

Abstract

Deep Neural Networks (DNNs) are currently one of the most intensively and
widely used predictive models in the field of machine learning. DNNs have proven
to give very good results for many complex tasks and applications, such as object
recognition in images/videos, natural language processing, satellite image recogni-
tion, robotics, aerospace, smart healthcare, and autonomous driving. Nowadays,
there is intense activity in designing custom Artificial Intelligence (AI) hardware
accelerators to support the energy-hungry data movement, speed of computation,
and memory resources that DNNs require to realize their full potential. Hardware
for AI (HW-AI), similar to traditional computing hardware, is subject to hardware
faults (HW faults) that can have several sources: variations in fabrication process
parameters, fabrication process defects, latent defects, i.e., defects undetectable
at time-zero post-fabrication testing that manifests themselves later in the field
of application, silicon aging, e.g., time-dependent dielectric breakdown, or even
environmental stress, such as heat, humidity, vibration, and Single Event Upsets
(SEUs) stemming from ionization. All these HW faults can cause operational
failures, potentially leading to important consequences, especially for safety-critical
systems. Therefore, ensuring the reliability of HW-AI platforms is crucial, especially
when HW-AI is deployed in safety-critical and mission-critical applications, such
as robotics, aerospace, smart healthcare, and autonomous driving. This thesis
has a double purpose: creating a neural accelerator based on the systolic array
architecture and studying the reliability of a hardware implementation of the well-
known LeNet DNN. Different from the other works, the reliability of the network is
assessed based on the specific architecture, underlying its strengths and weaknesses.
The results show that the architecture is safe, on average, in 86% of the cases with
the considered faults. Furthermore, the thesis provides a full explanation of the
environment used for such a study in detail, allowing interested fellows to replicate
the study.

Table of Contents

List of Figures iv

1 Introduction 1

2 Background 2
2.1 Systolic array . 2
2.2 Neural Network . 4
2.3 Hardware mapping . 6
2.4 Halved array mapping . 9
2.5 Required hardware . 10

3 Proposed approach 11
3.1 Hardware model . 11

3.1.1 Test bench . 11
3.1.2 Convolutions layer . 12
3.1.3 Channel . 12
3.1.4 j-shift register . 12
3.1.5 Systolic array . 13
3.1.6 Activation block . 13
3.1.7 Optimizations . 13

3.2 Neural Network program . 13
3.2.1 Argument parsing . 14
3.2.2 Input sequence generation 14
3.2.3 Simulation output propagation 14

3.3 Operating System Environment . 15
3.3.1 Optimization . 15

4 Experimental Results 16
4.1 Network parameters . 16
4.2 Faults . 17

4.2.1 Fault campaign 1 . 18
4.2.2 Fault campaign 2 . 20
4.2.3 Fault campaign 3 . 22

4.3 Metrics . 24
4.3.1 Fault campaign 1 . 25
4.3.2 Fault Campaign 2 . 32

ii

4.3.3 Fault campaign 3 . 35

5 Conclusions 40

A Failed attempt 41
A.1 Horizontal overlapping region . 41
A.2 Working hardware implementation 41

B Fully connected layer implementation 44

C Fault identification 46

Acronyms 49

Bibliography 50

iii

List of Figures

2.1 MAC (multiply-accumulate) processing element 2
2.2 Processing element detailed implementation 3
2.3 4x4 systolic array . 3
2.4 Perceptron model . 4
2.5 ReLU function . 4
2.6 Simple neural network model with three layers. The input layer has

three perceptrons, the hidden layer four and 5
2.7 LeNet architecture . 5
2.8 Input sequences example . 7
2.9 2.9a architecture comprising weights input logic. 2.9b Vertical over-

lapping principle. 8
2.10 Horizontal overlapping region. Yellow and green lines represent

sequences for two different vertically adjacent PE, and the labels of
the same colors represent the weights. 9

2.11 Split convolution example . 9
2.12 j shift register in which the value of j is n 10

4.1 Weights distribution . 17
4.2 Bits weights distribution per position (value 1) 17
4.3 Weights distribution per channel . 18
4.4 Weights distribution per channel - detailed 19
4.5 Stimuli distribution . 19
4.6 Number of faults per each row . 20
4.7 Number of faults per each column 20
4.8 Number of faults per injected bit 21
4.9 Faults per channel . 21
4.10 2D histogram describing the number of injections per single location

on the systolic array. 22
4.11 Number of faults per each injected bit 22
4.12 Figures . 23
4.13 2D histogram describing the number of injections per single location

on the systolic array . 24
4.14 [%]Safety performance for the three FC. The graphs show the per-

centage of injections for the different categories. 25

iv

4.15 Number of faults per each row and column. On the left is the plain
number (in red), and on the right, the number is normalized with
respect to the number of injections. 26

