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POLITECNICO DI TORINO

Abstract
Master’s Degree in Physics of Complex Systems

Data-driven characterization of viral events on social networks: sustainability
issues in the palm oil production

by Elena Candellone

Palm oil is the most widely used vegetable oil in the world. However, its production
and consumption have generated heated debates over the past few decades due to
its environmental impact. This thesis studies the debate on palm oil on the popular
social network Twitter since 2006. Using Natural Language Processing and Net-
work Science tools, we analyze the most important viral events related to palm oil.
We identify Opinion Drivers’ role in the debate and how most debates are short-
lived. Indeed, by studying the interevent time distributions of specific hashtags, we
see that even the most far-reaching viral events are quickly forgotten. Furthermore,
most viral events are described by similar characteristics, showing an underlying
universality that goes beyond the specific topics. All in all, our results show that the
public debate on Twitter is limited to a few countries and mainly centered around
the leading actors of public opinion. Thus, rather than considering this debate in-
trinsic to the public, it should be regarded as mainly driven by a few organizations.
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Introduction

Collective phenomena permeate the reality surrounding us [1]: in nature, flocks
of birds produce recognizable patterns [2] and fireflies flash following a collective
rhythm [3]. Complexity science seeks to explain the emergence of collective phe-
nomena [4], using quantitative tools derived from statistical mechanics and beyond.
The need to study diametrically opposed phenomena has led complexity science to
be characterized by strong interdisciplinarity. Over the years, the possibility of mod-
eling complex systems by studying their collective behavior has begun to fascinate
physicists, mathematicians, biologists, economists, and many others [5], forming a
modern and ever-evolving field of research.

The advent of this new way of studying reality has also opened up a unique per-
spective in sociology. It is now possible to study human interactions [6], comparing
them to other systems present in nature, outlining models [7] that universally de-
scribe the emergence of these collective phenomena. A further urge for a fusion of
the two fields of research, such as complexity science and sociology, has been pushed
recently by social media’s sudden emergence and development. It is a tool that al-
lows individuals to interact through new mechanisms, sharing news, opinions, and
multimedia content. Complexity scientists began to study social media behavior to
be able to quantitatively understand the emergence of collective phenomena in the
opinion dynamics [8, 9], and how information (and misinformation) propagates on
the social network structure.

Viral phenomena [10] emerge on social media every day, massively bringing new
information to our screens that sooner or later will be forgotten. Many social and po-
litical campaigns (carried out by activists and non-governmental organizations) or
marketing campaigns (carried out by companies) have found fertile ground in social
media. It is easier to attract the attention of a large number of people to one’s issue,
creating intense interest and debate about it. However, due to the large amount of
information we perceive through social media, the attention devoted to each topic
we are exposed to is ephemeral, temporary [11].

In order to characterize these behaviors, we considered a specific case study. A
topic that has generated sudden media interest and heated debates over the past few
decades is the production and consumption of palm oil. Palm oil is the most widely
used vegetable oil in the world (more than 35% of world production) [12]. However,
it is controversial due to its production’s strong environmental impact [13] gener-
ated. In particular, the growth in palm oil production, due to a substantial increase
in global demand, has caused a devastating impact on the ecosystems of producing
countries, leading to deforestation and loss of biodiversity [14], as well as conflicts
over land ownership [15]. For decades, it has been an intensively debated topic
within specialist circles. The general public has witnessed a viral phenomenon con-
cerning palm oil. In the second half of the 2010s, many sociopolitical campaigns
emerged to support more sustainable palm oil production. These campaigns were
disseminated through traditional and modern media, such as newspapers and on-
line social media. The convenience of extracting data from digital media allows us to
focus on studying it. Mainly, we analyzed a globally popular social network, Twitter.
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In this thesis, we characterize the emergence of viral events and, more gener-
ally, user attitudes concerning the specific case study of palm oil, using tools and
techniques derived from different branches of complexity science. The work is or-
ganized as follows: Chapter 1 is a brief description of the Twitter social network
and the Data Collection process; Chapter 2 conducts an exploration of the dataset,
analyzing the main features and the overall trends; Chapter 3 provides an overview
of the dataset from the Natural Language Processing point of view, implementing the
Sentiment Analysis and the Topic Detection approaches; Chapter 4 analyzes the un-
derlying social structures from a Network Science perspective; Chapters 5-6 employ
the statistics of two quantities, the interevent time and the cascade size, to mathemat-
ically characterize the importance of an event; finally, Chapter 7 provides a general
pipeline to compare and characterize the emergence of viral events around a topic,
with a comparison among vegetable oils.

Leveraging strategies from different research fields allowed us to obtain an over-
all view of the case study and to be able to characterize the dynamics of social media
interactions on sustainability issues.
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Chapter 1

Twitter dataset: an overview

This chapter aims to describe the basic properties of Twitter, the social network we
considered for this analysis, and briefly explain the Data Collection process output.
Indeed, it is the fundamental starting point for Social Network Analysis.

1.1 Basics of Twitter

Twitter is a social network founded on the 26th of March, 2006, by Jack Dorsey, Noah
Glass, Biz Stone, and Evan Williams. It works as a microblogging service where
Users can post, like, reply, and reTweet (i.e., publish on their profile a Tweet created
by someone else). Every User can follow another User, i.e., receive updates from
a given User on their Twitter homepage. The action of following is not necessarily
reciprocal. The followed User can choose to follow back or not. From the User’s
profile page, it is possible to access four main sections: Tweets, Tweets & Replies,
Media, and Likes. Therefore, there is a complete timeline of the User’s interactions
with the Twitter social network, excluding private messages among Users (these are
called Direct Messages). There are specific rules concerning the structure of a Tweet:
it can contain text, images, hyperlinks, GIFs, and, more importantly for our con-
cerns, hashtags, and mentions. In the following, a definition of these two metadata
structures is given.

Definition. Hashtags are pieces of text starting with #, without spaces between the
words, that can be used as an identification of a particular movement or topic.

It is possible to access the most recent or pertinent Tweets containing a specific
hashtag from the search engine on Twitter. Moreover, a Twitter section dedicated to
Trending Topics collects the most popular hashtags at that moment.

Definition. Mentions are hyperlinks starting with @ and followed by the username
of a Twitter community member, sending back to the mentioned profile.

Mentions are structurally similar to hashtags. The only differences are found
in the starting symbol (@ instead of #) and the restriction in the text content to the
usernames of other social network members. Mentions are a way to invoke publicly
another User of the community. We are particularly interested in these two metadata
structures because it is possible to perform a quantitative analysis of the hashtags
and mentions’ use on social media.

1.2 Collecting data on Twitter

The best way to obtain a large dataset from a social network is to collect data from
an API (Application Programming Interface). In this context, after requesting an
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Academic Permission1, we invoked the Twitter API v2, from which it is possible to
access a limited number of Tweets per month2.

As a general rule, the data is stored in JSON files3 containing the following infor-
mation (when applicable):

• created_at: creation date of the Tweet;

• entities: set of all the special characteristics of a Tweet (if there are mentioned
Users, hashtags, etc.);

• lang: the language of the Tweet;

• id: unique numerical ID identifying the Tweet;

• source: app or browser from which the Tweet is created;

• text: text corpus of the Tweet;

• public_metrics: engagement metrics (number of reTweets, mentions, replies,
likes, quotes);

• author_id: unique numerical ID of the Tweet’s author;

• conversation_id: numerical ID of the original Tweet (i.e., the root of replies’ and
mentions’ tree);

• referenced_Tweets: list of referenced Tweets;

• attachments: list of the Tweet’s attachments (media files, polls, etc.);

• in_reply_to_user_id: User’s numerical ID at which this User is replying;

• geo: geolocalization details. Geolocalization is optional.

Furthermore, two additional types of JSON files are obtained from the Data Col-
lection process. They present a deeper description through metadata of the Users
involved in the Tweet (author, mentioned Users) and the geographical coordinates.
These files help complete an overall description of the Tweets.
We built three different datasets by requesting to the API all the Tweets containing
specific keywords created from Twitter’s foundation to the 31st of December, 2021.
The three datasets, further referred to as Palm, Olive, Coconut datasets, are obtained
by requesting all the Tweets containing respectively the keywords palm oil, olive oil,
and coconut oil. Due to the time limitations imposed by the Academic Permission
(i.e., it is possible to request a limited number of Tweets per month), we decided
to limit our search queries to the previously mentioned instead of trying alternative
wordings. In this way, the Tweets containing, for instance, just palm or oil are not
considered. The same reasoning is applied to bad-spelled words or the absence of
white space (palmoil). Table 1.1 shows the number of Tweets and Users composi-
tion of each dataset. The Olive dataset is the biggest among the three, followed by
the Coconut and the Palm. We have also extracted the data about other oils for the
preliminary analysis: canola, peanut, soybean, and sunflower. However, we decided

1More information about the Academic Permission requirements and advantages can be found here
developer.twitter.com/en/products/twitter-api/academic-research.

2The limit is set to 10 million Tweets per months, with a maximum streaming rate of 50 server
requests every 15 minutes.

3Acronym of JavaScript Object Notation, it is a standard data format based on JavaScript.

https://developer.twitter.com/en/products/twitter-api/academic-research
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Oil Number of Tweets Number of Users

Palm 3,771,073 1,210,537
Olive 6,677,619 2,821,484
Coconut 5,269,203 2,111,945

TABLE 1.1: Number of Tweets and Users for each dataset obtained
from the keyword-based Data Collection process.

to consider just the three oils mentioned above, as the number of Tweets regarding
the other oils is negligible by two orders of magnitude. There is another reason to
investigate the opinions around the three oils further. They are considered the most
dangerous oils for the environment because of the number of species threatened by
their production [16]. Furthermore, another dataset is created: the previous datasets
are only composed of Tweets in English due to the keyword-based approach in the
Data Collection process. Therefore, we decided to look for the translations of palm
oil (ex. olio di palma in Italian) in all the other languages: this dataset is composed
of 6,512,541 Tweets and 2,396,991 Users. The latter dataset (further referred to as
All-languages dataset) is useful for analyzing the geographical distribution of the
Tweets regarding palm oil (Section 2.4).

As a general rule, we decided to focus on the Palm dataset, recalling the other
datasets’ results only when a comparison is required. This is the case of Section 3.2,
where we perform the Topic Modeling on the Palm, Oil, Coconut datasets. Similar
reasoning is valid for Chapter 7, where we compare the virality phase diagrams of
the three datasets. Moreover, Appendix A contains further details about the Olive
and Coconut datasets.



6

Chapter 2

Exploratory Data Analysis

In order to unveil the main features of the dataset, the first step is to use the so-called
Exploratory Data Analysis (EDA). It is a general term that defines the investigation of
the dataset through visualization techniques. Our interest is focused on capturing
the dataset’s size and time evolution. We focus on disclosing eventual viral events
by looking at the time evolution in the number of Tweets and detecting the topics
of interest by analyzing the hashtags and keywords. Other helpful information is
retrieved by looking at the geographical distribution of the Users, which can give
important insights into where the public campaigns are created and carried on with
more robust engagement.

In this chapter, first, we analyze the time evolution of the number of Tweets
to detect the emergence of viral events (Section 2.1). Next, we explore the most
common hashtags and keywords to highlight the most interesting discussion top-
ics (Section 2.2). Then, we identify the most popular Users and the ones that drove
public opinion throughout social campaigns (Section 2.3). Finally, we analyze the ge-
ographical distribution of the Tweets to establish a correlation between the countries
that are producing palm oil and the countries that are tweeting the most (section 2.4).

2.1 Time evolution of the number of Tweets

Exploring the dataset, we tracked the activity of 1,210,537 Users. As shown in
Fig. 2.1, there has been a substantial increment in the interest in palm oil from the
early stages, with a prominent peak in 2018. To further estimate the significance of
this event, in Appendix A.1, we analyze the relative growth of this dataset, compar-
ing it to the general growth of the social network over the years. Moreover, focusing
the attention on this peak of interest, we highlighted a particular month, November
2018, where we hypothesize that a viral event happened. As shown in Fig. 2.2, there
is a strong and sudden growth (from 1,000 to 31,562 Tweets) between the 8th and
the 9th of November. The viral event that brought attention to palm oil was led by
the Twitter account of the company Iceland Foods, which published a Christmas TV
spot against palm oil, which the UK TV channels banned.

