
Politecnico di Torino

Corso di Laurea Magistrale in Ingegneria Informatica
(Computer Engineering)
Academic year: 2021/2022

Graduation session: October 2022

Evaluation of Static Security Analysis

Tools on Open Source Distributed

Applications

Supervisor
Prof. Riccardo Sisto

Candidate
Vincenzo Di Stasio

Contents

Abstract 3

1 Introduction 4

2 Background 10
2.1 Web Technologies Security . 10
2.2 Benchmarking . 11
2.3 SAST Tools . 11
2.4 Static Analysis . 12

2.4.1 Capabilities and limitations of static analysis 13
2.4.2 Static Analysis Internals 14

3 OWASP Evaluation Method 24
3.1 OWASP Benchmark . 24
3.2 Evaluation Method Used . 26

4 Targets and Tools Selection 32
4.1 Targets . 33
4.2 Tools Used . 36
4.3 Procedure to run Benchmark 41

5 Experimental Results 44
5.1 Experiment . 44
5.2 Results . 45

5.2.1 Home-Cloud . 45
5.2.2 Websocket-chat . 47
5.2.3 Hack-chat . 48
5.2.4 Video-labelling-tool 49
5.2.5 Cinema-plus . 51
5.2.6 StoreKeeper . 52
5.2.7 StackOverflow-Clone 54
5.2.8 Excel-to-json . 55
5.2.9 Slack-Clone . 57
5.2.10 Nano-SpeedTest . 58

1

5.2.11 React-Social . 59
5.2.12 On my way . 60
5.2.13 Hello-books . 62
5.2.14 Kiptab . 63
5.2.15 Events-manager-io . 65
5.2.16 µuCrypt . 66

5.3 Interpretation of Results . 68
5.4 Method to compare SAST Tools 70

6 Conclusions and Future Works 82

Bibliography 85

Acknowledgements 89

2

Abstract

The use of static security analysis tools is becoming common practice in dis-
tributed application development in terms of discovering as many security
vulnerabilities as possible. To compare static analysis tools for web applica-
tions, a benchmark adapted to the vulnerability categories included in the
known standard Open Web Application Security Project (OWASP) Top Ten
project is required. The aim of the thesis is to evaluate some static security
analysis tools by applying them to a significant set of distributed open-source
applications. However, distinct tools provide different results depending on
factors such as the complexity of the code under analysis and the applica-
tion scenario, thus missing some of the vulnerabilities while reporting false
problems. While some benchmarks already exist for evaluating these tools,
they are not well aligned with the latest web development techniques. The
work consists in identifying some relevant and modern open source projects
to use as benchmarks. Then, some of the static security analysis tools were
tested on the selected projects and the results on their performance were
collected, following the evaluation methodology suggested by OWASP. The
results of this work have been obtained using widely acceptable metrics to
classify them.

3

Chapter 1

Introduction

Web applications are remarkably capable of being instantaneously accessible
to millions of people and deployable in a short amount of time. The soft-
ware business is paying more attention to the factors about their protection
as a result of their ever-increasing popularity and the high-value data they
disclose. The need for new web applications with sophisticated features is
rapidly rising because they benefit most business sectors in terms of com-
petition. This can result in a lot of flaws and security issues because their
development is frequently done on a tight deadline. When utilised, their
impact can have serious negative effects on enterprises, such as financial
losses, liability issues, brand harm, and market share loss. Every single day,
more flaws are found. Software development practices must be altered to
improve software security. This is not a simple job. Neither the system
administrator nor the end user should be responsible for software security.
Although network security, prudent management, and prudent use are all
crucial, these efforts will ultimately fail if the software is intrinsically in-
secure. By incorporating security into the software development process,
one can achieve good software security with the correct information and
resources. It takes some extra thought, focus, and work to maintain secu-
rity. Programmers who haven’t yet encountered security issues use their
good fortune as justification to keep ignoring security, even though this ad-
ditional labour wasn’t nearly as crucial in earlier decades. A hole in the
computer system that exposes data to uninvited parties is known as a vul-
nerability in computer security. Three things can be used to define it: the
existence of a weakness in the system, the attacker’s capacity to find the
flaw, and the attacker’s capacity to use the flaw. There could be a defect
for several reasons: the absence or improper application of best practices
when coding (such as input/output validation); frequently, security testing
is overlooked in favour of functional requirements; occasionally, attack de-
tection mechanisms are not included in the environment due to performance
overheads and potential false positives that could disrupt normal behaviour.

4

Figure 1.1: distribution of vulnerabilities by severity over time.

Figure 1.1 makes it abundantly evident that the number of vulnerabilities
has been rising over time. In fact, since 2016, when there were roughly
6608 vulnerabilities altogether, the number has more than tripled, reach-
ing a total of 20137 vulnerabilities in the year 2021. All the data used for
Figure 1.1 have been retrieved from the National Vulnerability Database
(NVD)[21]. The National Vulnerability Database (NVD) is a repository for
vulnerability management data that follows standards and is represented
using the Security Content Automation Protocol (SCAP). Automation of
compliance, security measurement, and vulnerability management are made
possible by this data. The NVD has databases of product names, impact
metrics, security-related software defects, configuration errors, and refer-
ences to security checklists. The Common Vulnerability Scoring System
(CVSS), which is based on a set of equations using metrics such as access
complexity and availability of a remedy, is used by the NVD in addition to
giving a list of Common Vulnerabilities and Exposures (CVEs). A dictio-
nary or glossary of vulnerabilities that have been found for particular code
bases, such as software applications or open libraries, can be found in the
Common Vulnerabilities and Exposures (CVE) program. By using a spe-
cial identification called the CVE ID, this list enables interested parties to

5

obtain the specifics of vulnerabilities. Since it has been more well-known in
recent years, participants and users must comprehend the key components
of the program. Because it allows for the speedy assessment of numerous
options, static analysis is effective. Without having to perform all the cal-
culations required to execute the code for each situation, a static analysis
tool can examine a huge number of ”what if” scenarios. Because many se-
curity issues arise in hard-to-reach states and corner situations that can be
challenging to test by actually running the code, static analysis is especially
well suited for security. A quick way to obtain a consistent and thorough
evaluation of a body of code is to use good static analysis tools. One of the
most crucial tasks in the early phases of the software development lifecy-
cle is static analysis, which helps find flaws. Although static analysis can
examine all of the code, it has drawbacks including triggering false alarms
and overlooking some application issues since how successful it is depends
on things like the complexity of the code, the programming structures used,
and the presence of third-party components. Organizations should perform
a security analysis utilising the finest SAST techniques as a result of the
security flaws that web apps have in their code. Manually checking for se-
curity flaws in a web application with a large number of lines of code can
be laborious and time-consuming. The most recent automatic techniques,
including SAST tools for source and binary code, must be studied. To verify
each security vulnerability, a final audit of a SAST tool report is necessary.
A false negative is more difficult to locate, though, if the tool hasn’t al-
ready identified it as posing a genuine threat. False positives can usually
be corrected by the security analyst, therefore they present minimal threat.
Every security flaw in the source code that has been found must be fixed.
In light of this, we believe that users and professionals of web applications
should be aware of which commercial and open-source SAST tools are more
effective in terms of real detection rates (true positives), unreal detections
(false positives), and vulnerabilities that have not yet been discovered (false
negatives). As a result, several tools frequently produce wildly disparate
findings, making it difficult to choose the SAST that is most appropriate
for a given project. By contrasting their behaviour while evaluating perti-
nent applications, benchmarking could help in the selection of alternative
SAST. The most well-known SAST benchmark now in use is the OWASP
Benchmark. These benchmarks are unable to be adjusted to a particular
context (such as critical or non-critical applications), which may alter the
usefulness of the results in addition to not producing results that are true
to reality. This thesis suggests using workloads made up of real applica-
tions with known vulnerabilities to build benchmarks for the evaluation of
SAST that detect vulnerabilities in web applications (used to exercise the
SAST, thus supporting their evaluation). In contrast to processing consider-
ably simpler synthetic code samples or test cases, this ensures that SAST is
tested taking into account the requirement to address both the complexity

6

and the method real code is generated (as done by OWASP). SAST perform
better with simulated test cases than with actual software.

Goal
The objective of this project is to create a benchmark application to eval-
uate SAST tools’ performance. SAST tools have a difficult time exploring
some of the code in this benchmark program, which may be hiding some
vulnerabilities. We require many criteria to rank the SAST since no single
indicator is enough to assess all aspects of SAST performance across all sit-
uations. The proposed strategy is based on applying various criteria in that
order to rank the tools and, if necessary, resolve ties between two or more
products. We take into account a sample selection of exposed applications to
create the workload. 16 SAST in total were evaluated using the benchmark.
Because Javascript and Python are the two languages most frequently used
in the creation of online applications, these technologies are taken into con-
sideration in this analysis. The findings demonstrate that it may be used
to rank the SAST and that various tools have diverse vulnerability detec-
tion capabilities, with some doing very poorly in particular circumstances.
Furthermore, we discovered that no tool is the best option in every situa-
tion, which supports the need to modify the workload and ranking metrics
in which the tools would be utilised. We demonstrate the benefit of taking
into account certain metrics and specialised workloads by comparing our
results with the OWASP benchmark.

Overview
The contents of the thesis are organized into six chapters, including the cur-
rent introductory one.

In Chapter 2, we begin with an overview of the basic concepts needed to bet-
ter understand this thesis. In particular, security in web-based technologies
is presented. Subsequently, the benchmark is described in general, high-
lighting its various main characteristics. We then moved on to the generic
description of the SAST tools in which their strengths and weaknesses were
identified. Finally, we explain the static analysis and why we chose it.

In Chapter 3, we describe the OWASP assessment methodology as it has
been used within this thesis. First, the benchmark used by OWASP is de-
scribed, highlighting the basic characteristics. Furthermore, the operation
of the tools that carry out the static analysis is described in general, high-
lighting the strengths and weaknesses. Finally, an explanation is given on
the use of static analysis and why we chose it.

7

In Chapter 4, we describe the objectives chosen as samples for the experi-
ment and also the reason behind the selection of these objectives. Then we
dealt with the introduction of the tools used for this thesis. There is a list
of the tools and hence they are presented one by one in detail.

In chapter 5, we analyzed the results obtained from the experiment. In the
beginning, we dealt with describing the methodology used to analyze a web
application through a tool. Next, it is explained how the experiment was
conducted and under what conditions. Then, we show the results of the
experiment in a table which is followed by some considerations and inter-
pretations of the results. In particular, a lot of attention is given to the
results when the tools were launched on our benchmark program. Finally,
with the analysis of some specific metrics, we have drawn up a ranking to
compare the different static analysis tools.

Chapter 6 summarizes the most relevant results achieved in the thesis, high-
lighting the advantages and weaknesses associated with the results found.
We also propose some extensions to this work.

8

Chapter 2

Background

The background on web technology security, background on benchmarking
procedures and SAST tools are presented in this chapter.

2.1 Web Technologies Security

Web applications are becoming more and more developed, which makes
them a valuable target for attack for those looking to profit from expos-
ing potential security flaws in organisations and businesses connected via
the Internet. Organizations must be aware that investing in web applica-
tion security must be planned from the start, usually speaking, starting in
the early stages of application development, given this ongoing threat. The
most popular languages now are PHP, Javascript, and Python, and An-
droid and iOS are becoming more and more well-known. Even today, Java
is the most common language. There is a discussion of web apps’ vulner-
abilities: Asynchronous Javascript and XML (AJAX), HTML5, and flash
apps are the subjects of Web 2.0 attacks. I use the term ”secure” to de-
scribe programming languages that carry out runtime checks automatically
to stop programs from exceeding the allotted memory limits. I must look
into which security flaws are more prevalent and harmful in web apps to
construct suitable benchmarks to evaluate and choose the best-performance
SAST tools. The online applications that were examined failed the OWASP
Top Ten project because they contained more frequent and dangerous vul-
nerabilities. While web applications share traits with traditional software,
they also stand out due to the dispersed nature of the Internet, the use
and reuse of third-party components created in many languages, web user
interfaces, the speed of data access, and transaction security.

10

2.2 Benchmarking

Utilizing a set of sample test cases to run various tools and comparing the re-
sults is the most popular way to evaluate and compare their performance. A
benchmark is a regular procedure for carrying out this activity and normally
has three primary parts:

1. Workload, a group of sample test cases for the tools being bench-
marked.

2. Metrics to evaluate how effectively the benchmarking tools perform
their intended purpose.

3. Guidelines and procedures for running the benchmark.

The component that is most impacted by the benchmarking domain is the
workload, which has a significant impact on the outcomes. Consequently,
the workload should guarantee the following attributes:

❼ Representativeness: The workload ought to reflect that of the area
where the benchmark will be used. The quantity and variety of the test
cases have an impact on this. The consumers should receive pertinent
information from the benchmark results in the context of its intended
use.

❼ Comprehensiveness: All of the significant features that are often
employed in the target domain should be able to be exercised by the
workload. Features should be balanced based on how they are used in
the real situation.

❼ Focus: The workload should be focused on describing the benchmark-
ing targets. The following three factors should be taken into account:
ground truth, relevance, and coverage.

❼ Configurability: Users ought to be able to alter the workload ac-
cording to their requirements.

❼ Scalability: The workload should change depending on the quantity
and level of test cases according to the actual application.

2.3 SAST Tools

The best way to prevent flaws in a web application’s code is through pre-
vention. To prevent making errors linked to programming vulnerabilities,
developers ought to have specialized training in web security programming.
There will always be flaws in the code, even if security programmers receive
excellent training, and it will be much harder to evaluate the source code

11

once the first version of the application or certain portions of it have been
built. Manual static analysis needs highly skilled personnel and a lot of time.
It takes a lot of time and highly specialised employees to manually analyse
the behaviour of the built application in an effort to ethically hack it. It is
also quite challenging to cover the full application attack surface. Any tech-
nique of performing a web application security analysis requires that you
cover the complete attack surface, including all components and application
layers. You should also use tools to automate security analysis as much as
possible, mixing different types of technologies to get the best results. White
box analysis, carried out using SAST tools, is one type of security analysis
that examines both source code and executables as necessary. The act of
determining whether or not a programme reaches its final state is a problem
for SAST tools. Without actually running the programme, SAST examine
the source code to look for potential issues. Many people believe that using
these tools is the most effective way to find software vulnerabilities automat-
ically. But SAST have their limitations and frequently have flaws in them.
A few specialised programming constructs, such as dynamic file inclusion,
dynamic string evaluation, object-oriented programming (OOP), and auto-
mated typecasts, are also difficult to analyse. As a result, SAST developers
tend to produce approximations of their solutions, which frequently result
in false alarms and hidden flaws. There are many SAST accessible now, and
new tools are developing to meet emerging demands. However, depending
on the technologies and algorithms utilised in their development, these tools
have varying strengths. There is no agreement on which SAST is the best
because to the wide range of findings produced by SAST, particularly the
trade-off between soundness and completeness, since false alarms take a long
time to verify and undetected weaknesses can be exploited. The detection
of vulnerabilities can be enhanced by combining different SAST. Combin-
ing numerous tools can actually work against you because it will result in
more false positives reported rather to more vulnerabilities being found. A
final audit of a SAST tool report is required to eliminate the false positives
and find the false negatives (much more complicated). Security analysts
need to adequate the training to reconnaissance the security vulnerabilities
in the code for a particular programming language. SAST tools interfaces
can be more or less “friendly” in terms of the error trace facilities to audit
a security vulnerability. The fact that SAST tools examine the entire pro-
gramme taking into account all source inputs is one of their most significant
advantages.

