\\
\\ 1859 s

\\.\ %d‘

POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Secure Boot and Monitoring for
Embedded System

Supervisor
prof. Antonio Lioy

Damiano ZAPPULLA

ACADEMIC YEAR 2021-2022

To my grandparents, who
watch over me

Summary

Remote attestation is the activity of making a claim about properties of a target by
supplying evidence to an appraiser over a network [1]. Thanks to Linux Integrity Mea-
surement Architecture (IMA) it is possible to maintain the chain of trust measurement
up to the application layer. The goals of the kernel integrity subsystem are to detect if
files have been accidentally or maliciously altered, both remotely and locally, appraise
a file’s measurement against a “good” value stored as an extended attribute, and en-
force local file integrity [2]. This thesis firstly describes history, architecture, version and
capabilities of Trusted Platform Module (TPM), crucial component to perform remote
attestation and, inside the second part, Keylime, an open-source tool for bootstrapping
and maintaining trust in the cloud, is presented and evaluated. The practical part of this
paper covers the installation, configuration and evaluation of TPM tools and Keylime,
the activation and testing of Linux IMA with Keylime itself.

Acknowledgements

I would like to express my gratitude to Professor Antonio Lioy for offering an interesting
topic. I would also manifest my gratitude to my family and my friends for their support
during my entire studies.

Contents

1 Introduction

1.1 Motivation

1.2 Objectives o

1.3 Structure e

Background and Technologies

2.1 History of the TPM
2.2 TPM: Trusted Platform Module

221
2.2.2
2.2.3

Architecture
TPM Versions v o e e
TPM Implementation

2.3 Remote Attestation. e

2.3.1
2.3.2
2.3.3
2.34

Roots of Trust
Trusted Platform Boot
TPM Identity o o
Attestation Hierarchy

2.4 TPM Software Stack (TSS)

Linux IMA

3.1 Measuring Systemso

4 Keylime

4.1 Threat Model e

4.2 Architecture

4.2.1
4.2.2
4.2.3
4.2.4

Registrar e
Cloud Verifier
Cloud Agent e

Tenant e

4.3 Framework

© oo oo

10
10
11
12
15
19
20
20
21
23
24
24

27
27

4.3.1 Physical Node Registration Protocol
4.3.2 Three Party Bootstrap Key Derivation Protocol
4.4 Deployment e e
4.4.1 Verifier Machine o
4.4.2 Keylime Agent
4.4.3 Keylime Webapp oo
5 Testing
5.1 Testbed
5.1.1 Attester Machine Lo
5.2 Keylime Performance 0
5.2.1 Preliminary Operations
5.2.2 Verification Protocol oo
5.3 Functional tests

6 Conclusion

Bibliography

40
40
40
46
46
46
47

51

53

Chapter 1

Introduction

1.1 Motivation

With the spread of Internet infrastructure, the lack of a trustworthy infrastructure has
been an important obstacle for the development of modern platform. The increase in
software complexity inevitably leads to an increase in vulnerabilities within the code. In
this context, the construction of a platform whose status can be monitored becomes of
fundamental importance. Following the guidelines proposed by the Trusted Computing
Group (TCQG) is critical to achieving this goal.

Trusted computing architecture depends on Trust Platform Module (TPM). TPM is
the base of the trust chain and the trusted root throughout the trusted boot process,
which records and transfers trusted states in end system [3].

Nowadays, just running the trusted boot process is not enough, it is necessary to
extend the verification to the application level as well. This objective is fulfilled by the
Linux Integrity Measurement Architecture (IMA), that was introduced in Linux 2.6.30,
as part of an overall Linux Integrity Subsystem. With IMA is possible to maintain
the chain of trust measurements up to the application layer [2]. Obviously, extending
the verification process to the application level is not at all simple because, unlike the
bootstrap process, an operating system handles a large variety of executable content
(kernel, kernel modules, binaries. shared libraries, scripts, plugins). With Linux IMA,
all executable content that is loaded onto the Linux system is measured before execution
and these measurements are protected by the Trusted Platform Module (TPM).

1.2 Objectives

The main objective of the thesis is to highlight the need to perform remote attestation
on particularly sensitive machines and to provide a trustworthy and reliable solution to
to perform remote attestation integrity verification with Linux IMA enabled and test it.

This proposed solutions focus on providing remote attestation integrity verification
during runtime. Therefore providing the possibility for the Keylime Verifier to perform
attestation at any time and with a multiple number of times without interrupting the
attested software’s execution. In addition to this the Verifier will be able to manage and
attest an arbitrary number of remote devices at the same time.

8

Introduction

1.3 Structure

This thesis is divided into four chapters:

e Background and Technologies (chapter 2) will introduce all theoretical concepts
necessary for understanding the work done.

e Linux IMA (chapter 3) describes the functionality of the so called kernel module.

e Keylime (chapter 4) introduces the software used to perform the remote attestation
process, describes its architecture, framework and configuration on the platform
used to perform the tests.

e Testing (chapter 5) contains the explanation of the tests carried out to evaluate the
attestation software.

Chapter 2

Background and Technologies

Trusted Computing is a general term describing hardware assisted security technologies
used to secure software. Security technologies are necessary because nowadays systems
have a growing number of components from multiple sources and not all the sources can
be verified or trusted equally.

In general, security of a system depends on a set of hardware and software components
which is called the Trusted Computing Base (TCB) [4]. A vulnerability in some part of
TCB would compromise the security of whole system. On the other hand, misbehaving
hardware or vulnerability in software outside of TCB must not affect the security of the
whole system.

Hardware based solutions to trusted computing vary greatly as they have different ob-
jectives and constraints. A Trusted Platform Module (TPM) is a secure crypto-processor,
which is used as key storage, to authenticate the platform, and to ensure platform in-
tegrity.

2.1 History of the TPM

In 1981 the Department of Defense founded the Computer Security Initiative (CSI) which
released a paper in which are defined Trusted Computing Systems: systems that “employ
sufficient hardware and software integrity measures to allow its use in processing multiple
levels of classified or sensitive information” [5].

In 1985, inside a paper called “Trusted Computer System Evaluation Criteria” [4] we
can find the first definition of the Trusted Computing Base (TCB) of a computer system:
collection of system resources (hardware and software) that is responsible for maintaining
the security policy of the system.

In 1999 the Trusted Computing Platform Alliance (TCPA), a group of various tech-
nology companies including Compaq, Hewlett-Packard, IBM, Intel and Microsoft, was
formed to develop trust and security in the computing platforms. The group’s aim is to
provide the industry with a clear direction that facilitates trust in computing platforms
and environments. TCPA’s original goal is to develop a Trusted Platform Module (TPM),
an hardware module whose aim is to enable trusted computing features [6].

Trusted Computing defines schemes for establishing trust in a platform that are based
on identifying its hardware and software components. The Trusted Platform Module
(TPM) provides methods for collecting and reporting these identities [7].

10

Background and Technologies

In 2002 were published TCPA Main Specification Version 1.1b [8] in which is described
a minimal TPM intended to be physically affixed to the motherboard of a PC, with a
restricted command set which included only the main security functions.

In 2003 the TCPA became the Trusted Computing Group (with fourteen members)
and published in 2004 TPM 1.2 Main Specification with the goal to overcome the problems
of version 1.1b [9]. With TPM specification 1.2 manufacturers such as IBM, HP and
DELL began to integrate this technology in on most x86-based client PC and servers.

Because of the first attack on the SHA-1 digest algorithm, widely used in TPM 1.2,
TCG started to work on a new version of TPM and in 2015 TCG released TPM 2.0
Library Specification [10]. The main feature of TPM 2.0 is algorithms agility: TCG
designers chose to not define any algorithm in the TPM 2.0, but rather to incorporate an
algorithm identifier that allowed to use a wide range of cryptographic algorithms and to
enlarge the set of algorithms over time without the need to change the specification.

2.2 TPM: Trusted Platform Module

A Trusted Platform Module, or TPM, is a passive (needs to be driven by the CPU) secure
crypto-processor that is designed to carry out cryptographic operations. A TPM must
be tamper-resistant (not tamper-proof) and be certified Common Criteria EAL4+ [11].
A TPM is a physical or embedded security technology (microcontroller) that resides on a
computer’s motherboard or in its processor. The TPM enables a series of cryptographic
functionalities like:

e Keys management

e Hash computation

e Encryption/decryption functionalities
e Sign/verify functionalities

e Hardware number generator

¢ Binding operation: TPM offers protection of the message by means of asymmetric
cryptography using encryption keys generated and maintained by the TPM. Thus,
a message encrypted using a particular TPM’s public key is decryptable only by
using the private key of the same TPM.

e Sealing operation: Similar to binding, but in addition, the encrypted messages
produced through binding are only decryptable in a certain platform state (defined
through PCR values) to which the message is sealed. This ensures that an encrypted
message can only be decrypted by a platform which is in a certain prescribed state.

The TPM was designed by the Trusted Computing Group and standardized by the
International Organization for Standardization (ISO) and International Electrotechnical
Commission (IEC) in 2009 as ISO/IEC 11889. TPM specification [12] was aimed at
addressing the following major issues in the industry:

e Identification of devices: Without TPM devices were identified through MAC ad-
dresses or IP addresses. TPM characteristics, like the Endorsement Key, allow a
device to be uniquely identified.

11

Background and Technologies

e Secure generation of keys: TPM keys generation relies on an hardware random
number generator.

e Secure storage of keys: Keeping good keys secure, particularly from software at-
tacks, is a big advantage that the TPM design brings to a device.

e Device health attestation: TPM is the best way to ensure system attestation and

integrity.

2.2.1 Architecture

Functionalities of TPM may be understood better analyzing TPM architecture. The
main components [10] of the hardware TPM chip and description of each components are
shown in the below figure 2.1.

TPM 1.2 architecture TPM 2.0 architecture
I/O I/0
Communication Bus Data com;rtlrl:nication
Cryptographic Asymmetric Engine(s) [=—— P
Co- = :
el el _ Key Generation — Key Generation
HMAC Engine |[—— Hash Engine(s) —
Random Number || Random Number
Generator Generator
SHA-1Engine |— Symmetric Engine(s) |=——
—— Power Detection —— Power Detection
Opt-In — Management —
—— Execution Engine —{ Execution Engine
Authorization |[=—— Authorization e
RAM
—— Volatile Memory « PCR Banks
Non-Volatile Memory . .
Non-Volatile . — Keys in use
— Platform Seed 0 Qb
Memory » Endorsement . Fte
Seed]
* Storage Seed
* Monotonic
counters
* Etc.

Figure 2.1. TPM 1.2 and 2.0 architectures [10]

I/0 Block

I/0 Block is a communication bus for managing the data flow and communication between
the components. This is not a general I/O block and it is not accessible by the operating
system. TPM plays the role as a slave device through this interface, which means it can
respond only to the received commands from TPM Device Driver.

12

Background and Technologies

Execution Engine

Execution Engine (usually CPU) is responsible to run commands from I/O and program
code which is in the TPM. The program code that resides on the TPM is the actual root
of trust for integrity measurements.

Power Detection

Power Detection is in charge of handle TPM power states.

Authorization Subsystem

When a TPM 2.0 command tries to access to a shielded location, Authorization Subsys-
tem is in charge of performing authorization checks before allowing the execution of a
command.

Volatile Storage

Volatile Storage is a temporary memory which depends on the power of the device and
will lose its content upon reboot of the TPM. This memory contains data related to
temporary state, authorization sessions and entities such as keys and data objects loaded
in the TPM from external memory and PCR Banks.

