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Abstract

Context: The usage of Software metrics is well consolidated in software develop-
ment. Code metrics are software metrics that define methods to measure source
code properties. Using these measures, programmers can have a picture of the
status of a source code, identify potentially problematic parts, and improve the
code during its maintenance. Code Coverage metrics are used to measure the
percentage of code covered by a test suite. Knowing the coverage value, a developer
can improve the code by adding tests to parts of code not covered since these
parts may contain bugs or unwanted changes. Code metrics and coverage are the
foundations for creating the metrics proposed in this thesis, which aim to combine
these two aspects.
Objectives: This thesis has three main objectives. The first one describes an
open-source software developed by Mozilla, called Rust Code Analysis, and the
series of contributions done to this project. The second one is to describe Weighted
Code Coverage, the tool developed during this thesis, containing the implementation
of the new metrics mentioned above. The third one is to study the added value of
these new metrics and show how a developer might use them.
Method: The work done during this thesis can be divided into two main parts.
In the first part, we have researched all metrics that are then being implemented
into Weighted Code Coverage. In addition, we added the minimum and maximum
for some metrics already implemented in Rust Code Analysis. The second part
mainly focused on implementing the researched metrics and developing Weighted
Code Coverage according to good coding practice. During this stage, we have also
improved the tool in performance and memory usage and performed a series of
analyses on different repositories. These analyses have been subdivided into two
categories: spatial and time analyses. The spatial analysis focuses on understanding
the behaviors of the tool on codebases of different sizes. Instead, time analysis
observes how the results obtained by the program change for different versions of
the same codebase.
Conclusions: The work produced in this thesis consisted of implementing weighted
code coverage, a tool that implements four new metrics types. The tool has been
written in Rust programming language, and it computes its metrics starting from
a series of source codes also written in Rust. Since the project is open source,
future contributors can extend Weighted Code Coverage, adding metrics for other
programming languages. At last, we have shown the behavior of these metrics in
actively maintained repositories, specifying which could be their potential uses.
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Chapter 1

Introduction

Code metrics and code coverage are becoming well consolidated in software de-
velopment. These two development aspects are currently separated and rarely
interact with each other, despite being very important during the maintenance
of software. In this thesis, a new set of metrics have been introduced to combine
Code metrics and Code coverage and understand how they interact with each
other. Starting from this considerations we created Weighted Code Coverage, a tool
that can compute four new metrics: WCC Plain, WCC Quantized, CRAP,
SkunkScore. Rust is the programming language used to write Weighted Code
Coverage. We chose Rust because is a new programming language that takes
inspiration from dynamically-typed languages like JavaScript. Rust’s most strong
points are speed, memory safety, and parallelism.
Weighted Code Coverage uses two main library as its backbone: Rust Code Analysis
and Grcov. Rust Code Analysis is used to compute the code metrics needed by the
tool. It handles Static code metrics metrics computed at compile time by analyzing
the source code of a program. Grcov with is mostly used to generate the JSON
parsed to obtain all coverage information about a repository.Grcov was selected
because is optimized to work with codebases written in Rust. Both libraries are
maintained by Mozilla.
We divided this thesis into two main parts:

• The first part explains the main features of Rust Code Analysis like the
implementation of metrics utilized in Weighted Code Coverage and how the
parsing of an Abstract Syntax Tree is performed. We also describe all the
contribution done to the project.

• The second part is focused on the research and implementation of new kinds
of metrics that combine together Code Complexity and Code Coverage in
Weighted Code Coverage. We describe the tool development starting from
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Introduction

the first prototype until the last released version.Also, we present the result
obtained by the tool by analyzing various repositories of different sizes.

We separated the arguments into chapters with the following structure:

• In chapter 2 we will describe the State of Art in static and dynamic metrics.
We will focus on the concepts beneath code coverage and code metrics.

• In chapter 3 we will introduce the main characteristic of the Rust language
and introduce the main features of Rust Code Analysis and how it works.

• In chapter 4 we will introduce Weighted Code Coverage. In particular, we
will illustrate the third-party libraries that compose this tool in addition
to describing how these new metrics have been implemented. We will also
delineate the evolution of this software over time, from its sequential computing
of the first version to the parallel one contained in the last released version.

• In chapter 5 we will present all the results obtained by Weighted Code Coverage.
Two kinds of analysis were done: Spatial Analysis and Time Analysis. For
Spatial analysis, we will study the behavior of the tool with codebases of
different sizes. Time Analysis is based on analyzing the differences in the
same repository over different versions. At last, we will present both the
performance and the memory usage of the program.

• In chapter 6 we will draw the conclusions about the work that has been done.
We will also present future opportunities for the development of the tool and
research about covered topics.
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Chapter 2

State of Art

The increased complexity of modern software applications also increases the diffi-
culty of making the code reliable and maintainable. Code metrics are a type of
measure that provide developers better insight into their code. By using different
code metrics, developers can understand which functions, classes, and/or methods
should be reworked or more thoroughly tested. There are two types of code metrics:

• Static metrics are obtained by analyzing the source code or the program at
compile time. These types of metric are more simple to compute since all the
information is already written and cannot change over time unless the source
code is modified

• Dynamic metrics are computed at run-time or after a program is run. Since
the source code can be run with a variety of different inputs, the result can
also change depending on the input of the program. These types of metrics
are often more complex than static ones.

This thesis will concentrate on static source metrics. One of the many pieces of
information that static metrics give is the code complexity of a program. Code
complexity is a way to quantize how much a piece of code is complicated and
unwieldy for a developer to understand. Another important feature of code
complexity is the possibility to measure the number and complexity of tests needed
for correctly testing that code. Another important measure in modern software
applications is Code Coverage. Code coverage is a software testing metric that
determines the number of lines of code that are successfully covered by test suites.
It is expressed in the percentage of covered code. Path coverage tests all paths in
the code. It is equal to the number of paths covered by tests divided by the total
number of paths in the code. It can be difficult to measure because a piece of code
may have an unlimited or immeasurable number of paths.
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State of Art

2.1 Cyclomatic
Cyclomatic[1] complexity is a software metric used to indicate the complexity of a
program. It was developed by Thomas J. McCabe, Sr. in 1976. The cyclomatic
complexity of a section of code is the number of linearly independent paths within
its control flow graph. The control flow graph of a program can have multiple
paths depending on its number of conditional statement such as if, while and for
loops. For instance, if the source code does not contain any control flow statements
, the complexity would be 1, since there would be only a single path through the
code. If the code had one single-condition, for example an if statement, there would
be two paths through the code: one where the if statement evaluates to true and
another one where it evaluates to false, so the overall complexity would be 2. Two
nested single-condition if statements would produce a complexity of 3. From a
mathematical point of view, the cyclomatic complexity of a program (or function),
given its control-flow graph, is equal to:

M = E − N + 2

where:

• E = the number of edges of the graph.

• N = the number of nodes of the graph.

The cyclomatic complexity can also be applied to multiple programs (or functions).
In that case the overall cyclomatic complexity is equal to the sum of all the
complexities for each program.

M =
N∑︂

i=1
Mi

Tom McCabe introduces the following categorisation to interpret cyclomatic com-
plexity for a single module:

• 1 - 10 Simple procedure, little risk

• 11 - 20 More complex, moderate risk

• 21 - 50 Complex, high risk

• > 50 Untestable code, very high risk

Another application of cyclomatic complexity is in determining the number of
test cases that are necessary to achieve sufficient coverage for a specific piece of
code.

Cyclomatic complexity can be used to obtain these information about the code:
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• The cyclomatic complexity is an upper bound for the number of test cases
necessary to achieve a complete branch coverage.

• The cyclomatic complexity is a lower bound for the number of paths through
a control-flow graph. Assuming that each test is a path, the number of cases
needed to reach path coverage is equal to the number of paths that can actually
be taken. However some paths may be impossible (or "infinite") so this number
can sometimes be less than cyclomatic complexity.

The code below show an example of Cyclomatic complexity for a simple Java
function:

1 i n t func t i on ( ) { // Complexity s t a r t at 1
2 i n t n1 = 72 , n2 = 120 , lcm ;
3 lcm = ( n1 > n2 ) ? n1 : n2 ;
4 whi le ( t rue ) { // whi l e complexity +1
5 i f ( lcm % n1 == 0 && lcm % n2 == 0 ) {// i f complexity +1
6 break ;
7 }
8 ++lcm ;
9 re turn lcm

10 }

Listing 2.1: Example of Cyclomatic Complexity computation in Java

2.2 Cognitive
Cognitive[2] complexity is a metric developed by G. Ann Campbell in 2018. Cogni-
tive complexity has been formulated to address modern language structures and it
measures the cognitive effort required to understand a block or the entire code of
a program. Through cognitive complexity, a developer can measure how much a
produced code is hard to understand for other programmers.

Cognitive complexity can be calculated using three simple rules:

1. Ignore structures that allow multiple statements to be shorthanded into one

2. Increment by one its value for each break in the linear flow of the code

3. Increment by one its value when flow-breaking structures, such as If, While,
etc., are nested.

The complexity score can have four types of different increments:

• Nesting - number of nesting control flow structures one inside the other: If
inside whiles, nested ifs, etc...
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• Structural - number of control flow structures that are subject to a nesting
increment, and that increase the nesting count

• Fundamental - number of statements not subject to a nesting increment

• Hybrid - number of control flow structures that are not subject to a nesting
increment, but which increase the nesting count

Any type of increment increases the final score by one, but differentiating among
types makes it easier to understand where nesting increments have and have not
been applied. Now, the rules defined above will be analyzed more in detail.

2.2.1 Rule 1
Cognitive complexity incentives good coding practices, so it does not consider any
construct or technique that makes code more readable. A perfect example of this
rule is to used methods instead of conditional statements, like isEmpty() to check
if a vector is empty instead of checking with an if that its length is equal to zero.
Breaking code into methods allows you to condense multiple statements into a
single, evocatively named call. In this case, the complexity does not increment
for methods. Another example can be the Java ? operator that can shorten the
following piece of code:

1 //Bad p r a c t i c e v e r s i on
2 MyObj myObj = n u l l ;
3 i f ( a != n u l l ) {
4 myObj = a . myObj ;
5 }
6

7 // Shortened Vers ion
8 MyObj myObj = a ? . myObj ;

Listing 2.2: Rule one example

The meaning of the bad practise version takes a moment to be processed by
the brain, while the shortened version is immediately clear once the developer
understand the use of the ? operator in Java. When the ? operator is used, the
score does not increase. Instead, when the bad practice version is used, cognitive
complexity is increased by one.

2.2.2 Rule 2
Cognitive Complexity assesses structural increments for:

• Loop structures: for, while, do-while, etc...
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• Conditionals: ternary operators, if, if-then-else. In the case of if-then-else, the
complexity only increases by one since the cognitive cost has already been
paid by the if construct.

• Catches: A catch represents a kind of branch in a control flow as well as an if
construct. Therefore, each catch clause results in a structural increment for
Cognitive Complexity, so the score will increase by one independently by the
number of handled exceptions. try and finally blocks are ignored since they
do not change the flow of a program.

• Switches: A switch and all its case constructs increment by one the complexity
score. This happens because a switch can be read more easily than a chain of
if-then-else statements.

• Sequences of logical operators/booleans: cognitive does not increment for
each binary logical operator. Instead, it does if the sequence is hard to read
A sequence of logical operators is harder to read when there is a change of
operators during the sequence. For example, the sequence a AND b AND c
AND d is easier to read than a OR b AND c XOR d. The second sequence
is harder to read since boolean expressions are more difficult to understand
when composed of mixed operators.

• Recursion: Cognitive Complexity increases by one each method in a recursion
cycle. In fact, the execution flow at each recursion step is not intuitive and
understandable as an iterative approach.

• break or continue: These statements disrupt the execution flow of the pro-
gram.Cognitive complexity increase by one for each one of these statement in
the code. The return statement is ignored, since it breaks the execution flow
making the code much more readable.

2.2.3 Rule 3
For a programmer, a sequence of five if and for structures would be easier to
understand than the same structures nested one inside the other, regardless of the
number of execution paths present in each structure. Since nesting increases the
mental effort to understand a code, Cognitive complexity increments the score for
nesting. Specifically, each time a structure, that causes a structural or hybrid type
of increment, is nested inside another structure the cognitive complexity must be
incremented by the number of nesting. The following example shows how nesting
increment works:
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1 void myMethod ( ) {
2 t ry {
3 i f ( cond i t i on1 ) { // +1
4 f o r ( i n t i = 0 ; i < 10 ; i++) { // +2 ( i f =1 + nes t ing =1)
5 whi le ( cond i t i on2 ) { } // +3 ( whi l e=1 + nes t ing =2)
6 }
7 }
8 } catch ( ExcepType1 | ExcepType2 e ) { // +1
9 i f ( cond i t i on2 ) { } // +2 ( catch=1 + nes t ing =1)

10 }
11 } // Cogni t ive Complexity 9

Listing 2.3: Example of nesting increment

Cognitive Complexity breaks from the practice of using mathematical models to
assess software maintainability. It uses human judgment to assess how structures
should be counted and how a code should be maintained in order to be more
readable and understandable.

2.3 LOC
Lines of Code (LOC) is a metric that counts the number of lines of text in a
program. There is numerous variant for the LOC metrics:

• Source Lines of Code(SLOC): It returns the total number of lines in a program.

• Physical Lines of Code(PLOC): It returns the total number of instructions
and comment lines in a program.