In Fig. 2.3, we can see the Tweet post that received more than 14,700 likes and
8,000 reTweets, indicating the growing interest in the topic. This campaign, sup-
ported by Greenpeace, generated more awareness about the sustainability of prod-
ucts such as palm oil, which we further investigate in the following chapters.
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FIGURE 2.1: Histogram representation of the number of Tweets con-
taining the words palm oil per year. A peak of interest was detected in

2018.
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FIGURE 2.2: Histogram representation of the number of Tweets con-
taining the words palm oil, restricted to November 2018. The interest
increased on the 9th of November when the Tweet in Fig. 2.3 was

published.

FIGURE 2.3: Screenshot of Iceland foods’ Tweet about the banned TV
spot. The Tweet received more than 14,700 likes and 8,000 reTweets.

https://twitter.com/IcelandFoods/status/1060835601010835456?s=20&t=A19vd3og9HCvmQz_BUuPnw
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hashtags are predominant.

2.2 Keywords and Hashtags

From a quantitative point of view, analyzing the dataset’s keywords and the most
used hashtags is quite significant. Usually, a petition or a public campaign is sup-
ported by a specific hashtag. For example, in Fig. 2.3, the starters of this campaign
tried to propose the use of the hashtag #NoPalmOilChristmas. We could assume that
it is not a successful hashtag (i.e., it is not present in the list of the most common
hashtags) because it is peculiar to this Christmas TV spot, while the most used hash-
tags are quite more general. We extracted the hashtags from each Tweet, following
the definition given in Section 1.1. In this section, we neglect the hashtags palmoil,
palm, oil to analyze other aspects not directly related to the words used to create the
dataset. As shown in Fig. 2.4, the most popular hashtags are related to palm oil sus-
tainability issues (deforestation, orangutans, Indonesia, sustainable), supporting the idea
that most of the public campaigns against palm oil were carried on to stop the defor-
estation and preserve the rainforest microclimate. The orangutans were the leading
actors of the Iceland foods’ TV spot (and the inhabitants of rainforests); therefore,
the substantial use of that hashtag is expected and well-motivated.

The worldcloud1 package is another way to inspect graphically the most common
keywords. It is an NLP tool that performs text pre-processing (i.e., it removes the so-
called stop-words, then it extracts the single words from the corpus, checking if there
are errors in the spelling) and evaluates the frequency of each keyword. Then, the
graphical representation of each word is sized proportionally to its frequency in the
dataset. Fig. 2.5 represents the wordcloud for our dataset. As previously highlighted
in the hashtags’ analysis, it is possible to notice a significant prevalence of keywords
related to sustainability issues.

2.3 Popular Users

Another interesting perspective for the dataset characterization is the identification
of the potential opinion drivers (OD), that we define as follows:

1http://amueller.github.io/word_cloud/

http://amueller.github.io/word_cloud/
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FIGURE 2.5: Wordcloud of the most common keywords in the corpus.
Keywords related to sustainability are widely used.

• they shall own a verified account (i.e., Twitter assures that the account is au-
thentic and that it respects some guidelines2);

• the sum of the number of retweets, replies, likes, and quotes is bigger than
10,000 for at least one of their Tweets in the dataset.

We identified 36 Users with these characteristics, shown in Table 2.1. Notice that
only five of these Users created more than ten Tweets related to the palm oil topic.
This result can be explained by the fact that some opinion drivers mentioned palm
oil just in a few Tweets. Probably, they are not running a public campaign, or they are
not involved in some organizations, even if they are respecting the constraints we
fixed. Therefore, one way to further restrict our analysis is to add another constraint.
Here, we considered only the Users with more than 10 Tweets related to palm oil. In
this way, the OD are restricted to the following Users:

• Iceland Foods: the British supermarket chain that proposed the TV spot;

• Greenpeace UK: the British branch of the international NGO that relates to
environmental issues;

• Andreas Harsono: an Indonesian human rights activist;

• AJ+: the Al-Jazeera’s social media publisher;

• Business Insider: an American financial news website.

We were able to identify and constrain the leading actors of the debate, noticing that
only a few verified accounts were deeply involved in the discussion. In the follow-
ing chapters, we will further analyze the similarities and differences between the
General Public and this small group of Opinion Drivers. Was this public campaign
effective? Was the General Public deeply involved in the discussion?

2More information about the Twitter guidelines for the verified accounts can be found here
https://help.twitter.com/en/managing-your-account/about-twitter-verified-accounts

https://twitter.com/IcelandFoods?s=20&t=pg4kiB7hYafAze_1EOdwgg
https://twitter.com/GreenpeaceUK?s=20&t=pg4kiB7hYafAze_1EOdwgg
https://twitter.com/andreasharsono?s=20&t=pg4kiB7hYafAze_1EOdwgg
https://twitter.com/ajplus?s=20&t=pg4kiB7hYafAze_1EOdwgg
https://twitter.com/BusinessInsider?s=20&t=pg4kiB7hYafAze_1EOdwgg
https://help.twitter.com/en/managing-your-account/about-twitter-verified-accounts
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Name Self-reported location Number of Tweets

Iceland Foods In a UK town near you 776
Greenpeace UK UK 517
Andreas Harsono Indonesia 130
AJ+ - 53
Business Insider New York, NY 49
Carl Franzen Pittsburgh, PA 6
Major Gaurav Arya (Retd) India 6
Sema Texas 5
IcelandFoodsIreland Ireland 4
Peter McGuire Dublin 4
Elizabeth Cotignola Chicago/Montreal 3
merry jerry Nashville, TN 3
Anshul Saxena India 2
Bret Von Dehl New Jersey, USA 2
Saket Gokhale Goa/New Delhi/Mumbai 2
jordan Washington, D.C. 2
Conor McDonnell Los Angeles 2
Gabi de Ferrer London, England 2
Imran Khan Pakistan 1
Michael Bonfiglio - 1
Phil Nolan Brooklyn (He/Him) 1
Rani Timekey Baker probably Portland, Oregon 1
bleep - 1
Deterministic Optimism - 1
Ramon on Zoom 1/29 7p est Lorain, OH 1
James Coleman South San Francisco, CA 1
Nicole Schuman, M.A. Astoria, N.Y. 1
David Klion Brooklyn 1
Joel Birch Sunshine Coast 1
Delphine Rivet - 1
Drew Holden Washington, DC 1
Omar Sakr Sydney, New South Wales 1
“teen suicide” the band Around 1
demy - 1
Rania Khalek Lebanon 1
Nathan Bernard Maine, USA 1

TABLE 2.1: Potential opinion drivers (OD), defined as the Users with
a verified Twitter account and at least a Tweet with more than 10,000
reactions from other Users. We notice that just five of the potential

OD posted more than ten Tweets related to the topic.
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FIGURE 2.6: Geographical distribution of Tweets from the All-
languases dataset. The UK, the US, Malaysia, Nigeria, and Indonesia
are the countries that are Tweeting the most about the palm oil topic.

Country Number of Tweets

United Kingdom 8,706
United States of America 6,099
Malaysia 4,372
Nigeria 4,334
Indonesia 4,301

TABLE 2.2: Number of geo-tagged Tweets per country, considering
the General dataset. We can suggest a strong interest in the topic from
the countries related to palm oil production, as well as from the UK

and the US.

2.4 Geographical distribution

Using the All-languages dataset (not restricted to the Tweets in English), it is possi-
ble to highlight which countries are the most involved in the palm oil topic. From the
Twitter API, it is possible to extract a database with all the tagged locations, 54,522
(only 0.84% of the dataset). The percentage of Tweets with active localization is gen-
erally low. However, we assume that the other Tweets are distributed with the same
proportions in the different locations, considering the reachability limits of the social
network (it is banned from some countries, the localization is not available in others,
etc.).

In Fig. 2.6, the geographical distribution is shown through a heat map. As ex-
pected, the most active countries are the UK and the US. At the same time, a pecu-
liar high activity is highlighted in Malaysia, Nigeria, and Indonesia (Table 2.2 dis-
plays the most active countries and the respective number of Tweets.). According to
Forbes, Indonesia produced 58% of the total amount of palm oil in 2019, followed by
Malaysia (26%), Thailand (4%), Colombia (2%) and Nigeria (1%). We can conclude
that the countries more directly involved in the sustainability issues of palm oil are
also the most active on social media, together with the countries where the public
campaigns were carried out (the UK and the US)3. In the following, we focus on the
English datasets, as we showed that this is the primary source of Tweets.

3Further investigations could lead in the direction of understanding if these results are influenced
by the total volume of Tweets for each country.

https://www.forbes.com/sites/niallmccarthy/2020/10/02/which-countries-produce-the-most-palm-oil-infographic/
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Chapter 3

NLP tools: Sentiment Analysis and
Topic Modeling

3.1 Sentiment Analysis

Sentiment Analysis (also known as Opinion Mining) is a Machine Learning text clas-
sification task that assigns a degree of polarity to a text. It spans from Positive to
Negative labels, detected through the examination of the text corpus, the structure
of the sentences, and the use of punctuation signs. For example, a sentence like “I
love palm oil” will probably be detected as Positive, while the sentence “I hate palm
oil” will be detected as Negative. We employed a multilingual pre-trained model,
described in Section 3.1.1, to assign to each Tweet the labels Positive, Neutral, and
Negative. A score was assigned to each label: it represents the probability that the
considered Tweet has a given sentiment. For further analysis, we consider each
Tweet as labeled by the one with the highest score among the three.

In the following, we briefly describe the model, highlighting the general results
of the classification task (Section 3.1.1). To investigate the sentiment heterogeneity,
we also study the time evolution of the sentiment in Section 3.1.2. This analysis
can lead to important insights into how viral events are related to sentiment. As re-
ported in [17], we expect a correlation between negative sentiments and attention on
a specific topic. Then, we analyze some interesting results followed from sentiment
analysis of the so-called opinion drivers (OD) (Section 3.1.3). They are the most active
Users that influence public opinion by producing Tweets with massive engagement
(many mentions, reTweets, and replies). Furthermore, in Section 3.1.4, we study the
empirical relationship between the detected sentiment and the Users’ opinions.

3.1.1 Model description and general results

Twitter-xlm-roberta-base-sentiment1 is a multilingual model pre-trained on ∼ 198M
Tweets in 30 languages and fine-tuned for sentiment analysis2. This pre-trained
model best suits our aim based on the evaluation benchmark performed in [21]. It is
trained on a corpus of Tweets, while XLM-RoBERTa [22] (the more general model)
is trained on a larger, less specific corpus. Furthermore, Barbieri et al. [21] showed
that a more Twitter-specific model is better for capturing the sentiment in the case of

1huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment
2It is possible to find the same model fine-tuned for other specific tasks, for example irony detec-

tion [18], emotion recognition [19] or offensive language identification [20]. They can be useful to
analyze further different aspects of the debate, but we decided to restrict our analysis to a three-label
system, the sentiment analysis. We also decided only to consider the English dataset for the reasons
presented in Section 2.4.

https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment
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Twitter datasets. It is due to the particular Tweet structure: constraint in the maxi-
mum length, presence of hashtags and hyperlinks, and more primitive sentences.

The first step needed to obtain a suitable text corpus is the preprocessing. For
this specific model, the only request was to substitute a username mentioned with
@ with just @user and a hyperlink starting with http with just http. In this way, the
model recognizes them as negligible information. Furthermore, we performed the
Tokenization: it transforms a text corpus into a set of tokens. Depending on the type
of Tokenization, we are going to obtain either tokens made of words (ex. shorter),
letters (ex. s-h-o-r-t-e-r), or sub-word tokens (ex. short-er). The Tokenizer used for
this method is of the first type. Then, running the classification task on each Tweet
of the English dataset, we obtain as output

scores(t) = {st(i)}i=0,1,2, (3.1)

where st(i) are respectively the scores assigned to the three labels3. Hence, we at-
tribute the label l to the Tweet t, such as

l(t) ∈ argmax
i∈{0,1,2}

scores(t), (3.2)

i.e., we choose the label with the highest score. The Palm dataset classification pro-
duces the results shown in Fig. 3.1.

