply an algorithm-based number created before data is sent to
ensure data is intact once received: this procedure is done by running the same
algorithm in the received data and comparing the number before and after the
reception.

UDP avoids the overhead associated with connections, error checks and retrans-
mission of missing data, it is suitable for real-time or high performance applications
that does not require data verification or correction. In fact, the IP network delivers
datagrams that can be up to 65507 bytes in length but does not guarantee that they
are delivered at the destination and in the same order as they are sent. Moreover,
UDP provides pre-process addressing through ports where IP provides addressing
of a specific host. The process is described as follows:

22

1. These ports are 16-bit values used to distinguish different senders and receivers
at each end point.

2. Each UDP datagram is addressed to a specific port at the end host and in-
coming UDP datagrams are demultiplexed between the recipients.

The advantage of using UDP is the absence of retransmission delay, meaning it
is fast and suitable for broadcast. The disadvantage regards no guarantee of packets
ordering, no verification of the readiness of the receiving computer and no protection
against duplicate packets. Anyway, UDP is often used for streaming-type devices
such as lidar sensors, cameras and radars since there is no reason to resend data if
it is not received. Moreover, due to high data rates, resending past and corrupted
data would slow things down tremendously. A comparison between TCP and UDP
is given by Figure 12.

Figure 12: Comparison between TCP and UDP protocols.

The connection between the car and the server is validated by means of the API
communication, which ensures the reading of the car given ID together with a
certain port responsible for the communication of the coordinates of all the moving
obstacles. An API communication is a type of Application Programming Interface
which adds communication channels to a particular software. It allows two pieces
of software hosted on the cloud to connect to each other and transfer information.

An example of the UDP protocol used inside the project is given by a file re-
sponsible for reading the position of the car in real time (position listener.py).

import sys

sys.path.insert(0,’.’)

import socket

import json

from complexDealer import ComplexDecoder

23

class PositionListener:

"""PositionListener aims to receive all message from the server.

"""

def __init__(self, server_data, streamPipe):

self.__server_data = server_data

self.__streamP_pipe = streamPipe

self.socket_pos = None

self.__running = True

def stop(self):

self.__running = False

try :

self.__server_data.socket.close()

except: pass

def listen(self):

while self.__running:

if self.__server_data.socket != None:

try:

msg = self.__server_data.socket.recv(4096)

msg = msg.decode(’utf-8’)

if(msg == ’’):

print(’Invalid message. Connection can be interrupted.’)

break

coor = json.loads((msg),cls=ComplexDecoder)

self.__streamP_pipe.send(coor)

except socket.timeout:

print("position listener socket_timeout")

the socket was created successfully, but it wasn’t received

any message. Car with id wasn’t detected before.

pass

except Exception as e:

self.__server_data.socket.close()

self.__server_data.socket = None

print("Receiving position data from server " +

str(self.__server_data.serverip) + " failed with error: "

+ str(e))

self.__server_data.serverip = None

break

self.__server_data.is_new_server = False

self.__server_data.socket = None

self.__server_data.serverip = None

Similarly to the Process object, the class PositionListener is composed by
the main functions init , stop and listen. In this case, the variables of
interest are server data, streamPipe and socket.

A network socket is a software structure within a node of a computer network that
serves as an endpoint for sending and receiving data. The structure and properties of
a socket are defined by an API for the networking architecture. Sockets are created

24

only during the lifetime of a process of an application running in the node.
The function listen performs the following steps:

1. After the subscription on the server, it is listening the messages on the previ-
ously initialized socket.

2. It decodes the messages and saves in ’coor’ member parameter.

3. Each new message will update the ’coor’ parameter and the server will send the
result (car coordinates) of last detection. If the car has been detected by the
localization system, the client receives the same coordinates and timestamp.

The UDP socket programming fundamentals are represented by Figure 13.

Figure 13: Fundamentals of UDP socket programming.

25

4 Technology behind autonomous driving

Autonomous vehicles (AVs) use ”sense-plan-act” design. AVs are equipped by sen-
sors like camera, LiDar, ultrasonic, radar and infrared to sense the environment (Fig.
14). A range of sensors in combination can be complementary and compensate for
any weaknesses in any other sensor.

Sensors can degrade their performance because of their limitations and inade-
quacies. Errors are due to drifting errors, surface irregularities, wheel slipping, low
sensor resolution or uncertainty in readings. Better is the accuracy of the sensors
fewer are the limitations and higher are the costs [6].

To plan, autonomous cars can use a blend of the Global Positioning System
(GPS) and Inertial Navigation Systems (INS) so that the vehicle can localize its
position. Both GPS and INS can have some uncertainties and they can be inaccurate,
for this reason it is important to take into account their limits. After simulations
and field testing, important parameters are set and control is managed through
rule-based controllers. The drawback is the difficulty to generalize new scenarios, the
huge time required to tune the parameters and the non linear behavior of driving that
imply linearization of the vehicle model. Technology advanced and the number of
sensors can be reduced with the adoption of Convolutional Neural Networks (CNNs)
provided by raw camera inputs.

Increasing the use of deep learning, it allows to developers to teach to vehicle the
system to accomplish and the control achieves numerous benefits such as the ability
to adapt to new scenarios [7], [8].

Figure 14: Autonomous Driving Sensors

4.1 Sensors

Sensors are devices, module, machine or subsystem that produce an output signal
for the aim of sensing events or changes in the environment. They are vital because

26

they grant to autonomous vehicles to plan their routes securely, supervise their sur-
roundings and identify oncoming impediments. Thanks to sensors, the automation
system combines automotive software and hardware and it takes full control of the
vehicle [9]. Sensors are divided into:

• Internal state, or proprioceptive sensors: they detect internal data wheel load,
angular rate, force and stores the dynamical state of a dynamic system. Some
examples of internal states are: encoders, Inertial Measurement Units (IMU),
gyroscopes.

• Exteroceptive sensors, or external state sensors: they receive and collect infor-
mation from the system environment. For instance, they perceive information
about light intensity or distance measurements. An example of exteroceptive
sensors are cameras, LiDar, ultrasonic sensors, radar.

They can have two kind of nature:

• Passive: they obtain energy from environment and they provide the corre-
sponding output. An example of passive senors are the vision cameras.

• Active: they release energy into the environment and they detect the correl-
ative environmental feedback. An example of active senors are LiDAR and
radar sensors.

They are also split according to the wireless technology transmission range: short-
range, medium-range and long-range.

4.2 Detailed study about sensors

This section analyzes benefits and drawbacks of a generic sensor that can be used
in autonomous vehicle and it goes in deep into the ones used for the Bosch Future
Mobility challenge.

4.2.1 Camera

In autonomous vehicle, cameras are the most used technology to analyze the sur-
rounding. They generate images of the approaching environment, such as a pedes-
trian crosswalk, and they can operate in different weather condition. They can be
classified as:

• Visible cameras (VIS): similar to human eyes, they capture wavelengths that
ranges from 400 to 780 nm [10]. Combination of more visible cameras let stereo
vision to be performed. They are used for their ability to distinguish colors,
high resolution and low cost in spite of their low estimated depth accuracy.

• Infrared cameras (IR): they work with infrared wavelengths ranging between
780 nm and 1 mm and they can be extended to the near-infrared (NIR: 780
nm–3 mm) and the mid-infrared (MIR:3–50 mm; known as thermal cameras)
[10]. They are less susceptible to lighting or to weather conditions than visible
camera so they can overcome situation where VIS fails and they can detect
warm bodies as pedestrians.

27

Bosch gives to the team the Raspberry camera board: Pi Camera module v2.1
(Fig. 15). It is a high quality 8 megapixel camera provided with fixed focus lens. It
is capable of 3280 x 2464 pixel static images and it supports 1080p30, 720p60 and
640x480p90 video using the Sony IMX219PQ image sensor.

Team used camera for lane keeping, intersection detection, traffic sign detection,
traffic light detection and object detection.

Figure 15: Pi Camera module v2.1

4.2.2 LiDar

The first attempt of the light detection and rangig (LiDar) was developed in the
1930s to measure air density profiles in the upper atmosphere by defining the scat-
tering intensity from searchlight beams. In 1938, for the first time, pulses of light
were utilised to calculate cloud base heights. In 1953, the acronym LiDar was in-
troduced by Middleton and Spilhaus. The modern LiDar technology was born with
the invention of the laser in 1960. The first commercial LiDar had 2000 to 25,000
pulses per second for topographic mapping applications [11].

Lidar is a distant sensing technique that targets a surface or an object with a
laser light pulses with lengths of a few to several hundred nanoseconds and particular
spectral properties. The equipment measures the time between emission and recep-
tion of the light pulses permiting distance estimate. It has airborne, terrestrial and
mobile applications. The point cloud data (PCD) are the data that LiDar produces
and they give object intensity information. Several systems make use of a beam
expander to decrease the divergence of the light beam. LiDars use mirror telescope
at the receiver end with lenses that can be used for small-aperture receivers. Emit-
ter and receiver optics can have different geometric arrangement that determine the
degree of signal compression. With short distance, only a part of the LiDar return
signal is measured. Changing distance, beam diameter, shape, divergences this part
changes.

There are several kind of LiDar, some of them are explained below:

• Elastic-backscatter LiDar: in its more manageable form it applies one laser re-
leasing a single wavelength and one detector calculating the radiation flexibly

28

backscattered from the atmospheric particles. For example, it gives informa-
tion about cloud layers.

• Differential-absorption LiDar (DIAL): it detects atmospheric gases with high
sensitivity. It uses single broad absorption bands or absorption lines of gases.
Differential-absorption LiDar generates two wavelengths where one is absorbed
more powerfully than the other to determine the differential molecular absorp-
tion coefficient. The number concentration of the gas atoms can be evaluated
if the differential absorption cross section is known. For instance, DIAL is
used for the observation of water vapor. In general, differential-absorption
LiDar must consider the Doppler broadening of the backscattered light and
it requires spectral purity of the emitted laser light and high stability. DIAL
uses the temperature-dependent strength of absorption lines of oxygen for tem-
perature profiling where the differential absorption cross section is measured
knowing the number concentration of the gas. If more than just a few nanome-
ters spectrally separate the two DIAL wavelengths, differential backscattering
is transformed into the bigger error source.

• Doppler LiDar: Direct-detection Doppler LiDars apply narrow-band spectral
filters to evaluate frequency shift and it exploits the molecular backscatter
component. Coherent Doppler LiDar detects the radiation backscattered from
the moving particles and it emits single-mode single-frequency laser radiation.
A local oscillator radiation is mixed generating the return signal for the sensor.
Heterodyne detection is used to determine the sign of the shift.

In autonomous vehicle, LiDar is generally based on TOF, a pulsed laser that emits
pulse singularly or continuously to the target triggering instantaneously internal
timing circuit. To obtain the distance of the object, the calculator evaluates the time
∆t between the laser pulse getting to the target and coming back to the receiver
from the objective. Once the target is aimed, the laser emits light; at the same
time, the emitting signal collected by the sampler allows the counter to counting
and the clock oscillator loads the clock pulse to the counter. The echo signal gets
into the receiving optical system, it is amplified by the amplifier, the photoelectric
detector converts it into electric pulse and the counter stops counting. The clock
pulse number entering the counter is calculated to get the target distance [12].

