
POLITECNICO DI TORINO

Master of science
ICT FOR SMART SOCIETIES

Master’s Degree thesis

Big Data analysis of Floating Car Data to identify
traffic congestion in urban areas

Supervisors Candidate
Prof. Danilo Giordano Seyedamirmohammad Sakaki
Prof. Luca Vassio
Prof. Marco Diana

October 2022

Summary

The inescapable phenomenon of traffic congestion has been steadily worsening
over the last several decades, particularly in big urban regions that have been
experiencing population growth all over the globe. In its most basic form, con-
gestion occurs when there is a larger demand for space than there is capacity on
the roadway to accommodate it. However, these activities, which force people to
interact with one another, are necessary for the effective operation of economic
systems and cannot be avoided. In today’s societies, these demands are frequently
generated at the same time, while a large number of people intend to commute to
school or their workplace as well as other movements to provide goods and services.
Although there is a potential for congestion with every method of transportation,
the emphasis of this thesis will be on the congestion that occurs with automobiles
on public highways and streets.

The identification of regions that are prone to traffic congestion has been and will
continue to be an essential step in the process of developing urban transportation
systems. The technologies used to gather data on traffic have seen significant
development over the last several years, and access to real-time traffic information
is increasingly becoming the norm around the globe. Floating Car Data (FCD)
is one of the most well-liked ways, and it has been more widespread in usage
over the last several years. FCD is often timestamped geo-localization and speed
data that is directly acquired by moving cars utilizing "in-vehicle" devices via
mobile phones or GPS. These devices are connected to the internet. Because of the
growing quantity of data that are acquired by FCD, it is becoming more desired to
find and extract useful traffic-related information from the accumulated historical
dataset. Examples of this kind of information include patterns of congestion.
Despite this, it is not an easy task since the dataset is rather large, and the char-
acteristics of the traffic, such as its complexity and dynamics, make it quite difficult.

Using Data-Driven approaches and an already-collected large FCD dataset, this
thesis aims to identify traffic congestion areas in an urban area. This will be
accomplished by extracting the desired meaningful information for the purpose of
the research from a large FCD dataset. The collected FCD includes information
spanning the entirety of 2019 and includes millions of records from 290,185 distinct
vehicles, of which 92% are declared to be personal vehicles and the remaining
8% fall under the category of fleet vehicles. In addition, the vast majority of the
data are collected at intervals of one minute for each vehicle. The FCD were

2

collected over the course of the 2019 calendar year. From these data, the segments
of the trips of distinct cars are extracted. Thanks to a grid map consisting of
cells that are each uniquely identified, the extracted segments are assigned to their
corresponding cells such that each cell could provide key required information for
traffic congestion calculation at the next step. In this project, the relative and
absolute traffic congestion of morning and evening peak hours compared to off-peak
hours is discussed and analyzed based on the average speed (in kilometers per hour)
of vehicles on their respective segments of the route. Finally, the traffic congestion
severity is extracted and polished using Kernel Density Estimation to demonstrate
in a convenient way, how much different zones of the urban area are suffering from
traffic congestion 1, so the future transportation system developments could be
planned accordingly.

Figure 1: Highlight of the most congested areas, Bandwidth = 0.001

3

Acknowledgements

My studies at Politecnico di Torino with the purpose of acquiring a Master of
Science (MSc) degree in ICT for smart societies have come to a close with the
completion of this master thesis report. During the time that I was working on
my thesis, I went through an experience that was challenging, but more than that,
it was intellectually engaging. Without the substantial and unwavering aid and
guidance provided by a number of different persons, it would not have been feasible
to do this project. To begin, I would like to offer my most sincere gratitude to
Professor Giordano at Politecnico di Torino, who serves as my principal advisor
for providing comments on my work and aid me in finding solutions to the various
problems I encountered throughout the development process. I also would like to
express my sincere appreciation to professors Vassio and Diana for the direction
they provided me in determining the objectives of my study and how to assess
strategy.

Seyedamirmohammad Sakaki

4

Contents

List of Tables 8

List of Figures 9

Acronyms 12

1 Introduction 15
1.1 Traffic congestion as a growing problem 15
1.2 Traffic data collection methods . 16
1.3 IoT sensors, big data and data analysis development 17
1.4 Thesis organization . 17

2 Background and concept definition 19
2.1 The Floating Car Data (FCD) . 19

2.1.1 GPS-based FCD . 20
2.1.2 Cellular network based FCD 20

2.2 Topographical Concepts . 22
2.2.1 Geographical coordinate system and WGS84 22
2.2.2 Haversine Distance . 22
2.2.3 Geometric Dilution Of Precision 23
2.2.4 DOP value classification . 24

2.3 ICT background . 25
2.3.1 Python . 25

2.4 Related works . 27
2.5 Dataset . 29

3 Implementation and Results 31
3.1 Input FCD analysis . 31

3.1.1 Data cleaning . 31
3.1.2 Area of interest . 32
3.1.3 Data behaviour . 33

6

3.2 Segment Extraction . 36
3.2.1 Segment definition . 36
3.2.2 Segment extraction methodology 37
3.2.3 Segment table . 41
3.2.4 Segment distribution . 43

3.3 Grid map . 44
3.3.1 Grid size selection . 44

3.4 Grid table . 46
3.4.1 Grid plots . 47

3.5 Traffic congestion index . 50
3.5.1 Absolute traffic congestion 52
3.5.2 Relative traffic congestion 54
3.5.3 Cells with negative congestion 55

3.6 Identification of congested areas . 60
3.6.1 Kernel Density Estimation: a method for smoothing 61

4 Conclusions 71

Bibliography 73

A Source code 77

7

List of Tables

2.1 DOP value classification . 25
2.2 FCD dataset description . 29

3.1 Segment table description, Other properties derived directly from
the latitude and longitude coordinates have been omitted for the
purpose of brevity. 42

3.2 Grid table. Obtained by outer join of 3.1 and 3.3 47

8

List of Figures

1 Highlight of the most congested areas, Bandwidth = 0.001 3

2.1 Communication from GPS, source [14] 20
2.2 Communication from cellular phones, source [14] 21

3.1 The area of interest, including Turin and nearby cities 33
3.2 Cumulative Distribution Function of GPS accuracy DOP 34
3.3 Distribution of GPS accuracy DOP 34
3.4 Daily Records Distribution . 35
3.5 Hourly Records Distribution . 36
3.6 Cumulative distribution of Segment duration’s 38
3.7 Distribution of Segment duration’s 38
3.8 Cumulative distribution of Segment Speed (KM/H) of different groups 39
3.9 Cumulative distribution of Segment Speed (KM/H) 40
3.10 Distribution of Segment Speed (KM/H) 41
3.11 Daily Segments Distribution . 43
3.12 Hourly Segments Distribution . 44
3.13 Segment density VS cell size . 45
3.14 Required processing time VS cell size 46
3.15 Number of segments per cell . 48
3.16 Mean of the speeds of the segments per cell 49
3.17 Mean of GPS accuracy DOP per cell 50
3.18 Peak and off-peak hours selection 51
3.19 Cell-wise cumulative distribution of absolute traffic congestion . . . 53
3.20 Cell-wise distribution of absolute traffic congestion 53
3.21 Cell-wise cumulative distribution of relative traffic congestion 55
3.22 Cell-wise distribution of relative traffic congestion 55
3.23 Cumulative distribution of cell-wise traffic congestion 56
3.24 Distribution of cell-wise traffic congestion 57
3.25 comparison of cell-wise cumulative distribution of relative traffic

congestion in filtered and not filtered scenarios 58
3.26 Filtered cell-wise cumulative distribution of relative traffic congestion 59

9

3.27 Filtered cell-wise distribution of relative traffic congestion 59
3.28 Relative traffic congestion . 60
3.29 KDE of Relative traffic congestion, Bandwidth = 0.0005 62
3.30 KDE of Relative traffic congestion, Bandwidth = 0.001 63
3.31 KDE of Relative traffic congestion, Bandwidth = 0.0015 64
3.32 KDE of Relative traffic congestion, Bandwidth = 0.002 65
3.33 KDE of Relative traffic congestion, Bandwidth = 0.0025 66
3.34 KDE of Relative traffic congestion, Bandwidth = 0.003 67
3.35 KDE of Relative traffic congestion, Bandwidth = 0.0035 68
3.36 Highlight of the most congested areas, Bandwidth = 0.001 69

10

Acronyms

AI
artificial intelligence

FCD
Floating Car Data

IoT
Internet of Things

GPS
Global Positioning system

GSM
Global System for Mobile communications

GPRS
General Packet Radio Service

UMTS
Universal Mobile Telecommunications System

ITS
Intelligent Transportation Systems

WGS
World Geodetic System

GDOP
Geometric Dilution Of Precision

12

HDOP
Horizontal Dilution Of Precision

GNSS
Global Navigation Satellite System

OTM
Open Transport Map

RTMS
Remote Traffic Microwave Sensor Data

LOS
Level Of Service

KDE
Kernel Density Estimation

13

14

Chapter 1

Introduction

1.1 Traffic congestion as a growing problem
Congestion is a condition in traffic flow in which an increased volume of traffic
on a highway, or "throughput" facility (such as a tunnel), leads to greater queue
lengths and therefore increased travel time, lower average speed and longer trip
times. Congestion occurs when traffic demand is high enough that interactions
among vehicles reduce the velocity of the traffic stream. Since the 1950s, there
has been a significant increase in traffic congestion on metropolitan road net-
works, [1] especially during rush hour. Extreme traffic congestion occurs when
demand exceeds the capacity of a road (or of the junctions along the road), that
leads to a condition under which the vehicles are completely halted for a period
of time [2] [3].A traffic jam can last anywhere from a few minutes to a several hours.

As the traffic congestion tends to be more severe year by year, there are some
major reasons causing this increase. The most obvious one is population expansion.
More people in an affluent country implies more vehicles; However, overall vehicle
kilometers have increased far faster than the population. For instance, Between
1980 and 2000, the overall population of the United States increased by 24%, while
total car kilometers driven increased by 80% due to more intensive usage of each
vehicle [4]. Other main reasons as [5] mention, are the following:

• Economic growth

• Increase in the number of vehicles

• Insufficient road capacity

• Ineffective city planning and management

• Accidents

15

Introduction

• Natural disasters

1.2 Traffic data collection methods
In recent decades, different approaches to traffic data collection have been employed
to collect and analyze relevant data to extract congestion patterns in order to
manage and decrease traffic. Data analytic has proven to be crucial in determining
various causes of congestion based on data from sensors and cameras placed on
roads, GNSS data collected from cars, cell phone signal strength in an area, which
also reflects amount of cars and traffic around it, etc. In general there are two
principal methods of traffic data collection including data collection by surveys and
data collection by using the records of some specific devices [6]. The latter one is
known as ’in-situ’ method and itself is consist of two sub methods of intrusive and
non-intrusive [7]. The intrusive approaches essentially consist of a data recorder
and a sensor placed on or in the road:

• Pneumatic road tubes [8]

• Piezoelectric sensors [9]

• Inductive loop [10]

On the other hand, Remote observations are the foundation of non-intrusive
approaches. Even while manual counting is the most often used approach, new
technologies that appear to be highly promising have lately emerged:

• Manual counts

• Passive and active infra-red

• Passive magnetic

• Microwave radar

• Ultrasonic and passive acoustic

• Video image detection

Profile surveys are used by experts to assist evaluate the intensity of traffic on
a route and the direction of traffic flow. These surveys are frequently set up at
junctions to monitor one or more lanes of traffic going in different directions for
the most effective data collecting 6.

16

1.3 – IoT sensors, big data and data analysis development

• Profile Surveys: A profiling survey is a type of manual counting in which
the data is collected by a human. Most surveyors will design a paper form (in
some cases substituded by mobile apps) to assist differentiate between different
sorts of vehicle classifications, the direction or lane in which the vehicle is
driving, and other pre-selected time intervals.

• Directional Surveys: consist of several human surveyors covering various
directions along a single length of road or crossroads counting pre-specified
criteria

1.3 IoT sensors, big data and data analysis de-
velopment

The Internet of Things, also known as IoT, is a system that consists of intercon-
nected computer devices, mechanical and digital equipment, items, or people that
are given the capacity to communicate data across a network with almost no involve-
ment from humans [11]. This implies the installation of various types of sensors
on a variety of objects that, thanks to the concept of data analysis, are involved in
various life scenarios, such as those involving individuals and businesses: household
appliances that make up the so-called Smart Home; manufacturing machines in
Industry 4.0; vehicles and smart roads, all of which are integrated to form Smart
Cities. The steady increase in the installation of Internet of Things (IoT) objects
leads to the consequent generation of Big Data. Big Data is a collection of data that
is so large, varied, and rapidly transmitted that it is extremely challenging, if not
nearly impossible, to analyze using conventional techniques. It has been said that
given the right paradigms, it is feasible to filter, arrange, analyze, and get value
from them. Therefore, Internet of Things and Big Data are deeply intertwined in
this setting.

The dissertation does a wonderful job of addressing the issues raised by the
present case study. After a considerable amount of data has been gathered from a
large number of cars, it is sent to a data storage facility over the internet. From
there, it is eventually analyzed by means of data analysis tools.

1.4 Thesis organization
The thesis is structured as follows:

Backgrounds and definitions of topics used in this thesis are presented in Chapter
2, which includes mathematical background, relevant topological explanations for

17

Introduction

the thesis purpose, and technological background to understand how the thesis was
constructed.

The implementation of the thesis is discussed in Chapter 3, beginning with
pre-processing on initial input data to extract required information for the following
step, segment extraction. The projection of a grid of cells on the map is then
explained, followed by the methodology for assigning each segment to a grid cell.
Furthermore, how to use the cells to calculate and display traffic congestion on a
map, and eventually extract the pattern of the congestion, so that it can be used
for future transportation development projects.

18

Chapter 2

Background and concept
definition

2.1 The Floating Car Data (FCD)

Floating car data, also known as FCD, is a term used to describe a technology that
gathers information on the status of the traffic from a series of individual vehicles
that float in the traffic. Each vehicle, which can be thought of as a moving sensor
that operates in a distributed network, is outfitted with positioning (GPS) and
communication (GSM, GPRS, UMTS, etc.) systems. These systems allow each
vehicle to send information about its location, speed, and direction to a centralized
control unit, which then uses this information to make decisions [12] or simply just
stores in a databases.

Since FCD systems transcend the limits of fixed traffic monitoring methods (Poor
flexibility, high installation and maintenance costs, etc.), they are being employed
in a number of crucial application, therefore, FCD is a replacement or supplement
source of high-quality data to existing technologies. They will contribute to the
transportation system’s safety, efficiency, and dependability. They are becoming
increasingly important in the creation of future Intelligent Transportation Systems
(ITS). In this Thesis, a dataset of collected FCD is being exploit as the initial entry
data.

In its most basic forms, there are essentially two primary categories of FCDs,
namely GPS and cellular-based systems [7]:

19

Background and concept definition

2.1.1 GPS-based FCD
Even though the Global Positioning System (GPS) is becoming more popular and
more inexpensive, only a small percentage of vehicles, generally those used for fleet
management services, are now equipped with this system (e.g. taxi drivers). Due
to the usage of dual frequency receivers that make use of several constellations in
order to determine position, the level of accuracy achieved is quite high and stable
[13] and is often less than 30 meters.

Figure 2.1: Communication from GPS, source [14]

In most cases, traffic statistics collected from individual automobiles or trucks
are preferable for use in highways and rural areas. In the event of urban traffic, taxi
fleets are especially valuable owing to the large number of vehicles in the fleet as
well as the on-board communication technologies that are already in place. In the
present day, GPS probe data are widely used as a source of real-time information
by a variety of service providers. Despite this widespread use, there are only a
limited number of vehicles equipped with the necessary equipment, and the cost of
such equipment is relatively high in comparison to those associated with floating
cellular data.

2.1.2 Cellular network based FCD
Given that the vast majority of cars on the road nowadays are equipped with at
least one or more mobile phones, it may be desirable to use mobile phones to

20

2.1 – The Floating Car Data (FCD)

carryout anonymous traffic surveys. The network receives periodic transmissions of
the mobile phone’s location, which are often accomplished by triangulation but
may also be accomplished through other methods (e.g. handover). Mobile phones
are required to be powered on, although this does not always imply that they are
being used. Due to the shorter distance that separates each antenna in this system,
it is especially well suited to the delivery of information that is generally precise in
metropolitan areas, which is where traffic statistics are required the most.

Figure 2.2: Communication from cellular phones, source [14]

There is no need for any specialized hardware or software to be installed in
moving vehicles, in contrast to fixed traffic detectors and systems that are based
on GPS. Additionally, there is no requirement for any unique infrastructure to
be erected along the route. As a result, it is more cost-effective than traditional
detectors while also providing more capabilities in terms of coverage. Instead of
obtaining data at discrete points, continuous data collection is done on the traffic.
It takes far less time to set up, it is less difficult to install, and it significantly
requires less maintenance. In spite of the fact that the location accuracy is normally
rather poor (about 300 meters), this deficiency is largely compensated for by the
huge number of devices. It is important to take into account that the UMTS
technology should be used in order to collect more precise data. At the moment,
FCD is participating in many applications all over the globe that deal with the
management and information on real-time traffic.

21

Background and concept definition

2.2 Topographical Concepts
2.2.1 Geographical coordinate system and WGS84
The geographic coordinate system, also known as the GCS, is a spherical or
ellipsoidal coordinate system that is used to measure and communicate locations
directly on the surface of the Earth as latitude and longitude [15]. It is the simplest,
the oldest, and the one that is utilized the most commonly out of all of the many
spatial reference systems that are now in use, and it serves as the basis for the
majority of the others [16]. The World Geodetic System, also abbreviated as
WGS, is a standard that is used in the fields of cartography, geodesy, and satellite
navigation, including GPS. The National Geospatial-Intelligence Agency of the
United States has been responsible for the establishment and maintenance of WGS
since 1984. The most recent modification, which took place in January 2021, is
WGS 84, which is also known as the WGS 1984 ensemble [17] [18]. Decimal
degrees, often known as DD, are a method of expressing geographic coordinates
such as latitude and longitude as decimal fractions of a degree. GPS devices
and various geographic information systems (GIS), online mapping programs like
OpenStreetMap, and other mapping applications typically employ DD.

2.2.2 Haversine Distance
The Haversine formula is used to calculate the distance in terms of great circles
that separates two locations on a sphere, given the longitudes and latitudes of those
places. It is a specific example of a more general formula in spherical trigonometry
called the rule of Haversines, which relates the sides and angles of spherical triangles.
This law is important in navigation, as it relates the sides and angles of spherical
triangles.

Haversine function hav(θ) is:

hav(θ) = sin2
A

θ

2

B
= 1 − cos(θ)

2 (2.1)

where:
hav(θ) is the central angle between any two points on a sphere.

By performing arcsine on 2.1 the equation could be solved to obtain distance
d:

d = 2·r·arcsin
ñ

hav (φ2 − φ1) + (1 − hav (φ1 − φ2) − hav (φ1 + φ2)) · hav (λ2 − λ1)
(2.2)

22

2.2 – Topographical Concepts

where:
λ1, λ2 are the longitude of point 1 and longitude of point 2
φ1, φ2 are the latitude of point 1 and latitude of point 2.