We notice that many Tweets are labeled as Neutral. We summarized the possible
reasons that can lead to high neutrality into three principal ones:

• Balance of sentiments: the presence of Negative and Positive words in the same
Tweet could lead to a balance of opposite stances. Therefore, the algorithm
does not detect a particular attitude in these Tweets;

• Tweet’s brevity constraints: due to the peculiar structure of the Tweets, it is more
difficult to detect an attitude from a short text with mainly basic sentences than
from a corpus made by other types of text;

• Sentiment ̸= Opinion: it is crucial to focus on the difference between sentiment
and opinions. It is possible to express a Negative opinion using a Positive at-
titude, for example, by expressing joy for the success of a public campaign
against palm oil. The expression “Opinion Mining” can be misleading in this
context because we are far from detecting opinions using the Sentiment Anal-
ysis task.

In the following, we analyze how sentiment changes over time, how it is related to
a User’s popularity, and finally, prove the missing relation between sentiment and
opinions in our context.

3.1.2 Sentiment dynamics

As shown in Fig. 3.2, where the time evolution of labeled Tweets is plotted, the
Tweets detected as Positive remain stable around 10-15 % of the total. In contrast,
the percentage of Negative Tweets increases over time. It is interesting to appreci-
ate that the highest percentage of Negative Tweets was detected in 2018 when the
biggest viral event happened. This is evidence of the relationship between Negative
sentiment and viral events, confirming the results obtained in [17]. This aspect is
further investigated in Sections 5.3 and 6.2.

30 is Negative,1 is Neutral, 2 is Positive.
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FIGURE 3.1: Pie chart representation of the text classification task re-
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ment remains low and stable through time, while Negative sentiment
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FIGURE 3.3: Pie chart representation of the text classification task re-
sults for the OD. The percentage of Positive labels is higher compared

to the GP case (Fig. 3.1).

3.1.3 Popularity and sentiment

In this section, we are interested in analyzing the relationship between sentiment
and popularity and how the opinion drivers differ from the rest of the Users. In de-
tail, we extracted the statistics on the sentiment of the five Users identified as OD; the
labels are distributed as shown in Fig. 3.3. It is possible to highlight a stronger pres-
ence of Positive attitudes among the OD, compared to the General Public (further
referred as GP). To further investigate this phenomenon, we calculated the average
sentiment for the OD (see Table 3.1). The average is computed as

⟨l(u)⟩ = 1
Nu

∑
t∈u

l(t),

where u is a given User, Nu is the number of Tweets in the dataset created by the
User u, and l(t) is the sentiment assigned to the Tweet t.

To complete the framework, it is also helpful to compare the time evolution of
the OD sentiments with the GP. In Fig. 3.4, the Gaussian smoothing of the sentiment
dynamics is plotted. The two plots differ significantly: after 2015, the OD Positive
Tweets start to grow. The average sentiments do not detect this behavior. One rea-
son for this higher Positive attitude could be identified in seemingly counterintuitive
reasoning: we expect the OD to be the strongest ones trying to transmit anger and in-
terest in their social campaign. Nonetheless, it is possible to state that the OD are not
using the most engaging words, as they are less polarized than the GP. Considering
the Iceland Food campaign (Fig. 2.3), the company did not need to use strong words
such as kill because they are still maintaining a Positive attitude by using words such
as enjoy. The anger and the strong polarization are left to the Users that comment on
this post and spread the campaign among their followers.
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User u Number of Tweets Average entiment ⟨l(u)⟩
IcelandFoods 776 Neutral
GreenpeaceUK 517 Neutral
andreasharsono 130 Negative
ajplus 53 Negative
BusinessInsider 49 Negative

TABLE 3.1: Average sentiment of the OD.
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FIGURE 3.4: Comparison of sentiment dynamics between the GP and
the OD. Proportionally, the OD show a stronger growth in the Positive

sentiment than the GP.

3.1.4 Sentiment analysis and Opinion Mining: are they synonyms?

In this subsection, we present evidence of the discrepancy in the definitions of sen-
timent and opinion. Ad absurdum, let us state that sentiment and opinion are over-
lapped definitions. Then, we expect a one-to-one correspondence between the "ex-
treme" labels (i.e., Positive and Negative) and the two opinions (i.e. being for or against
palm oil). To see if this statement is correct, we used the classification obtained from
Sentiment Analysis to divide the keywords into two subsets (the keywords related
to Positive-labeled and Negative-labeled Tweets4).

As shown in Fig. 3.5, the two subsets present a strong overlap. The same key-
words present a high frequency in both the Positive and Negative Tweets. Users are
concerned about sustainability, deforestation, and preservation of the microclimate
for the life of the orangutans, and they are using both Positive and Negative attitudes.
The only visible difference is the absence of the keywords palmoilkill and killerpalm in
the Positive Tweets. This result indicates that our model is working correctly, identi-
fying Negative words, even without correlations between Sentiment and Opinions.

3.2 Topic Modeling

The so-called Topic Modeling is an important branch of Natural Language Processing,
which aims at discerning and detecting different topics in a text corpus. Both super-
vised and unsupervised strategies can be implemented to achieve this aim. Here,
we chose an unsupervised approach based on Bag-of-Words [23] (BOW). Specifically,
BOW divides the text into multisets of words and assigns the frequency of each

4For the sake of this analysis, we neglect the Neutral labels.
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(a) Positive Tweets (b) Negative Tweets

FIGURE 3.5: Wordcloud of the most common keywords for the two
labeled subsets of the main corpus. In both cases, the keywords refer

to sustainability issues.

word. Therefore, an occurrence matrix (also known as document-term matrix) is cre-
ated as follows

Mi,j = wi,j, (3.3)

where wi,j is the frequency of the word j in the document (here it is a Tweet) i. To
account for the importance of a word for the tweet and also the entire corpus, instead
of using the word counts, we assign weights computed with the so-called Tf-idf
(term frequency-inverse document frequency) [24]. The product of two elements gives
the Tf-idf weights as

tf-idfi,j = tfi,j × idfj, (3.4)

where tf and idf are the term frequency and inverse document frequency, respectively.
The first element, t f , is given by

tfi,j =
ni,j

|di|
, (3.5)

where ni,j is the number of occurrences of the word j in the Tweet i, and di is the
length of the Tweet i. There are many distinct possibilities to calculate idf, and here
we adopt the implementation of Scikit-learn [25], as follows

idfj = log10
|D|

1 + |{d ∈ D : j ∈ d}| , (3.6)

where |D| is the size of the dataset (number of tweets), and |{d ∈ D : j ∈ d}| is
the number of Tweets containing the word j. Eq. 3.6 is a penalty used to reduce the
importance of the words present in many Tweets. Consequently, it focuses on the
words that characterize this particular text. After assigning to each word a weight
using Eq. 3.4, it is possible to create the Tf-idf matrix M’. Then, using the Latent
Semantic Analysis (also known as Truncated Singular Value Decomposition) [26], it
is possible to project the high-dimensional occurrence matrix into two dimensions,
still preserving the similarity among Tweets. The Latent Semantic Analysis, further
referred to as LSA, is a technique that performs the Singular Value Decomposition
(SVD) of the Tf-idf matrix M’ as

M′ = UΣV⊺, (3.7)
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where U and V are orthogonal matrices and Σ is diagonal. Notice that LSA can be
calculated for both M′ or M, but here we choose the Tf-idf matrix, M′. As we are
interested in projecting our data in a lower d−dimensional space (d = 2 for the sake
of visualization), the first d rows of U and V⊺ represent the coordinates of the single
words and the Tweets in the d−dimensional space.

More schematically, here we summarize the entire procedure:

1. text preprocessing: We converted all the words into lowercase, then the Tokeniza-
tion is applied (the RegexpTokenizer from the Natural Language Toolkit [27]).
From the list of tokens, stopwords were removed5. Finally, the Lemmatization is
performed, using the WordNet lemmatization [28]6;

2. tf-idf vectorization: using the package TfidfVectorizer from scikit-learn [25], we
set as parameters max_features = 3, 000, which limits the vocabulary (i.e., the
dimensions of matrix U), to the top n words in terms of tf-idf frequency, as well
as min_df = 10 and max_df = 0.7, which are cut-offs in the number of words.
If a word appears in the corpus less than min_df times, it is ignored from the
vocabulary. Similarly, max_df is a cut-off in the frequency of words. If a word
occurs with a higher frequency than max_df, it is ignored from the vocabulary.
This method returns a sparse matrix (the Tf-idf matrix M’) with dimensions
15, 717, 895 × 3, 000, where the size of the dataset is |D| = 15, 717, 8957;

3. Latent Semantic Analysis: using the package TruncatedSVD from scikit-learn [25]
we set as parameters n_components = 2, which is the dimensionality of the
space in which we want to projected the data, as well as algorithm = randomized,
which determines the type of SVD solver used. We chose the default one, fur-
ther described in [29]. This method returns the matrices U and V, with dimen-
sions respectively 3, 000 × 2 and 2 × 15, 717, 895 (recall that |D| = 15, 717, 895
and max_features = 3, 000);

4. results visualization: matrix V⊺ gives the coordinates in a 2-dimensional space
of all the Tweets. In the case of LSA, the two main directions (called topic 1
and topic 2 in the plot) represent the directions along which there are the high-
est variances. Every Tweet is labeled following the segmentation into Palm,
Coconut, Olive datasets.

Here, we focused our analysis on the visualization of the tweets using LSA.
Fig. 3.6 shows the results obtained. We can notice that the three oils are grouped
differently. Specifically, all the Tweets related to palm oil are found close to the ori-
gin. In contrast, the Tweets about olive and coconut oil spread along the positive
and negative directions on the y-axis. Using this analysis strategy, we could observe
different topics around which the Users debate and estimate the topic similarities
among datasets. We can state that the Olive and Coconut dataset presents a wider
variety of topics. In contrast, the Tweets devoted to Palm are highly monothematic
(i.e., the debates are predominantly related to sustainability and deforestation).

5The list of stopwords is provided by the Natural Language Toolkit [27].
6The WordNet lemmatization [28] consists of searching a given word in the WordNet database,

and, subsequently, substituting the word with the correspondent lemma. If the word is not found in
the dataset, the lemmatization process returns the original word.

7The dataset is contains all the Tweets of Palm, Coconut, Olive.
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FIGURE 3.6: Results of LSA using the Tf-idf vectorization. The high-
dimensional occurrence matrix M is projected along two directions,
representing the main distinctions into topics. Each point in the plot

represents a Tweet of the dataset, labeled as the oil it refers to.
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Chapter 4

Network science

4.1 Building blocks of Network Science

Complexity science is based on the need to characterize the collective phenomena
arising from complex systems. Among the branches of complexity science, a funda-
mental approach is the one developed by Network Science, which aims to recognize
patterns in the interactions among agents, studying the network structure underly-
ing these real systems. Following the interdisciplinary spirit of complexity science,
there are many applications of Network Science throughout the different fields of
research [5] (e.g., physics, math, biology, computer science, and many others). Schol-
ars have developed mathematical and statistical tools to analyze the networks and
to underline a common universality leitmotif throughout the disciplines. Networks
(or graphs) are composed of nodes and edges, where edges create connections be-
tween nodes. In the following, we describe some Network Science basics that can be
useful for our particular context. Taking a graph G = (V, E), where V is the set of
nodes, and E is the set of edges1, we can define the following quantities [30]:

• a graph is undirected when there is not a precise direction of the edges, while it
is directed if the edges are oriented;

• the degree ki of the node i is the number of edges that are connecting the node
to other nodes (we distinguish between in-degree and out-degree in the case of
directed graphs, which are respectively the number of edges ongoing and out-
going from a given node);

• the degree distribution provides the probability that a randomly chosen node
has a given degree. In many real networks, it is characterized by a power-law
distribution, as we are going to explain further in the next section;

• a bipartite network is a graph whose nodes can be divided into two disjoint
subsets, and the edges connect nodes of different subsets uniquely;

• a weighted network is a graph whose edges are weighted, while an unweighted
network has all the edges with the same weight (wij = 1 ∀ (ij) ∈ E);

• the adjacency matrix is a network representation in which each matrix element
is given by

Aij =

{
wij if (ij) ∈ E
0 if (ij) /∈ E

where wij is the weight of the edge (i, j);

1A set of edges of an undirected graph is defined as E ⊆ {{i, j}| i, j ∈ V and i ̸= j}. It differs from
the definition in the case of a directed graph; in the former case, it is an unordered set, while in the
latter, it is ordered.
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• a connected component is a subset of connected nodes (i.e., starting from each
node in the subset, it is possible to reach with a path all the other nodes in the
same subset). In the case of directed graphs, we distinguish between a strongly
and weakly connected graph. The first is defined as a graph where it is possible
to reach any node from every starting point, considering the directionality of
the edges. The latter definition is similar, but every node is reachable from
each starting point only in the undirected version of the same graph.