The challenge allows hardware improvement, team Politron decided to add a
TF-Luna LiDAR Module. It measures the distance and it regularly releases near
infrared modulated waves using Time of Flight (ToF) principle (Fig 16). In order
to procure the relative distance D:

D =
c

2

1

2πf
∆ϕ (1)

where f is the clock pulse frequency and c is the speed of light, time is measured
by evaluating the phase difference ∆ϕ between original and reflection waves.

29

Figure 16: Schematic of ToF principle

In the competition, LiDar was mounted on the front of the car (Fig. 17), it
detected the in-front obstacles like pedestrians and other vehicles.

Figure 17: LiDar mounted on the car of the team.

The algorithm perform a data fusion in MovCarProcess between ObjectDetec-
tionProcess, the process that detects the objects in the environment and LiDar data.
The team performed a sort of classification of the detected objects also according to
the distance perceived by the LiDar: for example, pedestrians are detected with 20
cm distance, so whenever the LiDar detects an object within 20 cm, it stops since it
is a pedestrian, whereas other cars on track are detected within 75 cm distance, since
the car has to consider a safe margin in order to perform the overtake manoeuvre.

In the following code, it is shown what was explained before:

30

def _lidarMeasure(self,):

try:

ser = serial.Serial("/dev/serial0", 115200, timeout=0) # mini

UART serial device

if ser.isOpen() == False:

ser.open() # open serial port if not open

distance, strength, temperature = self.read_tfluna_data(ser)

if distance < 20.0: #cm

flag_distance = 99

elif distance >= 20.0 and distance < 30.0: #cm

flag_distance = 2

elif distance >= 30.0 and distance < 75.0: #cm

flag_distance = 1

else:

flag_distance = 0

ser.close()

return flag_distance

except Exception as e:

print(’Lidar communication error’)

print(e)

def read_tfluna_data(self, ser):

while True:

counter = ser.in_waiting # count the number of bytes of the

serial port

if counter > 8:

bytes_serial = ser.read(9) # read 9 bytes

ser.reset_input_buffer() # reset buffer

if bytes_serial[0] == 0x59 and bytes_serial[1] == 0x59: #

check first two bytes

distance = bytes_serial[2] + bytes_serial[3] * 256 #

distance in next two bytes

strength = bytes_serial[4] + bytes_serial[5] * 256 #

signal strength in next two bytes

temperature = bytes_serial[6] + bytes_serial[7] * 256 #

temp in next two bytes

temperature = (temperature / 8.0) - 256.0 # temp scaling

and offset

return distance, strength, temperature

4.2.3 Ultrasonic

Ultrasonic sensor or sonar is an electronic device composed by two main components:

1. transmitter: it uses piezoelectric crystals to emit sound.

2. receiver: it acquires the reflected sound.

Ultrasonic sensors make use of echolocation to determine the proximity of an object
in the range of the sensor. It measures also the distance of the object evaluating

31

the time for the emitted signal to come back. It emits ultrasonic sound waves and
transforms the reflected sound into an electrical signal. They lose accuracy due to
noise interference or its blind zone at close proximity. Ultrasonic sensors can be
divided into:

• Ultrasonic proximity sensors: they emit and receive sound waves at high fre-
quency. They are composed by a sonic transducer which allows for alternate
transmission and reception of sound waves. They sense the presence of any
object, regardless of its material or surface properties. They are used for
intermediate distances object detection and they can work in bad operating
conditions.

• Diffuse or Reflective sensors: when they detect an object, the ultrasonic waves
comes back to the sensor. Any sound reflecting, stationary object is used
as a reflector. The ultrasonic is in not active state as long as the measured
propagation time matches to the distance from the sensor to the reflector. The
device is in active state when an object comes within the sensing distance and
the propagation time changes. They have the transmitter and receiver box in
the same housing [13].

For automotive application, ultrasonic sensors transmit sonic waves in the range
of 40 kHz to 70 kHz, a range out of the audible one for humans which does not
hurt human ears. This is important because, for example, parking sensors of the car
can produce more than 100 dB of sound pressure [13]. The majority of ultrasonic
sensors are based on ToF principle, already explained in the section dedicated to
LiDar sensors.

A second hardware improvement for the team was to add an HC-SR04 Ultrasonic
Sensor Module. It utilizes sonar to determine the distance to an object trough the
following formula:

D = ((S) ∗ time)/2

where D=Distance to an object, S=speed of sound in the air and time=time between
the transmission and reception of the signal

This sensor reads from 2cm to 400cm (0.8inch to 157inch) with an accuracy of
0.3cm (0.1inches). It is composed by an ultrasonic transmitter, which emits a high-
frequency sound (40 kHz), and receiver, which receives the reflected sound (echo),
modules and it has the following sensor features [14]:

• Power Supply :+5V DC

• Quiescent Current : <2mA

• Working Current: 15mA

• Effectual Angle: <15°

• Ranging Distance : 2cm – 400 cm

• Resolution : 0.3 cm

• Measuring Angle: 30 degree

• Trigger Input Pulse width: 10uS TTL pulse

• Echo Output Signal: TTL pulse proportional to the distance range

32

In competition, the HC-SR04 Ultrasonic Sensor Module is mounted on the right
side of the car, it detects the right-hand side obstacles like a vehicle and correctly
performing the overtake and parking manoeuvre.

Figure 18: Overtake manoeuvre

The overtake manoeuvre is accomplished by both the LiDAR and the ultrasonic
sensor. Manoeuvre triggered when the followings are satisfied at the same time:

• Dashed line.

• Obstacle (car) in front detected by the LiDAR.

Then, it changes the lane and perform the overtake checking the lateral obstacle
presence, and finally ends the manoeuvre when the lateral sensor returns no obstacles
anymore (Fig. 18). The parking manoeuvre will be analysed in the Parking chapter.

In the following code it is shown the overtake manoeuvre:

elif OVERTAKE and OVERTAKE_FLAG == True:

cnt = cnt + 1

if cnt == 1:

print("Starting OVERTAKE manoeuvre")

if HIGHWAY:

self.Car_detected = 1

if self.Ultrasonic == 1:

The car has been detected by the sensor, I’m

overtaking

car_detected = car_detected + 1

elif self.Ultrasonic == 0 and car_detected > 7 and not

END_OVERTAKE:

If I’ve detected the car and now it’s gone, I can

end the overtake manouvre

END_OVERTAKE = True

for x in range(6):

if (vec_s[x] == 1):

END_OVERTAKE = False

break

Starting overtake:

if cnt < 25:

valore = 2001 # turning left

33

Overtaking:

elif cnt >= 25 and cnt < 1000 and not END_OVERTAKE:

valore = self.curveVal # overtaking, going straight on

elif cnt >= 25 and cnt < 1000 and END_OVERTAKE:

cnt = 1000 # I "reset" the same counter with a much

higher value to end the manouvre in order to use

an unique counter

valore = self.curveVal

Ending overtake:

elif cnt >= 1000 and cnt < 1025:

valore = 2002 # turning right

elif cnt >= 1025:

valore = self.curveVal

print("OVERTAKE manoeuvre finished")

cnt = 0

car_detected = 0

OVERTAKE = False

END_OVERTAKE = False

NORMAL = True

else:

print("Overtake error")

4.2.4 ATM103 Encoder

An encoder in digital electronics is a device that measure rotation. Connected to
appropriate electronic circuits and with appropriate mechanical connections, the en-
coder is capable of measuring angular displacements, rectilinear and circular move-
ments as well as rotational speeds and accelerations. There are various techniques
for motion detection: angular capacitive, magnetic, inductive and photoelectric. It
is often used for parking in order that car can understand when it is parallel to the
street and finish the manoeuvre. Team Politron did not use it.

4.2.5 IMU Sensor

IMU sensor is a device to measure orientation, gravidational force and velocity.
At the beginning, technology consisted of sensor accelerometers to evaluate the
inertial acceleration and gyroscopes to measure angular rotation. In this case, IMU
technology has six DOF because both sensors have three degrees of freedom. Each
sensor can measure angles and in order to obtain more accurate output, both data
can be calibrated.

Nowadays, IMU technology progresses with the magnetometer that evaluates
the bearing magnetic direction improving the reading of gyroscope. In this case,
IMU technology has 9 DOF because also magnetometer sensor has three degrees
of freedom. It is used for dynamic orientation calculation in the short and long
run when less drift errors occur but in the environment ferromagnetic metal can be
present and the measurement could be altered by magnetic field disturbances [15].

Bosch provides to teams the smart IMU sensor BNO055 (Fig. 19). It is a
System in Package (SiP) solution that integrates a triaxial 14-bit accelerometer, an
accurate close-loop triaxial 16-bit gyroscope, a triaxial geomagnetic sensor and a
32-bit microcontroller running the BSX3.0 FusionLib software. It is really small [1].

34

Figure 19: IMU sensor BNO055

Team Politron used IMU sensor module to detect the orientation of the car and
thus to correct its positioning inside the lane. When the code is run, the car must
be positioned perfectly straight in the lane in order to set the angle 0 of the IMU in
such a way that the sensor can detect the right angulation of the car respect to the
street and it can correct its position. Beside this, it is used to detect the ramp due
to the change in the inclination level.

Below an example of code used in competition:

def IMU_initialization(self):

self.SETTINGS_FILE = "RTIMULib"

print("Using settings file " + self.SETTINGS_FILE + ".ini")

if not os.path.exists(self.SETTINGS_FILE + ".ini"):

print("Settings file does not exist, will be created")

self.s = RTIMU.Settings(self.SETTINGS_FILE)

self.imu = RTIMU.RTIMU(self.s)

print("IMU Name: " + self.imu.IMUName())

if (not self.imu.IMUInit()):

print("IMU Init Failed")

self.stop()

sys.exit(1)

else:

print("IMU Init Succeeded")

self.imu.setSlerpPower(0.02)

self.imu.setGyroEnable(True)

self.imu.setAccelEnable(True)

self.imu.setCompassEnable(True)

self.poll_interval = self.imu.IMUGetPollInterval()

print("Recommended Poll Interval: %dmS\n" % self.poll_interval)

def _IMUMeasure(self,):

if self.imu.IMURead():

self.data = self.imu.getIMUData()

self.fusionPose = self.data["fusionPose"]

self.accel = self.data["accel"]

self.roll = math.degrees(self.fusionPose[0])

self.pitch = math.degrees(self.fusionPose[1])

self.yaw = math.degrees(self.fusionPose[2])

self.accelx = self.accel[0]

35

self.accely = self.accel[1]

self.accelz = self.accel[2]

print("roll = %f pitch = %f yaw = %f" % (self.roll, self.pitch,

self.yaw))

def _straight_correction(self, starting_yaw):

Retreive the orientation:

if starting_yaw <= 45 or starting_yaw >= 315:

yaw_ref = self.yaw_ref_N

elif starting_yaw >= 135 and starting_yaw <= 225:

yaw_ref = self.yaw_ref_S

elif starting_yaw > 45 and starting_yaw < 135:

yaw_ref = self.yaw_ref_E

elif starting_yaw > 225 and starting_yaw < 315:

yaw_ref = self.yaw_ref_O

Keep the straight manoeuvre close to the reference

if yaw_ref == 0:

if self.Yaw > 5:

valore = 15

elif self.Yaw < 355:

valore = -15

else:

valore = 2000

else:

if self.Yaw < yaw_ref - 5:

valore = 15 #turn right

elif self.Yaw > yaw_ref + 5:

valore = -15 #turn left

else:

valore = 2000 #go straight

return valore

4.3 Localisation

In autonomous driving, the vehicle must be provided of sensors, actuators, com-
puters and algorithms as localization, planning, control and perception are needed.
Localisation system gives the geographic position of the vehicle using the Global
Positioning System, dead reckoning and roadway maps [16]. For a correct function
of the autonomous operation, planning, control and perception system need location
from localization system. Localization system must consider also particular weather
and driving conditions such as obscured road, fog, etc. The global positioning sys-
tem (GPS) has multipath, low accuracy and signal blockage issues but it is cheap
and for this reason it is often used to provide solutions for localisation. To have a
robust localisation system, two solution can be considered:

