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Abstract

Recently, many studies have been conducted on systems of particles suspended in liquid,
since their physics is related to glassy systems. These systems showcase a particular type
of out of equilibrium phase transition, called absorbing state phase transition.
In order to study this phenomenon, many simple models have been proposed to simulate
the dynamics, and they have been characterized through their critical exponents at the
transition, suggesting that they belong to the Manna universality class.
We focused on simulating a mean field model, the spherical perceptron, using finite learn-
ing rate gradient descent on the hinge loss, which reproduces a dynamic with an absorbing
phase transition. We conducted extensive numerical simulations to extrapolate the crit-
ical exponents of the activity (the number of negative gaps) at the transition point, in
order to find if also this system belongs to the same universality class as the other algo-
rithms proposed.
We characterize the critical behavior at the transition and find numerically the criti-
cal exponents associated to the order parameter, the activity as well as the associated
susceptibility.
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Chapter 1

The Absorbing State Phase
Transition

Recently there has been much interest in the study of colloidal suspensions, both from
the experimental point of view and from the theoretical one. In particular systems of
particles suspended in liquids undergoing periodic shearing have shown interesting char-
acteristics.
These kind of systems can be studied using the shear amplitude as a control parameter
([3]), in order to drive the system from an active state, where the trajectories of the par-
ticles are chaotic and irreversible, to an absorbing state, where trajectories are reversible.
This out of equilibrium phase transition, that occurs at a critical value of the shear am-
plitude, is called absorbing phase transition.
This kind of transition is not something new, as it is common in systems belonging to
the Manna universality class and described by the directed percolation field theory ([22],
[23], [24]), which are used to model a vast range of natural phenomena.
The absorbing phase transition point is characterized by the self-organized criticality
([27]) of the system: one can define a diverging correlation length as well as diverging
susceptibility. At the same time the model displays hyperuniformity, meaning a suppres-
sion of density fluctuations. All these phenomena appear out of equilibrium, since the
phase transition point separates two non-equilibrium phases.
In order to study this kind of systems it is important to define the order parameter
characterizing the transition: since in the active region the system is ‘moving’ (with dif-
ferent meanings, specific for each models), while, once it enters the absorbing state it
‘stops’ (again with the meaning changing from model to model), it is reasonable to quan-
tify the amount of movement, or activity. This parameter should be different from 0
in the active region, and go to 0 at the critical point, remaining then 0 after the transition.

In order to simulate these kind of systems, simple algorithms have been introduced
([15], [14], [13], [25]), based on qualitative rules more than potential based ones. The idea
of all algorithms is to construct an out of equilibrium dynamics that, as a function of a
control parameter, can display an asymptotic active state where the system keeps moving
in phase space, and an absorbing state where, after some transient time, the dynamics
stops at a point in phase space.
We will focus and describe more in depth [15] and [13].
The algorithm presented in [15] is called random organization (RO), and it aims at
recreating the dynamics of sheared particles experiments using a completely random
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4 CHAPTER 1. THE ABSORBING STATE PHASE TRANSITION

protocol. The idea is the following: a set of spheres are placed inside a box, which
is periodically sheared with a constant amplitude; after every shearing the overlapping
particles are displaced of a small random amount, while non overlapping spheres are
left unchanged. The results obtained from the first simulation of this algorithm ([15])
showcased that it does not belong to the directed percolation universality class.
Building on these results, another algorithm, is proposed and studied in [13]. The different
protocol adds a deterministic kick to the spheres, together with the random one, and is
called biased random organization (BRO). This is done introducing a control parameter
(δ) that controls the ratio between the two; when the algorithm is driven only by the
deterministic kick, we will refer to it as fully biased random organization (fBRO).
The precise definition of the BRO algorithm is not entirely clear from [13]. However, we
believe that the fBRO algorithm coincides with what we are going to describe and use in
the following sections1. Anyway, it may be possible that there is a discrepancy between
the algorithms, but qualitatively, they both display an absorbing phase transition as a
function of the packing fraction.
As we mentioned, the two contributions in BRO are weighted by a parameter called
δ, and have a magnitude dependent on another parameter, ϵ. An important difference
between [13] and [15] is that in the former it is no longer used the shearing amplitude as
a control parameter, but the density of the spheres; in fact there is actually no shearing
at all.
The update rule can be written as:

xi(t+ 1) = xi(t) + ϵ

"
√
1− δνiΘ(ni) +

√
δ
X
j ̸=i

Θ(−hij)
ri − rj
|ri − rj|

#
(1.1)

where we are using hij = (ri − rj) − (Ri + Rj) (r is the position of the sphere, R the
radius), and ni =