• Logical Lines of Code(LLOC): It returns the number of logical lines (state-
ments) in a program – there may be several statements in one physical line
of code. If multiple instructions or logical statements are in the same line
they are still counter separately and the LLOC metrics will increase multiple
times.

• Comment Lines of Code(CLOC): It returns the number of comment lines in
a program.

• Blank: it counts the number of blank statements in a program.

To better understand LOC metrics some examples will be shown using C and
Pythn[3] as programming languages. The following examples use these languages
because they are the most taught from an academic point of view and are known
even by people with very basic knowledge of programming languages.
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1 #inc lude <s t d i o . h>
2

3 i n t main ( )
4 {
5 i n t a , b ;
6 p r i n t f ( " \ nHel lo \n " ) ;
7

8 a=1; b=2; //LLOC +2
9 //Comment at the end

10 }

Listing 2.4: LOC: example in C

• SLOC equal to ten.

• PLOC equal to seven. There are only seven lines of code that are not comments
or empty lines

• LLOC equal to four. The instructions are only the function call and the 2
assignment operations. It can be noted that despite being in the same line
the two assignments count s different instructions and therefore are counted
separately for this variant.

• CLOC equal to two. There are only two lines of comments.

• Blank equal to two.

LOC metrics are strongly dependent on the programming language syntax used
to write code. For instance, if we transpose the same example using Python the
number of lines will be slightly smaller since Python does not need brackets. In
the example below the SLOC is only equal to seven but the program is the same:

1 import os
2

3 de f main ( ) :
4 p r i n t f ( " \ nHel lo \n " )
5

6 a=1; b=2; #LLOC +2
7 #Comment at the end

Listing 2.5: LOC: example in Python
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2.4 WCC
The Weighted Code Coverage (WCC) is a new kind of metric derived from a
mechanism proposed by Luca Ardito and others in the Sifis-Home project[4]. This
metric presents two different versions :

• WCC Plain: the complexity value of a file (or function) is given to each line
as a weight, then the metric score is computed by summing the weights for
each lines covered. The score is than divided by the PLOC of the program.

• WCC Quantized: Each line has a different weight depending on its complexity
and coverage. Each non covered line has a weight of zero. For each covered line
we need to check the complexity of the function it is part of, if the complexity
is lower than a given threshold then the line’s weight is one otherwise the
weight is two. The last step is to sum all the weight and divide the final sum
by the PLOC of the file.

Both these metrics are computed either on an entire source file f or considering
a single method/function in a program. For both versions, we can use different
complexity metrics. As code complexity both Cyclomatic and Cognitive metrics
explained in the previous chapters can be used. Both metrics were create as a
mechanism to score code considering both complexity and coverage. The metrics
are based in the following observations:

• Lines not covered by test are the worst case, without coverage bugs or unwanted
changes cannot be detected by any means.

• Lines covered but with a high complexity score are considered safe since bung
can still be detected. However, the high complexity can couse some issue at
understanding the code.

• Lines covered and with low complexity are the best-case scenario.

Supposing a fixed complexity the minimum and maximum values are:

• WCC plain : [0, comp(f)]

• WCC quantized : [0,2 ∗ SLOC(f)/PLOC(f)]

Algorithms 1 and 2 show an implementation for computing the two WCC
versions.

For these algorithms the following values are given as inputs:

• ploc: the total PLOC of the file/function analyzed.
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• comp: the total code complexity of the file for WCC Plain. For WCC
Quantized the algorithm must implement a way to retrieve the complexity of
a single block of code

• lines: Every line of a file with the knowledge if they are comments or blank
and if they are covered at least once or not.

Algorithm 1 Calculate WCC plain metric for a single file
Require: plocofthefile
Require: complexityofthefile

sum = 0.0
if ploc<=0 then return
end if
for line in lines do

if line is not a comment or blank AND line is covered at least once then
sum = sum + complexity

end if
end forreturn sum/ploc

Algorithm 2 Calculate WCC quantized metric for a single file
Require: plocofthefile
Require: complexityofthefile

sum = 0.0
if ploc<=0 then return NULL
end if
for line in lines do

if line is not a comment or blank AND line is covered at least once then
get complexity of the block the line is part of
if blockComplexity > 15.0 then

sum += 2.0
else

sum += 1.0
end if

end if
end for
return sum/ploc

11



State of Art

2.5 CRAP
CRAP[5] is a metric created by Alberto Savoia and Bob Evans that relates cyclo-
matic complexity to path code coverage. C.R.A.P. is an acronym that stands for
Change Risk Anti-Patterns. It is designed to analyze and predict the amount of
effort and time required to maintain or modify an existing body of code. Let f be
a source file:

CRAP (f) = comp(f)2 ∗ (1 − cov(f))3 + comp(f)
• comp(f) is the code complexity of the file(or function). CRAP was theorized

using Cyclomatic complexity.

• cov(f) is the code coverage of a file or a function. It must be given in the
range [0,1].

When a function or a file has a very high CRAP score, they are very risky to
change. In fact, either the program is really complex or it has a very low coverage
percentage. In both cases applying any change to that program will riskily add
bugs or complications to the program. The CRAP formula was derived empirically
as a result of a best-fit curve obtained through a trial-and-error process and various
tests from numerous projects. Putting together these two aspects lead to a series
of considerations. More complex a method is, high complexity, higher are the
possibilities to introduce errors by whom is maintaining the program. So more
complex functions need more testing in order not to be risky and problematic for
changes. On the other hand, when the code is not very complex, but untested, if
developers insert a bug in the program it will not be detected with testing and it
will ruin the program. Defects and bugs can live both in complex and untested
methods, and when that happens, a program presents serious maintainability issues.
When the CRAP score is bigger than 30, a software is considered “crappy” and
adding more tests or reducing the complexity value is necessary, but these values
can vary depending on the programming language or size of the code. In fact if
some developer want to obtain the crap score of an entire project it could exceed
the threshold easily. To understand how complexity and coverage influence one the
other, the following example is provided. With the CRAP formula some empirical
consideration can be made. If a function has a cyclomatic complexity of 10, in
order not to be crappy it must have a coverage of 42% or more. With a cyclomatic
complexity of 25, the function must have a coverage equal to or greater than 80%.
If the function cyclomatic complexity exceeds 30, then it is impossible make a
method non-crappy. From the formula we can obtain the maximum and minimum
value for CRAP depending on the complexity metric:

• The minimum value can be obtain with maximum coverage. This way
CRAP (f) = comp(f)2 ∗ (1 − 1)3 + comp(f) = comp(f)
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. The minimum value is comp(f).

• The maximum value can be obtain with coverage equal to zero. This way

CRAP (f) = comp(f)2 ∗ (1)3 + comp(f) = comp(f)2 + comp(f)

. The maximum value is comp(f)2 + comp(f).

Algorithm 3 Calculate CRAP for a single file
Require: comp already given

covered = 0.0
totalLines = 0.0
for line in linesCovered do

if line is not a comment or blank then
totalLines = totalLines + 1
if lineiscoveredatleastonce then

covered = covered + 1.0
end if

end if
end for
coverage = covered/totalLines
return comp2 ∗ (1 − coverage)3 + comp

2.6 SkunkScore
SkunkScore[6] is a metric that combines code smells, code coverage, and code
complexity to know which are the most complex modules with less coverage. This
metric was developed by Ernesto Tagwerker on October 2020. It is born has a metric
to evaluate the project he was working on. The metric combines some metrics that
ware already used in his work by other modules. Code smells are certain structures
in the code that indicate violation of fundamental design principles and negatively
impact design quality. Code smells are not bugs; they are not technically incorrect
and do not prevent the program from functioning.

Let f be a source file:

Skunk(f) = (smells(f) + comp(f)/COMPLEXITY FACTOR) ∗ (100 − cov(f))

• smells(f) is the sum of the cost of all smells present in a source file or function.
The cost can vary depending on the framework used for finding code smells.
COMPLEXITYFACTOR is a magic number used to reduce complexity.
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The default value is 25 which was obtained by empirical tests done by the
authors. cov(f) is the code coverage of a file or function. The values must be
in a [0,100] range.

Finding and assigning a cost to code smells is not an easy task.
A programmer may not be able to find code smells or is not interested in them.

For these reason we propose a non-smells version of SkunkScore. In this version,
let suppose no code smells are present in the code, therefore smells(f) is always
equal to zero. So the new no-smell formula for SkunkScore is:

Skunk(f) = (comp(f)/COMPLEXITY FACTOR) ∗ (100 − cov(f))

Henceforth, Skunkscore word refers to the no-smells version. For SkunkScore
no-smell version the minimum value is comp(f)/COMPLEXITY FACTOR and
the maximum value is comp(f) ∗ 100/COMPLEXITY FACTOR. This values
are obtained by fixing the complexity and using the minimum and maximumm
value of the code coverage. Algorithm 4 and Algorithm5 shows a implementation
for SkunkScore and SkunkScore no-smells respectively.

Algorithm 4 Calculate SkunkScore metric for a single file
covered = 0.0
totalLines = 0.0
smells = 0.0
COMPLEXITY FACTOR = 25.0
for line in linesCovered do

if line is not a comment or blank then
totalLines = totalLines + 1.0
if lineiscoveredatleastonce then

covered = covered + 1.0
end if

end if
end for
for line in the file do

if there is a code smell then
smells = smells 1.0

end if
end for
coverage = covered/totalLines * 100
cost = (comp/COMPLEXITY FACTOR) + smells return cost ∗ (100 −
coverage)
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Algorithm 5 Calculate SkunkScore no-smells metric for a single file
covered = 0.0
totalLines = 0.0
COMPLEXITY FACTOR = 25.0
for line in linesCovered do

if line is not a comment or blank then
totalLines = totalLines + 1.0
if lineiscoveredatleastonce then

covered = covered + 1.0
end if

end if
end for
coverage = covered/totalLines * 100
cost = (comp/COMPLEXITY FACTOR) return cost ∗ (100 − coverage)
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Chapter 3

Rust Code Analysis

3.1 Rust
Rust[7] is a modern programming language designed by Graydon Hoare and others
at Mozilla Research. First announced in 2010 with support from Mozilla, then the
first stable release Rust 1.0 became available in 2015 as an open-source programming
language. Its most strong points are speed, memory safety, and parallelism. For
these reasons Mozilla and other companies are slowly adopting Rust as programming
language to develop new applications. Some examples of functions and variable
declaration in Rust:

1 // Function are dec l a r ed with the fn keyword i f the re i s a re turn
value type i t must be s p e c i f i e d a f t e r the −>

2 fn function_exemple ( arg1 : i64 , arg2 : i 64 ) −> Str ing {
3 i f arg1 == arg2
4 {
5 p r i n t l n ! ( "Same arguments " )
6 }
7 // Return can e omitted by an expr e s s i on with no semi column
8 "END OF FUNCTION"
9 }

Listing 3.1: Example of function declaration in Rust
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1 // Each rus t executab l e need a main func t i on
2 fn main ( ) {
3 // I n i t i a l i z i n g a constant v a r i a b l e with type i64
4 l e t a : i 64 = 1 ;
5 // Mutable v a r i a b l e can change t h e i r va lue a f t e r i n i t i a l i z a t i o n
6 l e t mut b : i 64 ;
7 // No need to e x p l i c i t l y say the v a r i a b l e type , the compi ler w i l l

s e t i t depending on next i n s t r u c t i o n s
8 l e t mut c ;
9 b=−4;

10 b=2;
11 // Now v a r i a b l e c has type s e t to f64 , any othee ass ignment with

d i f f e r e n t va lue type w i l l r e s u l t in an e r r o r by compi le r .
12 c =1.5 ;
13 // Pr int to stdout
14 p r i n t l n ! ( "b={:?} " ,b ) ;
15 // ERROR c has type f64 but we are t ry ing to a s s i gn a i64
16 c=5;
17 }

Listing 3.2: Example of Variable declaration and initialization in Rust

Rust mostly utilize LLVM[8] for compiling , all its upgrades and performance
improvement are propagated to Rust. Rust need to be compiled before it can be ran.

In order to achieve memory safety Rust does not permit the use of NULL pointers,
dangling pointers, or data races. All data types must be already defined and every
type is always assigned to each variable at compile time. Each variable can be
mutable or immutable, they are differentiate with the use of the mut keyword.The
data type can be either preassigned by the programmer or the compiler can derive
it from the first assignment of the variable. Rust also supports Generic Data Types.
Developers can use generics to create definitions for objects, like function signatures
or structs, which they can then use with many different concrete data types. To
use generics a function or strucs must be followed by the <> operator with a letter
represent the generic type.
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The code below show two examples of Generic Data type, one for a function
and one for a struct:

1 fn max<T>( l i s t : &[T] ) −> &T {
2 l e t mut max = &l i s t [ 0 ] ;
3

4 f o r item in l i s t {
5 i f item > l a r g e s t {
6 max = item ;
7 }
8 }
9 max

10 }
11

12 s t r u c t Point<T> {
13 x : T,
14 y : T,
15 }
16

17 fn main ( ) {
18 l e t integer_p = Point { x : 5 , y : 10 } ;
19 l e t f loat_p = Point { x : 1 . 0 , y : 4 . 0 } ;
20 l e t number_list = v e c ! [ 3 4 , 50 , 25 , 100 , 6 5 ] ;
21 l e t r e s u l t 1 = max(&number_list ) ;
22 l e t c h a r _ l i s t = v e c ! [ ’ y ’ , ’m’ , ’ a ’ , ’ q ’ ] ;
23 l e t r e s u l t 2 = max(& c h a r _ l i s t ) ;
24 }

Listing 3.3: Example of Generics in Rust

Rust does not support the NULL values so to emulate variables or pointers being
either valid or NULL Rust provides an Option<T> type. Option<T> has two
possible variants:

• None indicates a failure or lack of value.