4.16 Cumulative number of unsafe faults per injected row (on the right)
and column (on the left). The orange lines represent a linear ap-
proximation of the data . 26

4.17 faults distribution per channel . 28
4.19 Number of faults per each stimulus 30
4.20 Number of faults per fault value (i.e. whether they are stuck-at 0 or

stuck-at 1) . 31
4.21 Number of unsafe faults comparison between stuck-at 1 and stuck-

at 0. In yellow is the number of unsafe faults normalized per bit
injection. In blue is the number of unsafe faults generated by a
stuck-at 1. 31

4.22 Number of faults per each row and column. On the left is the plain
number (in red), and on the right, the number is normalized with
respect to the number of injections. 32

4.23 Faults distribution per channel . 33
4.25 Number of faults per stimulus class 34
4.26 Number of faults per fault value . 35
4.27 Number of unsafe faults comparison between stuck-at 1 and stuck-

at 0. In yellow is the number of unsafe faults normalized per bit
injection. In blue is the number of unsafe faults generated by a
stuck-at 1 . 35

4.28 Number of faults per row . 36
4.29 Faults distribution per channel . 36
4.30 Number of faults per bit . 37
4.31 Number of faults per stimulus . 38
4.32 Number of faults per fault value . 38
4.33 Number of unsafe faults comparison between stuck-at 1 and stuck-

at 0. In yellow is the number of unsafe faults normalized per bit
injection. In blue is the number of unsafe faults generated by a
stuck-at 1 . 39

A.1 Horizontal overlapping region . 42
A.2 Selective shift register (SSR) . 43
A.3 Selective shift register simulation 43

B.1 Fully connected layer sketch . 45
B.2 Fully connected layer implementation with systolic array 45

v

Chapter 1

Introduction

As of today, neural networks are ubiquitous in the computer engineering world
and there are lots of applications exploiting this technology, even in real-time
safety-critical systems. Identifying critical inferences, i.e. those that might lead to
a safety hazard, is essential for designing reliable hardware.

The objective of this work is to study and characterize the safety of a neural
accelerator to assess its reliability. Specifically, the study shows that on average 86%
of the faults are safe on the architecture, and 68% are entirely masked. The study,
similarly to [1], shows the reliability of the network but rather than studying the
network itself, this study underlines its reliability on a hardware implementation.
An extra point of this approach is related to the types of faults applicable to
the network. Indeed, there is the possibility of propagating the faults not only
through the network but also in the layer itself. The DNN, described later, is the
LeNet-5 [2]. This particular implementation is fully explained in chapter 3. It
uses a limited precision opening the possibility of deploying the network to limited
power hardware, such as embedded devices, and enables the architecture to have a
smaller footprint while remaining acceptably stable, as shown by [3], [4]. Indeed,
the former shows how a Neural Network works with a binary set of weights {−1, 1},
while the latter use a ternary set of weights {−1, 0, 1}. These networks were able
to perform almost equally to the full precision network, motivating the use of this
data type. Furthermore, the authors of [5] show how the fault tolerance of the
network depends on the data type used. Indeed, they show that a balance exists
which allows enough precision for performance and good fault reliability since the
tolerance is shown to be smaller with the most precise representations.

This thesis aims to assess the reliability of a specific architecture implementing
the neural network and seeks for particularly peculiar vulnerabilities.

1

Chapter 2

Background

In this chapter, the concept of the systolic array will be introduced. In Section 2.2
the structure of the used Neural Network will be explained, introducing also the
type of layer considered1. Later, the mapping between the hardware operations
and the considered layers will be discussed (Section 2.3) to eventually conclude
with the required hardware (section 2.5).

2.1 Systolic array

Figure 2.1: MAC (multiply-
accumulate) processing element

A systolic array is defined as a lattice of syn-
chronous and locally connected processing ele-
ments (PE, also called nodes or cells) that can
perform iterative algorithms with regular data
dependencies [6]. Each PE independently com-
putes a partial result as a function of the data
received from its upstream neighbors, stores the
result within itself, and passes it downstream.
Figure 2.3 shows the architecture.

One type of PE is MAC (multiply-
accumulate) which can be used in different
applications such as matrix multiplication or
convolution (as in this case).