Non-volatile Storage

Non-volatile Storage contains Shielded Locations which can be accessed only through
protected capabilities. Having NVRAM provides the following:

Storage for root keys for certificate chains

Storage for an endorsement key (EK)

Storage for the state of the machine

Storage for decryption keys used before the hard disk availability (e.g. key used for
a self-encrypting drive)

Random number generator

Random number generator is a device that generates random numbers from a physical
process, rather than by means of an algorithm. Such devices are often based on micro-
scopic phenomena that generate low-level, statistically random “noise” signals, such as
thermal noise. According to the specification, the TPM can be a good source of unpre-
dictable random numbers even without having to require a genuine source of hardware
entropy.

13

Background and Technologies

Key Generator (KG)

Key Generator is based on TPM’s own Random Number Generator and doesn’t rely
on any external sources of randomness. Therefore, it alleviates the weaknesses of key
security based on software with an insufficient source of entropy or software with weak
random number generators. In TPM 2.0, keys can be generated from a seed, using TPM’s
RNG or imported from another TPM. Generating TPM keys is the most time-consuming
cryptographic calculation in most of the cases.

Asymmetric and Symmetric Engines

Engines used for all the operations that involve asymmetric and symmetric key like sign-
ing, verifying, encrypting and decrypting.

Hash engine

Hash engine performs hashing operations and could be used both directly by the system
and as part of other TPM operations (like as part of the key derivation function)

Primary Seed

A Primary Seed is a large, random value that is persistently stored in a TPM,; it is never
stored off the TPM in any form. Primary Seeds are used in the generation of symmetric
keys, asymmetric keys, other seeds, and proof values [10]. Such keys can be derived from
primary objects, which in turn are created from primary seed by using Key Derivation
Function (KDF). There are three persistent primary seeds for platform, endorsement and
storage hierarchies, as well as, one non-persistent primary seed for the Null hierarchy.
The seeds are embedded inside the TPM during manufacturing [7].

Platform Configuration Registers

TPM is able to report current state of the system; in order to store this integrity met-
rics and for attestation purposes, a TPM contains a special set of registers called PCR
(Platform Configuration Register). Storing a value in a PCR is called an extend opera-
tion, which combines the previous hash value and new measurement with a one-way hash
function.

A TPM contains 24 PCRs, where measurements from different platform components
are stored in distinct registers. The platform can be shown to be in some verified state
by verifying the value of each register.

Only two operations are allowed on PCRs: register extending and register reset.
Reset operation simply set the target PCR register to zero. Extend operation (defined
in Equation 2.1) concatenates the existing PCR value with a new measurement, securely
hashes that value, and stores the resulting hash in the register.

PCRey = HASHalg(PC’Roldeigest) (2.1)

Values of PCR can be described as an unbalanced binary hash tree, where new value
is added as a new root node and left child is the old value and the right child is the input
parameters [13]. Figure 2.2 contains a visualization of PCR values interpreted as binary
hash tree where the hash function is SHA-256.

14

Background and Technologies

PCR value after
third update 768B17H0...
PCR value after J—
second update
PCR value after 2nd stored
first update value

Figure 2.2. PCR interpreted as binary hash tree [14]

3th stored
value

Initial
state

1st stored
value

Endorsement Key (EK)

An Endorsement Key is a special purpose TPM-resident RSA key that is never visible
outside of the TPM. Because the EK can only be used for encryption, possession of the
private EK can only be proved indirectly, by using it to decrypt a value that has been
encrypted with the public EK.

This key is a fundamental component of the TPM and it is derived from the Endorse-
ment seed that is embedded under the Endorsement hierarchy in the tamper resistant
non-volatile memory by TPM manufacturer.

Attestation Identity Key (AIK)

An Attestation Identity Key is a special purpose TPM-resident RSA key that is used to
provide platform authentication based on the attestation capability of the TPM. AIK is
a 2048 bit key size, generated under the Endorsement hierarchy and signed by the EK of
the TPM. The AIK is designed to sign data that is generated exclusively by the TPM.
The main purpose of the TPM is to be used in the attestation of TPM which is a part
of the secure boot process. It can also be used in authentication of a platform that hosts
a TPM to a remote server.

2.2.2 TPM Versions

There are two main versions of TPM specifications: TPM 1.2 Main Specification [9] and
TPM 2.0 Library Specification [10]. TPM 1.2 has a one-size-fits-all specification, while
the 2.0 version has platform-specific specifications that define which parts of the library
are mandatory or optional [15]. The TPM 2.0 implementations enable the same features
as 1.2, plus several more [12]:

e Algorithm agility
e Enhanced authorization

e Quick key loading
15

Background and Technologies

Algorithm type Algorithm name TPM 1.2 TPM 2.0
Asymmetric RSA 1024 Yes Yes
RSA 2048 Yes Yes
ECC P256 No Yes
ECC BN256 No Yes
Symmetric AES 128 Yes Yes
AES 256 No No
Hash SHA-1 Yes Yes
SHA-2 256 No Yes
HMAC SHA-1 Yes Yes
SHA-2 256 No Yes

Figure 2.3. TPM 1.2 - 2.0

e Non-brittle PCRs
e Flexible management

e Identifying resources by name

Algorithms agility

As for algorithms on TPM 1.2, SHA-1 and RSA are required, while the AES is optional.
With TPM 2.0, SHA-1 and SHA-256 are required for hashes. RSA and ECC with Barreto-
Naehrig 256 bit curve and a NIST P-256 curve are used for public-key cryptography
and asymmetric digital signature generation and verification in TPM 2.0 [15]. As for
symmetric digital signature generation, the TPM 2.0 is using the HMAC, and 128 bit
AES for symmetric-key algorithms [16].

TPM 2.0 introduce a feature called Algorithm Agility that allows to implement a set
of algorithms compatible with specific use cases. This feature also makes it much easier
to update supported algorithms without modifying the specification.

Enhanced authorization

Authentication mechanism has been radically changed between the two versions of the
TPM. In TPM 1.2 it was intricate: keys had two authorizations: one for use of the key
and one to make duplicates of the key (called migration in the TPM 1.2 specification).
Additionally, keys could be locked to localities and values stored in PCRs. Similarly,
the NVRAM in TPM 1.2 could be locked to PCRs and particular localities, and to two
different authorizations-one for reading and one for writing [12].

TPM 2.0 authorization mechanism, called Enhanced Authorization uses the following
kinds of authorizations:

e Password (in the clear)

16

Background and Technologies

e HMAC key (also present in TPM 1.2)
e Signature (e.g. smart card)

e Signature with additional data (e.g. fingerprint reader)

EA system can grant authorization in case of verification of the following conditions:

PCR values as a proxy for the state of the system

Locality as a proxy for where a particular command came from
e Time

Internal counter values

Value in an NV index

NV index

Physical presence

Quick key loading

With TPM 1.2, the first loading of a key required a time-consuming private-key decryption
by using another private key, the “parent” key, used to cipher user’s key. In order to speed
up next loading, it was possible to save to cache loaded keys ciphered with a symmetric
algorithm. Once the TPM was turned off, however, the symmetric key was erased, thus
the next loading of the user’s key needed slow asymmetric decryption.

TPM 2.0 specification allows to use of symmetric encryption for directly protecting
user data. There is little reason to cache keys out to disk because loading them is usually
as fast as recovering them from a cached file. Thanks to the speeding up of the loading
of the keys it is possible for multiple users to use a TPM without noticing a long delay.

Non-brittle PCRs

From TPM 1.2 it is possible to perform sealing operation. But if keys or data are locked
to a PCR that represents the BIOS of a system, it’s tricky to upgrade the BIOS: this is
known as PCR fragility.

In the TPM 2.0 specification, you can seal things to a PCR value approved by a
particular signer, for example the OEM of the system software, instead of to a particular
PCR value. It is therefore possible to decrypt a message only if PCRs are in a state
approved (via a digital signature) by a particular authority.

Flexible management

TPM 1.0 allowed only two types of authentications: owner authorization and the storage
root key (SRK) authorization. SRK authorization however was usually the well-known
secret (20 B of 0s) and therefore the owner authorization was used for many purposes,
thus it was very difficult to manage different roles independently.

17

Background and Technologies

TPM 2.0 Hierarchies

Platform Endorsment Storage Null
Hierarchy Hierarchy Hierarchy Hierarchy

Figure 2.4. TPM hierarchies

TPM 1.2 allowed to delegate the owner-authorization role to different entities using the

Delegate commands, but those commands were fairly complicated and used up valuable
NVRAM space [12].

In TPM 2.0, the roles represented by the various uses are separated in the specifi-
cation itself. As shown by figure 2.4, TPM 2.0 has four hierarchies: Platform, Storage,
Endorsement and Null hierarchy. Each of the hierarchies has a primary seed which is
embedded in the TPM by the TPM manufacturer.

e Platform Hierarchy: under the control of platform manufacturer, represented by
the early boot code inserted in the platform by the manufacturer (BIOS).

e Endorsement Hierarchy: under the control of a privacy administrator, who might
be the end user. TPM and administrator certify that primary keys in this hierarchy
are constrained to an authentic TPM attached to an authentic platform [12].

e Storage Hierarchy: Replicates the TPM 1.0 family SRK for the most part

e Null Hierarchy: like other hierarchies, but it cannot be disabled. The seed of null
hierarchy is not persistent and upon each TPM reboot, a new seed with different
value is generated. So new primary objects can be created from this seed, the
authorization is a password of length equal to zero and the policy is empty.

Identifying resources by name

With TPM 1.2, resources were identified by handles instead of by a cryptographically
bound name. Thus with two resources with the same authorization policy, low level
software could be hacked in order to change the handle identifying the resource and to
authorize a different action.

Since TPM 2.0, resources are identified by names cryptographically bound to them.
It is possible to use TPM key to sign the name in order to provide an evidence that the
name is correct [12].

18

Background and Technologies

Trust Element | Security Level Security Features Cost Application
Discrete TPM Highest Tamper Resistant HW | 3 | Critical Systems
Integrated TPM Higher Hardware $$ Gateways
Firmware TPM High Tee $ Entertainment
Software TPM NA NA ¢ Testing

Virtual TPM High Hypervisor ¢ Cloud

Table 2.1. TPM different implementations [17]

2.2.3 TPM Implementation

With TPM 2.0, TCG created a library specification that describes all the command-
s/features that could be implemented and might be needed in platforms from servers to
laptops to embedded systems [6]. Each platform can choose the features needed and the
level of security or assurance required. In this way, TPM 2.0 is much more flexible than
the original TPM specification [17]. Table 2.1 summarizes all implementation of TPM
2.0.

Discrete TPM

Discrete TPM provides the highest level of security, as might be needed for a TPM used
to secure the brake controller in a car. The intent of this level is to ensure that the device
it is protecting does not get hacked via even sophisticated methods. To accomplish this,
a discrete chip is designed, built and evaluated for the highest level of security that
can resist tampering with the chip, including probing it and freezing it with all sorts of
sophisticated attacks.

Integrated TPM

Integrated TPM is an hardware TPM but integrated into a chip that provides functions
other than security. The hardware implementation makes it resistant to software bugs,
however, this level is not designed to be tamper-resistant.

Firmware TPM

TPM implemented in protected software. The code runs on the main CPU, so a separate
chip is not required. While running like any other program, the code is in a protected
execution environment called a trusted execution environment (TEE) that is separated
from the rest of the programs that are running on the CPU. By doing this, secrets like
private keys that might be needed by the TPM but should not be accessed by others can
be kept in the TEE creating a more difficult path for hackers.

19

Background and Technologies

Virtual TPM

Virtual TPM is a software solutions provided by a hypervisor. Since they are executed in
an environment that is hidden from the software running inside, they provide the same
level of security as firmware TPMs.