1. Development of advanced sensors (LiDAR, camera or RADAR etc.).

2. Fusing sensors data with network infrastructure.

To access to various vehicle information such as traffic information, close cars or
weather, the vehicle can connect through V2V (vehicle-to-vehicle) system that is

36

composed by wireless connectivity embedded to enhance robustness to tackle the
line-of-sight problems and localization accuracy [17]. The vehicle-to-vehicle tech-
nique takes sensor information from neighbouring vehicles into consideration to es-
timate location forming a network (VANET) of vehicles where each car is informed
about location and movement of neighbouring vehicles. This methods is very cheap
respect to LiDar measurement based systems. More vehicles cooperatively calibrate
their position and identify nearby vehicles through their GPS receivers and ranging
sensors. The system works until surrounding vehicles do not or cannot participate in
the system. Each car obtains some pieces of positioning information different degrees
of accuracy and combine them to minimize estimation errors [18]. The accuracy of
localization of V2V cooperative localization system is determined by the number of
the shared position and vehicle connected in the surrounding area (Fig.20). Same
reasoning can be done to receive information from infrastructure or sensor nearby
the car with V2I and V2S techniques.

Figure 20: V2V real life representation

4.3.1 Localisation and mapping for BFMC2022

The vehicle used for the competition has an indoor localization system with the
goal to detect and to transmit the relative position for each car model on the track.
Localization system has three principal components:

• Server: it evaluates the position of the cars collecting data from camera client
and it sends their coordination to the Robot clients.

• Robot: it receives the coordination of cars from server.

• Camera client: it sends the position of the car to the server.

And it has the following specific:

• The frequency of the given messages is 3-4 Hz.

• The error of the system is about ∼ 10 cm.

37

• The delay of the received messages is ∼ 0.4 seconds.

• The last detected position is stored and served. If the position is older then 2
seconds it is discarded.

To navigate in the track, a digital map in XML format is provided. It contains
two important information: nodes and connections (Fig.21). The distance between
two nodes is approximately 40 cm, every node is positioned in the middle of the lane
and it has three features: Id, X coordinate and Y coordinate.

Figure 21: Table of Node and Connections [1].

The relation between two nodes is described in the connection where the start
node id, the end node id and the type of connection (straight or dotted road: TRUE
or FALSE) data are given. In the intersection case, there will be three or four points
with the same coordinates, each one for a different direction [1].

In the competition, the networkX library is used. It is a package for the cre-
ation, manipulation and study of the structure, dynamics, and functions of complex
networks, including [19]:

• Data structures for graphs, digraphs, and multigraphs.

• Many standard graph algorithms.

• Network structure and analysis measures.

• Generators for classic graphs, random graphs, and synthetic networks.

• Nodes can be ”anything” (e.g., text, images, XML records).

• Edges can hold arbitrary data (e.g., weights, time-series).

• Open source 3-clause BSD license.

• Well tested with over 90% code coverage.

• Additional benefits from Python include fast prototyping, easy to teach, and
multi-platform.

38

Figure 22: Competition track with nodes and connections [1].

To save and use the map (Fig. 22), it is useful to download it in the same folder
where the localisation codes are present. The function saveGraph() is created to
accomplish the goal. Furthermore, to read and to process the attributes of the nodes
it is needed an iteration through them, extracting the data from them.

def _saveGraph(self):

’’’Function created to read .XML file, save node and connection

information’’’

x = []

y = []

line = []

source_node = []

bool_val = 0

read graph

G = nx.read_graphml(’./src/data/Competition_track.graphml’)

pos = nx.circular_layout(G)

for (node, node_pos) in pos.items():

node_pos[0] = G.nodes[node][’x’]

x.append(node_pos[0])

node_pos[1] = G.nodes[node][’y’]

y.append(node_pos[1])

print graph

plt.clf()

nx.draw_networkx(G, pos)

plt.show()

print(’\n’)

save edges

for n, data in G.edges.items():

if data[’dotted’]:

39

bool_val = 1

line.append(bool_val)

else:

bool_val = 0

line.append(bool_val)

save nodes

for node in G.nodes(data=True):

source_node.append(node[0])

return x, y, line, source_node

Moreover, there is a module that gets the position and orientation of the car
itself on the map from the localization system in the following way. At first, on the
broadcast port ’12345’, server streams its TCP port, client sends its own ID and it
connects to the server on the communicated TCP port. Afterwards, server responses
with an encrypted message with its private key that client translates with the server
public key and it checks that the messages are equal. If they are, the connection
between server and client begins and the server shares its position and orientation
on the map in order to validate the position on the track at each moment. Bosch
released a code where the vehicle uses application programming interface (APIs) for
communications. API is a type of software interface that more computers use to
communicate with each other. It validates and connects server with the car given
ID where the server gives back the position of the car on the track. Localisation
system scripts are created to intercept all data, they are created by Bosch engineers
[20] and they are adapted to the requirement of the project:

• Locsys.py script: it is a thread that receives from the Trajectory process (that
will be explained in the section dedicated at the trajectory planning) the id
number, the server public key and beacon. GPS Tracker connects to the server
and it receives coordinate of the car on the race. In ‘setup state’, it creates
the connection with server. In ‘listening state’, it receives the messages.

def listen(self):

""" Listening the coordination of car"""

coord = self.__position_listener.listen() # listen messages

from server and receive coordinates

while self.__running:

if self.__server_data.socket != None:

try:

self.q1.put(coord)

except Exception as e:

print(’Errore in thread LOCSYS’)

• Server data.py script: it is the first function called in locsys.py. It needs
server connection and it includes parameters of the server that are updated in
ServerListener and SubscribeToServer classes.

• Server listener.py script: its goal is to find the server. It stands until a broad-
cast message that contains a port where the server listens the car client arrives
on predefined protocol. It ends the listening when the message is correct and
a subscriber object tries to connect on server. It has a function find() that

40

creates a socket with predefined parameters, where it waits the broadcast mes-
sages (a port number where the server listen the car clients that it converts to
an integer value).

def find(self):

try:

#: create a datagram socket for intramachine use

s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

#: used to associate socket with a specific network interface

and port number

s.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)

s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

s.bind((’’, self.__server_data.beacon_port))

#: Listen for server broadcast

s.settimeout(1)

while ((not self.__server_data.is_new_server) and

self.__running):

try:

waiting for the beacon.

Receive data from the socket. Buffer size = 1500 bytes

data, server_ip = s.recvfrom(1500, 0)

convert the received message

subscriptionPort = int(data.decode("utf-8"))

actualize the parameter of server_data with new IP

address and communication port

self.__server_data.serverip = server_ip[0]

self.__server_data.carSubscriptionPort = subscriptionPort

self.__server_data.is_new_server = True

• Server subscriber.py script: it has the role to subscribe on the server, to cre-
ate a connection with the parameter of server data.py and to verify the server
authentication. It sends the identification number of car after creating a con-
nection and the server authorizes it through two messages. The authentication
is based on the public key of server stored in ‘publickey.pem’ file. It has a func-
tion subscribe() that connects to the server and send the car id. After sending
the car identification number it checks the server authentication.

def subscribe(self):

try:

creating and initializing the socket

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.connect((self.__server_data.serverip,

self.__server_data.carSubscriptionPort))

sock.settimeout(2.0)

sending car id to the server

msg = "{}".format(self.__carId).encode(’utf-8’)

41

sock.sendall(msg)

receiving response from the server

msg = sock.recv(4096)

receiving signature from the server

signature = sock.recv(4096)

verifying server authentication

is_signature_correct = verify_data(self.__public_key, msg,

signature)

Validate server

if msg == ’’ or signature == ’’ or not

is_signature_correct:

msg = "Authentication not ok".encode(’utf-8’)

sock.sendall(msg)

raise Exception("Authentication failed")

msg = "Authentication ok".encode(’utf-8’)

sock.sendall(msg)

self.__server_data.socket = sock

self.__server_data.is_new_server = False

• Position listener.py script: it aims to receive all messages from the server.
After the subscription on the server, the function listen() tunes the messages
on the previously initialed socket, it decodes and stores it in ‘coor’ member
parameter that is update by each new message. The server transmits acquired
coordinate and timestamp of the detected car.

def listen(self):

while self.__running:

if self.__server_data.socket != None:

try:

msg = self.__server_data.socket.recv(4096)

msg = msg.decode(’utf-8’)

if(msg == ’’):

print(’Invalid message. Connection can be

interrupted.’)

break

coor = json.loads((msg),cls=ComplexDecoder)

self.__streamP_pipe.put(coor)

self.__server_data.is_new_server = False

self.__server_data.socket = None

self.__server_data.serverip = None

4.3.2 V2X for BFMC2022

At the competition, teams shared the MAC of the car computer because all the cars
must connect to the LAN of Bosch in order to have V2X communication.

42

• Semaphores

Connecting to the LAN, cars receive each semaphore broadcast messages with
a frequency of 10 Hz, including semaphore ID and its state:

0 1 2

RED YELLOW GREEN

Table 1: Semaphore State [1]

In Bosch location, traffic lights stream, using UDP protocol, their position
on the network in the 5007 port and they also broadcast their state. The
thread called trafficlights.py gets all the data and saves it as its attributes. As
long as the thread runs, for each semaphore ID received from the socket the
corresponding state (color) is associated. On the race track, four semaphore
were present: one at the starting point and the other three placed in the
intersections. Team Politron creates a process called TrafficStateProcess that
uses the trafficlights.py thread, in fact it imports the file to receive the state
of 4 semaphores on the track. It defines the position of each semaphore a
priori known and the color lists as red, yellow and green. It receives the team
car coordinate from localisation and if the car is near to a specific semaphore
it sends its state. Below, runListener function in the TrafficStateProcess is
shown:

def runListener(self,inPs,outPs):

try:

Semaphore colors list

colors = [’red’,’yellow’,’green’]

Create listener object

Semaphores = trafficlights.trafficlights()

Start the listener

Semaphores.start()

while True:

Receive car coordinates

coora = inPs[0].recv()

Save car coordinates (KitKat is the car name)

x_KitKat = coora[’coor’][0].real

y_KitKat = coora[’coor’][0].imag

Sempahore position on the track

x_semaforo1 = 3.05

y_semaforo1 = 11.41

x_semaforo2 = 2.1

y_semaforo2 = 10.83

x_semaforo3 = 0.82

y_semaforo3 = 14.29

x_semaforo4 = 3.63

y_semaforo4 = 10.4

43

Sending the state for each semaphore

if abs(x_KitKat-x_semaforo1) <= 0.4 and

abs(y_KitKat-y_semaforo1) <= 0.4:

self.SemaphoreState = Semaphores.q1.get()

elif abs(x_KitKat-x_semaforo2) <= 0.4 and

abs(y_KitKat-y_semaforo2) <= 0.4:

self.SemaphoreState = Semaphores.q2.get()

elif abs(x_KitKat-x_semaforo3) <= 0.4 and

abs(y_KitKat-y_semaforo3) <= 0.4:

self.SemaphoreState = Semaphores.q3.get()

elif abs(x_KitKat-x_semaforo4) <= 0.4 and

abs(y_KitKat-y_semaforo4) <= 0.4:

self.SemaphoreState = Semaphores.q4.get()

else:

self.SemaphoreState = 100

outPs[0].send(self.SemaphoreState)

Stop the listener

Semaphores.stop()

• Environmental server

At the location, cars sent to local environmental server at TCP port ”23456”
the position and the id of the encountered obstacle (as shown in table 4.3.2).
In order to connect to the server, cars sent its own ID and the ID crypted
with the car private key in its turn decrypted by server with corresponding
public key. If the ID’s corresponded, the client was validated by the server.
Consequently, server replied with encrypted messages with own private key
that client decrypted with the server public key and it checked if the message
were the same. If it were, connection was initiated.