2.2.3 Geometric Dilution Of Precision
The term "dilution of precision," also known as "geometric dilution of precision"
(GDOP), is used in satellite navigation and geomatics engineering to describe error
propagation as a mathematical effect of navigation satellite geometry on positional
measurement precision. The purpose of the GDOP is to specify how inaccuracies
in the measurement will have an impact on the estimate of the final state. One
possible explanation for this is:

GDOP = ∆(OutputLocation)
∆(MeasuredData) (2.3)

It is claimed that the geometry is weak and the DOP value is high when visible
navigation satellites are close together in the sky; on the other hand, it is said
that the geometry is strong and the DOP value is low when the satellites are far
away. Imagine two circles, or annuli, that overlap one another and have different
centers. When they overlap each other at right angles, the maximum extent of
the overlap is much less than when they overlap each other in a nearly parallel
fashion. Because of the greater angular separation between the satellites that are
used to determine a unit’s location, a lower DOP value indicates a higher level of
positional accuracy than a higher number. Other factors, like nearby obstacles like
mountains or buildings, may also cause the effective DOP to go up [35].

DOP can be expressed as a number of separate measurements:

• HDOP – Horizontal Dilution Of Precision

• VDOP – Vertical Dilution Of Precision

• PDOP – Position (3D) Dilution Of Precision

• TDOP – Time Dilution Of Precision

• GDOP – Geometric Dilution Of Precision

DOP calculation for satellite i, consider:

Ri =
ñ

(xi − x)2 + (yi − y)2 + (zi − z)2 (2.4)

23

Background and concept definition

where:
x, y, z remark about the location of the receiver, and xi, yi, zi(θ) represent the
location of satellite i. Matrix A is formulated as follow:

A =



(x1−x)
R1

(y1−y)
R1

(z1−z)
R1

−1
(x2−x)

R2

(y2−y)
R2

(z2−z)
R2

−1
(x3−x)

R3

(y3−y)
R3

(z3−z)
R3

−1
(x4−x)

R4

(y4−y)
R4

(z4−z)
R4

−1


(2.5)

The first three elements in each row of A are the components of a unit vector
from the receiver to the specified satellite. The last element of each row is the partial
derivative of pseudorange with respect to the clock bias of the receiver. Formulate Q
as the covariance matrix with the fewest squares that comes from the normal matrix:

The elements of Q are designated as:

Q =



σ2
x σxy σxz σxt

σxy σ2
y σyz σyt

σxz σyz σ2
z σzt

σxt σyt σzt σ2
t


(2.6)

Eventually, GDOP and HDOP are formulated as [36]:

GDOP =
ñ

σ2
x + σ2

y + σ2
z + σ2

t (2.7)

HDOP =
ñ

σ2
n + σ2

e (2.8)

depends on the coordinate system used To match the local horizon plane and
vertical in a north, east, or up coordinate system.

2.2.4 DOP value classification
[37] interprets the obtained DOP value and classifies it as follows:

24

2.3 – ICT background

Table 2.1: DOP value classification

DOP
value Rating Description

<1 Ideal
Finest confidence level

to be utilized for applications
that need the highest accuracy at all times.

1-2 Excellent
At this confidence level

location measurements are deemed precise enough
for all applications save the most sensitive ones.

2-5 Good

Represents a minimal acceptable threshold for making
correct selections. Positional measurements might

be utilized to provide the user with credible in-route
navigation recommendations.

5-10 Moderate
Although positional measurements might be utilized
for computations, the quality of the fix could still

be improved. A more open view of the sky is advised.

10-20 Fair
Represents a low degree of confidence. Positional
measurements should be ignored or only utilized to

provide an approximate estimation of the present position.

>20 Poor At this level, readings using a 6-meter accurate equipment
are erroneous by up to 300 meters and should be ignored.

2.3 ICT background
2.3.1 Python
Python is a general-purpose programming language, which means that it may be
used to develop a wide range of different applications and is not specifically tailored
to solve any particular issues. Because of its flexibility and the fact that it is easy
to learn, it has quickly become one of the most widely used programming languages
today. Developed by a group of programmers led by British scientist, Guido van
Rossum, Python is actually an interpreted language. The design concept behind
it places an emphasis on the readability of the code by making extensive use of
indentation [19].

The language has applications in a variety of domains, including Web Develop-
ment, Data Science and Machine Learning, and Simulation; all of these domains,
as well as others, are being investigated as part of the same research effort that
this thesis is a part of. As a result of this, Python has been preferred over other

25

Background and concept definition

languages like R. There are several libraries that can be imported, which is another
selling feature for the product. In direct relation to this body of work, the most
significant ones that have been applied are as follows:

• Pandas:A software library designed for data manipulation and analysis. In
particular, it provides data structures and functions for the manipulation of
numerical tables and time series [20] [21].

• Geooandas: a free and open-source tool that simplifies the process of dealing
with geographical data in Python. The datatypes that pandas uses are
extended by GeoPandas so that spatial operations may be performed on
geometric types. Shapely is responsible for carrying out geometric operations
[22] [23].

• Numpy: Adding support for big, multi-dimensional arrays and matrices, as
well as a vast set of high-level mathematical functions to work on these arrays.
The "ndarray" data structure, which stands for "n-dimensional array," lies at
the heart of NumPy’s fundamental capabilities. These arrays have a consistent
data type across the board [24].

• Matplotlib: a complete library for the creation of interactive, animated, and
static visualizations. [25] [26]

• Shapely:Python package with the Shapely name that allows for the manipula-
tion and analysis of planar geometric objects under the BSD license. Although
Shapely is not concerned with specific data formats or coordinate systems, it
can be easily integrated with other packages that are [27].

• Folium: Folium is a robust Python module that provides assistance in the
development of a variety of different Leaflet maps. By default, Folium builds
a map in a separate HTML file. Because Folium’s findings may be interacted
with, this library is an excellent resource for the construction of dashboards.
In Folium, you also have the ability to construct inline Jupyter maps.
Folium takes advantage of the strengths of the Python environment for working
with data and the strengths of the Leaflet.js library for making maps. You
can alter your data with Python using Folium, and then you can view the
results using a Leaflet map [28] [29].

• Pyspark: PySpark is a Python-based interface for the Apache Spark data
processing framework. It not only lets you build Spark applications with
Python APIs, but it also gives you access to the PySpark shell, which lets
you analyze your data in a distributed setting in an interactive way. In other
words, Apache Spark is an analytical processing engine designed for use in

26

2.4 – Related works

applications that need strong distributed data processing on a large scale.
Machine learning applications also make use of Apache Spark [30] [31].

2.4 Related works
Studying the patterns of traffic and the conditions of traffic on roads and streets has
become an extremely important part of the administration and planning of urban
areas due to the ever-increasing amount of automobile traffic in urban areas. This
is of utmost significance in large cities, which often have frustratingly slow moving
traffic. Magnetic loops, video observation, laser and infrared vehicle detection are
some of the more classic methods that have been employed in recent decades to
gather information about traffic. However, in more recent times, a new set of other
methods and data sources have also been utilized. In recent years, another data
source utilized to investigate traffic situations is FCD. In contrast to traditional
traffic data, which is typically collected at a fixed location by a stationary device
or observer, Floating Car Data in traffic engineering and management is typically
timestamped geo-localization and speed data directly collected by moving vehicles
that are equipped with GNSS receivers using their on board unit in real-time.

Numerous publications have been published that investigate the efficiency of
FCD in a variety of contexts, including but not limited to: costs, penetration rate
into automobiles, dependability, and comparison of the acquired findings to more
conventional methodologies. As was explained in [42], some traffic analysis might be
performed using FCD, which would provide findings that are comparable to those of
traffic sensors but would incur a far lower cost. In this study, the data that the FCD
gathered over the course of 17 continuous hours and included 375,000 records that
belonged to 10,000 cars were mapped to the nearest street using Open Transport
Map (OTM) so that analysis could be carried out. [43] also described an experience
of producing a comprehensive traffic analysis by utilizing coherent numbers of FCD
and highlighting how this solution provides higher coverage than traffic sensors
while also having lower costs. Using FCD and Remote Traffic Microwave Sensor
Data (RTMS) data, [47] conducted an investigation of the peculiarities of traffic
flow on Beijing’s ring road expressways. While the average speeds were calculated
using both sets of data, the volume calculations were carried out using RTMS data
only. The flow-speed relationship in the basic figure was derived by combining the
data that were previously collected. After doing a regression analysis on the average
speeds obtained from RTMS and FCD, it was discovered that the values obtained
from RTMS were, on average, 6% greater than those obtained from FCD. Another
comparison was made by [48] between the average speeds of road segments acquired
from FCD data and Bluetooth data. A statistical analysis was carried out for each

27

Background and concept definition

of the four speed categories, and it was discovered that the average Bluetooth speeds
were not substantially different from the FCD speeds for any of the speed categories.

One of the disadvantages of using FCD data is the low penetration rate of on
board units into cars, which is mentioned in [42] which could lead to the results
having less reliability than they otherwise would due to the fact that the data were
collected from a small percentage of cars. In spite of the fact that [44], on the basis
of their simulation, suggests that the 1.5% penetration rate of vehicles with on
board units is required to have an accurate estimation of travel time, [45] suggests
that the penetration rate between 3%-5% in order to achieve the confidence level
of over 90% would be sufficient. in addition, [46] came to the conclusion that the
appropriate penetration rate should be anywhere from 5 to 10%, depending on
the current traffic condition. Nonetheless, the scope of the investigation for [46] is
limited to just one highway in Singapore. [46] also investigates the variations in
the intervals of FCD collection, which revealed that the best results would acquire
if the collection interval is between 15 and 20 seconds, despite the fact that this
demands a great deal more processing power. Basically, extending the interval
for every 15 seconds results in a considerable reduction in the needed amount of
processing power.

[49] by studying just one parameter, which is average travel speed from FCD, the
researchers came to the conclusion that it is still feasible to uncover key patterns
along urban roadways, provided that the data is continuous and broad. This
research, analyzes the FCD data obtained from automobiles in Ankara over a
period of two months with an interval of one minute. The data was taken from the
vehicles every minute. In this investigation, the average speed of the road segments
is converted to a Level of Service (LOS), and the status of the traffic is determined
by a comparison to the speed at which free-flow may occur on the same road
segment. Moreover, by comparing the traffic states of two, three, and four succes-
sive road segments, one may determine where the bottlenecks are in the road system.

Alongside the implementation of FCD in [50] and [51], the idea of Big Data is
also included. [50] blends big data with small data in the creation of elements of
transport system models. This is done with the intention of increasing the ability
of transport analysts and planners to assess, predict, and prepare for mobility
phenomena. [50] concludes that the conventional techniques for constructing
transport system models are improved with the use of big data for mobility.
Similarly,[51] presents an original demand estimate framework that is comprised
of two steps and argues that the use of Big Data and FCD results in the limitation
of not having a strong initial demand matrix being overcome.

28

2.5 – Dataset

2.5 Dataset
The exploited dataset in the thesis is collected from an insurance company. It is
a very large dataset, containing more than 700 million rows, that was collected
from January of 2019 to January of 2020. The collection was made before the crisis
of the COVID-19 pandemic, therefore the dataset represents the behavior of the
vehicles in an ordinary time period.

The records inside the dataset are spread over an area, as vast as Piedmont
province. However, since the goal of the thesis is to retrieve congestion pattern in
a metropolitan area, thus only the records belonging to the city of Turin and some
smaller nearby towns are conserved, and the other records are eliminated before
proceeding to further steps.
The collected FCD dataset contains following columns and features:

Table 2.2: FCD dataset description

Attribute Type Description

deviceId Text the unique ID associated to each device
1 to 20 characters

dateTime DateTime String Time and date of submitted record
format: YYYY-MMDD HH24:MI:SS

latitude Number (9,6) expressed in degrees
from -90 to 90

longitude Number (9,6) expressed in degrees
from -90 to 90

speedKmh Integer Instantaneous speed in Kilometer per Hour
ranging from 0 to 250

heading Integer The direction that the vehicle is headed
0 to 360 in 4 degree increments

accuracyDop 2.8 Integer
GPS signal quality

expressed in tenths of HDOP 2.1
between 0 (excellent) and 150 (very bad)

EngineStatus Integer 1 engine on
0 engine off

Type Integer 1 car
2 fleet

29

30

Chapter 3

Implementation and Results

3.1 Input FCD analysis
3.1.1 Data cleaning
The process of detecting and correcting (or removing) corrupt or inaccurate records
from a record set, table, or database is known as data cleansing or data cleaning.
It also means finding parts of the data that are missing, wrong, inaccurate, or not
important, and then replacing, changing, or getting rid of the dirty or coarse data
[32]. When numerous data sources are combined, there is a greater likelihood that
some of the data may be duplicated or incorrectly categorized. Even though the
results and methods seem to be right on the surface, their reliability is compro-
mised if the underlying data is inaccurate. Because the procedures differ from
dataset to dataset, there is no one method to prescribe the precise stages in the
process of data cleaning. This is because there is no one definitive technique to do
so. However, it is essential to develop a pattern for each data cleaning procedure
in order to ensure that you are always doing the task in the appropriate manner [33].

As the main data cleaning steps taken on the input FCD data, below criterias,
have been considered:

• Duplication removal: During the process of collecting the data, there will
most likely be instances of duplicate observations. There is a possibility of
creating duplicate data whenever data sets are joined from different locations,
whenever data is scraped, whenever data is received from customers or numer-
ous departments, and when scraping data. In this procedure, de-duplication
is one of the most important aspects that needs to be addressed.

• Structural errors and missing data removal: When doing measurements
or uploading data, it is possible to uncover irregular naming conventions,

31

Implementation and Results

typos, missing values, or incorrect capitalization. These inconsistencies may
result in incorrect categorization of groups or classes.

The work flow of the thesis calls for a couple of data cleaning processes to be
conducted at various phases of the development of the project. Each of these steps
has its own unique set of requirements that must be met. The first stage in cleaning
the data is based on the criteria that were specified before. Nevertheless, this would
not be the only component of the thesis that involves cleaning up the data, and
the other one is discussed in 3.2.
The original FCD input data spans 12 months of 2019 and consists of 738,969,717
records, of which 5.1% are duplicated rows; following the duplication elimination
process, there are a total of 701,536,205 records. In addition, after the ’Not a
Number’ (NaN) values have been removed, the output comprises 655,798,896 entries.
These steps are the very first initial steps of data cleaning.

3.1.2 Area of interest
Choosing the scope of the problem that will be investigated is one of the most
important decisions to be made at the first phase of the process. Since the purpose
of the thesis is to describe the traffic congestion pattern in an urban area, and the
large FCD dataset contains records that are as large as the Piedmont province in
Italy, and since the goal of the thesis is to describe the traffic congestion pattern,
only the metropolitan city of this region and some small but nearby cities are
investigated, and other zones are excluded from the investigation. Figure 3.1.3
shows the interest area for further analysis with the following coordinates that start
from minimum latitude and longitude (44.96282106687191,7.502048016422193)
to the maximum latitude and longitude (45.19265016665321,7.791812422724604).
Eventually, the number of records that are inside this area is: 375,647,074.

32

3.1 – Input FCD analysis

Figure 3.1: The area of interest, including Turin and nearby cities

3.1.3 Data behaviour
Vehicle types

From the total number of 375,647,074 records in the urban area, 310,264,034 records,
meaning 92.99% of total, are belong to ’Personal’ vehicle type and the rest with
23,367,845 records consist the ’Fleet’ vehicle type. Since the ’Personal’ type is
dominant in the dataset, so the behavior of the vehicles are considered as a whole
and not specifically by each type of vehicle.

GPS accuracy DOP

As mentioned in 2.2.3, the accuracy of a GPS signal is affected by an error
propagation factor, which is known as dilution of precision. Thus, the quantity of
DOP can specify the signal quality of GPS. In figures 3.2 and 3.3 ,both cumulative
and non cumulative distribution of DOP values of FCD dataset are demonstrated.
according to [37], since a DOP value less or equal than 2 is considered as an
"excellent" signal in terms of precision, further, based on the behavior on the
cumulative distribution function; the value of HDOP ≤ 2 which contains 94.09%

33

Implementation and Results

of the whole dataset, is considered as a threshold to filter the records, and the
records with a HDOP greater than 2 are dropped. This is also a part of the data
cleaning part.

Figure 3.2: Cumulative Distribution Function of GPS accuracy DOP

Figure 3.3: Distribution of GPS accuracy DOP

34

3.1 – Input FCD analysis

Records daily distribution

Figure 3.4 shows how the FCD records are spread over the year 2019 in a daily
time frame. However, for the sake of more readability, the plot is labeled in monthly
intervals. As it can be seen, there is a repeating pattern in the behavior of the
records. Basically, the pattern shows the weekly behavior. There is a peak on
Fridays of each week, and a dip is found on Sundays, which are the weekend.
However, in summer, specifically in the month of August, due to the summer
holidays, a dramatic decrease in terms of submitted records is happening.

Figure 3.4: Daily Records Distribution

Records hourly distribution

Beside the daily and weekly time frames, it is also interesting to investigate the
hourly distribution of the records as well. It could give information about peak
hours that are most probably the time intervals in which the most congestion
occurs. Figure 3.5 illustrates the diffusion of the FCD records in the hourly time
frame. As it can be clearly seen, there are two peaks that exist. One in the morning
and the other one, which has a higher peak, in the evening. Furthermore, there
has been a drop in the early morning hours, when most people are sleeping and
outside activity is at its lowest. Such behavior is quite reasonable. In the morning,
when people usually go to school or work, a peak happens, and the other one, when
people are returning to their houses after having finished the work activity.

35

Implementation and Results

Figure 3.5: Hourly Records Distribution

3.2 Segment Extraction
After conducting basic data cleaning and experimentation on the input FCD data,
the first significant step is to extract the path segments of the taken route for
each individual vehicle. This is done after examining the FCD data. This is the
fundamental prerequisite for the subsequent procedures that will be undertaken to
perform analysis.

3.2.1 Segment definition
The movement of an item may be segmented down into trajectories that span the
distance between any two significant points. This division differs depending on the
application. The movement of a vehicle used by a delivery service, for instance,
may be segmented down not just into its daily travels, but also into its moves
between individual clients [38].

36

3.2 – Segment Extraction

In this thesis, the considered segmentation is defined as the smallest portion of
the overall route that is traveled by each individual vehicle. These portions are
identified as the traveled path between the time intervals during which the data
has been collected.

3.2.2 Segment extraction methodology
The first thing that has to be done in order to extract the path segment is to sort
the records that belong to each unique vehicle (which has its own ID) according to
the time stamp. Next, the path that was taken between every consecutive pair of
recordings is what is known as the path segment for each and every unique vehicle.
Then for each path segment, the following parameters are calculated:

Segment distance

Geopy is an extremely useful Python module that is used to determine the distance
between segments. This package takes as its input the coordinates of two points,
each of which has a latitude and a longitude, and its output is the Haversine distance
2.2.2, which it calculates using meters as the unit of measurement. Combining the
segment distance with the calculated segment duration, enables the calculation of
the segment speed at a later stage, which is one of the most important characteristics
that must be determined.