Software TPM

Software TPM is a TPM implemented as a software emulator. Software TPM is open
to many vulnerabilities, not only tampering but also the bugs in any operating system
running it and should only be used for testing.

2.3 Remote Attestation

A trusted component or a trusted platform is one that behaves as expected. This does
not mean that it is absolutely good or secure, it only means that the component behaves
as programmed. Trust is not the same as good/secure, it regards real behavior against
the expected one. In order to achieve that we perform attestation, a verifiable evidence
of the platform’s state.

2.3.1 Roots of Trust

Root of Trust is defined as a source that can always be trusted within a cryptographic
system because its misbehavior cannot be detected. A TPM can work only if the RoTs
are properly implemented.

A Trusted Platform, according to Trusted Computing Group specifications, must
provide three different RoT:

e Root of Trust for Storage (RTS)
e Root of Trust for Measurement (RTM)

e Root of Trust for Reporting (RTR)

Root of Trust for Storage (RTS)

Root of Trust for Storage is a special portion of memory which is shielded, no other
entities except TPM can modify the value inside it.

Root of Trust for Measurement (RTM)

Root of Trust for Measurement measures and sends integrity measurement to RTS. The
TPM cannot implement the RTM, since it is conceived as a slave device that receives
commands. RTM of a platform is the Core Root of Trust for Measurement (CRTM)
which is executed usually by the CPU.

20

Background and Technologies

Root of Trust for Reporting (RTR)

Root of Trust for Reporting s responsible for reliably reporting values stored in the RT'S.
Typically an RTR report is a digitally signed digest calculated on the values of some
Shielded Locations within a TPM.

Chain of Trust

Integrity should be maintained in any running software on networking device to provide
the security of the system. This can be obtained through Chain of Trust model. Each
step of model since start of the algorithm, check next steps before it executes, and can
process as many steps as required. The first step of the model is executed by Root of
Trust which starts the chain of the continuous checking.

2.3.2 Trusted Platform Boot

Trusted boot is one of the core functions of trusted computing platform. During system
boot process, with the support of a TPM, it is possible to build a trusted running en-
vironment with the verification of the integrity of the whole hardware and software [3].
Trusted boot is based on three key points:

1. The chain of trust must be established sequentially. The executable entity can be
loaded only after its integrity is verified by trusted computing base.

2. All the metrics and calls involved in the process of the establishment of the trust
chain will eventually be completed by TPM.

3. During the establishment of chain of trust, TPM is responsible for ensuring the
integrity and confidentiality of data, thus all important data must be stored and
sealed inside TPM.

Figure 2.5 shows the Linux trusted boot process based on TPM. Trusted Boot can be
divided into two phases:

e Boot of hardware platform: starts from the platform power on to the BIOS initial-
ization and ends after the BIOS passes control rights to the boot loader.

e Startup of operating system: starts with the loading of operating system loader
from the main boot sector, then the loading of the operating system kernel and
ends with the running of the Init process.

The “measure” is a digest calculated with a cryptographic hash function on ehe entity
to evaluate. This digest is stored in a special shielded location of the RT'S in the TPM, the
PCR. In order to simplify the evaluation of the stages of the platform from the boot to the
runtime, a TPM has multiple PCRs, each one dedicated to store different measurements
as Table 2.2 shows.

A TPM may maintain multiple banks of PCR. A PCR bank is a collection of PCR
that are Extended with the same hash algorithm. PCR banks are identified by the
hash algorithm used to Extend the PCR in that bank [7]. Multiple banks may handle
situations where one hash algorithm is required for legacy or compatibility with one set
of applications. Not all banks need to have the same number of PCR.

Trusted boot process based on TPM works as follows:

21

Background and Technologies

PCR Index PCR Usage

0 SRTM, BIOS, Host Platform Extensions, Embedded Option,
ROMSs and PI Drivers

1 Host Platform Configuration

2 UEFI driver and application Code

3 UEFI driver and application Configuration and Data

4 UEFI Boot Manager Code (usually the MBR) and Boot Attempts

. Boot Manager Code Configuration and Data

(for use by the Boot Manager Code) and GPT/Partition Table
6 Host Platform Manufacturer Specific
7 Secure Boot Policy
8-15 Defined for use by the Static OS
16 Debug
23 Application Support

Table 2.2. PCR Usage [12]

. Trusted BIOS loads boot loader and sends it to TPM to be measured and verified.
Once TPM has verified its integrity, the boot program is loaded and the BIOS
passes control rights to the CPU to run the Boot program.

. TPM validates the operating system loader program, such as Grub in Linux. If
the verification is successful, the Grub Stage 1 code is loaded and gains the trusted
boot control.

. The Grub Stage 1 validates Grub Stage 1.5 code with TPM, then loads and runs
the code of the Stage 1.5 phase. At the end of this stage, the file system is mounted.

. The Grub Stage 2 code is verified by TPM and loaded by trusted Grub Stage 1.5.
Then, it verifies the integrity of the configuration file /boot/Grub/Grub.conf in
which the locations of the disk partitions, the kernel image, and virtual RAM disk
file initrd are recorded.

. The Grub Stage 2 code opens the configuration file, reads the operating system
kernel image, and tries to verify the integrity of the operating system kernel image
by TPM. If it is successful, the operating system kernel image is loaded and gains
control.

. Once the operating system kernel image is loaded, TPM will measure and verify
the Init process. If the Init process is trusted, the kernel key data structures will
be created and the kernel Init process will be loaded and take control.

. Firstly, the Init process determines the list of the kernel modules needed to be loaded
and the daemons needed to be created based on the system configuration. Then, it

22

Background and Technologies

I
Operating system i
I
I
Kernel modules and daemons |»— === > !
| |
T o
I
‘ The kernel Init process |» ——f---- >} i
! 1
e e o
: ‘Grub Stage 2: operating system } } :
! kernel image I [i
| I | Integrity
T?)l;:;d ! F i ! | measurement
I - ! |
| Grub Stage 1.5: file system | | i |
! initialization code Fop--—— > !
I
: T ! 3 :
| I
! ‘ Grub Stage 1: MBR data | | ! :
1 | ! 1
! Grub | | !
______________________ i | :
! |
! 1
‘ BIOS %——f—% !
| v
1
1
N
The core components PCR registers
for trusted
measurement TPM
The trusted root

Figure 2.5. Trusted Boot in Linux [3]

will measure and verify each kernel module and daemon with TPM module before
they are loaded. Only the trusted kernel modules and daemons are run sequentially
to guarantee that the initialized computing environment is trusted. At last, the Init
process starts receiving users’ inputs, and a trusted computer is ready to be used.

2.3.3 TPM Identity

A Trusted Platform’s state is reported by TPM using PCR values. An external entity that
has to use this values in order to establish if platform behaves as expected, must check
the identify the RTR (TPM) that provided the quote and the correct binding between
RTR and the RTM.

TPM identification is possible thanks to embedded asymmetric keys called Endorse-
ment Keys (EKs), derived from an endorsement seed contained in the TPM. TPM man-
ufacturer provides the so-called Endorsement Certificate, a proof that Endorsement Key
is generated from the endorsement seed belonging solely to that TPM. An external entity
attests that the platform contains a Root-of-Trust-for Measurement, a genuine TPM, plus
a trusted path between the RTM and the TPM through the Platform Certificate [7].

A direct use of Endorsement Key, since it is uniquely binded with a TPM, could result
in a release of personal information. TCG in fact recommends not to use the Endorsement
key directly, but only to decrypt certificates of other keys generated by the TPM itself,
the so-called Attestation Keys (AKs or AIKs). Attestation Keys can only be used to sign
the measurement data to guaranteeing its authenticity and integrity has generated (the
digest calculated on the content of PCRs). Attestation CA (or Privacy CA) and has the
purpose to certify that a given AK has been generated by a valid TPM.

23

Background and Technologies

Platform Attestation
4
r it
measurements software
5 ¢
4
Attestation Key
(certified by 3 =
Attestation CA) =
platform 2
1
TPM

Figure 2.6. Attestation Hierarchy [10]

2.3.4 Attestation Hierarchy

Trusted platforms employ a hierarchy of attestations [10]:

1.

24

Endorsement Certificate, provided by the TPM manufacturer, attests that the TPM
is genuine and complies with this TPM specification

. Platform Certificate, provided by the platform manufacturer, attests that the plat-

form contains a Root-of-Trust-forMeasurement, a genuine TPM, plus a trusted path
between the RTM and the TPM.

Attestation Key Certificate, provided by an Attestation CA, attests that an AK
key has been generated by an unidentified but genuine TPM.

Trusted Platform provided the so-called Quote that attests a particular software/-
firmware state. A quote takes the form of a signature over a software/firmware
measurement in a PCR using an attestation key protected by the TPM.

Third-party Certification, issued by an external entity called Verifier, attests the
correctness of the measurements of a Trusted Platform.

TPM Software Stack (TSS)

TPM Software Stack’s aim is to isolate TPM programmers from low level detail of TPM
architecture. TSS is composed by multiple layers (figure 2.7) and permits a scalable TPM

24

Background and Technologies

Application ‘

!

Feature API (FAPI) \ .

Crypto '
Library

S~
~y

7
<

Enhanced System API (ESAPI) /

MUAPI
y

\ System AP (SAPI)

]

_ TCTI \

(I (. | | _%-N;t-w’o;k’J'""

‘ TPM Access Broker | TPM Access Broker TPM Access Broker

) | T 0 TCTI |

‘ Resource Mgr Resource Mgr | Resource Mgr ‘ i
$ $ $ TPM Access Broker |
| Local TPMDriver | | SimTPM Driver | Virtual TPM Driver | {
) I I ! Resource Mgr |
Local TPM Lt Vi | TPM R T$PM Dri |
oca SImlntor irtua emote i river
Remote TPM ‘

Figure 2.7. TPM Software Stack [18]

implementation both in high and low end systems [18]. T'SS stack go from the application
layer to the TPM in order of abstraction: from the Feature API which is the most high
level to the TPM driver which is the most low level.

Feauture API (FAPI)

The Feature API (FAPI) provides the highest level of abstraction to developers. FAPI
provides about 80% of the functionality of the TPM and with this level is possible to
write an application without knowing any detail of the TPM low level architecture.

Enhanced System API (ESAPI)

The Enhanced System API (ESAPI) provides 100% of the functionality of the TPM. It
reduces the complexity required of applications that desire to send individual “system
level” TPM calls to the TPM, but that also require cryptographic operations on the data
being passed to and from the TPM. ESAPI, unlike FAPI, requires a deep knowledge of
how a TPM works.

System API (SAPI)

The System API (SAPI) is the TPM 2.0 equivalent of programming in the C language
and gives access to all the functionalities of the TPM 2.0. It is designed for expert
programmers who need to access directly to TPM: firmware, BIOS, OS, etc.

25

Background and Technologies

Marshaling/Unmarshaling (MUAPI)

The Marshaling/Unmarshaling API (MUAPI) performs the marshaling of TPM com-
mands into byte streams and unmarshaling of the responses returned from the TPM.

TPM Command Transmission Interface (TCTI)

Through TPM Command Transmission Interface (TCTI) command byte streams are
transmitted to the TPM and the application receives response byte streams from the
TPM using the two most important TCTI functions, transmit and receive.

TPM Access Broker (TAB)

TPM Access Broker’s (TAB) aim is to manage the processes concurrency for TPM ap-
plications and to ensure the completion of an operation without the interference of other
processes.