ID Obstacle

1 TS - Stop

2 TS - Priority

3 TS - Parking

4 TS - Crosswalk

5 TS - Highway entrance

6 TS - Highway exit

7 TS - Round About

8 TS - One way road

9 Traffic light

10 Static car on road

11 Static car on parking

12 Pedestrian on crosswalk

13 Pedestrian on road

14 Roadblock

15 Bumpy road

Table 2: ID assignment for each obstacle [1]

44

As in localization, environmental module is composed by several scripts in
order to reach its goal. Firstly, environmental.py script is a thread that con-
nects on the server and sends messages, which incorporates the coordinate of
the encountered obstacles on the racetrack. It creates the connection with
server in the setup state, moreover in streaming state it sends the messages
to the server. Then serverdata.py script is a class that contains parameters
updates in ServerListener and SubscribeToServer classes. The former class
goal is to find the server. It stands until a broadcast message that contains a
port where the server listens the car client arrives on predefined protocol. It
ends the listening when the message is correct and a subscriber object tries to
connect on server. It has a function find() that creates a socket with prede-
fined parameters, where it waits the broadcast messages (a port number where
the server listen the car clients that it converts to an integer value). Subscri-
beToServer class has the role to subscribe on the server, to create a connection
with the parameter of server data.py and to verify the server authentication.
It sends the identification number of car after creating a connection and the
server authorizes it through two messages. The authentication is based on
the public key of server stored in ‘publickey.pem’ file. It has a function sub-
scribe() that connects to the server and send the car id. After sending the
car identification number it checks the server authentication. Instead, envi-
ronmental streamer.py aims to send all message to the server.

The author created a process called EnviromentalProcess that receives car co-
ordinates from localisation system and send object coordinate (enviromental)
to the server. It defines a vector flag in order not to send several times coor-
dinates and ID required by the competition, once is sufficient. It acquires sign
flag when in TrafficSignProcess a sign is detected, it obtains object flag when
ObjectDetectionProcess senses a specific object. Sign flag and object flag is
equal to a specific number according to the sign or object that the car detects.
Making the use of environmental.py, it connects to the server and send ID and
coordinates of the obstacle encountered. Below, environmental function of
the EnviromentalProcess is shown:

def _environmental(self, inPs,gpsStS_env):

try:

vector_flag=[0,0,0,0,0,0,0,0,0,0,0,0,0,0]

while True:

try:

#Receive from localisation car coordinate

coora = inPs[0].recv()

Save coordinate

x_gps = coora[’coor’][0].real

y_gps = coora[’coor’][0].imag

Receives sign from image processing

sign = inPs[1].recv()

Receives object from object detection

object_ = inPs[2].recv()

Dynamic car in nearby

car_in_m = inPs[3].recv()

if sign == 1 and vector_flag[0] == 0:

#STOP

vector_flag[0] = vector_flag[0] +1

45

a = {’obstacle_id’: sign, "x": x_gps,

"y":y_gps}

gpsStS_env.send(a)

if sign == 111 and vector_flag[0] == 0:

#STOP

vector_flag[13] = vector_flag[13] +1

a = {’obstacle_id’: 1, "x": x_gps,

"y":y_gps}

gpsStS_env.send(a)

if sign == 2 and vector_flag[1] == 0:

#PRIORIY

vector_flag[1] = vector_flag[1] +1

a = {’obstacle_id’: sign, "x": x_gps,

"y":y_gps}

gpsStS_env.send(a)

if sign == 3 and vector_flag[2] == 0:

#PARKING

vector_flag[2] = vector_flag[2] +1

a = {’obstacle_id’: sign, "x": x_gps,

"y":y_gps}

gpsStS_env.send(a)

if sign == 4 and vector_flag[3] == 0:

#CROSSWALK

vector_flag[3] = vector_flag[3] +1

a = {’obstacle_id’: sign, "x": x_gps,

"y":y_gps}

gpsStS_env.send(a)

• V2V

The car of each team receives ID and position of dynamic obstacle through Wi-
Fi UDP messages with 4 Hz of frequency and 10 cm radius of accuracy. The
thread called vehicletovehicle.py gets all the data and saves it as its attributes.
As long as the thread runs, it receives indoor positioning and orientation of
the moving obstacle/car that are streaming their position into the network.
The author wrote a process called V2VProcess that receives from server the
coordinates of a car different from the car of the team and it receives team car
coordinates from localisation system. If they are near to each other, it sends
the other car coordinates to MovCarProcess. MovCarProcess is the process
that sends commands to the Nucleo board. V2VProcess was not used in the
competition because there was too much process in parallel and the car had
problem to compute all the task at the same time. Below, runListenerV2V
function of the V2VProcess is shown:

def _runListenerV2V(self,inPs,outPs):

try:

start_time = time.time()

vehicle = vehicletovehicle.vehicletovehicle()

Start the listener

vehicle.start()

46

while True:

Receives team car coordinate

coora = inPs[0].recv()

x_KitKat = coora[’coor’][0].real

y_KitKat = coora[’coor’][0].imag

#Receive the other car coordinates

self.coorV2V = vehicle.pos

x_V2V = self.coorV2V[’coor’][0].real

y_V2V = self.coorV2V[’coor’][0].imag

Sending V2V position

if math.sqrt(math.pow((x_V2V - x_KitKat),2)

+ math.pow((y_V2V - y_KitKat),2)) >= 0

and math.sqrt(math.pow((x_V2V -

x_KitKat),2) + math.pow((y_V2V -

y_KitKat),2)) <= 1:

outPs[0].send(self.coorV2V)

else:

NO=0

outPs[0].send(NO)

47

5 Trajectory and path planning

5.1 Trajectory planning

An autonomous vehicle must move from a starting point to a final one. To do
that, a predefined path according to the vehicle or path limits is needed. Cars have
limited maneuvers due to limited steering angle or inaccessibility of certain places,
such as smaller streets or streets with work in progress. The first step is to plan
a trajectory that designs a predefined path, that starts from point A and ends in
point B, according to a defined time law. It is important to underline the difference
between path and trajectory: the former is the place of points that the vehicle has
to follow to reach the end point (a purely geometric meaning), the latter is a path
in which a timing law is specified [21]. Trajectory planning (Fig.23) consists in
path planning and movement planning based on velocity, time and kinematics. A
trajectory planner is a tool that computes a set of reference values, inputs of the
control block, useful to bring the autonomous plant to the desired configuration
given the desired kinematic, dynamic constraints and the path. Trajectory planner
must react quickly to an environment change, it must plan a feasible motion for the
autonomous vehicle, it has to control all kind of car behaviour [22].

Figure 23: Example of trajectories in autonomous vehicle [2].

5.1.1 Trajectory planning used in competition

The process that deals with trajectory planning is called RaceTrajectoryProcess.
Its principal function is called localisation() and its first task is to saves the graph
calling the function saveGraph(). As explained in localisation section, the team car,
in order to understand its position, saves the graph that represents the competition
track. Furthemore, it receives the coordinates of the car from localisation system and
the function understandPosition() reports the exact position of the car in the track,
according to the GPS uncertainties (at most 10 cm). Subsequently, the process calls
the function behaviour(), to instruct the car on which operation it has to execute.
Finally, it stores the position of the traffic signs, of which the teams is already aware,
and it sends the car position near to the stored traffic sign to EnvironmentalProcess.

• localisation script is presented below:

def _localisation(self, inPs, q1, outPs):

try:

localisation of the car in the track

self.x, self.y, self.line, self.source_node =

self._saveGraph()

while True:

48

stamps= inPs[0].recv()

car’s coordinate

coora = q1.get()

x_gps = coora[’coor’][0].real

y_gps = coora[’coor’][0].imag

#car understands its position on the track

self._understandPosition(x_gps, y_gps)

#car chooses its behaviour

self._behaviour()

#Sign on the track

self._thereIsASign()

outPs[0].send(self.behaviour) # send behaviour to

movecar

outPs[1].send(self.sign) #send sign already saved on

the map to MovCarProcess

outPs[2].send(self.sign) #send sign already saved on

the map to EnvironmentalProcess

outPs[3].send(coora)

outPs[4].send(coora)

• The understandPosition() function receives the coordinates of the car and
compares them with the coordinates of the nodes present in the graph. In
order to determine the nearest node the calculation of the euclidean distance
from each of them is evaluated:

distance =
p
(xn − xc)2 + (yn − yc)2

and the smallest one is selected. In the formula, xc and yc are the coordinates
of the car instead xn and yn the coordinate of the node. Nodes has no a
precise numerical order in the graph, thus team decided to iterate, each time,
to all the node present in the graph to be sure to select the right one. In the
competition, the car had no problem to understand its position and it was
relatively fast to fulfill its goal.

def _understandPosition(self, x_gps, y_gps):

’’’This function verifies that the car coordinates coming from

server correspond to a position in the XML file’’’

cnt = 0

dist_min = 10000

ID_min = 0

x_min=0

y_min=0

for cnt, val in enumerate(self.x):

the statement if is used to find the corresponding node

of the car position with some uncertainty

dist = math.sqrt((x_gps-self.x[cnt])**2 + (y_gps -

self.y[cnt])**2)

if dist < dist_min:

dist_min = dist

x_min = self.x[cnt]

y_min= self.y[cnt]

ID_min = self.source_node[cnt]

self.current_node = ID_min

49

self.current_line = self.line[cnt]

• The behaviour() function is the focal function for the trajectory planning.
Knowing the map and the path (Fig.24) selected for the competition, a be-
havior that the car has to execute is set at each node; four vectors formed by
nodes that help to understand the behaviour are established.

Figure 24: Competition track with the designed path.