• Some(val), a structure that wraps a value with type T.

Rust does not implement automatic garbage collection, instead the Resource Ac-
quisition Is Initialization (RAII) convention is used to manage resources. The RAII
convention stipulate the the resource allocation is done during object initialization,
by the constructor, while resource deallocation is done during object destruction,
by the destructor. There is the concept of references (using the ’&’ symbol) but
they are all checked at compile time in order of prevent dangling pointers and
other forms of undefined behavior. Each reference has a lifetime. A lifetime is
a construct borrow checker uses to ensure all borrows are valid. Specifically, a
variable’s lifetime begins when it is created and ends when it is destroyed. While
lifetimes and scopes are often referred to together, they are not the same. Each
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reference in Rust has an unique owner, references and values can be borrowed if
necessary, for this cases a borrower checker is used at compile time to verify the
validity of an action.

For handling shared behavior between different types and struct Rust uses traits
that can be implemented using the Trait keyword in a very similar way as Java
interfaces. For example any type that can be printed out as a string implements
the Display or Debug traits. The programmer can implement trait for struct or
enum with the impl keyword.
An example Traits in Rust:

1 // Dec lar ing new t r a i t c a l l e d Display , with only one func t i on d i sp l ay
2 t r a i t Display {
3 fn d i sp l ay (& s e l f ) −> Str ing ;
4 }
5 s t r u c t Person {
6 name : Str ing ,
7 surname : Str ing ,
8 Age : i 64
9 }

10 // Implementing t r a i t f o r Person s t r u c t
11 impl d i sp l ay f o r Person {
12 fn d i sp l ay (& s e l f ) −> Str ing {
13 f o rmat ! ( " {} {} , {} years o ld " , s e l f . surname , s e l f . name , s e l f .

age )
14 }
15 }

Listing 3.4: An example about Trait in Rust
Rust fully supports the usage of macro in any source file. Macros are a way
of writing code that writes other code, which is known as metaprogramming.
Metaprogramming is useful for reducing the amount of code you have to write
and maintain, which is also one of the roles of functions. However, macros have
some additional powers that functions don’t. A function must declare the number
and type of parameters the function has. Macros can take a variable number of
parameters. Also, macros are expanded before the compiler interprets the meaning
of the code, so a macro can implement a trait on a given type. A function can’t
because it gets called at runtime and a trait needs to be implemented at compile
time. The two main downsides of macros are:

• Macros definitions are more complex than functions. Macros have different
structures and operations than the ones used in function so a developer can
have issues understanding them.

• Macros must be defined before the developer can use then, on the other end,
a function can be defined anywhere and call anywhere.
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Rust implements two types of macros: declarative macros and procedural macros.
Declarative macros can be declared like functions. To declare a declarative macro
a programmer must use the macro_rules! keyword followed by the macro name
and then the body between brackets. The macro can be called by using its name
followed by the ! symbol. Procedural macros allow creating syntax extensions as
execution of a function. There are three types of procedural macros:

• Function-like macros: macros defined by a public function with the proc_macro
attribute. these macros must be called in the same way as declarative macros.
The function that defines a procedural macro takes a TokenStream as input
and produces a TokenStream as an output.

• Derive macros add new traits into the scope of the object they are on. They
can be used with the #[derive(name) attribute.

• Attribute macros define new attributes to attach to an item.

An example of macros in Rust:
1 // Dec l a ra t i v e macro
2 macro_rules ! vec {
3 ( $ ( $x : expr ) ,∗ ) => {
4 {
5 l e t mut temp_vec = Vec : : new ( ) ;
6 $ (
7 temp_vec . push ( $x ) ;
8 ) ∗
9 temp_vec

10 }
11 } ;
12 }
13 // An example o f d e f i n i n g a procedura l macro
14 pub fn some_name( input : TokenStream ) −> TokenStream {
15 }
16 // An example o f us ing a de r i v e macro
17 #[ de r i v e ( Display , Debug ) ]
18 s t r u c t Pancakes ;
19

20 // An example o f an a t t r i b u t e macro
21 #[ route (GET, "/ " ) ]
22 fn index ( ) { //CODE }

Listing 3.5: An example of macros in Rust

Rust packages are called crates and cancan be imported by a programmer
in a Rust program with the keyword use that can be used to import function,
structs, enum and traits with the following syntax use create::{to_import}. The
programmer can import specific function or import anything in the crate using the
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∗ symbol. The crate keyword can be used to specify the current crate. All variable,
function,traits, enum and struct are by default private and can be visible only in
module they are defined, To make any of these entity visible outside the package
is to add the pub keyword and then others package can import the entities with
the use declaration. If a construct need to be visible to other modules in the same
package but not be visible outside the package the pub(crate) keyword need to be
used. The Rust ecosystem has a large variety of components that can be exploited,
below some of the main components of a Rust application:

• Rustup: It is the main Rust toolchain installer. It manages the installation
and update all the others Rust components.

• Cargo: It is Rust packet manager and build system. Cargo downloads, compiles,
distributes, and uploads crates on an official registry called crates.io[9] that
maintains all crates developed in the Rust Community. Cargo can be used
to create new Rust projects. Each project can be composed by a single
crate or multiple crates that may depend one to each other. The set of all
crates composing the project is called the workspace. All crates dependencies,
specified in a Cargo.toml file along with semantic versioning requirements,
this way the programmes can decide which version to use for each dependency.
Cargo also wraps other Rust components as clippy and rustfmt.

• Clippy: It is Rust’s built-in linting tool to improve the correctness, performance,
and readability of Rust code. Clippy has a series of rules, which can be browsed
online and filtered by category.Some rules are disabled by default, others can
be disabled if necessary.

• Rustfmt: it is a code formatter for Rust. It takes Rust source code as input
and format it in order to produce a code formatted in accordance with the
Rust style guide. It can be launched wit Cargo.

3.2 Introduction to RCA
Rust Code Analysis[10] is a Rust library used to analyze and obtain information
from the source codes written in different programming languages. The initial
version was developed by Mozilla[11] mostly for supporting Firefox development
processes. Since Firefox has thousands of change per month, this tool has been
created in order to evaluate the inherent risk of a change, prevent the introduction
of new defects and avoid increasing code complexity. The library can be found
on GitHub[12] and Crates.io[13]. Rust Code Analysis can be executed on the
most commons operating systems (i.e Linux, macOS, and Windows). The library
dependencies are managed by Cargo[14] and it is tested with a large quantity of
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unit tests that takes into consideration both the most typical use and corner cases.
Rust Code Analysis has, in addition to the standard APIs usage, also a command
line interface called rust-code-analysis-cli which allows a fast and simple use of
all Rust Code Analysis functionalities. Rust Code Analysis can be viewed as a
combination of two main components:

• Language parsers: parsers are implemented for each language supported by
Rust Code Analysis. Parsers are used to analyze the language and construct
the Abstract Syntax Tree

• Metrics computation modules: each metric has its own module with all the
code used to compute that metric.

The library is still expanding in both of these 2 components since a developer
can implement a new metric or a new language without needing to modify the
other component.

The Rust Code Analysis library have a large quantity of functions but all of
them are need in order to implements the following four main features:

• Parse a source file and generate the relative Abstract Syntax Tree. This tree
can also be printed in the command line as shown in figure 3.1.

• Use the information extracted from the Abstract Syntax Tree in order to
detect in advance possible parsing errors present in the code.

• Parsing the AST and calculate all the metrics in order to evaluate the code
quality.

• Print the metrics in the standard output or exporting them in the following
available formats: JSON, TOML, CBOR.

3.3 Spaces
The first step performed by Rust Code Analysis is the creation of an Abstract
Syntax Tree of the code to be examined. An Abstract Syntax Tree (AST) is a
tree representation of the source code that describes the structure of the source
code. Each node in the tree represents a meaningful part of the code. The Abstract
Syntax Tree is very similar to a Concrete Syntax Tree but it includes less meaningful
information about the code, for example punctuation and parentheses, instead AST
carry only vitals information such as:

• Variable types, and location of each variable declaration

• Order and definition of executable statements
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• Left and right components of binary operations

• Identifiers and their assigned values

Each information is stored as a syntax node which are the basic data structure
used for navigate the whole AST. The syntax nodes can be used to extract a lot of
infractions but they are usually used to:

• List all the components present in the analyzed code

• Detect parsing error in the program

• Count the number of components of a certain kind.

Each node contains a series of information that are vital to analyze the entire
program. To build an AST, Rust Code Analysis uses tree-sitter [15], an open-source
library that covers a large multitude of languages including Rust. Each Syntax
node in tree-sitter has numerous filed and properties but the most important for
Rust Code Analysis are the following:

• kind and kind_id: the type of a node. It can be represented as a String
or as a numeric id. The kind parameter varies depending on the considered
language, but in general it is used during the AST parsing to analyze the code
(i.e finding function declaration, if or while construct, etc..). It is also adopted
to represent errors found during the parsing of a code.

• start_line and end_line: Starting and ending position of a node, defined
as a pair of row and column of source code.

• start_byte and end_byte: Start and ending byte of a node in the code,
very useful when code is handled as a collection of bytes.

• children: The list of all children of a node. It can be used to traverse the
whole AST.

• parent and siblings pointers: pointers used to access the parent node pointer.
The next and previous pointers, can be used to access the siblings of the
node. This pointers can be used to traverse tree backward or horizontally.

All Abstract Syntax Trees generated by tree-sitter and Rust Code Analysis starts
with a root node that encapsulates the whole examined source file. This root node
contains all global information of a source file such as the total number of lines
and size in bytes. For more details take a look at figure 3.1. After the AST is
computed, Rust code analysis parses it and divide the code into a set of spaces.
A space is a structure that incorporates a function , a closure, a class and so on
depending on the language.
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This is the structure implementation in the library:
1 pub s t r u c t FuncSpace {
2 pub name : Option<Str ing >,
3 pub s t a r t _ l i n e : us i ze ,
4 pub end_line : us i z e ,
5 pub kind : SpaceKind ,
6 pub spaces : Vec<FuncSpace >,
7 pub metr i c s : CodeMetrics ,
8 }

Listing 3.6: RCA: FuncSpace struct

• name is the name of a function, in can be not available in the case the value
is None. For the Unit space the name is set to the name of the file. For some
closure that may have no name it is set to anonymous.

• start_line is the starting row of a space in the code.

• end_line is the ending row of a space in the code.

• kind is the kind of the space. The space kinds change depending on the
language used: function and Unit are used for all languages, class is used in
Java and C++, struct can be available in Rust, C and C++, trait and impl
are only available for the Rust language, namespace can be found only in
C++.

• spaces is the list of all children spaces.

• metrics is structure that contains all metrics values for that space.

A Unit space is always created at the start of the parsing. The starting Unit space
always encapsulates the whole source file and every other retrieved spaces as its
children. When all lines in a space have been parsed the space ita merged with
its parent space.The parsing process continue until all the spaces are parsed and
merged into the Unit space. Starting from the Unit space all metrics and spaces
can be reached by traversing the tree. To maintain all the information needed to
calculate metrics, two stacks are used: a space stack which keeps track of each
space to be examined and a node stack which a couple of two variables (node,
nesting_level).

The general algorithm used for parsing an AST in Rust Code Analysis can be
summarized in the following steps:

1. The two stacks are initialized: the space stack is empty and the node stack
is initialized with the root of the AST and nesting level zero. A last_level
variable is initialize to zero.
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2. A node and nesting level are popped from the node stack. Compare the
nesting level with last_level. If the nesting level is less than the last_level
it means the previous node was the last node of a space so we need to make
the last computations for that space. These last computations consist of: set
minimum , maximum ad average of the space and then merging parent and
child spaces together.

3. The last node is checked whether it is a function declaration. If a new function
declaration has been found, a new space is created with its default values and
then added to the space stack. Then the level is incremented.

4. The last space is taken from the stack and we used the node to compute and
update all the metric for the space.

5. Then all the children of the last node are pushed into the node stack.

6. Repeat from point 2 until the node stack is empty.

7. If after we compute all the nodes there are still spaces in the space stack
compute the cumulative values for all the metrics for all the remaining spaces.

For example lets analyze the following piece of code:
1 fn f ( ) {
2 p r i n t l n ! ( " I am a func t i on " ) ;
3 }
4

5 fn main ( ) {
6 // I n i t i a l i z i n g v a r i a b l e
7 l e t a = 3 . ;
8 f ( ) ;
9 }

Listing 3.7: Code for AST
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Figure 3.1: Generated AST for the code
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Figure 3.2: Generated AST for the example code

27



Rust Code Analysis

Figure 3.3: Stacks evolution for each step
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Its Abstract Syntax Tree is show in figure 3.1. Figures 3.2 and 3.3 show what
happen to all the stacks in the algorithm discussed above. These are main steps
executed by Rust Code Analysis while parsing the AST:

• The first node of the AST is always the root. When the root is parsed Rust
Code Analysis creates a Unit space that will act as a container for all the
next spaces. The Unit Space also contains all the metrics for the whole file.
Immediately after the space is created all its attributes are set and each metric
is set to its default values.

• The two children nodes from the root are then pushed into the stack.