Resource Manager

The resource manager handles the TPM context, similarly to OS’s virtual memory man-
ager. It performs objects swaps, sessions, and sequences in and out of the limited TPM
onboard memory as needed. This layer is transparent to the upper layers of the T'SS and
is not mandatory. However, if not implemented, the upper layers will be responsible for
TPM context management [18].

TPM Device Driver

TSS lower layer is the TPM Device Driver that receives a buffer of command bytes and
a buffer length and performs the operations necessary to send those bytes to the TPM
thanks to TPM I/0 buffer.

26

Chapter 3

Linux IMA

The Trusted Computing Group (TCG) has defined a set of standards that describe how to
take integrity measurements of a system and store the result in a separate trusted copro-
cessor (Trusted Platform Module) whose state cannot be compromised by a potentially
malicious host system. This mechanism is called trusted boot.

IMA (Integrity Measurement Architecture) was introduced in Linux 2.6.30, as part
of an overall Linux Integrity Subsystem. With IMA is possible to maintain the chain of
trust measurements up to the application layer [2]. The goals of the kernel integrity sub-
system are to detect if files have been accidentally or maliciously altered, both remotely
and locally, appraise a file’s measurement against a “good” value stored as an extended
attribute, and enforce local file integrity [2].

Unlike the bootstrap process, an operating system handles a large variety of executable
content (kernel, kernel modules, binaries. shared libraries, scripts, plugins) as shown
in Figure 3.1. Furthermore, an operating system almost continuously loads executable
content and measuring the content at each load time incurs a considerable performance
overhead .

With IMA in order to let an external entity to attest the state of the platform during
runtime, the measures collected cannot be only stored in a PCR otherwise the external
entity could not be able to check if the measurement aggregate, contained in the PCR,
represents or not a trusted state. Instead, a Measurement Log (ML) file is used in order
to store the sequence of the Measurement Events (MEs) as they occurred in the system
and a PCR in the TPM (typically PCR 10) is used to protect the integrity of this ML.

To prove to a remote party what software stack is loaded, the system needs to present
the TPM state using the TCG attestation mechanisms and this Measurement Log. The
remote party can then determine whether the ordered list has been tampered with and,
once the list is validated, what kind of trust it associates with the measurements. Remote
entity analyzes ML entry by entry, in order to determine if system is compromised.

3.1 Measuring Systems

The integrity of a program is a binary property that indicates whether the program and
its environment have benne modified in an unauthorized manner. However integrity is a
relative property that depends on the verifier’s view of the ability of a program to protect
itself. The IBM 4758 explicitly defines that the integrity of a program is determined
by the code of the program and its ancestors [19]. For this reason, an essential feature

27

Linux IMA

fffffff Executables
/ Static Data: h
| - httpd.conf | apachectrl, httpd
| - java.security/policy | catalina.sh, java
\ - java classes / (| startup.sh

******* 7'

User Space

I >

Unstructured / Dynamic Data: \ —Y 1
| - File / Network /User 11O Libraries/
| - Inter Process Communication | — Modules
\ =

< /

r—— —ar — — /1 r— — — 1 Kernel

| e100.ko | lautofs.ko! ...lagpgart.ko M?)d:Ies

L — — — 4L - — — 4 L - — — 4

Linux 2.6.5 System Kernel

Kernel Space

Linux GRUB Bootstrap Loader

Basic Input Output System (BIOS)

Figure 3.1. Runtime System Components [21]

that the system must support is the Trusted Boot in order to ensure that the verifier
can understand if all the boot components are in the desired state. The application’s
integrity level depends on two types of data:

e High integrity data: data whose measure can be used by the verifier.

e Low integrity data: data whose measure cannot be used by the verifier.

In order to achieve Clark Wilson level of integrity verification [20] it is necessary to
accomplish the following tasks:

e Verification Scope: the integrity of all processes must be measured. Otherwise, the
scope of integrity impacting a process may be reduced to only those processes upon
which it depends for high integrity code and data.

e Executable Content: For each process, all code executed must be of sufficient in-
tegrity regardless of whether it is loaded by the operating system, dynamic loader,
or application.

e Structured data: data whose content has an identifiable integrity semantics and
can be compared to reference values such as configuration files or security policy
files. For each process, this type of data may be treated in the same manner as
executable content above.

e Unstructured data: data whose content does not have an identifiable integrity se-
mantics. the integrity of this type of data depends on the integrity of the processes
that have modified it.

It is imperative for the Verifier to make sure that the measurement list is:

28

Linux IMA

e Fresh and complete: list must include all measurements performed up to the time
when the attestation is executed and it must not be subject to replay attacks.

e Unchanged: measurement are truly from the loaded executable and static data files
and have not been tampered with.

IMA maintains a runtime measurement list, called Measurement Log (ML). The ben-
efit of using TPM is that the measurement list cannot be compromised by any software
attack, without being detectable. Hence, on a trusted boot system, IMA can be used to
attest to the system’s runtime integrity [2]. The goal of IMA is not to protect system’s
integrity, but it is at least to detect if such compromise has occurred, so that it can be
repaired in a timely manner. A remote verifier can ensure that the list results in the value
in PCR-10, and that the TPM has signed this value. With the use of TPM, a malicious
software does not create a Measurement Log because it is not possible to reproduce TPM
signature. IMA measurements are enabled with the kernel command line parameter:

ima_tcb=1

The IMA measurement list can be read through an IMA securityfs file, mounted at:
/sys/kernel/security/ima/ascii_runtime measurements and it looks like as follow-
ing:

PCR template-hash \
filedata-hash filename-hint

10 7971593a7ad22a7cce5b234e4bc5d71b04696af4 ima \
b5a166¢c10d153b7cc3e5b4fleabl1f71672b7¢c524 boot_aggregate

Figure 3.2. IMA measurement [2]

29

Chapter 4
Keylime

Keylime was presented in December 2016 with the whitepaper “Bootstrapping and Main-
taining Trust in the Cloud” [22] by security research team in MIT’s “Lincoln Laboratory”.
Keylime is a TPM-based highly scalable remote boot attestation and runtime integrity
measurement solution [23]. It enables cloud users to monitor remote nodes using a hard-
ware based cryptographic root of trust [24]. Keylime’s allows to make TPM Technology
easily accessible to developers and users without understanding TPM’s lower levels op-
erations. It also provides a flexible framework for the remote attestation of any given
Platform Configuration Register.

4.1 Threat Model

Keylime’s goal is to minimize trust in the cloud provider. Threat model assumes that
the provider is at least “semi-trusted” [22]:

e The organization is trustworthy and the cloud provider has processes, technical
controls, and policy in place to limit the impact of such compromise from spreading
across their entire infrastructure.

e The attackers may be in control of some fraction of the cloud provider’s resources.
They can arbitrarily monitor or manipulate compromised portions of the cloud
network or storage and they can not not physically tamper with any host’s) CPU,
bus, memory, or TPM (protection of physical components is not required).

e TPM and system manufacturers have created the appropriate endorsement creden-
tials and have some mechanism to test their validity

e The attacker’s goal is to obtain access to a tenant system to steal or deny the
tenant’s data or disturb services modifying the code at load-time or the process at
run-time

e Load-time integrity measurement of the kernel can detect load-time modifications

e Runtime integrity measurement of the kernel can detect run-time modifications

4.2 Architecture

Keylime consists of four main components: Registrar, Verifier, Agent and Tenant [22].

30

Keylime

4.2.1 Registrar

The Registrar stores and certifies the public AIKs of the TPMs and their Keylime UUIDs,
which are indexes for the associated keys. The Registrar is only a trust root and does
not store any tenant secrets. The tenant can decide to trust the registrar only after it
attests its system integrity. Since the registrar is a simple a component with static code,
verifying its integrity is very simple. Registrar can be hosted outside the cloud in the
tenant’s infrastructure or could be hosted on a physical system in the cloud.

4.2.2 Cloud Verifier

The Cloud Verifier (CV) is the core component of Keylime. Each cloud organization will
have at least one CV that is responsible for verifying the system state of the organization’s
resources. As the Registrar it can be hosted in in the tenant’s infrastructure or on a
physical system in the cloud. The cloud verifier periodically polls (configurable frequency)
agents for quotes and verifies them, to determine any violated policies. Once the Registrar
has validated the node’s AIK, it is possible to start the communication with Verifier.

4.2.3 Cloud Agent

The Cloud Agent runs in every cloud node and its duty it to send information about
system state by sending quotes to Cloud Verifier.

4.2.4 Tenant

The Tenant is the Keylime interface which allows to issue commands to Cloud Agents
and Verifier. It provides to the Agent an encrypted payload that contains information to
start up his service and to the Cloud Verifier all policies to attest the integrity of nodes.

4.3 Framework

The Keylime framework is composed by two operational phases:

1. Physical Node Registration Protocol

2. Three Party Bootstrap Key Derivation Protocol

4.3.1 Physical Node Registration Protocol

The aim of node registration protocol, shown in Figure 4.1 is to validate the node’s
keys. Firstly the node sends to Keylime Registrar its ID and TPM credentials (AIKpys,
EK,u). The Registrar, after checking the validity of the received EK with the TPM
manufacturer, challenges the cloud node: it creates an ephemeral symmetric key K. and
encrypts it along with a hash of the AIK,,; with FK,,;. After receiving the Registrar’s
challenge, Cloud Node uses ActivateCredential TPM command to decrypt K. with the
corresponding private key parts of EK and AIK and proves its identity by sending to the
Registrar the HMAC of its ID computed with K., so that the Registrar marks its AIK
as valid.

The TPM primitives used during Node Registration Protocol are [25]:
31

Keylime

Node Registrar
ID,AIK,,, EK S
< EnCEK(H (Aleub),Ke)
HMAC, (ID)

Figure 4.1. Physical node registration protocol [22]

e tpm2_startauthsession: starts a session with the TPM.

e tpm2_policysecret: couples the authorization of an object to that of an existing
object.

e tpm2_activatecredential: enables access to the credential qualifier to recover the
credential secret.

e tpm2_flushcontext: remove a specified handle, or all contexts associated with a
transient object, loaded session or saved session from the TPM.

4.3.2 Three Party Bootstrap Key Derivation Protocol

The second step of Keylime Framework is the Three Party Bootstrap Key Derivation
Protocol, whose aim is to deliver the bootstrap key K} to Cloud Node. At the start of
the process, the tenant generates a symmetric encryption key Kj and split it into two
parts U and V (random value) such that U = K, @ V. The Tenant sends U to the Cloud
Node and shares V to the Verifier which will send it to the Cloud Node only after after
a successful integrity verification. After obtaining the node UUID and IP address, the
Tenant notifies the Verifier of their intent to boot a Cloud Node (area A in Figure 4.2).
The Tenant connects to the CV over a secure channel, such as mutually authenticated
TLS, and provides V, UUID, Node IP, and a TPM policy (it specifies a whitelist of
acceptable PCR values to expect from the TPM of the cloud node). At this point, both
Tenant and Verifier can now attest the node in parallel.

As Figure 4.2 shown, the attestation protocol is basically the same between the Verifier
and the Cloud Node (B) and between of the Tenant and the Cloud Node (C). It consists
of two groups of messages: the first for the initiator (either CV or tenant) to request
a TPM quote and the second for the initiator to provide a share of K} to the cloud
node upon successful validation of the quote. Since Key Derivation Protocol’s aim it
to bootstrap keys into the system, there are no existing software keys with which we
create a secure channel. Thus, this protocol must securely transmit a share of K over
an untrusted network. This is accomplished by creating an asymmetric key pair on the
node (NK) outside of the TPM. This uses 16th PCR value in a TPM quote to bind NK
to the identity of the TPM, therefore authenticating NK. Verifier and tenant can encrypt
its share of Kj using NK pub and deliver it to the node securely.