Segment duration

Is the amount of time that elapses between the beginning of one segment and the
beginning of the next. The calculation of the segment length provides valuable
information on the time intervals at which each FCD report is sent.

As Figure 3.6 shows the cumulative distribution of duration of the segments,
and also Figure 3.7 confirms as well, a majority of the path segments which
means 56.93% of the whole, have been recorded with the intervals of 60 seconds.
Considering a tolerance of 10 seconds, as a part of data cleaning, the segments
with duration more than 70 seconds which form 8.5% of the dataset are identified
as outlier and are dropped.

37

Implementation and Results

Figure 3.6: Cumulative distribution of Segment duration’s

Figure 3.7: Distribution of Segment duration’s

Segment speed

It is quite easy to calculate the segment’s average speed; all that is required is
a simple division of the segment’s distance, which is measured in meters, by the
segment’s duration, which is measured in seconds. After that, a factor of 3.6 is
applied to the segment average speed that was determined before in meters per
second in order to convert it to the desired unit of kilometers per hour.

38

3.2 – Segment Extraction

To investigate the behavior of the path segments better and following by the applied
filter in 3.6, the segment duration of records are grouped based on the different
intervals as following:

• Segments with duration between 0-9 seconds

• Segments with duration between 10-19 seconds

• Segments with duration between 20-29 seconds

• Segments with duration between 30-39 seconds

• Segments with duration between 40-49 seconds

• Segments with duration between 50-59 seconds

Following this, the segment speed is computed for each of these groups in order
to investigate the behavior of segment speed in each interval. The findings of this
investigation are shown in the figure 3.8. It is clear that despite the fact that there
are certain insignificant differences that are reasonable, no group is responsible for
any kind of bias in the overall behavior, and groups could be considered similar to
one another. To determine whether or not more data cleaning is required, this phase
is carried out. However, because of the similarities, no special data cleaning action
was performed at this phase. Instead, for the next steps, the segment duration of
all of the records will be merged into a single group.

Figure 3.8: Cumulative distribution of Segment Speed (KM/H) of different groups

39

Implementation and Results

The cumulative distribution of the average speed of the segments is shown in
figure 3.9, which is then followed by the distribution plot in figure 3.10. Because
the highest speed that is permitted by law in Italy is 130 kilometers per hour, this
limit has been selected as the upper bond in order to retain only the segments that
have a value that is lower than or equal to this value. Because of this, 0.52% of
the segments are discarded at this step of the data cleansing process. In addition,
2.72% of the segments have been found to have values that are equivalent to 0 on
the absolute scale. Since a value of absolute zero indicates that there has been
no movement at all for those particular segments, it is also necessary to eliminate
them as part of the process of cleaning the data.
In a nutshell, there were two stages of data cleaning that took place in relation to
the average speed of the segments: first, the segments whose average speed was
equal to or less than 130 kilometers per hour were maintained as the upper bond;
second, the segments whose average speed was greater than absolute zero were
maintained as the lower bond.

Figure 3.9: Cumulative distribution of Segment Speed (KM/H)

40

3.2 – Segment Extraction

Figure 3.10: Distribution of Segment Speed (KM/H)

3.2.3 Segment table
For the sake of ease and consistency throughout the work, the segment table is
produced using the original FCD data as the input. This is based on the segment
definition that has been supplied, as well as the technique that describes how the
segments are extracted in 3.2.1 and 3.2.2. Due to the fact that it provides the
computed average speed as well as the starting and ending location of each segment,
the segment table is an extremely important component in the analysis of the
thesis. This is because it leads the way for the discovery of traffic congestion. The
most important columns of the segment table are shown in table 3.1.

41

Implementation and Results

Attribute Type Description

deviceId Text
e.g: 2507297

the unique ID associated to each
device 1 to 20 characters

Type Integer Vehicle type, 1: car , 2: fleet

dateTime DateTime String
e.g: 2019-04-02 10:15:28

Time and date of segment
starting point format:
YYYY-MMDD HH24:MI:SS

startLatitude Number (9,6)
e.g: 45.08672

latitude of segment starting
point expressed in degrees
from -90 to 90

startLongitude Number (9,6)
e.g: 7.60882

longitude of segment starting
point expressed in degrees
from -90 to 90

startEngineStatus Integer
Engine status at segment
starting point
1: engine on , 0: engine off

startAccuracyDop Integer
e.g: 10

GPS signal quality
expressed in tenths of HDOP
between 0 and 20

endAccuracyDop Integer
e.g: 10

GPS signal quality
expressed in tenths of HDOP
between 0 and 20

endEngineStatus Integer
Engine status at segment
ending point
1: engine on , 0: engine off

startLatitude Number (9,6)
e.g: 45.08683

latitude of segment ending
point expressed in degrees
from -90 to 90

startLongitude Number (9,6)
e.g: 7.60893

longitude of segment ending
point expressed in degrees
from -90 to 90

segmentDistance Float, e.g: 139.25 travelled distance in the segment
in unit of meters

segmentDuration Float, e.g: 60.0 duration of the the segment
in unit of seconds

segmentSpeedKmH Float, e.g: 26.38 average speed of the segment
in unit kilometers per hour

Table 3.1: Segment table description, Other properties derived directly from the
latitude and longitude coordinates have been omitted for the purpose of brevity.

42

3.2 – Segment Extraction

3.2.4 Segment distribution
Another aspect to investigate regarding the behavior of the segments, is to examine
the distribution of the segments over different time spans, for instance, monthly,
weekly, daily, and hourly.

Segments monthly, weekly and daily distribution

Figure 3.11 illustrates how the segments are distributed during the course of
2019 on a daily basis. The figure, however, is labeled in monthly intervals for the
convenience of reading. Observably, the behavior of the records follows a recurring
pattern. The pattern essentially depicts the weekly activity. Each week has a weekly
high on Friday and a weekly trough on Sunday, the weekend. However, throughout
the summer, notably the month of August, owing to the summer vacations, the
number of submitted records decreases dramatically.

Figure 3.11: Daily Segments Distribution

In addition to the daily and weekly time periods, it is also worthwhile to analyze
the hourly distribution of the segments. It provides information on peak hours,
which are most likely the most congested periods of time. Figure 3.12 depicts
the distribution of segments across an hourly time period. Clearly visible are the
existence of two peaks. The one with the greater peak occurs in the evening, while
the one with the lower peak occurs in the morning. In the early morning hours,
when most people are asleep and outdoor activity is at its lowest, there has also
been a decline. Such conduct is very fair. A peak occurs in the morning, when
people typically go to school or work, and another occurs in the evening, when
people are coming home from work.

43

Implementation and Results

Figure 3.12: Hourly Segments Distribution

3.3 Grid map
Based on the goal of the thesis, the considered area 3.1 is broken down to a grid
on the map. A network of horizontal and vertical lines that are equally spaced
apart and used to designate places on a map is known as a grid. The row and
column labels of a reference grid will often indicate locations that are mentioned in
an index for the map [39].

3.3.1 Grid size selection

When determining the appropriate cell size inside the grid, some criteria that should
be considered include the resolution, the amount of time needed for computation,
and the number of segments contained within each cell. There needs to be some
sort of compromise between the various aspects that have been brought up, and
they are discussed one by one:

44

3.3 – Grid map

Number of segments per cell

The target cell should have a significant number of subcellular segments packed
inside of it. Because the influence of each segment’s inherent bias would be reduced
as the density increased, the cell would become both more informative and more
trustworthy as the density increased. Figure 3.13 shows the average number of
segments per cell for different cell sizes

Figure 3.13: Segment density VS cell size

Computation time

To obtain a greater resolution, the size of each cell must be reduced, which results in
an increase in the number of cells that must be processed. As a direct consequence
of this increase, the amount of calculation time that is necessary also rises. However,
in the case of this thesis, the procedure may be completed in a reasonably short
period of time because to the extremely powerful computing resources that are
given by SmartData@PoliTO [40]. This is true even in difficult scenarios that need
a significant level of compute power. The amount of time needed for calculation is
broken down below in figure 3.14 according to the various cell sizes.

45

Implementation and Results

Figure 3.14: Required processing time VS cell size

Resolution

Resolution of cells is one of the most important considerations to make while
selecting an appropriate cell size. If the resolution was higher, then there would
be more specific information on every little piece of the area. On the other hand,
there would be fewer segments for that area, which would result in the information
being less accurate. Alternatively, if the resolution is low, the reliability will rise,
but there will be less details as a consequence.
As a whole, and on the basis of the findings that were obtained, the size of the
grid’s individual cells has been decided to be 100 meters by 100 meters.

3.4 Grid table
Following the completion of two key phases, which are represented in 3.1 and 3.3,
the segment table and the outcome of dividing the map into a grid of cells are
combined into a single entity with the common key which is the identifier assigned
to each cell. The consequence of this merge is having the possibility of visualizing
on the map how the segments are distributed across the metropolitan area of Turin
and some of the smaller cities that are located in the surrounding area in a variety
of different aspects. These aspects for each cell of the grid including, the density
of the segments, the speed of the segments, and the GPS accuracy DOP of the
segments. For each component, one might just compute the minimum, maximum,
and the mean; nevertheless, the end result of calculating the mean value is the

46

3.4 – Grid table

point of interest because it relates to the purpose of the thesis.

Attribute Type Description

polygon_id String
e.g: 20_63 means

20_63 means cell located in 20th
row and 63th column on the grid

geometry Polygon The geometry of the
corresponding cell

cell_id String
e.g: 20_63 means

20_63 means cell located in 20th
row and 63th column on the grid

num_segments Interger
e.g: 1594

Indicates the density
of the segments inside the cell

minSpeed Float
e.g: 1.54 (KM/H)

Minimum speed of the
segments inside the cell

avgSpeed Float
e.g: 20.39 (KM/H)

Mean of speed of the
segments inside the cell

avgSpeed Float
e.g: 120.14 (KM/H)

Maximum speed of the
segments inside the cell

minAccuracyDop Integer
e.g: 1

Best GPS signal quality
of the segments inside the cell
expressed in tenths of HDOP

avgAccuracyDop Float
e.g: 9.32

Mean of GPS signal quality
of the segments inside the cell
expressed in tenths of HDOP

maxAccuracyDop Integer
e.g: 20

Worst GPS signal quality
of the segments inside the cell
expressed in tenths of HDOP

Table 3.2: Grid table. Obtained by outer join of 3.1 and 3.3

3.4.1 Grid plots
This current section has, up until this point, provided an explanation of the
mechanism behind the extraction of grid tables. As a direct consequence of this,
the plots of the grid map in three different aspects—the density of segments in each
cell, the mean of the speeds of the segments in each cell, and the GPS accuracy
DOP—are presented respectively in 3.15, 3.16, and 3.17.

47

Implementation and Results

Segment density per cell

Figure 3.15: Number of segments per cell

It is clear by looking at 3.15 that the density of segments within is substantially
higher along the main streets and highways than it is in any other section of the city.
This demonstrates the predicted behavior of automobiles and demonstrates that
main streets and highways are being utilized to a greater extent by automobiles.

48

3.4 – Grid table

Mean of the speeds of the segments per cell

Figure 3.16: Mean of the speeds of the segments per cell

it can be seen in 3.16, highways contain the cells within which, the average
speed of the segments is at the highest. In the urban area, along the main streets,
the average speed is relatively higher, with respect to the downtown and side streets.
As expected, the calculated average speed of the segments is quite low in downtown,
where it is expected to be the most crowded area.

49

Implementation and Results

Mean of GPS accuracy DOP per cell

Figure 3.17: Mean of GPS accuracy DOP per cell

As Figure 3.17 demonstrates, the accuracy of received GPS signal in urban
areas and also in the hills located on west side of Turin, are relatively lower than
the other pats. This could be due to the existence of the buildings which cause
multipath errors. The receipt of signals that have come not only straight from
satellites but also reflected or diffracted from the objects in the immediate vicinity
is what causes GPS multipath that eventually resulting a shift in the location that
was estimated [41].

3.5 Traffic congestion index
In this part of the article, the methodology behind calculating the traffic congestion
index is broken down and explained. This is made possible as a direct result of the
creation of the grid table 3.4, which makes this particular option available. Two
independent measures of traffic congestion are used in the calculation of the traffic
congestion index: absolute traffic congestion and relative traffic congestion. In spite

50

3.5 – Traffic congestion index

of this, the focus will mostly be on the latter since it is the objective of the thesis.
The reason for this is because the region being researched has several various kinds
of roadways. As an example, on a roadway that has an average speed of 100 KM/H
during off-peak hours and 80 KM/H during peak hours, the difference of 20 KM/H
is not considered to be severe congestion. On the other hand, the difference of 20
KM/H is significant in a neighborhood in the downtown area where the average
speed is 40 KM/H.

One key step to be taken before the traffic congestion index calculation, is to
identify the peak and off-peak of hours over a complete day cycle of 24 hours.
Based on the hourly distribution of the segments 3.12, two peaks the chart are
considered as peak hours, morning and evening peak. morning peak hours start
from 9AM to 11AM, while the evening peak period is from 6PM to 8PM. The
off-peak interval is chosen for the interval of 1AM to 6AM. The reason for choosing
the off-peak period longer than the peak hours is due to the low number of records
submitted during this period that could lead the analysis to be less reliable. The
selected intervals are depicted in figure 3.18.

Figure 3.18: Peak and off-peak hours selection

51

Implementation and Results

Dropping uncommon cells

One of the first steps toward calculation and comparison of the traffic congestion is
to keep only the cells that contain segments in both peaks and off-peak intervals.
This is obvious, since in the case of a lack of data in either interval, it is not possible
to make a comparison and calculate the congestion.

Traffic index calculation

In this thesis, two different ways of traffic congestion index calculations consist of
absolute traffic congestion and relative traffic congestion are experimented that are
respectively explained in 3.5.1 and 3.5.2, however, as mentioned earlier the focus
is mainly on the relative congestion index

3.5.1 Absolute traffic congestion
Absolute traffic congestion index is simply calculated as the difference of the speed
between peak and off-peak hours for the same cell in the grid:

VOP − VP (3.1)

Where:
VOP , is the Speed (KM/H) in the Off-peak period
VP , is the Speed (KM/H) in the Peak period

Distribution

The cumulative distribution of cell-wise traffic congestion is shown in Figure 3.19,
which compares the morning and evening peaks with the off-peak period individually.
As can be seen, 34.74% of the cells in the morning peak and 29.78% of the cells
in the evening peak are exhibiting negative congestion. This indicates that the
calculated average speed of cells during the off-peak period is lower than the one
during the peak period, which is behavior that is somewhat undesirable. It is to
be anticipated that it will be more congested during the peak hours than during
the off-peak hours in the regular scenario. In addition, the distribution of cell-wise
absolute traffic congestion is displayed in Figure 3.20 below. It is abundantly
evident that there is a behavior that is more favorable for the evening peak. The
primary reason is because there are more data obtained for the evening peak in
comparison to the data collected for the morning peak, which simply means that
the results are more reliable. Therefore, the focus will be mostly the comparison
between evening peak and the off-peak hours in the very early morning

52

3.5 – Traffic congestion index

Figure 3.19: Cell-wise cumulative distribution of absolute traffic congestion

Figure 3.20: Cell-wise distribution of absolute traffic congestion

53

Implementation and Results

3.5.2 Relative traffic congestion
The relative congestion index uses a simple formula 3.3 to measure the relative
variations in speed during peak hours against off-peak hours:3

VOP − VP

VOP

4
∗ 100 (3.2)

Where:
VOP , is the Speed (KM/H) in the Off-peak period
VP , is the Speed (KM/H) in the Peak period

To standardize the scale and keep it between -100% and 100%, the greater
velocity (either in the peak or off-peak interval) is always used as the base to
compute the relative changes in speed. As a result, in circumstances when negative
congestion is observed, the formula will be slightly different:

−
3

VP − VOP

VP

4
∗ 100 (3.3)

Distribution

Similarly to 3.5.1, the distribution of the traffic congestion index indicates similar
behavior. Negative congestion is present in 34.74% of the cells in the morning peak
and 29.78% percent of the cells in the evening peak. The more reliable behavior
of the evening peak interval is obvious in the relative traffic congestion index as
well. Figures 3.21 and 3.22 show the distribution of relative traffic congestion in
cumulative and normal ways respectively.

54

3.5 – Traffic congestion index

Figure 3.21: Cell-wise cumulative distribution of relative traffic congestion

Figure 3.22: Cell-wise distribution of relative traffic congestion

3.5.3 Cells with negative congestion
As indicated in 3.5.1 and 3.5.2, there exist some cells in the grid that demonstrate
negative congestion, implying that the average speed in the off-peak interval is

55

Implementation and Results

lower than in the peak hours. To understand in which cells this scenario is more
likely to happen, the behavior of the number of segments per cell is investigated
as the main feature of each cell based on the purpose of the thesis. As shown in
3.23, cells with fewer segments inside are much more likely to exhibit negatively
congested behavior. This is mainly due to the unreliability of the results with a low
amount of input. In addition, as it can be seen also in figure 3.24 the distribution
of the negatively congested cells, tend to fade out (green bar) as the number of the
segments per cell increase and the blue and orange bars will be aligned eventually.
Therefore, it would be reasonable to filter out the cells with fewer segments inside
for further steps in the analysis.

Figure 3.23: Cumulative distribution of cell-wise traffic congestion

56

3.5 – Traffic congestion index

Figure 3.24: Distribution of cell-wise traffic congestion

Filtering cells

Based on the cells behavior that is discussed in 3.5.3, it is already observed that
the cells with a lower number of segments inside are more prone to demonstrating
unreliable results like negative congestion. As a result, the cells with less than 100
segments and also segments with less than 200 segments are filtered separately,
and then they are plotted against the not filtered cumulative distribution and the
results are shown in the figure 3.25

57

Implementation and Results

Figure 3.25: comparison of cell-wise cumulative distribution of relative traffic
congestion in filtered and not filtered scenarios

As can be observed, the overall behavior of the relative congestion index is sig-
nificantly better after doing the filtration because there are less cells with negative
congestion. Furthermore, in the region with positive congestion, the non-filtered
line (blue) is flatter and hence less informative. When cells with less than 100
segments per cell are filtered, the improvement in behavior is more noticeable.
When the filtering criteria is increased to 200, the improvement is not significant,
thus the threshold of 100 segments per cell is deemed to filter.

The next filtering criteria is to remove the cells that are showing negative
congestion. Because achieving the goal of the thesis requires concentrating on
locations that are experiencing the highest levels of traffic congestion, the point
of interest is not a single cell but rather the behavior of a group of cells that are
adjacent to one another. Figures 3.26 and 3.27 show the distribution of cell-wise
relative speed difference after applying the filter

58

3.5 – Traffic congestion index

Figure 3.26: Filtered cell-wise cumulative distribution of relative traffic congestion

Figure 3.27: Filtered cell-wise distribution of relative traffic congestion

As it can be seen, the relative congestion index is peaked at the range between
15% and 20% that means the severity of the congestion is mostly occurs around
this range.