• The first function_item node is parsed. A new function space is created with
a name equal to the function’s name. The newly created state is pushed into
the space stack. After that Rust code analysis starts parsing all the children
of this node and updates each metric accordingly.

• When the last child node of the function is parsed, the function space is
merged with its direct parent which is the starting Unit space. The function
space is then removed from the stack after the merging is done.

• The same operations are done for the second function.

• When we arrive at the end of the AST the last metrics are computed and the
Unit space is returned as root with all the information needed. All the other
spaces can be obtained by visiting all the Unit spaces for children.

3.4 Minimum and Maximum Metrics
All Rust Code Analysis metrics are computed without running the source code so
the library can only compute static metrics and cannot obtain any information at
run-time. The library implements the following metrics: Cyclomatic, Cognitive,
NEXIT, NOM, NOM, NARGS, SLOC, PLOC, LLOC, CLOC, Blank, Halsted,
Maintainability Index.

With the exception of Halsted and Maintainability Index, for all the other
metrics, Rust Code Analysis computes the average, minimum and maximum values.
For each metric, the minimum and maximum values represent the most and the
least complex space in a source file. With this information a programmer knows on
which part of the code needs to intervene in order to lower the overall complexity.

In Rust Code Analysis each space contains a CodeMetrics struct, used to
encapsulate all the metrics computed by the tool, which is just a wrapper for each
struct associated to a metric implemented in the library. Despite their differences
all the metrics have a set of common behavior, in particular each metric in Rust
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Code Analysis has always a function used to merge one metric into another metric
of the same type. This happens when two space are merged together. A metric
is merged into another one usually when the computation of that metric for each
AST node has been completed and the considered space is a sub-space of the one is
going to be merged into. The minimum and maximum of each space is computed
in two steps :

• After a space has completed the computation of all its nodes the com-
pute_minmax() function with compare its complexity with its minimum
and maximum and set the rights value. This is useful in case there are spaces
already merge. If there are no spaces to merge in that case minimum and
maximum will be equal the the only space complexity.

• During a merge the two spaces minimum and maximum will be compered and
set accordingly with respect to the merging space.

Each metric has its own implementation of the function compute() which usually
takes as arguments a node and the struct with the data of the considered metric.
This function checks the node kind and updates the metric data when the necessary
conditions are satisfied. In order to check the node kind its kind_id is used. For
each different language Rust Code Analysis has implemented an enum that maps
any type of kind_id for each language supported. In order to implement minimum
and maximum for each metric, some changes have been made to allow each space
to have information on the parts associated to its code, excluding other spaces
information in the process. In this thesis we will put more emphasis on McCabe’s
Cyclomatic Complexity and the Cognitive complexity as they are the most studied
and used during the whole thesis work.
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3.4.1 Cyclomatic Complexity
As explained more in detail in section 2.1, McCabe’s Cyclomatic Complexity just
counts the number of linearly independent paths present in the source code.

1 // The ‘ Cyclomatic ‘ metr ic .
2 #[ de r i v e ( Debug , Clone ) ]
3 pub s t r u c t Stat s {
4 cyc lomat i c : f64 ,
5 n : us i z e ,
6 }
7 impl Defau l t f o r Sta t s {
8 fn d e f a u l t ( ) −> S e l f {
9 S e l f {

10 cyc lomat i c : 1 . ,
11 n : 1 ,
12 }
13 }
14 }
15 // Merges a second ‘ Cyclomatic ‘ metr ic i n to the f i r s t one
16 pub fn merge(&mut s e l f , o ther : &Stat s ) {
17 s e l f . cyc lomat i c += other . cyc lomat ic ;
18 s e l f . n += other . n ;
19 }

Listing 3.8: Cyclomatic implementation in RCA

The first implementation of the cyclomatic metric only contained two variable:
cyclomatic, which is the cumulative sum of the cyclomatic complexity of the actual
space plus the ones of all its sub-spaces, and n, which is the number of spaces used
for calculating the average over spaces.

The cyclomatic average value is just obtained by dividing cyclomatic per the
number of spaces n. When a new space and cyclomatic metric are created, they
are both set to 1.

Two cyclomatic metrics are merged in this way: the number of sub-spaces and
the cyclomatic_sum from the second space are added to the ones of the first space,
in this way all the information is propagated one level up.

Every time the compute() function examines a node, it just checks whether the
considered node is a statement which generates a new path in the source code.
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Example of compute() cyclomatic implementation for the Rust Language
1 // The ‘ Cyclomatic ‘ metr ic .
2 #[ de r i v e ( Debug , Clone ) ]
3 impl Cyclomatic f o r RustCode {
4 fn compute ( node : &Node , s t a t s : &mut Stat s ) {
5 // Enum with a l l the kind_id f o r the Rust Language
6 use Rust : : ∗ ;
7 // I f the node kind \_id i s one o f the se increment cyc lomat i c
8 match node . ob j e c t ( ) . kind_id ( ) . i n to ( ) {
9 I f | For | While | Loop | MatchArm | MatchArm2 | QMARK

10 | AMPAMP | PIPEPIPE => {
11 s t a t s . cyc lomat ic += 1 . ;
12 }
13 _ => {}
14 }
15 }
16 }

Listing 3.9: Cyclomatic implementation for Rust Language

In the example above the operation performed by the function is pretty simple,
it just checks that a kind_id numeric identifier is equal to one of the ids of a
instruction that can generate a new path in the code for example like if, for and
while conditional instructions. If the ids are the node is one of that type of nodes than
the cyclomatic variable is incremented by one, otherwise no operation is performed.
The implementation is very similar for all the other languages implemented by Rust
Code Analysis , the main difference is that different languages may have different
ways and keyword to represent conditional statement or loops.

Some changes were made in order to implement the minimum and the maximum
values. First three more variables were added to the struct:

• cyclomatic_sum: This field has the same purpose of the cyclomatic variable
shown in the previous implementation. This means that the cyclomatic average
is now computed using this variable instead of cyclomatic. The default value
is zero.

• cyclomatic: Now this variable holds only the cyclomatic value of the space
excluding any other sub-space. The default value for this field is one.

• cyclomatic_max: The cyclomatic maximum value of a space. It is obtained
by comparing the cyclomatic value of a space with all the ones from its sub-
spaces. The default value is zero which represents the minimum value a space
can assume.

• cyclomatic_min: The cyclomatic minimum value of a space. It is obtained
by comparing the cyclomatic value of a space with all the ones from its
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sub-spaces. The default value is the maximum value an integer can store.

1 pub s t r u c t Stat s {
2 cyclomatic_sum : f64 ,
3 cyc lomat i c : f64 ,
4 n : us i z e ,
5 cyclomatic_max : f64 ,
6 cyclomatic_min : f64 ,
7 }
8

9 impl Defau l t f o r Sta t s {
10 fn d e f a u l t ( ) −> S e l f {
11 S e l f {
12 cyclomatic_sum : 0 . ,
13 cyc lomat i c : 1 . ,
14 n : 1 ,
15 cyclomatic_max : 0 . ,
16 cyclomatic_min : f64 : :MAX,
17 }
18 }
19 }

Listing 3.10: Changes done to implement Minimum and Maximum

With the changes introduced in the Cyclomatic struct, some modifications need
to be applied to the other functions too. The minimum and maximum value for
a single space can be computed only when all the nodes that compose a space
have been completely parsed. The compute_minmax() function has thus the job
to set the minimum and maximum value for a space once its parsing has been
completed. It also adds the computed complexity to cyclomatic_sum. The last
change consists in merging the two spaces. Now when a space is merged into
another its the cyclomatic_sum that must be added. After the minimum and
maximum value of the two spaces are compered so that the right value can be
set. Since we merge one space into another only when that space computation is
concluded the cyclomatic_max and cyclomatic_min variable are been set already
so we only need to compare them with the respective variable from the other space.
These changes are straightforward since each type in Rust has a min() and max()
method that compares the two values and return respectively the minimum and
maximum value for them.
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1 pub fn merge(&mut s e l f , o ther : &Stat s ) {
2 // Ca lcu la te maximum value
3 s e l f . cyclomatic_max = s e l f . cyclomatic_max . max( other .

cyclomatic_max ) ;
4 // Ca lcu la te minimum value
5 s e l f . cyclomatic_min = s e l f . cyclomatic_min . min ( other .

cyclomatic_min ) ;
6 // Merge sum and number o f spaces
7 s e l f . cyclomatic_sum += other . cyclomatic_sum ;
8 s e l f . n += other . n ;
9 }

Listing 3.11: Merge function for Cyclomatic

3.4.2 Cognitive Complexity
The Cognitive Complexity implementation in Rust follows all of the properties
explained in the State of Art chapter, section 2.2. The first version of the code for
the Cognitive results pretty complex, so one of this thesis milestones consists in the
refactoring of this metric code. Differently from Cyclomatic, Cognitive computes
the average over the total number of functions in a space instead on the number of
different spaces. First of all, we are going to analyze the first code implementation,
and then we will explain the minimum and maximum additions:

1 pub s t r u c t Stat s {
2 s t r u c t u r a l : u s i ze ,
3 ne s t ing : us i ze ,
4 tota l_space_funct ions : us i z e ,
5 boolean_seq : BoolSequence ,
6 }

Listing 3.12: Struct used for Cognitive

• structural: this variable is the actual Cognitive metric value. It is the
cumulative sum of a space cognitive value with the ones contained in its
sub-spaces.

• nesting: this is an internal variable used to compute the nesting level of some
conditional construct. This value is then added to structural field.

• total_space_function: number of functions inside this space.

• boolean_seq: This is a very important structure, used to keep track of
the sequence of boolean operations in a conditional expression. In fact,
if the previous operation is different from the actual one then Cognitive
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complexity is incremented. The most important function for this structure is
eval_based_on_prev() which analyzes an element in the boolean sequence
and checks it with its predecessor in the same expression:

– In case the operand analyzed it the first of the sequence then operator is
saved and the structural filed is incremented by one.

– If they are different then structural in incremented by one and the operator
is saved

– If they are the same no operation is performed and the next operator is
checked

Rust Code analysis implements two macros for handling nesting and boolean
sequences:

• compute_booleans!() calculates the complexity of a boolean sequence.

• nesting_levels!() counts the nesting of a node.

This macros are very complex to read as show by the example below.
1 macro_rules ! compute_booleans {
2 ( $node : ident , $ s t a t s : ident , $ ( $typs : pat_param ) | ∗ ) => {
3 get I t e r a t o r from the node
4 l e t mut cur so r = $node . ob j e c t ( ) . walk ( ) ;
5 // I t e r a t e to a l l the c h i l d r e n o f the g iven node
6 f o r c h i l d in $node . ob j e c t ( ) . c h i l d r e n (&mut cur so r ) {
7 // Check i f the node kind_id i s the same that the l i s t o f

id g iven to the macro
8 i f l e t $ ( $typs ) | ∗ = c h i l d . kind_id ( ) . i n to ( ) {
9 $ s t a t s . s t r u c t u r a l = $ s t a t s

10 . boolean_seq
11 . eval_based_on_prev ( c h i l d . kind_id ( ) , $ s t a t s .

s t r u c t u r a l ) ;
12 }
13 }
14 } ;
15 }

Listing 3.13: compute_booleans macro

This macro simply iterates over all operators in a boolean sequence, and for
each operator it checks if its different from its predecessor. The next two macros
are more complex than compute_booleans|(), so the code will not be shown and
only a simple explanation will be provided.

The nesting_levels!() macro is used to count the number of nesting constructs
in a node. Cognitive complexity is then incremented by the depth of the nesting
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value. It start from the node and check each one of its parents and increase nesting
until we reach the root.

The compute() functions for the Cognitive metric does many computations
because many node kinds need to be checked, for example: break, continue, not
expression and binary expression, etc... . Also some nodes like If-Then, For and
While expression need to be examined using the nesting_levels!() macro with a
large number of starting and ending nodes types.

Code changes introduced for the minimum and maximum implementation are
similar to the one performed for the Cyclomatic Metric.

1 pub s t r u c t Stat s {
2 s t r u c t u r a l : u s i ze ,
3 structural_sum : us i ze ,
4 structura l_min : us i ze ,
5 structural_max : us i ze ,
6 ne s t ing : us i ze ,
7 tota l_space_funct ions : us i z e ,
8 boolean_seq : BoolSequence ,
9 }

10 impl Defau l t f o r Sta t s {
11 fn d e f a u l t ( ) −> S e l f {
12 S e l f {
13 s t r u c t u r a l : 0 ,
14 structural_sum : 0 ,
15 structura l_min : u s i z e : :MAX,
16 structural_max : 0 ,
17 ne s t ing : 0 ,
18 tota l_space_funct ions : 1 ,
19 boolean_seq : BoolSequence : : d e f a u l t ( ) ,
20 }
21 }
22 }

Listing 3.14: Minimum and maximum changes Stats

Three new variables have been added: structural_sum, structural_min and
structural_max;

• structural_sum: This field has the same purpose of the structural variable
in the previous implementation. This means that the cognitive average is now
computed using this variable instead. The default value is set to zero.

• structural: Now this variable holds only the cognitive value of the the space
excluding any other sub-space. The default value for this field is 0.

• structural_max: The cognitive maximum value for this space. It is obtained
by comparing the cognitive value of this space with those of all the other
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sub-spaces. The default value is set to zero which is the minimum value any
space can reach.