There is a little difference between the interaction with the Tenant and the Verifier:
the Tenant only verifies identity of the node’s AIK, whereas the Verifier also checks the
integrity measures. In both interactions the protocols begins by sending a nonce (n; for
the Tenant ncy for the Verifier) to the Node along with a mask indicating which PCRs it
should include in its quote in reply (the Tenant sends an empty mask). The Cloud Node

32

Keylime

Tenant Cloud Verifier Node Registrar
i | 1DV, 1P, port, whitelist @
pEEEEEEEm== >
, -
[Ny, mask R ‘i
] Cal
i Quotey; (ngy, 16:H(Nk,, 1,),%;:7) NK; I
1S
i Valid AIK?
i P el ->
' Ency, (V) N
\.‘ e -
: - >
E L Quote (N, 16:H(NK; 1)) NK,,
)
E Valid AIK? > Legend
] ‘ ————————————————————————————— -— - -
1 = = = Mutual TLS
E EnCNK(U)'HMACK“(ID) N H = « = .« Server TLS
. —— — = / No TLS

Figure 4.2. Three Party Bootstrap Key Derivation Protocol [22]

extends a hash of NKp,;, into a blank PCR 16 and returns a quote (Quote AIK(nonce
CV, 16 : H(NKpu), ®i: v;), where 16 : H(NK,,;) represents the PCR 16 containing
the hash of NK,,;, while x;: y; represent the PCRs requested by the CV with their
respective values (only for Verifier). At this point, the initiator has to confirm that the
AIK is valid according to the Registrar. If the initiator is the Verifier, it has to check the
other PCR values to ensure that they are valid according to the TPM policy [26].

The TPM primitives used during Three Party Bootstrap Key Derivation Protocol are
[25]:

e tpm2_pcrreset: Reset one or more PCR banks. More than one PCR index can be
specified. The reset value is manufacturer-dependent and is either sequence of 00
or FF on the length of the hash algorithm for each supported bank.

e tpm2_extend: Extends a PCR

e tpm2_quote: Provide quote and signature for given list of PCRs in given algorith-
m/banks

e tpm2_checkquote: Uses the public portion of the provided key to validate a quote
generated by a TPM. This will validate the signature against the quote message
and, if provided, verify that the qualifying data and PCR values match those in the
quote.

e tpm2_nvdefine: Define an NV index with given auth value.

e tpm2 nvwrite: Write data specified via FILE to a Non-Volatile (NV) index.

4.4 Deployment

This section describes how to configure machines used for testing. Machines used for
these testing purposes were:

33

Keylime

o Attester Machine: Raspberry Pi 4 with Raspbian OS equipped with an Infineon
TPM v2 running Keylime Agent

e Verifier Machine: Ubuntu Desktop 20.04 LTS with an Intel Core i5 1,4 GHz (4
cores, 8 threads) running Keylime Verifier, Keylime Registrar and Keylime Tenant
Webapp

To determine whether a machine has a TPM in Linux and the driver for TPM been
successfully loaded by the Linux kernel we can use:

$ dmesg | grep -i tpm

To install Keylime, we must first install the TPM2 software stack, tools and resource
manager. Keylime also requires libtss2 with version >= 2.4.0, while by default Ubuntu
20.04 has libtss2 version 2.3.2.

$ sudo apt update
$ sudo apt install autoconf autoconf-archive git 1libglib2.0-dev \
libtool pkg-config libjson-c-dev libcurl4-gnutls-dev

Install libtss2 library:

git clone https://github.com/tpm2-software/tpm2-tss.git
cd tpm2-tss

./bootstrap

./configure --prefix=/usr

make

sudo make install

cd

P P P H BH PO &P

Install tpm2-tools:

git clone https://github.com/tpm2-software/tpm2-tools.git
cd tpm2-tools

./bootstrap

./configure --prefix=/usr/local

make

sudo make install

cd

B P P P PH PH &P

Install TPM 2.0 Resource Manager:

git clone https://github.com/tpm2-software/tpm2-abrmd.git

cd tpm2-abrmd

git checkout tags/2.4.1

./bootstrap

./configure --with-dbuspolicydir=/etc/dbus-1/system.d \
--with-systemdsystemunitdir=/1ib/systemd/system \
--with-systemdpresetdir=/1ib/systemd/system-preset \
--datarootdir=/usr/share

PH H H H &P

make

sudo make install
sudo ldconfig

cd

@B P P &P

Add TPM 2.0 Resource Manager user:

$ sudo useradd --system --user-group tss

Start tpm2-abrmd service:

34

Keylime

sudo pkill -HUP dbus-daemon

sudo systemctl daemon-reload

sudo systemctl enable tpm2-abrmd.service
sudo systemctl start tpm2-abrmd.service

PH P H &P

Check that tpm2-abrmd.service is running:

$ sudo systemctl status tpm2-abrmd.service

Configure TPM Command Transmission Interface (TCTI) for Tabrmd:

$ export TPM2TOOLS_TCTI="tabrmd:bus_name=com.intel.tss2.Tabrmd"

Check tpm2tools are able to communicate with the TPM via the access broker resource
manager

$ tpm2_pcrread

This should print out the current values of PCRs. For example:

shal:
0 : 0xde3e4800b622034dad4acb6bbb5c5c9cb0021daece7e

1 0x3c4abeb81750aflc2e8ca2ffed4d3a8ffb8cf138fa
2 0x904d221b2e2a0abdel122725a0575eb5d93285a16
3 Oxfcab2eec12db4002acdb59bf8adfafeal7e33cbac
4 : 0xa07f29ee7004c3abeb06ab514d11d1bf07dcb5cab
5 : 0x394dlee03aaaa745a4aa9f6d0016efce9f10089Db
6 : 0xa37180cbbb51e652c3072a539c25dcbfeeba9997e
7 : 0x00
8 : 0x00
9 : 0x00
10: 0x13de4d482eeebb9558f356d36eeable9e440a8222a
11: 0x00
12: 0x00
13: 0x00
14: 0x00
15: 0x00
16: 0x1957fad45f8eb90d2c2a818bfbcb501a5c9adal08
17: Oxfffffffffffffffffffffffffffffffffffff£F5
18: Oxffffffffffffffffffffffffffffffffff£Fff£F¢
19: OxffffffffffffffffffffffffffffffffEfFffFff£Ff~
20: OxfffffffffffffffffffffffffffffffffEf£f£f£7F
21: Oxfffffffffffffffffffffffffffffffffff£f££7F
22: Oxfffffffffffffffffffffffffffffffffff£Ff£f£f
23: 0x00

Keylime installation

$ git clone https://github.com/keylime/keylime.git
$ cd keylime

$ sudo pip3 install . -r requirements.txt

$

sudo cp keylime.conf /etc/

4.4.1 Verifier Machine

In order to perform proposed tests, it was used a unique machine running the Keylime
Verifier, Keylime Registrar and Keylime Tenant components.

35

Keylime

Keylime Registrar

Edit Keylime configuration file:

$ sudo nano /etc/keylime.conf

Inside [registrar| section modify only the registrar_ip parameter and set it with the IP
address of the host, for example:

registrar_ip = 192.168.1.189

Keylime Verifier

Edit Keylime configuration file:

$ sudo nano /etc/keylime.conf

Inside [cloud _verifier] section, set cloudverifier_ip, registrar_ip, revocation notifier_ip para-
menters to the host IP address, for example:

cloudverifier_ip = 192.168.1.189
registrar_ip = 192.168.1.189
revocation_notifier_ip = 192.168.1.189

Keylime Tenant

Edit Keylime configuration file:

$ sudo nano /etc/keylime.conf

Inside [tenant] section, set cloudverifier_ip and registrar_ip, for example:

cloudverifier_ip = 192.168.1.189
registrar_ip = 192.168.1.189

Keylime Tenant use tpm_policy parameter of the configuration file to check the Trusted
Boot. On the machine that requires remote attestation, read PCR registers values:

$ tpm2_pcrread

Write these values from PCR 0 to 7 of the SHA256 bank to the tpm_policy parameter
inside [tenant| section, for example:

tpm_policy = {"0": ["E2E..."], ..., "6": [F8E...], "7": ["000..."]}

Before registering, Keylime Tenant checks that EK certificate sent by the Agent was issued
by a CA whose certificate is stored in the directory /var/lib/keylime/tpm_cert_store/.

On the machine that requires remote attestation, look for CA issuer of the EK cer-
tificate:

$ tpm2_getekcertificate -o RSA_EK_cert.bin -o ECC_EK_cert.bin
$ openssl x509 -inform der -in RSA_EK_cert.bin -noout -text

Find CA Issuers field, for example:
URI:http://pki.infinenon.com/OptigaRsaMfrCA040/0ptigaRsaMfrCA040.crt

On the machine running Keylime Verifier:

$ curl http://pki.infineon.com/OptigaRsaMfrCA040/0ptigaRsaMfrCA040.crt \
-o OptigaRsaMfrCAO40.crt

$ openssl x509 -inform der -in ./OptigaRsaMfrCA049.crt \
-outform pem -out /var/lib/keylime/tpm_cert_store/OptigaRsaMfrCA040.pem

36

Keylime

damiano@ubuntu:~$ sudo keylime_verifier

[sudo] password for damiano:

Reading configuration from ['/etc/keylime.conf']

2022-09-10 11:50:19.374 alembic. env INFO Migrating database cloud verifier

2022-09-10 11:50:19.413 keylime.cloudverifier INFO Agent ids in db loaded from file: [(‘raspberrypt',)]

2022-09-10 11:50:19.413 keylime.cloudvertfier INFO Starting Cloud Verifier (tornado) on port 8881, use <Ctrl-C> to stop
2022-09-10 11:50:19.413 keylime.cloudverifier INFO Current APl version 2.1

2022-09-10 11:50:19.413 keylime.cloudverifier INFO Supported older API versions: 1.0. 2.0

2022-09-10 11:50:19.413 keylime.cloudverifier INFO Deprecated API versions (soon to be removed): 1.0

2022-09-10 11:50:19.413 keylime.cloudverifier INFO Setting up TLS...

2022-09-10 11:50:19.414 keylime. cloudverifier INFO Existing CA certificate found in /var/lib/keylime/cv_ca, not generating a new one
2022-09-10 11:50:19.419 - keylime.cloudverifier INFO Starting service for revocation notifications on port 8992
2022-09-10 11:50:19.498 keylime.cloudverifier INFO Starting server of process 0

Figure 4.3. Keylime Verifier Output

damiano@ubuntu:~$ sudo keylime_registrar

[sudo] password for damiano:

Reading configuration from ['/etc/keylime.conf']|

2022-09-10 11:50:42.553 alembic.env INFO Migrating database registrar

2022-09-10 11:50:42.564 keylime. registrar INFO Loaded 2 public keys from database

2022-09-10 11:50:42.579 keylime.registrar INFO Setting up TLS...