2.4 Static Analysis

Static analysis tools are discussed in this section along with their benefits,
drawbacks, and definitions. Static analysis is the process of examining code

12

without running it. The static analysis tools that work much like a spell
checker to stop well-known types of errors from going undiscovered are the
ones that we are most interested in using to identify security issues. Even
people who are proficient spellers need a spell checker since spelling errors
usually occur. A spell checker won’t catch every typo; for example, it won’t
assist if you put mute when you meant moot. The same applies to tools
for static analysis. A clean run doesn’t guarantee that your code is perfect;
rather, it just shows that it is free of some types of typical issues. A spell
checker is a beneficial tool for the majority of experienced and professional
writers. A spell checker is useful for both good and bad writers, but it won’t
make them better writers. The static analysis follows the same rules: Static
analysis tools can be effectively used by good programmers, while bad pro-
grammers will still write bad code no matter what techniques they employ.
Although the focus is on tools for static analysis that can spot security flaws,
we start by considering the variety of issues that static analysis can assist in
resolving. Later in the chapter, we examine the underlying issues that, from
both a theoretical and a practical perspective, make static analysis challeng-
ing, and we look at the compromises that tools must make to achieve their
goals.

2.4.1 Capabilities and limitations of static analysis

The same kind of small errors that cause even a strong speller to occasionally
produce a typo can cause security issues: a tiny bit of perplexity, a momen-
tary lapse, or a temporary disconnect between the brain and the keyboard.
However, security issues can also arise from a lack of knowledge about what
safe programming implies. Programmers frequently have no idea how an at-
tacker would try to exploit a piece of code, which is not unusual. In light of
this, there are a variety of reasons why static analysis is effective at locating
security issues:

❼ Without any of the prejudice that a programmer could have regarding
which portions of code are ”interesting” from a security standpoint or
which pieces of code are simple to exercise through dynamic testing,
static analysis tools conduct checks completely and consistently.

❼ Static analysis tools may frequently identify the main source of a se-
curity issue, not simply one of its symptoms, by looking at the code
itself. This is especially crucial to ensure that vulnerabilities are ap-
propriately repaired.

❼ Early in the development process, even before the program is run
for the first time, the static analysis might discover flaws. Early error
detection not only reduces the cost of resolving the issue, but the short
feedback loop can also direct a programmer’s work: A programmer has

13

the chance to fix errors they weren’t even aware could occur. A static
analysis tool’s attack scenarios and data on code constructions serve
as a means of knowledge transfer.

❼ Static analysis tools make it simple to examine a large body of code
when a security researcher finds a new type of attack to determine
where it might succeed. The ability to analyse legacy code for newly
identified types of faults is crucial because some security flaws in soft-
ware can go undetected for years.

Static analysis technologies that focus on security are sometimes criticised
for making too much noise. Particularly, they generate an excessive number
of false positives, also known as false alarms. A false positive in this situation
is when a program reports a problem when none truly exists. A significant
number of false positives can lead to significant problems. A programmer
who needs to look through a big list of false positives may miss critical
results that are hidden in the list. False positives are terrible, but false
negatives are even worse in terms of security. A false negative occurs when
the tool fails to detect an issue that is present in the program. The amount
of time lost examining the result is the fine for a false positive. The cost of
a false negative is much higher. In addition to paying the cost of having a
vulnerability in your code, you also suffer from a distorted feeling of security
because the tool gave the impression that everything was fine. There will
always be some false positives or false negatives produced by static analysis
tools. The majority of the tools create both. The ratio that a tool achieves
between false positives and false negatives is frequently a good indicator
of the tool’s intended use. Static analysis tools that are designed to find
common faults and static analysis techniques that focus on security-relevant
flaws have quite different ideal balances. The cost of missing a common
bug is quite low because the most significant bugs may be caught using a
variety of methods and procedures. Because of this, code quality tools often
aim to produce fewer false positives and are more tolerant of false negatives.
Security is another matter. Security technologies typically produce more
false positives to decrease false negatives since the cost of failing to catch
security issues is considerable. A flaw needs to be evident in the code for
a static analysis tool to find it. Even though it might seem obvious, it’s
crucial to realise that architectural risk analysis is a vital addition to static
analysis.

2.4.2 Static Analysis Internals

What motivates static analysis tools is covered in this section. We exam-
ine the inner workings of sophisticated static analysis tools, including data
structures, methods of analysis, guidelines, and strategies for reporting out-
comes. The goal is to provide enough information about the components of

14

static analysis tools so that you can get the most out of the ones you use. All
static analysis tools that focus on security work in a manner that is largely
consistent regardless of the analysis methods employed. They all start with
accepting code, creating a model of the program that represents it, evalu-
ating that model using a corpus of security knowledge, and then finishing
by showing the user their findings. This section outlines the procedure and
examines each step in further detail.

Building a Model

A static analysis tool must first convert the source code into a program
model a collection of data structures to examine it. As might be expected,
the type of analysis a tool does is directly related to the model it builds, but
generally speaking, compilers are a big influence on static analysis tools. In
reality, academics who studied compilers and compiler optimization issues
were responsible for the development of numerous static analysis approaches.
Now let’s take a quick look at the key methods and data structures that
compilers and static analysis tools have in common.

Lexical Analysis
Tools that work with source code start by breaking the code down into
tokens, removing any unnecessary text elements like whitespace and com-
ments along the way. Lexical analysis is the process of generating the token
stream. Regular expressions are frequently used in lexical rules to identify
tokens. Observe that while the majority of tokens are solely represented
by their token type, the ID token also needs the name of the identifier to
function. Tokens should include at least one extra type of information to
facilitate later relevant error reporting: their position in the source text
(usually a line number and a column number). At this stage, the task is
almost complete for the most basic static analysis tools. The analyzer can
search through the token stream for identifiers, compare them to a list of
names of risky functions, and return the results if all the tool is going to do
is match the names of dangerous functions.

Parsing
To match the token stream, a language parser employs context-free grammar
(CFG). A group of productions that describe the symbols (or elements) in
the language make up the grammar. The token stream is compared to the
production rules by the parser, which then conducts a derivation. A parse
tree is created if each symbol is linked to the symbol it was derived from.

Abstract Syntax
Because a parse tree is the most accurate representation of the code as
written by the programmer, it may be used for considerable analysis and

15

is the best tool for several stylistic checks. However, there are a lot of
reasons why executing extensive analysis on a parse tree can be difficult. It
is generally preferable to abstract away both the specifics of the grammar
and the syntactic sugar present in the program text. The nodes in the tree
are directly derived from the grammar’s production rules, and those rules
can introduce nonterminal symbols that exist solely to make parsing simple
and unambiguous, rather than to produce an easily understood tree. An
abstract syntax tree (AST) is a type of data structure that performs these
functions. The AST’s goal is to deliver a standardised program version
appropriate for analysis in the future. Typically, the production rules of the
grammar are associated with tree construction code to create the AST. The
AST may have fewer constructs than the source language, depending on the
requirements of the system. For instance, for and do loops could be changed
to while loops and method calls could be changed to function calls. This kind
of significant software simplicity is referred to as lowering. Although it runs
the danger of misrepresenting the programmer’s intent, closely comparable
languages can be reduced into the same AST structure. Syntactically related
languages may share many of the same AST node types, but they almost
certainly will have unique types of nodes for aspects that are unique to that
language.

Semantic Analysis
The tool simultaneously creates a symbol table and an AST. The symbol
table links each identifier in the program to its type and a pointer to its
declaration or definition. Now that it has access to the AST and the symbol
table, the tool may do type-checking. Although type information is crucial
for the analysis of an object-oriented language, static analysis tools are not
needed to disclose type-checking problems in the same way that compilers
do. This is because the type of an object specifies the set of methods that
the object can execute. Additionally, it is typically preferred to at least
translate implicit type conversions from the source language into explicit
type conversions in the AST. Because of these factors, a sophisticated static
analysis tool must perform the same amount of type-checking work as a
compiler. Because the compiler assigns meaning to the symbols discovered
in the program, semantic analysis is the term used to describe symbol reso-
lution and type checking in the context of compilers. These data structures
give static analysis tools a clear edge over those that do not. Compilers and
more sophisticated static analysis techniques diverge after semantic analy-
sis. A modern compiler creates an intermediate representation which is a
generic form of machine code that may be optimised and then converted into
platform-specific object code using the AST, symbol, and type information.
Static analysis tools have a more complicated future. A static analysis tool
may perform further modifications on the AST or create its unique varia-

16

tion of intermediate representation depending on the sort of analysis being
performed. It is typical for static analysis tools to at least support assign-
ment, branching, looping, and function calls when using their intermediate
representation. A static analysis tool’s intermediate representation typically
provides a higher-level view of the program than a compiler’s intermediate
representation.

Tracking Control Flow
Numerous static analysis algorithms (and compiler optimization methods)
investigate the various possible directions in which a function can be exe-
cuted. The majority of tools construct a control flow graph on top of the
AST or intermediate representation to make these algorithms efficient. Ba-
sic building blocks, or nodes, are sequences of instructions that will always
be carried out sequentially, beginning with the first instruction and ending
with the last instruction, without the possibility of any instructions being
skipped. The control flow graph’s edges are directed and signify probable
control flow routes between fundamental building elements. Potential loops
are represented by the back edges in a control flow graph. The sequence of
fundamental blocks that a program performs can be used to characterise its
control flow when it is in use. A trace is a group of fundamental building
components that chart a course through the code. Potential control flow
between functions or procedures is represented by a call graph. Building a
call graph without function pointers or virtual methods is as easy as exam-
ining the function identifiers referred to in each function. The graph’s nodes
stand in for functions, and its directed edges reflect the likelihood that one
function will call another. When function pointers or virtual methods are
called, the tool can limit the list of potential functions that can be called
from a call site by combining dataflow analysis (described below) with data
type analysis. The control flow graph cannot be guaranteed to be complete
if the program loads code modules dynamically during runtime because the
program may execute code that is hidden at the time of analysis. A static
analysis tool will ideally piece together a control flow graph that depicts the
links between the elements for software systems that span several program-
ming languages or are composed of numerous cooperating processes. The
information required to bridge the call graphs in various contexts is stored
in the configuration files for particular systems.

Tracking Dataflow
Algorithms for dataflow analysis look at how data flow within a program.
Dataflow analysis is a process used by compilers to allocate registers, elimi-
nate dead code, and carry out a variety of additional optimizations. Exam-
ining the control flow graph of a function and identifying where data values
are created and consumed are typical steps in dataflow analysis. For many

17

dataflow issues, converting a function to Static Single Assignment (SSA)
form is helpful. Only one value can be given to a variable by a function
in SSA form. The software needs new variables added to comply with this
constraint. Given any program variable, it is simple to determine the source
of the variable’s value using the SSA form. There are numerous uses for
this quality. For instance, if a constant value is ever set to an SSA variable,
all instances of the SSA variable may be replaced by the constant. The
term constant propagation refers to this method. Finding security issues
like hard-coded passwords or encryption keys can be done with constant
propagation alone. In SSA form, a variable must be reconciled at the point
where the control flow paths converge if it is given distinct values along mul-
tiple control flow paths. By establishing a new version of the variable and
giving the new version the value from one of the two control flow channels,
SSA achieves this merge. A ”-function” is the notational abbreviation for
this merge point. Depending on the control flow path that is followed, the
-function acts as a stand-in for the selection of the suitable value.

Taint Propagation
Which program values could be under the possible control of an attacker
must be known by security tools. Taint propagation refers to the use of
dataflow to discover what an attacker can control. Knowing the program’s
entry points and how data flows through it is necessary. Many input valida-
tion and representation flaws can be found through taint propagation. For
instance, a dataflow channel from an input function to a vulnerable action
is nearly always present in software that has an exploitable buffer overflow
vulnerability. When we look at analysis algorithms and then again when
I look at rules, I go into more detail on taint propagation. Static analysis
methods are not the only ones that may track contaminated data. The Perl
taint mode, which uses a runtime method to ensure that user-supplied data
are checked against a regular expression before they are utilised as a part
of a sensitive operation, is probably the most well-known implementation of
dynamic taint propagation.

Pointer Aliasing
Another dataflow issue is pointer alias analysis. Understanding which point-
ers can potentially refer to the same memory location is the goal of alias anal-
ysis. Alias analysis techniques use phrases like ”must alias,” ”may alias,”
and ”cannot alias” to characterise pointer relationships. The correctness
of alias analysis is a requirement for many compiler optimizations. Static
analysis tools frequently assume that pointers, or at least pointers supplied
as function arguments, do not alias. This premise appears to be true fre-
quently enough for many tools to generate valuable findings, but it could
lead a tool to miss out on significant outcomes.

18

Analysis Algorithms

The goal of utilising sophisticated static analysis methods is to increase con-
text sensitivity to identify the contexts and circumstances in which a specific
piece of code executes. A more accurate evaluation of the hazard the code
poses is made possible by improved context sensitivity. An intraprocedural
analysis component for examining a single function and an interprocedu-
ral analysis component for examining interactions between functions make
up the minimum of two major components of any advanced analysis tech-
nique. We use the phrases local analysis to refer to intraprocedural analysis
and global analysis to refer to interprocedural analysis because the names
intraprocedural and interprocedural are so close.

Rules

The rules that specify what a security tool should report are equally, if not
even more, crucial than the analysis methods and heuristics that the tool
employs. Although the analysis algorithms do the majority of the work,
the rules are ultimately responsible. Analysis algorithms occasionally have
a lucky break and draw incorrect conclusions for the right reasons, but a
tool can never alert you to a problem outside the bounds of its rule set.
To find a problem, several rules may be used, and each rule may make
reference to an abstract interface or check method names against a regular
expression. More rules do not always result in a better static analysis tool,
just as more code does not always result in a better program. Sometimes
the rules that code quality tools are analyzing are derived from the code
itself. For detecting security issues, this statistical method of inferring rules
does not perform very well. The code may consistently apply the construct
wrongly throughout the program if a programmer does not realize that a
particular construct poses a security risk, which would provide a 100 % false
negative rate if merely a statistical technique were used. Rules are not just
used to specify security attributes. Additionally, they are employed to define
any programmed behaviour that is implicit in the programming language,
such as that of the system or external libraries that the program may use.
A good set of modelling rules for system libraries and well-known third-
party libraries requires a lot of work to develop and maintain. Good static
analysis tools try to express the rules they examine, allowing for the addition,
removal, or modification of rules without altering the tool itself. All of the
rules that the top static analysis tools examine are transmitted. An external
rules interface enables the end user to add checks for new types of errors
or to extend current checks in ways that are particular to the semantics of
the programme being analysed, in addition to modifying the out-of-the-box
behaviour of a tool. The rule format can be adjusted to the capabilities of
the analysis engine by maintaining external files that use a certain format

19

for specifying rules. In some cases, it is advantageous for rules to appear as
annotations right within the program’s text. If a certain module is subject to
special rules, including those rules directly in the module (or the module’s
header file) is an excellent approach to ensure that the rules are followed
each time the module is used. Because an annotation’s context is already
provided by the code surrounding it, it can be written more concisely than
rules that are found in other files. For instance, an annotation can just
appear right before the function declaration in place of needing to give the
function’s name. There are drawbacks to these close links to the source code.
For instance, they might not be permitted to add permanent annotations if
the persons conducting the analysis are not the owners or maintainers of the
code. By making special source files that almost entirely include annotations
and using those source files purely for analysis, it could be possible to get
around this kind of restriction. Some annotations typically take the form
of comments that have been carefully prepared. More applications than
just static analysis benefit from annotations. Static analysis needs to use a
variety of different rule types to solve taint spreading problems. I list the
different taint propagation rule types here because so many security issues
can be described as taint propagation issues:

❼ Program areas where contaminated data enters the system are defined
by source rules.