59

Implementation and Results

3.6 Identification of congested areas

The criteria for filtering the cells in the grid are broken down and explained in
3.5.3. After the filters have been applied, everything is ready to show which cells
and eventually which areas are the most congested based on the relative congestion
index 3.5.2. It should not come as a shock that the downtown area is the most likely

Figure 3.28: Relative traffic congestion

zone to be highly congested given the evidence presented here; it is the downtown
area, after all. However, this is not the only area with a significant amount of
traffic congestion; it is also possible to see that the traffic congestion occurs on
the highways, despite the fact that the average speed may not be particularly
slow; however, the speed difference in terms of percentage demonstrates that the
highways may also have a remarkable amount of traffic congestion. This was able
to be seen because of the relative congestion calculations, which makes it possible
to observe this phenomenon. On the other hand, such a thing was not able to be
observed when calculating the absolute traffic congestion index.

60

3.6 – Identification of congested areas

3.6.1 Kernel Density Estimation: a method for smoothing
Based on the fact that the structure of the project is a grid of cells, the overall
image is still a grid of individual cells, each of which depicts the congestion in
corresponding coordinates individually. This is the case even after the congestion
index of the cells has been identified. However, According to the objective of the
thesis, which is to identify the zones, and because each zone is most likely composed
of a couple of cells, a method is required to demonstrate the behavior of a group of
cells in an area rather than the behavior of individual cells. To smooth out the
density, one of the approaches that might be used is to implement Kernel Density
Estimation (KDE), which is a method that estimates density. This would be one
of the available methods. In this instance, the relative congestion index, which is
stated as a percentage, is taken into consideration as density, and several KDE
models with varying amounts of bandwidth are trained. The amount of available
bandwidth is the primary factor that determines how smooth the outcomes will be.
The findings are shown in the charts that follow.

61

Implementation and Results

Figure 3.29: KDE of Relative traffic congestion, Bandwidth = 0.0005

62

3.6 – Identification of congested areas

Figure 3.30: KDE of Relative traffic congestion, Bandwidth = 0.001

63

Implementation and Results

Figure 3.31: KDE of Relative traffic congestion, Bandwidth = 0.0015

64

3.6 – Identification of congested areas

Figure 3.32: KDE of Relative traffic congestion, Bandwidth = 0.002

65

Implementation and Results

Figure 3.33: KDE of Relative traffic congestion, Bandwidth = 0.0025

66

3.6 – Identification of congested areas

Figure 3.34: KDE of Relative traffic congestion, Bandwidth = 0.003

67

Implementation and Results

Figure 3.35: KDE of Relative traffic congestion, Bandwidth = 0.0035

As can be seen in 3.29 3.30 3.31 3.32 3.33 3.34 3.35, as bandwidth grows,
surrounding cells begin to merge more and more, and this continues until the whole
of the city is combined into one single cell. A bandwidth of 0.001 is deemed to be
an appropriate bandwidth for the purpose of highlighting the locations that are
suffering the most from traffic congestion.

68

3.6 – Identification of congested areas

Plot of the congested areas

as the final step of the identification of congested areas, in order to highlight the
congested areas, a filter is applied to the bandwidth of 0.001 to demonstrate the
congested areas clearly. The result is shown in 3.36.

Figure 3.36: Highlight of the most congested areas, Bandwidth = 0.001

69

70

Chapter 4

Conclusions

The subject that was suggested for this study was motivated mostly by the two
key questions that are outlined below.

• How is it possible to extract traffic congestion pattern from FCD using a
data-driven approach?

• How much is it scalable to expand the area under investigation? and what
could be the best resolution to achieve?

We realized that it is possible to extract the traffic congestion pattern by making
a comparison of the average speed of vehicles in the same area but at different
time intervals throughout the day. We did this by integrating a large quantity of
FCD that had already been collected into the analysis of this thesis. We came to
this conclusion after realizing that it is possible to do so. In addition, we were
aware that, despite the fact that Politecnico di Torino has a very robust hardware
infrastructure, the experiment’s reach could not be expanded beyond the confines
of a metropolitan urban region. In addition, because to the limitations imposed
by the computing capability of the hardware, the resolution may be reduced the
greater the region that is the subject of the study.

A further consideration is the application of the grid over the top of the map.
As we have seen, it is necessary to take into account the behavior of a group of
cells that are adjacent to one another in order to draw a conclusion about the
degree to which there is an issue with traffic congestion in the region. This is the
case even though some of the individual cells of the grid have displayed undesir-
able behaviors. This could be done by doing a smoothing step on all of the grid
cells as the last step. This would give a better picture of the areas with a lot of traffic.

71

Conclusions

The existing findings might be used in a later piece of research on this subject
in order to apply certain machine learning techniques in order to create predictions
regarding the congestion index in the future.

72

Bibliography

[1] Caves, R. W. (2004). Encyclopedia of the City. Routledge. p. 141.
[2] Treiber, Martin; Kesting, Arne (2012-10-11). Traffic Flow Dynamics: Data,

Models and Simulation. Springer Science Business Media. ISBN 978-3-642-
32459-8.

[3] May, Adolf Darlington (1990). Traffic Flow Fundamentals. Prentice Hall. ISBN
9780139260728.

[4] https://www.brookings.edu/research/traffic-why-its-getting-worse-what-
government-can-do/.

[5] Agyapong F and Ojo T K 2018 Managing traffic congestion in the accra central
market, Ghana Journal of Urban Management. 7 pp 85-96

[6] https://translineinc.com/traffic-data-collection/#:~:text=Other%
20methods%20of%20collecting%20traffic,the%20direction%20of%
20traffic%20flow.

[7] Leduc, Guillaume. (2008). Road Traffic Data: Collection Methods and Applica-
tions.

[8] G.S. Larue, C. Wullems, A new method for evaluating driver behavior and
interventions for passive railway level crossings with pneumatic tubes [J]. J.
Transportation Saf. Secur. 11(2), 150–166 (2019)

[9] S. Rajab, M.O. Al Kalaa, H. Refai, Classification and speed estimation of ve-
hicles via tire detection using single-element piezoelectric sensor[J]. J. Adv.
Transportation 50(7), 1366–1385 (2016)

[10] M. Grote, I. Williams, J. Preston, et al., A practical model for predicting road
traffic carbon dioxide emissions using Inductive loop detector data[J]. Trans-
portation Res. Part D Transp. Environ. 63, 809–825 (2018)

[11] https://www.techtarget.com/iotagenda/definition/
Internet-of-Things-IoT

[12] Llorca, D.F., Sotelo, M.A., Sánchez, S. et al. Traffic Data Collection for Floating
Car Data Enhancement in V2I Networks. EURASIP J. Adv. Signal Process.
2010, 719294 (2010)

73

https://translineinc.com/traffic-data-collection/#:~:text=Other%20methods%20of%20collecting%20traffic,the%20direction%20of%20traffic%20flow.
https://translineinc.com/traffic-data-collection/#:~:text=Other%20methods%20of%20collecting%20traffic,the%20direction%20of%20traffic%20flow.
https://translineinc.com/traffic-data-collection/#:~:text=Other%20methods%20of%20collecting%20traffic,the%20direction%20of%20traffic%20flow.
https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT
https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT

Bibliography

[13] https://www.septentrio.com/en/learn-more/about-GNSS/why-multi-frequency-
and-multi-constellation-matters

[14] Travel Time Data Collection Handbook, FHWA report, chapter 5, ITS Probe
Vehicle Techniques, 1998.

[15] Chang, Kang-tsung (2016). Introduction to Geographic Information Systems (9th
ed.). McGraw-Hill. p. 24. ISBN 978-1-259-92964-9.

[16] https://en.wikipedia.org/wiki/Geographic_coordinate_system
[17] https://www.ga.gov.au/scientific-topics/positioning-navigation/

wgs84
[18] https://www.gpsworld.com/data-collection-of-wgs-84-information-or-is-it/
[19] Kuhlman,Dave."APythonBook:BeginningPython,AdvancedPython,

andPythonExercises"
[20] Wes McKinney et al. Data structures for statistical computing in python. In

Proceedings of the 9th Python in Science Conference, volume 445, pages 51–56.
Austin, TX, 2010.

[21] https://pandas.pydata.org/
[22] Kelsey Jordahl, Joris Van den Bossche, Martin Fleischmann, Jacob Wasserman,

James McBride, Jeffrey Gerard, Jeff Tratner, Matthew Perry, Adrian Garcia
Badaracco, Carson Farmer, Geir Arne Hjelle, Alan D. Snow, Micah Cochran,
Sean Gillies, Lucas Culbertson, Matt Bartos, Nick Eubank, maxalbert, Aleksey
Bilogur, Sergio Rey, Christopher Ren, Dani Arribas-Bel, Leah Wasser, Levi
John Wolf, Martin Journois, Joshua Wilson, Adam Greenhall, Chris Holdgraf,
Filipe, and François Leblanc. geopandas/geopandas: v0.8.1, July 2020.

[23] https://geopandas.org/
[24] https://numpy.org/
[25] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science &

Engineering, 9(3):90–95, 2007.
[26] https://matplotlib.org/
[27] https://pypi.org/project/Shapely/
[28] https://www.dominodatalab.com/data-science-dictionary/folium
[29] https://python-visualization.github.io/folium/
[30] https://spark.apache.org/
[31] https://sparkbyexamples.com/
[32] Wu, Shaomin (2013) A Review on Coarse Warranty Data and Analysis. Reliability

Engineering and System Safety, 114 . pp. 1-11. ISSN 0951-8320.
[33] https://www.tableau.com/learn/articles/what-is-data-cleaning
[34] Dudek, Gregory; Jenkin, Michael (2000). Computational Principles of Mobile

Robotics
[35] https://en.wikipedia.org/wiki/Dilution_of_precision_(navigation)
[36] https://web.archive.org/web/20141122153439/http://www.gmat.unsw.

edu.au/snap/gps/gps_survey/chap1/149.htm

74

https://en.wikipedia.org/wiki/Geographic_coordinate_system
https://www.ga.gov.au/scientific-topics/positioning-navigation/wgs84
https://www.ga.gov.au/scientific-topics/positioning-navigation/wgs84
 Kuhlman, Dave. "A Python Book: Beginning Python, Advanced Python, and Python Exercises"
 Kuhlman, Dave. "A Python Book: Beginning Python, Advanced Python, and Python Exercises"
https://pandas.pydata.org/
https://geopandas.org/
https://numpy.org/
https://matplotlib.org/
https://pypi.org/project/Shapely/
https://www.dominodatalab.com/data-science-dictionary/folium
https://python-visualization.github.io/folium/
https://spark.apache.org/
https://sparkbyexamples.com/
https://www.tableau.com/learn/articles/what-is-data-cleaning
https://en.wikipedia.org/wiki/Dilution_of_precision_(navigation)
https://web.archive.org/web/20141122153439/http://www.gmat.unsw.edu.au/snap/gps/gps_survey/chap1/149.htm
https://web.archive.org/web/20141122153439/http://www.gmat.unsw.edu.au/snap/gps/gps_survey/chap1/149.htm

Bibliography

[37] Isik, O.K.; Hong, J.; Petrunin, I.; Tsourdos, A. Integrity Analysis for GPS-
Based Navigation of UAVs in Urban Environment. Robotics 2020, 9, 66.
https://doi.org/10.3390/robotics9030066

[38] Biljecki, F., Ledoux, H., Van Oosterom, P. (2013): Transportation mode-based
segmentation and classification of movement trajectories. International Journal
of Geographical Information Science, 27(2), pp. 385-407

[39] https://desktop.arcgis.com/en/arcmap/latest/map/page-layouts/
what-are-grids-and-graticules-.htm

[40] https://smartdata.polito.it/computing-facilities/
[41] T. Kos, I. Markezic and J. Pokrajcic, "Effects of multipath reception on GPS

positioning performance," Proceedings ELMAR-2010, 2010, pp. 399-402.
[42] Ajmar, A., Arco, E., Boccardo, P., Perez, F. (2019). Floating car data (fcd) for

mobility applications. The International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, 42, 1517-1523.

[43] Schäfer, R.P., Thiessenhusen, K.U., Wagner, P., 2002. A Traffic Information
System by Means of Real-Time Floating- Car Data. In: 9th World Congress
on Intelligent Transport Systems.

[44] BS Kerner, C Demir, RG Herrtwich, SL Klenov, H Rehborn, A Haug, et al.
Traffic state detection with floating car data in road networks. In Intelligent
Transportation Systems, Proceedings. IEEE, pages 44–49. IEEE, 2005.

[45] Xiaowen Dai, Martin Ferman, Robert P Roesser, et al. A simulation evaluation
of a real-time traffic information system using probe vehicles. In Intelligent
Transportation Systems, 2003. Proceedings. 2003 IEEE, volume 1, pages
475–480. IEEE, 2003

[46] Sunderrajan, Abhinav, et al. "Traffic state estimation using floating car data."
Procedia Computer Science 80 (2016): 2008-2018.

[47] Zhao, N., Yu, L., Zhao H., Guo, J., and Wen, H., 2009. Analysis of Traffic Flow
Characteristics on Ring Road Expressways in Beijing: Using Floating Car
Data and Remote Traffic Microwawe Sensor Data. Transportation Research
Record: Journal of the Transportation Research Board, pp. 178-185.

[48] Haghani, A., Hamedi, M., Sadabadi, K.F., Young, S., and Tarnoff, P., 2010. Data
Collection of Freeway Travel Time Ground Truth with Bluetooth Sensors.
Journal of Transportation research record, pp. 60-68.

[49] Oruc Altintasi, Hediye Tuydes-Yaman, Kagan Tuncay, Detection of ur-
ban traffic patterns from Floating Car Data (FCD), Transportation
Research Procedia, Volume 22, 2017, Pages 382-391, ISSN 2352-1465,
https://doi.org/10.1016/j.trpro.2017.03.057.

[50] Croce, A.I.; Musolino, G.; Rindone, C.; Vitetta, A. Transport System Models
and Big Data: Zoning and Graph Building with Traditional Surveys, FCD and
GIS. ISPRS Int. J. Geo-Inf. 2019, 8, 187. https://doi.org/10.3390/ijgi8040187

[51] Cantelmo, Guido, and Francesco Viti. "A big data demand estimation model for

75

https://desktop.arcgis.com/en/arcmap/latest/map/page-layouts/what-are-grids-and-graticules-.htm
https://desktop.arcgis.com/en/arcmap/latest/map/page-layouts/what-are-grids-and-graticules-.htm
https://smartdata.polito.it/computing-facilities/

Bibliography

urban congested networks." Transport and Telecommunication (2020).

76

Appendix A

Source code

Reading and filtering initial data

1 from pyspark . s q l import f un c t i on s as F
2 import matp lo t l i b . pyplot as p l t
3 from pyspark . s q l . types import ∗
4 import seaborn as sns
5 import pandas as pd
6 import numpy as np
7 import geopy . d i s t anc e
8 import matp lo t l i b
9 import datet ime

10 import os
11 from haver s ine import havers ine , Unit
12
13 import f a s t p l o t
14 %matp lo t l i b i n l i n e
15
16 #schema of i n i t i a l data
17 schema_init ia l_data = ’ idRequest ␣ s t r i ng , ␣ dev i c e Id ␣ s t r i ng , ␣

dateTime␣ s t r i ng , ␣\
18 l a t i t u d e ␣double , ␣ l ong i tude ␣double , ␣speedKmh␣ Integer , ␣

heading ␣ Integer , \
19 accuracyDrop␣ Integer , ␣EngineStatus ␣ Integer , ␣Type␣ In t eg e r ’
20 #reading csv
21 path = os . path . abspath (os . getcwd ())
22 df = spark . read . csv (’ f i l e :///% s . . / . . / shared /data/

FCD_complete/∗/∗ ’%path , sep=" , " , schema =
schema_init ia l_data)

77

Source code

23
24 #dropping d u p l i c a t e s
25 df = df . d i s t i n c t ()
26
27 df = df . na . drop (" any ")
28
29 #dropping po in t s wi th accuracy h i ghe r than 20
30 df = df . f i l t e r (df [’ accuracyDrop ’] <= 20)
31
32 #dateTime format
33 df = df . withColumn (’ dateTime ’ , F . to_timestamp (’ dateTime ’))
34
35 # ============= Torino and coun t ry s i de

==
36 minLat = 44.96282106687191
37 minLon = 7.502048016422193
38 maxLat = 45.19265016665321
39 maxLon = 7.791812422724604
40 # ======================================
41 @F. udf (returnType=BooleanType ())
42 def drop_outside_points (l a t , lon) :
43 cond i t i on = (l a t >= minLat) & (l a t <= maxLat) & (lon >=

minLon) & (lon <= maxLon)
44 return cond i t i on
45
46 df = df . f i l t e r (drop_outside_points (’ l a t i t u d e ’ , ’ l ong i tude ’)

)
47
48 # Adding c a l c u l a t e d segment parameters to i n i t i a l data
49 schema_inital_segment = ’ index ␣ Integer , idRequest ␣ s t r i ng , ␣

dev i c e Id ␣ s t r i ng , ␣dateTime␣timestamp , ␣\
50 l a t i t u d e ␣double , ␣ l ong i tude ␣double , ␣speedKmh␣ Integer , ␣

heading ␣ Integer , \
51 accuracyDrop␣ Integer , ␣EngineStatus ␣ Integer , ␣Type␣ Integer , ␣

segmentDistance ␣double , \
52 segmentDuration␣double , ␣segmentSpeedKmH␣double ’
53
54 @F. pandas_udf (schema_inital_segment , functionType=F.