P
j ̸=iΘ(−hij) is the number of overlaps. In the first term, the ran-

dom displacement, νi is a random vector of typical magnitude 12, with Θ(ni) enforcing
the presence of this term only if there are overlaps. In the second term we have the
deterministic displacement, where again we use the Heaviside function to sum only over
overlapping particles. In the limit δ = 0 we return to the RO algorithm, while for δ = 1
we obtain the fBRO algorithm.
The aim of [13] is to show that BRO is in the Manna universality class. Since now we
have defined the model and protocol, we can also identify more precisely the order pa-
rameter (activity) that we have previously introduced in a very general way: it will be
the number of particles overlapping (or active particles), since those are the ones that
will contribute to the dynamics at each step.
Then, in order to extrapolate the universality class, the authors study the critical expo-
nents of the activity and relaxation times. The results presented mostly refer to fBRO
and RO, so we will focus on these two algorithms. The critical exponents found seems
to be compatible with the Manna universality class, both for RO and BRO. It is worth
mentioning though, that the exponents computed in [15] were not compatible with the
Manna exponents, but they simulated only 1 and 2 dimensions, while in [13] the results
refer to simulations in 3 dimensions.

1More precisely, we know the algorithms coincide for pairwise overlaps, it is unclear if this is true for
three or more overlaps

2In [13] they firstly introduce a random displacement with a random magnitude and later the mag-
nitude seems to be fixed
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Another line of research, always related to the simulation of systems of spheres, focused
on a different problem, namely reproducing and studying system of spheres interacting
with a repulsive potential.
We may start by introducing standard results regarding the protocols with which these
system are simulated, since the dynamic depends on them.
Starting from an important work in the field, in [12] the authors introduce three different
local potentials to describe the interaction between pairs of spheres, of the form:

V (rij) =

(
ϵ
α
(1− rij

σij
)α rij < σij

0 rij ≥ σij

(1.2)

with α = 2, 3/2, 5/2. In Eq. 1.2 we call rij the distance between the centers of spheres
i, j and σij the sum of the radii.
Let us notice that the case of a linear potential, meaning α = 1, is not considered, this
peculiar situation (the force is independent from the amount of overlap of the spheres),
will be explored later.
The evolution of the system is driven by gradient descent towards the nearest energy
minimum. The result of this dynamics depends on the value of the density of the spheres:(

ϕ < ϕc zero energy configuration: no overlaps

ϕ > ϕc local minimum at positive energy: spheres overlap
(1.3)

and it is important to notice that in both situations we reach, at the end of the sim-
ulations, for long times, configurations where the spheres are still, since in both cases
the gradient of the potential will be zero. The critical point separating the two phases
is called the jamming transition: the particles either reach mechanical stability (above
the critical density) or they find a zero energy state (below the critical density); this
transition has been studied a lot in the past 20 years, and a systematic approach using
tools of disordered and glassy systems has been developed only recently ([18]).

A different and interesting result is obtained if we use a linear potential, as shown in
[10]. The main difference is that for the class of potentials shown in Eq. 1.2, α > 1 means
that the local potential is convex, while α = 1 is exactly at the boundary between convex
and concave. This type of potential is not very common in physics simulation, while
is well known in the machine learning community with the name of hinge loss. This
creates a situation where in local energy minima for the full systems, the configurations
will have both overlapping spheres and spheres only touching (kissing spheres). This is
possible since these kissing spheres may sustain a finite amount of force. The result is
that a minimum in the phase space is now an angular point3.
Using a protocol with finite time step (or finite learning rate) to drive the systems will
make it constantly moving in the denser (ϕ > ϕc) phase, since, even though local minima
exists, it is impossible to find one with this type of dynamics (Eq. 1.4).(

ϕ < ϕc arrested state

ϕ > ϕc active state
(1.4)

3The simplest way to think about a low dimensional version of local minima on the hinge loss is to
think about the landscape of |x|. This function has a minimum in x = 0, yet it is singular
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Therefore, finite learning rate gradient descent on the hinge loss gives rise to a phe-
nomenology in which at high density the system is in an active state and at low density
the system finds an absorbing state. The dynamical phase transition between these two
phases is purely out of equilibrium and it has the same qualitative features of an absorb-
ing phase transition, as the one obtained from simulations done with fBRO and RO.

As for the jamming transition, where it is possible to introduce simple mean field
models in order to study the critical point, we will follow the same strategy to study the
absorbing phase transition.
In the next section we will introduce the mean field model we are going to use, the
spherical perceptron, and a protocol to simulate its dynamics, gradient descent over the
hinge loss, which can be directly mapped to the biased random organization algorithm
for hard spheres.