Since the well-known Millgram experiment [31], Network Science has been ap-
plied to social systems and, after the rise of the Internet, to social media. It is possible
to identify different entities that can concur for the role of nodes and edges, in par-
ticular, we extracted three types of networks from our Twitter dataset, characterized
as follows:

• co-mentions network: nodes represent Users, and the edges are created between
Users mentioned in the same Tweet. The edge weights are proportional to the
frequency of the co-mentions in the dataset. The idea behind the construction
of this network is to bind together those Users who should, in some ways,
discuss together around a topic;

• co-hashtags network: nodes represent hashtags, and the edges are created be-
tween hashtags used in the same Tweet. The edge weights are proportional to
the frequency of the co-occurrence of hashtags. We constructed this network
to highlight the relationships among the hashtags;

• user-hashtag network: nodes represent Users and hashtags, and the edges are
created between Users and the hashtags used in their Tweets. The edge weights
are proportional to the frequency of each event. This network underlines the
relationships between Users and the topics they discuss.

It is possible to consider two different perspectives: first, the static perspective,
where we study the time-independent graphs, taking into account the nodes and
the edges created through time as immutable. Afterward, we study the temporal ver-
sion of these graphs. In the latter, we are more concerned about time evolution, the
generative processes, and how the burstiness of human activities can influence the
network structure and its main features.

4.2 Community detection

The type of real networks we are interested in often present some organization in
substructures, the so-called communities2. Community detection is a task that is ac-
tively in development, and even the definition of what a community is can vary.
As Fortunato et al. state [32], there are two main approaches for defining a commu-
nity: the classical approach sees the communities as denser subgraphs well separated
from each other; therefore, it is more focused on counting the internal and external
edges of a community, while the modern approach is more focused on considering
the probabilities that a node has of sharing edges with the nodes in a community;
this perspective assumes that the probability of being connected to a node within
the same community is higher than the probability of being connected to an exter-
nal node. In the latter approach, the procedure aims to find a preferential linking

2In other contexts, they are called clusters or modules.
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pattern [32]. Therefore, it is necessary to introduce a generative model3 to compute
the probabilities of having edges between nodes. The most used generative model
for community detection is the Stochastic Block Model [34], which is a widely used
algorithm that divides a network into subgroups called blocks. Take N nodes and M
blocks: the probability of having an edge between the nodes i and j

P(⟨ij⟩ ∈ E) = pgi ,gj

depends on the gi = 1, . . . , M which is the group membership of the node i. The
stochastic block matrix is a M × M matrix made by the elements pgi ,gj , and it is pos-
sible to extract further insights into the network’s community structure. However, it
is only one of the many possible approaches to tackle this challenging task.

We decided to stick to a more classical approach, using an algorithm based on
modularity optimization. For the sake of further analysis, we define two quantities:

• Modularity [35]

Q =
1

2L ∑
ij

(
Aij −

kik j

2L

)
δ
(
Ci, Cj

)
where we sum over all the pairs of vertices i and j the difference between the
actual adjacency matrix elements Aij and the degree-preserving null model’s

expected number of edges between nodes i and j, which is pij =
kik j
2L

4. Mod-
ularity is a measure of how much a network is well-divided in communities
with respect to its randomized version and Q ∈ [−1/2, 1]. The higher the mod-
ularity, the better the partition, Q = 0 means that there is not any partition, and
Q < 0 means that every node is in a different partition;

• Nestedness is given by the maximum eigenvalue of the adjacency matrix of the
network λmax [36]. It is a measure of the nested interaction structure and the
self-organization patterns.

A widely-used community detection algorithm is the so-called Louvain algorithm [37].
It is a greedy optimization based on modularity, described in detail in the following.

1. Assign a different community to each node;

2. Calculate the modularity change 5 by moving the community of node i in each
of the communities of its neighbors j;

3. Move the node i in the community, which gives the largest gain. Otherwise, if
the change in modularity is smaller or equal to zero, do not move the node i;

3A generative model describes how a particular type of network is generated. Another example
of a generative model is the Barabasi-Albert model [33], which produces a network using preferential
attachment mechanisms.

4Ci is the community of node i, L is the total number of edges in the graph. Aij is the adjacency
matrix element that gives information about the connection between nodes i and j, while ki is the
degree of node i.

5The change in modularity determined by moving the node i in the community of node j is given
by [37]

∆Q =

[
Σin + ki,in

2L
−

(
Σtot + ki

2L

)2
]
−

[
Σin
2L

−
(

Σtot
2L

)2
−

(
ki
2L

)2
]

,

where Σin is the sum of the edge weights internal to the community of node j, Σtot is the weighted
sum of the edges between incoming in the community of j. ki is the degree of node i, while ki,in is the
number of edges from node i to nodes of the same community of j (included j).
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4. Repeat 2 and 3 until there is no gain in modularity anymore;

5. Create the induced graph (i.e., the graph made by the communities as nodes
and edges within communities as self-loops);

6. Repeat the optimization on the induced graph until there is no gain in modu-
larity.

Modularity optimization is an NP-hard task, but this algorithm is a widely-used ap-
proximation, even if modularity has some resolution limitations. Furthermore, it
is strongly dependent on the size (number of nodes and edges) of the network [32].
Still, we can extract some valuable insights from this algorithm’s application. Specif-
ically, in Section 4.5, we analyze the correlation between the self-organization pat-
terns and the modular structure of the network, further characterizing the meaning
of a viral event by studying the structure of the temporal networks.

4.3 Real-data networks

In this section, we describe the three networks and compare them with the expected
results from the literature. It was shown in [38] that heavy-tailed degree distribu-
tions characterize real networks due to the presence of hubs, which are nodes with
a very high degree compared to the other nodes. For example, the friendship net-
works would be characterized by more popular people (i.e., with more friends) and
less famous people, usually the majority. Therefore, there is a high presence of nodes
with a small degree and an exceptional presence of nodes with a high degree. For
this reason, we fit the degree distribution of our networks with heavy-tailed distri-
butions (power-law and truncated power-law), and we compare the scaling expo-
nents and the average degrees with the literature. This way, we can identify which
regime our networks can be classified. We further describe the different regimes in
Section 4.4.

4.3.1 Co-mentions network

The co-mentions network is built as follows. We collected all the Tweets with two
or more mentions (i.e., the usernames present in the Tweet corpus that follows the
@) and added them to the list of nodes. An edge is created between all the user-
names present in the same Tweet6, if the edge was already present, the weight of
that edge is increased by one. The network comprises 218,762 nodes and 1,079,032
edges, the average degree is 9.9, and the maximum degree is 7,459. As we can see
from the strong discrepancy between these values, we expect a strongly heteroge-
neous graph, different from the random network approximation [39]. The number
of connected components in the network is 20,812, and the largest connected com-
ponent comprises 164,384 nodes and 1,020,456 edges (respectively, 75% and 95% of
the total number of nodes and edges). In the following, we only consider the largest
connected component, as it includes a high percentage of the total size of the graph.

Table 4.1 shows the nodes with highest degree. These Users are mentioned many
times by the Users, and they include companies (nestle, icelandfoods, nutellaglobal),
NGOs (wwf, greenpeace), and pages specifically related to palm oil (rspoTweets, palm-
choice, orangutans, palmoildetect). It suggests that the act of mentioning someone aims

6If there are more than two mentions, we created an edge for all the possible combinations.
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FIGURE 4.1: Degree distribution for the co-mentions network: the
blue and the red dotted lines represent the fitted power-law and trun-
cated power-law, respectively, while the green scatter plot represents

the empirical data in logarithmic binning.

Username (node) Number of mentions (degree)

orangulandtrust 7,459
rspoTweets 6,968
palmchoice 6,061
wwf 4,979
greenpeace 4,205
nestle 4,181
icelandfoods 4,128
orangutans 3,939
nutellaglobal 3,758
palmoildetect 3,554

TABLE 4.1: Nodes of the co-mentions graph (largest connected com-
ponent) with the highest degree.

to require the attention of that User, which can be useful to ask for new sustainabil-
ity policies for the companies or to support a social campaign launched by an NGO.
Then, it is possible to analyze the degree distribution of the largest connected com-
ponent. As shown in Fig. 4.1, the degree distribution is well-fitted by heavy-tailed
distributions, in particular, a truncated power-law with exponent α = (2.49 ± 0.02)
is the best fit.

4.3.2 Co-hashtags network

The co-hashtags network is built similarly to the co-mentions network, but instead
of considering Users, we consider hashtags. The network comprises 56,328 nodes
and 327,894 edges, the average degree is 11.6, and the maximum degree is 16,106.
We expect the presence of hubs in the network again. The number of connected
components is 3,021, and the largest connected component counts 48,941 nodes and
321,621 edges (respectively 87% and 98% of the whole graph’s nodes and edges). We
further investigate the largest connected component again, as it is a good sample of
the whole graph.

Table 4.2 shows the nodes with the highest degree. The hashtags are very similar
to the most common ones analyzed in previous chapters, even if we measure the
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FIGURE 4.2: Degree distribution for the co-hashtags network: the
blue and the red dotted lines represent the fitted power-law and trun-
cated power-law, respectively, while the green scatter plot represents

the empirical data in logarithmic binning.

Hashtag (node) Co-occurrence (degree)

palmoil 16,106
palm 6,015
oil 4,723
deforestation 4,087
indonesia 3,805
malaysia 3,257
sustainability 2,672
sustainable 2,630
environment 2,511
orangutans 2,317

TABLE 4.2: Nodes of the co-hashtags graph (largest connected com-
ponent) with the highest degree.

co-occurrence in this case. Once again, it is possible to stress the Users’ attention on
the environmental issues, as all these hashtags are related to deforestation and sus-
tainability. Then, we can consider the degree distribution of the largest connected
component, as shown in Fig. 4.2, which is well described by heavy-tailed distribu-
tion. In particular, a truncated power law with scaling exponent α = (2.25 ± 0.01) is
the best fit.

4.3.3 User-hashtag network

The last network is constructed in the following way. We consider only the Tweets
where at least one hashtag is present. We create two subsets of nodes made by the
usernames related to these Tweets and the hashtags used. Then, the edges are cre-
ated by connecting each User with the hashtags they used. Therefore, the graph
is bipartite by construction. It comprises 405,564 nodes and 1,010,582 edges, the
average degree is 5.0, and the maximum degree is 91,166. This graph is again a
good candidate for having a heavy-tailed distribution due to the presence of hubs.
The number of connected components is 12,860, and the largest connected compo-
nent comprises 371,493 nodes and 988,858 edges (92% and 98% of the whole graph’s
nodes and edges).



Chapter 4. Network science 26

101 102 103 104 105

degree k

10 10

10 8

10 6

10 4

10 2

p(
k)

data
power law
truncated power law

FIGURE 4.3: Degree distribution for the user-hashtag network: the
blue and the red dotted lines represent the fitted power-law and trun-
cated power-law, respectively, while the green scatter plot represents

the empirical data in logarithmic binning.

Node Degree

palmoil 91,166
deforestation 27,498
orangutans 18,725
indonesia 14,295
malaysia 10,464
orangutan 10,245
palm 9,556
sustainable 7,895
rainforest 7,844
rspo 7,027

TABLE 4.3: Nodes of the user-hashtag graph (largest connected com-
ponent) with the highest degree.

Table 4.3 shows the nodes with the highest degree. It is possible to notice that
there are no Users among them. It is more probable that a popular hashtag is used
many times than a User using many hashtags, considering the limited number of
Tweets that the Users are posting concerning this topic. The degree distribution of
the largest connected component is well-fitted by a power-law, as shown in Fig. 4.3,
with scaling exponent α = (2.420 ± 0.008).

4.4 Degree distribution properties: an overview

Table 4.4 shows a summary of all the features extracted from the giant components
of these three networks. They differ significantly in size; therefore, it is not easy
to measure size-dependent quantities. For this reason, in the next section, we fur-
ther investigate the temporal networks to appreciate how size influences the network
structure. We now compare the degree distributions. The first two networks are
well described by truncated power laws, while a power law better describes the last
one. As the p-values suggest, there is a preference for the truncated power law for
the first network. In contrast, for the latter two networks, the p-values are p ≥ 0.5.
Therefore, both distributions are acceptable, and there is no preference for one of the



Chapter 4. Network science 27

two. Furthermore, the null hypothesis is accepted at 95% of accuracy in all three
cases, as the KS distances are smaller than the critical values from the p-value table.