❼ Program areas that shouldn’t get contaminated data are specified by
sink rules.

❼ Pass-through rules specify how a function deals with tainted data.

❼ A cleanse rule is a type of pass-through rule that cleans up a variable
of taint. Input validation functions are represented by clean rules.

❼ Entry-point rules are similar to source rules in that they introduce
taint into the program, but entry-point functions are invoked by an
attacker rather than at locations in the programme when the function
is called.

Reporting Results

The value that the tool offers is significantly impacted by how it presents the
results. The results must be provided so that the user may assess the accu-
racy and significance of the finding and decide whether to take the necessary
corrective action. This procedure might include changing the code, but it
might also involve modifying the tool. The phrase false positive is frequently
used by tool users to describe anything that could be considered an unwanted
result. It doesn’t matter how sophisticated the underlying analytical algo-
rithms are from the user’s perspective. The outcome is meaningless if you

20

can’t understand what the tool is trying to tell you. In that regard, poor
outcomes can result from poor presentation just as readily as they might
from the poor analysis. The tool’s responsibility includes presenting results
in a way that allows users to determine their potential significance. It’s cru-
cial to include basic code navigation tools like jump to definition. Everyone
benefits if a static analysis tool is available as a plug-in for an integrated
development environment (IDE) for programmers. The static analysis tool
developers don’t have to invent code browsing, and the programmer benefits
from a comfortable arrangement for code navigation. Auditors need at least
three features for managing tool output:

❼ Grouping and sorting results: Users can frequently eliminate a sig-
nificant number of undesirable results without having to review each
issue individually if they can organise and classify difficulties flexibly.
Users like having results presented in a ranked order since static anal-
ysis techniques might provide a lot of data, making it harder to find
the most meaningful results. Tools for static analysis can rank data
along two dimensions. If the tool is a mistake, severity indicates how
serious the discovery is. In general, a tool’s confidence in a result
decreases as more assumptions are required to reach that conclusion.
A tool must add the severity and confidence scores for each outcome
to provide a ranking. Usually, confidence and severity are combined
into a straightforward discrete scale of importance, such as Critical
(C), High (H), Medium (M), and Low (L). This makes it simple for
auditors to set priorities for their job.

❼ Eliminating unwanted results: The ability to suppress results so
that they are not reported in later analysis runs is a feature that all
sophisticated static analysis systems offer. In a functioning system,
suppression data will be carried over to upcoming releases of the same
codebase. Users must have the option to disable entire categories of
warnings in addition to being able to fix specific faults. There should
be a means to save suppression information outside the code if the
person conducting the code review does not have authorization to
edit the code, as is the case with many tools that allow results to be
suppressed using pragmas or code annotations. Simply storing the
filename, line number, and issue kind is one option. The issue is that
any change to the file, no matter how slight, can cause all the line
numbers to change, invalidating the suppression data. By storing a
line number as an offset from the function’s beginning or the closest
named statement, this issue can be mitigated. Another strategy is to
create an identifier for the result based on the programme components
that make up the trace. This strategy is particularly helpful if a result
consists of a trace through the programme rather than simply a single
line. The names of functions and variables, pertinent segments of the

21

control flow graph, and IDs for any rules involved in determining the
outcome are all useful inputs for creating the identifier.

❼ Explaining the significance of results: A description of the issue,
an explanation of whom it affects or why it is significant, and the
procedures required to duplicate the issue are all included in static
analysis tools. The tool must describe the danger it has found as well
as any potential effects of an exploit.

22

Chapter 3

OWASP Evaluation Method

We’ll concentrate on the evaluation methodology used in this thesis to ana-
lyze web applications using SAST tools. A nonprofit organisation called the
Open Web Application Security Project(OWASP) aims to increase the secu-
rity of software. The OWASP Foundation serves as a resource for develop-
ers and technologists to secure the web through community-led open-source
software projects, hundreds of local chapters globally, tens of thousands of
members, and premier educational and training conferences. They provide
forums, tools, videos, and documentation among other things. [25] The
OWASP Top 10 is a project for which they are best recognized and which
lists the 10 most important security issues for web application security. Data
from various organisations are gathered for the report by a group of interna-
tional security specialists, who subsequently analyse it. This also indicates
that OWASP does not define the Top10 alone; rather, it gathers information
from a wide range of sources and organisations before making it available
to us for feedback. The analysis is highly interesting and resulted in forty-
three CWE for the Top 10. The OWASP Benchmark is another well-known
project that OWASP has created. [26] A Java test suite called the OWASP
Benchmark Project was created to assess the precision, depth, and speed of
automated software vulnerability detection technologies. It is challenging to
comprehend these instruments’ strengths and drawbacks and evaluate them
against one another without the ability to measure them. To better com-
prehend the many metrics employed for the study of web applications by
static analysis tools, I will now show this project.

3.1 OWASP Benchmark

A free and open test suite called the OWASP Benchmark for Security Au-
tomation (OWASP Benchmark) was created to assess the efficiency, scope,
and precision of automated software vulnerability detection tools and ser-
vices. Each iteration of the OWASP Benchmark includes thousands of fully

24

executable and exploitable test cases, each of which corresponds to the rele-
vant CWE number for that vulnerability. Java is used to implement Bench-
mark’s current version. Other languages could be included in later versions.
OWASP Benchmark can be used to analyze any type of Application Security
Testing (AST) tool, including SAST, DAST and IAST tools.

Score
When security tools (SAST, DAST, and IAST) identify a sophisticated vul-
nerability in your code, they are truly fantastic. However, because the pre-
cise vulnerabilities that automated tools cover are so widely misunderstood,
end users frequently feel insecure. You want to evaluate how effective these
technologies are at identifying and correctly diagnosing application security
issues. The test suite examines genuine and fictitious vulnerabilities. There
are four possible results in the Benchmark:

❼ True Positive (TP): Tool identifies a real vulnerability in a correct
way.

❼ False Positive (FP): Tool does not ignore a false alarm.

❼ True Negative (TN): Tool ignores a false alarm in a correct way.

❼ False Negative (FN): Tool does not identify a real vulnerability.

You can learn a lot about a tool from these four metrics. The evaluation of
security tools in comparison to the Benchmark is shown in the graphic below.
In the OWASP graph, the dashed red line establishes a line that closely
corresponds to random guessing. A point plotted on this graph offers a visual
representation of how well a tool performed while taking into account both
the True Positives and False Positives it reported. Additionally, we want to
determine a unique value for that point between -100 and 100, which we refer
to as the Benchmark Accuracy Score. The Benchmark Accuracy Score is
essentially a Youden Index, a common method for summing up the accuracy
of a set of tests. It is also a general indicator of a test’s performance that is
used to assess a diagnostic procedure’s overall discriminative capacity and
to compare this test to others. Youden’s index is determined by subtracting
1 from the total of a test’s sensitivity and specificity, which is presented as
a fraction rather than a percentage: (sensitivity + specificity) - 1. Youden’s
index is equivalent to zero for a test with poor diagnostic accuracy and one
for a perfect test. The distance from the spot on the graph to the diagonal
guessing line represents the Benchmark Score. It should be noted that if a
point is below the line, the Benchmark score may be negative. This occurs
when the True Positive Rate is lower than the False Positive Rate.

25

Figure 3.1: Image that represents general OWASP Benchmark Results

3.2 Evaluation Method Used

Throughout the entire project, the same methodology used within OWASP’s
benchmark is applied. The main components of the benchmark—the score
and report generation—are used throughout the entire project. When cal-
culating the score, the same benchmark outcomes are always used: TP, FP,
TN, and FN. The project uses Benchmark Accuracy Score (BAS) to plot
the various tools for each application under analysis on the graph.

Reporting Format
We use the following tabular format to record all the data obtained through-
out the evaluation because the tools produce the raw output.

26

Table 3.1: Representation of the report format used to gather the analysis
results from the various tools’ applications.

Security Category TP FP TN FN Total TPR FPR Score

Command Injection

Weak Cryptography

Weak Hashing

LDAP Injection

Path Traversal

Secure Cookie Flag

SQL Injection

Trust Boundary Violation

Weak Randomness

XPATH Injection

XSS (Cross-Site Scripting)

Other categories

Total Test Cases

The OWASP benchmark uses the same security categories as those listed
in the report. The categories refer to the most prevalent issues that are
present in the different web apps. The OWASP Top Ten project, which
identifies the 10 most important security concerns for web applications, is
also connected to these categories. The following security categories were
used in the report:

❼ Command Injection: An attack known as command injection aims
to use a weak application to execute arbitrary commands on the host
operating system. When an application sends unsecured user-supplied
data (forms, cookies, HTTP headers, etc.) to a system shell, command
injection attacks are conceivable. In this attack, the vulnerable appli-
cation’s privileges are typically used to execute the operating system
commands supplied by the attacker. Attacks using command injection
are largely made possible by inadequate input validation. In contrast
to this attack, code injection enables the attacker to insert custom code
that the programme will then run. Without having to inject code, the
attacker can enhance the application’s default capability, which allows
it to run system commands.

❼ Weak Cryptography: Sensitive data exposure, key leakage, bro-
ken authentication, insecure sessions, and spoofing attacks can all be
caused by improper application of encryption methods. Some hashing
or encryption techniques, such as MD5 and RC4, are known to be
insecure and are not advised for use. The proper application of pa-
rameters is just as important for the security level as making the right

27

decisions on safe encryption or hash techniques. For instance, it is not
advised to utilise ECB (Electronic Code Book) mode for asymmetric
encryption.

❼ Weak Hashing: Some hashing or encryption techniques, such as
MD5 and RC4, are known to be insecure and are not advised for
use. The proper application of parameters is just as important for the
security level as making the right decisions on safe encryption or hash
techniques.

❼ LDAP Injection: An attack known as LDAP Injection targets web-
based applications that build LDAP statements based on user input.
It is possible to alter LDAP statements via a local proxy when an
application doesn’t properly sanitise user input. As a result, arbitrary
commands could be executed, providing access to unauthorised queries
and changing the content of the LDAP tree. LDAP Injection can be
exploited using the same sophisticated exploitation methods as SQL
Injection.

❼ Path Traversal: An attempt to access files or directories kept outside
the web root folder is known as a path traversal attack (also known as
a directory traversal attack). It may be feasible to access any files and
directories stored on the file system, including vital system files and
application source code, by manipulating variables that reference files
with ”dot-dot-slash (../)” sequences and their variations. It should be
remembered that system operational access control restricts access to
files (such as in the case of locked or in-use files on the Microsoft Win-
dows operating system). Dot-dot-slash, directory traversal, directory
climbing, and backtracking are other names for this attack.

❼ Secure Cookie Flag: When providing a new cookie to the user
within an HTTP Response, the application server has the option of
setting the secure attribute. Since the cookie is transmitted in clear
text, the objective of the secure attribute is to prevent the display of
cookies by unauthorized parties. Browsers that offer the security fea-
ture will only send cookies with the secure attribute when the request
is directed to an HTTPS page. If an HTTP request is not encrypted,
the browser will not transmit a cookie with the secure attribute set.
The secure property, when set, will stop a cookie over an unencrypted
channel by the browser.

❼ SQL Injection: A SQL injection attack involves inserting, or ”inject-
ing,” a SQL query through the client’s input data into the program.
A successful SQL injection exploit can read sensitive database data,
alter database data (Insert/Update/Delete), carry out database ad-
ministration tasks, recover the contents of a specific file that is present

28

on the DBMS file system, and in some situations, send commands to
the operating system. An example of an injection attack is a SQL
injection attack, in which predefined SQL commands are affected by
the injection of SQL commands into data-plane input.

❼ Trust Boundary Violation: Web applications frequently combine
trusted and untrusted data in the same data structures by accident,
which can result in situations where unvalidated/unfiltered data is
trusted or used. Before transporting data into trusted bounds, proper
input validation and output encoding should be used on it.

❼ Weak Randomness: Cryptographic attacks cannot be resisted by
common pseudo-random number generators. When a function that
can provide predictable values is employed as a source of random-
ness in a situation where security is a concern, insecure randomness
can result. Computers are deterministic machines and can’t provide
true randomness because of this. Pseudo-Random Number Genera-
tors (PRNGs) start with a seed and derive subsequent numbers from
it to approach randomness algorithmically. PRNGs come in two vari-
eties: statistical and cryptography. Although statistical PRNGs offer
useful statistical qualities, they are not appropriate for use in situ-
ations where security depends on generated values being surprising
because of their relatively predictable output and simplicity in repli-
cation. To solve this issue, cryptographic PRNGs provide more unpre-
dictable output. A value must be impossible or extremely unlikely for
an attacker to distinguish it from a truly random value to be crypto-
graphically secure. In general, statistical PRNGs should not be utilised
in security-sensitive scenarios if a PRNG method is not advertised as
being cryptographically secure.

❼ XPATH Injection: Similar to SQL Injection, XPath Injection at-
tacks happen when a website builds an XPath query for XML data
using data supplied by the user. If the XML data is used for authenti-
cation, they might even be able to increase their rights on the website.
XPath, a type of straightforward descriptive statement that enables
an XML query to locate a piece of information, is used for XML query-
ing. Similar to SQL, you can define specific attributes to look for and
match patterns. When a website uses XML, it’s typical to accept user
input in the form of a query string to specify the content to look for
and display on the page. To ensure that this input doesn’t muck up
the XPath query and return the incorrect data, it must be cleaned up.
Since XPath is a standard language and its syntax and notation are
always implementation independent, an automated attack is possible.
As requests are made to the SQL databases, there are no distinct di-
alects. Access to the entire document is possible because there is no

29

level of access control. As we may have learned from SQL injection
assaults, we won’t experience any restrictions.

❼ XSS (Cross-Site Scripting): In these situations, the application
processes erroneous user-controlled data, which prompts the execution
of malicious scripts. XSS flaws can provide attackers access to user
data and/or let them insert HTML code into an online application.

❼ Other Categories: All the flaws and issues that weren’t covered by
the earlier security categories are included in this category.

Evaluation of TNs and FNs
When analysing apps for which not all real vulnerabilities are known, it is
crucial to highlight how TNs and FNs are discovered. In the first phase,
vulnerabilities of various applications are collected and categorised as TP
or FP. Vulnerabilities that do not belong to the various tools are classified
as FN or TN using the following process: if the vulnerability is a TP, it is
classified as FN, and if it is an FP, it is classified as TN.