Chapter 2

A Mean Field model: the Spherical
Perceptron

The perceptron is one of the first examples of a machine learning architecture ([16]). It
consists in a set of weight, represented as a vector, and the optimization will update these
weights based on some constraints. It is mostly applied to classification problems, with
the limitation that the data points must be linearly separable, since the solutions it can
find are only hyperplanes dividing the points.
We are going to study a more constrained version of this model, the so-called random
spherical perceptron. In this model the weights’ vector has fixed magnitude, hence it
is spherically constrained.
More specifically, we consider N variables xi ∈ R with the condition:

NX
i=1

x2
i = N

which also implies that each variable is typically of order 1.
We now introduce the set of constraints or, to keep the analogy with machine learning
problems, patterns : ξµ with µ = 1, . . . ,M . Each constraint is a random N -dimensional
vector ξµ = {ξµ1 , . . . , ξ

µ
N}, with each component being a Gaussian random variable with

zero mean and unit variance (all iid variable). The number of constraints is linked to the
dimensionality by M = αN , and α is a control parameter for the system. We also notice
that the parameter M is not needed, being dependent on N .
Let us now define the gap variable:

hµ =
ξµ · x√

N
− σ (2.1)

where we divided the scalar product by
√
N in order to obtain a quantity of order 1. σ

is another control parameter of the system, and continuing with the machine learning
parallelism, it would be the bias, used to enforce that the hyperplane is far enough from
each point: large positive values of σ make the problem harder, negative values make it
easier. The optimization problem is formulated in terms of these gap variables:

hµ > 0 ∀ µ = 1, . . . , αN (2.2)

where with this set of inequalities we are enforcing the satisfaction of all constraints.
Fig. 2.1 shows a simple example of a spherical perceptron in 2D with 3 constraints, where
the region satisfying all constraints is the one with all three colors overlapping.
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Figure 2.1: Graphical representation of three constraints in 2D: the colored part of the circle represent
the region where each constraint would be satisfied, so the solution of this problem would be anywhere
in the part of the circle where the colors overlap. In this case we are considering σ = 0.

In order to quantify the accuracy of the perceptron we use a loss function:

VHL =
αNX
µ=1

|hµ|Θ(−hµ) (2.3)

This function is known as hinge loss, and we want to stress that is a linear loss.
The optimization of this algorithm is carried out using gradient descent on this loss
function, which gives:

xi(t+ 1) =xi(t)− η
∂VHL

∂xi

=xi(t) + η
X
µ

ξµi√
N
Θ(−hµ)

(2.4)

where we also introduced the third control parameter of the system η, called learning
rate. We can quickly generalize the algorithm and add a random part, obtaining:

xi(t+ 1) =

√
N

|x|
·

"
xi(t) + η

 
ϵνiΘ(ni) + (1− ϵ)

X
µ

ξµi√
N
Θ(−hµ)

!#
(2.5)

where νi is a vector composed of random iid variables extracted from a Gaussian dis-
tribution, and as in Eq. 1.1 ni =

P
µΘ(−hµ). Also we underline that even when the

random kick is present, it is not a Langevin type equation. In front of everything we add
a projector to keep the vector always on the sphere.
From Eq. 2.5 and Eq. 1.1 we can easily see how the BRO algorithm for spheres can be
mapped on the gradient descent on the hinge loss for the perceptron:

• σ is the sum of the radii of the spheres (which are all of the same size)

• ϵ→ η

• δ → ϵ

• ξµi√
N

has the role of the direction of overlap
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This model is of particular interest in relation to the hard spheres simulations not only for
the direct mapping between the two. Using the control parameters of the perceptron we
can drive the system between two phases: one where all constraints can be satisfied (SAT
phase) and one where there is no possible solution (UNSAT phase). We can summarize
the dynamics in the same manner as Eq. 1.4:(

σ < σcrit SAT

σ > σcrit UNSAT
(2.6)

The transition between these two regions can be thought as a jamming transition ([19],
[26], [17]) and it can be studied in the exact same way as the spheres model. Still, a good
parallelism using linear potential or cost function is missing.
This is a fundamental difference, as the form of the cost function influences the UNSAT
region, leaving the SAT one unchanged, since it is an absorbing state and the systems
just stops in a flat region without ‘feeling’ the effects of the form of function.
The landscape for the perceptron with a linear cost function has been extensively studied
([9], [11]), but in our simulations we are going to use gradient descent with a finite learn-
ing rate, meaning that the system can not actually set in a minimum, it will continue to
move (hence resulting in an active state).