• structural_max: The cognitive minimum value for this space. It is obtained
by comparing the cognitive value of this space with those of all the other
sub-spaces. The default value is set to the maximum integer value which is
the maximum value any space can reach.

1 pub fn merge(&mut s e l f , o ther : &Stat s ) {
2 s e l f . s tructura l_min = s e l f . s tructura l_min . min ( other .

structura l_min ) ;
3 s e l f . structural_max = s e l f . structural_max . max( other .

structural_max ) ;
4 s e l f . structural_sum += other . structural_sum ;
5 }
6 pub( c r a t e ) fn compute_minmax(&mut s e l f ) {
7 s e l f . s tructura l_min = s e l f . s tructura l_min . min ( s e l f . s t r u c t u r a l

) ;
8 s e l f . structural_max = s e l f . structural_max . max( s e l f . s t r u c t u r a l

) ;
9 s e l f . structural_sum += s e l f . s t r u c t u r a l ;

10 }

Listing 3.15: Minimum and maximum changes for merge and compute_min_max

The modification to the merge() function follows the same pattern as the one
used for the Cyclomatic metric. The first space just compares its values with the
ones of a second space, taking the minimum and maximum. After this step, the
two structural_sum variables are summed together. The minimum , maximum
and structural_sum values of the single space are set before being merged by the
compute_minmax() function.

In order to improve the overall readability of the code, the Cognitive metric
was refactored so that macros will be replaced with a more readable and simple
approach. The compute_booleans macro was replaced by a function with the same
names that instead uses generics. The function is shown below:
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1 fn compute_booleans<T: std : : cmp : : Part ia lEq + std : : convert : : From<u16
>>(

2 node : &Node ,
3 s t a t s : &mut Stats ,
4 typs1 : T,
5 typs2 : T,
6 ) {
7 l e t mut cur so r = node . ob j e c t ( ) . walk ( ) ;
8 // I t e r a t e over a l l ope ra to r s in the boolean sequence
9 f o r c h i l d in node . ob j e c t ( ) . c h i l d r e n (&mut cur so r ) {

10 i f typs1 == c h i l d . kind_id ( ) . i n to ( ) | | typs2 == c h i l d . kind_id
( ) . i n to ( ) {

11 // Compare with p r ev i o s boo leans operator and increment
complexity i f needed

12 s t a t s . s t r u c t u r a l = s t a t s
13 . boolean_seq
14 . eval_based_on_prev ( c h i l d . kind_id ( ) , s t a t s . s t r u c t u r a l

)
15 }
16 }
17 }

Listing 3.16: compute_booleans function with genereics

This function simply takes the node that contains the boolean sequence and
iterates over all its operators. if an operator is equal to one of the given two argu-
ments the previous operator is checked and the cognitive complexity is incremented
if the operators are different. The two typs arguments are of a generic type T
which is an enum that represents the various syntax constructs of the programming
language used. Plus this generic needs to be comparable and must be converted
into an integer. The function always takes two types as arguments because only
exactly two types are checked each time the macro was called. In case more than
two arguments will be needed in the future the function can be easily modified by
using a vector of types.

Another change done is the removal of the nesting_levels macro and adding
a new approach to compute the nesting of a node. nesting_levels computed the
nesting starting from the none and checking all of its parents until a stopping point
was reached. The new approach uses a hashmap called nesting_map which keeps
track of the nesting level in a source file. The key of the map is the node id with
its value being the nesting level represented by an integer. With this approach
nodes just need to check the nesting of its parent saved into nesting_map without
retraversing the tree. The pseudo-algorithm for this approach can be summarized
into the following steps:
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1. Initialize an empty nesting_map.

2. Get the parent from the node. If the node has no parent set nesting equal to
zero.

3. Take the nesting from nesting_map using the parent node id. If the key is
not present in nesting_map just set the nesting equal to zero

4. If the node is a type of node that increments nesting increase it by one then
modify the cognitive complexity accordingly.

5. Insert the node into nesting_map with the pair (node_id,nesting).

6. Continue with the next node until all the nodes are computed.

The types of nodes that modify complexity depends on the programming language
used since some languages may a have different syntax. The most common example
common for a lot of languages are: if, for and while loops.
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1 // Increment c o g n i t i v e complexity with ne s t ing
2 #[ i n l i n e ( always ) ]
3 fn increment ( s t a t s : &mut Stat s ) {
4 s t a t s . s t r u c t u r a l += s t a t s . n e s t i ng + 1 ;
5 }
6

7 impl Cogni t ive f o r RustCode {
8 fn compute ( node : &Node , s t a t s : &mut Stats , nesting_map : &mut

FxHashMap<us i ze , us i ze >) {
9 use Rust : : ∗ ;

10 // nesting_map was a l r eady i n i t i a l i z e d be f o r e
11 // Check the node parent and get i t s ne s t i ng
12 l e t mut ne s t i ng : u s i z e ;
13 i f node . ob j e c t ( ) . parent ( ) . is_some ( ) {
14 ne s t ing = i f l e t Some(n) = nesting_map . get (&node . ob j e c t ( )

. parent ( ) . unwrap ( ) . id ( ) ) {
15 ∗n
16 } e l s e {
17 0
18 } ;
19 } e l s e {
20 ne s t ing = 0 ;
21 }
22

23 match node . ob j e c t ( ) . kind_id ( ) . i n to ( ) {
24 // Node type I f
25 I fExp r e s s i on | I fLe tExpre s s i on => {
26 // Check i f a node i s not an e l s e − i f
27 i f ! S e l f : : i s _ e l s e _ i f ( node ) {
28 // Increment c o g n i t i v e complexity
29 s t a t s . n e s t i ng = nes t ing ;
30 increment ( s t a t s ) ;
31 // In c r ea s e ne s t i ng f o r next nodes
32 ne s t ing +=1;
33 s t a t s . boolean_seq . r e s e t ( ) ;
34 }
35 }
36 // For other node the s t ep s are very s i m i l a r
37 _ => {}
38 }
39 // I n s e r t node in to nesting_map with i t s c o r r e c t ne s t i ng
40 nesting_map . i n s e r t ( node . ob j e c t ( ) . id ( ) , n e s t i ng ) ;
41 }
42 }

Listing 3.17: Implementation for nesting for Rust Language
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The code above shows the implementation proposed for the Rust programming
language. Only one particular case is shown because either the other cases use the
same approach or they do node increase nesting and in that case, no operation is
performed and the node is simply added to the map with the same nesting as its
parent. This approach does consume more memory than nesting_levels but speed
performances are better since all the operations are done using a hashmap.
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Chapter 4

Weighted Code Coverage

Weighted Code Coverage[16] is a Rust library that implements different metrics
used to combine together Code Coverage and Code Complexity as a single value to
measure code quality. It computes the four metric describes in Chapter 2: WCC
Plain, WCC Quantized, Crap, SkunkScore. In addition the these metrics the
library also computes a st of cumulative metrics: average, minimum, maximum
and project.

• Average is the average over files.

• Minimum is the minimum value across all files for each metric.

• Maximum is the maximum value over all files for each metric.

• Project considers the project as a whole by appending all files together when
computing the four metrics.

4.1 Tools Used
This section will show and explain the tools used for Weighted Code Coverage
development. First, the two main tools grcov and rust-code-analysis will be
analyzed, after that other tools fundamental to the application will be briefly
explained, particularly in their contribution to the whole process.

4.1.1 Grcov
Grcov[17] is the tool used to obtain coverage information from these files for all the
Rust repositories examined in this thesis. Grcov is a Rust library maintained by
Mozilla that collects and aggregates code coverage information for multiple source
files. It processes .profraw and .gcda files generated either from llvm/clang or gcc
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by running tests on the repositories to analyze. Grcov calculate the line coverage
of a file. The Line Coverage of a file is the number of executed lines divided by the
total number of lines. Only lines that contain executable statements are considered,
not those with pure declarations. Coveralls and Covdir are two different formats
which describe the coverage of a whole project file by file.
A Coveralls file has the following structure:

1 " g i t " : {// g i t i n f o } ,
2 " repo_token " : "YOUR_COVERALLS_TOKEN" ,
3 " s o u r c e _ f i l e s " : [
4 {
5 " branches " : [ ] ,
6 " coverage " : [ nu l l , nu l l , 0 , 0 , 0 , 0 , 1 , 3 , 5 , 1 0 , 2 , 1 , 1 , 0 ] ,
7 "name " : " examples /example . r s " ,
8 } ,
9 // other f i l e s . . .

10 ]
11 }

Listing 4.1: Coveralls JSON structure

The main fields are:

• git contains some git information on the repository when available

• repo_token : The secret repo token for your repository. the token is used with
services not supported by Coveralls.

• source_file is an array of JSON objects that represents each file.

The JSON object representing a file has all the coverage information about a single
file present in the project root. It has two main filed called name and coverage:

• name is the relative file path starting from the project directory.

• coverage is an array of integers. Each element of the array indicates if that
line is covered by tests or not.

Each line can have two values:

• NULL means the line was ignored during tests. An example of lines that are
ignored during testing are comment lines.

• A positive integer number that indicates the number of times that line has
been covered by tests.

The pseudo-algorithm used is explained below.
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1. Read the JSON file obtaining the list of all source files. Initialize and empty
hashmap called result.

2. For each file in source_files, save the name of the files as a key. The name will
be saved with the character , in case Windows is used as Operating System
all slashes will be replaced with double slashes. With Linux and Mac, the
opposite approach is used,

3. From the file take the coverage vector and insert into the hash map the pain
key and coverage.

4. Repeat from point 2 until all files are processed. Then return result.
Covdir files have the same information as a covdir file plus more information

about coverage percentage. Differently from Coveralls, the JSON file is structured
in a very different way. The folder is represented as a tree starting from the root
with sub-folders and files as children, each child is represented using as a JSON
object with as key the name of the file/folder and as value all the other information
like children and coverage. Another main difference from coveralls is the coverage
vector, instead of NULL Covdir used the value -1 for representing ignored lines.

The example below shos the general structure of a Covdir file:
1 {
2 " c h i l d r e n " : {
3 " Array . r s " : {
4 " coverage " : [
5 −1,
6 −1,
7 −1,
8 2 ,
9 2 ,

10 2
11 ] ,
12 " coveragePercent " : 100 .0 ,
13 " l ine sCovered " : 3 ,
14 " l i n e sMi s s ed " : 0 ,
15 " l i n e s T o t a l " : 3 ,
16 "name " : " Array . r s "
17 } , // other c h i l d r e n
18 } ,// p r o j e c t in fo rmat ion
19 " coveragePercent " : 77 .21 ,
20 " l ine sCovered " : 691 ,
21 " l i n e sMi s s ed " : 204 ,
22 " l i n e s T o t a l " : 895 ,
23 "name " : " "
24 }

Listing 4.2: Covdir JSON structure
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This is the algorithm used:

1. Read and obtain the root. Initialize a stack called source_files that contains
a tuple with the JSON value and a string used for saving the path.

2. Initialize a new hash map called result.

3. Insert into result a value with the coverage array and the coverage percentage
of the project with a key equal to PROJECT_ROOT.

4. Pop an item from the stack and save the first value into object and the second
one into prefix.

5. For each children in object["children"], push into the stack the tuple (child,prefixname).

6. if the object is a valid source file, insert it into the hash map with its path as
key and all the other coverage information as value.

7. If the stack is not empty repeat from 3 else return the hash map as result.

4.1.2 Rust Code Analysis
Rust Code Analysis[10] is used in the project mainly for two reasons:

• To obtain the complexity used for WCC, CRAP, and SkunkScore. When Rust
Code analysis is called for a file it calculates both Cyclomatic and Cognitive
complexities.

• To obtain the FuncSpace tree with all needed information about all the
spaces present in the file. This is very important, especially for analyzing the
complexity of all the functions in a single file.

4.1.3 Other libraries used
These other libraries are used in the project to achieve different results:

• Crossbeam[18]: used for concurrency and exchange messages between threads.
Simple to use and simple to customize.

• serde[19] and serde-json[20]: two interconnected libraries serde offers a
simple and efficient way to serialize and deserialize data structures by simply
using macros and work directly with serde-json for creating JSON files.

• csv[21]: used for writing the CSV file. It is the most simple and efficient
library for this purpose.
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• clap[22]: used to create the command line interface for Weighted Code
Coverage. Its the main library used in Rust to create command line applications

• thiserror[23]: used for error handling and creation since it provides a con-
venient derive macro for the standard library’s std::error::Error trait. It can
also easily handle other types of errors.

4.2 Wcc
Wcc takes as input a folder with all the source files and then a JSON file in Coveralls
or Covdir format that contains the code coverage of all the files present in the folder.
Weighted Code Coverage supports the same programming languages supported by
Rust Code Analysis. Wcc contains three main features:

• For each source file from the folder it calculate four weighted code coverage
metrics: WCC Plain, WCC Quantize, CRAP and Skunkscore. Wcc also
computes some cumulative values for each different metric such as project,
average, minimum and maximum

• It can export all the computed information in JSON or CSV files.

• It permits the user to choose which complexity to use for the four metrics
between McCabe’s Cyclomatic Complexity and Cognitive Complexity.

• It can analyze a project with two different granularity files and functions.
With the first, we only analyze all the files in the project as a whole and
compute the metrics regardly. With the second we analyzed each file more in
detail computing metrics for each different function present in the file.

Wcc implements concurrency in order to speed up computation, the default
value of thread launched is two but can be set by the user with a minimum value of
two. The program also uses thresholds for each metric to define if a file/function is
too complex or not. If at least one of the thresholds is exceeded then it is considered
complex. The user can also manually modify the thresholds.