One possibility to distinguish the topological regimes is to analyze the average
degree ⟨k⟩ of the network [30]:

• 0 < ⟨k⟩ < 1 (subcritical regime): few links, characterized by small connected
component, absence of hubs;

• ⟨k⟩ = 1 (critical point): separates the regimes, emergence of a largest connected
component with hubs;

• ⟨k⟩ > 1 (supercritical regime): coexistence of isolated, small connected compo-
nents and a giant component;

• ⟨k⟩ > ln N (connected regime): all the nodes are part of the largest connected
component, the graph is fully connected.

Co-mentions and User-Hashtag networks are part of the supercritical regime, while
the Co-hashtags network is in the connected regime. These results are compatible
with the literature [5]. It was shown that many real networks are either supercritical
or fully connected due to their heterogeneous structure and the presence of the hubs.

Another way of classifying the networks is by analyzing the properties of the
scaling exponent of the heavy-tailed distribution. We can identify some regimes [30]
again:

• α ≤ 2 (anomalous regime): the average degree and the second moment diverge,
while the largest degree7 would be bigger than the total number of nodes in
the network. Therefore it is not physically possible;

• 2 < α < 3 (scale-free regime): the average degree is finite, while the second
moment diverges;

• α > 3 (random network regime): both the average degree and the second moment
are finite.

All three networks we are considering are in the scale-free regime, and a summary
of the two properties is shown in Fig. 4.4. Some discrepancies can be identified even
if the networks show the characteristics we expect from real networks. The bipartite
network is significantly less connected than the others, which is motivated by the
construction constraints (i.e., it is impossible to connect a node with another node in
the same subset). Another interesting difference is the higher connectedness of the
Co-hashtags network than the Co-mentions one. This can be explained by noticing
a more substantial variety of the User involved, while the hashtags used for this
particular phenomenon are limited. In the following, we study the time evolution of
two measures of the network structure, modularity and nestedness, by considering
the temporal version of these networks.

4.5 Temporal networks: evolution of modularity and nested-
ness

We present the analysis of the temporal networks generated from the empirical dataset,
focusing our attention on the time evolution of modularity and nestedness, defined

7The size of the largest degree is given by kmax = N1/(α−1)
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Co-mentions Co-hashtags User-hashtag

Average degree 9.9 11.6 5.0
lnN 12.3 10.9 12.9
Number of nodes (GC) 164,384 48,941 371,493
Number of edges (GC) 1,020,456 321,621 988,858
Best distribution truncated power-law truncated power-law power-law
p-value 0.04 0.5 0.9
degree cutoff 64 10 7
D 0.01 0.02 0.01
α 2.49 2.25 2.420
σ 0.02 0.01 0.008

TABLE 4.4: Comparison of the three networks. lnN is the logarithm of
the total number of nodes in the networks, while the fitting procedure
is done on the largest connected component (GC) of each graph, the
p-value measures the significance of choice between candidate distri-
butions, the degree cut-off is the lower bound chosen by minimizing
the Kolmogorov-Smirnov distance D, α is the scaling exponent and σ

is its standard error.

1.5 2.0 2.5 3.0 3.5
Scaling exponent of degree distribution

0.4

0.5

0.6

0.7

0.8

0.9

1.0

k ln
N

Co-mentions

Co-hashtags

User-hashtag

Supercritical regime

Connected regime

Anomalous
regime

Scale-free
regime

Random network
regime

FIGURE 4.4: Graphical visualization of the regimes identified by the
average degree and the scaling exponent of the degree distribution.
On the y-axis, the average degree is normalized by the natural loga-
rithm of the number of nodes, assuming that none of these networks
has an average degree smaller than 1. Therefore the subcritical regime

is not shown.
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in Section 4.2. We focused on the Co-hashtags and the User-hashtag networks be-
cause the Co-mentions network’s physical interpretation of these measures is un-
clear. In detail, to generate the temporal networks, we proceeded as follows. We
identified sliding windows of three years, then extracted a frame of each network in
these sliding windows, i.e., considering only the Tweets in that period. Furthermore,
to limit the side effects due to the network size (modularity is strongly dependent
on the average degree [32]), we decided to fix the number of nodes per time win-
dow. In particular, for the Co-hashtags network, we considered the 1000 most used
hashtags per time window, while for the User-hashtag network, we considered the
500 most active Users and the 500 most used hashtags per time window. We are only
interested in keeping track of the global properties of the temporal networks. There-
fore, we are not interested in considering the evolution of specific communities, and
the approximation to the 1000 nodes with the highest degree is the most suitable for
our scopes. Modularity relaxes towards values below 0.2 for both networks, with a
common relaxation time of five-time windows. As shown in Fig. 4.5, we can observe
that the two networks exhibit a similar trend for both measures. While modularity
decreases over time, nestedness shows the opposite behavior and keeps growing. In
contrast, nestedness’ starting values are below 20, while the growth is more robust
in the case of the Co-hashtags network. We could sum up the physical interpretation
of these behaviors in the following reasoning:

• The divergent trends of the two measures suggest that the emergence of viral
events is strongly related to non-modular and well-nested structures. This is
in agreement with previous studies [36], which suggests that a well-defined
community structure does not allow a significant spread of information. In
contrast, the spread of information is favored by the self-adaptation of internal
structures and hierarchies due to a higher nestedness;

• In the case of the Co-hashtags network, the diversity of ideas, characterized by
the presence of well-defined communities, is missing through time. The initial
variety collapses through stable values, and no innovation is brought from the
hashtags’ point of view;

• Finally, the strong decrease in modularity in the case of the User-hashtag net-
work suggests that, even in the presence of new Users interested in the topic,
there is a lack of new ideas. The diversity among communities is relaxing to
an asymptotic value.

More generally, our results suggest that viral events such as palm oil campaigns can
be described as the advent of highly-nested structures. These structures minimize
competition among individuals, as shown in [40], converging to a common point of
view by significantly reducing the diversity of ideas and constraining the leading
actors of public opinion.
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(a) Co-hashtags
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(b) User-hashtag
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(c) Modularity
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FIGURE 4.5: (a)-(b): Normalized time evolution of modularity and
nestedness for temporal networks, realized on time windows of three
years. The values are given as percentages of the maximum value
to display the change in time, more than the absolute values. (c)-(d):
Time evolutions of modularity and nestedness. Here, values are ab-
solute to display the change in magnitude in the different networks.
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Chapter 5

Interevent time distribution

An interesting branch of Probability Theory is dedicated to the study of waiting time
distributions, which we address as Interevent Time (IET) Distribution [41]. Classi-
cally, the Poisson process [42] was considered the best description for the waiting
time distribution. Specifically, it is a memoryless process with a probability density
function of the IETs in the exponential form

p(τ) = λe−λτ (5.1)

where τ is the interevent time and λ = 1
⟨τ⟩ is the rate of activity. It is broadly ac-

cepted that in many human activities, the IET distribution strongly deviates from
the Poissonian approximation (Vasquez et al. [43] first proved it). Human actions
are far from being performed at a constant rate, as a Poisson process would pre-
dict. Instead, they are characterized by burstiness and jagged peaks of activity. As
we confirm with the experimental results, human activities are better described by
heavy-tailed distributions [11]. We considered two possible candidate distributions:
the power-law, with probability density function1

p(τ) ∝ τ−α (5.2)

where α is the scaling parameter [44], and the truncated power-law2

p(τ) ∝ τ−αe−λτ (5.3)

which is a power law with an exponential cut-off [44]. There are many examples
of human activities in a virtual environment with heavy-tailed IETs distributions:
email activity patterns [43], contagion processes, financial markets evolution [45],
web browsing [46], opinions on social networks [47].

In our context, the IET is defined as the time interval between two Tweets con-
taining the same hashtag. In the following sections, we analyze the IET distribu-
tions of the most common hashtags, fitting them with heavy-tailed distributions
(Section 5.1). Second, we visually explore the emergence of viral events through
the time maps (Section 5.2). Finally, we compare the evolution of the IET with the
time evolution of sentiment (Section 5.3).

1The normalization constant is given by C = (α − 1)τα−1
min

2C = λ1−α/Γ(1 − α, λτmin)
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5.1 Heavy-tailed distributions of IET

To perform this analysis, we selected the ten most used hashtags (in descending or-
der): palmoil, deforestation, orangutans, palmoilkills, indonesia, palm, killerpalm, sustain-
able, malaysia, rspo. We maintained the hashtags palmoil and palm because they can
be seen as a measure of the general behavior of the dataset. As previously stated, the
IET is the time interval between two consecutive Tweets containing a given hashtag.
In practice, a smaller IET corresponds to a more substantial interest in that hashtag.
Considering the most common hashtags, we expect two types of behaviors. (i) Ei-
ther they are used frequently and uniformly throughout the dataset, characterized
by a Poisson process, or (ii) there is a burst peak of interest, and afterward, they
are forgotten. Heavy-tailed distributions characterize the latter case. Therefore, we
expect to find this bursty behavior.

Using the power-law package [48], which allows visualizing, fitting, and compar-
ing heavy-tailed distributions, we obtained the following results for the most com-
mon hashtags (shown in Fig. 5.1). Here we describe the simple procedure done to
determine the best fit:

1. Compute the log-likelihood ratio R between two candidate distributions (power-
law and truncated power-law) and their significance value p.

2. The sign of R establishes which distribution is more likely to fit the data. At
the same time, p quantifies how accurate the decision is (p ≥ 0.5 indicates that
neither distribution is better than the other).

3. After choosing the best distribution, it is necessary to choose the optimal value
of τmin

3, which is computed by minimizing the Kolmogorov-Smirnov distance
(KS)4 between the data and the fit.

As shown in Table 5.1, the distributions of seven hashtags are better described
by truncated power-laws, while power-laws describe just three. Nevertheless, the
p-values of the comparison between candidate curves are exceptionally high (ne-
glecting the “killerpalm" case), which means that both the truncated power law and
the power law are good fits for these empirical distributions, without a strong prefer-
ence for one of the two hypotheses. Furthermore, the null hypothesis is accepted at
95% of accuracy in all cases, and it has been done by comparing the KS distance with
the critical values from the P-value table5. All the values of the scaling exponents are
bigger than 1, as expected. Distributions with α < 1 are not normalizable. Neglect-
ing the “killerpalm” case again, we can notice that 2 < α < 3. This is the scale-free
regime, where the first moment of the distribution is finite, while the higher mo-
ments diverge. We should consider the cases “rspo” and “indonesia” because their
scaling exponent is compatible with α = 3, which is the critical point between two
different regimes. For α > 3, the second moment of the distribution does not di-
verge.

3τmin is the lower bound for the scaling range: it has to be fixed because the power-law is not
defined for τ = 0.

4KS statistics is defined as [44]

D = max
τ≥τmin

|S(τ)− P(τ)|

where S(τ) is the CDF for the empirical data, while P(τ) is the CDF for the heavy-tailed distribution
we are considering as hypothesis (null model).

5P-value table can be found at this URL.

https://www.statisticshowto.com/wp-content/uploads/2016/07/k-s-test-table-p-value.png
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Hashtag Best distribution n p-value τmin D α σ

killerpalm truncated power-law 60 0.1 0.001 0.02 1.428 0.004
palmoilkills truncated power-law 17 0.4 86 0.03 2.4 0.1
deforestation truncated power-law 18 0.5 12 0.02 2.47 0.04
sustainable truncated power-law 15 0.6 40 0.03 2.52 0.07
palmoil power-law 27 0.9 1 0.02 2.55 0.01
orangutans truncated power-law 14 0.4 36 0.03 2.64 0.07
malaysia power-law 17 0.9 47 0.04 2.80 0.08
palm truncated power-law 19 0.6 16 0.03 2.80 0.05
rspo power-law 16 0.9 56 0.04 2.9 0.1
indonesia truncated power-law 15 0.9 62 0.03 2.9 0.1

TABLE 5.1: The fit results: n is the number of bins considered (the
number of scatter points in Fig. 5.1). p is the significance value of the
comparison between candidate distributions, τmin is the lower bound
of the scaling range [48], D is the Kolmogorov-Smirnov distance, α is

the scaling parameter, σ is the standard error.6

The scaling exponents of the IET distributions can be interpreted as a measure
of memory, in which hashtags that are described by distributions with bigger scaling
exponents are forgotten faster than the others. They present a lower probability of
showing bigger IETs than the other hashtags. It is strong evidence that, even if hu-
man activities are characterized by burstiness and ease of forgetting, their behavior
strongly depends on the attention given to a particular social or political issue. Look-
ing at two specific cases, while “indonesia” is a topic that presents a lower peak of
interest but is more uniformly considered in time, “killerpalm” was probably used
in a specific public campaign and forgotten afterward. We further analyze these be-
haviors in the following. We compare the scaling exponents with those related to
the cascade distributions to develop a more general framework and characterize the
different regimes.