There is a secondary, but still important, reason to study the perceptron in depth.
Being a rather simple a small model, it is possible to simulate many parameters config-
urations quite cheaply. Even though is not the focus of this work, this may allows us
in the future to use these results to understand better the learning dynamics underlying
more complex algorithms. In particular the role of noise, which is a fundamental part
of many learning algorithms, can be explored here in this simple settings. This kind of
analysis would fit in the very recent and rich field of studying machine learning algorithm
using statistical physics tools. Many important results have been already obtained in this
direction ([1], [2], [4], [5], [6], [7], [8]), but there are still many unknowns.
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Chapter 3

The dynamics: implementation of
the algorithm

We wrote a C++ program for running the simulations in parallel using OpenMPI. In
order to optimize the system we implemented the algorithm described in Eq. 2.5, where
we can notice that the gradient is nothing more than a vector-matrix product:

∂VHL

∂xi

=
1√
N

X
µ

ξµi Θ(−hµ)

∇VHL =
1√
N
ξ̂ ·O =

1√
N

ξ
0
0 . . . ξαN0
...

. . .
...

ξ0N . . . ξαNN


 Θ(−h0)

...
Θ(−hαN)

 (3.1)

This way we obtain a vector and we can simply subtract it to the weights’ vector x
(considering of course the learning rate η). This is an important simplification, since the
computing of the gradient is usually the most expensive part of the simulation, and using
scientific libraries (specifically we used GSL [20]) this product is as optimized as possible.
The matrix composed of the constraints vectors is always the same and does not need to
be computed each iteration, so we only need to compute the gaps vector O, which simply
consists in computing all gaps and verify which ones are not satisfied. This computation
is also important to compute the activity1 for the system, defined as:

A(t) =
1

αN

X
µ

Θ(−hµ) (3.2)

which is nothing else than the normalized number of unsatisfied constraints.
In Alg. 1 we show how we compute the vector O and simultaneously also the activation.
Here we also check if all the constraints are satisfied, in which case the simulation is
ended.

After this first step, we can compute the gradient. In Alg. 2 we show the implemen-
tation of Eq. 3.1, with the generalization to include a random displacement (in order to
work with the algorithm BRO). The last step is to set the magnitude of x to N in order
to keep it on the hypersphere. Notice that, with respect to Eq. 2.5, we do not multiply
the random part with the product of unsatisfied constraints. This is because we already
have a control on whether the problem is solved or not, so if the simulation arrives at the
step of computing the gradient it means that there still are unsatisfied constraints.

1In the spheres model, the activity is defined as the amount of spheres that have at least one overlap.
Here instead we define it as the amount of negative gaps
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Algorithm 1 Pseudo-Code to compute the unsatisfied constrain (gaps)

function Compute-Gaps(. . . )
h← ξ̂ · x− σ ▷ Compute gaps
O← 0 ▷ Prepare overlaps vector
act← 0
for i = 0 to i = len(h) do

if hi < 0 then
Oi = 1
act+ = 1

end if
end for
save-activity(act)
if act == 0 then

stop-simulation
end if

end function

Algorithm 2 Pseudo-Code to compute the gradient and update the vector x⃗

function Grad-step(. . . )
∇← N(0, 1) ▷ Use grad vector to hold the random part of the step
∇← η(ϵ∇+ (1− ϵ)ξ̂ ·O) ▷ Compute gradient
x← x+∇
x← x ·

√
len(x)

||x||
end function

Eventually we can put everything together, as shown in Alg. 3: in every simulation we
run Nsamples samples for each thread, running also multiple threads. For each sample we
defined a max-time, after which we stopped the simulation. The value of max-time and
Nsamples depend on the size of the vector x and on how close to the jamming transition
we are.
In the next section we will discuss the parameters used for the simulations and the results.

Algorithm 3 Pseudo-Code of the complete algorithm (here we skip all the parts regard-
ing saving the data)

for i = 0 to i = Nthreads do
for j = 0 to j = Nsamples do

for time = 0 to maxtime do
COMPUTE-GAPS()
GRAD-STEP()

end for
end for

end for



Chapter 4

Simulations and Results

We ran many simulations testing different configurations of parameters. In all the testing
we always kept fixed the value of α, the ratio of number of weights vs. constraints, to
3. We then have three other parameters to vary: σ, η and ϵ. The first one is the one we
explored the most, since it is the parameter that allow us to sample the critical region
between jammed and unjammed, and has a similar effect as the spheres density in RCP.
The other two are important in order to understand properly the universality of the
system at criticality. The value of η will let us compare these results with the analysis
done in [13]. On the other hand varying ϵ can give us information about the similarities
and differences of fBRO and BRO, which may even help understand better the role of
randomness in learning algorithms. We mostly focused on running numerical simulations
of the fully biased algorithm, firstly to have a good amount of results to study the
algorithm and secondly because of time constraints. Nevertheless we also run some tests
using BRO, obtaining some interesting behaviours.
All the considerations about the results should be done in the limit of infinite dimensions
(N →∞), in order to understand and extrapolate the behaviour in such limit we simulate
different sizes of the weights’ vector. We started from the relatively low dimension of 64
and reached 2048. There are clear limitations: the higher the dimension, the slower the
simulation. In order to partially solve this problem, we adapted the number of samples
and maximum time of each simulation based on the value of N , always trying to keep an
amount of data that would results in good statistic.
In practice we simulated a large range of σ for fixed values of (α, η, ϵ,N), in order to