Figure 2.1 shows a PE. The inputs are NORTH
and WEST, while the outputs are EAST, SOUTH
and RESULT. The architecture is synchronous (i.e. the data flow is regulated by a
clock signal) with a synchronous reset input, which is essential because the reset
signal put 0 in PARTIAL_SUM register and allows the element to be used for different
unrelated computations.

1Two types of layers were considered, but only one has been simulated. A discussion about
the other type can be found in the appendix B

2

Background

A PE does fundamentally two things on each clock cycle:

• it applies a function to the inputs and the state2,

• and puts NORTH data on SOUTH and EAST data on WEST.

There is a PARTIAL_SUM register which is directly tied to RESULT. This register
contains the result of the computation NORTH ∗ WEST

A more detailed implementation can be seen in Figure 2.2.

D

D

WEST

SOUTH

EAST

NORTH

RESULT

D

Multyply and Add

Figure 2.2: Processing element detailed implementation

Figure 2.3: 4x4 systolic array

2In our case the state is the PARTIAL_SUM register and the applied function is
PARTIAL_SUM + NORTH ∗ WEST)

3

Background

2.2 Neural Network
A neural network is a program that tries to imitate the inner working of a brain.
The general structure of a NN is composed of layers of perceptrons [7]. A perceptron
represents a single neuron having an input, an activation function and an output.
Figure 2.4 shows an example of perceptron. It has 3 inputs x1, x2, x3 and three
weights w1, w2, w3, each of which associated to the corresponding input. The
perceptron performs a computation of the inputs which is as follows:

Figure 2.4: Perceptron model

y = σ(w1x1 + w2x2 + w3x3)

The function σ is called acti-
vation function and introduce
non-linear computations which are
needed when classify non-linear
data. Other than that, it tries to
imitate actual neurons which have
some sort of threshold for being con-
sidered active.

The function can have different
shapes. The most basic one is the following:

σ(x) =
1 if x ≥ 0

0 if x < 0

Nowadays different activation function exists, but the basic idea has been always
the same: non-linearity. The implementation we will see later uses a function called
ReLU (Rectified Linear Unit) [8]:

Figure 2.5: ReLU function

ReLU =
x if x ≥ 0

0 if x < 0

A network is then composed of perceptrons
organized in layers. In particular, the first layer
corresponds to the inputs given to the network
from the external world. The last layer cor-
responds to the output of the network. The
layers in the middle are called hidden and they
are the place where the magic happens. Figure 2.6 shows a simple network with
three layers. The input layers have three perceptrons, there is only one hidden layer
(with four perceptrons) and the output is composed of two perceptrons. Note that
each perceptron of a layer is fully connected to each perceptron of the following
layer. That is why this type of level is usually referred to as fully connected.

This type of level is mono-dimensional since there only one single value deter-
mines the position of a perceptron (i.e. inside a layer: the network as a whole is

4

Background

bi-dimensional). More complex networks exist. Indeed, a fully-connected disposi-
tion hardly copes with multi-dimensional input such as images. For this type of
input, different strategies have been created. In [8] the authors were the first to
create a convolutional layer. It performs a 2D convolution operation on an input
image. The perceptrons are the same, but the relationship between the levels is
different. Furthermore, in this context a convolutional layer is 3-dimensional.

The input is an image, so there is spatial information that without a 2D
convolution would be lost. Furthermore, the convolution process is repeated more
than once with different weights, generating a third dimension that will be later
called channel.

Output

Hidden

Input

Figure 2.6: Simple neural network model with three layers. The input layer has
three perceptrons, the hidden layer four and

The first goal of this thesis was to implement the first layer of a neural network
and, among all, a custom implementation of LeNet-5[2] was chosen for its simplicity.
The used implementation has a 32x32 gray-scale input (for a total of 3 dimensions)
and has a limited number of layers while still remaining a Deep3 Convolution
Neural Network (CNN). Figure 2.7 shows its architecture.

Figure 2.7: LeNet architecture

An important difference is the type of data that this implementation uses.
Rather than the common float 32-bit IEEE-754 standard, it was made with signed
and unsigned 8-bit values.

This is because this representation is much more efficient than full floating point

3a CNN is deep when there are at least 3 hidden layers.

5

Background

32-bit values, so it can be used with embedded devices which usually have limited
computational power and memory [3].