The team selected a path to follow in order that the car accomplish the required
tasks. If the car is in correspondence of a certain node, the script sends the
behaviour to MovCarProcess. For instance, if the car is in the node number
’68’, it turns right because this node is in the vector that establishes that the
car must turn right.

def _behaviour(self):

’’’ According to the position it send ’go straight’, ’right’,

’left’ or ’normal’ state. From 1-30 the car is in the

intersection, otherwise no start at node 39, end at 111’’’

self.current_node = int(self.current_node)

list_gostraight=[77,32,63,72,81]

list_right=[68,16,25]

list_left=[2,62]

list_final = [131,132,133,126,125,124]

self.behaviour=0 #normal state: lane keeping

for i in list_gostraight:

if self.current_node==i:

go straight

self.behaviour = 2

for j in list_right:

50

if self.current_node ==j:

turn right

self.behaviour = 4

for z in list_left:

if self.current_node == z:

turn left

self.behaviour = 3

for l in list_final:

if self.current_node == l:

end

self.behaviour = 5

if self.behaviour == 0 and ((313 < self.current_node and

self.current_node < 336) or (375 < self.current_node and

self.current_node < 398) or (256 < self.current_node and

self.current_node < 263) or (201 < self.current_node and

self.current_node < 208)):

NORMAL_DASHED

self.behaviour = 1

• The thereIsASign() function saves the already known position of the signs,
then this information will be sent to MovCarProcess and to Environmantal-
Process.

def _thereIsASign(self):

self.sign= -1

node_STOP = [90,91,54,53, 94, 95, 68, 67]

node_PRIORITY = [196,197,63,62,148,149]

node_PARKING = [175,176,167,168]

node_CROSSWALK = [80,92,81,97]

node_HIGHWAY_ENTRANCE = [49,308,309,50,425]

node_HIGHWAY_EXIT = [338,339,340,345,346]

node_ROUNDABOUT = [341,342,343,344]

node_ONE_WAY_ROAD = [7,8]

for i in node_STOP:

if self.current_node == i:

self.sign = 1

for j in node_PRIORITY:

if self.current_node == j:

self.sign = 2

for k in node_PARKING:

if self.current_node == k:

self.sign = 3

for l in node_CROSSWALK:

if self.current_node == l:

self.sign = 4

for m in node_HIGHWAY_ENTRANCE:

if self.current_node == m:

self.sign = 5

for n in node_HIGHWAY_EXIT:

if self.current_node == n:

self.sign = 6

for o in node_ROUNDABOUT:

if self.current_node == o:

51

self.sign = 7

for p in node_ONE_WAY_ROAD:

if self.current_node == p:

self.sign = 8

When ’go straight’, ’right’, ’left’ or ’normal’ state is sent to MovCarProcess, the car
must follow specific commands selected in the process:

• Go straight: the car must go straight at the intersection using IMU sensor
that can correct car position.

• Right: the car has to turn right at the intersection. Knowing the size and the
angulation of the curve, the steering angle is set and the car turns right until
the IMU sensor detects 90° respect to the position in which the manoeuvre
starts (Fig.25).

• Left: the car must turn left at the intersection. Knowing the size and the
angulation of the curve, the steering angle is set and the car turns left until
the IMU sensor detects 270° respect to the position in which the manoeuvre
starts (Fig.25).

• Normal: the car keeps the lane.

Figure 25: Car of the team at intersection with grades of IMU sensor specified.

During the competition two challenges were afforded: a technical one has to be
executed in 10 minutes, instead the speed challenge in 3 minutes. For the former,
the car had a velocity of 0.12 m/s if the steering angle was less than 25° otherwise
0.10 m/s. For the latter, the car had a velocity of 0.20 m/s if the steering angle was
less than 45° otherwise 0.10 m/s. The decision of the team was based on the ability
of the car to recognize the lane and act consequently; increasing speed, the car had
difficulties to act enough rapidly.

52

5.2 Path planning

Path planning is a fundamental matter for autonomous vehicle because it has a huge
effect on driver and passengers safety, it is the core of the autonomous vehicle abilities
and obstacle avoidance [23]. The main goal of path planning is to find the shortest
feasible path preventing uncertainties, taking into account vehicle dynamics, obstacle
maneuvering capabilities, and traffic rules (Fig. 26); it is often based on a digital
map and it selects the route that the car must take according to the surrounding
environment. A proper planning leads to an increase in system efficiency and a
reduction in power consumption [24]. Path planning can be global and local: the
former gives the constraint to the local path planning so that it can achieve an
optimal path based on a given requirements, for example a path to reduce pollution,
to decrease the amount of time and less dangerous manoeuvres. If the planned path
cannot be accomplished, the global planning must relaunch to get a new feasible
path. Local path planning uses on-board sensor to understand the surroundings
information in order to locate the position of the vehicle and obstacles on the map:
in this way it can smoothly plan the best path from the starting node to target one
[25].

Figure 26: Example of different paths on the same map.

Path Planning consists of three main steps:

1. It generates a sequence of manoeuvres from the initial position to the final
one.

2. It chooses the direction to follow at each movement.

3. It has to forward planning.

There are multiple tests in planning a path for an autonomous vehicle such as
creating an offline map that represents the real world in order to help the system
to understand the position of the vehicle; planning rapidly a path through points of
the map, taking into account obstacles position; finding the appropriate acceleration
and direction in order to get the more comfortable and safer path [23].

Path planning can be classified in the following way [26]:

53

• Space configuration: the surrounded environmental of the vehicle is divided in
cells and, if they are collision-free, a solution is applied. The goal is to discover
the right configuration of linked cells avoiding collision. These algorithms are
fast but they often give unfeasible solutions.

• Path-finders: these algorithms are based on the search of a path among nodes
in a graph. The main purpose is to find the optimal path in terms of cost
function. Cost function must take in consideration the possibility of collisions
and it has to take into account the comfort of a path. The main path-finders
algorithms are: A*, Dijkstra used when the environment is previously known
and Rapidly Random Tree (RRT) employed in unknown environments.

• Attractive and repulsive forces: they creates artificial forces that direct the car
to the desired destination avoiding obstacles or specific areas. The sum of the
forces is the state of the motion of the vehicle. The solution of this algorithm
can be unstable or the algorithm can block into local minima.

• Curves: in this algorithm, a set of parametric or/and semi-parametric curves
are generated according to the state of the car, the road and specific mathe-
matical form. It can be applied through two main methods: point-free scheme
and point-to-point scheme. In the former, the vehicle is able to follow a feasi-
ble kinematic/dynamic trajectory with a given legal maneuver thanks to the
generated curves, otherwise in the latter, curves are used to arrange the tra-
jectory between two points. Curves represent a local path and it is difficult to
generate them in a correct way.

• Artificial intelligence schemes: they use human reasoning to solve problems and
there are many techniques to find an optimal path. Accurate mathematical
models are not needed.

In this project, path-finders algorithms are studied in deep. They can be divided in
more categories [3]:

• Sampling-Based Algorithms (Fig. 27): they are divided into active and passive
algorithms. The former have a processing procedure to produce the best pos-
sible path. LaValle [3] proposed the Rapidly exploring Random Tree (RRT)
method that is an example of active sampling-based: it is able to solve multi-
DOF problems and it handles path planning of different kinematic constraints;
RRT algorithms are based on rapidly search of the configuration space to cre-
ate the path that connects the initial node to the final node. The passive
algorithms are the combination of search algorithms to collect the best feasi-
ble path among all suitable paths existing in the net map. They make use of
the Probabilistic Road Maps (PRM) approach which is a technique that con-
nects some sampled points in the map to create a graph composed by feasible
routes with collision-free edges. PRM uses graph search algorithm to select
the optimal path.

54

Figure 27: Sampling based approaches with the main advantages and drawbacks [3]

• Node-Based Optimal Algorithms (Fig. 28): they find an optimal path when in-
formation sensing and processing procedures are already executed and they are
based on a principle of exploring among a set of cells in the map. Node-Based
Optimal algorithms are divided into two categories: grid search algorithms
and graph search algorithms. The former consists of mapping the environ-
ment that is divided into a set of cells in which a cell represents the presence
of an object at a specific position; if it gives evidence form information, like
the mass or the size value, it is called evidential occupancy grid. The graph
search algorithms is useful to complete the first type. Dijkstra algorithm is a
dynamic programming while A* is the heuristic search algorithms; they are
both improved by searching with the least cost.

55

Figure 28: Node-based optimal approaches with the main advantages and drawbacks
[3]

In particular, Dijkstra algorithm and A* are implemented in the following sub-
sections.

5.2.1 Dijkstra Algorithm

In 1959, Edsger Dijkstra proposed the Dijkstra algorithm. It is a shortest path
algorithm with a simple implementation and it easily adapts to the topology change.
Dijkstra algorithm uses directed graph to search the shortest path from the source
node to a destination one in a map with a unique source. At first, it processes the
shortest path from source to adjacent nodes, the latter is called intermediate node.
Next, it repeats the action between intermediate node to its adjacent nodes. It
finishes the iteration when every node is traversed. It finds the shortest path from
source node to any destination node in the path because it is composed by sub-
path that are the shortest paths from the source node and the terminal node. The
Dijkstra algorithm can be considered as a kind of greedy algorithm and considering
the assumptions [27]:

• G=(V,E) is a direct graph where V=set of nodes and E=set of arcs.

• n nodes of G=(V,E).

• e arcs of G=(V,E).

• Dist(X) is the distance between the source node v to X node.

• W is the weight of the arc.

• S is the set of nodes inside a shortest path.

• V - S denotes the set of nodes that is not inside in any shortest path.

The algorithm can be described as follows (Fig.29):

1. It selects the source node v and set S = S ∪ v .

56

2. In U = V - S, it finds the node i that is adjacent to the source node v and
has smallest weight W of the arc that connects the two nodes. The node i is
added into S.

3. Using i as the new intermediate node, it repeats the step 2 to find the adjacent
node j. If j can be reached in different way, for instance, from source node
to node j directly or passing through other nodes, the minimum distance is
selected and stored as Dist(j).

4. Step 2 and step 3 are repeated n-1 times in order to obtain the shortest path.

Figure 29: Flowchart of Dijkstra algorithm

The author created a process called PathPlanning to implement the Dijkstra
algorithm. It is composed by the main function pathplanning() that calls the func-
tion saveGraph() to save the graph of the map and it finds the shortest path. Next,
it receives the position of the car from localisation system and it calls the function
understandPosition() to understand the position of the car in the track. At the
end, it uses the function behaviourPath() to comprehend the right behaviour of the
car and it sends it to MovCarProcess.

• pathplanning() script is presented below:

def _pathplanning(self, inPs, outPs):

try:

self.x, self.y, self.line, self.source_node =

self._saveGraph()

while True:

coora = q1.get() # car’s coordinate

x_gps = coora[’coor’][0].real

y_gps = coora[’coor’][0].imag

self._understandPosition(x_gps, y_gps)

57

self._behaviourPath()

outPs[0].send(self.behaviour) # send behaviour to

Movecar

except Exception as e:

print(’Error in PathPlanning process’)

• The saveGraph() function is similar to the one explained in the section ded-
icated to the localisation and mapping for BFMC2022. It aims to save the
graph of the map. In order to read and to process the attributes of the nodes
it is needed an iteration and an extraction of the data from them. In this pro-
cess, it uses the NetworkX library, particularly networkx.dijkstra path function
that uses Dijkstra’s method to compute the shortest weighted path between
two nodes in a graph. The NetworkX is a Python package for the creation,
manipulation and study of the structure, dynamics, and functions of complex
networks [19].

def _saveGraph(self):

’’’Function created to read .XML file, save node and

connection information’’’

read graph

G = nx.read_graphml(’./src/data/Competition_track.graphml’)

pos = nx.circular_layout(G)

for (node, node_pos) in pos.items():

node_pos[0] = G.nodes[node][’x’]

x.append(node_pos[0])

node_pos[1] = G.nodes[node][’y’]

y.append(node_pos[1])

print graph

plt.clf()

nx.draw_networkx(G, pos)

plt.show()

print(’\n’)

save edges

for n, data in G.edges.items():

if data[’dotted’]:

bool_val = 1

line.append(bool_val)

else:

bool_val = 0

line.append(bool_val)

save nodes

for node in G.nodes(data=True):

source_node.append(node[0])

find the shortest path

self.node_distance = nx.dijkstra_path_length(G, ’112’,

’18’)

self.Path = nx.dijkstra_path(G, ’112’, ’18’)

58

return x, y, line, source_node

• The understandPosition() function, as in trajectory section, receives the co-
ordinates of the car and compares them with the coordinates of the nodes
present in the graph. To determine the nearest node the calculation of the
euclidean distance from each of them is evaluated and the smallest one is se-
lected. Nodes has no a precise numerical order in the graph, thus team decided
to iterate, each time, to all the node present in the graph to be sure to select
the right one. In the competition, the car had no problem to understand its
position and it was relatively fast to fulfill its goal.