5.2 Time maps: a tool for multiple timescales visualization

We are interested in visualizing IETs that differ significantly. An insightful way to
visualize discrete events on different timescales is by using time maps [49].

Consider a set of events7 E = {ei for i = 1, . . . , n}. The IETs are the time
intervals between the events: denote them as IET = {ti for i = 0, . . . , n − 1}.
The time map is realized by representing each event ei as a point in the plane, with
coordinates ei = (ti−1, ti) for i = 1, . . . , n − 1. A graphical representation of the
time map construction is shown in Fig. 5.2. A time map can be divided into four
regimes:

• low x, low y coordinates (viral event region): the events happen one next to the
other, the time intervals are small before and after any event in this region, and
the IETs are quite uniform;

6σ = α−1√
n + O(1/n)

7In this paragraph, we intend as an event a Tweet that contains a particular hashtag.
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FIGURE 5.1: IET distributions of the ten most used hashtags. The red
and blue dashed lines represent the fitted power laws and truncated
power laws, while the scatter plots represent the data we are fitting.

• low x, high y coordinates (pre-viral event region): the time interval before the
event is bigger than the one after the event; the interest in the topic is increas-
ing, and we are possibly approaching a viral event;

• high x, low y coordinates (post-viral event region): the time interval before the
event is smaller than the one after the event; the topic is becoming less inter-
esting, a viral event has possibly just happened;

• high x, high y coordinates (relaxed region): the time intervals are big before
and after the event, with uniform values. The interest in the topic is low and
constant.

As shown in Fig. 5.3, these are the time maps for the most common hashtags. We
can visualize the differences in the behavior of the hashtags. orangutans, indonesia,
malaysia, rspo have a peak of interest around 2018, when the Iceland Foods campaign
spread out; palmoilkills had spread just in 2016, while it is not mainly present in other
years; palmoil and deforestation are largely present in the whole dataset. Therefore, we
cannot identify a precise peak of interest, as the scatter points strongly overlap. Palm
and sustainable do not present strong evidence of viral events, as they are vaguely
used throughout the dataset. killerpalm has a peculiar behavior because it was mainly
used during a probable viral event in 2016. It was forgotten in the next years and
used again around 2021.

5.3 Viral events and Negative sentiment

In Section 3.1.2, we showed that it is possible to relate the emergence of a viral event
to sentiment dynamics. More specifically, the growth of attention on a topic is fol-
lowed by an increase in the Negative attitude. Another way to highlight the relation
between a change in sentiment and the emergence of viral events is by analyzing the
time evolution of sentiment and the IETs. Next, we define two quantities:
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FIGURE 5.2: (a): graphical representation of the time intervals be-
tween Tweets containing a given hashtag. (b): graphical represen-
tation of the time map construction. Each event has the time be-
fore the event as an x-coordinate and the time after the event as a

y-coordinate.
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• weighted sentiment:

⟨l(t)⟩ = ∑2
i=0 si · i

∑2
i=0 si

,

where i ∈ [0, 2] is the sentiment label and si the related score;

• IET rolling average: a set {ri(w)} for i = 1, . . . , n − 1 where

ri(w) =
1
w

i+w−1

∑
j=i

tj

is the rolling average over a window of size w, tj is the j-th IET and n is the
total number of IETs.

As shown in Fig. 5.4, it is possible to compare the time evolution of the IET
rolling average and the weighted sentiment. Every hashtag presents a different be-
havior, as the weighted sentiment firmly varies. From the hashtag that can be de-
fined as mainstream 8, no further insights can be found. They never present an intense
viral event, which would be characterized by a sudden decrease in the IET rolling
average. Therefore, these cases have no strong correlation between IET and senti-
ment. Nevertheless, for the so-called viral hashtags9 an interesting behavior emerges.
It is possible to observe that there are parts in which the IET remains close to zero
for a long number of Tweets, and these parts correspond to a sudden decrease of the
weighted sentiment. It is interesting to show that viral events regarding sustainabil-
ity and social issues are strongly related to a Negative attitude and strong, Negative
tones.

8palmoil, deforestation, palm
9indonesia, sustainable, malaysia, rspo
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FIGURE 5.4: Time evolution of the IET and sentiment’s rolling aver-
ages for the most common hashtags. The IET is normalized, such that
ri ∈ [0, 1] and the weighted sentiment is ⟨l(t)⟩ ∈ [0, 2]. We suggest a
strong correlation in the "viral hashtags" between shorter IETs and a

drop in the weighted sentiment.
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Chapter 6

Cascade size distribution

Cascade size statistics is a topic broadly studied in many research fields. It can be re-
lated to many phenomena, such as neuronal firings mechanisms [50], earthquakes [51],
fractures in porous media [52], magnetic systems [53], spreading of diseases [54] and
information [55] among individuals. It is possible to generically define a cascade as
the series of events generated as consequences of a first significant event. There are
many possible definitions of a cascade in practice, as this concept applies to various
topics. Many features of the cascades were studied through the years. For exam-
ple, the (average) cascade shape [56], whose symmetry strongly depends on the na-
ture of the phenomenon (i.e., if it is Poissonian or not), and several models, aimed
to describe the dynamics of the cascade phenomenon, were developed. The first,
paradigmatic example is the threshold model developed by Watts [57], which initi-
ated further developments, including models considering the underlying network
structure [58].

In our particular context, it is possible to define the cascade size (CS) for two
different quantities:

• hashtags cascade CS(h): number of Tweets in a time window containing a given
hashtag h;

• sentiment cascade CS(s): number of Tweets in a time window labelled by a
given sentiment s.

In the following, we analyze the cascade size distributions by fitting heavy-tailed
distributions on the empirical data. With the first definition (hashtags cascade), we
compare the scaling exponents of the cascade distributions for the most common
hashtags (Section 6.1), completing the framework of the IET distributions and pro-
viding another tool to interpret virality. Using the second definition (sentiment cas-
cade), we analyze the virality of the different sentiments, bringing another evidence
of the relationship between viral events and negative sentiment (Section 6.2).

6.1 Hashtags cascade

Looking at the time evolution of the cascade size (Fig. 6.1 represents the time evo-
lution of cascade size in the case of the hashtag palmoil), it is possible to observe
that there are sudden increases in the cascade size, indicating the emergence of viral
events. We analyzed the CS distributions similarly to the IET distributions, using
the fitting procedure described in Section 5.1, as shown in Fig. 6.2. Table 6.1 shows
the fitting parameters resulting from the analysis. The best distribution is the power
law for all the hashtags, except for killerpalm and orangutans. Still, the significance
value p is bigger than 0.5 for all of them, except for orangutans. Therefore, there is not
a strong preference between the two candidate distributions, and they both describe
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FIGURE 6.1: Time evolution of the cascade size for the hashtag pal-
moil. The cascade size CS(h) is calculated as the number of Tweets

per day containing a given hashtag h.

Hashtag (h) Best distribution n p-value CSmin(h) D α σ

killerpalm truncated power-law 24 0.8 19 0.08 2.01 0.09
orangutans truncated power-law 17 0.5 14 0.03 2.26 0.06
deforestation power-law 19 0.9 20 0.02 2.57 0.07
malaysia power-law 23 0.8 7 0.02 2.61 0.07
palmoilkills power-law 17 0.9 56 0.04 2.8 0.2
indonesia power-law 16 0.9 15 0.03 2.93 0.09
rspo power-law 18 0.9 14 0.04 3.1 0.1
palmoil power-law 12 0.9 103 0.02 3.16 0.07
sustainable power-law 16 0.9 18 0.03 3.9 0.3
palm power-law 11 0.9 17 0.03 4.3 0.2

TABLE 6.1: The fit results: n is the number of bins considered (the
number of scatter points in Fig. 6.2). p is the significance value of the
comparison between candidate distributions, CSmin(h) is the lower
bound of the scaling range [48], D is the Kolmogorov-Smirnov dis-

tance, α is the scaling parameter, σ is the standard error.

well our empirical data. It is confirmed by the Kolmogorov-Smirnov test, which is
below the critical value in all the cases. Therefore, the null hypothesis is accepted at
95% of accuracy. The scaling exponents are comprised of different ranges, indicat-
ing different behaviors of these distributions. When 2 < α < 3, the average is finite
while the second moment is not. We observe a significant difference in the cascade
sizes; there are few events with a bigger size. This is less evident for the distributions
with α > 3, where the first and the second moment are both finite. In this case, there
is less discrepancy in the size of the different events, and there are fewer events with
a bigger size (or more events with a bigger size, still, there is less discrepancy in the
sizes of the events). The scaling exponent α is a measure of the intensity of a viral
event and the lower it is, the higher the virality of a given hashtag. In Chapter 7, we
fully characterize the virality of the most common hashtags.
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6.2 Sentiment cascade

As defined in Chapter 6, the sentiment cascade is given by the number of Tweets in
a time window1 labeled by a given sentiment. Fig. 6.3 shows the three empirical dis-
tributions obtained and the relative results of the fitting procedure with heavy-tailed
distributions. As shown in Table 6.2, the Negative cascade is described by a truncated
power-law. It was found to better describe the distribution than the power-law due
to the p-value lower than 0.5. The Neutral and Positive cascades are well described by
both distributions, as the p-value is bigger than 0.5. The null hypothesis is accepted
with an accuracy of 95% in all the cases. Therefore we can assume that the empirical
distributions are well-described by these heavy-tail distributions above the lower
bound CSmin(s). Regarding the scaling exponents, we can observe that Negative cas-
cade is characterized by 2 < α < 3. Therefore, we expect the Negative Tweets to be
more viral than the other labeled Tweets. Furthermore, the Positive cascade exponent
is still in the same regime of the Negative one, but it is close to the critical point α = 3.
It seems that the Positive Tweets are less viral than the Negative ones. In contrast, the
Neutral cascade exponent is in the regime α > 3. Our results suggest that the Neutral
Tweets are not part of viral events or are not particularly relevant to the discussion.

1In our analysis, we considered a time window of one day.
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Label (s) Best distribution n p-value CSmin(s) D α σ

Negative truncated power-law 17 0.2 403 0.02 2.59 0.05
Neutral truncated power-law 11 0.8 621 0.02 3.3 0.1
Positive power-law 15 0.9 152 0.02 2.97 0.06

TABLE 6.2: The fit results, where n is the number of bins considered
(the number of scatter points in Fig. 6.3). p is the significance value
of the comparison between candidate distributions, CSmin(s) is the
lower bound of the scaling range [48], D is the Kolmogorov-Smirnov

distance, α is the scaling parameter, σ is the standard error.
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Chapter 7

Virality phase diagram

According to the Oxford English Dictionary1, the term virality represents

"the tendency of an image, video, or piece of information to be circulated rapidly
and widely from one internet user to another".

Therefore, a coherent analysis of the viral events need to consider the two dimen-
sions defining virality, i.e., the speed of diffusion and the size of these events. The
first task was broadly discussed through the IET analysis in Chapter 5, where we
studied the persistence in memory of the most common hashtags, considered in-
dicators of viral events. However, it is also necessary to tackle the second task to
characterize a viral event thoroughly. For this reason, in Chapter 6, we introduced
the CS statistics, a technique to analyze a viral event’s magnitude. In this way, it is
possible to determine if an exceptional interest also characterized a bursty event.