2022-09-10 11:50:42.586 keylime. registrar INFO Starting Cloud Registrar Server on ports 8890 and 8891 (TLS) use <Ctrl-C> to stop
2022-09-10 11:50:42.586 keylime. registrar INFO Current API version 2.1

2022-09-10 11:50:42.586 keylime. registrar INFO Supported older API versions: 1.0, 2.0

2022-09-10 11:50:42.586 keylime. registrar INFO Deprecated API versions (soon to be removed): 1.0

Figure 4.4. Keylime Registrar Output

Installing Keylime Verifier and Registrar services

In order to install Keylime Verifier and Registrar as a systemd service, edit installer. sh:

$ sudo nano services/installer.sh

Comment out the lines relating to the Agent service:

prepare keylime service files and store them in systemd path

#sed "s|KEYLIMEDIR| $KEYLIMEDIR|g" $BASEDIR/keylime_agent.service.template >
/etc/systemd/system/keylime_agent.service

sed "s|KEYLIMEDIR| $KEYLIMEDIR|g" $BASEDIR/keylime_registrar.service.template >
/etc/systemd/system/keylime_registrar.service

sed "s|KEYLIMEDIR| $KEYLIMEDIR|g" $BASEDIR/keylime_verifier.service.template >
/etc/systemd/system/keylime_verifier.service

set permissions

#chmod 664 /etc/systemd/system/keylime_agent.service
chmod 664 /etc/systemd/system/keylime_registrar.service
chmod 664 /etc/systemd/system/keylime_verifier.service

enable at startup

#systemctl enable keylime_agent.service
systemctl enable keylime_registrar.service
systemctl enable keylime_verifier.service

Run the installer.sh script and start Keylime Verifier Service and Keylime Registrar
Service:

$ sudo ./services/installer.sh
$ sudo systemctl start keylime_verifier.service
$ sudo systemctl start keylime_registrar.service

4.4.2 Keylime Agent

First of all it is necessary to edit Keylime configuration file:

37

Keylime

pi@raspberrypi:~$ sudo keylime_agent

Reading configuration from /etc/keylime.conf

2022-09-12 14:16:02.358 - keylime.tpm - INFO - TPM2-TOOLS Version: 5.2

2022-09-12 14:16:02.545 - keyline.tpm - INFO - Dropped privileges to keylime:tss

2022-09-12 14:16:02.580 - keylime.tpm - INFO - TPM2-TOOLS Version: 5.2

2022-09-12 14:16:02.666 - keylime.tpm - INFO - Taking ownership with config provided TPM owner password: keylime
2022-09-12 14:16:04.378 - keylime.tpm - INFO - TPM Owner password confirmed: keylime

2022-09-12 14:16:04.383 - keylime.tpm - INFO - Flushing old ek handle: 0x81000000

2022-09-12 14:16:07.357 - keylime.tpm - INFO - Flushing old a handle: /var/lib/keylime/secure/tmp8sd1teby

2022-09-12 14:16:08.727 - keylime.cloudagent - INFO - Agent UUID: raspberrypi

2022-09-12 14:16:08.730 - keylime.cloudagent - INFO - Key for U/V transport and miLS certificate not found, generating a new one
2022-09-12 14:16:11.751 - keylime.cloudagent - INFO - No mTLS certificate found, generating a new one

2022-09-12 14:16:12.116 - keylime. registrar_client - INFO - Agent registration requested for rasperrypi

2022-09-12 14:16:14.163 - keylime.tpm - INFO - AIK activated

2022-09-12 14:16:14.283 - keylime.registrar_client - INFO - Registration activated for agenti raspberrypi

2022-09-12 14:16:14.299 - keylime.cloudagent - INFO - Starting Cloud Agent on 192.168.1.191:9002 with API version 2.1.
l2022—09—12 14:16:14.391 - keylime.revocation_notifier- INFO - Waiting for revocation messages on 192.168.1.191:8992

Figure 4.5. Keylime Agent Output

$ sudo nano /etc/keylime.conf

In the [general] section, assign the address of the machine running the Keylime Verifier
to the receive_revocation_ip parameter, for example:

receive_revocation_ip = 192.168.1.189

In the [cloud agent] section, assign to cloud_agent_ip parameter the IP address of the
host, for example:

cloud_agent_ip = 192.168.1.191

Assign to registrar_ip the IP address of the machine running Keylime Verifier (typically
the same as Keylime Verifier), for example:

registrar_ip = 192.168.1.189

In order to install Keylime Agent as a systemd service, edit installer.sh:

$ sudo nano services/installer.sh

Comment out the lines relating to the Verifier and Registrar services:

prepare keylime service files and store them in systemd path

sed "s|KEYLIMEDIR| $KEYLIMEDIR|g" $BASEDIR/keylime_agent.service.template >
/etc/systemd/system/keylime_agent.service

#sed "s|KEYLIMEDIR| $KEYLIMEDIR|g" $BASEDIR/keylime_registrar.service.template >
/etc/systemd/system/keylime_registrar.service

#sed "s|KEYLIMEDIR| $KEYLIMEDIR|g" $BASEDIR/keylime_verifier.service.template >
/etc/systemd/system/keylime_verifier.service

set permissions

chmod 664 /etc/systemd/system/keylime_agent.service
#chmod 664 /etc/systemd/system/keylime_registrar.service
#chmod 664 /etc/systemd/system/keylime_verifier.service

enable at startup

systemctl enable keylime_agent.service
#systemctl enable keylime_registrar.service
#systemctl enable keylime_verifier.service

Before starting Keylime Agent it is necessary to copy the file called cacert.crt from
the directory /var/lib/keylime/cv_ca/ of the node running Keylime Verifier to the same
directory of the node running Keylime Agent. This file is the CA certificate of the Keylime
Verifier and it is mandatory for the correct registration of the Keylime Agent. After that,
it is possible to run the installer.sh script and start keylime_agent.service:

38

Keylime

$ sudo ./services/installer.sh
$ sudo systemctl start keylime_agent.service

4.4.3 Keylime Webapp

Once the Verifier, Registrar and Agent have been installed and configured, they await
commands issued by the Tenant. These commands can be issued via command line or
via a provided web interface called Webapp:

$ sudo keylime_webapp

This command starts a web server which by default listens on port 443. Through the web
interface it is possible to view a list of all registered Agents, register new ones or delete
them. Once an Agent has been correctly registered, its information and the policies used
for the attestation can be viewed with a simple click as shown in Figure 5.1.

39

Chapter 5

Testing

In this chapter will list the tests performed in order to verify the correct functioning of
the Remote Attestation on Keylime Framework.

5.1 Testbed

The Testbed on which all the tests were performed was configured as follows:

e Verifier Machine: Ubuntu Desktop 20.04 LTS with an Intel Core i5 1.4 GHz (4
cores, 8 threads) running Keylime Verifier, Keylime Registrar and Keylime Tenant
Webapp.

e Attester Machine: Raspberry Pi 4 running Keylime Agent.

5.1.1 Attester Machine

Raspberry 4 Pi Model B (4 GB of RAM) running Raspbian OS and equipped with Infineon
Iridium TPM evaluation board (TPM 9670_Raspberry) and an OPTIGA SLI 9670AQ2.0.

Kernel and bootloader

We want to be able to use the TPM prior to booting the Linux kernel [27]. To do that,
we need to add a second-stage bootloader (u-boot in our case) [28] with TPM support:
Get the Raspbian image.

$ wget -0 raspian_latest.zip https://downloads.raspberrypi.org/
raspbian_lite_latest
$ unzip raspbian_lastest.zip

Flash the Raspbian image onto the card:

$ sudo dd if=2020-02-13-raspbian-buster-lite.img of=/dev/mmcblk0 bs=4M
status=progress conv=fsync

There should be two partitions on the SD card now, boot and rootfs. Check if your
toolchain is working:

$ arm-linux-gnueabihf-gcc --version

40

Testing

Get the Kernel Sources:

$ git clone https://github.com/raspberrypi/linux

Build the kernel:

$ cd linux
$ KERNEL=kernel7l
$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- bcm2711_defconfig

The menuconfig tool requires the ncurses development headers to compile properly:

$ sudo apt install libncursesb-dev

Compile and run the menuconfig utility as follows:

$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf - menuconfig

Enable the following settings [29]:

Security options
(y) Enable different security models
(y) Integrity subsystem
(y) Integrity Measurement Architecture (IMA)
(y) Enable multiple writes to the IMA policy
(y) Enable reading back the current IMA policy

Device Drivers
(y) SPi Support
(y) BCM2835 SPI controller
TPM Hardware Support
(y) TPM 2.0 FIFO Interface

The default hash algorithm is SHA-1. Remove the following line from drivers/clk/bcm/clk-
bem2835.c:

pesteore_initcall(bem2835_elk_driver_init);

Replace it with:

subsys_initcall (__bcm2835_clk_driver_init);

Make sure the root partition on your SD card is mounted (/run/media/SD_NAME/rootfs).
Next, install the kernel modules onto the SD card:

$ sudo env PATH=$PATH make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf -
INSTALL_MOD_PATH=/run/media/SD_NAME/rootfs modules_install

$ KERNEL=kernel7l.img

$ sudo cp /run/media/SD_NAME/boot/$KERNEL /run/media/SD_NAME/boot/
$KERNEL . bak

$ sudo cp result/arch/arm/boot/Image /run/media/SD_NAME/boot/$KERNEL

$ sudo cp result/arch/arm/boot/dts/broadcom/*.dtb /run/media/SD_NAME/boot/

$ sudo cp result/arch/arm/boot/dts/overlays/*.dtb* /run/media/SD_NAME/
boot/overlays/

Setting up U-boot:

$ git clone https://gitlab.denx.de/u-boot/u-boot.git

$ cd u-boot

$ make -j$(nproc) CROSS_COMPILE=arm-linux-gnueabihf- rpi_4_defconfig

The configuration is saved in .config and it is necessary to change some parameters:

$ make menuconfig

41

Testing

Navigate through the menu and enable (y) in this order:

Device Drivers
(y) SPI Support
(y) Enable Driver Model for SPI drivers (DM_SPI)
(y) Soft SPI driver (SOFT_SPI)
Library routines
Security Support
(y) Trusted Platform Module (TPM) support (TPM)
Device Drivers
TPM support
(y) TPMv2.x support (TPM_V2)
(y) Enable support for TPMv2.x SPI chips (TPM2_TIS_SPI)
Command line interface
Security commands
(y) Enable the tpm command (CMD_TPM)

Save and exit the menu. Now you can build U-Boot:

$ make -j$(nproc) CROSS_COMPILE=arm-linux-gnueabihf- all

The most important result is u-boot.bin, our second stage bootloader. However it is
necessary to create a script named boot.scr which specifies:

e The kernel which is to be booted by U-Boot (kernel7l.img)
e Send a clear command to the TPM to clear the 3 hierarchy authorization values

e Extend PCR as Table 5.1 shown

Copy this into a file named boot.scr:

tpm2 startup TPM2_SU_CLEAR

fatload mmc O ${loadaddr} u-boot.bin
hash sha256 ${loadaddr} ${filesizel} *0x1000000
tpm2 pcr_extend 0 0x1000000

fatload mmc O ${loadaddr} boot.scr
hash sha256 ${loadaddr} ${filesize} *0x1000000
tpm2 pcr_extend 1 0x1000000

fatload mmc O ${kernel_addr_r} kernel7l.img
hash sha256 ${kernel_addr_r} ${filesize} *0x1000000
tpm2 pcr_extend 4 0x1000000

fatload mmc O ${loadaddr} config.txt
hash sha256 ${loadaddr} ${filesize} *0x1000000
tpm2 pcr_extend 5 0x1000000

fatload mmc O ${loadaddr} cmdline.txt
hash sha256 ${loadaddr} ${filesize} *0x1000000
tpm2 pcr_extend 6 0x1000000

setenv fdt_addr_r 0x03000000
fdt addr ${fdt_addr_r} && fdt get value bootargs /chosen bootargs

booti ${kernel_addr_r} - ${fdt_addr_r}

Convert this script into a binary format:

$./tools/mkimage -A arm64 -T script -C none -n "Boot script" -d boot.scr
boot.scr.uimg

42

Testing

PCR Index Target Measurement(s) Actor
0 u-boot.bin (u-Boot image) u-Boot
1 boot.scr (boot script file) u-Boot
2 boot.env (environment file) u-Boot

platform.dtb (binary data that
3 u-Boot

describes platform’s hardware)

4 zImage/ulmage (Linux kernel image) u-Boot

5 Platform configuration file (e.g. config.txt) u-Boot

Additional parameters for Linux

kernel command line (e.g. cmdline.txt)

7 uInitrd (Initial RAM disk image) u-Boot

8 Operating System Linux systemd service

TC endpoint PK Certificate
9 Trusted Platform Agent

(Trusted Channel binding)

10 IMA Log checksum Linux Kernel (IMA)

Table 5.1. List of PCRs and measured files

U-Boot needs a description of the hardware (information contained in the device tree
becm2711-rpi-4-b.dtb on the Raspberry Pi). To make changes to the device tree, we
create a device tree overlay named tpm-soft-spi.dts and copy the following into it:

/ *
* Device Tree overlay for the Infineon SLB9670 Trusted Platform Module add-on

* boards, which can be used as a secure key storage and hwrng.