obtain the value of σcrit, i.e. the point of transition between SAT and UNSAT. The
first run is usually done with short values for max-time, just to obtain the correct range.
Once this is found, the simulations close to σcrit are ran again for longer times, so that
the system can reach a stationary state. This way we obtain a cleaner value for σcrit and
for the critical exponents.
Due to the large amount of plots, in the following sections we will report only a selection.
The rest will be left in appendices with some brief comments.
We show in Fig. 4.1 how the dynamics looks like: the activity decreases and reaches a
stationary state or zero, depending on the value of σ.

4.1 Probability of Satisfiability

For each value of σ we simulate many samples of the system. Doing so we can compute
the probability of satifiability as a function of σ, simply counting how many samples can

13
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Figure 4.1: Dynamics of the system for N = 2000 for various value of σ

satisfy all constrains (Eq. 4.1).

PSAT =
N samples with all constrains satisfied

total number of samples
(4.1)

The data obtained in such way is showed in Fig. 4.3a-Fig. 4.3c for η = 1, 0.1.
In all of these plots we can see that PSAT follows a sigmoid-like behaviour, with the steep-
ness increasing with N . This is because in the limit N → ∞ we would obtain a perfect
step function, with a jump corresponding to σcrit. The effect of finite N is very clear in
the curve N = 64, while we already obtain an almost perfect step function with N = 512.
We also notice that the value of σN

crit decreases with N , approaching the theoretical value
for infinite dimensions.
The estimates for the critical value of σ obtained by fitting PSAT with a sigmoid are
reported in Tab. 4.1. It is interesting to notice that for decreasing values of η, the differ-
ence between the σcrit of increasing sizes gets smaller and smaller, as is clearly shown in
Fig. 4.2, where ∆σcrit(N1 − N2) = σN1

crit − σN2
crit. This may be exploited to speed up the

process, since we can simulate just lower dimensions for small η (faster simulations) and
still obtain results very close to the infinite dimension one.

N σcrit(η = 1) σcrit(η = 0.5) σcrit(η = 0.1) σcrit(η = 0.05)

64 -0.64807 -0.42815 -0.28381 -0.26786
128 -0.68536 -0.45497 -0.28913 -0.26861
256 -0.70429 -0.46817 -0.29094 -0.26965
512 -0.71492 -0.47476 -0.29179 -0.26926
1024 -0.71776 -0.47817 -0.29289 -0.26975
2048 -0.71953 -0.47951 - -
∞ -0.723 -0.481 -0.293 -0.270

Table 4.1: σcrit obtained with the sigmoid fit of PSAT for all η.

We also report the infinite dimension estimate, obtained from a linear fit of σN
crit as a

function of 1/N , shown in Fig. 4.3b and Fig. 4.3d.
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Figure 4.2: Plot of the difference between σcrit for increasing N and different values of η. We can notice
the convergence toward ∆σcrit ≈ 0.

The points obtained for different N can be rescaled and collapsed in a single curve. This
is obtained plotting them as a function of (σ − σN

crit) ·Nβ, where β is a critical exponent
that has to be found, and also corresponds to the critical exponent of the activity, which
we will study in the next section. The optimal value for β is the one that achieve the best
possible collapse between all curves. In Fig. 4.4, we show the curve collapse for η = 0.5
with different choices of the exponent (other examples of the collapsing of the curves
are in Appendix B). We can see that β = 0.4 does not keep the curves close enough,
while β = 0.6 starts to spreading too much the points closer to 1. Then we can estimate
β ≈ 0.5.