PandasUDFType .GROUPED_MAP)
55 def adding_segment_parameter (df) :
56 os . env i ron ["ARROW_PRE_0_15_IPC_FORMAT"] = " 1 "

78

Source code

57
58 df = df . sor t_va lues (by=" dateTime ")
59 df . reset_index (i np l a c e=True)
60 d i s t ance =[f loat (0)]
61 durat ion=[f loat (0)]
62 speed=[f loat (0)]
63
64 for index , row in df . i t e r r ows () :
65 i f index == len (df) −1:
66 pass
67 else :
68 t ime_d i f f e r ence = df . l o c [index+1, ’ dateTime ’] −

df . l o c [index , ’ dateTime ’]
69 t ime_d i f f e r ence = t ime_d i f f e r ence . tota l_seconds

()
70 durat ion . append (t ime_d i f f e r ence)
71
72 org = (df . l o c [index , ’ l a t i t u d e ’] , d f . l o c [index , ’

l ong i tude ’])
73 des = (df . l o c [index+1, ’ l a t i t u d e ’] , d f . l o c [index

+1, ’ l ong i tude ’])
74
75 d i s t ance . append (f loat (" { 0 : . 2 f } " . format (geopy .

d i s t ance . d i s t anc e (org , des) .m)))
76
77 try :
78 speed . append (geopy . d i s t ance . d i s t anc e (org ,

des) .m/ t ime_d i f f e r ence)
79 except :
80 speed . append (f loat ("NaN"))
81
82 df [’ segmentDistance ’] = d i s t anc e
83 df [’ segmentDuration ’] = durat ion
84 df [’ segmentSpeedKmH ’] = [v ∗3 .6 i f not pd . i sna (v) else

f loat ("NaN") for v in speed]
85 return df
86
87 df_added_parameters = df . groupby (" dev i c e Id ") . apply (

adding_segment_parameter)
88 df_added_parameters = df_added_parameters . drop (’ index ’)

79

Source code

89 df_added_parameters . wr i t e . csv (’ f i l e :///% s/all_merged/ ’%path
, sep=" , ")

Creating segment table

1 from pyspark . s q l import f un c t i on s as F
2 import matp lo t l i b . pyplot as p l t
3 from pyspark . s q l . types import ∗
4 import seaborn as sns
5 import pandas as pd
6 import numpy as np
7 import geopy . d i s t anc e
8 import matp lo t l i b
9 import datet ime

10 import os
11
12 import f a s t p l o t
13 %matp lo t l i b i n l i n e
14
15 #schema of i n i t i a l data
16 schema_inital_segment = ’ idRequest ␣ s t r i ng , ␣ dev i c e Id ␣ s t r i ng ,

␣dateTime␣timestamp , ␣\
17 l a t i t u d e ␣double , ␣ l ong i tude ␣double , ␣speedKmh␣ Integer , ␣

heading ␣ Integer , \
18 accuracyDrop␣ Integer , ␣EngineStatus ␣ Integer , ␣Type␣ Integer , ␣

segmentDistance ␣double , \
19 segmentDuration␣double , ␣segmentSpeedKmH␣double ’
20 #reading csv
21 path = os . path . abspath (os . getcwd ())
22 df = spark . read . csv (’ f i l e :///% s/all_merged /∗ ’%path , sep=" , " ,

schema = schema_inital_segment)
23
24 #dateTime format
25 df = df . withColumn (’ dateTime ’ , F . to_timestamp (’ dateTime ’))
26
27 schema_segment_inital =’ dev i c e Id ␣ Str ing , \
28 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ type␣ Integer , \
29 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣dateTime␣ s t r i ng , \
30 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s t a r tLa t i t ude ␣double , \
31 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s ta r tLong i tude ␣double , \
32 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s ta r tEng ineSta tus ␣ Integer , \
33 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ startAccuracyDrop␣ Integer , \

80

Source code

34 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣endAccuracyDrop␣ Integer , \
35 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ endEngineStatus ␣ Integer , \
36 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ endLatitude ␣double , \
37 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ endLongitude␣double , \
38 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ segmentDistance ␣double , \
39 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ segmentDuration␣double , \
40 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣segmentSpeedKmH␣double ’
41
42 @F. pandas_udf (schema_segment_inital , functionType=F.

PandasUDFType .GROUPED_MAP)
43 def segment_table_maker (df) :
44 os . env i ron ["ARROW_PRE_0_15_IPC_FORMAT"] = " 1 "
45 df = df . sor t_va lues (by=" dateTime ")
46 df . reset_index (i np l a c e=True)
47 df_segment_temp=pd . DataFrame ()
48
49 ’ ’ ’ Creat ing empty l i s t s f o r columns ’ ’ ’
50 dev i c e Id = [] ; dateTime = [] ;
51 s ta r tLa t = [] ; s tartLon = [] ; s ta r tEng ineSta tus = [] ;

startAccuracyDrop = [] ;
52 endLat = [] ; endLon = [] ; endEngineStatus = [] ;

endAccuracyDrop = [] ;
53 d i s t ance = [] ; durat ion = [] ; speed = [] ;
54 Type = df [’Type ’] [0]
55 for index , row in df . i t e r r ows () :
56 i f index == 0 :
57 pass
58 else :
59 dev i c e Id . append (row [’ dev i c e Id ’])
60 dateTime . append (str (df . l o c [index −1, ’ dateTime ’])

)
61 s ta r tLa t . append (df . l o c [index −1, ’ l a t i t u d e ’])
62 startLon . append (df . l o c [index −1, ’ l ong i tude ’])
63 s ta r tEng ineSta tus . append (df . l o c [index −1, ’

EngineStatus ’])
64 startAccuracyDrop . append (df . l o c [index −1, ’

accuracyDrop ’])
65 endLat . append (row [’ l a t i t u d e ’])
66 endLon . append (row [’ l ong i tude ’])
67 endEngineStatus . append (row [’ EngineStatus ’])
68 endAccuracyDrop . append (row [’ accuracyDrop ’])

81

Source code

69 d i s t ance . append (row [’ segmentDistance ’])
70 durat ion . append (row [’ segmentDuration ’])
71 speed . append (row [’ segmentSpeedKmH ’])
72
73
74 df_segment_temp [’ dev i c e Id ’] = dev i c e Id
75 df_segment_temp [’ type ’] = Type
76 df_segment_temp [’ dateTime ’] = dateTime
77 df_segment_temp [’ s t a r tLa t i t ude ’] = s ta r tLa t
78 df_segment_temp [’ s ta r tLong i tude ’] = startLon
79 df_segment_temp [’ s ta r tLong i tude ’] = startLon
80 df_segment_temp [’ s ta r tEng ineSta tus ’] =

s ta r tEng ineSta tus
81 df_segment_temp [’ startAccuracyDrop ’] =

startAccuracyDrop
82 df_segment_temp [’ endLatitude ’] = endLat
83 df_segment_temp [’ endLongitude ’] = endLon
84 df_segment_temp [’ endEngineStatus ’] = endEngineStatus
85 df_segment_temp [’ endAccuracyDrop ’] = endAccuracyDrop
86 df_segment_temp [’ segmentDistance ’] = d i s t anc e
87 df_segment_temp [’ segmentDuration ’] = durat ion
88 df_segment_temp [’ segmentSpeedKmH ’] = speed
89
90 return df_segment_temp
91
92 df_segment_temp = df . groupby (" dev i c e Id ") . apply (

segment_table_maker)
93
94 ’ ’ ’ app l y ing f i l t e r : dropping segment dura t ions l onger than

70 s
95 as w e l l as segments wi th speed h i ghe r than 130KmH or equa l

to a b s o l u t e zero ’ ’ ’
96 df_segment_temp = df_segment_temp . f i l t e r (df_segment_temp [’

segmentDuration ’]<=70)
97 df_segment_temp = df_segment_temp . f i l t e r (df_segment_temp [’

segmentSpeedKmH ’]<=130)
98 df_segment_temp = df_segment_temp . f i l t e r (df_segment_temp [’

segmentSpeedKmH ’] !=0)
99

100 ’ ’ ’ adding columns r e l a t e d to g r i d t a b l e ’ ’ ’
101 schema_segments_ultimate =’ dev i c e Id ␣ Str ing , \

82

Source code

102 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ type␣ Integer , \
103 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣dateTime␣ s t r i ng , \
104 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s t a r tLa t i t ude ␣double , \
105 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s ta r tLong i tude ␣double , \
106 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s ta r tEng ineSta tus ␣ Integer , \
107 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ startAccuracyDrop␣ Integer , \
108 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣endAccuracyDrop␣ Integer , \
109 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ endEngineStatus ␣ Integer , \
110 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ endLatitude ␣double , \
111 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ endLongitude␣double , \
112 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ segmentDistance ␣double , \
113 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ segmentDuration␣double , \
114 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣segmentSpeedKmH␣double , \
115 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣xtmp␣double , \
116 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ytmp␣double , \
117 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ start_x␣ in t ege r , \
118 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ start_y␣ in t ege r , \
119 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣end_x␣ in t ege r , \
120 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣end_y␣ in t ege r , \
121 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ c e l l_ id_s ta r t ␣ s t r i ng , \
122 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ cel l_id_end␣ s t r i n g ’
123
124 ’ ’ ’ s h i f t by 100m in degrees ’ ’ ’
125 sh i f t InMete rLat = 0.0008983152841182118 #100m
126 sh i f t InMeterLon = 0.001270644533487797
127 # ========= Torino and coun t ry s i de =======
128 minLat = 44.96282106687191
129 minLon = 7.502048016422193
130 maxLat = 45.19265016665321
131 maxLon = 7.791812422724604
132 # ======================================
133
134 @F. pandas_udf (schema_segments_ultimate , functionType=F.

PandasUDFType .GROUPED_MAP)
135 def segment_pos i t ion_ca lcu lator (df_segments) :
136 os . env i ron ["ARROW_PRE_0_15_IPC_FORMAT"] = " 1 "
137
138 df_segments = df_segments . sor t_va lues (by=" dateTime ")
139 df_segments . reset_index (drop = True , i np l a c e=True)
140

83

Source code

141 ’ ’ ’ c a l c u l a t i n g the c e l l s t h a t t h e s e segments be long to
’ ’ ’

142 df_segments [’xtmp ’] = (df_segments [’ s ta r tLong i tude ’]−
minLon) / sh i f t InMeterLon

143 df_segments [’ytmp ’] = (df_segments [’ s t a r tLa t i t ude ’]−
minLat) / sh i f t InMete rLat

144 df_segments [’ start_x ’] = (df_segments [’xtmp ’] . apply (
lambda x : np . f l o o r (x)))+1

145 df_segments [’ start_y ’] = (df_segments [’ytmp ’] . apply (
lambda y : np . f l o o r (y)))+1

146
147 df_segments [’xtmp ’] = (df_segments [’ endLongitude ’]−

minLon) / sh i f t InMeterLon
148 df_segments [’ytmp ’] = (df_segments [’ endLatitude ’]−

minLat) / sh i f t InMete rLat
149 df_segments [’ end_x ’] = (df_segments [’xtmp ’] . apply (

lambda x : np . f l o o r (x)))+1
150 df_segments [’ end_y ’] = (df_segments [’ytmp ’] . apply (

lambda y : np . f l o o r (y)))+1
151 df_segments [’ c e l l_ id_s ta r t ’] = [f ’ { i n t (df_segments .

start_y . va lue s [i]) }_{ in t (df_segments . start_x . va lue s [
i]) } ’

152 for i in range (len (df_segments))]
153 df_segments [’ ce l l_id_end ’] = [f ’ { i n t (df_segments . end_y .

va lues [i]) }_{ in t (df_segments . end_x . va lue s [i]) } ’
154 for i in range (len (df_segments))]
155 return df_segments
156
157 df_segment = df_segment_temp . groupby (" dev i c e Id ") . apply (

segment_pos i t ion_ca lcu lator)
158
159 df_segment . wr i t e . csv (’ f i l e :///% s/ segment_table ’%path , sep="

, ")

Grid creation on the map with cells with size 100m by 100m

1 import pandas as pd
2 import geopandas as gpd
3 from shape ly . geometry import Point , Polygon , shape
4 import math
5
6 df_segments = pd . read_csv (r ’ segment_table . csv ’)

84

Source code

7
8 #%% boundary o f i n t e r e s t area
9 minLat = 44.96282106687191

10 minLon = 7.502048016422193
11 maxLat = 45.19265016665321
12 maxLon = 7.791812422724604
13
14 #%% crea t i n g empty dataframes to i n i t i a l i z e
15 df_geojson = pd . DataFrame ()
16 df_geojson [’ polygon_id ’] = df_geojson [’ polygon ’] = " "
17 df_data = pd . DataFrame ()
18
19 #%%
20 sh i f t InMete rLat = 0.0008983152841182118 #100m
21 sh i f t InMeterLon = 0.001270644533487797
22
23 # gr i d c r ea t i on wi th 100m by 100m s t e p s
24 range_lat = (maxLat − minLat) / sh i f t InMete rLat
25 range_lon = (maxLon − minLon) / sh i f t InMeterLon
26 coords={}
27 minLonCopy = minLon
28 #cr ea t i n g c e l l s wi th corresponding id
29 for i in range (math . c e i l (range_lat)) :
30 minLon = minLonCopy
31 new_latitude = minLat + sh i f t InMete rLat
32 for j in range (math . c e i l (range_lon)) :
33 new_longitude = minLon + shi f t InMeterLon
34 coords [f ’ { i+1}_{ j+1} ’] = [[minLon , minLat] , [

new_longitude , minLat] ,
35 [new_longitude , new_latitude] , [minLon , new_latitude]]
36 minLon = new_longitude
37 minLat = new_latitude
38
39 #%% s t o r i n g in a dataframe
40 df_geojson [’ polygon_id ’]= coords . keys ()
41 df_geojson [’ polygon ’] = coords . va lue s ()
42 df_geojson [’ polygon ’] = df_geojson [’ polygon ’] . apply (Polygon

)
43 df_data [’ id ’] = coords . keys ()
44
45 df_data [’ count ’] = 0

85

Source code

46 df_data . to_csv (’ 100m/data_TO . csv ’ , index=False)

Grid table and plot over the map

1 from pyspark . s q l import f un c t i on s as F
2 import matp lo t l i b . pyplot as p l t
3 from pyspark . s q l . types import ∗
4 import seaborn as sns
5 import pandas as pd
6 import numpy as np
7 import geopy . d i s t anc e
8 import matp lo t l i b
9 import datet ime

10 import p i c k l e
11 import os
12
13 #schema of segment t a b l e
14 schema_segments =’ dev i c e Id ␣ Str ing , \
15 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ type␣ Integer , \
16 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣dateTime␣ s t r i ng , \
17 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s t a r tLa t i t ude ␣double , \
18 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s ta r tLong i tude ␣double , \
19 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ s ta r tEng ineSta tus ␣ Integer , \
20 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ startAccuracyDrop␣ Integer , \
21 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣endAccuracyDrop␣ Integer , \
22 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ endEngineStatus ␣ Integer , \
23 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ endLatitude ␣double , \
24 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ endLongitude␣double , \
25 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ segmentDistance ␣double , \
26 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ segmentDuration␣double , \
27 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣segmentSpeedKmH␣double , \
28 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣xtmp␣double , \
29 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ytmp␣double , \
30 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ start_x ␣ in t ege r , \
31 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ start_y ␣ in t ege r , \
32 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣end_x␣ in t ege r , \
33 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣end_y␣ in t ege r , \
34 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ c e l l_ id_s ta r t ␣ s t r i ng , \
35 ␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣ cel l_id_end␣ s t r i n g ’
36 #reading csv
37 path = os . path . abspath (os . getcwd ())

86

Source code

38 df_segments = spark . read . csv (’ f i l e :///% s/ segment_table ’%
path , sep=" , " , schema = schema_segments)

39 df_segments = df_segments . withColumn (’ dateTime ’ , F .
to_timestamp (’ dateTime ’))

40
41 #conver t ing da te s to hour (f o r peak s e l e c t i o n)
42 @F. udf ()
43 def hour_extract ion (dateTime) :
44 hour = dateTime . hour
45 return hour
46
47 df_segments = df_segments . withColumn (’ dateTime ’ ,

hour_extract ion (’ dateTime ’))
48
49 ’ ’ ’ Peak 1 ’ ’ ’
50 @F. udf (returnType=BooleanType ())
51 def peak_1 (hour) :
52 va l id_per iod = [9 , 1 0 , 1 1]
53 ins ide_peak = hour in va l id_per iod
54 return ins ide_peak
55
56 df_peak_1 = df_segments . f i l t e r (peak_1 (’ dateTime ’))
57
58 ’ ’ ’ Peak 2 ’ ’ ’
59 @F. udf (returnType=BooleanType ())
60 def peak_2 (hour) :
61 va l id_per iod = [18 , 1 9 , 2 0]
62 ins ide_peak = hour in va l id_per iod
63 return ins ide_peak
64
65 df_peak_2 = df_segments . f i l t e r (peak_2 (’ dateTime ’))
66
67 ’ ’ ’Non−Peak ’ ’ ’
68 @F. udf (returnType=BooleanType ())
69 def off_peak (hour) :
70 va l id_per iod = range (1 , 7)
71 ins ide_peak = hour in va l id_per iod
72 return ins ide_peak
73
74 df_off_peak = df_segments . f i l t e r (off_peak (’ dateTime ’))
75

87

Source code

76 # gr i d t a b l e
77 schema_gr id_calcu lat ions= StructType ([
78 S t ruc tF i e l d (" c e l l_ i d " , StringType () , True) ,
79 S t ruc tF i e l d (" num_segments " , IntegerType () , True) ,
80
81 S t ruc tF i e l d ("minSpeed " ,DoubleType () , True) ,
82 S t ruc tF i e l d (" avgSpeed " ,DoubleType () , True) ,
83 S t ruc tF i e l d ("maxSpeed " ,DoubleType () , True) ,
84
85 S t ruc tF i e l d (" minAccuracyDrop " , IntegerType () , True) ,
86 S t ruc tF i e l d (" avgAccuracyDrop " ,DoubleType () , True) ,
87 S t ruc tF i e l d ("maxAccuracyDrop " , IntegerType () , True) ,
88])
89
90 @F. pandas_udf (schema_grid_calculat ions , functionType=F.