Following the definition of virality, it is necessary to introduce two dimensions
to characterize a viral event: the interevent time (IET) and the cascade size (CS). We
identify and characterize the following regimes2:

• αIET < 2 ∧ αCS < 2 doubly unpredictable regime (Region I): the average
and higher moments are not defined for both distributions. In this regime, we
expect unpredictable behavior both on the timing and magnitude sides due to
the lack of well-defined averages;

• αIET < 2 ∧ 2 < αCS < 3 unpredictably fast, virally big regime (Region
II): the average of the AS is finite, while the average of the IET distribution
and the higher moments of both distributions are diverging. We expect the
viral events to happen unpredictably fast due to the lack of a well-defined
IET average, while the magnitude of the event is viral, meaning that we can
identify an average size, but the infinite variance allows the emergence of a
viral event;

• 2 < αIET < 3 ∧ 2 < αCS < 3 viral regime (Region III): both the averages
are finite, while the higher moments are still ill-defined. This regime is charac-
terized by the emergence of viral events that are both bursty and exceptional;

• αIET > 3 ∧ 2 < αCS < 3 unvirally slow, virally big regime (Region IV):
both the averages and the second moment of the IET distribution are finite.
Therefore, the emergence of viral events is well defined from the magnitude
perspective, while on the other side, the speed of viral events does not diverge
significantly from the other periods;

1https://www.lexico.com/definition/virality
2Here, αIET and αCS are respectively the scaling exponents of the IET distribution and the CS dis-

tribution. We describe only the regimes of interest, where any distribution is found, for the sake of
brevity.

https://www.lexico.com/definition/virality
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• 2 < αIET < 3 ∧ αCS > 3 virally fast, unvirally small regime (Region V) :
the averages are both finite, and the variance of the cascade size distribution is
also. The viral events are bursty, but there is not a strong discrepancy between
the sizes of a viral and an unviral event;

• αIET > 3 ∧ αCS > 3 unviral regime (Region VI): both the averages
and the second moments are finite for both distributions. Viral events do not
characterize this regime.

In Section 7.1, we study the virality phase diagram of the Palm dataset, characteriz-
ing the behavior of the different hashtags. Finally, in Section 7.2, we give a more gen-
eral framework by considering the phase diagram created with the three datasets,
Palm, Olive, and Coconut.

7.1 Palm oil dataset

In this section, we consider the scaling exponents found in Sections 5.1 and 6.1 for
the Palm dataset. Fig. 7.1 shows the virality phase diagram and where each distribu-
tion is located. We can observe that killerpalm is found at the border between regions
I-II. It can be classified as an unpredictable, viral event principally from the timing
perspective but partially from the magnitude point of view. This hashtag was proba-
bly used for a single viral event and was forgotten afterward. Malaysia, deforestation,
orangutans and palmoilkills are located in the region III: they describe viral events as
expected from the empirical and theoretical predictions [56], i.e., with heavy-tailed
distribution with finite average and diverging higher moments. Furthermore, pal-
moil, sustainable and palm are located in region V, which shows something coherent
with the construction of the dataset. There are moments when these hashtags are
massively used. However, due to the constraints imposed to create the dataset (i.e.,
we chose the Tweets containing the words “palm oil”), it is expected to find the hash-
tags with similar words (palmoil, palm) throughout all the dataset. We expect them
with a more consistent presence.

The sustainable hashtag found in this region V suggests once again that the palm
oil topic is strongly connected to the sustainability issue, as we can observe that
these hashtags are used with a similar frequency and quantity. Moreover, rspo and
indonesia are borderline cases. They are compatible respectively with regions III-V-
VI and III-IV-V. We can suggest that rspo is a viral hashtag from the timing point
of view. Nevertheless, it is compatible with the unviral region. We suggest that
this hashtag is probably present in many tweets complaining about the lack of new
sustainability policies, as the RSPO is an organization that shall control palm oil
production. Therefore, we expect the use of this hashtag throughout the dataset.
Similarly, indonesia can be considered a viral hashtag characterized by viral events
only in magnitude and not from the timing perspective.

From these observations, it is possible to suggest the presence of a strong hetero-
geneity in the virality of different hashtags, even by considering the most common
ones. As these hashtags can be used to quantify human activities on social media,
we could state that we behave in a burst, sometimes unpredictable way as human
beings. Therefore, further quantitative studies on human behaviors might be chal-
lenging and fascinating simultaneously. To further analyze these behaviors, in the
next section, we find a comparison among the different oils. The aim is to check if
the debates around palm oil evolved similarly to the ones around different topics.
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for 2 < α < 3, the first moment (average) is finite and the higher mo-

ments diverge. Finally, for α > 3, the second moment is also finite.

7.2 Virality phase diagram: comparison among oils

In the following, we complete the results found in Section 7.1, by adding the results
obtained from the Olive and Coconut datasets. Further details from IET and CS dis-
tributions for the two other datasets are discussed in Appendix A.4 and A.5. Here,
two different ways of representing the viral diagram are shown. The first diagram,
shown in Fig. 7.2, represents the most common hashtags of the three datasets, with
different colors and markers that represent the belonging to a dataset. The second
representation is shown in Fig. 7.3, where every scatter point (hashtag) is labeled by
the most prevalent sentiment. In other words, for a given hashtag, we restricted the
dataset to the Tweets where this hashtag was present, and we extracted which was
the most common label among the three sentiments.

Some remarkable considerations can be made:

• palm oil is the most viral topic: the region III contains only Palm hashtags. This
could tell us that other debates are led differently, and only the sustainability
issues regarding palm oil show this balance between speed of diffusion and
magnitude of the event;

• contest-based hashtags are unpredictably fast: the hashtags related to a challenge
or a contest (i.e., win, giveaway) are strongly unpredictable. A massive en-
gagement does not follow them, and they have restricted attention developed
around the topic. The Users react to these Tweets just for personal benefit; they
are not engaged in bigger social or political campaigns;

• olive oil is the least viral: neglecting the contest-based hashtags, all the Olive
hashtags are found in the less (or non) viral regions (IV-V-VI). This behavior
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might be a symptom of a weaker interest in this oil’s social and political issues.
Looking at the semantics of these hashtags, we can see that they are more re-
lated to health and food topics rather than sustainability;

• virality is Negative: the hashtags found in the region III are also the hashtags
whose prevalent sentiment is the Negative one, neglecting killerpalm. Again, we
can prove that the virality of an event is strongly correlated to its sentiment, in
particular to a Negative one;

• non-virality is Neutral: accordingly to the results found in Section 6.2, Neutral
hashtags are found in non-viral regions. This evidence supports again the re-
lationship between the attitude used in a Tweet and the virality that arise from
it;

• contests are the expression of positivity: the only Positive hashtags are the ones
related to a contest (win, giveaway) or, more generally, to food and cosmetics
topics.

More generally, it is possible to notice a detachment between the three oils’ debates.
The sustainability issues related to palm oil went more viral than the debates around
olive or coconut oil. One reason could be found in looking at these other oils from the
public opinion’s point of view. There is a lack of demonization around them, and the
customers do not feel the sustainability danger while buying these products. All the
discussions about coconut are more focused on the cooking recipes and the skincare
advice. Both coconut and olive oil are more related to health issues than the palm oil
discussions, but these issues are seen as less problematic, as the Neutral sentiment
suggests. It is interesting to notice how similar topics can be treated so differently,
depending on the rise or not of social campaigns.
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Chapter 8

Conclusion

In this thesis, we characterized the structure of viral events using a data-driven ap-
proach, i.e., analyzing the evolution of a public debate on social media.

In Chapter 2, we detected the emergence of viral events through the analysis of
the time evolution of the number of Tweets, noticing a substantial interest in Iceland
Foods’ TV advertisement. We identified the Opinion Drivers, a mix of companies,
NGOs, activists, and news websites. Meanwhile, we extracted the most used key-
words and hashtags, noticing that they are mainly related to sustainability issues.
Moreover, the geographical distribution of the Tweets strongly reflects the engage-
ment of each country in the public debate.

In Chapter 3, we showed that sentiment dynamics is correlated with the emer-
gence of viral events, particularly noticing the presence of a peak of Negative sen-
timents in the year of the Iceland Foods campaign. Then, we detected a counter-
intuitive behavior, the Opinion Drivers use fewer Negative attitudes than the General
Public. Afterward, our results indicate no correlation between our case study’s sen-
timent classification task and opinion detection. Comparing different vegetable oils,
we noticed that the debate around palm oil is strongly monothematic. The other oils
present a broader range of preponderant topics.

In Chapter 4, we studied three types of networks, analyzing their structure and
locating them in regimes identified by the scaling exponent of the degree distri-
bution and the average degree. The three networks are all located in the scale-free
regime, as expected by other experiments on real networks [30], while two of them
are in the supercritical regime (regarding the average degree), and one is found in the
connected regime. The latter evidence brings some valuable insights into the structure
of these networks, further confirmed by Section 4.5, where we analyzed the time
evolution of modularity and nestedness in temporal networks. We showed that the
network structure changes significantly, and the diversity of ideas is reduced, yield-
ing collaboration and self-organization among users.

In Chapter 5, we analyzed the IET distributions, quantitatively measuring the
persistence in memory of the most popular hashtags. We noticed that most of these
hashtags could be found in the regime where the average is finite, but the second
moment diverges. It is compelling evidence of the volatility of viral events on social
media. Afterward, we identified the viral events for each hashtag using an inno-
vative visualization technique (the time maps). We related the sentiment to the IET,
analyzing the change in their averages.

In Chapter 6, we analyzed, similarly to the IET distributions, the CS distribu-
tions for the most common hashtags, noticing that only half of these hashtags can be
found in the viral regime, where the average is finite, and the higher moments are
diverging. This evidence can tell us that many hashtags are broadly used along the
dataset without showing significant peaks in the size of the event related to their ap-
pearance. Furthermore, we studied the sentiment cascades, showing that the Negative
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Tweets tend to be more viral than the Positive ones, and the neutrality is correlated to
the absence of virality.

In Chapter 7, we combined the results obtained from the two previous chapters.
We created a more general pipeline to characterize the virality of an event. The two
dimensions of the virality phase diagram are related to the timing and size perspec-
tives: a viral event should be fast and widely spread. We used the mathematical
properties of the heavy-tailed distribution to explore these two dimensions quanti-
tatively. We compared the results of different vegetable oils, noticing that the debate
around palm oil went more viral than the others and showing a strong correlation
between virality and Negative sentiment again. Other results previously obtained
were confirmed by this further analysis, such as the correlation between Neutral sen-
timent and non-virality.

The discussion around the sustainability of palm oil is an interesting and ever-
present example of how an awareness-raising campaign can bring the general pub-
lic’s attention to hitherto little-addressed issues and how the environmental issue
is becoming preponderant in public discussion. The thread that binds the various
techniques used in this thesis is linked to a fundamental concept in Probability The-
ory, which is the study of large deviations. Human behavior is characterized by
distributions whose mean value is defined, so we expect most events to be around
that value. However, the variance is not defined in the case of heavy-tailed distribu-
tions, so some events deviate significantly from the mean value: this is the central
phenomenon described by Large Deviations Theory. The importance of accurately
characterizing large deviations is evident in many research areas, with applications
to environmental issues and beyond. Therefore, the universality that characterizes
heavy-tailed distributions allows us to pursue the interdisciplinarity that complexity
science aims to achieve.

The overall characteristics that arose from analyzing the public debate around
the palm oil topic can be summarized as follows. The public debate followed a viral
event on social media. Therefore, the interest was limited in time and engagement.
The countries strongly involved in the debate are the ones that produce the oil and
the ones where the debates arose, while the interest remained low in the rest of the
world. This behavior suggests something about the way how viral events emerge;
the geographical factor is found to be relevant. Similar reasoning can be done by
looking at the limited number of Opinion Drivers, the most involved users are the
companies producing palm oil and the environmental-involved organizations. The
debate is, therefore, led by a few leading actors, slightly touching the general public.

In contrast, the debate around other vegetable oils follows a different trend: the
range of topics of interest is broader, and environmental issues are not central in
the discussion. Healthcare and nutrition are treated differently than sustainability
issues. These topics are emerging less virally, and the attitude is not as negative as
in the palm oil case. These results show a substantial discrepancy in the marketing
strategy carried on by the Opinion Drivers of the different vegetable oils. Further
developments can arise from applying the pipeline created in this thesis to different
sociopolitical issues.
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Appendix A

Coconut and Olive: comparison
among datasets

In the following, we include additional results from the analysis of the Coconut and
Olive dataset. Respectively, the time evolution in the number of Tweets is compared
(Section A.1), as well as the hashtags’ statistics (Section A.2). Then we analyze the
sentiment dynamics (Section A.3), and we express the results obtained by the fitting
procedure of, respectively, the IET distribution (Section A.4) and the CS distribution
(Section A.5).