*/

/dts-v1/;
/plugin/;

/AL
compatible = "brcm,bcm2835", "brcm,bcm2708", "brcm,bcm2709";

fragment@0 {
target = <&spi0>;

__overlay__ {
compatible = "spi-gpio";
pinctrl -names = "default";

43

Testing

pinctrl-0 = <&spiO_gpio7>;
gpio-sck = <&gpio 11 0>;
gpio-mosi = <&gpio 10 0>;
gpio-miso = <&gpio 9 0>;
cs-gpios = <&gpio 7 1>;
spi-delay-us = <0>;
#address-cells = <1>;
#size-cells = <0>;

status = "okay";

/* for kernel driver x/
sck-gpios = <&gpio 11 0>;
mosi-gpios = <&gpio 10 0>;
miso-gpios = <&gpio 9 0>;
num-chipselects = <1>;

s1b9670: s1b967000 {

compatible = "infineon,slb9670", "tis,tpm2-spi", "tcg,tpm_tis-spi";
reg = <0>;

gpio-reset = <&gpio 24 1>;

#address-cells = <1>;

#size-cells = <0>;

status = "okay";

/* for kernel driver x*/
spi-max-frequency = <1000000>;
};
};
};

fragment@1l {
target = <&spiO_gpio7>;

__overlay__ {
brcm,pins = <7 8 9 10 11 24>;
brcm, function = <0>;

};
};

fragment@2 {
target = <&spidev0>;
__overlay__ {
status = "disabled";
};
};

fragment@3 {
target = <&spidevl>;
__overlay__ {
status = "disabled";

This file needs to be compiled into binary format using the device tree compiler dtc:

$ dtc -0 dtb -b O -@ tpm-soft-spi.dts -o tpm-soft-spi.dtbo

Copy all U-Boot-related files onto the SD card:

$ cp u-boot.bin /run/media/SD_NAME/boot/
$ cp boot.scr.uimg /run/media/SD_NAME/boot/
$ cp tpm-soft-spi.dtbo /run/media/SD_NAME/boot/overlays

44

Testing

instruct the Raspberry’s first-stage bootloader to use our TPM device tree overlay and
load U-Boot instead of the Linux kernel. Edit config.txt adding the following lines:

dtparam=spi=on
dtoverlay=tpm-s1b9670
dtoverlay=tpm-soft-spi
enable_uart=1
kernel=u-boot.bin

Finally Unmount the SD card:

$ sudo umount /run/media/SD_NAME/boot
$ sudo umount /run/media/SD_NAME/rootfs

Insert the flashed SD card and boot the Raspberry Pi. Open the file config. txt in an
editor:

$ sudo nano /boot/cmdline.txt

Append the following to the existing line:

ima_policy=tcb

This policy measures all executables run, all mmap’d files for execution (such as shared
libraries), all kernel modules loaded, and all firmware loaded. Additionally, all files read
by root are measured as well. Reboot the Raspberry Pi and check if TPM is activated
by:

$ 1s /dev grep tpm
tpmO
tpmrmO

At this point it is possible to install Keylime and all softwares required as seen in the
section 4.4.

Software installed and configured

e u-Boot boot loader (version 2020.04)

e Raspbian Buster Lite (kernel 4.19.118, no GUI)
e TPM2 TSS v3.2.0

e TPM2 TABRM v2.4.1

e TPM2 Tools v5.3

e TPM2 TSS Engine v1.1.0

e Cryptsetup with TPM support v2.0.3

e Keylime 6.5.0

Secure boot Configuration

e /dev/mmblkOpl: /boot (default)

e /dev/mmblk0p2: / (default)
45

Testing

e /dev/mmblkOp3: formatted ext4, not mounted, not used

e /dev/mmblkOp4: /dev/mapper/EncSecPart — /mnt/encrypted

The fourth partition (/dev/mmblkOp4) is encrypted with LUKS2 (Linux Unified Key
Setup 2) format; the encryption key is stored in the TPM NV storage and protected
by the sealing against PCRs 0-9 and with a known password stored on file. If any file
measured by u-boot is modified, then the at reboot the encryption key cannot be unsealed
and the partition mounted: therefore, the bootstrap process stops before its end and it
is not possible to log in again. Those files must be changed in between a procedure
of unsealing and resealing of the encryption key. This way, the secondary encrypted
partition implements a form of secure boot.

5.2 Keylime Performance

In this section we evaluate the primary operations done by the TPM and keylime during
verification protocol for Keylime Agents.

5.2.1 Preliminary Operations

In order to create a quote it is necessary to generate an AIK, since the EK can not be
used for signing operations. Therefore the first thing to do is to generate a primary object
from the primary seed. The command tpm2_create primary generates a primary RSA
key of 2048 bit in the endorsement hierarchy:

$ tpm2_createprimary --hierarchy=e --hierarchy-auth=keylime \

--hash-algorithm=sha256 --key-algorithm=rsa \
--key-context=primary.ctx

At this point it is necessary to create a child object which can be used to sign the quotes.
The command tpm2_create generates a child key and save saves the public and private
portions inside the files provided:

$ tpm2_create --parent-context=primary.ctx \
--hash-algorithm=sha256 --key-algorithm=rsa \
--public=public.key --private=private.key

With the command tpm2_load this child object is loaded into TPM:

$ tpm2_load --parent-context=primary.ctx \
--public=public.key --private=private.key \
--key-context=child.ctx

With the command tpm2_readpublic it is possible to convert the public portion of the
key to PEM format:

$ tpm2_readpublic --object -context=child.ctx \
--format=pem --output=pubkey.pem

5.2.2 Verification Protocol

The time elapsed between the request for the Quote by the Verifier and the check of the
same was measured. The following commands are executed during this protocol:

46

Testing

e tpm2_pcrreset: resets all PCR banks
e tpm2_pcrextend: performs the extend operation

e tpm2_quote: creates an output file with contains data signed by TPM. Qualification
option, a nonce against replay attack, is provided by the verifier for each request
for a quote.
$ tpm2_quote --key-context=primary.ctx \

--pcr-list=shal :0,1,2,3,4,5,6,7 --qualification=123456 \
--message=msg --signature=sign \
--hash-algorithm=sha256 --pcr=pcrs

e tpm2_checkquote: returns an output based on whether the quote is valid or not.

$ tpm2_checkquote --public=pubkey.pem \
--message=msg --signature=sign --pcr=pcrs \
--hash-algorithm=sha256 --qualification =123456

All tests were performed on local platforms in order to minimize network latency and
obtain the most accurate measurements of the protocol. Verification protocol script were
run for a thousand times and then averaged the observed performance.

Verification Protocol | Create Quote | Check Quote | Network Latency

809.51 ms 773.337 ms 4.896 ms 31.277ms

Table 5.2. Average Verification Protocol latency (ms)

5.3 Functional tests

Functional tests goal is to verify if the behavior of the attestation process meets the
requirements. In order to correctly register our Keylime Agent it is necessary to execute
the following command:

$ sudo keylime_tenant --command add --targethost 192.168.1.191 \
--cv 192.168.1.189 --uuid raspberrypi --cert default \

--allowlist ./measurements.txt -- exclude excludelist.txt
Where:
e Target Host parameter is the IP address of the Keylime Agent

e cv parameter is the IP address of the Keylime Verifier

UUID parameter is the unique identifier that you want to associate with the Keylime
Agent

Allow list parameter is a text file that contains the IMA measurement list

e Exclude list parameter is a text file that contains all files considered low integrity
data (data whose measure cannot be used by the verifier)

47

Testing

raspberrypi 192.168.1.191:9002 3 (Get Quote)

Details:
operational state: 3 (Get Quote)
v: WcFgEhYL650GeQzfsXc2uxAjy/hzviovgbA752 fAQmk=
ip: 192.168.1.191
port: 9002
tpm policy: [“0:[“eZec974d2b33c366ab8409c4ae2948la705606f472eb76ac27bb5c4cf49755497, ...
meta data: {"cert serial": 2, “subject": "OU=53,0=MITLL,L=Lexington,ST=MA,CN=raspberryi
allowlist len: 0
mb refstate len: 0
accept tpm hash algs: [
"sha512"
"sha384"
"sha256"
Ilsha1 n
]
accept tpm encryption algs: [
lieccﬂ’
"rsa"
]
accept tpm signing algs: [
“ecschnorr",
"rsassa"
]
hash alg: shal
enc alg: rsa
sign alg: rsassa
verifier id: default
verifier ip: 192.168.1.189
verifier port: 8881
severity level: null
last event id: null
id: raspberrypi

Figure 5.1. Keylime Webapp

Once the Agent was correctly registered (Figure 5.1, it was possible to start running
the tests. Assuming you know the SSH password of the machine running the Keylime
Agent, once logged in, you tried to:

1. Edit a configuration file
2. Download an unexpected software from the Internet

A new SSH connection will update the following files and this leads to the birth of
these two errors:

e /etc/hosts.allow: lists the rules that allow access.

2022-09-12 05:47:26,031 keylime.ima File not found in allowlist:
etc/hosts.allow

e /etc/hosts.deny: lists the rules that deny access.