PandasUDFType .GROUPED_MAP)
91 def c e l l_data_ca l cu l a to r (df_segments) :
92 os . env i ron ["ARROW_PRE_0_15_IPC_FORMAT"] = " 1 "
93
94 # df_segments = df_segments . sor t_va lues (by="dateTime ")
95 df_segments . reset_index (drop = True , i np l a c e=True)
96
97 df_data = pd . DataFrame ()
98
99 #===#

100 #============== min , avg , max c a l c u l a t i o n s f o r SPEED
==============#

101 minSpeed = min(df_segments [’ segmentSpeedKmH ’])
102 avgSpeed = np .mean(df_segments [’ segmentSpeedKmH ’])
103 maxSpeed = max(df_segments [’ segmentSpeedKmH ’])
104 #==#
105 #========= min , avg , max c a l c u l a t i o n s f o r ACCURACY DROP

===========#
106 accuracyDrops = l i s t (df_segments [’ startAccuracyDrop ’])

+ l i s t (df_segments [’ endAccuracyDrop ’])
107 minAccuracyDrop = min(accuracyDrops)
108 avgAccuracyDrop = np .mean(accuracyDrops)
109 maxAccuracyDrop = max(accuracyDrops)
110 #==#
111 #============== wr i t i n g c a l c u l a t e d parameters in

df_data ==============#

88

Source code

112 c e l l_ i d = df_segments [’ c e l l_ id_s ta r t ’] [0]
113 df_data [’ c e l l_ i d ’] = [c e l l_ i d]
114
115 num_segments = len (df_segments)
116 df_data [’ num_segments ’] = [num_segments]
117 df_data [’ num_segments ’] = num_segments
118
119 df_data [’minSpeed ’] = round(minSpeed , 2)
120 df_data [’ avgSpeed ’] = round(avgSpeed , 2)
121 df_data [’maxSpeed ’] = round(maxSpeed , 2)
122
123 df_data [’ minAccuracyDrop ’] = minAccuracyDrop
124 df_data [’ avgAccuracyDrop ’] = round(avgAccuracyDrop , 2)
125 df_data [’maxAccuracyDrop ’] = maxAccuracyDrop
126
127 return df_data
128
129 df_grid_peak_1 = df_peak_1 . groupby (" c e l l_ id_s ta r t " or "

ce l l_id_end ") . apply (c e l l_data_ca l cu l a to r)
130 df_grid_peak_1 . toPandas () . to_csv (’ g r i d s /grid_table_peak_1 .

csv ’ , index = False)
131
132 df_grid_peak_2 = df_peak_2 . groupby (" c e l l_ id_s ta r t " or "

ce l l_id_end ") . apply (c e l l_data_ca l cu l a to r)
133 df_grid_peak_2 . toPandas () . to_csv (’ g r i d s /grid_table_peak_2 .

csv ’ , index = False)
134
135 df_grid_off_peak = df_off_peak . groupby (" c e l l_ id_s ta r t " or "

ce l l_id_end ") . apply (c e l l_data_ca l cu l a to r)
136 df_grid_off_peak . toPandas () . to_csv (’ g r i d s /

grid_table_off_peak . csv ’ , index = False)

1 #Import L i b r a r i e s
2 import geopandas as gpd
3 import pandas as pd
4 import numpy as np
5 import f o l ium
6 from f o l ium . f e a t u r e s import GeoJsonTooltip
7
8 #Read the geoJSON f i l e us ing geopandas
9 geo j son = gpd . r e ad_ f i l e (r ’ . . / . . / 1 0 0m/coords_TO . geo j son ’)

89

Source code

10
11 #Read the g r i d t a b l e s
12 df_grid_peak_1=pd . read_csv (r ’ . . / g r i d s /grid_table_peak_1 . csv

’)
13 df_grid_peak_2=pd . read_csv (r ’ . . / g r i d s /grid_table_peak_2 . csv

’)
14 df_grid_off_peak=pd . read_csv (r ’ . . / g r i d s / grid_table_off_peak

. csv ’)
15
16 df_final_peak_1 = geo j son . merge (df_grid_peak_1 , l e f t_on="

polygon_id " , r ight_on=" c e l l_ i d " , how=" outer ")
17 df_final_peak_1 = df_final_peak_1 [~ df_final_peak_1 [’

geometry ’] . i sna ()]
18 df_final_peak_1 . dropna (i np l a c e = True)
19
20 df_final_peak_2 = geo j son . merge (df_grid_peak_2 , l e f t_on="

polygon_id " , r ight_on=" c e l l_ i d " , how=" outer ")
21 df_final_peak_2 = df_final_peak_2 [~ df_final_peak_2 [’

geometry ’] . i sna ()]
22 df_final_peak_2 . dropna (i np l a c e = True)
23
24 df_f inal_of f_peak = geo j son . merge (df_grid_off_peak ,

l e f t_on=" polygon_id " , r ight_on=" c e l l_ i d " , how=" outer ")
25 df_f inal_of f_peak = df_f inal_of f_peak [~ df_f inal_of f_peak [

’ geometry ’] . i s na ()]
26 df_f inal_of f_peak . dropna (i np l a c e = True)
27
28 #management b e f o r e p l o t
29 df_final_dict_peak_1 = df_final_peak_1 . set_index (’ c e l l_ i d ’)

[’ avgSpeed ’]
30 df_final_dict_peak_2 = df_final_peak_2 . set_index (’ c e l l_ i d ’)

[’ avgSpeed ’]
31 df_f ina l_dict_of f_peak = df_f inal_of f_peak . set_index (’

c e l l_ i d ’) [’ avgSpeed ’]
32
33 df_final_dict_count_peak_1 = df_final_peak_1 . set_index (’

c e l l_ i d ’) [’ num_segments ’]
34 df_final_dict_count_peak_2 = df_final_peak_2 . set_index (’

c e l l_ i d ’) [’ num_segments ’]
35 df_final_dict_count_off_peak = df_f inal_of f_peak . set_index (

’ c e l l_ i d ’) [’ num_segments ’]

90

Source code

36
37 #adding c a l c u l a t e d parameters f o r p l o t
38 m = fo l ium .Map(l o c a t i o n =[45 . 0703 , 7 . 6869] , zoom_start=12,

t i l e s=None , ove r l ay=False)
39 import branca
40 import branca . colormap as cm
41 co lorSca l e_speed = cm. LinearColormap ([’ darkred ’ , ’ red ’ , ’

orange ’ , ’ ye l low ’ , ’ l ime ’ , ’ green ’] , vmin=0. , vmax=130. ,
index=(df_final_peak_2 [’ avgSpeed ’] . quan t i l e
((0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1))) . t o l i s t ())

42
43 co lo rSca l e_speed . capt ion = ’ Average␣ speed ␣ [KmH] ’
44 co lo rSca l e_speed . add_to (m)
45
46 fg_off_peak = fo l ium . FeatureGroup (name=’ Speed [KmH] ␣ o f f ␣

peak␣hours ␣1−2−3−4−5−6 ’ , ove r l ay=False) . add_to (m)
47 fg_peak_1 = fo l ium . FeatureGroup (name=’ Speed [KmH] ␣peak␣hours

␣9−10−11 ’ , ove r l ay=False) . add_to (m)
48 fg_peak_2 = fo l ium . FeatureGroup (name=’ Speed [KmH] ␣peak␣hours

␣18−19−20 ’ , ove r l ay=False) . add_to (m)
49
50 #off_peak
51 fo l ium . f e a t u r e s . GeoJson (
52 data=df_final_off_peak ,
53 name=’ t e s t ␣ f o r ␣ segment␣ dens i ty ␣ ’ ,
54 smooth_factor=2,
55 s ty l e_ func t i on=lambda f e a t u r e : {
56 ’ f i l l C o l o r ’ : co lo rSca l e_speed (

df_f inal_dict_of f_peak [f e a t u r e [’
p r op e r t i e s ’] [’ polygon_id ’]]) ,

57 ’ c o l o r ’ : ’ b lack ’ ,
58 ’ weight ’ : . 2 ,
59 ’ f i l l O p a c i t y ’ : . 6
60 } ,
61 t o o l t i p=fo l ium . f e a t u r e s . GeoJsonTooltip (
62 f i e l d s =[’ c e l l_ i d ’ ,
63 ’ num_segments ’ ,
64 ’minSpeed ’ ,
65 ’ avgSpeed ’ ,
66 ’maxSpeed ’ ,
67 ’minAccuracyDrop ’ ,

91

Source code

68 ’ avgAccuracyDrop ’ ,
69 ’maxAccuracyDrop ’
70] ,
71 a l i a s e s =[" Ce l l ␣ id : " ,
72 "Number␣ o f ␣Segments : " ,
73 ’Minimum␣Speed␣ (Km/H) ’ ,
74 ’ Average␣Speed␣ (Km/H) ’ ,
75 ’Maximum␣Speed␣ (Km/H) ’ ,
76 ’ Best ␣GPS␣ accuracy ’ ,
77 ’ Average␣GPS␣ accuracy ’ ,
78 ’Worst␣GPS␣ accuracy ’
79] ,
80 l o c a l i z e=True ,
81 s t i c ky=False ,
82 l a b e l s=True ,
83 s t y l e=" " "
84 background−co l o r : #F0EFEF;
85 border : 2px s o l i d b l a c k ;
86 border−rad ius : 3px ;
87 box−shadow : 3px ;
88 " " " ,
89 max_width=800 ,) ,
90 h i gh l i gh t_func t i on=lambda x : { ’

weight ’ : 3 , ’ f i l l O p a c i t y ’ : 2
} ,

91) . add_to (fg_off_peak)
92 #peak_1
93 fo l ium . f e a t u r e s . GeoJson (
94 data=df_final_peak_1 ,
95 name=’ t e s t ␣ f o r ␣ segment␣ dens i ty ␣ ’ ,
96 smooth_factor=2,
97 s ty l e_ func t i on=lambda f e a t u r e : {
98 ’ f i l l C o l o r ’ : co lo rSca l e_speed (

df_final_dict_peak_1 [f e a t u r e [’
p r op e r t i e s ’] [’ polygon_id ’]]) ,

99 ’ c o l o r ’ : ’ b lack ’ ,
100 ’ weight ’ : . 2 ,
101 ’ f i l l O p a c i t y ’ : . 6
102 } ,
103 t o o l t i p=fo l ium . f e a t u r e s . GeoJsonTooltip (
104 f i e l d s =[’ c e l l_ i d ’ ,

92

Source code

105 ’ num_segments ’ ,
106 ’minSpeed ’ ,
107 ’ avgSpeed ’ ,
108 ’maxSpeed ’ ,
109 ’minAccuracyDrop ’ ,
110 ’ avgAccuracyDrop ’ ,
111 ’maxAccuracyDrop ’
112] ,
113 a l i a s e s =[" Ce l l ␣ id : " ,
114 "Number␣ o f ␣Segments : " ,
115 ’Minimum␣Speed␣ (Km/H) ’ ,
116 ’ Average␣Speed␣ (Km/H) ’ ,
117 ’Maximum␣Speed␣ (Km/H) ’ ,
118 ’ Best ␣GPS␣ accuracy ’ ,
119 ’ Average␣GPS␣ accuracy ’ ,
120 ’Worst␣GPS␣ accuracy ’
121] ,
122 l o c a l i z e=True ,
123 s t i c ky=False ,
124 l a b e l s=True ,
125 s t y l e=" " "
126 background−co l o r : #F0EFEF;
127 border : 2px s o l i d b l a c k ;
128 border−rad ius : 3px ;
129 box−shadow : 3px ;
130 " " " ,
131 max_width=800 ,) ,
132 h i gh l i gh t_func t i on=lambda x : { ’

weight ’ : 3 , ’ f i l l O p a c i t y ’ : 2
} ,

133) . add_to (fg_peak_1)
134
135 #peak_2
136 fo l ium . f e a t u r e s . GeoJson (
137 data=df_final_peak_2 ,
138 name=’ t e s t ␣ f o r ␣ segment␣ dens i ty ␣ ’ ,
139 smooth_factor=2,
140 s ty l e_ func t i on=lambda f e a t u r e : {
141 ’ f i l l C o l o r ’ : co lo rSca l e_speed (

df_final_dict_peak_2 [f e a t u r e [’
p r op e r t i e s ’] [’ polygon_id ’]]) ,

93

Source code

142 ’ c o l o r ’ : ’ b lack ’ ,
143 ’ weight ’ : . 2 ,
144 ’ f i l l O p a c i t y ’ : . 6
145 } ,
146 t o o l t i p=fo l ium . f e a t u r e s . GeoJsonTooltip (
147 f i e l d s =[’ c e l l_ i d ’ ,
148 ’ num_segments ’ ,
149 ’minSpeed ’ ,
150 ’ avgSpeed ’ ,
151 ’maxSpeed ’ ,
152 ’minAccuracyDrop ’ ,
153 ’ avgAccuracyDrop ’ ,
154 ’maxAccuracyDrop ’
155] ,
156 a l i a s e s =[" Ce l l ␣ id : " ,
157 "Number␣ o f ␣Segments : " ,
158 ’Minimum␣Speed␣ (Km/H) ’ ,
159 ’ Average␣Speed␣ (Km/H) ’ ,
160 ’Maximum␣Speed␣ (Km/H) ’ ,
161 ’ Best ␣GPS␣ accuracy ’ ,
162 ’ Average␣GPS␣ accuracy ’ ,
163 ’Worst␣GPS␣ accuracy ’
164] ,
165 l o c a l i z e=True ,
166 s t i c ky=False ,
167 l a b e l s=True ,
168 s t y l e=" " "
169 background−co l o r : #F0EFEF;
170 border : 2px s o l i d b l a c k ;
171 border−rad ius : 3px ;
172 box−shadow : 3px ;
173 " " " ,
174 max_width=800 ,) ,
175 h i gh l i gh t_ func t i on=lambda x : { ’

weight ’ : 3 , ’ f i l l O p a c i t y ’ : 2
} ,

176) . add_to (fg_peak_2)
177 fo l ium . Ti leLayer (’ openstreetmap ’ , ove r l ay=True , name="

OpenStreetMap ") . add_to (m)
178 fo l ium . LayerControl (c o l l a p s ed=False) . add_to (m)
179 m. save (" peaks_100m_speed . html ")

94

Source code

Traffic congestion index
1 import geopandas as gpd
2 import pandas as pd
3 import numpy as np
4 import matp lo t l i b . pyplot as p l t
5 import matp lo t l i b
6
7 ’ ’ ’ read ing the g r i d t a b l e s f o r the peak and o f f peak hours

’ ’ ’
8 off_peak_table = pd . read_csv (r ’ g r i d s / grid_table_off_peak .

csv ’)
9 peak_table_1 = pd . read_csv (r ’ g r i d s /grid_table_peak_1 . csv ’)

10 peak_table_2 = pd . read_csv (r ’ g r i d s /grid_table_peak_2 . csv ’)
11 o f f_peak_ce l l s = l i s t (of f_peak_table [’ c e l l_ i d ’])
12 peak_1_cel ls = l i s t (peak_table_1 [’ c e l l_ i d ’])
13 peak_2_cel ls = l i s t (peak_table_2 [’ c e l l_ i d ’])
14
15 ’ ’ ’ f i n d i n g the i n t e r s e c t i o n o f g r i d c e l l s ’ ’ ’
16 i n t e r s e c t i o n = l i s t (set (peak_1_cel ls) & set (peak_2_cel ls) &

set (o f f_peak_ce l l s))
17
18 ’ ’ ’ dropping uncommon c e l l s ’ ’ ’
19 df_peak_1 = peak_table_1 . l o c [peak_table_1 [’ c e l l_ i d ’] . i s i n (

i n t e r s e c t i o n)]
20 df_peak_1 . reset_index (i np l a c e = True)
21
22 df_peak_2 = peak_table_2 . l o c [peak_table_2 [’ c e l l_ i d ’] . i s i n (

i n t e r s e c t i o n)]
23 df_peak_2 . reset_index (i np l a c e = True)
24
25 df_off_peak = off_peak_table . l o c [of f_peak_table [’ c e l l_ i d ’] .

i s i n (i n t e r s e c t i o n)]
26 df_off_peak . reset_index (i np l a c e = True)
27
28 #merging g r i d t a b l e s wi th u s e f u l columns
29 df_merged = pd . merge (pd . merge (df_off_peak [[’ c e l l_ i d ’ , ’

num_segments ’ , ’ avgSpeed ’]] ,
30 df_peak_1 [[’ c e l l_ i d ’ , ’ num_segments ’ , ’

avgSpeed ’]] , on=’ c e l l_ i d ’) ,
31 df_peak_2 [[’ c e l l_ i d ’ , ’ num_segments ’ , ’

avgSpeed ’]] , on=’ c e l l_ i d ’)

95

Source code

32
33 df_merged . columns = [’ c e l l_ i d ’ , ’ num_segments_offPeak ’ , ’

avgSpeed_offPeak ’ ,
34 ’ num_segments_peak1 ’ , ’ avgSpeed_peak1 ’

,
35 ’ num_segments_peak2 ’ , ’ avgSpeed_peak2 ’

,
36]
37
38 min_num_segments = l i s t (zip (df_merged . num_segments_offPeak ,

df_merged . num_segments_peak1))
39 min_num_segments = [min(i [0] , i [1]) for i in

min_num_segments]
40 df_merged [’min_num_segments_off_p1 ’] = min_num_segments
41
42 min_num_segments = l i s t (zip (df_merged . num_segments_offPeak ,

df_merged . num_segments_peak2))
43 min_num_segments = [min(i [0] , i [1]) for i in

min_num_segments]
44 df_merged [’min_num_segments_off_p2 ’] = min_num_segments
45
46 ’ ’ ’ Abso lu te t r a f f i c conges t i on ’ ’ ’
47 df_absCongestionKMH = df_merged . copy ()
48 df_absCongestionKMH [’ speedDiffKMH_off_p1 ’] =

df_absCongestionKMH [’ avgSpeed_offPeak ’] −
df_absCongestionKMH [’ avgSpeed_peak1 ’]

49 df_absCongestionKMH [’ speedDiffKMH_off_p2 ’] =
df_absCongestionKMH [’ avgSpeed_offPeak ’] −
df_absCongestionKMH [’ avgSpeed_peak2 ’]

50
51 #CDF p l o t
52 spe edD i f f s = { ’ speedDiffKMH_off_p1 ’ : df_absCongestionKMH [’

speedDiffKMH_off_p1 ’] ,
53 ’ speedDiffKMH_off_p2 ’ : df_absCongestionKMH [’

speedDiffKMH_off_p2 ’] }
54 # m a t p l o t l i b . rcParams . update (m a t p l o t l i b . rcParamsDefault)
55 p l t . rcParams [" f i g u r e . f i g s i z e "] = (10 ,5)
56 for key , va lue in sp e edD i f f s . i tems () :
57 x = l i s t (va lue)
58 x . s o r t ()
59 y = (1 . ∗ np . arange (len (x)) / (len (x) − 1)) ∗100

96

Source code

60
61
62 p l t . p l o t (x , y , zorder=2)
63 # p l t . h l i n e s (y=(l en (df_absCongestionKMH . l o c [va lue <0])

/ l en (df_absCongestionKMH)) ∗100
64 # , xmin = min(x) , xmax = max(x) , c o l o r s =

c o l o r s [0] , l s = ’: ’
65
66 t i t l e = ’ Ce l lw i s e ␣Speed␣ D i f f e r e n c e ␣Cumulative␣ D i s t r i bu t i on ’
67 p l t . t i t l e (t i t l e)
68 # t i t l e = ’ Abso lu te Congest ion ’
69 p l t . x l ab e l (’ Absolute ␣ Ce l lw i s e ␣ speed ␣ d i f f e r e n c e ␣ (KM/H) ’)
70 p l t . y l ab e l (’ Percent ␣%’)
71 # p l t . y l im (0 ,1)
72 p l t . xl im (−125 ,125)
73 p l t . g r i d (True)
74 p l t . y t i c k s (np . arange (0 ,110 ,10))
75 p l t . x t i c k s (np . arange (−130 ,131 ,20))
76 p l t . l egend ([’Morning␣Peak␣VS␣ o f f −Peak ’ , ’ Evening␣Peak␣VS␣

o f f −Peak ’] , l o c =’ lower ␣ r i g h t ’)
77
78 p l t . axv l i n e (x=0,ymin = 0 , ymax = 1 , c o l o r=’ black ’ , l i n ew id th

= 1 , zorder=1)
79 p l t . axh l ine (y=len (df_absCongestionKMH . l o c [

df_absCongestionKMH [’ speedDiffKMH_off_p1 ’] <0]) / len (
df_absCongestionKMH) ∗100

80 , xmin = 0 , xmax = 1 , c o l o r = ’#1f77b4 ’ , l s=’ : ’)
81 p l t . axh l ine (y=(len (df_absCongestionKMH . l o c [

df_absCongestionKMH [’ speedDiffKMH_off_p2 ’] <0]) / len (
df_absCongestionKMH)) ∗100

82 , xmin = 0 , xmax = 1 , c o l o r = ’#f f 7 f 0 e ’ , l s=’ : ’)
83 t i t l e=’ abs_congestion_p1_2 ’
84 # p l t . s a v e f i g (f ’{ t i t l e }_CDF. jpg ’ , bbox_inches=’ t i g h t ’)
85 p l t . show ()
86
87 p l t . rcParams [" f i g u r e . f i g s i z e "] = (10 ,5)
88 # m a t p l o t l i b . rcParams . update (m a t p l o t l i b . rcParamsDefault)
89 x_p1 = df_absCongestionKMH [’ speedDiffKMH_off_p1 ’]
90 x_p2 = df_absCongestionKMH [’ speedDiffKMH_off_p2 ’]
91 b ins = np . arange (−125 ,126 ,5)
92 p l t . h i s t ([x_p1 , x_p2] , b ins=bins , edgeco l o r=" l i g h t b l u e ")