The first layer is a convolutional layer and implements a convolution operation4.
More precisely it is a discrete 2D convolution:

(f ∗ g)[x, y] =
+∞Ø

i=−∞

+∞Ø
j=−∞

f [x, y]g[x − i, y − j]

In the context of this thesis, we will have a kernel containing the weights
and will be denoted by K and an image or stimulus and will be denoted by I.
Furthermore, we will assume for simplicity that both K and I are squared. As a
final general assumption, we will assume that the kernel K is always smaller than
the image I.

All the experiments were made using the MNIST [2] validation set, composed of
10’000 images of 32x32 gray-scale pixels. The first layer is thus implemented as a
28x28 array. This is because the dimensions of the array depend on the output.

2.3 Hardware mapping
The first task to be performed for the study was understanding how to map a
convolution operation to the hardware. In other words: we need to find the correct
input sequences such that the systolic array performs the wanted convolution.

First of all, we need to clarify the meaning of input sequences. Each input
sequence is an ordered set of values that are given as input to one of the marginal
PE5. In figure 2.8 the input sequences for the following matrix multiplication.

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

 ×


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44


It is noticeable the presence of leading and trailing zeros for each input sequence.

Those zeros are vital because provide the synchronization needed for each PE.
Indeed, for instance, during the second clock cycle element a14 reaches P12 and
only at that point it is possible to put b42 inside P12. Furthermore, especially for
the considered application (bi-dimensional convolution) some elements need to be
passed forward on sum PE but do not participate in the computation for that
specific PE, thus the zero assures no garbage computation is put on any PE.

Continuing on the input sequences construction, we can make a very useful
observation: since the kernel K is always the same for each pixel of I, we will have
the same input sequence for the weights on each PE, but shifted (i.e. inserting
zeros) accordingly with some measure of depth. In this context, we define depth as
the maximum between its vertical position and its horizontal position. For example,
element P34 has depth of max(3,4) = 4 and element P14 has depth of max(1,4) = 4

4In the literature, the term "convolution" is widespread, but mathematically speaking the
operation is better described as a correlation

5A marginal PE is one whose position is along the first row or column.

6

Background

Figure 2.8: Input sequences example

and element P11 has depth of max(1,1) = 1. The depth represents the number of
clock cycles an element has to wait before doing any useful computation. This
measure also corresponds to the number of leading zeros to add to each input
sequence. Figure 2.9a shows a simplified architecture demonstrating this principle.
Vertically, it is possible to see that, since each PE passes data from NORTH to SOUTH,
each PE is able to synchronize quite automatically. Horizontally, we need to take
care of the leading zeros, as explained above. To achieve this goal, we can just
use a shift register and it fills automatically the sequences with the leading zeros.
This little extra hardware guarantees a single memory to store the weights and
automatic construction of the correct input sequences on the fly.

The input sequences for the stimulus are a little more involved. It is necessary to
use a so-called vertical overlapping region, as shown in figure 2.9b. That is to
exploit the systolic array architecture. For each output pixel (directly corresponding
to a single PE, it is necessary to do j × k multiplication. Notice that, to completely
exploit the vertical overlapping region, it is needed to process each output pixel in
a column-by-column fashion. These observations are enough to build the stimulus
input sequences, but for making a working model, we need to modify the weights
sequences.

To explain that, let us focus on Figure 2.9b. The yellow and green labels indicate
the weight to be used for each pixel, and it is notable that weight w1 is used again
only after the first j elements. This implies that before forwarding the weight
horizontally, it is necessary to wait for j clock cycles. That is why it was necessary

7

Background

(a) Weights sequence generation with a
shift register. In yellow is a systolic array,
in purple is the shift register, and in blue
are the weights. The red lines represent
PE with the same weight at the same clock
cycle and thus have the same depth.

(b) Vertical overlapping region in orange.
Each purple dot represents a pixel of I
and the two curves in yellow and green
represent two different convolutions. The
kernel has j rows and k columns.

Figure 2.9: 2.9a architecture comprising weights input logic. 2.9b Vertical
overlapping principle.

to introduce a piece of hardware called j-shift register. Such a piece of hardware is
described in section 2.5

The vertical forward exploits the corresponding horizontal overlapping re-
gion, as shown in figure 2.10. It is visible that the weights can be forwarded on
the next clock cycle and also a part of the stimulus is shared between the different
outputs. Indeed, an attempt to use additional hardware in order to generate
stimuli sequences (as done with the weights) was made, but unsuccessfully. Refer
to appendix A for more information.

As one can understand by the mapping explained above the size of the array
correspond to the size output of the layer. For instance, the first layer has 32x32
input pixels and 28x28 output pixels. The size of the array will be 28x28, while
the input size is hidden in the computations. Indeed, each output node performs a
different convolution which is just a finite number of multiplications and additions.