30

Chapter 4

Targets and Tools Selection

To evaluate the behaviour of the tools, in terms of vulnerability found, as a
first phase we selected a sample of vulnerable targets. In particular, a tar-
get is an open-source web application. Some aspects have been taken into
consideration when choosing the various applications that have been used.
These criteria have been set up so that a search of the applications will be
conducted to find a more limited set of acceptable and relevant results. The
selection has three mandatory requirements: first, that the program is a web
application; second that the web application has a client part and a server
part; finally that the client part’s target is written in Javascript and the
server part’s target is written in Javascript or Python. Thus, every target
that was selected complies with these three criteria. While, for the second
phase, we chose a sample of tools that have been selected to represent the
most common products used in the market including both open-source and
commercial. Then, for each couple of targets and tools, we analyzed the be-
haviour to evaluate the performance of the tool. To create a program that
serves as a benchmark for the tools, we finally collected the findings in tables
and extracted the most challenging pattern to identify from the results. The
benchmark created will be used to compare and rank sixteen SAST tools
with minimum changes in their configurations, seven SAST commercial tools
and nine open-source tools. In the first phase true positive and false posi-
tive metrics will be obtained and in the second phase, other metrics will be
calculated with the objective of ranking the tools having into account the
different levels of criticality that the web applications can have. The basic
concept is to execute the targets with a set of real-world vulnerable software
as input, collect the vulnerabilities discovered by the SAST, and confirm
their accuracy before using a limited set of metrics that condense the detec-
tion abilities of the tools to derive a ranking for each application scenario. It
is impossible to create a benchmark for all SAST in all circumstances due to
the wide range of applications built with diverse components and the diver-
sity of vulnerability classes. As a result, a benchmark should be specifically

32

created or set up for a certain domain to enable making informed decisions
while defining the components. In this work, choosing the classes of vul-
nerabilities that the target SAST will be able to identify directly impacts
the workload. A representative sample of real software code that contains
vulnerabilities should be used to build the workload. The targets and the
tools that have been chosen are presented in this chapter.

4.1 Targets

The vulnerable targets will be presented in this part as a dataset on which
to record the tool’s performance. Applications written in javascript for both
the server and the client, as well as applications written in python for the
server and javascript for the client, are the sixteen targets that will be used
to test the scanners. Since most web applications are created using these
two languages, we have decided to adopt them as our reference programming
languages. We suggest a procedure for identifying vulnerabilities and non-
vulnerabilities in real software that combines manual evaluation with the
findings of several SAST tools. The proposed method for developing the
workload is shown in Figure 4.1, and it consists of two steps (illustrated in
the image by the grey boxes). As shown in Figure 4.2, the technique for

Figure 4.1: Process to compose the workload

choosing a representative group of vulnerable applications to establish the
benchmark includes the following steps:

1. Selecting applications that have open-source code (SAST require the
source of the application to detect vulnerabilities).

2. Selecting the vulnerability classes that apply to the benchmark do-
main.

33

Figure 4.2: Process for collecting vulnerable applications.

3. Downloading the applications from source code repositories.

4. Collecting all vulnerabilities of the chosen applications registered in
their development repository or from vulnerability databases.

Since the vulnerabilities in this methodology are representative of real ap-
plications and have been demonstrated to be exploitable, they have a sig-
nificant advantage over existing benchmarks. The vulnerable targets’ code
is not published here to make the document concise and, therefore, not too
large; instead, it can be obtained on their GitHub pages, which will be
referenced. These are the targets used:

1. Home-Cloud [4]: Simple Web Application written in Javascript for
client and server part in which the user can host his cloud at home.
In total, there are 18564 lines of code.

2. Websocket-chat [38]: Simple Web Application written in Javascript
for client-side and in Python for server-side. The application is a
Websockets IRC-style chat server and client. In total, there are 157
lines of code.

3. Hack-chat [12]: Simple Web Application written in Javascript for
client and server part in which is a minimal, distraction-free, account-
less, disappearing chat service which is easily deployable as your ser-
vice. In total, there are 7226 lines of code.

4. Video-labelling-tool [37]: Simple Web Application written in Javascript
for client-side and in Python for server-side. The application is a tool

34

for labelling video clips (both front-end and back-end). In total, there
are 9648 lines of code.

5. Cinema-plus [3]: Simple Web Application written in Javascript for
client and server part in which Cinema + is an online Movie Ticket
Booking web app with MERN Stack. The functionalities are the On-
line Booking System, Admin Dashboard and Dark Theme UI. In total,
there are 11425 lines of code.

6. StoreKeeper [36]: Simple Web Application written in Javascript for
client-side and in Python for server-side. StoreKeeper is an open-
source, multilingual warehouse/store management software. In total,
there are 13124 lines of code.

7. StackOverflow-Clone [34] [35]: Simple Web Application written in
Javascript for client and server part in which is a clone of a famous
Q/A website for professional and enthusiast programmers built using
a completely different stack. In total, there are 9062 lines of code.

8. Excel-to-json [8]: Simple Web Application written in Javascript for
client-side and in Python for server-side. The application converts
files from excel to JSON, storing the information in a non-relational
database (MongoDB), allowing the user to search data by a common
identifier in the database. In total, there are 13260 lines of code.

9. Slack-Clone [31]: Simple Web Application written in Javascript for
client and server part in which Full-Stack live chat application that
recreates Slack’s main features. In total, there are 40813 lines of code.

10. Nano-SpeedTest [22]: Simple Web Application written in Javascript
for client-side and in Python for server-side. The application is used
to test the speed of Nano Transactions. In total, there are 22607 lines
of code.

11. React-Social [28]: Simple Web Application written in Javascript for
client and server part in which is a social network. In total, there are
15082 lines of code.

12. On my way [23]: Simple Web Application written in Javascript for
client-side and in Python for the server side. On My Way is a web
application that algorithmically generates a tourism route for a given
city and interests. In total, there are 1715 lines of code.

13. Hello-books [13]: Simple Web Application written in Javascript for
client and server part in which is an application that provides users
with access to books from wherever they are. Being a virtual library,
users can borrow and read their favourite books using any device. In
total, there are 33697 lines of code.

35

14. Kiptab [16]: Simple Web Application written in Javascript for client-
side and in Python for server-side. Kiptab helps you and your friends
keep track of expenses during vacations and other social settings by
balancing debts automatically. In total, there are 9829 lines of code.

15. Events-manager-io [7]: Simple Web Application written in Javascript
for client and server part which is a basic site for managing event
centres and scheduling events. In total, there are 39235 lines of code.

16. µuCrypt [20]: Simple Web Application written in Javascript for client-
side and in Python for server-side. µuCrypt Messenger is a secure and
simple end-to-end encrypted chat. In total, there are 273 lines of code.

4.2 Tools Used

This section describes the resources utilised to examine the target web apps’
source code for this thesis. especially the explanation of how the tools func-
tion and how they identify code vulnerabilities. The tools are chosen to
reflect the most popular products on the market, as was described in the
previous section. These tools come in both commercial and free versions.
Additionally, another factor that we considered when choosing the tools is
that they are typically found in the OWASP Benchmark. The choice of the
tools constitutes the initial step. The Static Application Security Testing
(SAST) tools were chosen because they are used to protect software by eval-
uating the source code of the software to discover sources of vulnerabilities
and because the goal of this thesis is the static analysis of the code. SAST
tools concentrate on the application’s code content, as opposed to dynamic
application security testing (DAST) tools, which assess application func-
tionality in a black-box fashion. Because some vulnerabilities are simpler to
identify through code analysis, it is better to analyse the source code. Some
aspects have been taken into consideration when choosing the various tools
that have been used. These criteria have been set up to conduct a selection
of tools to find the ones that perform best. The selection includes three
mandatory requirements: first, that the tool is easily configurable; second
that the tool supports at least Javascript and Python language; finally, the
tool must be able to work on public repositories without requiring a trial
period. Table 4.1 lists all the various tools that have been selected. Only
the languages taken into consideration throughout the entire process have
been entered in the supported languages column. Each tool’s licence type
is displayed in the licence column. The majority of commercially licenced
tools allow for free use on public repositories. Commercially licenced tools
have also been chosen as a consequence. The tools highlighted are those that
were used within the thesis because they were the best ones that satisfied
the requirements.

36

Table 4.1: A collection of the several tools that have been considered.
Tool Supported Languages Licence

Bandit Python Free

Codacy Javascript - Python Commercial

Codiga Javascript - Python Commercial

Coverity Javascript - Python Commercial

Deepsource Javascript - Python Commercial

Fluid Attack’s Scanner Javascript - Python Commercial

Graudit Javascript - Python Free

Horusec Javascript - Python Free

HCL AppScan CodeSweep Javascript - Python Commercial

Insider CLI Javascript Free

LGTM Javascript - Python Free

Pysa Python Free

Semgrep Javascript - Python Free

Shiftleft Scan Javascript - Python Commercial

Sl Scan Python Free

Sonarcloud Javascript - Python Free

SNYK Code Javascript - Python Commercial

Debricked Javascript - Python Commercial

WhiteSource Bolt Javascript - Python Commercial

RATS Python Free

Reshift Javascript Commercial

Veracode Javascript - Python Commercial

Then, all of the analysis instruments will be introduced. The following
is the list:

1. Bandit [2]: is a comprehensive source vulnerability scanner for Python.
It is an Open-Source tool. Bandit uses the ast module from Python’s
standard library to analyze Python code. The ast module is only able
to parse Python code that is valid in the version of the interpreter
from which it is imported.

2. Coverity [5]: is a tool to find and fix defects in open-source project
for free. The tool is a commercial but open-source project for free.
Coverity Scan is a service that provides analysis results on open-source
projects. Defects are identified by the engine for quick and easy repair.
It offers the results of the completed analysis of open-source projects.

3. Deepsource [6]: is a tool that helps ship clean and secure code with
powerful static analysis, OWASP Top 10 compliance, and Autofix.
Supports all major programming languages. It’s a commercial tool

37

but an open-source project for free. The main features are advanced
static analysis in which there is the largest collection of static analysis
rules. Centrally track key metrics of code with documentation cover-
age, number of dependencies, and more. Code coverage in which seam-
less coverage insights and reporting are in a single dashboard. Con-
tinuous secrets scanning detects hardcoded security credentials and
sensitive data in source code. Minimal configuration with no need to
install or add anything in your build process because works out of the
box. Highly accurate static analyzers, optimized for minimal noise in
results. It protects code from critical security risks recommended by
OWASP.

4. Fluid Attack’s Scanner [15]: is a commercial tool that performs
SAST, DAST and SCA vulnerability detection tool with perfect OWASP
Benchmark score. It’s a commercial tool but an open-source project
for free. When running as a free and Open Source CLI tool, you are in
charge of configuring the tool. It will scan vulnerabilities in the target
of your choice and report results back to you in pretty-printed or CSV
format.

5. Horusec [14]: is an open-source tool that analyses static code to
find vulnerabilities in projects and stores all results in a database for
analysis and generation of metrics. When Horusec starts an analysis,
it follows the actions listed below: it will identify what are the cur-
rent languages in your project; now, the tool will start the analysis
searching for vulnerabilities; when the analysis finishes, it will show
the analysis’ output in the interface or the file.

6. Insider CLI [10]: is focused to make source code analysis to find
vulnerabilities. It is focused on agile and easy-to-implement software.

7. LGTM [18]: is free for open-source static analysis service that auto-
matically monitors commits to publicly accessible code in Bitbucket
Cloud, GitHub, or GitLab. LGTM is a variant analysis platform
that automatically checks your code for real CVEs and vulnerabilities.
LGTM ranks the most relevant results to show only the alerts that
matter. The concept of LGTM comes from the observation that the
same bugs often reappear over and over again throughout a project’s
lifetime, and in multiple places in a codebase. They may also be
present under different forms, called “variants”. When such bugs lead
to security vulnerabilities, the consequences can be pretty severe. The
technology behind LGTM is CodeQL. Using CodeQL, you can write
a query to find a bug in your projects. Once you’ve found the original
issue and fixed it, you can extend the query to find code patterns that

38

are semantically similar to the original bug. The standard or built-in
queries used on LGTM are all open-source and are constantly updated.

8. Pysa [24]: is a free open-source tool that can perform Taint Analysis
to identify potential security problems using Python libraries. Its work
is tracking flows of data from where they originate (sources) to where
they terminate in a dangerous location (sinks). This analysis uses
models that provide annotations about the source code and also rules
that define which sources are dangerous for which sinks. The tool
prevents false negatives, but it can also lead to false positives.

9. Semgrep [30]: is a free open-source tool that uses a static analysis
engine for finding bugs, detecting dependency vulnerabilities and en-
forcing code standards. No compilation is needed to scan the source
code and analyzes the code locally on your computer or in your build
environment.

10. Sonarcloud [1]: is an open-source cloud-based code analysis service
designed to detect code quality issues performing Static Analysis. The
main features are the protection of the software assets - embedded,
web, mobile apps, and cloud-native apps. Automatic analysis with no
extra configuration is required for most languages to receive the results
of the first analysis. The super-fast analysis gets super-fast feedback
to help you quickly assess where the code stands in pull requests and
branches. Actionable, highly precise results receiving clear reports at
the right place and time. Maximize your impact with high-precision
analysis that helps you focus on real issues, and less on false positives.

11. SNYK Code [32]: is a commercial tool that finds, learns and fixes
vulnerabilities in open-source dependencies, in application code. It is
free for open-source projects. Snyk Code utilizes a semantic analy-
sis AI engine that learns from millions of open-source commits and
is paired with Snyk’s Security Intelligence database: this creates a
continually growing code security knowledge base, which reduces false
positives to near-zero and provides actionable findings with that mat-
ter. Snyk Code leverages its security knowledge base to provide fix
examples from real-world projects, which offer insights on how to fix
the discovered issues.

12. Scan [43]: is a free open-source security tool with integrated multi-
scanner based design. It detects various kinds of security flaws in your
application, and infrastructure code in a single fast scan without the
need for any remote server.

13. Debricked [39]: is a commercial tool that identifies, fixes and prevents
known vulnerabilities through automation without the need to give ac-

39

cess to your source code. It is free for open-source projects. Integrate,
scan and receive the first results within minutes. It solves vulnerabil-
ities more efficiently and generates automated pull requests for fixing
them. Automatically keep new vulnerabilities from entering in code-
base by customizing your very own rules and policies. Debricked only
warns you when you’re using the vulnerable function.

14. Whitesource Bolt [19]: is a commercial tool that finds and fixes
Open Source Vulnerabilities getting detailed information on security
vulnerabilities and suggesting fixes for quick remediation. It’s free for
open-source projects. The tool allows you to work on both public and
private repositories.

15. RATS [11]: is a free open-source tool that performs only a rough
analysis of source code flagging common security-related programming
errors. It will not find every error and will also find things that are not
errors. Manual inspection of your code is still necessary but greatly
aided with this tool.

16. Reshift [29]: is a commercial tool that identifies and fixes vulnera-
bilities. It’s free for open-source projects. The tool improves code
security and provides rich content and best practices to learn about
security while writing code.

The selected tools will be referred to below as Tool 1, Tool 2, Tool 3, Tool
4, Tool 5, Tool 6, Tool 7, Tool 8, Tool 9, Tool 10, Tool 11, Tool 12, Tool 13,
Tool 14, Tool 15 and Tool 16.