97

Source code

93 p l t . x t i c k s (np . arange (−75 ,76 ,5))
94 p l t . xl im (−70 ,70)
95 p l t . y t i c k s (np . arange (0 ,10001 ,1000))
96 # p l t . x l im (−50 ,10)
97 t i t l e=’ Ce l lw i s e ␣Speed␣ D i f f e r e n c e ␣ D i s t r i bu t i on ’
98 p l t . t i t l e (t i t l e)
99 p l t . x l ab e l (’ Ce l lw i s e ␣Speed␣ D i f f e r e n c e ␣ (KM/H) ’)

100
101 p l t . y l ab e l (’ Frequency ’)
102 p l t . l egend ([’Morning␣Peak␣VS␣ o f f −Peak ’ , ’ Evening␣Peak␣VS␣

o f f −Peak ’] , l o c =’ bes t ’)
103 p l t . axv l i n e (x=0,ymin = 0 , ymax = 1 , c o l o r=’ b lack ’ , l i n ew id th

= 1 . 5)
104 p l t . g r i d ()
105 t i t l e = ’ abs_congestion_p1_2 ’
106 # p l t . s a v e f i g (f ’{ t i t l e }_Histogram . jpg ’ , bbox_inches=’ t i g h t ’)
107 p l t . show ()
108
109 ’ ’ ’ Re l a t i v e t r a f f i c conges t i on ’ ’ ’
110 df_re lCongest ion = df_merged . copy ()
111
112 #r e l a t i v e speed d i f f e r e n c e c a l c u l a t i o n
113 def r e l a t i v e_spe ed_d i f f e r en c e (row , avgSpeed) :
114 i f row [’ avgSpeed_offPeak ’] >= row [avgSpeed] :
115 speedDi f f = (row [’ avgSpeed_offPeak ’] − row [avgSpeed

]) /row [’ avgSpeed_offPeak ’]
116 else :
117 speedDi f f = −(row [avgSpeed] − row [’ avgSpeed_offPeak

’]) /row [avgSpeed]
118 return speedDi f f ∗100
119
120 df_re lCongest ion [’ spe edDi f f%_p1 ’] = df_re lCongest ion . apply (

lambda row : r e l a t i v e_spe ed_d i f f e r en c e (row , ’
avgSpeed_peak1 ’) , ax i s=1)

121 df_re lCongest ion [’ spe edDi f f%_p1 ’] = [f loat (" { 0 : . 2 f } " . format
(i)) for i in df_re lCongest ion [’ sp e edDi f f%_p1 ’]]

122
123 df_re lCongest ion [’ spe edDi f f%_p2 ’] = df_re lCongest ion . apply (

lambda row : r e l a t i v e_spe ed_d i f f e r en c e (row , ’
avgSpeed_peak2 ’) , ax i s=1)

98

Source code

124 df_re lCongest ion [’ spe edDi f f%_p2 ’] = [f loat (" { 0 : . 2 f } " . format
(i)) for i in df_re lCongest ion [’ sp e edDi f f%_p2 ’]]

125
126 #CDF p l o t
127 spe edD i f f s = { ’ speedDi f f%_p1 ’ : d f_re lCongest ion [’ spe edDi f f

%_p1 ’] ,
128 ’ spe edDi f f%_p2 ’ : d f_re lCongest ion [’ sp e edDi f f%_p2 ’] }
129 p l t . rcParams [" f i g u r e . f i g s i z e "] = (10 ,5)
130 for key , va lue in sp e edD i f f s . i tems () :
131 x = l i s t (va lue)
132 x . s o r t ()
133 y = (1 . ∗ np . arange (len (x)) / (len (x) − 1)) ∗100
134
135 # m a t p l o t l i b . rcParams . update (m a t p l o t l i b . rcParamsDefault

)
136 p l t . p l o t (x , y)
137
138 t i t l e = ’ Ce l lw i s e ␣Speed␣ D i f f e r e n c e ␣Cumulative␣ D i s t r i bu t i on ’
139 p l t . t i t l e (t i t l e)
140 t i t l e = ’ Re la t i v e ␣Congest ion ’
141 p l t . x l ab e l (’ Re l a t i v e ␣ Ce l lw i s e ␣ speed␣ d i f f e r e n c e ␣(%) ’)
142 p l t . y l ab e l (’ Percent ␣%’)
143 # p l t . y l im (0 ,1)
144 # p l t . x l im (−1000 ,160)
145 p l t . g r i d (True)
146 p l t . y t i c k s (np . arange (0 ,110 ,10))
147 p l t . x t i c k s (np . arange (−100 ,101 ,10))
148 # p l t . h l i n e s (y=negat ive_va lues_percentage , xmin = min(x) ,

xmax = max(x) , c o l o r s =’ red ’ , l s = ’ : ’)
149 p l t . l egend ([’Morning␣Peak␣VS␣ o f f −Peak ’ , ’ Evening␣Peak␣VS␣

o f f −Peak ’] , l o c =’ lower ␣ r i g h t ’)
150
151 p l t . axv l i n e (x=0,ymin = 0 , ymax = 1 , c o l o r=’ black ’ , l i n ew id th

= 1)
152 p l t . axh l ine (y=len (d f_re lCongest ion . l o c [d f_re lCongest ion [’

spe edDi f f%_p1 ’] <0]) / len (d f_re lCongest ion) ∗100
153 , xmin = 0 , xmax = 1 , c o l o r = ’#1f77b4 ’ , l s=’ : ’)
154 p l t . axh l ine (y=(len (d f_re lCongest ion . l o c [d f_re lCongest ion [’

spe edDi f f%_p2 ’] <0]) / len (df_absCongestionKMH)) ∗100
155 , xmin = 0 , xmax = 1 , c o l o r = ’#f f 7 f 0 e ’ , l s=’ : ’)
156 t i t l e=’ rel_congestion_p1_2 ’

99

Source code

157 p l t . s a v e f i g (f ’ { t i t l e }_CDF. jpg ’ , bbox_inches=’ t i g h t ’)
158 p l t . show ()
159
160 p l t . rcParams [" f i g u r e . f i g s i z e "] = (10 ,5)
161 # m a t p l o t l i b . rcParams . update (m a t p l o t l i b . rcParamsDefault)
162
163 x_p1 = df_re lCongest ion [’ sp e edDi f f%_p1 ’]
164 x_p2 = df_re lCongest ion [’ sp e edDi f f%_p2 ’]
165 b ins = np . arange (−100 ,100 ,10)
166
167 p l t . h i s t ([x_p1 , x_p2] , b ins=bins , edgeco l o r=" l i g h t b l u e ")
168 p l t . x t i c k s (np . arange (−100 ,101 ,10))
169 # p l t . y t i c k s (np . arange (0 ,3000 ,500))
170 # p l t . x l im (−50 ,10)
171 t i t l e=’ Ce l lw i s e ␣Speed␣ D i f f e r e n c e ␣ D i s t r i bu t i on ’
172 p l t . t i t l e (t i t l e)
173 p l t . x l ab e l (’ Re l a t i v e ␣ Ce l lw i s e ␣ speed␣ d i f f e r e n c e ␣(%) ’)
174 t i t l e = ’ Re la t i v e ␣Congest ion ’
175 p l t . y l ab e l (’ Frequency ’)
176
177 p l t . g r i d ()
178 p l t . l egend ([’Morning␣Peak␣VS␣ o f f −Peak ’ , ’ Evening␣Peak␣VS␣

o f f −Peak ’] , l o c =’ bes t ’)
179 p l t . axv l i n e (x=0,ymin = 0 , ymax = 1 , c o l o r=’ b lack ’ , l i n ew id th

= 1 . 5)
180 t i t l e=’ rel_congestion_p1_2 ’
181 p l t . s a v e f i g (f ’ { t i t l e }_Histogram . jpg ’ , bbox_inches=’ t i g h t ’)
182 p l t . show ()
183
184 ’ ’ ’ C e l l s behav ior based on den s i t y i n v e s t i g a t i o n ’ ’ ’
185 #nega t i v e conges t i on e x t r a c t i o n
186 df_rel_negative_conge = df_re lCongest ion [d f_re lCongest ion [’

spe edDi f f%_p2 ’] < 0]
187
188 df_re l_pos i t ive_conge = df_re lCongest ion [d f_re lCongest ion [’

spe edDi f f%_p2 ’] >= 0]
189
190 #CDF of nega t i v e conges t i on based on number o f segments per

c e l l [r e l a t i v e]
191 matp lo t l i b . rcParams . update (matp lo t l i b . rcParamsDefault)

100

Source code

192 d f s = [df_re lCongest ion , df_re l_pos it ive_conge ,
df_rel_negative_conge]

193 for df in d f s :
194 x = l i s t (df [’min_num_segments_off_p2 ’])
195 x . s o r t ()
196 # y = df_negative_conge . speedDiffKMH
197 y = (1 . ∗ np . arange (len (x)) / (len (x) − 1)) ∗100
198
199 p l t . rcParams [" f i g u r e . f i g s i z e "] = (10 ,5)
200 p l t . p l o t (x , y)
201 p l t . t i t l e (’ Cumulative␣ D i s t r i bu t i on ␣ o f ␣Segments␣per ␣ c e l l ’)
202 # t i t l e = ’ Abso lu te Congest ion ’
203 p l t . x l ab e l (’Number␣ o f ␣ segments ␣per ␣ c e l l ’)
204 p l t . y l ab e l (’ Percent ␣%’)
205 # p l t . y l im (0 ,1)
206 p l t . xl im (−10 ,2000)
207 p l t . g r i d (True)
208 p l t . y t i c k s (np . arange (0 ,110 ,10))
209 p l t . x t i c k s (np . arange (0 ,2001 ,100))
210 p l t . l egend ([’ Evening␣peak␣VS␣Off−peak ’ , ’ Evening␣peak␣VS␣Off

−peak␣ [Po s i t i v e l y ␣ congested] ’ , ’ Evening␣peak␣VS␣Off−peak␣
[Negat ive ly ␣ congested] ’] , l o c=’ lower ␣ r i g h t ’)

211 # p l t . v l i n e s (x=70,ymin = 0 , ymax = max(y) , c o l o r s =’ red ’ , l s
= ’ : ’)

212 t i t l e=’ congestion_num_segments ’
213 p l t . s a v e f i g (f ’ { t i t l e }_CDF. jpg ’ , bbox_inches=’ t i g h t ’)
214 p l t . show ()
215
216 b ins = np . arange (0 ,max(x) +1 ,100)
217 p l t . h i s t ([l i s t (df [’min_num_segments_off_p2 ’]) for df in d f s

] , b ins=bins , edgeco l o r=" l i g h t b l u e ")
218 t i t l e=’ D i s t r i bu t i on ␣ o f ␣Segments␣per ␣ c e l l ’
219 p l t . t i t l e (t i t l e)
220 p l t . x l ab e l (’Number␣ o f ␣ segments ␣per ␣ c e l l ’)
221 p l t . y l ab e l (’ Frequency ’)
222 p l t . x t i c k s (np . arange (0 ,2001 ,100))
223 p l t . xl im (0 ,2000)
224 p l t . g r i d ()
225 p l t . l egend ([’ Evening␣peak␣VS␣Off−peak ’ , ’ Evening␣peak␣VS␣Off

−peak␣ [Po s i t i v e l y ␣ congested] ’ , ’ Evening␣peak␣VS␣Off−peak␣
[Negat ive ly ␣ congested] ’])

101

Source code

226 t i t l e=’ congestion_num_segments ’
227 p l t . s a v e f i g (f ’ { t i t l e }_Histogram . jpg ’ , bbox_inches=’ t i g h t ’)
228 p l t . show ()
229
230 #behav ior comparison wi th and wi thout f i l t e r i n g
231 df_relCongestion_above200 = df_re lCongest ion . l o c [

d f_re lCongest ion [’min_num_segments_off_p2 ’] >200]
232 #CDF p l o t
233 sp e edD i f f s = { ’ t o t a l ’ : d f_re lCongest ion [’ sp e edDi f f%_p2 ’] ,
234 ’ above_100 ’ : df_relCongestion_above100 [’ sp e edDi f f%_p2 ’

] ,
235 ’ above_200 ’ : df_relCongestion_above200 [’ sp e edDi f f%_p2 ’

] }
236 p l t . rcParams [" f i g u r e . f i g s i z e "] = (10 ,5)
237 for key , va lue in sp e edD i f f s . i tems () :
238 x = l i s t (va lue)
239 x . s o r t ()
240 y = (1 . ∗ np . arange (len (x)) / (len (x) − 1)) ∗100
241
242
243 t i t l e = ’ Ce l lw i s e ␣Speed␣ D i f f e r e n c e ␣Cumulative␣ D i s t r i bu t i on ’
244 p l t . t i t l e (t i t l e)
245 t i t l e = ’ Re la t i v e ␣Congest ion ’
246 p l t . x l ab e l (’ Re l a t i v e ␣ Ce l lw i s e ␣ speed␣ d i f f e r e n c e ␣(%) ’)
247 p l t . y l ab e l (’ Percent ␣%’)
248 p l t . g r i d (True)
249 p l t . y t i c k s (np . arange (0 ,110 ,10))
250 p l t . x t i c k s (np . arange (−100 ,101 ,10))
251 p l t . l egend ([’ Evening␣Peak␣VS␣Off−peak␣ [Not␣ f i l t e r e d] ’ ,
252 ’ Evening␣Peak␣VS␣Off−peak␣ [c e l l s ␣ conta in ing ␣

>100␣Segments] ’ , ’ Evening␣Peak␣VS␣Off−peak␣ [
c e l l s ␣ conta in ing ␣>200␣Segments] ’])

253
254 p l t . axv l i n e (x=0,ymin = 0 , ymax = 1 , c o l o r=’ b lack ’ , l i n ew id th

= 1)
255 t i t l e=’ rel_congestion_p2_above100 ’
256 p l t . s a v e f i g (f ’ { t i t l e }_CDF. jpg ’ , bbox_inches=’ t i g h t ’)
257 p l t . show ()

Applying filters on relative congestion index

1 import geopandas as gpd

102

Source code

2 import pandas as pd
3 import numpy as np
4 import matp lo t l i b . pyplot as p l t
5 import matp lo t l i b
6
7 ’ ’ ’ read ing the g r i d t a b l e s f o r the peak and o f f peak hours

’ ’ ’
8 off_peak_table = pd . read_csv (r ’ g r i d s / grid_table_off_peak .

csv ’)
9 peak_table_1 = pd . read_csv (r ’ g r i d s /grid_table_peak_1 . csv ’)

10 peak_table_2 = pd . read_csv (r ’ g r i d s /grid_table_peak_2 . csv ’)
11 o f f_peak_ce l l s = l i s t (of f_peak_table [’ c e l l_ i d ’])
12 peak_1_cel ls = l i s t (peak_table_1 [’ c e l l_ i d ’])
13 peak_2_cel ls = l i s t (peak_table_2 [’ c e l l_ i d ’])
14
15 ’ ’ ’ dropping uncommon c e l l s ’ ’ ’
16 df_peak_1 = peak_table_1 . l o c [peak_table_1 [’ c e l l_ i d ’] . i s i n (

i n t e r s e c t i o n)]
17 df_peak_1 . reset_index (i np l a c e = True)
18
19 df_peak_2 = peak_table_2 . l o c [peak_table_2 [’ c e l l_ i d ’] . i s i n (

i n t e r s e c t i o n)]
20 df_peak_2 . reset_index (i np l a c e = True)
21
22 df_off_peak = off_peak_table . l o c [of f_peak_table [’ c e l l_ i d ’] .

i s i n (i n t e r s e c t i o n)]
23 df_off_peak . reset_index (i np l a c e = True)
24
25 ’ ’ ’ merging r e l a t e d columns o f o f f −peak and peak g r i d t a b l e s

’ ’ ’
26 df_merged = pd . merge (df_off_peak [[’ c e l l_ i d ’ , ’ num_segments ’ ,

’ avgSpeed ’]] ,
27 df_peak_2 [[’ c e l l_ i d ’ , ’

num_segments ’ , ’ avgSpeed ’
]] , on=’ c e l l_ i d ’)

28
29 #minimum number o f segment in c e l l w i s e comparison
30 min_num_segments = l i s t (zip (df_merged . num_segments_x ,

df_merged . num_segments_y))
31 min_num_segments = [min(i [0] , i [1]) for i in

min_num_segments]

103

Source code

32 df_merged [’min_num_segments ’] = min_num_segments
33
34 def r e l a t i v e_spe ed_d i f f e r en c e (row) :
35 i f row [’ avgSpeed_x ’] >= row [’ avgSpeed_y ’] :
36 speedDi f f = (row [’ avgSpeed_x ’] − row [’ avgSpeed_y ’])

/row [’ avgSpeed_x ’]
37 else :
38 speedDi f f = −(row [’ avgSpeed_y ’] − row [’ avgSpeed_x ’

]) /row [’ avgSpeed_y ’]
39 return speedDi f f ∗100
40
41 df_re lCongest ion = df_merged . copy ()
42 df_re lCongest ion [’ spe edDi f f%’] = df_re lCongest ion . apply (

lambda row : r e l a t i v e_spe ed_d i f f e r en c e (row) , ax i s=1)
43 df_re lCongest ion [’ spe edDi f f%’] = [f loat (" { 0 : . 2 f } " . format (i)

) for i in df_re lCongest ion [’ sp e edDi f f%’]]
44
45 ’ ’ ’ Applying f i l t e r s ’ ’ ’
46 df_re lCongest ion = df_re lCongest ion . l o c [d f_re lCongest ion [’

min_num_segments ’] >100]
47
48 # dropping nega t i v e conges ted c e l l s
49 df_re lCongest ion = df_re lCongest ion [d f_re lCongest ion [’

spe edDi f f%’] >= 0]
50
51 #CDF p l o t
52 matp lo t l i b . rcParams . update (matp lo t l i b . rcParamsDefault)
53 p l t . rcParams [" f i g u r e . f i g s i z e "] = (10 ,5)
54 x = l i s t (d f_re lCongest ion [’ spe edDi f f%’])
55 x . s o r t ()
56 y = (1 . ∗ np . arange (len (x)) / (len (x) − 1)) ∗100
57 p l t . p l o t (x , y)
58 t i t l e = ’ Ce l lw i s e ␣Speed␣ D i f f e r e n c e ␣Cumulative␣ D i s t r i bu t i on ␣

[Po s i t i v e ␣ s i d e] ’
59 p l t . t i t l e (t i t l e)
60 t i t l e = ’ Re la t i v e ␣Congest ion ’
61 p l t . x l ab e l (’ Re l a t i v e ␣ Ce l lw i s e ␣ speed␣ d i f f e r e n c e ␣(%) ’)
62 p l t . y l ab e l (’ Percent ␣%’)
63 p l t . g r i d (True)
64 p l t . y t i c k s (np . arange (0 ,110 ,10))
65 p l t . x t i c k s (np . arange (0 ,101 ,5))