2022-09-12 05:47:26,031 keylime.ima File not found in allowlist:
etc/hosts.deny

48

Testing

raspberrypi 192.168.1.191:9002 9 (Invalid Quote)

Details:
operational state: 3 (Get Quote)
v: lwbZGNG7zA/RGk8mpvZ23BMeq]BBylU4eZPbiM2aJ6c=
ip: 192.168.1.191
port: 9002
tpm policy: [“0:[“eZec974d2b33c366ab8409c4ae2948la705606f472eb76ac27b65c4cf4975549”, ..
meta data: {"cert serial": 2, “subject": "OU=53,0=MITLL,L=Lexington,ST=MA,CN=raspberryi
allowlist len: 6
mb refstate len: 0
accept tpm hash algs: |
"sha512"
"sha384"
"sha256"
"shat"
]
accept tpm encryption algs: [
“ecc”,
Ilrsall
]
accept tpm signing algs: [
“ecschnorr”,
"rsassa"
]
hash alg: shai
enc alg: rsa
sign alg: rsassa
verifier id: default
verifier ip: 192.168.1.189
verifier port: 8881
severity level: 6
last event id: ima.validation.ima-ng.allowlist hash
id: raspberrypi

Figure 5.2. Keylime Webapp Invalid Quote

Even if you want to exclude these two files from the attestation process considering
them as low integrity data, the configuration file (in our case xattr.conf) modification
leads to the following error:

2022-09-12 05:47:26,031 keylime.ima WARNING File not found in allowlist:
etc/xattr.conf

The second case, the download of an unexpected software (in our case nmap) leads
to the updating of numerous files inside the machine running the Keylime Agent and,
consequently, to a disproportionate number of errors (only a few will be listed here):

2022-09-12 08:27:54,588 keylime.ima File not found in allowlist:
/etc/apt/apt.conf.d/0Olautoremove

2022-09-12 08:27:54,590 keylime.ima File not found in allowlist:
/etc/apt/apt.conf.d/201listchanges

2022-09-12 08:27:54,590 keylime.ima File not found in allowlist:
/usr/share/dpkg/cputable

2022-09-12 08:27:54,591 keylime.ima File not found in allowlist:
/etc/apt/sources.list

2022-09-12 08:27:54,591 keylime.ima File not found in allowlist:
/etc/dpkg/dpkg.cfg

2022-09-12 08:27:54,593 keylime.ima File not found in allowlist:
/etc/apt/sources.list.d/raspi.list

49

Testing

2022-09-12 08:27:54,593

keylime.ima File not found in allowlist:

/var/lib/apt/extended_states

2022-09-12 08:27:54,595
/var/1lib/dpkg/status

2022-09-12 08:31:46,540
be validated. Number of
2022-09-12 08:31:46,614
stopping polling
2022-09-12 08:31:46,807
to listening nodes...

keylime.ima File not found in allowlist:

keylime.ima ERROR IMA ERRORS: Some entries couldn’t
failures in modes: Ima 900.
keylime.cloudverifier WARNING Agent raspberrypi failed,

keylime.revocation_notifier INFO Sending revocation event

Any one of these events leads to the update of the Attester Machine status to status
9 (Invalid Quote) as shown in Figure 5.2.

50

Chapter 6

Conclusion

Attestation is an area that will see many technological innovations and developments in
the near future because the construction of a platform whose status can be monitored is
essential.

Inside this project, firstly trusted boot on Raspberry Pi 4 has been enabled using
Infineon TPM 2.0 chip. An open source standard developed by Trusted Computing Group
(TCG), named TSS (TPM Software Stack) 2.0, was used to use the services offered by
TPM 2.0 in conjunction with Raspbian OS, the operative system installed on Raspberry
Pi. Linux IMA was activated in order to maintain the chain of trust measurements up
to the application layer.

Configured the TPM and Linux IMA, the second part of the thesis introduces Keylime,
an open-source tool for bootstrapping and maintaining trust in the cloud, its design and
protocols. The fourth chapter describes how to install, configure and run keylime as well
as the platforms (Attester Machine and Verifier Machine) on which we performed the
evaluation.

The fifth chapter of the thesis consist of a series of tests for the TPM operations
used by Keylime protocols. The TPM primitives used by Keylime during the Verification
Protocol were analyzed and replicated in order to test the performance of the software.
The behavior of the Remote Attestation was evaluated by trying to change the status of
the Attester Machine by installing an unexpected software and modifying configuration
files via the SSH protocol.

The main objective of this thesis is to demonstrate the advantages in terms of security
that the use of a TPM brings. Thanks to the use of the Remote Attestation it is possible
to to remotely detect adversarial presence on untrusted devices in order to guarantee
their trustworthiness.

During the last few years we have seen a widespread diffusion of IoT devices which have
now become an integral part of our lives (e.g. digital transportation, smart home, smart
cities, wearable devices). According to Statista, the global market for Internet of things
(IoT) end-user solutions is expected to grow to around 1.6 trillion U.S. dollars by 2025
[30]. However, as these devices perform safety-critical operations and contain sensitive
information, they are increasingly being targeted to perform malicious exploitations.

Within this thesis it has been demonstrated that it is possible to perform the Re-
mote Attestation with Linux Integrity Measurement Architecture enabled within a very
limited environment such as a Raspberry Pi 4. Remote Attestation can therefore be a
fundamental security technique to protect such IoT devices, allowing a trusted entity to

o1

Conclusion

that allows a trusted party (e.g. the Verifier) to assure the integrity of the untrusted IoT
device (e.g. the Agents).

52

Bibliography

[1]

G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon, J. Ramsdell,
A. Segall, J. Sheehy, and B. Sniffen, “Principles of remote attestation”, International
Journal of Information Security, vol. 10, no. 2, 2011, pp. 63-81, DOI 10.1007/s10207-
011-0124-7

“Integrity Measurement Architecture (IMA).” https://sourceforge.net/p/
linux-ima/wiki/Home/

C. Huang, C. Hou, H. Dai, Y. Ding, S. Fu, and M. Ji, “Research on linux trusted boot
method based on reverse integrity verification”, Scientific Programming, vol. 2016,
2016, pp. 1-12, DOI 10.1155/2016/4516596

L. Qiu, Y. Zhang, F. Wang, M. Kyung, and H. R. Mahajan, “Trusted com-
puter system evaluation criteria”, National Computer Security Center, 1985, DOI
10.1007/978-1-349-12020-8_1

P. S. Tasker, “Trusted computer systems”, 1981 IEEE Symposium on Security and
Privacy, 1981, DOI 10.1109/SP.1981.10020

“Trusted Platform Module (TPM) 2.0: A Brief Introduction.”
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.
0-A-Brief-Introduction.pdf

Trusted Computing Group, “Trusted platform module library part 1: Architecture”,
TCG Published, October 30, 2014

Trusted Computing Platform Alliance, “Main Specification Version 1.1b”, February
22, 2002

Trusted Computing Group, “TPM Main Part 1 Design Principles”, TCG Published,
March 1, 2011

Trusted Computing Group, “Trusted Platform Module Library Part 1: Architec-
ture”, TCG Published, November 8, 2019

“Trusted Platform Module Technology Overview.” https://docs.
microsoft.com/en-us/windows/security/information-protection/tpm/
trusted-platform—-module-overview

W. Arthur, D. Challener, and K. Goldman, “A practical guide to tpm 2.0: Using
the new trusted platform module in the new age of security”, Springer Nature, 2015
A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, “Handbook of applied
cryptography”, CRC press, 2018

L. Lehtomaki, “Realizing eID scheme on TPM 2.0 hardware”, 2016

“TPM 1.2 vs 2.0: Here’s everything you need to know.” https://windowsreport.
com/tpm-1-2-vs-2-0/

Windowsreport, “TPM 1.2 wvs 2.0, what are the differences?.” https://
windowsreport.com/tpm-1-2-vs-2-0/

Trusted Computing Group, “Trusted Platform Module (TPM) 2.0: A Brief
Introduction.” https://www.trustedcomputinggroup.org/wp-content/uploads/
TPM-2.0-A-Brief-Introduction.pdf

53

https://doi.org/10.1007/s10207-011-0124-7
https://doi.org/10.1007/s10207-011-0124-7
https://sourceforge.net/p/linux-ima/wiki/Home/
https://sourceforge.net/p/linux-ima/wiki/Home/
https://doi.org/10.1155/2016/4516596
https://doi.org/10.1007/978-1-349-12020-8_1
https://doi.org/10.1109/SP.1981.10020
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/trusted-platform-module-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/trusted-platform-module-overview
https://docs.microsoft.com/en-us/windows/security/information-protection/tpm/trusted-platform-module-overview
https://windowsreport.com/tpm-1-2-vs-2-0/
https://windowsreport.com/tpm-1-2-vs-2-0/
https://windowsreport.com/tpm-1-2-vs-2-0/
https://windowsreport.com/tpm-1-2-vs-2-0/
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf
https://www.trustedcomputinggroup.org/wp-content/uploads/TPM-2.0-A-Brief-Introduction.pdf

Bibliography

[18]

[19]

[20]

[21]

Trusted Computing Group, “TSS 2.0 Overview and Common”, TCG Published,
October 1, 2021

S. W. Smith, “Outbound authentication for programmable secure coprocessors”,
European Symposium on Research in Computer Security, 2002, pp. 72-89, DOI
10.1007/3-540-45853-0_5

D. D. Clark and D. R. Wilson, “A comparison of commercial and military computer
security policies”, 1987 IEEE Symposium on Security and Privacy, 1987, pp. 184—
184, DOIT 10.1109/sp.1987.10001

R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn, “Design and implementation of a
tcg-based integrity measurement architecture”, USENIX Security symposium, 2004,
pp- 223-238

N. Schear, P. T. Cable, T. M. Moyer, B. Richard, and R. Rudd, “Bootstrapping
and maintaining trust in the cloud”, Proceedings of the 32nd Annual Conference on
Computer Security Applications, 2016, pp. 65-77, DOI 10.1145/2991079.2991104
“Keylime Documentation.” https://keylime-docs.readthedocs.io/_/
downloads/en/latest/pdf/

“Keylime Project Description.” https://pypi.org/project/keylime/
“TPM2-tool Manual.” https://github.com/tpm2-software/tpm2-tools/tree/
master/man

S. Varga, “Establishment of cryptographic identities in cloud via keylime tool”, 2019
“Raspberry Pi Documentation: The Linux Kernel.” https://www.raspberrypi.
com/documentation/computers/linux_kernel.html#using-menuconfig

“TPM 2.0 in U-Boot on Raspberry Pi 4.” https://github.com/joholl/
rpi4-uboot-tpm

“OPTIGA TPM Application Note: Remote Attestation.” https://github.
com/Infineon/remote-attestation-optiga-tpm/blob/master/documents/
tpm-appnote-ra.pdf

“Forecast end-user spending on IoT solutions worldwide from 2017 to 2025.” https:
//www.statista.com/statistics/976313/global-iot-market-size/

o4

https://doi.org/10.1007/3-540-45853-0_5
https://doi.org/10.1109/sp.1987.10001
https://doi.org/10.1145/2991079.2991104
https://keylime-docs.readthedocs.io/_/downloads/en/latest/pdf/
https://keylime-docs.readthedocs.io/_/downloads/en/latest/pdf/
https://pypi.org/project/keylime/
https://github.com/tpm2-software/tpm2-tools/tree/master/man
https://github.com/tpm2-software/tpm2-tools/tree/master/man
https://www.raspberrypi.com/documentation/computers/linux_kernel.html#using-menuconfig
https://www.raspberrypi.com/documentation/computers/linux_kernel.html#using-menuconfig
https://github.com/joholl/rpi4-uboot-tpm
https://github.com/joholl/rpi4-uboot-tpm
https://github.com/Infineon/remote-attestation-optiga-tpm/blob/master/documents/tpm-appnote-ra.pdf
https://github.com/Infineon/remote-attestation-optiga-tpm/blob/master/documents/tpm-appnote-ra.pdf
https://github.com/Infineon/remote-attestation-optiga-tpm/blob/master/documents/tpm-appnote-ra.pdf
https://www.statista.com/statistics/976313/global-iot-market-size/
https://www.statista.com/statistics/976313/global-iot-market-size/

	Introduction
	Motivation
	Objectives
	Structure

	Background and Technologies
	History of the TPM
	TPM: Trusted Platform Module
	Architecture
	TPM Versions
	TPM Implementation

	Remote Attestation
	Roots of Trust
	Trusted Platform Boot
	TPM Identity
	Attestation Hierarchy

	TPM Software Stack (TSS)

	Linux IMA
	Measuring Systems

	Keylime
	Threat Model
	Architecture
	Registrar
	Cloud Verifier
	Cloud Agent
	Tenant

	Framework
	Physical Node Registration Protocol
	Three Party Bootstrap Key Derivation Protocol

	Deployment
	Verifier Machine
	Keylime Agent
	Keylime Webapp

	Testing
	Testbed
	Attester Machine

	Keylime Performance
	Preliminary Operations
	Verification Protocol

	Functional tests

	Conclusion
	Bibliography