4.2 Activity

We will study here the observable introduced in Eq. 3.2, the activity of the system. This
quantity can give us information about the number of constraints unsatisfied and whether
the system has reached a stationary state or not. It is particularly important close to
σcrit, since there small differences can lead to very different outcomes (namely we may
end up in the SAT or UNSAT region). For values of σ larger than the critical one, the
activity reaches a stationary state rather fast, since the number of unsatisfied constraints
will be high and not much can change in the system. Similarly for smaller values of σ,
the activity will simply reach zero and stop changing after some time.
In the following, when we refer to the time evolution of the activity, what we actually
mean is that each point is a mean value, averaged over Nsamples × Nthreads. The values
of these two parameters will be specified in each simulations, since they change for each
N . We used the time evolution to qualitatively check whether the system reached a
stationary state or not. In Fig. 4.5a, Fig. 4.5b, Fig. 4.5c, Fig. 4.5d we plot the dynamic
for different values of N and η, with an inset in each graph highlighting the ending part
of the evolution. We can observe that for smaller Ns the activity is less stable even at
long times (notice how the fluctuations are more pronounced in Fig. 4.5a than in the
other graphs), but the stationarity strongly improves already at N = 512. These graphs
also show how η influences the dynamics: smaller values will produce a less noisy and
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Figure 4.3: Plot of PSAT vs σ for different values of N and η. In Fig. 4.3a and Fig. 4.3c we can clearly
see the transition between the SAT region (PSAT = 1) and the UNSAT region (PSAT = 0).
In Fig. 4.3b and Fig. 4.3d we plot a linear fit of the values of σcrit obtained from fitting the PSAT data
with a sigmoid. In the text-box we show the intercept of the line for 1

N = 0 (N →∞).
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Figure 4.4: Plot of PSAT for η = 0.5 using different exponents for the collapse of the curves. The best
result is obtained with β = 0.5.

smoother evolution, which has the double effect of making the activity stationary earlier
and of obtaining a value for σcrit larger (the system can sustain a stronger bias), as shown
in the previous images of PSAT .



4.2. ACTIVITY 17

103 104 105

Steps

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A

N=64 Nt = 16 Ns = 500 Tmax = 500000 = 0.0 = 3.0 = 0.05
-0.269
-0.268
-0.267
-0.266
-0.265
-0.264
-0.263
-0.262
-0.261
-0.26
-0.259
-0.258
-0.257
-0.256
-0.255
-0.254
-0.253
-0.252
-0.251
-0.25

105 2 × 105 3 × 105 4 × 105

0.065

0.070

0.075

0.080

0.085

0.090

(a)

103 104 105

Steps

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

A

N=256 Nt = 16 Ns = 500 Tmax = 350000 = 0.0 = 3.0 = 0.10
-0.3
-0.299
-0.298
-0.297
-0.296
-0.295
-0.294
-0.293
-0.292
-0.291
-0.29

105 2 × 105 3 × 105

0.025

0.030

0.035

0.040

(b)

103 104 105

Steps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

A

N=1024 Nt = 20 Ns = 150 Tmax = 150000 = 0.0 = 3.0 = 0.50
-0.483
-0.482
-0.481
-0.48
-0.479
-0.478
-0.477
-0.476
-0.475
-0.474
-0.473
-0.472
-0.471105 1.1 × 105 1.2 × 105 1.3 × 105 1.4 × 105 1.5 × 105

0.015

0.020

0.025

0.030

0.035

(c)

103 104 105

Steps

0.05

0.10

0.15

0.20

0.25

A

N=2048 Nt = 20 Ns = 100 Tmax = 100000 = 0.0 = 3.0 = 1.00
-0.72
-0.719
-0.718
-0.717
-0.716
-0.715
-0.714
-0.713
-0.712
-0.711
-0.71
-0.709
-0.708
-0.707
-0.706
-0.705
-0.704
-0.703
-0.702
-0.701
-0.7

1055 × 104 6 × 104 7 × 104 8 × 104 9 × 104

0.03

0.04

0.05

0.06

0.07

(d)

Figure 4.5: Evolution of the activity for different values of η.

For a given set of parameters we need a single value for the activity which characterizes
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the system. In order to obtain such value we averaged over the time evolution, starting
from a time t∗ chosen arbitrarily. We also fitted these evolutions to test if the chosen t∗

was a good value to obtain an average over a the stationary part of the evolution. The
fitting function is of the form:

f(t) = A∞ +Be−
t
τ (4.2)

with fitting parameters A∞, B, τ . In Fig. 4.6a and Fig. 4.6c (η = 1, 0.5) we show the
time-averaged activity as a function of σ (colored crosses) and we plotted on top the
fitted values of A∞ in black. We show in the inset of each graph an enlarged portion
of the data, where we can notice that the fitted parameter and the averaged value are
almost identical. Again we see that the larger differences are for smaller values of N , as
a consequence of the difficulty in reaching an actual stationary state.
We are interested in characterizing the behaviour of the activity as it reaches 0 coming
from the UNSAT phase. In order to do so we rescale all the points, plotting them as
a function of σ − σcrit and in log-log scale. This way we obtain a graph that shows in
a clearer way how the activity approaches 0. In Fig. 4.6b and Fig. 4.6d we show this
behaviour, together with an estimate of the critical exponent for a power law fit. We can
notice again the effect of the finite size, with N = 64, in both graphs, being the farthest
from the theoretical power law. The exponent obtained from this analysis is β ≈ 0.5,
which is consistent with the value obtained from the collapsing of the PSAT curves. This
analysis still hold also for the other values of eta, which we report in Appendix A.