104

Source code

66
67 p l t . s a v e f i g (f ’ { t i t l e }_CDF. jpg ’ , bbox_inches=’ t i g h t ’)
68 p l t . show ()
69
70
71 p l t . rcParams [" f i g u r e . f i g s i z e "] = (10 ,5)
72 b ins = np . arange (0 ,100 ,5)
73 p l t . h i s t (x , b ins=bins , edgeco l o r=" l i g h t b l u e ")
74 p l t . x t i c k s (np . arange (0 ,100 ,5))
75 t i t l e=’ Ce l lw i s e ␣Speed␣ D i f f e r e n c e ␣ D i s t r i bu t i on ␣ [Po s i t i v e ␣

s i d e] ’
76 p l t . t i t l e (t i t l e)
77 p l t . x l ab e l (’ Re l a t i v e ␣ Ce l lw i s e ␣Speed␣ D i f f e r e n c e ␣(%) ’)
78
79 p l t . y l ab e l (’ Frequency ’)
80 p l t . g r i d ()
81 t i t l e = ’ re l_pos_congest ion ’
82 p l t . s a v e f i g (f ’ { t i t l e }_Histogram . jpg ’ , bbox_inches=’ t i g h t ’)
83 p l t . show ()
84
85 ’ ’ ’ c r e a t i n g g r i d t a b l e o f p o s i t i v e l y conges ted areas ’ ’ ’
86 p o s i t i v e_ c e l l s = l i s t (d f_re lCongest ion [’ c e l l_ i d ’])
87
88 off_peak_grid = df_off_peak . l o c [df_off_peak [’ c e l l_ i d ’] . i s i n

(p o s i t i v e_ c e l l s)]
89 off_peak_grid = pd . merge (off_peak_grid [[’ c e l l_ i d ’ , ’

num_segments ’ , ’ minSpeed ’ , ’ avgSpeed ’ , ’maxSpeed ’ ,
90 ’minAccuracyDrop ’ , ’

avgAccuracyDrop ’ ,
’maxAccuracyDrop

’]] ,
91 df_re lCongest ion [[’ c e l l_ i d ’ ,

’ sp e edDi f f%’ , ’ avgSpeed_y ’
]] , on=’ c e l l_ i d ’)

92 off_peak_grid . to_csv (r ’ 4_2−grid−congest ion−peaks /
off_peak_above_100 . csv ’ , index= False)

93
94 peak_1_grid = df_peak_1 . l o c [df_peak_1 [’ c e l l_ i d ’] . i s i n (

p o s i t i v e_ c e l l s)]
95 peak_1_grid = pd . merge (peak_1_grid [[’ c e l l_ i d ’ , ’

num_segments ’ , ’ minSpeed ’ , ’ avgSpeed ’ , ’maxSpeed ’ ,

105

Source code

96 ’minAccuracyDrop ’ , ’
avgAccuracyDrop ’ ,
’maxAccuracyDrop

’]] ,
97 df_re lCongest ion [[’ c e l l_ i d ’ ,

’ sp e edDi f f%’]] , on=’
c e l l_ i d ’)

98 peak_1_grid . to_csv (r ’ 4_2−grid−congest ion−peaks /
peak_2_above_100 . csv ’ , index= False)

Congestion plot on the map

1 #Import L i b r a r i e s
2 import geopandas as gpd
3 import pandas as pd
4 import numpy as np
5 import f o l ium
6 from f o l ium . f e a t u r e s import GeoJsonTooltip
7
8 #Read the geoJSON f i l e us ing geopandas
9 geo j son = gpd . r e ad_ f i l e (r ’ . . / . . / 1 0 0m/coords_TO . geo j son ’)

10
11 df_grid_peak_2=pd . read_csv (r ’ peak_2_above_100 . csv ’)
12 df_grid_off_peak=pd . read_csv (r ’ off_peak_above_100 . csv ’)
13
14 df_f inal_of f_peak = geo j son . merge (df_grid_off_peak ,

l e f t_on=" polygon_id " , r ight_on=" c e l l_ i d " , how=" outer ")
15 df_f inal_of f_peak = df_f inal_of f_peak [~ df_f inal_of f_peak [

’ geometry ’] . i s na ()]
16 df_f inal_of f_peak . dropna (i np l a c e = True)
17
18 d f_f ina l_d ic t_re l_conges t ion = df_f inal_of f_peak . set_index (

’ c e l l_ i d ’) [’ sp e edDi f f%’]
19
20 m2 = fo l ium .Map(l o c a t i o n =[45 . 0703 , 7 . 6869] , zoom_start=12,

t i l e s=None , ove r l ay=False)
21
22 co l o rS ca l e_r e l a t i v e_conge s t i on = cm. LinearColormap ([’

aquamarine ’ , ’ pa l eg reen ’ , ’ g r eenye l l ow ’ , ’ ye l low ’ , ’
orangered ’ , ’ darkred ’] , vmin=0. , vmax=100. ,

106

Source code

23 index=(
df_f inal_of f_peak [’
spe edDi f f%’] .
quan t i l e
((0 , 0 . 2 , 0 . 4 , 0 . 6 , 0 . 8 , 1)
)) . t o l i s t ())

24
25 co l o rS ca l e_r e l a t i v e_conge s t i on . capt ion = ’ Re la t i v e ␣

conge s t i on ␣(%) ’
26 co l o rS ca l e_r e l a t i v e_conge s t i on . add_to (m2)
27
28 fg_re l a t i v e_conge s t i on = fo l ium . FeatureGroup (name=’ Evening

␣Peak␣VS␣Off−peak␣Re la t i v e ␣Congest ion ␣(%) ’ , ove r l ay=False
) . add_to (m2)

29
30 #r e l a t i v e _ c o n g e s t i o n
31 fo l ium . f e a t u r e s . GeoJson (
32 data=df_final_off_peak ,
33 name=’ t e s t ␣ f o r ␣ segment␣ dens i ty ␣ ’ ,
34 smooth_factor=2,
35 s ty l e_ func t i on=lambda f e a t u r e : {
36 ’ f i l l C o l o r ’ :

c o l o rS ca l e_r e l a t i v e_conge s t i on (
d f_f ina l_d ic t_re l_conges t ion [
f e a t u r e [’ p r op e r t i e s ’] [’ c e l l_ i d ’
]]) ,

37 ’ c o l o r ’ : ’ b lack ’ ,
38 ’ weight ’ : . 2 ,
39 ’ f i l l O p a c i t y ’ : . 6
40 } ,
41 t o o l t i p=fo l ium . f e a t u r e s . GeoJsonTooltip (
42 f i e l d s =[’ c e l l_ i d ’ ,
43 ’ speedDi f f%’ ,
44 ’ avgSpeed ’ ,
45 ’ avgSpeed_y ’ ,
46 ’ num_segments ’ ,
47] ,
48 a l i a s e s =[" Ce l l ␣ id : " ,
49 ’ Re l a t i v e ␣Speed␣ D i f f e r e n c e

␣(%) : ’ ,
50 ’ Off−peak␣Speed␣ (KM/H) : ’ ,

107

Source code

51 ’ Evening␣peak␣Speed␣ (KM/H)
: ’ ,

52 "Number␣ o f ␣Segments : " ,
53] ,
54 l o c a l i z e=True ,
55 s t i c ky=False ,
56 l a b e l s=True ,
57 s t y l e=" " "
58 background−co l o r : #F0EFEF;
59 border : 2px s o l i d b l a c k ;
60 border−rad ius : 3px ;
61 box−shadow : 3px ;
62 " " " ,
63 max_width=800 ,) ,
64 h i gh l i gh t_func t i on=lambda x : { ’

weight ’ : 3 , ’ f i l l O p a c i t y ’ : 2
} ,

65) . add_to (f g_re l a t i v e_conge s t i on)
66
67 fo l ium . Ti leLayer (’ openstreetmap ’ , ove r l ay=True , name="

OpenStreetMap ") . add_to (m2)
68 fo l ium . LayerControl (c o l l a p s ed=False) . add_to (m2)
69
70 m2. save (" peaks_100m_relat ive_congest ion_f i l t100 . html ")

KDE implementation

1 #Import L i b r a r i e s
2 import f o l ium
3 from f o l ium . f e a t u r e s import GeoJsonTooltip
4 import pandas as pd
5 import numpy as np
6 from s k l e a rn . ne ighbors import KernelDens ity
7 from s k l e a rn . mode l_se lect ion import GridSearchCV
8 import matp lo t l i b . pyplot as p l t
9 import branca . colormap as cm

10 import geo j soncontour
11
12 #Read the geoJSON f i l e us ing geopandas
13 geo j son = gpd . r e ad_ f i l e (r ’ centroids_wgs . geo j son ’)
14 df_grid=pd . read_csv (r ’ . . / 4_2−grid−congest ion−peaks /

off_peak_above_100 . csv ’)

108

Source code

15
16 df_merge = geo j son . merge (df_grid , l e f t_on=" polygon_id " ,

r ight_on=" c e l l_ i d " , how=" outer ")
17 df_merge = df_merge [~ df_merge [’ geometry ’] . i s na ()]
18 df_merge . dropna (i np l a c e = True)
19
20 #conver t f l o a t percen tages to the c l o s e s t i n t e g e r
21 df_merge [’ sp e edDi f f%’] = [round(i) for i in df_merge [’

spe edDi f f%’]]
22
23 #r e l a t i v e conges t i on as d en s i t y
24 d f_mul t i p l i e s = pd . DataFrame ()
25 for index , row in df_merge . i t e r r ows () :
26 mu l t i p l i e r = row [’ speedDi f f%’]
27 d f_mul t i p l i e s = d f_mul t i p l i e s . append ([row] ∗ mu l t i p l i e r ,

ignore_index=True)
28
29 #Grid
30 #%% min and max f o r coord ina t e s
31 minLat = 44.96282106687191
32 minLon = 7.502048016422193
33 maxLat = 45.19265016665321
34 maxLon = 7.791812422724604
35
36 tmp= l i s t (df_merge [’ c e l l_ i d ’] . str . s p l i t (’_ ’))
37 x_num = len (np . unique (np . array (tmp) [: , 0] . astype (int)))
38 y_num = len (np . unique (np . array (tmp) [: , 1] . astype (int)))
39
40 #b u i l d i n g a g r i d o f po in t f o r sampling the r e s u l t i n g KDEs
41 xx = np . l i n s p a c e (minLon , maxLon , x_num)
42 yy = np . l i n s p a c e (minLat , maxLat , y_num)
43
44 xg , yg = np . meshgrid (xx , yy)
45 gr id_coords = np . c_ [xg . r av e l () , yg . r av e l ()]
46
47 # KDE
48 c o l o r s = [’ navy ’ , ’ b lue ’ , ’ r oya lb lu e ’ , ’ cyan ’ , ’ ye l low ’ , ’ orange

’ , ’ orangered ’ , ’ red ’ , ’ darkred ’]
49
50 kde_cols = [’ centro id_lon ’ , ’ c en t ro id_ la t ’]
51 bandwidths = [. 0 0 0 5 , . 0 0 1 , . 0 0 1 5 0 , . 0 0 2 , . 0 0 2 5 , . 0 0 3 , . 0 0 3 5]

109

Source code

52
53 #t r a i n model
54 maps = []
55 for i , bandwidth in enumerate (bandwidths) :
56 m = fo l ium .Map(l o c a t i o n =[45 . 0703 , 7 . 6869] , zoom_start

=12, ove r l ay=False , t i l e s=’ openstreetmap ’)
57 model = KernelDens ity (metr ic=" euc l i d ean " , k e rne l="

gauss ian " , bandwidth=bandwidth) . f i t (d f_mul t i p l i e s [
kde_cols])

58 kde_samples = np . exp (model . score_samples (gr id_coords) .
reshape (∗ xg . shape))

59 l e v e l s = np . l i n s p a c e (kde_samples .min() , kde_samples .max
() , 10)

60 c o l o r S c a l e = cm. LinearColormap (co l o r s , vmin=round(
kde_samples .min() , 2) ,

61 vmax=round(kde_samples .
max() , 2) , capt ion = ’
Score ␣Sample ’) .
to_step (10)

62 c o l o r S c a l e . capt ion = f ’ Score ␣Sample␣ o f ␣bandwidth␣=␣{
bandwidth} ’

63 c o l o r S c a l e . add_to (m)
64 contour f = p l t . contour f (xg , yg , kde_samples , l e v e l s =

l e v e l s , alpha =0.6 , c o l o r s = co l o r S c a l e . c o l o r s)
65
66 # Convert m a t p l o t l i b con tour f to geo j son
67 geo j son = geo j soncontour . contourf_to_geojson (
68 contour f=contour f ,
69 min_angle_deg=3.0 ,
70 nd i g i t s =5,
71 stroke_width =.5 ,
72 f i l l _ o p a c i t y =0.5)
73
74 folium_geo = fo l ium . GeoJson (
75 geojson ,
76 s ty l e_ func t i on=lambda x : {
77 ’ c o l o r ’ : x [’ p r op e r t i e s ’] [’ s t r oke ’] ,
78 ’ weight ’ : x [’ p r op e r t i e s ’] [’ s t roke−width ’] ,
79 ’ f i l l C o l o r ’ : x [’ p r op e r t i e s ’] [’ f i l l ’] ,
80 ’ opac i ty ’ : 0 . 8 ,
81 }) . add_to (m)

110

Source code

82 maps . append (m)
83 for i ,m in enumerate (maps) :
84 m. save (f " bandwidth_{bandwidths [i] } . html ")

Filtering the KDE result with bandwidth = 0.001

1 #Import L i b r a r i e s
2 import f o l ium
3 from f o l ium . f e a t u r e s import GeoJsonTooltip
4 import pandas as pd
5 import numpy as np
6 from s k l e a rn . ne ighbors import KernelDens ity
7 from s k l e a rn . mode l_se lect ion import GridSearchCV
8 import matp lo t l i b . pyplot as p l t
9 import branca . colormap as cm

10 import geo j soncontour
11
12 #Read the geoJSON f i l e us ing geopandas
13 geo j son = gpd . r e ad_ f i l e (r ’ d r a f t s / centroids_wgs . geo j son ’)
14 df_grid=pd . read_csv (r ’ . . / 4_2−grid−congest ion−peaks /

off_peak_above_100 . csv ’)
15
16 df_merge = geo j son . merge (df_grid , l e f t_on=" polygon_id " ,

r ight_on=" c e l l_ i d " , how=" outer ")
17 df_merge = df_merge [~ df_merge [’ geometry ’] . i s na ()]
18 df_merge . dropna (i np l a c e = True)
19
20 #conver t f l o a t percen tages to the c l o s e s t i n t e g e r
21 df_merge [’ sp e edDi f f%’] = [round(i) for i in df_merge [’

spe edDi f f%’]]
22
23 #r e l a t i v e conges t i on as d en s i t y
24 d f_mul t i p l i e s = pd . DataFrame ()
25 for index , row in df_merge . i t e r r ows () :
26 mu l t i p l i e r = row [’ speedDi f f%’]
27 d f_mul t i p l i e s = d f_mul t i p l i e s . append ([row] ∗ mu l t i p l i e r ,

ignore_index=True)
28
29 #Grid
30 #%% min and max f o r coord ina t e s
31 minLat = 44.96282106687191
32 minLon = 7.502048016422193

111

Source code

33 maxLat = 45.19265016665321
34 maxLon = 7.791812422724604
35
36 tmp= l i s t (df_merge [’ c e l l_ i d ’] . str . s p l i t (’_ ’))
37 x_num = len (np . unique (np . array (tmp) [: , 0] . astype (int)))
38 y_num = len (np . unique (np . array (tmp) [: , 1] . astype (int)))
39
40 #b u i l d i n g a g r i d o f po in t f o r sampling the r e s u l t i n g KDEs
41 xx = np . l i n s p a c e (minLon , maxLon , x_num)
42 yy = np . l i n s p a c e (minLat , maxLat , y_num)
43
44 xg , yg = np . meshgrid (xx , yy)
45 gr id_coords = np . c_ [xg . r av e l () , yg . r av e l ()]
46
47 c o l o r s = [’ b lack ’ , ’ red ’]
48
49 #KDE
50 kde_cols = [’ centro id_lon ’ , ’ c en t ro id_ la t ’]
51 bandwidth = .001 #approx 100m
52
53 m = fo l ium .Map(l o c a t i o n =[45 . 0703 , 7 . 6869] , zoom_start=12,

ove r l ay=False , t i l e s=’ openstreetmap ’)
54
55 th r e sho ld = 74
56 kde_samples [kde_samples<thre sho ld] = 0
57 l e v e l s = np . array (0)
58 l e v e l s = np . append (l e v e l s , np . l i n s p a c e (thresho ld ,

kde_samples .max() , 2))
59 l e v e l s = [round(l , 2) for l in l e v e l s]
60 c o l o r S c a l e = cm. LinearColormap (co l o r s , vmin=round(

kde_samples .min() , 2) , vmax=round(kde_samples .max() , 2)) .
to_step (index=l e v e l s)

61
62 c o l o r S c a l e . capt ion = f ’ Score ␣Sample␣ o f ␣bandwidth␣=␣{

bandwidth} ’
63 c o l o r S c a l e . add_to (m)
64 contour f = p l t . contour f (xg , yg , kde_samples , l e v e l s = l e v e l s

, alpha =0.9 , c o l o r s = co l o r S c a l e . c o l o r s)
65
66 # Convert m a t p l o t l i b con tour f to geo j son
67 geo j son = geo j soncontour . contourf_to_geojson (

112

Source code

68 contour f=contour f ,
69 min_angle_deg=3.0 ,
70 nd i g i t s =5,
71 stroke_width =.5 ,
72 f i l l _ o p a c i t y =1)
73
74 folium_geo = fo l ium . GeoJson (
75 geojson ,
76 s ty l e_ func t i on=lambda x : {
77 ’ c o l o r ’ : x [’ p r op e r t i e s ’] [’ s t r oke ’] ,
78 ’ weight ’ : x [’ p r op e r t i e s ’] [’ s t roke−width ’] ,
79 ’ f i l l C o l o r ’ : x [’ p r op e r t i e s ’] [’ f i l l ’] ,
80 ’ opac i ty ’ : 1 ,
81 }) . add_to (m)
82
83 m. save (f " congested ␣ areas . html ")

113

114

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Traffic congestion as a growing problem
	Traffic data collection methods
	IoT sensors, big data and data analysis development
	Thesis organization

	Background and concept definition
	The Floating Car Data (FCD)
	GPS-based FCD
	Cellular network based FCD

	Topographical Concepts
	Geographical coordinate system and WGS84
	Haversine Distance
	Geometric Dilution Of Precision
	DOP value classification

	ICT background
	Python

	Related works
	Dataset

	Implementation and Results
	Input FCD analysis
	Data cleaning
	Area of interest
	Data behaviour

	Segment Extraction
	Segment definition
	Segment extraction methodology
	Segment table
	Segment distribution

	Grid map
	Grid size selection

	Grid table
	Grid plots

	Traffic congestion index
	Absolute traffic congestion
	Relative traffic congestion
	Cells with negative congestion

	Identification of congested areas
	Kernel Density Estimation: a method for smoothing

	Conclusions
	Bibliography
	Source code