Identifying vulnerabilities and non-vulnerabilities
As shown in Figure 4.2, the second grey box is related to identifying vulner-
abilities and non-vulnerabilities. To evaluate a SAST, we must know which
Lines Of Codes (LOCs) are vulnerable (i.e., positive examples or Vulnerable
LOCs) and which LOCs are not (i.e., negative instances or Non-Vulnerable
LOCs). This is a difficult task that requires a detailed inspection by secu-
rity specialists for huge code bases, and the outcome may not be entirely
correct because experts sometimes fail. As a result, a LOC with one or more
vulnerabilities counts as one positive instance in this study since we count
the vulnerabilities at the level of the LOC. Then, we go over how to define
vulnerable LOCs and non-vulnerable LOCs and show how to obtain them.

a) Characterizing Vulnerable LOCs and Non-Vulnerable LOCs: The pro-
posed strategy for discovering more Vulnerable LOCs in the work-
load is based on running multiple SAST tools and using a manual
review to validate the results. To find the Vulnerable LOCs, we run
the SAST to check the chosen apps for vulnerabilities. After com-
bining the outputs, each potential vulnerability is manually examined

40

to determine whether it is a TP (i.e., vulnerability) or an FP (i.e.,
non-vulnerability). As a result, the list of positive instances (P) is
created by merging the original Vulnerable LOCs with all TPs, and
the list of negative instances (N), or non-vulnerable LOCs, is created
by including all FPs (Non-Vulnerable LOCs).

b) Obtaining Vulnerable LOCs and Non-Vulnerable LOCs: The method
for obtaining Vulnerable LOCs and Non-Vulnerable LOCs includes five
steps:

1) Determine the group of SAST that will be utilised to create the
list of Vulnerable LOCs and Non-Vulnerable LOCs. This involves
providing the configuration options for the chosen tools.

2) Utilize the workload applications to run the SAST to find vul-
nerabilities. This stage produces a list of potential Vulnerable
LOCs.

3) Classify the vulnerabilities indicated by the tools as Vulnerable
LOCs or Non-Vulnerable LOCs after manually verifying them.

4) List the susceptible file, the vulnerable LOC, the vulnerable vari-
able, the vulnerability class, and a description to describe the set
of vulnerable LOCs.

5) Describe the collection of non-vulnerable LOCs, giving details
about the file, the LOC, the variable, the potential vulnerability
class, and the description.

4.3 Procedure to run Benchmark

To implement and run the benchmark, a specific set of procedures and guide-
lines must be followed (as shown in Fig. 4.3):

1. Preparation: Select the SAST that will be compared. Tools must,
whenever possible, be configured following the characteristics of appli-
cations in the benchmark domain because they are performed differ-
ently depending on their features, configurations, and user interfaces.

2. Execution: running the SAST under benchmarking to detect vulnera-
bilities in the workload.

3. Normalization of reports: Each tool produces results in a distinct for-
mat, so these results must be normalised and combined into a single
report with a standard format that includes the following data for ev-
ery vulnerability: the LOCs reported as vulnerable, the files where it
was found, a description of the vulnerability, the reported CVSS Score,
and the application where it was found.

41

Figure 4.3: Process for collecting vulnerable applications.

4. Vulnerability verification: Analysis of the SAST tools’ results by ap-
plying the vulnerabilities reported by the SAST performing manual
verification and inserting to the list of VLOCs or NVLOCs.

5. Metrics calculation: based on the SAST outputs the benchmark met-
rics are calculated automatically.

42

Chapter 5

Experimental Results

In this chapter, we describe the experiment, its comparative outcomes, and
how the data were interpreted. Multiple tables will be used to summarise
all the results, and they will be followed by a more detailed explanation of
the results. The methodology for comparing SAST tools used to analyse
various web applications is then presented.

5.1 Experiment

The experiment includes the use of sixteen tools (Section 4.2) that are
launched at sixteen various vulnerable targets (Section 4.1). Figuring out
how the tools behave and perform is the aim of this analysis. First, it is
important to understand what the four values mean:

❼ True Positive (TP): A test result that indicates the presence of a
vulnerability in a correct way.

❼ True Negative (TN): A test result that indicates the absence of a
vulnerability in a correct way.

❼ False Positive (FP): A test result that indicates a particular vulner-
ability is present in a wrong way.

❼ False Negative (FN): A test result that indicates a particular vul-
nerability is absent in a wrong way.

We suggest using metrics to compare the outcomes and rank the SAST.
In practice, the metrics depend on the vulnerability detection goals, which
are related with the amount of available resources to fix the vulnerabilities.
Given that there are more Negative (N, non-vulnerabilities) instances than
Positive (P, vulnerabilities) instances in the workload, the evaluation met-
rics are described in the following paragraphs. In a classification task, the
precision for a class is the number of true positives divided by the number

44

of true positives plus the number of false positives. Recall in this context is
defined as the number of true positives divided by the number of true pos-
itives plus the number of false negatives. The recall is also known as True
Positive Rate (TPR). False positive rate (FPR) is another crucial measure
which shows the likelihood of incorrectly rejecting the null hypothesis for a
specific test. FPR is determined as the ratio of negative events that were
mistakenly classified as positive (false positives) to all of the real negative
occurrences (regardless of classification). Another important metric used
is the Benchmark Accuracy Score (BAS) which is a standard way of sum-
marizing the accuracy of a set of tests. This metric is equivalent to the
Informedness metric normalized to the range -100 to 100. Other metric con-
sidered is the F-measure [27]. The accuracy of a test is measured by the
F-measure. It is derived from the test’s precision and recall. To summarize
in a formula, precision Equation (5.1), recall Equation (5.2), FPR Equation
(5.3), BAS Equation (5.4) and the F-measure (5.5) are defined as:

Precision =
TP

TP + FP
(5.1)

Recall(TPR) =
TP

TP + FN
(5.2)

FPR =
FP

FP + TN
(5.3)

BenchmarkAccuracyScore(BAS) = TPR− FPR (5.4)

F −Measure =
2 ∗ TP

2 ∗ TP + FP + FN
(5.5)

From this, we could extract some significant information regarding the tools.
All runs were performed using a VM machine based on Kali-Linux at version
2021.3 running on 64-bit architecture. All tools were run on a VM with a
two-core, Intel Core i7-7700HQ machine with 8GB of RAM. All the tools
were run on it.

5.2 Results

This section reproduces several graphs and tables related to the tool’s out-
comes across a range of applications. In particular, for every application,
screenshots of the tool’s graphic on the OWASP graphic are displayed first.
The tables related to each tool with the results are displayed subsequently.

5.2.1 Home-Cloud

45

Figure 5.1: Results of application analyzed by the tools

In the following table, there is the description for every tool the TPR, the
FPR and the Benchmark Accuracy Score (BAS). Four tools are not taken
into consideration because they do not support the Javascript language,
which is used exclusively in the application in question.

Table 5.1: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 2 0.011 0.0 0.011 1.1%

Tool 3 0.0017 0.0 0.0017 0.17%

Tool 4 0.45 0.0 0.45 45.0%

Tool 5 0.3743 0.033 0.291 29.1%

Tool 6 0.0 0.0 0.0 0.0%

Tool 7 0.04507 0.0 0.04507 4.51%

Tool 9 0.0343 0.0 0.0343 3.43%

Tool 10 0.0242 0.0 0.0242 2.42%

Tool 11 0.2856 0.0 0.2856 28.56%

Tool 13 0.2530 0.0 0.2530 25.30%

Tool 14 0.2465 0.0 0.2465 24.65%

Tool 16 0.0017 0.0 0.0017 0.17%

46

5.2.2 Websocket-chat

Figure 5.2: Results of application analyzed by the tools

In the following table, there is the description for every tool the TPR, the
FPR and the Benchmark Accuracy Score (BAS). The score column contains
several negative values. Negative values indicate that the tool is reporting
many FPs and has an FPR that is higher than the TPR.

47

Table 5.2: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 1 0.0417 0.0 0.0417 4.17%

Tool 2 0.0 0.0 0.0 0.0%

Tool 3 0.0417 0.0 0.0417 4.17%

Tool 4 0.0 0.0 0.0 0.0%

Tool 5 0.0625 0.083 -0.02083 -2.08%

Tool 6 0.0 0.0 0.0 0.0%

Tool 7 0.0 0.0 0.0 0.0%

Tool 8 0.0 0.0 0.0 0.0%

Tool 9 0.0 0.0 0.0 0.0%

Tool 10 0.083 0.0 0.083 8.33%

Tool 11 0.0417 0.0 0.0417 4.17%

Tool 12 0.0 0.0 0.0 0.0%

Tool 13 0.0833 0.0 0.0833 8.33%

Tool 14 0.0833 0.0 0.0833 8.33%

Tool 15 0.0 0.0 0.0 0.0%

Tool 16 0.0 0.0 0.0 0.0%

5.2.3 Hack-chat

Figure 5.3: Results of application analyzed by the tools

48

In the following table, there is the description for every tool the TPR, the
FPR and the Benchmark Accuracy Score (BAS). Four tools are not taken
into consideration because they do not support the Javascript language,
which is used exclusively in the application in question. The score column
contains several negative values. Negative values indicate that the tool is
reporting many FPs and has an FPR that is higher than the TPR.

Table 5.3: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 2 0.0 0.0 0.0 0.0%

Tool 3 0.0 0.0 0.0 0.0%

Tool 4 0.1474 0.0 0.1474 14.74%

Tool 5 0.2173 0.0492 0.1681 16.81%

Tool 6 0.0 0.0 0.0 0.0%

Tool 7 0.01190 0.0833 -0.0714 7.14%

Tool 9 0.02690 0.07576 -0.04886 -4.89%

Tool 10 0.0926 0.04167 0.0509 5.09%

Tool 11 0.2034 0.0 0.2034 20.34%

Tool 13 0.1307 0.0 0.1307 13.07%

Tool 14 0.1618 0.0 0.1618 16.18%

Tool 16 0.0119 0.072 -0.0601 -6.01%

5.2.4 Video-labelling-tool

49

Figure 5.4: Results of application analyzed by the tools

In the following table, there is the description for every tool the TPR, the
FPR and the Benchmark Accuracy Score (BAS). The score column contains
several negative values. Negative values indicate that the tool is reporting
many FPs and has an FPR that is higher than the TPR.

50

Table 5.4: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 1 0.0208 0.0 0.0208 2.08%

Tool 2 0.0 0.00149 -0.00149 -0.15%

Tool 3 0.0 0.0 0.0 0.0%

Tool 4 0.0 0.0 0.0 0.0%

Tool 5 0.028 0.0684 -0.0406 -4.06%

Tool 6 0.0 0.003 -0.003 -0.3%

Tool 7 0.0 0.0 0.0 0.0%

Tool 8 0.0 0.0 0.0 0.0%

Tool 9 0.0278 0.0432 -0.0154 -1.54%

Tool 10 0.0 0.2198 -0.2198 -21.98%

Tool 11 0.04167 0.0 0.04167 4.17%

Tool 12 0.0 0.1111 -0.1111 -11.11%

Tool 13 0.0 0.0 0.0 0.0%

Tool 14 0.04167 0.0 0.04167 4.17%

Tool 15 0.0208 0.0803 -0.0625 -6.25%

Tool 16 0.01389 0.0 0.01389 1.39%

5.2.5 Cinema-plus

Figure 5.5: Results of application analyzed by the tools

51

In the following table, there is the description for every tool the TPR, the
FPR and the Benchmark Accuracy Score (BAS). Four tools are not taken
into consideration because they do not support the Javascript language,
which is used exclusively in the application in question. The score column
contains several negative values. Negative values indicate that the tool is
reporting many FPs and has an FPR that is higher than the TPR.

Table 5.5: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 2 0.0 0.000706 -0.000706 -0.07%

Tool 3 0.01667 0.0 0.01667 1.67%

Tool 4 0.01164 0.0 0.01164 1.16%

Tool 5 0.00694 0.1321 -0.12516 -12.52%

Tool 6 0.002347 0.00071 0.00164 0.16%

Tool 7 0.13088 0.01994 0.11094 11.1%

Tool 9 0.01846 0.01271 0.00575 0.58%

Tool 10 0.1616 0.0833 0.0783 7.83%

Tool 11 0.41851 0.08404 0.33447 33.45%

Tool 13 0.23988 0.0 0.23988 23.99%

Tool 14 0.3056 0.0 0.3056 30.56%

Tool 16 0.1523 0.0 0.1523 15.23%

5.2.6 StoreKeeper

52

Figure 5.6: Results of application analyzed by the tools

In the following table, there is the description for every tool the TPR, the
FPR and the Benchmark Accuracy Score (BAS). The score column contains
several negative values. Negative values indicate that the tool is reporting
many FPs and has an FPR that is higher than the TPR.

53

Table 5.6: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 1 0.0875 0.0833 -0.004167 -0.42%

Tool 2 0.0 0.0 0.0 0.0%

Tool 3 0.04392 0.0 0.04392 4.39%

Tool 4 0.02724 0.0 0.02724 2.72%

Tool 5 0.0522 0.1 -0.0478 -4.78%

Tool 6 0.00150 0.00278 -0.00128 -0.13%

Tool 7 0.0 0.0 0.0 0.0%

Tool 8 0.0 0.0 0.0 0.0%

Tool 9 0.00150 0.04446 -0.04296 -4.3%

Tool 10 0.0424 0.2505 -0.2081 -20.81%

Tool 11 0.26148 0.0 0.26148 26.15%

Tool 12 0.00273 0.00694 -0.00421 -0.42%

Tool 13 0.3785 0.0 0.3785 37.85%

Tool 14 0.51527 0.0 0.51527 51.53%

Tool 15 0.0 0.125 -0.125 -12.5%

Tool 16 0.0 0.0 0.0 0.0%

5.2.7 StackOverflow-Clone

Figure 5.7: Results of application analyzed by the tools

54

In the following table, there is the description for every tool the TPR, the
FPR and the Benchmark Accuracy Score (BAS). Four tools are not taken
into consideration because they do not support the Javascript language,
which is used exclusively in the application in question. The score column
contains several negative values. Negative values indicate that the tool is
reporting many FPs and has an FPR that is higher than the TPR.

Table 5.7: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 2 0.05159 0.01458 0.03701 3.7%

Tool 3 0.0 0.0 0.0 0.0%

Tool 4 0.003788 0.0 0.003788 0.38%

Tool 5 0.01326 0.13675 -0.12349 -12.35%

Tool 6 0.0 0.00214 -0.00214 -0.21%

Tool 7 0.0171 0.0 0.01701 1.7%

Tool 9 0.0833 0.1004 -0.0171 -1.71%

Tool 10 0.08523 0.08547 -0.00024 -0.02%

Tool 11 0.0352 0.0 0.0352 3.52%

Tool 13 0.01667 0.0 0.01667 1.67%

Tool 14 0.00945 0.0 0.00945 0.95%

Tool 16 0.00379 0.0 0.00379 0.38%

5.2.8 Excel-to-json

55

Figure 5.8: Results of application analyzed by the tools

In the following table, there is the description for every tool the TPR,
the FPR and the Benchmark Accuracy Score (BAS).

Table 5.8: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 1 0.0083 0.0 0.0083 0.83%

Tool 2 0.0 0.0 0.0 0.0%

Tool 3 0.000786 0.0 0.000786 0.08%

Tool 4 0.3548 0.0 0.3548 35.48%

Tool 5 0.490400 0.08333 0.407067 40.71%

Tool 6 0.0 0.0 0.0 0.0%

Tool 7 0.0 0.0 0.0 0.0%

Tool 8 0.0 0.0 0.0 0.0%

Tool 9 0.0 0.0 0.0 0.0%

Tool 10 0.000786 0.0 0.000786 0.08%

Tool 11 0.46955 0.0 0.46955 46.96%

Tool 12 0.0 0.0 0.0 0.0%

Tool 13 0.364278 0.0 0.364278 36.43%

Tool 14 0.48791 0.0 0.48791 48.79%

Tool 15 0.0 0.0 0.0 0.0%

Tool 16 0.0 0.0 0.0 0.0%

56

5.2.9 Slack-Clone

Figure 5.9: Results of application analyzed by the tools

In the following table, there is the description for every tool the TPR, the
FPR and the Benchmark Accuracy Score (BAS). Four tools are not taken
into consideration because they do not support the Javascript language,
which is used exclusively in the application in question. The score column
contains several negative values. Negative values indicate that the tool is
reporting many FPs and has an FPR that is higher than the TPR.