• In the behaviourPath() function vectors with source node and target nodes
that describe the possible behaviour are stored. Knowing the map, it is possible
to know the feasible manoeuvres from a specific node. Being aware of the path,
if the car is in the position of an ”input” node, for example ”RIGHT INPUT”
node, and the destination node after the intersection is on the right and it is
stored in ”RIGHT OUTPUT”, the behaviour of the car is to turn right and it
is sent to MovCarProcess. The for statement is used to iterate over the path
vector in order to understand which behaviour the car must follow.

def _behaviourPath(self):

RIGHT_INPUT = [77, 79, 43, 41, 52, 374, 50, 68, 70, 2, 4,

6, 34, 32, 59, 61, 15, 16, 25, 23]

RIGHT_OUTPUT = [78, 80, 44, 42, 53, 51, 51, 69, 71, 3, 5,

7, 35, 33, 60, 62, 17, 17, 26, 25]

LEFT_INPUT = [79, 81, 45, 43, 54, 52, 70, 72, 2, 4, 6, 34,

36, 61, 63, 25, 27]

LEFT_OUTPUT = [76, 78, 42, 40, 51, 49, 67, 69, 7, 1, 3,

31, 33, 58, 60, 22, 24]

STRAIGHT_INPUT = [77, 81, 45, 41, 54, 50, 68, 72, 2, 6, 4,

36, 32, 59, 63, 14, 18, 27, 23]

STRAIGHT_OUTPUT = [80, 76, 40, 44, 49, 53, 71, 67, 5, 1,

7, 31, 35, 62, 54, 17, 13, 22, 26]

self.current_node = int(self.current_node)

for D in self.node_distance:

if D < (self.node_distance-2):

if self.current_node==self.Path[D]:

for i in RIGHT_INPUT:

if self.Path[D]==RIGHT_INPUT(i) and

self.Path[D+2]==RIGHT_OUTPUT(i):

#turn right

self.behaviour = 4

elif self.Path[D] == LEFT_INPUT(i) and

self.Path[D + 2] == LEFT_OUTPUT(i):

#turn left

self.behaviour = 3

elif self.Path[D] == STRAIGHT_INPUT(i) and

self.Path[D + 2] == STRAIGHT_OUTPUT(i):

#go straight

if ((313 < self.current_node and

self.current_node < 336) or (375 <

59

self.current_node and

self.current_node < 398) or (256 <

self.current_node and

self.current_node < 263) or (201 <

self.current_node and

self.current_node < 208)):

#dotted lane

self.behaviour = 1

else:

#continuous lane

self.behaviour = 2

else:

#lane keeping

self.behaviour = 2

elif D==self.node_distance-1:

continue

elif D==self.node_distance:

if self.current_node == self.Path[D]:

#stop

self.behaviour = 5

else:

#lane keeping

self.behaviour = 2

5.2.2 A* Algorithm

A* algorithm is an extension of Dijkstra algorithm and, in static network, it is
the most efficient approach finding the briefest path. A* algorithm has numerous
benefits, for example it has small search space or fast convergence. A* algorithm
is based on graph search method where a grid map represents the environment.
Traditional A* algorithm finds a path that avoids collisions respecting car limits and
constraints when the car structure and the position of obstacles are known. The path
in autonomous vehicle must be comfortable, real-time and reliable, which means the
path planning must consider a trade-off between constraints in real time and model
completeness [28]. A* algorithm is a search problem therefore it is important to
set the start node, the end node and all the state that the car can bump into;
another significant actions are to check the code, take into consideration all possible
manoeuvres and set movement costs (edges in the graph). It uses a function that
indicates the directions to follow and it finishes when the end point is reached.
According to the function, if a step is reasonable the algorithm performs it. Heuristic
methods are the base of the A* algorithm that finds the best possible solution. A* is
a kind of algorithm that is guaranteed to find a solution if the solution exist thanks
to the property of completeness. At each node, A* evaluates the cost f(n), where n
being the neighboring node, to move to all adjacent nodes and it travels to the one
with the smallest value of f(n). The f(n) can be calculated in the following way:

f(n) = g(n) + h(n) (2)

where g(n) is the value of the briefest path from the initial node to node n and h(n) is
the heuristic approximation of the node value. Each node is marked with its relative
optimal f(n) value in order to reconstruct any path. To find the optimal solution, it
is strictly needed a correct heuristic value h(n); this determines the efficiency of A*.

60

Heuristic function have two properties [29]:

• Admissibility: the property to not overestimate the real distance between n
and the final node in a given heuristic function h(n). For each node, the
following formula is employed:

h(n) ≤ h∗(n) (3)

where h∗(n) is the real distance between n and the target node. Nevertheless,
if the heuristic function overvalues the real distance by a value smaller than
d, it can be defined as a solution with accuracy equal to d.

• Consistency: the property to evaluate an estimate smaller or equal to the
predicted distance between the final n and any given adjoint added to the
estimated cost to reach that specific neighbour:

c(n,m) + h(m) ≥ h(n) (4)

where c(n,m) is the distance between nodes n and m. The path for every node
is optimal if h(n) is consistent and this denotes that the function is optimal.

The author created a process called PathPlanningAStar to implement A* algo-
rithm. It is composed by the main function pathplanning() that calls the function
saveGraph() to save the nodes of the graph of the map and it saves the edges in
different dictionaries. Dictionary in Python is similar to a map and it consists of
key-value pairs; dictionaries are joined in graph create() function and the complete
graph is stored in a fixed variable in Graph() function. After that, the function
a star algorithm() computes the A* algorithm. Next, it receives the position of
the car from localisation system and calls the function understandPosition() to
acknowledge the position of the car in the track. At the end, it uses the func-
tion behaviourPath() to figure out the right behaviour of the car and sends it to
MovCarProcess.

• pathplanning() script is presented below:

def _pathplanning(self, inPs, outPs):

try:

self.x, self.y = self._saveGraph()

#join the lists

adjacency_list_u = self.graph_create(self.adjacency_list1,

self.adjacency_list_supp1, self.adjacency_list_supp2,

self.adjacency_list_supp3, self.adjacency_list_supp4,

self.adjacency_list_85)

#create the graph

adjacency_list_u=self.Graph(adjacency_list_u)

print(adjacency_list_u)

#a* algorithm

self.Path = self.a_star_algorithm(’77’,’127’)

while True:

coora = q1.get() # car’s coordinate

x_gps = coora[’coor’][0].real

y_gps = coora[’coor’][0].imag

self._understandPosition(x_gps, y_gps)

61

self._behaviourPath()

outPs[0].send(self.behaviour) # send behaviour to

MovCarProcess

• The saveGraph() function reads the known graph and saves all the nodes.
Edges are saved in different dictionaries in order to avoid overwriting problems:
for example, if node ’2’ has two destination nodes as ’5’ and ’7’, the code
subscribes the first with the second destination node, therefore only node ’2’
with destination ’7’ is saved.

def _saveGraph(self):

read graph

G = nx.read_graphml(’./Competition_track.graphml’)

pos = nx.circular_layout(G)

for (node, node_pos) in pos.items():

node_pos[0] = G.nodes[node][’x’]

x.append(node_pos[0])

node_pos[1] = G.nodes[node][’y’]

y.append(node_pos[1])

plt.clf()

nx.draw_networkx(G, pos)

plt.show()

print(’\n’)

j = 0

for n, data in G.edges.items():

j = n[0]

if j == ’9’:

self.adjacency_list_supp1[j] = [(’3’, ’1’)]

self.adjacency_list_supp2[j] = [(’5’, ’1’)]

self.adjacency_list_supp3[j] = [(’7’, ’1’)]

self.adjacency_list_supp4[j] = [(’8’, ’1’)]

elif j == ’10’:

self.adjacency_list_supp1[j] = [(’7’, ’1’)]

self.adjacency_list_supp2[j] = [(’5’, ’1’)]

self.adjacency_list_supp3[j] = [(’8’, ’1’)]

self.adjacency_list_supp4[j] = [(’1’, ’1’)]

elif j == ’11’:

self.adjacency_list_supp1[j] = [(’7’, ’1’)]

self.adjacency_list_supp2[j] = [(’8’, ’1’)]

self.adjacency_list_supp3[j] = [(’1’, ’1’)]

self.adjacency_list_supp4[j] = [(’3’, ’1’)]

elif j == ’12’:

self.adjacency_list_supp1[j] = [(’1’, ’1’)]

self.adjacency_list_supp2[j] = [(’3’, ’1’)]

self.adjacency_list_supp3[j] = [(’5’, ’1’)]

#...

elif j == ’304’:

self.adjacency_list_supp1[j] = [(’305’, ’1’)]

self.adjacency_list_supp2[j] = [(’343’, ’1’)]

elif j == ’306’:

self.adjacency_list_supp1[j] = [(’231’, ’1’)]

self.adjacency_list_supp2[j] = [(’307’, ’1’)]

elif j == ’468’:

self.adjacency_list_supp1[j] = [(’243’, ’1’)]

62

self.adjacency_list_supp2[j] = [(’468’, ’1’)]

elif j == ’315’:

self.adjacency_list_supp1[j] = [(’316’, ’1’)]

self.adjacency_list_supp2[j] = [(’426’, ’1’)]

else:

self.adjacency_list1[j] = [(n[1], ’1’)]

self.adjacency_list_85[’85’] = [(None, ’1’)]

return x, y

• The graph create() function joins the dictionaries created in saveGraph() us-
ing the ’ChainMap’ container, member of module ’collection’, which is com-
posed by different containers. A container is an object that is employed to
store and provides the access to distinct objects. The ’ChainMap’ container
encapsulates several dictionaries into one.

def graph_create(self):

adjacency_list_t = ChainMap(self.adjacency_list1,

self.adjacency_list_supp1, self.adjacency_list_supp2,

self.adjacency_list_supp3, self.adjacency_list_supp4)

adjacency_list = {**adjacency_list_t, **self.adjacency_list_85}

return adjacency_list

• The Graph() function sets the dictionary fixed in the class.