8

Background

Figure 2.10: Horizontal overlapping region. Yellow and green lines represent
sequences for two different vertically adjacent PE, and the labels of the same colors
represent the weights.

2.4 Halved array mapping

X X

Figure 2.11: Split convolution example

It is in theory possible to resize the
array. This approach has the merit
of minimizing the production cost
and the complexity of the hardware,
which is simple to manufacture. In
doing so, it is necessary to subdi-
vide the image into sub-images and
then convolve each sub-image inde-
pendently from the other. Further-
more, some sort of additional logic
has to be considered to synchronize
the different convolutions.

First of all, consider the different
convolutions. When splitting the
image, it is necessary to consider
that at the pixels at the borders of
the split are used for more than one
passage in the convolution. This

9

Background

means that some parts of the image
are used multiple times. In other words: the parts of the image used more than once
have to be used as padding. This fact has to be taken into account when generating
the input sequence. Figure 2.11 shows an example of split convolution. The two xs
identify the location of the convolutions. There is, as said, an overlapping region
and it exits outside the sub-image border.

2.5 Required hardware
This section summarizes the full hardware needed for performing a VHDL simula-
tion.

The first important component is called j-shift register and it is a custom
component. The j-shift register is nothing but a shift register that delays j
clock cycles before the data is shifted to the next position. Conceptually it is a
super-shift register in which each super-cell is itself a shift register with j positions.
The output of the super-cell is the first cell of the inner register. This concept
is shown in figure 2.12. Another way to think about it is a simple shift register

Figure 2.12: j shift register in which the value of j is n

whose output is every j-cells. This description corresponds to the actual VHDL
implementation and it is delved into in section 3.1.4.

Another important component is the ROM. In reality, it is most likely to talk
about RAM, since its role consists in holding the input sequences, but for the sake
of the simulation, a rom model was used. Exactly as it sounds, it binds together an
address to a value. It is important to remark the sequentiality of the inputs which
is strictly related to the rom component. Indeed the ROM has to be filled in order
so that a counter can be used for the inputs.

A counter model was implemented as well and it was used in a program counter
fashion. Each counter instance is coupled with a counter so that the ROMs are
independent of one another. And with this also a simple clock model was needed.

To implement the reduced version of the convolutional layer (Section 2.4) it was
necessary to use a multiplexer so that for each section of the image processed the
output could be saved and the systolic array reset.

10

Chapter 3

Proposed approach

In this chapter we will see the detailed circuit implementation, after that, we will
see the Neural Network software and how it was modified for our purposes, and
finally, we will see the remote environment used for running all the experiments.

3.1 Hardware model

In order to produce the convolutional layer, as explained in the previous chapter,
VHDL was used extensively. The design (as common with hardware design) is
hierarchical. Each level will be briefly explained and then each one of the main
components will be detailed.

The uppermost level of the design is a test bench. The test bench instantiates
a convolutional layer and contains all sorts of constants for the layer. All the
logic for the management of the simulation are inside the convolutional_layer
component, which in turn instantiates a number of channel components and also a
few rom components and the relative address counters components. Each channel
instantiates a so called j_shift_register for the input of the weights (as explained
in the previous chapter in section 2.3) and a systolic_generic component, which
is an implementation of a systolic array. In the first version, activation_block
components were also used but were later removed for performance issues that will
be explained later.

3.1.1 Test bench

The test bench, as previously explained, has the only purpose of instantiating a
convolutional_layer. It is used for declaring an entity called tb (which stands
for test-bench) and instantiating a layer. This component also contains some layer’s
hyper-parameters, such as the output width and height (respectively rows and
cols), the kernel width and height (resp. kerR and kerC) and the bit depth (depth).
The entity also needs to describe the conv_layer component for instantiating it.

11

Proposed approach

3.1.2 Convolutions layer
The convolutional layer component is the heart of the implementation. This
component instantiates all of the main signals (such as clock and reset) and the
channels which contain the systolic arrays. This component also contains the most
important logic:

• a reset process which assures each component and signal is in the correct
initial state,

• a clock process which drives the clock signal high and low with the specified
CLOCK_PERIOD,

• and a write in memory process, which waits for a specific amount of time
and then drives high a signal indicating it is time to stop the simulation. This
process is essential for data gathering. Indeed this signal is given in input to
the channels which have the important task of writing the output files.

As previously anticipated, conv_layer also instantiates some ROMs and the
relative address counters. These are simple components not worth deeply explaining.