4.3 General algorithm and data structures
To obtain all the metrics Wcc proceeds in the following steps:

1. The user choose the complexity metric to be used, the format of the JSON
file, the number of threads, the granularity, and all of the other option that
can be selected.
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2. The JSON file is then read and all the coverage for each file is recovered. If
the file is in the Covdir format also the coverage of a file is obtained.

3. Then the project folder is read and all paths for each source file supported by
Wcc are saved on a list. The list is then chunked depending on the number of
consumer threads that must be launched as specified by the user.

Wcc saves each set of metric in a following object:
1 pub s t r u c t Metr ics {
2 pub s i f i s _ p l a i n : f64 ,
3 pub s i f i s _ q u a n t i z e d : f64 ,
4 pub crap : f64 ,
5 pub skunk : f64 ,
6 pub is_complex : bool ,
7 pub coverage : f64 ,
8 }

Listing 4.3: Metrics Data structure

For all algorithms, either cyclomatic or cognitive complexity can be used. Each
algorithm receives as input a space, the list of all lines covered for a single file, and
the start and end line. From the root, it obtains the complexity that needs to be
used depending on the specifications. The start and end lines are used to indicate
the limit of the function we need to analyze.

4.4 WCC
WCC is available into two version WCC Plain and WCC Quantized. The first one
is a simplified version of the second. WCC Plain does not analyze the complexity
of the line depending on which block it is part of but just assigns as weight the
overall complexity of the file to all lines in the code. In the next sub-sections will
be shown also the actual code implementation used in the project.
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4.4.1 Plain version

The complexity value of the whole file is assigned to each line of code that is
covered, and than all the covered lines as summed together to get the total sum
value. The WCC plain metrics are the result of the division of the total sum per
the PLOC of the file. Here there is the code implemented using Algorithm 1:

1 pub( c r a t e ) fn wcc_plain (
2 root : &FuncSpace ,
3 covs : &[Value ] ,
4 metr ic : Complexity ,
5 i s_covd i r : bool ,
6 ) −> Result <(f64 , f64 )> {
7 l e t p loc = root . met r i c s . l o c . p loc ( ) ;
8 // S e l e c t Right complexity
9 l e t comp = match metr ic {

10 Complexity : : Cyclomatic => root . met r i c s . cyc lomat ic .
cyclomatic_sum ( ) ,

11 Complexity : : Cogni t ive => root . met r i c s . c o g n i t i v e . cognitive_sum
( ) ,

12 } ;
13 // I t e r a t e over a l l l i n e s
14 l e t sum = covs . i t e r ( ) . t ry_fo ld ( 0 . , | acc , l i n e | −> Result<f64> {
15 // Check i f the l i n e i s n u l l
16 l e t i s_nu l l = i f i s_covd i r {
17 l i n e . as_i64 ( ) . ok_or ( Error : : Convers ionError ( ) ) ? == −1
18 } e l s e {
19 l i n e . i s_nu l l ( )
20 } ;
21 l e t sum ;
22 i f ! i s _ n u l l {
23 // I f the l i n e i s not n u l l and i s covered ( cov >0) the add

the complexity to the sum
24 l e t cov = l i n e . as_u64 ( ) . ok_or ( Error : : Convers ionError ( ) ) ? ;
25 i f cov > 0 {
26 sum = acc + comp ;
27 } e l s e {
28 sum = acc ;
29 }
30 } e l s e {
31 sum = acc ;
32 }
33 Ok(sum)
34 }) ? ;
35 Ok( ( sum / ploc , sum) )

Listing 4.4: WCC Plain implementation
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4.4.2 Quantized version
The quantized version takes into consideration each space of the file while calculating
the metric. The algorithm iterate for each line in the file, check that is covered,
and set its weight using a default threshold of 15 for all complexity metrics used.
For finding the space in which that line is part of a very simple approach is used:

1. First set the root as result, since it contains all the lines.

2. Traverse all its sub-space to if the line is part of one

3. if yes the set that space as a result and redo point 2

4. Else the last found result is the space of which that line is part.

In the WCC implementation, a stack is used to handle the iterative steps.
The Algorithm explained above is implemented with this function:

1 fn get_min_space ( root : &FuncSpace , i : u s i z e ) −> FuncSpace {
2 // This func t i on f i n d the minimum space f o r a l i n e i in the f i l e
3 // I t r e tu rn s the space
4 l e t mut min_space : FuncSpace = root . c l one ( ) ;
5 // I n i t s tack with root
6 l e t mut stack : Vec<FuncSpace> = v e c ! [ root . c l one ( ) ] ;
7 whi le l e t Some( space ) = stack . pop ( ) {
8 // Check each c h i l d r e n to s s e e i f i t conta in s the l i n e
9 f o r s in space . spaces . i n t o _ i t e r ( ) {

10 i f i >= s . s t a r t _ l i n e && i <= s . end_line {
11 min_space = s . c l one ( ) ;
12 s tack . push ( s ) ;
13 }
14 }
15 }
16 min_space
17 }

Listing 4.5: get_min_space function
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Here there is the code implemented using Algorithm 2:

1 pub( c r a t e ) fn wcc_quantized (
2 root : &FuncSpace ,
3 covs : &[Value ] ,
4 metr ic : Complexity ,
5 i s_covd i r : bool ,
6 ) −> Result <(f64 , f64 )> {
7 l e t p loc = root . met r i c s . l o c . p loc ( ) ;
8 l e t sum =
9 // For each l i n e f i n d the minimum space and get complexity value

then sum 1 i f comp>thre sho ld e l s e sum 1
10 covs . i t e r ( )
11 . enumerate ( )
12 . t ry_fo ld ( 0 . , | acc , ( i , l i n e ) | −> Result<f64> {
13 // Check i f the l i n e i s n u l l
14 l e t i s_nu l l = // Check i f l i n e i s n u l l
15 l e t sum ;
16 i f ! i s _ n u l l {
17 // Get l i n e
18 l e t cov = l i n e . as_u64 ( ) . ok_or ( Error : :

Convers ionError ( ) ) ? ;
19 i f cov > 0 {
20 // I f the l i n e i s covered get the space o f

the l i n e and then check i f the complexity i s below the thr e sho ld
21 l e t min_space : FuncSpace = get_min_space ( root

, i ) ;
22 l e t comp = // Get complexity from space
23 i f comp > THRESHOLD {
24 sum = acc + 2 . ;
25 } e l s e {
26 sum = acc + 1 . ;
27 }
28 } e l s e {
29 sum = acc ;
30 }
31 } e l s e {
32 sum = acc ;
33 }
34 Ok(sum)
35 }) ? ;
36 Ok( ( sum / ploc , sum) )
37 }

Listing 4.6: WCC Quantized implementation

For the functions granularity the algorithms are very similar with the main difference
that we do not start from the root but from the function we are analyze and lines
outside that function are ignored.
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4.5 CRAP
CRAP uses a best fit curve found by Alberto Savoia and Bob Evans that utilize the
complexity and the coverage of the whole file in percentage. The total percentage
value of the files is obtained by dividing the number of lines covered at least once
and the number of all lines excluding NULL lines. This value is between 0 and
1. For files granularity, we use the coverage of the whole file, while for functions
granularity we compute the coverage of each function. Code implementation for
Algorithm0:

1 pub( c r a t e ) fn crap (
2 root : &FuncSpace ,
3 covs : &[Value ] ,
4 metr ic : Complexity ,
5 coverage : Option<f64 >,
6 ) −> Result<f64> {
7 l e t comp = match metr ic {
8 Complexity : : Cyclomatic => root . met r i c s . cyc lomat ic .

cyclomatic_sum ( ) ,
9 Complexity : : Cogni t ive => root . met r i c s . c o g n i t i v e . cognitive_sum

( ) ,
10 } ;
11 l e t cov = i f l e t Some( coverage ) = coverage {
12 coverage / 100 .0
13 } e l s e {
14 get_coverage_perc ( covs ) ?
15 } ;
16 Ok( ( ( comp . powf ( 2 . ) ) ∗ ( ( 1 . 0 − cov ) . powf ( 3 . ) ) ) + comp)
17 }

Listing 4.7: CRAP Implementation

4.6 SkunkScore
SkunScore idea is very similar to CRAP with minor differences:

• SkunkScore formula does not contain power operations. It also contains a
division.

• The coverage is expressed in the range [0,100]

This thesis has no interest in analyzing code smells inside source files plus detecting
code smells is a very complex task. For this reason, Wcc implements only the
no-smells version of Skunkscore.
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Code implementation for Algorithm0:
1 pub( c r a t e ) fn skunk_nosmells (
2 root : &FuncSpace ,
3 covs : &[Value ] ,
4 metr ic : Complexity ,
5 coverage : Option<f64 >,
6 ) −> Result<f64> {
7 l e t comp = match metr ic {
8 Complexity : : Cyclomatic => root . met r i c s . cyc lomat ic .

cyclomatic_sum ( ) ,
9 Complexity : : Cogni t ive => root . met r i c s . c o g n i t i v e . cognitive_sum

( ) ,
10 } ;
11 l e t cov = i f l e t Some( coverage ) = coverage {
12 coverage
13 } e l s e {
14 get_coverage_perc ( covs ) ? ∗ 100 .
15 } ;
16 Ok( i f cov == 100 . {
17 comp / COMPLEXITY_FACTOR
18 } e l s e {
19 (comp / COMPLEXITY_FACTOR) ∗ ( 100 . − ( cov ) )
20 })
21 }

Listing 4.8: SkunkScore no smells implementation

4.7 Files Mode
After the JSON file is read and all the covered files are saved into the hash-map,
the project folder given as input to the program is analyzed to obtain a list of all
the paths of valid files. A file is valid if its extension is one from one of the accepted
programming languages by Wcc. The following algorithm shows how the files are
selected.

1. Initialize and stack with initial value the project folder as a path and initialize
an empty vector of strings.

2. Pop value from the stack.

3. If the path is a directory then add all the paths in the directory to the stack

4. If the path is a file, check if it is a valid file by checking its extension and if it
is insert the path as a String in the vector.
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5. If the stack is not empty repeat from point 2 else finish and return the vector
as a result.

Once the program has obtained all the valid files it just needs to read them
and obtain the needed metric using RCA. All the information about a single file is
saved in the FileMetrics struct that contains the metrics, the file path, and the file
name.

1 pub s t r u c t F i l e M e t r i c s {
2 pub metr i c s : Metrics ,
3 pub f i l e : Str ing ,
4 pub f i l e_path : Str ing ,
5 }

Listing 4.9: FileMetrics data structure

During the development of the application, various versions of this part of the
code were implemented. First, a simple and sequential version was developed to
test how to obtain all the metrics, then this sequential version was transformed into
a concurrent one using the crossbeam library and a producer-consumer approach.
In both implementations the functions written in the library return as output four
variables:

• A vector of FileMetrics structs used to store a the list of all metrics for each
file. This variable also contains all the project cumulative metrics.

• A vector of strings that has all the ignored files.

• A vector of FileMetrics structs with all the complex files.

• The overall coverage of the project: this value is computed if the JSON is in
coveralls format otherwise it is obtained directly from the JSON.

The algorithm below shows the entire process used to obtain all the file metrics.

1. Initialize two vectors result and files_ignored. Using the algorithms explained
in previous chapters Wcc obtains the hashmap and the vector with all the
files in the project.

2. For each file in the project:

3. Check if the hash map contains the file as key, if yet continue else insert the
string into files_ignored and go to point 7.

4. From the hash map get the coverage array and using the Rust Code Analysis
library get the root with all the spaces.
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5. With the root and the coverage array get all the metrics using the complexity
selected.

6. Create a new struct FileMetrics with the metrics calculated in point 5 and
insert it into the result vector.

7. Repeat from point 2 with next until all files are examined.

8. Get the list of all complex files by filtering the result vector with metrics with
the is_complex field as true.

9. Compute all the cumulative metrics and insert them into the result vector.

10. Terminate and return the result, the files ignored, the complex files, and the
project coverage as a tuple.

4.7.1 Files Mode - Concurrent Version
After the serial version was implemented numerous tests were run on different
repositories During the tests emerged that the application was slow for larger
repositories. For this reason, the application needed to be transformed into a
concurrent one. The approach used is very simple and is based on the producer-
consumer model. Since there are no metrics that need information about any other
file except one then each file can be computed in parallel by different threads.

The main thread acts as producer and performs the following tasks:

• It creates the message channel shared between him and all consumer threads.

• It creates and launches the consumer threads, the number of threads is defined
by the user with a default value of two.

• It generates all the messages sent to the channel. Each message contains the
information needed to compute the metric for a single file: the path of the
file, complexity metric to use, hashmap with coverage, threshold, and prefix.

• After all thread has terminated it computes all the cumulative metrics.

Each consumer thread performs these operations:

• It waits to receive a message from the producer.

• When a message is received it computes the metric for a single file and then
adds it to the results.

• If the file must be ignored it add it to the list of ignored files.
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• If it receives a None message it terminates

The result and files_ignored variable are are accessed by shared reference protected
by mutexes. To implement the channel the rust crossbeam[18] library was used. The
message channel accepts a message of type Option<T>, this way None messages
can be sent to force thread termination. The type of message used depends on the
format used for the coverage JSON file.