We can conclude the study of the activity with a comparison of the critical behaviour
for the different values of η.

4.3 χ

We may study another quantity showing interesting behaviours at criticality: the variance
of the activity, or χ, defined in Eq. 4.3. When we talk about this variance we once again
refer to the averaged value over time (represented by < · · · >) of mean computed for
Nsamples ×Nthreads (represented by the over-line).

χ =< A2
t > − < At >

2 (4.3)

This is similar to a fluctuation-dissipation relation, showing how much the activity
changes close to the critical σ. We then expect a curve that goes to 0 for σ ≪ σcrit

and is constant for σ ≫ σcrit, while for σ ≈ σcrit it should diverge. The points will
actually diverge only in the limit N → ∞, while reaching a maximum value for finite
N . In order to plot the data we need to rescale it to account for the effects of finite
dimensionality, this is obtained simply multiplying the points by their respective N .
Notice that since the curves will have a maximum at σN

crit, the position of this point will
depend on N itself. We estimated the position and value of the maximum taking the 5
largest points in the curve and using the mean. We can then plot the value of the maxima
as a function of how far is their position from the real σcrit, in order to study the approach
to the theoretical divergence at N → ∞. We obtain once again a power law behaviour
with a deviation term, shown in log-log scale in Fig. 4.8b and Fig. 4.8d, controlled by
an exponent that would seem to be dependent on η (each numerical value is reported in
the corresponding graph). This result is consistent with the behaviour found in Fig. 4.2,
since we saw that for smaller η the values of σN

crit of increasing N , and consequently the
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Figure 4.6: Fig. 4.6a and Fig. 4.6c shows activity vs. σ for the different N and η. The black dots represent
the fitted parameter A∞, and it is clear that the difference between the parameter and the average over
the data is minimal.
In Fig. 4.6b and Fig. 4.6d we plot of the average value of the activity in the stationary regime vs. |σ−σcrit

in a log-log scale. Each set of points has been rescaled using its own σcrit, while for the black line we
used the value obtained for N → ∞. The critical behaviour is well captured by a power law with an
exponent close to 0.50.
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Figure 4.7: Plot of the activity at different values of η for the same N . In black we plotted a power law
highlighting the behaviour close to criticality, as in the previous activity’s graphs.
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Figure 4.8: In Fig. 4.8a and Fig. 4.8c we plot the values of χ for all N and the expected behaviour is
clear. In Fig. 4.8b and Fig. 4.8d we plot the value of the max as a function of its distance from σcrit,
showing also the power law fit and printing the exponent.

position of the maximum of χ, were closer to the theoretical value in infinite dimension.
This means that the maxima will start to diverge faster as η gets smaller.

4.4 BRO with ϵ = 0.1

We ran simulations for the same range of N , but with ϵ = 0.1. We expect multiple effects
from this change. Firstly, the time needed by the activity to reach a stationary state
will increase considerably, since now at every step the vector is also moved in a random
direction, that in general may not be helpful. Still, the main drive of the dynamics is the
gradient descent, so we just need to wait more.
Secondly the optimization problem is now harder, meaning that the value of σcrit will
decrease with respect to the case of ϵ = 0.
In Fig. 4.9 we show the data obtained by these simulations. We only reached N = 512,
since, as mentioned, the convergence to a stationary state was very slow.

This affects the data needed for PSAT because, for σ ≤ σcrit, the activity kept de-
creasing very slowly and very close to 0. This means that a longer simulation may let the
activity reach 0 (the system eventually satisfy all constraints), and as a consequence we
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Figure 4.9: PSAT for ϵ = 0.1. The behaviour is as similar to the previous case, except for a larger drift
related to increasing values of N .

would obtain a 1 for PSAT , moving the sigmoid rightwards. This behaviour can be clearly
seen in Fig. 4.10, where the curves with σ ≤ −0.75 are extremely close to reaching 0 (one
of them is actually 0), but they stay slightly above, oscillating and sometimes decreasing
to a lower level. The problem in this is a wrong estimate of σcrit, which would then make
the whole study of the critical point not precise.
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Figure 4.10: Activity dynamic for ϵ = 0.1, N = 128, η = 1. In the inset we show the discrete jumps
close to 0.