57

Table 5.9: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 2 0.0033 0.0139 -0.0106 -1.06%

Tool 3 0.0 0.0 0.0 0.0%

Tool 4 0.4296 0.0 0.4296 42.96%

Tool 5 0.3916 0.1174 0.2741 27.41%

Tool 6 0.0 0.0145 -0.0145 -1.45%

Tool 7 0.0348 0.0109 0.024 2.4%

Tool 9 0.004 0.1196 -0.1155 -11.55%

Tool 10 0.0145 0.1014 -0.0869 -8.69%

Tool 11 0.3427 0.0072 0.3355 33.55%

Tool 13 0.4038 0.0 0.4038 40.38%

Tool 14 0.268 0.0 0.268 26.8%

Tool 16 0.0271 0.0072 0.0198 1.98%

5.2.10 Nano-SpeedTest

Figure 5.10: Results of application analyzed by the tools

In the following table, there is the description for every tool the TPR, the
FPR and the Benchmark Accuracy Score (BAS). The score column contains
several negative values. Negative values indicate that the tool is reporting
many FPs and has an FPR that is higher than the TPR.

58

Table 5.10: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 1 0.0021 0.0333 -0.0312 -3.12%

Tool 2 0.0013 0.0 0.0013 0.13%

Tool 3 0.0 0.0 0.0 0.0%

Tool 4 0.0065 0.0 0.0065 0.65%

Tool 5 0.1633 0.0452 0.1181 11.81%

Tool 6 0.0 0.0 0.0 0.0%

Tool 7 0.0 0.0 0.0 0.0%

Tool 8 0.0 0.0 0.0 0.0%

Tool 9 0.0126 0.0 0.0126 1.26%

Tool 10 0.0342 0.1048 -0.0706 -7.06%

Tool 11 0.3643 0.0 0.3643 36.43%

Tool 12 0.0 0.0 0.0 0.0%

Tool 13 0.3116 0.0 0.3116 31.16%

Tool 14 0.225 0.0 0.225 22.5%

Tool 15 0.0021 0.05 -0.0479 -4.79%

Tool 16 0.0 0.0 0.0 0.0%

5.2.11 React-Social

Figure 5.11: Results of application analyzed by the tools

59

In the following table, there is the description for every tool the TPR, the
FPR and the Benchmark Accuracy Score (BAS). Four tools are not taken
into consideration because they do not support the Javascript language,
which is used exclusively in the application in question. The score column
contains several negative values. Negative values indicate that the tool is
reporting many FPs and has an FPR that is higher than the TPR.

Table 5.11: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 2 0.0074 0.0 0.0074 0.74%

Tool 3 0.0 0.0 0.0 0.0%

Tool 4 0.2403 0.0 0.2403 24.03%

Tool 5 0.3454 0.1458 0.1996 19.96%

Tool 6 0.0 0.0 0.0 0.0%

Tool 7 0.0181 0.0833 -0.0653 -6.53%

Tool 9 0.0008 0.0556 -0.0547 -5.47%

Tool 10 0.02 0.1389 -0.1189 -11.89%

Tool 11 0.3856 0.0 0.3856 38.56%

Tool 13 0.3068 0.0 0.3068 30.68%

Tool 14 0.3426 0.0 0.3426 34.26%

Tool 16 0.0142 0.0833 -0.0692 -6.92%

5.2.12 On my way

60

Figure 5.12: Results of application analyzed by the tools

In the following table, there is the description for every tool the TPR, the
FPR and the Benchmark Accuracy Score (BAS). The score column contains
several negative values. Negative values indicate that the tool is reporting
many FPs and has an FPR that is higher than the TPR.

61

Table 5.12: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 1 0.0278 0.0 0.0278 2.78%

Tool 2 0.0 0.0 0.0 0.0%

Tool 3 0.0 0.0 0.0 0.0%

Tool 4 0.0111 0.0 0.0111 1.11%

Tool 5 0.05 0.1389 -0.0889 -8.89%

Tool 6 0.0056 0.0278 -0.0222 -2.22%

Tool 7 0.0056 0.0 0.0056 0.56%

Tool 8 0.0 0.0 0.0 0.0%

Tool 9 0.1 0.0 0.1 10.0%

Tool 10 0.0833 0.0278 0.0556 5.56%

Tool 11 0.0056 0.0 0.0056 0.56%

Tool 12 0.0 0.0 0.0 0.0%

Tool 13 0.0056 0.0 0.0056 0.56%

Tool 14 0.0 0.0 0.0 0.0%

Tool 15 0.0 0.0 0.0 0.0%

Tool 16 0.0 0.0 0.0 0.0%

5.2.13 Hello-books

Figure 5.13: Results of application analyzed by the tools

62

In the following table, there is the description for every tool the TPR, the
FPR and the Benchmark Accuracy Score (BAS). Four tools are not taken
into consideration because they do not support the Javascript language,
which is used exclusively in the application in question. The score column
contains several negative values. Negative values indicate that the tool is
reporting many FPs and has an FPR that is higher than the TPR.

Table 5.13: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 2 0.0014 0.0 0.0014 0.14%

Tool 3 0.0009 0.0 0.0009 0.09%

Tool 4 0.462 0.0 0.462 46.2%

Tool 5 0.5712 0.13 0.4412 44.12%

Tool 6 0.0 0.0088 -0.0088 -0.88%

Tool 7 0.012 0.0 0.012 1.2%

Tool 9 0.0129 0.1447 -0.1318 -13.18%

Tool 10 0.0292 0.0317 -0.0025 -0.25%

Tool 11 0.3854 0.0 0.3854 38.54%

Tool 13 0.5187 0.0 0.5187 51.87%

Tool 14 0.4715 0.0 0.4715 47.15%

Tool 16 0.0055 0.0044 0.0011 0.11%

5.2.14 Kiptab

63

Figure 5.14: Results of application analyzed by the tools

In the following table, there is the description for every tool the TPR, the
FPR and the Benchmark Accuracy Score (BAS). The score column contains
several negative values. Negative values indicate that the tool is reporting
many FPs and has an FPR that is higher than the TPR.

64

Table 5.14: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 1 0.0167 0.0 0.0167 1.67%

Tool 2 0.003 0.0 0.003 0.3%

Tool 3 0.0 0.0 0.0 0.0%

Tool 4 0.0457 0.0 0.0457 4.57%

Tool 5 0.1053 0.0833 0.0219 2.19%

Tool 6 0.0 0.0 0.0 0.0%

Tool 7 0.0169 0.0333 -0.0165 -1.65%

Tool 8 0.0 0.0 0.0 0.0%

Tool 9 0.0508 0.0833 -0.0326 -3.26%

Tool 10 0.0384 0.0917 -0.0533 -5.33%

Tool 11 0.0015 0.0 0.0015 0.15%

Tool 12 0.0 0.0 0.0 0.0%

Tool 13 0.0015 0.0 0.0015 0.15%

Tool 14 0.0045 0.0 0.0045 0.45%

Tool 15 0.0 0.0 0.0 0.0%

Tool 16 0.0139 0.0 0.0139 1.39%

5.2.15 Events-manager-io

Figure 5.15: Results of application analyzed by the tools

65

In the following table, there is the description for every tool the TPR, the
FPR and the Benchmark Accuracy Score (BAS). Four tools are not taken
into consideration because they do not support the Javascript language,
which is used exclusively in the application in question. The score column
contains several negative values. Negative values indicate that the tool is
reporting many FPs and has an FPR that is higher than the TPR.

Table 5.15: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 2 0.0015 0.0 0.0015 0.15%

Tool 3 0.001 0.0 0.001 0.1%

Tool 4 0.4495 0.0 0.4495 44.95%

Tool 5 0.6162 0.0972 0.519 51.9%

Tool 6 0.0 0.0 0.0 0.0%

Tool 7 0.0094 0.0 0.0094 0.94%

Tool 9 0.001 0.0 0.001 0.1%

Tool 10 0.0005 0.0 0.0005 0.05%

Tool 11 0.2841 0.0417 0.2425 24.25%

Tool 13 0.4845 0.0 0.4845 48.45%

Tool 14 0.3333 0.0 0.3333 33.33%

Tool 16 0.003 0.0278 -0.0248 -2.48%

5.2.16 µuCrypt

66

Figure 5.16: Results of application analyzed by the tools

In the following table, there is the description for every tool the TPR,
the FPR and the Benchmark Accuracy Score (BAS).

Table 5.16: Results of tools on the application
Tool TPR FPR Score Score (%)

Tool 1 0.04167 0.0 0.04167 4.17%

Tool 2 0.0 0.0 0.0 0.0%

Tool 3 0.0167 0.0 0.0167 1.67%

Tool 4 0.1 0.0 0.1 10.0%

Tool 5 0.05 0.0 0.05 5.0%

Tool 6 0.0 0.0 0.0 0.0%

Tool 7 0.0 0.0 0.0 0.0%

Tool 8 0.0 0.0 0.0 0.0%

Tool 9 0.0 0.0 0.0 0.0%

Tool 10 0.0833 0.0 0.0833 8.33%

Tool 11 0.0167 0.0 0.0167 1.67%

Tool 12 0.0 0.0 0.0 0.0%

Tool 13 0.0 0.0 0.0 0.0%

Tool 14 0.0 0.0 0.0 0.0%

Tool 15 0.0 0.0 0.0 0.0%

Tool 16 0.0 0.0 0.0 0.0%

67

5.3 Interpretation of Results

Looking at the results it is possible to observe which tool behaves best and
which is worse. Table 5.17 collects the results for all target applications and
calculates a cumulative score for each tool. This was obtained by calculating
the TPR, the FPR and the score on the set of all target applications. This
table also shows a ranking of the various tools considered.

Table 5.17: Results of the tools on all Applications
Tool TPR FPR Score Score (%)

Tool 11 0.555 0.013 0.542 54.2

Tool 4 0.527 0 0.527 52.7

Tool 14 0.467 0 0.467 46.7

Tool 13 0.443 0 0.443 44.3

Tool 5 0.602 0.445 0.157 15.7

Tool 16 0.054 0.024 0.03 3

Tool 3 0.007 0 0.007 0.7

Tool 8 0 0 0 0

Tool 7 0.075 0.076 -0.001 -0.1

Tool 2 0.02 0.024 -0.004 -0.4

Tool 6 0.003 0.022 -0.019 -1.9

Tool 12 0.012 0.047 -0.035 -3.5

Tool 10 0.037 0.29 -0.253 -25.3

Tool 9 0.06 0.359 -0.299 -29.9

Tool 1 0.067 0.468 -0.401 -40.1

Tool 15 0.012 0.637 -0.625 -62.5

The score column contains several negative values. Negative values indi-
cate that the tool is reporting many FPs and has an FPR that is higher than
the TPR. The category ”Alternate categories” in our results, as described
in the evaluation methodology, is where vulnerabilities that don’t belong to
the previously chosen categories are entered. Numerous categories of vulner-
abilities are included in this category, which greatly influences the outcomes
of the various tools. It is crucial to have this category in place to research
and analyse all of the vulnerabilities discovered by the various tools. The
selection of the applications that make up the benchmark has a significant
impact on the values in this table. From the point of view of the targets, it is
interesting to note that none of the vulnerabilities reported is recognized by
all tools. Still, from the standpoint of the web applications, we recall that
the vulnerable targets were split into two groups: those that were entirely
built in Javascript and those that had a Python server with a Javascript
client. It’s important to keep in mind from the perspective of tools that
some tools perform better in Javascript and worse in Python. There are

68

alternative tools that operate more effectively in Python than in Javascript.
Some tools can only be used with Python. Tool 1, Tool 8, Tool 12 and Tool
15 are the tools that work only in Python and only Python vulnerabilities
are reported by these tools. Tool 6 and Tool 16 are the tools that work
only in Javascript and only Javascript vulnerabilities are reported by these
tools. It is important to analyze the performance of the tools on python and
javascript separately. For this purpose, the following tables are used which
show the rankings of the various tools based on the language used.

Table 5.18: Results of the tools considering only Python language
Tool TPR FPR Score Score (%)

Tool 11 0.622 0 0.622 62.2

Tool 13 0.491 0 0.491 49.1

Tool 14 0.141 0 0.141 14.1

Tool 9 0.085 0 0.085 8.5

Tool 3 0.043 0 0.043 4.3

Tool 2 0.006 0 0.006 0.6

Tool 4 0 0 0 0

Tool 7 0 0 0 0

Tool 8 0 0 0 0

Tool 12 0.012 0.047 -0.035 -3.5

Tool 5 0.313 0.548 -0.235 -23.5

Tool 1 0.067 0.468 -0.401 -40.1

Tool 10 0.067 0.605 -0.538 -53.8

Tool 15 0.012 0.637 -0.625 -62.5

Table 5.19: Results of the tools considering only Javascript language
Tool TPR FPR Score Score (%)

Tool 4 0.558 0 0.558 55.8

Tool 11 0.541 0.016 0.525 52.5

Tool 14 0.491 0 0.491 49.1

Tool 13 0.431 0 0.431 43.1

Tool 5 0.622 0.416 0.206 20.6

Tool 16 0.059 0.03 0.029 2.9

Tool 3 0.004 0 0.004 0.4

Tool 2 0.022 0.03 -0.008 -0.8

Tool 7 0.081 0.096 -0.015 -1.5

Tool 6 0.002 0.028 -0.026 -2.6

Tool 10 0.034 0.191 -0.157 -15.7

Tool 9 0.056 0.44 -0.384 -38.4

Taking into account this categorization of applications into two groups,

69

it is simple to see that the vulnerabilities identified by the Python tools only
exclusively refer to the server side. While the Javascript vulnerabilities listed
refer to both sides (client e server). As a result, the number of vulnerabilities
identified in Python is lower than the number of vulnerabilities identified in
Javascript.

5.4 Method to compare SAST Tools

This section aims to classify the tools according to the metrics used to anal-
yse the outcomes of the tool execution against the benchmark. The chosen
metrics of precision, recall, false positives, and F-measure were then calcu-
lated. Recall metrics work well for highly critical applications where finding
the most vulnerabilities is the main goal. When taking into account the false
positive score, precision metric penalises the true positive ratio. Typically, a
tool’s true positive and false positive results are directly proportionate. This
direct proportionality should be broken by an effective method. The ideal
metric for choosing a tool that finds a lot of vulnerabilities while report-
ing a few false positives is called the F-measure. This enables very precise
tools to produce far superior results. The measures listed in Section 5.1 are
false positive rate (percentage), recall, precision, and F-measure are used
to analyse the performance of tools against the benchmark. The following
tables display the classification order based on F-measure scores (one per
application).