However, after implementing the algorithm as explained above there was not a
great increase in the speed of computation. This happened because if a lot of small
files are sent with messages the thread loses a lot of time in capturing and creating
the messages than computing the metrics. So to increase the computation speed
a new approach was used. The approach is very similar just instead of sending
the files one by one we divide the list of all the files to read into chunks equal
to or very close to the number of consumer threads. Each chunk should have an
equal number of elements. In this way also a few messages need to be sent but the
computation is still faster.

The Algorithms below show the pseudo code for the producer and the consumer
respectively.

PRODUCER:

1. Initialize two vectors result and files_ignored as shared variable between
threads protected by a mutex. Using the algorithm explained in the previous
section the hashmap and the vector with all the files in the project.

2. Divide all the files in the project into chunks, using the chunk_vector function.

3. Create a crossbeam channel and save the sender and the receiver.

4. Create N consumer threads and saves their handles in a vector. The thread
will have the shared variable and the receiver-

5. For each chunk sends a message to the consumer threads using the sender.
After all chunks are sent poison the threads by sending an N message with
None as value.

6. Wait for all threads to finish.

7. After all threads are terminated get all the complex files, cumulative metrics,
and project coverage.

8. Terminate and return the result, the files ignored, the complex files, and the
project coverage as a tuple.
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CONSUMER:

1. Get a message from the channel if it is None go to point 10.

2. From the message gets the chunk, the hash map, the thresholds, and the
complexity to use.

3. For each file in the chunk:

4. if the file is not present in the hash map then lock files_ignored vector and
inset the file into it, then unlock it. Go to point 8.

5. From the hash map get the coverage array and using the Rust Code Analysis
library get the root with all the spaces.

6. With the root and the coverage array get all the metrics using the complexity
selected.

7. Create a new struct FileMetrics with the metrics calculated in point 5 and
insert it into the result vector(as on point 3 lock the mutex during operation
and unlock it after it is done).

8. Repeat from point 3 with next until all files in the chunk are examined.

9. Go to point 1 and await a new message.

10. Terminate thread.

Function to chuck the files vector into chunks:
1 fn chunk_vector ( vec : Vec<Str ing >, n_threads : u s i z e ) −> Vec<Vec<Str ing

>> {
2 l e t chunks = vec . chunks ( ( vec . l en ( ) / n_threads ) . max(1 ) ) ;
3 chunks
4 .map ( | chunk | chunk . i t e r ( ) .map ( | c | c . i n to ( ) ) . c o l l e c t : : <Vec<

Str ing >>())
5 . c o l l e c t : : <Vec<Vec<Str ing >>>()
6 }

Listing 4.10: chunk_vector function

The chunk_vector function is implemented by using the chunks function from
the rust standard library. This function will try to chunk the vector into chunks
with a number of elements given as an argument. The number of elements might not
be a multiple of n_thread so the number of chunks may be greater than n_threads
since there will be some remainder that will be put in additional chunks. The
chunks function return an iterator of chunks, that are very similar to slices, so
before returning we convert this iterator into a Vector of Vectors of Strings by
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using concatenations of map and collect function to iterate all over its elements
and do all the conversions needed.

As the last step, it was decided to introduce a new cumulative metric called
PROJECT. This metric calculates the four metrics considering the project as a
whole so each time we process a new file we add to a total its PLOC, lines covered,
wcc plain and quantized sums, and total lines in the file. all these sums are used to
obtain WCC PLAIN, WCC QUANTIZED, CRAP, and Skunkscore.

All the algorithms shown above are used in case the JSON is in the coveralls
format, for the covdir format some changes need to be made. Since covdir already
returns the coverage of the file and the total coverage of the project these values
cannot be calculated and can be imported directly from the JSON. The most
important difference is, of course, the fact that coveralls null values are changed
into -1 in the covdir format so each time we analyze the coverage array inside the
code we need to handle it differently. For these reasons the hashmap used for the
covdir version is different and it has the following struct as a value:

1 pub( c r a t e ) s t r u c t Covdir {
2 pub( c r a t e ) name : Str ing ,
3 pub( c r a t e ) a r r : Vec<Value >,
4 pub( c r a t e ) coverage : f64 ,
5 }

Listing 4.11: Covdir data structure

• name: the name of the file.

• arr: the coverage array.

• coverage: the coverage of the file.

In the library, the coveralls and covdir version are implemented into 2 different
functions, so that a developer can freely call the one he needs.

4.8 Functions Mode
Functions Mode is used to obtain more detailed information about the complexity
of each different function present in a file. This way a programmer can understand
which functions need to be modified to improve the overall complexity of the code.
Functions mode is an expansion of files mode, for this reason, it returns the same
result of function mode plus some additional information bout functions. For
getting all the function in a file we traverse the whole FuncSpace tree returned by
Rust Code Analysis and saves all spaces that have Function as type.

This mode has the following differences with respect to the file mode:
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• Two new struct used for storing the information about files and functions
called RootMetrics and FunctionMetrics.

• All the previous algorithms for calculating the four metrics are very similar
but in this case, instead of iterating over the whole coverage array we just
iterate over the lines that are part of the function.

• The consumer and producer threads are different because they need to handle
new structs and also iterate over functions.

The first step is to find all the functions inside a file, we do this by getting the
root of the FuncSpace tree from the file using Rust Code Analysis and after that,
we traverse it all. While the tree is being traversed we also save the information
about all the previous spaces we are in so that we can maintain information about
all the parent nodes of the function, this way the programmer can find the function
more easily. For simplicity, we save a string representing a path in the tree starting
from the first parent outside the root to the function node with start and end lines
for each node. We use a stack to iterate all over the nodes and each time we find a
function we save the FuncSpace and its parents’ path and insert a vector with all
the function spaces.

This Algorithm shows how to get all the functions and their parents’ paths.

1. Initialize an empty vector and a stack and put into the stack the tuple (root,"").

2. Pop the tuple from the stack.

3. Save the first element in space and the second element into a path.

4. For each child in space.children :

5. Save into space_path a string with the following format space name (start line,
end line).

6. Store into new_path the string path+""+space_path.

7. If the child is a function then insert into the vector the tuple (child,new_path).

8. Push into the stack the tuple (child,new_path).

9. Repeat point 4 until all children are finished.

10. If the stack is not empty repeat from point 2.

11. Terminate and return result.

The following struct is used for storing all information about file metrics:
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1 pub s t r u c t RootMetrics {
2 pub metr i c s : Metrics ,
3 pub fi le_name : Str ing ,
4 pub f i l e_path : Str ing ,
5 pub s t a r t _ l i n e : us i ze ,
6 pub end_line : us i z e ,
7 pub f u n c t i o n s : Vec<FunctionMetrics >,
8 }

Listing 4.12: RootMetrics Data structure

• metrics, file_name and file_path have the same functions as they have
for the FileMetrics struct.

• start_line and end_line are two integer starting from 1 and represent the
number of lines in the file.

• functions is a list of all the functions present in the file with all the information.

Each function is represented by the FunctionMetrics struct:
1 pub s t r u c t Funct ionMetr ics {
2 pub metr i c s : Metrics ,
3 pub function_name : Str ing ,
4 pub function_path : Str ing ,
5 pub s t a r t _ l i n e : us i ze ,
6 pub end_line : us i z e ,
7 }

Listing 4.13: FunctionMetrics Data structure

• metrics the struct with all the metrics needed.

• start_line and end_line are two integer starting from 1 and represent where
the function is positioned inside the file.

• function_name is a string with the format function name (start, end), if
the name of the function is not available the name <anonymous>.

• function_path is the path with all its parent nodes except the root.

The consumer thread is very similar to the one of files mode with the main
difference that we also need to compute and saves the metrics for all the functions,
then everything is saved inside a vector then we compute the metrics for the whole
file but this time we save all the information inside the RootMetrics struct with
also the vector of functions.
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4.9 JSON and CSV file
Weighed Code Coverage can export all the information into a CSV or a JSON file.
The CSV file was used because it can easily be exported to spreadsheet applications
such as Excel or Google Sheets. The CSV file contains and header and then a list
with all the files and metrics, for the functions mode after each file, there is a list
with all the functions present in the file.

1 F i l e s Mode
2 FILE ,WCC PLAIN,WCC QUANTIZED,CRAP,SKUNK,IGNORED, IS COMPLEX, FILE PATH
3 app . rs , 7 9 . 2 1 5 , 0 . 7 9 2 , 1 2 3 . 9 7 4 , 5 3 . 5 3 5 , f a l s e , true , s r c /app . r s
4 . . . .
5

6 Function Mode
7 FUNCTION,WCC PLAIN,WCC QUANTIZED,CRAP,SKUNK,IGNORED, IS COMPLEX,

FUNCTION PATH
8 app . rs , 7 9 . 2 1 5 , 0 . 7 9 2 , 1 2 3 . 9 7 4 , 5 3 . 5 3 5 , f a l s e , true , s r c /app . r s
9 " app_new_only_test (406 , 415) " , 1 . 1 1 1 , 1 . 1 1 1 , 1 . 0 0 0 , 0 . 0 0 0 , f a l s e , f a l s e , " /

app_new_only_test (406 ,415) "
10 " mult iple_app_test (418 , 482) " , 7 . 7 3 8 , 0 . 9 6 7 , 8 . 0 0 7 , 1 . 5 4 8 , f a l s e , f a l s e , " /

mult iple_app_test (418 ,482) "
11 . . . .

Listing 4.14: CSV file structure

The JSON file can be used to obtain a more structured way to export the
information, it is also more useful for analyzing the data used in custom-made
applications. The JSON file contains the following fields:

• project_folder: the project folder path.

• number_of_files_ignored: number of files ignored depending on the mode
selected.

• number_of_complex_files :number of complex files/functions depending
on the mode selected.

• metrics: List of all files with the metrics, if function mode is used it also
contains the list of all the functions in the file.

• files_ignored: list of paths of all the ignored files.

• project_coverage: the coverage of the entire project.
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Results

This chapter will contain some of the graphs generated during the thesis. These
graphs were created using Python[3] scripts mainly based on the Matplotlib[24]
library. All the scripts used and the graphs generated are available publicly on the
GitHub repository wcc-analysis1.

5.1 Files
Our analysis on files mode is focused on analyzing some cumulative metrics derived
from Weighted Code coverage: average over files, minimum and maximum. Two
types of analysis are performed:

• Spatial Analysis: We analyzed the behaviors of the system with repositories
of different sizes, starting from a project with only a few thousand lines to a
project with more than 75000 lines of code. The main objective is to highlight
the complexity of a single repository and its link with its size.

• Time Analysis: We study the behavior of a repository between different of its
releases during time. The main objective is to understand how code quality
varies during development.

5.1.1 Spatial Analysis
Various repository where analyzed using all 4 metrics. For each metric, the value
has been represented as a float with 3 digits precision or as NaN in case that
particular file was not found in the coveralls JSON. In particular, seahorse was

1https://github.com/giovannitangredi/wcc-analysis
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chosen as a small repository and rust-crypto as an example of a medium repository.

Seahorse - Metrics for all files
FILE WCC

PLAIN
WCC
QUAN-
TIZED

CRAP SKUNK

multiple_app.rs 0 0 552 92
single_app.rs 0 0 20 16
help.rs 1.5 0.5 3 0.12
app.rs 79.215 0.836 123.974 53.535
lib.rs 0.077 0.077 1 0.04
flag.rs 34.696 0.801 48.329 15.87
error.rs 0.531 0.031 257.941 64
context.rs 24.316 0.737 33.468 9.962
action.rs NaN NaN NaN NaN
command.rs 26 0.722 40.777 22.244

Table 5.1: Seahorse results - File mode

As shown in Table 5.1 each file has different metrics results. We can see that
multiple_app.rs and single_app.rs are not covered at all since the CRAP and
SkunkScore metrics are very high and the Sifis metrics are both zero. error.rs
has both very high complexity and very low coverage. The best-covered file is
app.rs which has a wcc quantized value close to 1 and the other metrics are still on
acceptable values. Also, action.rs has NaN values since it is a type and has no need
to be tested. We can see how the metrics work differently depending on the context
of the file. CRAP and Skunkscore have a higher result when the coverage of the
file is very close to 0 instead WCC algorithms tend to 0 the lower the coverage.

The first analysis performed is to show how Weighted code coverage behaves
with different repositories. Figure5.1 shows an average, minimum, and maximum
both while using complexity cyclomatic and cognitive. Each repository is identified
by different colors. We can observe how cognitive complexity has lower values
than cyclomatic, this happens because usually cognitive have smaller values than
cyclomatic. Also the bigger the repository the bigger the average and maximum
in particular by looking at crap and Skunkscore we can see that almost every
repository has a very large untested file but the bigger the repository the more
complex is the file. The minimum shows us how almost every repository has either
a file with 0 coverage or a file with 100% coverage as we can see each repository
has always the minimum value of 0 (or 1 in case of CRAP cyclomatic).

62



Results

Figure 5.1: Static Analysis - WCC Plain

5.1.2 Time Analysis
Weighted Code Coverage can also be used to analyze the between different versions
of the same repository. The result that will be shown in this section were obtained by
analyzing different versions of two repositories: Seahorse[25] and rust-analyzer[26].
For Seahorse the following versions have been analyzed: 0.6.1, 0.6.2, 0.7.0, 0.7.1,
1.0.0, 1.1.0, 1.1.1, 1.1.2, 2.0.0, 2.1.0. For rust-analyzer the following versions
have been analyzed: 2021-12-13, 2021-12-27, 2022-01-10, 2022-01-24, 2022-
02-14, 2022-02-28, 2022-03-14, 2022-03-28. There are two types of analysis
that have been performed:

• A graph that shows the number of complex files with respect to the total
number of files analyzed for each version. This graph is shown both in absolute
values and in percentages.