A.1 Evolution of the interest

In this section, we consider the time evolution in the number of Tweets for the
Coconut and Palm datasets (Fig.A.1). The Coconut dataset presents a large peak
around 2015-2016, followed by a significant decrease in interest in the topic. In con-
trast, the Olive shows a strong increase and a weaker decrease, characterized by
two peaks of similar intensity around 2013 and 2020. Coconut behaves similarly to
Palm, where there is a strong peak followed by a decrease, while Olive presents a
more uniform behavior after a relaxation time.

One question that could arise is about the relationship between these particular
topics’ time evolution and the social network’s general evolution. Do we evidence
an increase in the Tweets about palm oil only because the social network was grow-
ing? To answer, as the Twitter API does not allow extracting the data about the
total number of Tweets per day, we considered the following approach. We used
as queries for the Data Collection process the 100 most common words in English1,
and we requested the number of Tweets per day containing these words. Due to
the search query constraints established by the Twitter API, only 81 words were
considered valid queries (the API does not allow using stop-words as queries). We
computed the relative yearly growth, i.e., the number of Tweets per year containing
a given word, divided by the value obtained in a year chosen as a reference. Fig. A.2
shows the relative growth from the reference year 2017 for the three datasets and the
average value for the most common words. We can see that the relative growth of
the Palm and Coconut datasets is stronger than the average behavior of Twitter. In
contrast, the Olive dataset does not grow significantly. This is another evidence of
the growing interest in these topics on social media over the years.

1The most common words are: take, for, who, would, will, do, like, they, day, them, his, want, get, all,
how, even, say, our, come, two, have, think, about, up, no, make, out, which, of, back, that, some, see, most, than,
go, because, any, new, your, year, well, with, I, also, so, use, other, these, can, know, into, not, could, after, him,
on, give, her, be, there, way, now, she, only, good, one, look, over, their, what, just, then, people, us, he, time, as,
when, first, work.
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FIGURE A.1: Histogram representation of the number of Tweets per
year containing the words coconut oil and olive oil respectively.
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FIGURE A.3: Histogram representation of the most common hashtags
for the two datasets.

A.2 Most popular hashtags: topic detection

We extracted the hashtags from each Tweet in both datasets, following the defini-
tion given in Section 1.1. We decided to neglect the hashtags coconutoil, coconut, oil
and oliveoil, olive, oil respectively, to analyze other aspects not directly related to the
words used to create the dataset. As shown in Fig.A.3, the most popular hashtags
are related to health and nutrition issues rather than sustainability, as in the Palm
case. Contest-based hashtags (giveaway, win) are relevant in both datasets, while
they were absent in the Palm. Moreover, the health and cosmetics topics are more
significant in the Coconut, while the nutritional topic is prevalent in the Olive.
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FIGURE A.4: Pie chart representation of the text classification task
results.
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FIGURE A.5: Time evolution of sentiment. The plot represents the
percentage of labeled Tweets published in a given year.

A.3 Sentiment analysis

We performed a text classification task using the pre-trained model described in
Chapter 3. Fig.A.4 shows the results for the Coconut and Olive datasets: as in the
Palm case, Neutral Tweets are the most prevalent, showing here higher percentages
than in the previous case. In contrast, the Negative sentiment shows a lower presence
in these datasets, while the Positive one is more significant. This evidence could
suggest that the Palm discussion evolved differently from the other two cases, where
the attitude to the debates was less Negative. To further study the sentiment of these
datasets, it is possible to show the time evolution of the sentiment. Fig.A.5 shows
the percentage of Tweets labeled by a given sentiment per year. We notice that in
both cases, the sentiments remain quite constant over time after an initial relaxation
time. There is no strong evidence of the emergence of a Negative (or Positive) viral
event; the datasets are found as quite uniform.
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FIGURE A.6: IET distributions of the ten most used hashtags in the
Coconut dataset. The red and blue dashed lines represent the fitted
power laws and truncated power laws, while the scatter plots repre-

sent the data we are fitting.

A.4 IET distribution

In this section, we express the results of the heavy-tailed fitting procedure (previ-
ously described in Section 5.1) for the Coconut and Olive datasets.

A.4.1 Coconut dataset

As shown in Table A.1, some hashtags (giveaway, win, beauty, coconut, health, vegan)
are better described by a truncated power-law, while a power-law better describes
the remaining ones. In the latter case, the hashtags described power-law do not
show a strong preference for it, as they present a very high p-value (i.e., bigger than
0.5). The null hypothesis is accepted at 95% of accuracy for all the hashtags. It has
been done by comparing the KS distance with the critical values from the P-value
table. All the scaling exponents α are bigger than 1, and neglecting the contest-based
hashtags (giveaway, win), they are all found in the scale-free regime 2 < α < 3. Here,
the first moment is finite, while the higher moments diverge.

A.4.2 Olive dataset

As shown in Table A.2, a few hashtags (giveaway, win, oliveoil) are better described by
a truncated power-law, while a power-law better describes the remaining ones. Ne-
glecting the contest-based hashtags(giveaway, win), the remaining ones do not show
a strong preference for distribution, as they present a very high p-value (i.e., bigger
than 0.5). The null hypothesis is accepted at 95 % of accuracy for all the hashtags. It
has been done by comparing the KS distance with the critical values from the P-value
table. All the scaling exponents α are bigger than 1, few are found in the 2 < α < 3
regime (i.e., oliveoil, foodie). It is possible to notice a stronger presence in the regime
α > 3 compared to the other datasets. This means that the Olive dataset is less viral
from the timing perspective.



Appendix A. Coconut and Olive: comparison among datasets 54

Hashtag Best distribution n p-value τmin D α σ

giveaway truncated power-law 39,326 0.01 0.8 0.03 1.814 0.007
win truncated power-law 54,546 0.01 1 0.02 1.87 0.01
beauty truncated power-law 26,992 0.4 32 0.02 2.45 0.07
coconut truncated power-law 90,807 0.04 3 0.03 2.52 0.02
health truncated power-law 56,021 0.3 10 0.01 2.53 0.03
skincare power-law 24,187 0.9 36 0.03 2.62 0.09
vegan truncated power-law 14,377 0.8 21 0.01 2.66 0.05
coconutoil power-law 139,095 0.9 4 0.02 2.71 0.03
oil power-law 28,054 0.9 55 0.03 2.8 0.1
organic power-law 27,117 0.9 15 0.01 2.88 0.05

TABLE A.1: Results of the fit for the Coconut dataset: n is the num-
ber of bins considered (the number of scatter points in Fig. A.6). p
is the significance value of the comparison between candidate distri-
butions, τmin is the lower bound of the scaling range [48], D is the
Kolmogorov-Smirnov distance, α is the scaling parameter, σ is the

standard error.
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Olive dataset. The red and blue dashed lines represent the fitted
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resent the data we are fitting.
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Hashtag Best distribution n p-value τmin D α σ

win truncated power-law 19,655 0.01 2 0.02 1.58 0.01
giveaway truncated power-law 22,698 0.01 2 0.02 1.73 0.01
oliveoil truncated power-law 89,288 0.8 12 0.02 2.69 0.07
foodie power-law 21,510 0.9 15 0.02 2.81 0.04
evoo power-law 33,493 0.8 14 0.02 3.08 0.05
food power-law 47,727 0.9 11 0.02 3.09 0.05
oil power-law 31,874 0.9 14 0.02 3.16 0.06
recipe power-law 22,848 0.9 16 0.03 3.21 0.05
health power-law 34,087 0.9 27 0.04 3.3 0.1
olive power-law 58,901 0.9 8 0.02 3.28 0.05

TABLE A.2: Results of the fit for the Olive dataset: n is the num-
ber of bins considered (the number of scatter points in Fig. A.6), p
is the significance value of the comparison between candidate distri-
butions, τmin is the lower bound of the scaling range [48], D is the
Kolmogorov-Smirnov distance, α is the scaling parameter, σ is the

standard error.

A.5 CS distribution

In this section, we express the results of the heavy-tailed fitting procedure on the
cascade size (similarly to was was done in Section 6.1) for the Coconut and Olive
datasets.

A.5.1 Coconut dataset

As shown in Table A.3, just the hashtag win is better described by a truncated power-
law, while a power-law better describes the remaining ones. Neglecting the hashtag
win, the remaining ones do not show a strong preference for distribution, as they
present a very high p-value (i.e., bigger than 0.5). The null hypothesis is accepted at
95% of accuracy for all the hashtags. It has been done by comparing the KS distance
with the critical values from the P-value table. All the scaling exponents α are big-
ger than 1, one is found in the 2 < α < 3 regime (i.e., win). It is possible to notice
a stronger presence in the regime α > 3, even with very high values for the scal-
ing exponents (around 4-5). This means that the dataset is not viral at all from the
magnitude perspective.

A.5.2 Olive dataset

As shown in Table A.4, few hashtags (giveaway, win, food, oliveoil) are better described
by a truncated power-law, while a power-law better describes the remaining ones.
Neglecting the hashtags giveaway, oliveoil, the remaining ones do not show a strong
preference for distribution, as they present a very high p-value (i.e., bigger than
0.5). The null hypothesis is accepted at 95% of accuracy for all the hashtags, and
it has been done by comparing the KS distance with the critical values from the P-
value table. All the scaling exponents α are bigger than 1, and few are found in the
2 < α < 3 regime (i.e., giveaway, win, food, health). It is possible to notice a stronger
presence in the regime α > 3, even with very high values for the scaling exponents
(from 4 to even 7). This means that the dataset is not viral at all from the magnitude
perspective.
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FIGURE A.8: Hashtags cascade distributions of the most common
hashtags (Coconut dataset). The red and blue lines represent the fit-
ted power-law and truncated power-law distributions. At the same
time, the scatter plot is the empirical data (in logarithmic binning)

that we are fitting.

Hashtag (h) Best distribution n p-value CSmin(h) D α σ

win truncated power-law 17 0.08 25 0.03 2.16 0.05
oil power-law 17 0.9 13 0.03 3.06 0.09
giveaway power-law 15 0.9 31 0.04 3.2 0.1
organic power-law 16 0.9 10 0.02 3.30 0.09
health power-law 11 0.9 30 0.02 3.6 0.1
coconut power-law 13 0.9 34 0.03 3.62 0.09
coconutoil power-law 10 0.9 56 0.04 4.0 0.1
skincare power-law 9 0.9 18 0.03 4.1 0.2
vegan power-law 10 0.9 17 0.03 4.1 0.3
beauty power-law 5 0.9 27 0.05 5.2 0.4

TABLE A.3: Results of the fit for the Coconut dataset: n is the num-
ber of bins considered (the number of scatter points in Fig.A.8), p is
the significance value of the comparison between candidate distribu-
tions, CSmin(h) is the lower bound of the scaling range [48], D is the
Kolmogorov-Smirnov distance, α is the scaling parameter, σ is the

standard error.
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FIGURE A.9: Hashtags cascade distributions of the most common
hashtags. The red and blue lines represent the fitted power-law and
truncated power-law distributions. At the same time, the scatter plot

is the empirical data (in logarithmic binning) that we are fitting.

Hashtag (h) Best distribution n p-value CSmin(h) D α σ

giveaway truncated power-law 18 0.1 10 0.02 2.07 0.05
win truncated power-law 19 0.6 11 0.04 2.20 0.07
food truncated power-law 11 0.9 11 0.03 2.97 0.06
health power-law 15 0.9 10 0.03 2.98 0.07
oliveoil truncated power-law 4 0.2 43 0.04 4.2 0.2
olive power-law 15 0.9 21 0.03 4.4 0.1
oil power-law 15 0.9 22 0.03 4.7 0.3
evoo power-law 8 0.9 19 0.04 4.7 0.2
recipe power-law 9 0.9 19 0.04 4.8 0.4
foodie power-law 3 0.9 24 0.07 7.6 0.9

TABLE A.4: Results of the fit for the Olive dataset: n is the num-
ber of bins considered (the number of scatter points in Fig.A.9), p is
the significance value of the comparison between candidate distribu-
tions, CSmin(h) is the lower bound of the scaling range [48], D is the
Kolmogorov-Smirnov distance, α is the scaling parameter, σ is the

standard error.
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