We also noticed an interesting difference between this evolution and the ones with
ϵ = 0. Especially when the value of the activity is very small, we can clearly see jumps
between discrete levels. This may be a sign of the dynamics being stuck close to a
minimum due to the random kick, which, if it is large enough, will continue to push the
system in random directions around the minimum. It is then possible that after some
time a lucky random move is extracted and the system actually descent closer to the
minimum, in another level closer to A(t) = 0.
We did not explored further the behaviour, but it may be interesting carry on this study
and possibly relate it to why some random learning algorithms work.
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Chapter 5

Conclusions

The main purpose of this work was to study the absorbing transition of the spherical per-
ceptron model and fully characterize it. In order to do so we run extensive simulations
of the model under many different settings, and analysed the obtained data to extract
critical exponents of different parameters of the system.
With the first analysis, PSAT , we checked that the algorithm was producing the correct
dynamics and we also extracted the critical values of our control parameter, σ, for the
different sizes of the system and for different values of the hyperparameters. The results
obtained from this preliminary analysis were positive, confirming that the system obeys a
dynamic where there is a transition between an active, unsatisfied state and an absorbing,
satisfied state.
The most important analysis we conducted is the one of the order parameter called activ-
ity. The latter fully characterize the critical transition, and we were interested in finding
the exponent controlling how it reaches zero at the critical point. The results were par-
ticularly interesting, since most of the models showing a dynamic with absorbing states
belong to the so called Manna universality class, while ours seems to be in a different
class. Indeed the expected exponent β for the activity of a mean field model belonging to
the Manna class is 1 ([21]), while we obtained β ∼ 0.51. This shows that our model can
not be considered part of the same class, and hence further studies have to be conducted.
These results were obtained from the fully deterministic algorithm, since is the one we
focused on. Preliminary simulations ran on the partially random algorithm have shown
that the dynamic is quite different from the deterministic case, and in particular the
time needed to obtain a stationary state that can yield good results is extremely long.
A deeper study of the random model may also shed light on the reason why random
algorithms still work well when training machine learning models.
We conducted further analysis considering the fluctuations between different samples of
the same simulation. With this analysis we observed that, near criticality, small changes
in the control parameter produce large changes in the order parameter, in particular we
observed a maximum of these fluctuation exactly at the critical point.
It will also be important in future works to develop, alongside these simulations, a theo-
retical framework, to describe exactly what we observed here.
In conclusion, this work can be considered a step in the study of this model and in the de-
velopment of a more sound and clear theory that ranges from neural networks to glassy

1However we underline again that our definition of the activity is slightly different than in particles
systems, since we count the amount of negative overlaps. However close to the transition this quantity
is proportional to the number of overlapping particles.

23
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systems. We have shown throughout this work how the tools and techniques used to
study the latter can be applied to the characterization of the former. Following on this
line, in the future it may become possible to fully understand many of the underlying
mechanisms of modern learning techniques, and to be able to then exploit this knowledge
for the creation of better and more explainable algorithms.
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Appendix A

Activity Plots

We report here the other plots for the activity, for η = 0.1, 0.05. The results are still
consistent with our analysis. Notice that for N = 1024, η = 0.05 some new behaviour
seems to appear. It may be interesting to study more this case in the future.
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Figure A.1: Activity for η = 0.1
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Figure A.2: Activity for η = 0.05
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Appendix B

PSAT

We report here the other plots of PSAT .

B.1 PSAT for η = 0.5

The results shown here are perfectly in line with the ones discussed in the main part of
this work.
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Figure B.1: PSAT and the linear fit of σcrit for η = 0.5

B.2 PSAT for η = 0.05

It is interesting to notice here what we discussed in Fig. 4.2: for η = 0.05 the difference be-
tween σcrit for increasing N are very small, so much that fluctuations become quite impor-
tant. This is particularly visible in Fig. B.2b: the last three points (N = 256, 512, 1024)
just oscillates around the fit.

31



32 APPENDIX B. PSAT

1.0 0.5 0.0 0.5

0.0

0.2

0.4

0.6

0.8

1.0

P S
AT

N=64, = 0.05
N=128, = 0.05
N=256, = 0.05
N=512, = 0.05
N=1024, = 0.05

(a)

0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016

1/N

0.26975

0.26950

0.26925

0.26900

0.26875

0.26850

0.26825

0.26800

0.26775

c

N
crit = 0.270

Linear Fit
c for = 0.05

(b)

Figure B.2: PSAT and the linear fit of σcrit for η = 0.05



Appendix C

χ Plots

Here we present the plot of χ for η = 0.1, 0.05. The position of the maxima is almost
exactly the same now, and looking at the plots of the previous section (Fig. B.2b) it even
happened that the maximum value of N = 512, η = 0.05 appears at a value of σ which
is larger than the one of N = 256.
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Figure C.1: χ for η = 0.1 and η = 0.05.
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