• The a star algorithm() function is presented below. Two lists are set in order
to understand if the neighbors have been inspected or not: the list g contains
all distances among nodes and the list parents contains an adjacency map of
all nodes. A while statement is used to find the lowest value of f(n) and, to
find the path, it takes into consideration the first edges of each node; if it does
not find a path, it tries again with different edges. The if statement is used
to understand if the path is ended. In each node, open list and closed list are
updated.

def a_star_algorithm(self, start_node, stop_node):

open_list is a list of nodes which have been visited, but

who’s neighbors

haven’t all been inspected, starts off with the start node

closed_list is a list of nodes which have been visited

and who’s neighbors have been inspected

open_list = set([start_node])

closed_list = set([])

g contains current distances from start_node to all other

nodes

the default value (if it’s not found in the map) is +infinity

g = {}

g[start_node] = 0

parents contains an adjacency map of all nodes

parents = {}

63

parents[start_node] = start_node

while len(open_list) > 0:

n = None

find a node with the lowest value of f() - evaluation

function

for v in open_list:

if n == None or g[v] + self.h(v) < g[n] + self.h(n):

n = v

if n == None:

print(’Path does not exist! I will try again’)

adjacency_list =

self.self.graph_create(adjacency_list1,

adjacency_list_supp2, adjacency_list_supp1,

adjacency_list_supp3, adjacency_list_supp4,

adjacency_list_85)

path = self.Graph(adjacency_list)

self.Path = self.a_star_algorithm(start_node, stop_node)

return

if the current node is the stop_node

then we begin reconstructin the path from it to the

start_node

if n == stop_node:

reconst_path = []

self.Distanza_nodi=0

while parents[n] != n:

reconst_path.append(n)

self.Distanza_nodi=self.Distanza_nodi+1

n = parents[n]

reconst_path.append(start_node)

reconst_path.reverse()

self.Path=reconst_path

print(’Path found: {}’.format(reconst_path))

return reconst_path

for all neighbors of the current node do

for (m, weight) in self.get_neighbors(n):

if the current node isn’t in both open_list and

closed_list

add it to open_list and note n as it’s parent

if m not in open_list and m not in closed_list:

open_list.add(m)

parents[m] = n

g[m] = g[n] + int(weight)

otherwise, check if it’s quicker to first visit n,

then m

64

and if it is, update parent data and g data

and if the node was in the closed_list, move it to

open_list

else:

if g[m] > g[n] + weight:

g[m] = g[n] + weight

parents[m] = n

if m in closed_list:

closed_list.remove(m)

open_list.add(m)

remove n from the open_list, and add it to closed_list

because all of his neighbors were inspected

open_list.remove(n)

closed_list.add(n)

print(’Path does not exist!’)

return None

• In the behaviourPath() function, as in Dijkstra algorithm, vectors with source
node and target nodes that describe the possible behaviour are stored. Being
aware of the map, it is possible to know the feasible manoeuvres from a specific
node. Taking into account the path, if the car is in the position of an ”input”
node, for example ”RIGHT INPUT” node, and the destination node after
the intersection is on the right and it is stored in ”RIGHT OUTPUT”, the
behaviour of the car is to turn right and it is sent to MovCarProcess. The for
statement is used to iterate over the path vector in order to understand which
behaviour the car must follow.

65

6 Parking

One of the most difficult tasks, in particular for amateur drivers, is parking (Fig.30).
Finding a parking spot, enough large for the drivers’ car, is one of the most common
issues in cities or popular places. Once a suitable parking spot is found, the second
problem is to start a manoeuvre avoiding collisions and trying to be fast in order
to not disturb the surrounding traffic. Autonomous Parking system helps drivers to
shirk these problems and autonomous vehicle to fulfill the manoeuvre. Nowadays,
parking systems use cameras and sensors to analyze the surrounding environment
and to compute the manoeuvre. Automatic parking has several different control
approaches available [30]: some approaches use specific servers that mark occupied
parking spot, others use camera to analyze the spot and understand if there is a
vehicle inside, others use LiDar sensors or Ultrasonic sensors. Due to high customer
value, car companies are developing parking systems and functions related to parking
assistance [31].

Figure 30: Autonomous parking.

6.1 Parking at competition

Parking is an important task in autonomous vehicle and it is mandatory for the
competition. In the track is known that parking station is composed by two parking
spots. The car is provided by a camera, a pointing LiDar and Ultrasonic sensor and
the team exploits them to accomplish the parking manoeuvre.

Team Politron develops Parking manoeuvre (Fig.31) in MovCarProcess making
use of SignDetectionProcess. SignDetectionProcess exploits the camera to recognize
traffic sign and sends a flag that corresponds to the detected sign. Parking manoeu-
vre starts when SignDetectionProcess detects the parking sign: when the parking
sign is detected, the HC-SR04 is used to evaluate if the first parking spot is empty or
is busy. Next, it scans the right-hand side of the car and saves the obstacle position,
then it starts the manoeuvre depending on it. At the same time, the car uses IMU
sensor to go straight. If the first lot is empty, counters are used to mark the different
steps of the parking manoeuvre:

1. The car places its middle lateral axis perpendicular to the last line delimiting
the parking lot.

66

2. The car steers the wheels and starts the backward motion.

3. The car steers again the wheels to have them straight and to complete the
parking manoeuvre.

4. If the car is not too near to another car, it goes straight in order to reach the
center of the parking spot. If it is too near, LiDar detects it and the car stops.

5. The car starts the backward motion.

6. The car steers the wheels and starts the forward motion.

7. The car steers again the wheels in the other side to go back into the lane.

Figure 31: Autonomous parking in the competition.

If the first parking spot is busy, the car goes straight until HC-SR04 sensor
detects an empty parking spot and immediately after the seven steps written above
are executed.

PARKING MANOUVRE

elif PARKING_MANOEUVRE == True:

cnt = cnt + 1

if cnt == 1:

print("Parking manoeuvre initiating...")

self.CarDetected = 2

actual_yaw = self.Yaw

if cnt <= 10:

#go straight

valore = self._straight_correction(actual_yaw)

elif cnt > 17 and cnt < 27:

first slot is empty, the car is in correspondence of the second

slot, it stops

valore = 999

elif cnt >= 27 and cnt < 60: #diminuito di 10

turn the wheels and it starts backward motion

valore = 1000

elif cnt >= 60 and cnt < 93: #diminuito di 20

turn the wheel to the other side and it starts backward motion

valore = 1001

elif cnt >= 93 and cnt < 130 and not SECOND_PARKING:

#if there is a car in front and the team car is near it must stops

if self.Lidar == 99:

valore = 999

else:

67

#otherwise go straight in order to reach the center of the slot

valore = self._straight_correction(actual_yaw)

elif cnt >= 93 and cnt < 130 and SECOND_PARKING:

if cnt < 100:

#if the first slot in busy, go straight

valore = self._straight_correction(actual_yaw)

else:

valore = 999

elif cnt >= 130 and cnt < 155:

Stop in the parking slot

valore = 999

elif cnt >= 155 and cnt < 170:

Start the backward motion

valore = 1000

elif cnt >= 170 and cnt < 180:

Turn wheel and start forward motion

valore = 2001

elif cnt >= 180:

cnt = 0

#end PARKING manoeuvre

PARKING_MANOEUVRE = False

NORMAL = True

print("Parking manoeuvre completed")

else:

pass

The parking algorithm used in the competition is not general; manoeuvres are set
for the parking spot of the competition track, they are preset knowing the size of
the parking spot. Furthermore, parallel parking is the only one that the car is able
to fulfill.

68

7 Conclusion and future development

This work has dealt with the participation to the Bosch Future Mobility challenge.
It is an international autonomous driving and connectivity competition for bachelor
and master students created by Bosch Romania. Nowadays, self driving is one of the
most discussed topics and it develops faster and faster. Students join the challenge
to learn more about autonomous driving and to develop the concerning algorithms.
The author was member of team Politron and together with the other colleagues of
the team decided to face the challenge. They win the Best New participating Team
award.

This thesis deepens the deployment of a trajectory planning and path planning
system for the autonomous 1:10 scaled vehicle of the competition. To do that,
TF-Luna LiDar sensor and HC-SR04 Ultrasonic Sensor Module were used. In qual-
ifications, the former was able to detect obstacle but it was positioned in the wrong
way, it was pointing to the ground, so the car continuously stops because it detects a
wall that did not exist; instead in finals, the car stops because LiDar laser points on
the road sign post concluding the overtake manoeuvre. HC-SR04 Ultrasonic Sensor
Module, both in qualifications and in finals, had no problem to detect right-side
obstacle.

At competition, the team chose a predefined path that the car must follow to
fulfill all the tasks required. Trajectory planning algorithms were used in the com-
petition and the car followed the chosen path for both the technical and the speed
race as the team expected. Firstly, algorithms saves the graph that corresponds to
the competition track and connecting to the GPS, they were able to understand
the position of the car on the track. Next, the behaviour of the car is set: if the
nodes are in the intersection, the car must accomplish the behavior selected for that
certain node in order to follow the chosen path, otherwise the car must follow the
lane.

Path planning algorithms finds the shortest path using the data from the saved
graph of the competition track. Dijkstra algorithm processes the shortest path from
source to adjacent nodes, the latter is called intermediate node. Next, it repeats the
action between intermediate node to its adjacent nodes. A* algorithm finds a path
that avoids collisions respecting car limits and constraints when the car structure and
the position of obstacles are known. It uses a function that indicates the directions
to follow and it finishes when the end point is reached. According to the function, if
a step is reasonable the algorithm performs it. Heuristic methods are the base of the
A* algorithm that finds the best possible solution. Both Dijkstra and A* algorithm
save the path and connecting to the GPS, the car knows its position on the track
and it is able to fulfill the briefest path.

All things considered, trajectory planning algorithms have demonstrated good
performance during the competition; in spite of this, further improvements can be
made.

Trajectory planning algorithms used in the competition and the path planning
subsequently implemented can be used in the challenge thanks to the server connec-
tion given by Bosch Romania however, they must be adapted to a real GPS to be
applicable in real world with hardware upgrade. Both trajectory and path planning
are based on graphs composed by nodes fundamental to find the path. Manoeuvres
in the intersection are set for the dimension of the track, a very good implementation
is an algorithm that provides a correct behaviour for different kind of intersections.

69

The brain of the car is on the Raspberry Pi, a single board computer whose
performance is not optimal for the required tasks. Moreover, the car is provided
by a fixed PiCamera, a HC-SR04 Ultrasonic Sensor Module and a TF-Luna LiDar
Module. To improve the project, a good idea is to implement a servomotor to
move the camera and have a better visual of the environment and to use a better
performing camera in order to increase accuracy in lane, traffic sign, traffic light
and object detection. Another HC-SR04 Ultrasonic Sensor Module put in front of
the camera can improve the functionality of the pointing LiDar because it has a
bigger radius to sense if an obstacle is approaching, like a pedestrian that wants to
cross the road. Instead of TF-Luna LiDar Module, it can be useful to employ a 360°
LiDar that can improve in a particular way parking manoeuvre.

70

References

[1] “Bosch invented for life,” Documentation. [Online]. Available: https:
//boschfuturemobility.com/documentation-main/

[2] N. Deo and M. M. Trivedi, “Multi-modal trajectory prediction of surround-
ing vehicles with maneuver based lstms,” in 2018 IEEE Intelligent Vehicles
Symposium (IV), 2018, pp. 1179–1184.