Table 5.20: Metrics reported by the tools on Application 1
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 4 225 0 6 43 0.45 0 1 0.45 0.913

Tool 5 166 6 0 37 0.374 0.083 0.965 0.374 0.885

Tool 11 60 0 6 37 0.286 0 1 0.286 0.764

Tool 14 66 0 6 42 0.246 0 1 0.246 0.759

Tool 13 50 0 6 43 0.253 0 1 0.253 0.699

Tool 9 14 0 6 79 0.034 0 1 0.034 0.262

Tool 2 7 0 6 90 0.011 0 1 0.011 0.135

Tool 7 4 0 6 89 0.045 0 1 0.045 0.082

Tool 10 3 0 6 90 0.024 0 1 0.024 0.062

Tool 3 1 0 6 92 0.002 0 1 0.002 0.021

Tool 16 1 0 6 92 0.002 0 1 0.002 0.021

Tool 6 0 0 6 93 0 0 0 0 0

70

Table 5.21: Metrics reported by the tools on Application 2
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 14 7 0 1 8 0.083 0 1 0.083 0.636

Tool 13 3 0 1 11 0.083 0 1 0.083 0.353

Tool 1 1 0 0 5 0.042 0 1 0.042 0.286

Tool 10 2 0 1 12 0.083 0 1 0.083 0.25

Tool 11 2 0 1 12 0.042 0 1 0.042 0.25

Tool 5 2 1 0 12 0.062 0.083 0.667 0.062 0.235

Tool 3 1 0 1 13 0.042 0 1 0.042 0.133

Tool 2 0 0 1 14 0 0 0 0 0

Tool 4 0 0 1 14 0 0 0 0 0

Tool 6 0 0 1 14 0 0 0 0 0

Tool 7 0 0 1 14 0 0 0 0 0

Tool 8 0 0 0 6 0 0 0 0 0

Tool 9 0 0 1 14 0 0 0 0 0

Tool 12 0 0 0 6 0 0 0 0 0

Tool 15 0 0 0 6 0 0 0 0 0

Tool 16 0 0 1 14 0 0 0 0 0

Table 5.22: Metrics reported by the tools on Application 3
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 11 39 0 21 17 0.203 0 1 0.203 0.821

Tool 14 35 0 21 22 0.162 0 1 0.162 0.761

Tool 5 35 5 16 19 0.217 0.049 0.875 0.217 0.745

Tool 13 25 0 21 23 0.131 0 1 0.131 0.685

Tool 4 28 0 21 28 0.147 0 1 0.147 0.667

Tool 10 9 4 17 42 0.093 0.042 0.692 0.093 0.281

Tool 9 3 10 11 45 0.027 0.076 0.231 0.027 0.098

Tool 7 1 5 16 47 0.012 0.083 0.167 0.012 0.037

Tool 16 1 5 19 47 0.012 0.072 0.167 0.012 0.037

Tool 2 0 0 21 48 0 0 0 0 0

Tool 3 0 0 21 48 0 0 0 0 0

Tool 6 0 0 21 48 0 0 0 0 0

71

Table 5.23: Metrics reported by the tools on Application 4
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 11 3 0 93 9 0.042 0 1 0.042 0.4

Tool 14 3 0 93 9 0.042 0 1 0.042 0.4

Tool 1 1 0 20 3 0.021 0 1 0.021 0.4

Tool 5 2 4 89 10 0.028 0.068 0.333 0.028 0.222

Tool 16 1 0 93 11 0.014 0 1 0.014 0.154

Tool 15 1 11 9 3 0.021 0.083 0.083 0.021 0.125

Tool 9 2 29 64 10 0.028 0.043 0.065 0.028 0.093

Tool 2 0 1 92 12 0 0.001 0 0 0

Tool 3 0 0 93 12 0 0 0 0 0

Tool 4 0 0 93 12 0 0 0 0 0

Tool 6 0 2 91 12 0 0.003 0 0 0

Tool 7 0 0 93 12 0 0 0 0 0

Tool 8 0 0 20 4 0 0 0 0 0

Tool 10 0 52 45 12 0 0.22 0 0 0

Tool 12 0 5 18 4 0 0.111 0 0 0

Tool 13 0 0 93 12 0 0 0 0 0

Table 5.24: Metrics reported by the tools on Application 5
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 11 146 2 118 57 0.419 0.084 0.986 0.419 0.832

Tool 16 54 0 115 123 0.152 0 1 0.152 0.468

Tool 14 45 0 120 121 0.306 0 1 0.306 0.427

Tool 7 50 28 91 125 0.131 0.02 0.641 0.131 0.395

Tool 13 30 0 120 135 0.24 0 1 0.24 0.308

Tool 10 16 1 119 149 0.162 0.083 0.941 0.162 0.176

Tool 9 16 18 102 150 0.018 0.013 0.471 0.018 0.16

Tool 4 10 0 120 155 0.012 0 1 0.012 0.114

Tool 5 6 70 50 159 0.007 0.132 0.079 0.007 0.05

Tool 6 2 1 119 163 0.002 0.001 0.667 0.002 0.024

Tool 3 1 0 120 164 0.017 0 1 0.017 0.012

Tool 2 0 1 119 165 0 0.001 0 0 0

72

Table 5.25: Metrics reported by the tools on Application 6
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 13 83 0 84 55 0.378 0 1 0.378 0.751

Tool 11 75 0 84 63 0.261 0 1 0.261 0.704

Tool 14 72 0 84 89 0.515 0 1 0.515 0.618

Tool 5 15 56 28 123 0.052 0.1 0.211 0.052 0.144

Tool 1 4 50 16 63 0.088 0.083 0.074 0.088 0.066

Tool 3 4 0 84 134 0.044 0 1 0.044 0.056

Tool 4 4 0 84 134 0.027 0 1 0.027 0.056

Tool 12 2 1 65 66 0.003 0.007 0.667 0.003 0.056

Tool 6 2 1 83 136 0.002 0.003 0.667 0.002 0.028

Tool 9 2 16 68 136 0.002 0.044 0.111 0.002 0.026

Tool 10 2 50 35 136 0.042 0.25 0.038 0.042 0.021

Tool 2 0 0 84 138 0 0 0 0 0

Tool 7 0 0 84 138 0 0 0 0 0

Tool 8 0 0 66 67 0 0 0 0 0

Tool 15 0 56 10 67 0 0.125 0 0 0

Tool 16 0 0 84 138 0 0 0 0 0

Table 5.26: Metrics reported by the tools on Application 7
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 11 19 0 46 34 0.035 0 1 0.035 0.528

Tool 7 9 0 47 43 0.017 0 1 0.017 0.295

Tool 13 9 0 47 44 0.017 0 1 0.017 0.29

Tool 2 6 7 41 44 0.052 0.015 0.462 0.052 0.19

Tool 9 7 15 32 45 0.083 0.1 0.318 0.083 0.189

Tool 14 5 0 47 47 0.009 0 1 0.009 0.175

Tool 5 7 26 21 45 0.013 0.137 0.212 0.013 0.165

Tool 4 2 0 47 50 0.004 0 1 0.004 0.074

Tool 16 2 0 46 50 0.004 0 1 0.004 0.074

Tool 10 2 2 45 50 0.085 0.085 0.5 0.085 0.071

Tool 3 0 0 47 52 0 0 0 0 0

Tool 6 0 1 46 52 0 0.002 0 0 0

73

Table 5.27: Metrics reported by the tools on Application 8
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 5 231 6 0 52 0.49 0.083 0.975 0.49 0.888

Tool 11 135 0 4 35 0.47 0 1 0.47 0.885

Tool 14 144 0 4 42 0.488 0 1 0.488 0.873

Tool 4 158 0 4 86 0.355 0 1 0.355 0.786

Tool 13 101 0 4 63 0.364 0 1 0.364 0.762

Tool 1 1 0 2 9 0.008 0 1 0.008 0.182

Tool 3 1 0 4 163 0.001 0 1 0.001 0.012

Tool 10 1 0 3 163 0.001 0 1 0.001 0.012

Tool 2 0 0 4 164 0 0 0 0 0

Tool 6 0 0 4 164 0 0 0 0 0

Tool 7 0 0 4 164 0 0 0 0 0

Tool 8 0 0 2 10 0 0 0 0 0

Tool 9 0 0 4 164 0 0 0 0 0

Tool 12 0 0 2 10 0 0 0 0 0

Tool 15 0 0 2 10 0 0 0 0 0

Tool 16 0 0 4 164 0 0 0 0 0

Table 5.28: Metrics reported by the tools on Application 9
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 5 230 10 14 72 0.392 0.117 0.958 0.392 0.849

Tool 4 215 0 25 108 0.43 0 1 0.43 0.799

Tool 11 153 2 23 104 0.343 0.007 0.987 0.343 0.743

Tool 13 111 0 25 90 0.404 0 1 0.404 0.712

Tool 14 99 0 25 116 0.268 0 1 0.268 0.631

Tool 16 7 2 23 193 0.027 0.007 0.778 0.027 0.067

Tool 2 5 4 22 196 0.003 0.014 0.556 0.003 0.048

Tool 9 4 11 14 197 0.004 0.12 0.267 0.004 0.037

Tool 7 3 3 22 197 0.035 0.011 0.5 0.035 0.029

Tool 10 2 6 19 198 0.015 0.101 0.25 0.015 0.019

Tool 3 0 0 25 201 0 0 0 0 0

Tool 6 0 4 21 201 0 0.014 0 0 0

74

Table 5.29: Metrics reported by the tools on Application 10
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 11 68 0 41 41 0.364 0 1 0.364 0.768

Tool 14 57 0 41 58 0.225 0 1 0.225 0.663

Tool 13 52 0 41 57 0.312 0 1 0.312 0.646

Tool 5 31 11 30 78 0.163 0.045 0.738 0.163 0.411

Tool 9 10 0 41 100 0.013 0 1 0.013 0.167

Tool 10 7 26 15 102 0.034 0.105 0.212 0.034 0.099

Tool 4 3 0 41 106 0.007 0 1 0.007 0.054

Tool 1 1 8 26 60 0.002 0.033 0.111 0.002 0.029

Tool 15 1 12 22 60 0.002 0.05 0.077 0.002 0.027

Tool 2 1 0 41 108 0.001 0 1 0.001 0.018

Tool 3 0 0 41 109 0 0 0 0 0

Tool 6 0 0 41 109 0 0 0 0 0

Tool 7 0 0 41 109 0 0 0 0 0

Tool 8 0 0 34 61 0 0 0 0 0

Tool 12 0 0 34 61 0 0 0 0 0

Tool 16 0 0 41 109 0 0 0 0 0

Table 5.30: Metrics reported by the tools on Application 11
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 11 105 0 11 49 0.386 0 1 0.386 0.811

Tool 14 108 0 11 55 0.343 0 1 0.343 0.797

Tool 5 141 11 5 73 0.345 0.146 0.928 0.345 0.77

Tool 4 89 0 11 94 0.24 0 1 0.24 0.654

Tool 13 65 0 11 80 0.307 0 1 0.307 0.619

Tool 7 23 3 8 128 0.018 0.083 0.885 0.018 0.26

Tool 16 17 3 8 128 0.014 0.083 0.85 0.014 0.206

Tool 2 9 0 11 138 0.007 0 1 0.007 0.115

Tool 10 5 7 4 140 0.02 0.139 0.417 0.02 0.064

Tool 9 1 2 9 144 0.001 0.056 0.333 0.001 0.014

Tool 3 0 0 11 145 0 0 0 0 0

Tool 6 0 0 11 145 0 0 0 0 0

75

Table 5.31: Metrics reported by the tools on Application 12
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 9 15 0 4 13 0.1 0 1 0.1 0.698

Tool 5 9 4 1 8 0.05 0.139 0.692 0.05 0.6

Tool 1 1 0 1 2 0.028 0 1 0.028 0.5

Tool 4 2 0 4 15 0.011 0 1 0.011 0.211

Tool 7 1 0 4 16 0.006 0 1 0.006 0.111

Tool 11 1 0 4 16 0.006 0 1 0.006 0.111

Tool 13 1 0 4 16 0.006 0 1 0.006 0.111

Tool 6 1 1 3 16 0.006 0.028 0.5 0.006 0.105

Tool 10 1 1 3 16 0.083 0.028 0.5 0.083 0.105

Tool 2 0 0 4 17 0 0 0 0 0

Tool 3 0 0 4 17 0 0 0 0 0

Tool 8 0 0 1 3 0 0 0 0 0

Tool 12 0 0 1 3 0 0 0 0 0

Tool 14 0 0 4 17 0 0 0 0 0

Tool 15 0 0 1 3 0 0 0 0 0

Tool 16 0 0 4 17 0 0 0 0 0

Table 5.32: Metrics reported by the tools on Application 13
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 5 305 24 28 107 0.571 0.13 0.927 0.571 0.823

Tool 4 220 0 45 162 0.462 0 1 0.462 0.731

Tool 11 161 0 45 128 0.385 0 1 0.385 0.716

Tool 14 163 0 45 141 0.472 0 1 0.472 0.698

Tool 13 134 0 45 140 0.519 0 1 0.519 0.657

Tool 7 20 0 45 254 0.012 0 1 0.012 0.136

Tool 9 21 97 14 263 0.013 0.145 0.178 0.013 0.104

Tool 16 6 1 44 268 0.005 0.004 0.857 0.005 0.043

Tool 10 5 5 40 270 0.029 0.032 0.5 0.029 0.035

Tool 2 3 0 45 271 0.001 0 1 0.001 0.022

Tool 3 2 0 45 272 0.001 0 1 0.001 0.014

Tool 6 0 2 43 274 0 0.009 0 0 0

76

Table 5.33: Metrics reported by the tools on Application 14
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 4 22 0 27 44 0.046 0 1 0.046 0.5

Tool 5 16 3 25 52 0.105 0.083 0.842 0.105 0.368

Tool 10 9 4 23 57 0.038 0.092 0.692 0.038 0.228

Tool 1 1 0 1 8 0.017 0 1 0.017 0.2

Tool 9 9 20 7 57 0.051 0.083 0.31 0.051 0.189

Tool 14 3 0 27 63 0.005 0 1 0.005 0.087

Tool 7 3 2 25 64 0.017 0.033 0.6 0.017 0.083

Tool 2 2 0 27 64 0.003 0 1 0.003 0.059

Tool 16 1 0 27 65 0.014 0 1 0.014 0.03

Tool 11 1 0 27 65 0.002 0 1 0.002 0.03

Tool 13 1 0 27 65 0.002 0 1 0.002 0.03

Tool 3 0 0 27 66 0 0 0 0 0

Tool 6 0 0 27 66 0 0 0 0 0

Tool 8 0 0 1 9 0 0 0 0 0

Tool 12 0 0 1 9 0 0 0 0 0

Tool 15 0 0 1 9 0 0 0 0 0

Table 5.34: Metrics reported by the tools on Application 15
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 4 320 0 12 113 0.45 0 1 0.45 0.85

Tool 5 249 13 5 107 0.616 0.097 0.95 0.616 0.806

Tool 13 114 0 12 139 0.484 0 1 0.484 0.621

Tool 11 87 3 9 175 0.284 0.042 0.967 0.284 0.494

Tool 14 90 0 12 185 0.333 0 1 0.333 0.493

Tool 7 19 0 12 234 0.009 0 1 0.009 0.14

Tool 16 6 2 10 247 0.003 0.028 0.75 0.003 0.046

Tool 2 3 0 12 251 0.001 0 1 0.001 0.023

Tool 3 2 0 12 251 0.001 0 1 0.001 0.016

Tool 9 2 0 12 251 0.001 0 1 0.001 0.016

Tool 10 1 0 12 252 0 0 1 0 0.008

Tool 6 0 0 12 253 0 0 0 0 0

77

Table 5.35: Metrics reported by the tools on Application 16
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 5 3 0 0 4 0.05 0 1 0.05 0.6

Tool 1 1 0 0 2 0.042 0 1 0.042 0.5

Tool 4 2 0 0 5 0.1 0 1 0.1 0.444

Tool 10 1 0 0 6 0.083 0 1 0.083 0.25

Tool 3 1 0 0 6 0.017 0 1 0.017 0.25

Tool 11 1 0 0 6 0.017 0 1 0.017 0.25

Tool 2 0 0 0 7 0 0 0 0 0

Tool 6 0 0 0 7 0 0 0 0 0

Tool 7 0 0 0 7 0 0 0 0 0

Tool 8 0 0 0 3 0 0 0 0 0

Tool 9 0 0 0 7 0 0 0 0 0

Tool 12 0 0 0 3 0 0 0 0 0

Tool 13 0 0 0 7 0 0 0 0 0

Tool 14 0 0 0 7 0 0 0 0 0

Tool 15 0 0 0 3 0 0 0 0 0

Tool 16 0 0 0 7 0 0 0 0 0

After analyzing the various metrics for each application, the following
table collects the metrics for all target applications by calculating a cu-
mulative score for each tool. This was achieved by calculating the various
parameters on all the various applications. This table also shows a ranking
of the various tools considered.