• A graph showing the variation of a cumulative metric for each version for all
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4 main algorithms. There is one graph for each cumulative metric such as
average, minimum and maximum.

Let us start with the first type of graph.
Figure5.2 shows that between versions the total number of files increases but

the new files added are complex, therefore in the last version, we have 10 total
files which six are complex. Figure5.3 show the percentage of complex files and
it clearly shows that the percentage of complex files in the project increases as
version increase.

Figure 5.2: Complex files for each version of Seahorse
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Figure 5.3: Percentage of complex files for each version of Seahorse
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Rust-analyzer has more files than Seahorse. The number of complex files is still
quite large. As shown in Figure5.4 the pattern is similar to seahorse. For each
version the total number of files increases, but this time both the complex and
non-complex number of files increase. This means that the ratio between complex
and non-complex files remains stable. Figure5.5 better show that despite both
increases the percentage number of complex files slightly reduces between versions
even though is still very high reaching seventy-six percent in the last analyzed
version.

Figure 5.4: Complex files for each version of rust-analyzer
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Figure 5.5: Percentage of complex files for each version of rust-analyzer
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The second type of graph can be used to understand the variation of the average
between different versions. The average over a file variation is particularly useful
to see how the changes have affected the project as a whole.

Figure5.6 show the average variation for each metric. We can see that CRAP
and SkunkScore have a similar tread mostly because they use the same approach
but with a different formula, but both show that there are two periods of relative
stability in the average and the on versions 1.0.0 and 2.1.0 there are two big spikes
that increase the complexity of the repository. Probably because in this version 2
very large untested files were added. Instead, WCC Plain and WCC Quantized
remain pretty close and don’t have very big spikes. The same analysis can be done
for the maximum.

Figure 5.6: Average variation between different version of Seahorse

For the rust-analyzer, the average shows us a different type of tread. In fact
Figure5.7 it show us that CRAP and SkunkScore decrease but the WCC metrics
increase. This tells us that the files added or modified during the different versions
of rust-analyzer had the effect to increase the coverage of the project.
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Figure 5.7: Average variation between different version of rust-analyzer
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5.2 Functions
Functions mode add more granularity while analyzing the project since the cumula-
tive project metrics remains the same all the new graphs and analysis produced are
focused on how we gain an advantage by showing each function present in the file.

5.2.1 Spatial Analysis
For the spatial analysis, the attention was focused on considering what functions
influenced the most the project in terms of complexity. In particular, the most
5 complex functions per file are shown for each one of the four algorithms to see
what functions the developer needs to put more work on. Since showing all the
functions for all files would be too much only the most interesting or important
files are shown but, of course, each developer can do this analysis by them-self very
easily.

Figure5.8 show the five most complex functions for the app.rs file in the seahorse
repository. In the title, there is the metric value of the file and the graph shows the
functions. Each sub-plot indicates a different metric so that we can differentiate
better between each metric. By looking at the graph we can see aging how each
metric puts different weights on coverage and complexity. In particular SkunkScore
and CRAP share some functions because they both put a high weight into code
coverage. In this way, we can see which functions need a lesser complexity and
which ones need more coverage in tests. The developer can then see which function
affects the file and where he needs to put effort into reducing the complexity or
increasing the coverage of the file.

Figure5.9 uses the same approach but in a much larger repository than seahorse,
but we can still see how the same pattern appears for this file again.
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Figure 5.8: Most 5 complex function for Seahorse app.rs file
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Figure 5.9: Most 5 complex function for serde attr.rs file
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In Figure5.10 show the de.rs file from rust-analyzer. We can see that in this
file the two WCC versions share the same set of functions, the same for CRAP
and Skunkscore. In particular, we can see how the source_map function is more
than 50% of the total Skunkscore of the file, thus showing if we can reduce the
complexity of the file or increase the coverage we will greatly improve the file
complexity.

Figure 5.10: Most 5 complex function for rust-analyzer de.rs file
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5.2.2 Time Analysis
For the time analysis, the same repositories from file mode are used with the same
versions. The following analyses were performed:

• Analysis about the number of complex functions over the number of non-
complex functions. This is similar to the one performed in the time analysis
for the function with the main difference being that we are considering the
single functions and not the file as a whole.

• Analyze the behavior of the most complex function in a project during different
version to observe its complexity and when it changes with a different function.

• Analyze the most complex functions on the project between different versions,
in this section we decided to see the most 3 complex functions in the project.

Figure5.11 and Figure5.12 show the relation between complex and non-complex
functions. Differently from the file mode, we can see that the number of the complex
functions is very low thus showing that a small set of functions is responsible for
the complexity of some files and that some of the complexity of a file is outside
functions. Despite the low number of complex functions, we can notice that the
number of complex functions increases between versions, especially at version
1.0.0and version 2.1.0.

Figure 5.11: Complex function for each version of Seahorse
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Figure 5.12: Complex function for each version of Seahorse
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Rust-analyzer has a different pattern to the seahorse repository, in this repository,
the number of functions is very large, and looking at Figure5.13 we can see that the
number of total functions is steadily increasing for each version and the number of
complex and non-complex functions as increasing as well. Despite this increment by
looking at percentages as in Figure5.14 we can notice how the percentages remain
very similar with very small variation between versions, thus we can conclude that
the project maintains a good number of complex functions and no new update is
destroying the equilibrium.

Figure 5.13: Complex function for each version of rust-analyzer
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Figure 5.14: Complex function for each version of rust-analyzer
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The second and third analyses are pretty similar with the main difference that
for the second one we show the result as a line plot while for the third one it was
more simple to use a bar plot. By analyzing the most complex function in the
project we can see how the function is modified between each version for example
by looking at Figure5.15 we can deduce how in rust-analyzer the most complex
function is always the same and it is just slightly modified between different versions.
Instead on seahorse (Figure5.16) we can see how the most complex function change
4 times and the new function always is more complex than its predecessor except
for version 1.0.0. After version 1.1.0 the situation became stable and we have the
same function with small variations.

Figure 5.15: Most complex function rust-analyzer - WCC Plain
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Figure 5.16: Most complex function Seahorse - WCC Plain
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The most 3 complex function are shown in Figure5.17 and Figure5.18, for rust-
analyzer and seahorse respectfully. We can see how the most complex function is
the same as before but this analysis gives us more information than the precedent
one. In particular, we can notice how in the seahorse repository the complex
function almost changes every version, and it’s never really stable, this is probably
because seahorse is a small repository and every change affects it a lot. Instead in
rust-analyzer, the top 3 complex functions are always the same and their complexity
just changes slightly between each version. This happens because rust-analyzer is
a larger repository than seahorse and every change implemented in each different
version is probably adding new functionalities and now modifying the previous
code.

Figure 5.17: Most 3 complex function rust-analyzer - WCC Plain
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Figure 5.18: Most 3 complex function Seahorse - WCC Plain

5.3 Performance
One of the most important characteristics of any tool is its performance. In this
section, we will analyze and show how Weighted Code Coverage performs in both
time and memory usage. All benchmarks have been done on rust-analyzer[26] as
the testing repository. Rust-analyzer has more than 75000 lines of code. Both
results have been calculated for both Files and Functions mode. The tool used for
obtaining the average competition times for each thread is hyperfine[27]. Hyperfine
was chosen because is simple to use with a very simple command line interface.
It speeds up the bench-marking process and it still has numerous configurations
possible to add to the benchmarks. Plus hyperfine also supports multiple ways to
export all the benchmark data in numerous formats. For memory usage analysis
two tools were used : Linux time command and bytehound[28]. Bytehound is an
open-source memory profiler for Linux. It is divided into two sub-tools:

• The profiler that gathers all the information while a program is executed.

• A web server that acts as a GUI that can be used to analyze all the data
gathered by the profiler.

We used bytehound to analyze the memory usage over time and the memory leak
present in the program execution.
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5.3.1 Time
For each mode, we analyzed performances with the powers of two starting from
one until 16. We choose 16 as the final value because the machine performing
the benchmarks could handle 16 concurrent threads running without a loss in
performance. Bear in mind that if a better machine is used to run the program the
number of threads can still be increased. The case with only one thread running
has very similar performances to a sequential version and it has been added to
understand the difference in speed with the concurrent version.

WCC speed - File Mode
N. threads Mean time (s) Speed relative to

sequential
1 5.052 ± 0.030 1
2 3.821 ± 0.025 1.32
4 2.507 ± 0.028 2.01
8 1.979 ± 0.037 2.55
16 1.860 ± 0.085 2.71

Table 5.2: Mean Time - File Mode

Table 5.2 show the average competition time for files mode. As we can see with
16 the program is 2.71 times faster than the sequential version. Of course the more
threads we use faster the program will complete. We can notice how stated from 4
threads the program is already 2 times faster than the sequential version. When
using 2 threads we only have a 25% increase in performances. There are multiple
factors for these results but the main factor could be that the two threads may not
finish at the same time and the slower thread is impacting performances.

WCC speed - Function Mode
N. threads Mean time (s) Speed relative to

sequential
1 5.287 ± 0.023 1
2 4.008 ± 0.034 1.32
4 2.729 ± 0.080 1.93
8 2.110 ± 0.054 2.51
16 1.981 ± 0.081 2.67

Table 5.3: Mean Time - Function Mode

Table 5.3 show the result for the function mode. As can be seen, the thread
is the same in terms of improving speed. The function mode takes more time to
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complete than respect to files mode because we analyzed the code more in detail
so more computations are needed. Despite this, the program is between 5% and
10% slower independently of the number of threads used.

5.3.2 Memory usage
Memory usage was analyzed using the Linux time command and analyzing the
Maximum Resident set size. The Maximum Resident set size is the highest portion
of main memory (RAM) occupied by the process during its entire execution time.
This measure can give information about how much RAM we need to run one
or more instances of our application with the same inputs. Unfortunately, the
Maximum Resident set size does not give any in-depth information about the
memory used by function, classes, or at a specific point in time.

WCC Memory usage
Mode N. Threads Maximum

resident set
size (MB)

Files 1 134.1
Files 8 380.1
Files 16 545.8
Functions 1 137.4
Functions 8 378.2
Functions 16 547.6

Table 5.4: WCC Memory usage

Table 5.4 show the Maximum Resident set size for Weighted code coverage. We
considered both modes while using 1, 8, and 16 threads. The result shows that
both modes use the same amount of memory independently from the number of
threads. The main variable that influences the memory usage of the program is
the number of threads used. The more threads the program run, the higher the
Maximum resident set size. The memory occupied by eighth threads is 2.83 times
greater than by the sequential version, while 16 threads occupy 1.43 times more
memory than 8 threads.

We can analyze the program more in detail with bytehound. We put most effort
in analyze the impact of memory leaks during the program execution. All the data
was gathered with rust-analyzer as repository while using 8 threads.
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Figure 5.19: Bytehound - Memory leaks during execution
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Figure 5.20: Bytehound - Total Memory usage during WCC execution

Figure5.19 show the impact of memory leak during program execution. The
impact is very low, only 2 MB of memory is wasted over a hundred MB total used
by the program. The leaked memory is lost directly at the program start probably
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showing that the problem is located during the initialization phase of the whole
process.

Figure5.20 shows the trend during the execution of the program with eighth
threads. We can see more in detail how memory leaks barely affect the execution
of the whole program as they are hardly visible with respect to the total memory
used by WCC. As we can see Weighted Code Coverage reaches immediately its
peak and then slowly start to deallocate memory until the end. This phenomenon
happens because at the start of all threads and during the program execution, they
are terminated when they finished performing their jobs.
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Chapter 6

Conclusions

Code coverage and Code metrics are widely used in a great number of software
development projects around the world. The standard is still focused on considering
these two aspects well separated, but new possibilities and paradigms arise when
it is decided to combine these two important aspects together. Weighted Code
Coverage showed that the combination between Code Coverage and Code metrics
may be exploited in successful ways to improve the overall understandability of
codebases. The project successfully integrated all the new code metrics found
or invented for this project and give developers a starting point to improve their
maintainability processes.
Weighted Code Coverage makes it possible to compute these metrics very fast and
still, it does not put a heavy tool on memory or resource management. This
new tool may start a new trend that can be still research to improve software
maintenance for a great number of software developers. The project can still be
improved in different aspects:

• Memory: the project does not consume a large quantity of memory but more
optimization and improvements can be applied to further reduce the memory
usage of the tool.

• Unified thread mechanism: The Rust language can be exploited more
to unify the thread mechanism used for Weighted Code Coverage for both
functions and file mode. In its current state, the tool has just two modes
separated into two files and each mode implements its own thread mechanism.

• Integration with other tools: The tool could b integrated with other tools
that are used for computing Code metrics or Code coverage, for examples like
Grcov or RCA.

• New metrics: New metrics that combine Code Coverage and Code complexity
could be invented or added to the tool. Also, support for other complexity
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metrics computed by RCA could be added in order to give more choices to
developers.

During the whole thesis work, this candidate acquired new skills and improved
his understanding of open-source development.

• The candidate understands how the production and development of open-
source projects are structured.

• The candidate has gained experience in reading and writing research papers
and understands the process of researching new material.

• The candidate improved his development skills. In particular the usage of best
practices and improvements for better understandability of its own projects.
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