[3] S. Abdallaoui, E.-H. Aglzim, A. Chaibet, and A. Kribèche, “Thorough
review analysis of safe control of autonomous vehicles: Path planning and
navigation techniques,” Energies, vol. 15, no. 4, 2022. [Online]. Available:
https://www.mdpi.com/1996-1073/15/4/1358

[4] J. M. Scanlon, K. D. Kusano, T. Daniel, C. Alderson, A. Ogle,
and T. Victor, “Waymo simulated driving behavior in reconstructed
fatal crashes within an autonomous vehicle operating domain.” [Online].
Available: https://storage.googleapis.com/waymo-uploads/files/documents/
Waymo-Simulated-Driving-Behavior-in-Reconstructed-Collisions.pdf

[5] B. Gringer, “History of the autonomous car.” [Online]. Available: https:
//www.titlemax.com/resources/history-of-the-autonomous-car/

[6] J. Fayyad, M. A. Jaradat, D. Gruyer, and H. Najjaran, “Deep
Learning Sensor Fusion for Autonomous Vehicle Perception and Localization:
A Review,” Sensors 20, 2020, no. 15: 4220. [Online]. Available:
https://doi.org/10.3390/s20154220

[7] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A Survey of
Deep Learning Applications to Autonomous Vehicle Control,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 22, 07 January 2020, doi:
10.1109/TITS.2019.2962338.

[8] J. M. Anderson, N. Kalra, K. D. Stanley, P. Sorensen, C. Samaras, and O. A.
Oluwatola, “Autonomous vehicle technology,” RAND Corporation, isbn: 978-
0-8330-8398-2.

[9] H. A. Ignatious, Hesham-El-Sayed, and M. Khan, “An overview of
sensors in Autonomous Vehicles,” Elsevier B.V, 2021. [Online]. Available:
www.sciencedirect.com

[10] Vargas, Jorge, S. Alsweiss, O. Toker, R. Razdan, , and J. Santos,
“An Overview of Autonomous Vehicles Sensors and Their Vulnerability to
Weather Conditions,” Sensors 21, 2021, no. 16: 5397. [Online]. Available:
https://doi.org/10.3390/s21165397

[11] U. Wandinger, “Introduction to Lidar. In: Weitkamp, C. (eds) Lidar. Springer
Series in Optical Sciences,” Springer, New York, NY, vol. 102, 2005, isbn: 978-
0-387-40075-4. [Online]. Available: https://doi.org/10.1007/0-387-25101-4 1

[12] J. Liu, Q. Sun, Z. Fan, and Y. Jia, “Tof lidar development in autonomous
vehicle,” in 2018 IEEE 3rd Optoelectronics Global Conference (OGC), 2018,
pp. 185–190, doi: 10.1109/OGC.2018.8529992.

71

https://boschfuturemobility.com/documentation-main/
https://boschfuturemobility.com/documentation-main/
https://www.mdpi.com/1996-1073/15/4/1358
https://storage.googleapis.com/waymo-uploads/files/documents/Waymo-Simulated-Driving-Behavior-in-Reconstructed-Collisions.pdf
https://storage.googleapis.com/waymo-uploads/files/documents/Waymo-Simulated-Driving-Behavior-in-Reconstructed-Collisions.pdf
https://www.titlemax.com/resources/history-of-the-autonomous-car/
https://www.titlemax.com/resources/history-of-the-autonomous-car/
https://doi.org/10.3390/s20154220
www.sciencedirect.com
https://doi.org/10.3390/s21165397
https://doi.org/10.1007/0-387-25101-4_1

[13] B. S. Lim, S. L. Keoh, and V. L. L. Thing, “Autonomous vehicle ultrasonic
sensor vulnerability and impact assessment,” in 2018 IEEE 4th World Fo-
rum on Internet of Things (WF-IoT), 2018, pp. 231–236, doi: 10.1109/WF-
IoT.2018.8355132.

[14] “Complete Guide for Ultrasonic Sensor HC-SR04 with Ar-
duino.” [Online]. Available: https://randomnerdtutorials.com/
complete-guide-for-ultrasonic-sensor-hc-sr04/

[15] N. Ahmad, R. A. R. Ghazilla, , and N. M. Khairi, “Reviews on Various Inertial
Measurement Unit (IMU) Sensor Applications,” International Journal of Signal
Processing Systems, vol. 1, no. 2, 2013.

[16] K. Jo, J. Kim, D. Kim, C. Jang, and M. Sunwoo, “Development of autonomous
car—part i: Distributed system architecture and development process,” IEEE
Transactions on Industrial Electronics, vol. 61, no. 12, pp. 7131–7140, 2014,
doi: 10.1109/TIE.2014.2321342.

[17] R. C. Shit and S. Sharma, “Localization for autonomous vehicle: Analysis of
importance of iot network localization for autonomous vehicle applications,” in
2018 International Conference on Applied Electromagnetics, Signal Processing
and Communication (AESPC), vol. 1, 2018, pp. 1–6.

[18] Fujii, Sae, A. Fujita, Umedu, Takaaki, Kaneda, Shigeru, Yamaguchi, Hirozumi,
Higashino, Teruo, Takai, and Mineo, “Cooperative vehicle positioning via v2v
communications and onboard sensors,” in 2011 IEEE Vehicular Technology
Conference (VTC Fall), 2011, pp. 1–5.

[19] “NetworkX, Network Analysis in Python.” [Online]. Available: https:
//networkx.org

[20] “Bosch future mobility challenge,” GITHUB, Copyright (c) 2019, Bosch
Engineering Center Cluj and BFMC organizers. All rights reserved. [Online].
Available: https://github.com/ECC-BFMC

[21] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics, Modelling, Plan-
ning and control. Springer-Verlag London Limited, 2009, isbn: 978-1-84628-
641-4, doi: 10.1007/978-1-84628-642-1.

[22] A. Trotta, “Trajectory planner for autonomous vehicle,” 2016, master Degree’s
Thesis at Politecnico di Torino.

[23] A. E. Mahdawy and A. E. Mougy, “Path planning for autonomous vehicles
with dynamic lane mapping and obstacle avoidance.” in In Proceedings of the
13th International Conference on Agents and Artificial Intelligence (ICAART
2021), vol. 1, 2021, pp. 431–438, isbn: 978-989-758-484-8.

[24] P. Mishrs, B. S. Sujith, and K. Mall, “A novel path planning algorithm for
autonomous robot navigation,” in 2010 International Conference on Computer
Applications and Industrial Electronics, 2010, pp. 180–185.

[25] P. Ren, S. Chen, and H. Fu, “Intelligent path planning and obstacle avoid-
ance algorithms for autonomous vehicles based on enhanced rrt algorithm,” in
2021 6th International Conference on Communication and Electronics Systems
(ICCES), 2021, pp. 1868–1871.

72

https://randomnerdtutorials.com/complete-guide-for-ultrasonic-sensor-hc-sr04/
https://randomnerdtutorials.com/complete-guide-for-ultrasonic-sensor-hc-sr04/
https://networkx.org
https://networkx.org
https://github.com/ECC-BFMC

[26] P. Bautista-Camino, A. I. Barranco-Gutiérrez, I. Cervantes, M. Rodŕıguez-
Licea, J. Prado-Olivarez, and F. J. Pérez-Pinal, “Local path planning
for autonomous vehicles based on the natural behavior of the biological
action perception motion.” MDPI, Wiseman Yair and Antonio Cano-
Ortega, 27 February 2022, energies 2022, 15,1769. [Online]. Available:
https://doi.org/10.3390/en15051769

[27] Qing, Guo, Zheng, Zhang, Yue, and Xu, “Path-planning of automated guided
vehicle based on improved dijkstra algorithm,” in 2017 29th Chinese Con-
trol And Decision Conference (CCDC), 2017, pp. 7138–7143, doi: 10.1109/C-
CDC.2017.7978471.

[28] W. Yijing, L. Zhengxuan, Z. Zhiqiang, and L. Zheng, “Local path planning of
autonomous vehicles based on a algorithm with equal-step sampling,” in 2018
37th Chinese Control Conference (CCC), 2018, pp. 7828–7833.

[29] “A* search algorithm,” © 2013-2022 Stack Abuse. [Online]. Available: https:
//stackabuse.com/courses/graphs-in-python-theory-and-implementation/
lessons/a-star-search-algorithm/

[30] D. Pérez-Morales, S. Domı́nguez-Quijada, O. Kermorgant, and P. Martinet.,
“8th workshop on planning, perception and navigation for intelligent vehicles
at ieee int. conf. on intelligent transportation systems,” in Autonomous parking
using a sensor based approach., Nov 2016, Rio de Janeiro, Brazil.

[31] P. Strömberg, “Device-less remote parking based on ultrasonic sensor detec-
tion,” in Virtual Leash, 2019.

73

https://doi.org/10.3390/en15051769
https://stackabuse.com/courses/graphs-in-python-theory-and-implementation/lessons/a-star-search-algorithm/
https://stackabuse.com/courses/graphs-in-python-theory-and-implementation/lessons/a-star-search-algorithm/
https://stackabuse.com/courses/graphs-in-python-theory-and-implementation/lessons/a-star-search-algorithm/

Ringraziamenti

Vorrei ringraziare la mia famiglia per avermi sempre sostenuto, per essermi stata
vicina nei momenti di crisi e per avermi dato la possibilità di crescere facendomi
intraprendere il mio percorso universitario dall’altra parte dell’Italia. Tra loro,
vorrei citare Ginevra che nell’ultimo anno, nonchè il suo primo anno di vita, è

riuscita a portare dentro di me una felicità immensa.

Inoltre vorrei ringraziare tutti i ragazzi del Team Politron e il professore Stefano
Malan per l’esperienza che mi hanno permesso di vivere. La BFMC 2022 rimarrà
sempre un ricordo bellissimo. Vorrei anche ringraziare il Politecnico di Torino e

tutte le persone che ci lavorano per avermi fatto maturare e comunque per essere
stati parte di un bel po’ di anni della mia vita.

Infine vorrei ringraziare, Daniel per avermi fatto rialzare tutte le volte che sono
caduta, per essermi stato vicino, per avermi sopportato e per avermi cucinato ogni
volta che non l’avrei fatto. Le Trigone che nonostante la distanza ci sono sempre, e

dico sempre, state. Le mie amiche e i miei amici ”la famiglia che ti scegli” che
hanno creduto in me tra cui Pipino per essere stato il miglior Cotino di sempre.
Rinomino Daniel e Cuchina per ringraziarli particolarmente per la pazienza che
hanno avuto durante la scrittura di questa tesi, per avermi aiutata e sopportata.

E come non potrei ringraziare Hardin, il nostro piccolo e peloso coniglietto che si è
subito le spiegazioni della parte teorica di molte materie.

74

	Introduction
	Motivation
	Autonomous driving
	Levels driving automation
	Thesis outline

	Bosch Future Mobility Challenge
	Introduction
	The Competition
	The Car-Kit
	The Project
	Competition Documentation and First Steps
	Brain Project
	Embedded Project
	GITHUB

	The Structure behind the Algorithms

	Files communication
	Parallelism, Thread and Processes
	The Main.py file
	Server Communication and UDP

	Technology behind autonomous driving
	Sensors
	Detailed study about sensors
	Camera
	LiDar
	Ultrasonic
	ATM103 Encoder
	IMU Sensor

	Localisation
	Localisation and mapping for BFMC2022
	V2X for BFMC2022

	Trajectory and path planning
	Trajectory planning
	Trajectory planning used in competition

	Path planning
	Dijkstra Algorithm
	A* Algorithm

	Parking
	Parking at competition

	Conclusion and future development