78

Table 5.36: Metrics reported by the tools on all applications
Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 11 1056 7 533 848 0.555 0.013 1 0.555 0.712

Tool 5 1448 250 312 958 0.602 0.445 1 0.602 0.706

Tool 4 1300 0 541 1169 0.527 0 1 0.527 0.69

Tool 14 897 0 541 1022 0.467 0 1 0.467 0.637

Tool 13 779 0 541 980 0.443 0 1 0.443 0.614

Tool 7 133 41 499 1641 0.075 0.076 1 0.075 0.137

Tool 16 96 13 525 1673 0.054 0.024 1 0.054 0.102

Tool 9 106 218 389 1675 0.06 0.359 0 0.06 0.101

Tool 10 66 158 387 1695 0.037 0.29 0 0.037 0.066

Tool 2 36 13 530 1727 0.02 0.024 1 0.02 0.04

Tool 1 11 58 196 516 0.021 0.228 0 0.021 0.037

Tool 3 13 0 541 1745 0.007 0 1 0.007 0.015

Tool 12 2 6 251 526 0.004 0.023 0 0.004 0.007

Tool 15 2 79 175 525 0.004 0.311 0 0.004 0.007

Tool 6 5 12 529 1753 0.003 0.022 0 0.003 0.006

Tool 8 0 0 254 527 0 0 0 0 0

It is important to analyze the performance of the tools on python and
javascript separately. For this purpose, the following tables are used which
show the rankings of the various tools based on the language used.

Table 5.37: Metrics reported by the tools on all applications considering
only Python Language

Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 11 102 0 124 62 0.622 0 1 0.622 0.767

Tool 13 80 0 124 83 0.491 0 1 0.491 0.658

Tool 5 51 68 56 112 0.313 0.548 0 0.313 0.362

Tool 14 23 0 124 140 0.141 0 1 0.141 0.247

Tool 9 14 0 124 150 0.085 0 1 0.085 0.157

Tool 1 11 58 66 152 0.067 0.468 0 0.067 0.095

Tool 10 11 75 49 152 0.067 0.605 0 0.067 0.088

Tool 3 7 0 124 156 0.043 0 1 0.043 0.082

Tool 12 2 6 121 162 0.012 0.047 0 0.012 0.023

Tool 15 2 79 45 161 0.012 0.637 0 0.012 0.016

Tool 2 1 0 124 162 0.006 0 1 0.006 0.012

Tool 4 0 0 124 163 0 0 0 0 0

Tool 7 0 0 124 163 0 0 0 0 0

Tool 8 0 0 124 163 0 0 0 0 0

79

Table 5.38: Metrics reported by the tools on all applications considering
only Javascript language

Tool TP FP TN FN TPR FPR Precision Recall F-Measure

Tool 5 1397 182 256 849 0.622 0.416 1 0.622 0.73

Tool 4 1300 0 430 1030 0.558 0 1 0.558 0.716

Tool 11 954 7 422 810 0.541 0.016 1 0.541 0.7

Tool 14 874 0 430 906 0.491 0 1 0.491 0.659

Tool 13 699 0 430 921 0.431 0 1 0.431 0.603

Tool 7 133 41 388 1502 0.081 0.096 1 0.081 0.147

Tool 16 96 13 414 1534 0.059 0.03 1 0.059 0.11

Tool 9 92 218 278 1549 0.056 0.44 0 0.056 0.094

Tool 10 55 83 352 1567 0.034 0.191 0 0.034 0.062

Tool 2 35 13 419 1589 0.022 0.03 1 0.022 0.042

Tool 3 6 0 430 1613 0.004 0 1 0.004 0.007

Tool 6 4 12 418 1615 0.002 0.028 0 0.002 0.005

We have created two categories for the effectiveness of the technologies
that focus on F-measure and Recall metrics. Recall metrics must be taken
into consideration for web applications as they show a SAST tool’s ability
to find more vulnerabilities. This metric makes it possible to identify instru-
ments that have the best TP ratio. However, we have chosen to utilise the
F-measure statistic for web apps because it is the best effort and indicates
that the goal is to find the truest positives while producing the fewest false
positives. The results of ranking tools using the BAS metric are similar to
ranking using the F-measure and recall. Higher BAS-scoring tools also have
a higher F-measure and recall. Commercial SAST tools for Web Applica-
tions need to be assessed. By comparing and ranking the outcomes of the
Web application SAST tools’ execution using a new repeatable technique,
the benchmark properties claim that the cost of the benchmark installation
is justified. The benchmark is easily portable and produces comparable re-
sults when used with the same tool multiple times. Based on the OWASP
Top Ten project, this benchmark illustrates the current state of security
flaws for web applications and is based on genuine code with a variety of
source entries and levels of complexity. Additionally, it enables you to scale
them by increasing the variety of vulnerability categories and types. Finally,
the benchmark may be quickly conducted with the SAST tools.

80

Chapter 6

Conclusions and Future
Works

This thesis presented a study on SAST tools for analysing various Javascript
and Python web applications. 16 SAST tools that were used to attack 16
distinct targets were the subject of this investigation. We evaluated the
behaviour and efficiency of each tool by focusing on its capacity to iden-
tify vulnerabilities in the testing environment as we do not have access to
the internals of all tools. First, we have offered some fundamental ideas
that are required to comprehend this argument. For instance, the usage of
a benchmark and the security of web technologies and why we examined
these apps with the SAST tools. Static analysis is another idea that is
presented, along with its use. Following this background, we talked about
the valuation approach, which is based on the OWASP benchmarking. We
specifically discussed how the benchmark suggested by OWASP operates
and its features. We then talked about the factors we took into account
while selecting the evaluation strategy to evaluate web applications. Then,
we defined the applications selected for testing and data gathering regarding
the tools. Because we had to choose between web apps that were entirely
written in Javascript and those that were developed in Python on the server
side and Javascript on the client side, the choice of targets was really impor-
tant. After the choice of applications, we presented the tools that were used
to carry out the analysis and metrics on the applications. The analysis of
the results, which concludes the thesis, is both its most significant and cen-
tral component. In this, initially, we presented the general methodology for
tool-based application analysis. The approach for classifying vulnerabilities
comes next. The experiment is then described, followed by the presentation
of the results along with some interpretations of them. This study pointed
out the significant performance differences between various scanners and the
apps used. While some tools were not able to identify almost any vulnera-
bility, others were able to identify a significant number of vulnerabilities in

82

each target web application. None tools identified all vulnerabilities because
every tool works on a different level. Then, using particular measures, we
compared the security scanners’ tools (F-Measure and recall). The tools
with high scores based on these two parameters have a large collection of
web app vulnerabilities. Despite these facts, there are some advantages to
the problems we looked at. It is in the interest of programming language
maintainers to offer security solutions to businesses and end users generally
as awareness of information security issues is always developing in both the
software engineering community and industry management. The OWASP
Top 10 Web Application Security Risks project has been revised for 2021 by
OWASP. Such guidelines must be given properly and should not be under-
valued, as developer community education is essential for the security and
calibre of software. Software protection, like most other aspects of informa-
tion security, is always improving as new methods for identifying and fixing
vulnerabilities are developed. Automated and semi-automated procedures
are already crucial in software validation for security as software codebases
grow bigger and more complex every day. The pattern of these method-
ologies’ growing significance provides clear guidance for research, which will
continue to move from human to automated analysis. We frequently em-
ployed open-source software as well as freely available tools in our effort to
choose tools that are indicative of what the market has to offer. There are
also commercial tools used but are free for free open-source projects. Static
analysis-based methods have a drawback when a vulnerability occurs during
runtime. When an attacker, for instance, employs reflection or can dynam-
ically load classes at runtime, static analysis may not be able to identify
some attack vectors. However, this is more typically a limitation of static
analysis. Some suggestions for potential extensions of the work arose while
the thesis was developed. We report the following:

❼ Fixing the problems identified in the reports and rerunning all of the
analyses to see how the metrics have changed.

❼ An addition to this work could be to repeat the same experiment but
with different tools (including commercial tools).

❼ An addition to this work could be to repeat the same experiment but
with a different programming language (e.g., PHP or C#).

❼ An addition to this work is to use an approach to design benchmarks
for evaluating such SAST considering different levels of criticality.

83

Bibliography

[1] As a service — SonarCloud — sonarsource.com. https://www.

sonarsource.com/products/sonarcloud/.

[2] bandit: Bandit is a tool designed to find common security issues in
Python code. — github.com. https://github.com/PyCQA/bandit.

[3] cinema-plus: Online movie ticket booking web app— github.com.
https://github.com/georgesimos/cinema-plus.

[4] The ”cloud” at home — github.com. https://github.com/

antoniosarosi/home-cloud.

[5] Coverity Scan - Static Analysis — scan.coverity.com. https://scan.

coverity.com/.

[6] DeepSource — The Modern Static Analysis Platform — deepsource.io.
https://deepsource.io/.

[7] events-manager-io: A basic site for managing event centers and
scheduling events. — github.com. https://github.com/appcypher/

events-manager-io.

[8] excel-to-json: Excel to json online converter — github.com. https:

//github.com/filipefilardi/excel-to-json.

[9] Free for open source application security tools — owasp foundation
— owasp.org. https://owasp.org/www-community/Free_for_Open_

Source_Application_Security_Tools.

[10] GitHub - insidersec/insider: Static Application Security Testing
(SAST) — github.com. https://github.com/insidersec/insider.

[11] Google Code Archive - Long-term storage for Google Code Project
Hosting. — code.google.com. https://code.google.com/archive/p/
rough-auditing-tool-for-security/.

[12] hack-chat: a minimal, distraction-free chat application — github.com.
https://github.com/hack-chat/main.

85

[13] hellobooks: A single-page library management app — github.com.
https://github.com/segunolalive/helloBooks.

[14] Horusec home — horusec.io. https://horusec.io/site/.

[15] Introduction — Fluid Attacks Documentation — docs.fluidattacks.com.
https://docs.fluidattacks.com/machine/scanner.

[16] kiptab: Kiptab helps you and your friends keep track of expenses during
vacations and other social settings by balancing debts automatically. —
github.com. https://github.com/bnan/kiptab.

[17] Kompar — catalog.kompar.tools. https://catalog.kompar.tools/

analyzers.

[18] LGTM - Code Analysis Platform to Find and Prevent Vulnerabilities
— lgtm.com. https://lgtm.com/.

[19] Mend Free Tools For Developers — mend.io. https://www.mend.io/
free-developer-tools/.

[20] mucrypt messenger: A secure and simple end-to-end encrypted chat —
github.com. https://github.com/connor-brooks/muCrypt.

[21] N. n. i. of standards and technology. national vulnerability database
nvd, 2022. https://nvd.nist.gov/.

[22] Nano-speedtest: Webapp to test speed of nano transactions —
github.com. https://github.com/silverstar194/Nano-SpeedTest.

[23] onmyway: Web and mobile application that algorithmically generates
a tourism route for a given city and interests. — github.com. https:

//github.com/bnan/onmyway.

[24] Overview — Pyre — pyre-check.org. https://pyre-check.org/docs/
pysa-basics/.

[25] Owasp foundation. https://owasp.org/.

[26] Owasp foundation benchmark. https://owasp.org/

www-project-benchmark/.

[27] Precision and recall - Wikipedia — en.wikipedia.org. https://en.

wikipedia.org/wiki/Precision_and_recall.

[28] Reactsocial: Social media — github.com. https://github.com/

FLiotta/ReactSocial.

[29] Reshift Security — A Source Code Security Tool for modern developers
— reshiftsecurity.com. https://www.reshiftsecurity.com/.

86

[30] Semgrep — semgrep.dev. https://semgrep.dev/.

[31] Slack-clone: Full-stack live chat application that recreate slack’s main
features — github.com. https://github.com/yuchiu/Slack-Clone.

[32] Snyk — Developer security — Develop fast. Stay secure. — snyk.io.
https://snyk.io/.

[33] Source code analysis tools — owasp foundation — owasp.org. https:

//owasp.org/www-community/Source_Code_Analysis_Tools.

[34] Stackoverflow-clone-backend: Backend code of the stackoverflow
clone project. — github.com. https://github.com/Mayank0255/

Stackoverflow-Clone-Backend.

[35] Stackoverflow-clone-frontend: Clone project of a famous Q/A
website — github.com. https://github.com/Mayank0255/

Stackoverflow-Clone-Frontend.

[36] Storekeeper: Multilingual warehouse/store management software —
github.com. https://github.com/andras-tim/StoreKeeper.

[37] video-labeling-tool: A web-based tool for labeling video clips (both
front-end and back-end). — github.com. https://github.com/

CMU-CREATE-Lab/video-labeling-tool.

[38] websocket-chat: A proof-of-concept chat server/client in websockets —
github.com. https://github.com/sjkingo/websocket-chat.

[39] Your Partner in Open Source — Debricked — debricked.com. https:
//debricked.com/.

[40] Brian Chess and Jacob West. Secure programming with static analysis.
Pearson Education, 2007.

[41] Juan R Bermejo Higuera, Javier Bermejo Higuera, Juan A Sicilia Mon-
talvo, Javier Cubo Villalba, and Juan José Nombela Pérez. Benchmark-
ing approach to compare web applications static analysis tools detect-
ing owasp top ten security vulnerabilities. Comput. Mater. Continua,
64(3):1555–1577, 2020.

[42] Paulo Nunes, Ibéria Medeiros, José C Fonseca, Nuno Neves, Miguel
Correia, and Marco Vieira. Benchmarking static analysis tools for web
security. IEEE Transactions on Reliability, 67(3):1159–1175, 2018.

[43] Team Scan. Scan docs — slscan.io. https://slscan.io/en/latest/.

87

Acknowledgements

This thesis would not have been possible without the support of many peo-
ple who have contributed, with their support, to its realization.

A special thanks go to my supervisor Prof. Riccardo Sisto who followed me,
with his infinite availability, in every step of the creation of the paper, right
from the choice of the topic.

I am infinitely grateful to my parents who have always supported me, sup-
porting my every decision, right from the choice of my course of study.

A big thank you with affection to my sister Lina and my brother Fernando
who supported me at all times during my university career.

A heartfelt thanks to my colleague and roommate Filippo, with whom I
shared my entire university career. It is thanks to him that I have overcome
the most difficult moments. Without his advice, I would never have made
it.

To my friends, my university mates and all those who have crossed their
life with mine leaving me something good. Thank you for being my accom-
plices, each in his way, in this intense and exciting journey, for better or
for worse. There are so many memories that go through my head that it is
impossible to find the right words to honour them. Thank you for making
my achievement truly special!

Finally, I dedicate this thesis to myself, to my sacrifices and the tenacity
that allowed me to get here.

89