The only important thing about the rom component is a function that reads a
file in order to make the model flexible from the input point of view. This way, the
files could just be replaced, thus skipping a new compilation1 of the design.

3.1.3 Channel
The channel component is, in a way, the most important, since it contains
the systolic array. Apart from that, this component contains a rom and a
j_shift_regiter for the weights2.

The last thing worth mentioning is the process WriteInMemory. This process
has the crucial role (as anticipated in subsection 3.1.2) of writing the output files.
The listing shows a wait for the done signal to become high and afterwards the
function writeMatrixContent is called to store the computed values to a file. All
the other function parameters are obtained directly from the test bench.

3.1.4 j-shift register
As explained in section 2.3, a j-shift register was implemented as a long shift register
in which not every cell is connected to the output, but on one each j.

It is possible to see the long shift register as identified in the signal register.
Indeed, as shown in the code, each clock cycle it is shifted by one position.

The outputs, however, are tied to each i*j-1 register, as seen in line 15. That
means that only the indices which obey the rule i mod j = 0 are tied to the
output.

1Each time the VHDL code changes, the model has to be compiled again.
2Each channel has its own set of weights, that is why such components are needed.

12

Proposed approach

3.1.5 Systolic array
The component systolic_generic is a generic description of a systolic array in
which each processor is a MAC (multiply-accumulate).

This implementation has the possibility to choose the type of operands (i.e.
whether they are signed or unsigned) and behaves accordingly.

Also, the output is four times as wide as the input, which is due to some overflow
issues.

3.1.6 Activation block
The activation block is a rather simple component. It implements a ReLU (Rectified
Linear Unit) using the middle input bits. Indeed, the value is right-shifted nine times
and then saturated (to 0 if the value is negative or to the maximum re-presentable
value).

3.1.7 Optimizations
The first time the data-gathering script was run, it was estimated that it would
complete in 231 days. That is a prohibitive time for an experiment in the context
of a Master’s thesis. So a few optimizations were made. In this section, hardware
model optimization will be discussed.

The first thing was to remove the activation blocks. The activation block is
modeled as an asynchronous circuit. This means that each change on its input
schedules a new time delta in order to compute the new value [9] and since the
input of each activation block is a MAC, a lot of time was required to perform the
activation on useless data. Thus, the activation was moved to a simple c program
which reads the output of the simulation and performs the activation one single
time.

The most important optimization was based on a simple, but powerful, observa-
tion. Each injected fault only affects one of the six channels of the network. Since
each channel is independent of the other, the unaffected ones performed just as
well as the gold simulation. The idea then was to remove the other five channels
and simulate only the faulty one. This trick saves more than 5s per simulation!

3.2 Neural Network program
The neural network program is a c-implementation of a convolutional neural network
written using the n2d2 platform 3.

In this study’s context, the program had two main tasks:

1. generates the input sequences for the simulation,

2. propagates the simulation-generated output to make a prediction.

3For more information: https://github.com/CEA-LIST/N2D2

13

Proposed approach

For achieving these objectives the program was modified in order to accept
arguments. I will briefly introduce the argument parsing logic and then the main
modifications exploiting the parsed arguments.

3.2.1 Argument parsing
The argument parsing is really simple. It is done using some binary variables which
are "switched" if the argument was given on the program call.

It iterates over argv and whenever it matches with the expected string, the
corresponding option variable.

The OPT_ variables are global and declared in the same file containing main,
other source files import opts.h which contain an extern declaration of the same
OPT_ variables.

3.2.2 Input sequence generation
As explained in section 2.3, the input sequences are the actual input of the network.
To simplify their generation, the program was exploited since it already provided a
reliable file reading mechanism. Indeed, the input is supposed to be a pgm image
which a separate program was otherwise supposed to read.

This section of code (which will not be entirely listed due to its length) behaves
as follows:

• if OPT_SAVE_FIRST_LAYER_INPUT is true, then two sets of files are generated:
one for the complete sequences and another for the reduced sequences (used
for experiment 3),

• if OPT_SAVE_WEIGHTS is true, then the weights sequence is generated,

• if OPT_SAVE_FIRST_LAYER_OUTPUT is true, two different things happen. The
simple thing is that the already activated output is saved on a set of files. The
difficult thing is saving the non-activated outputs. To do that, it was necessary
to dig inside the code of the network and find the right section. There I added
the required instructions,

• finally if OPT_ONLY_FIRST_LAYER is true, the program terminates prematurely
after the first layer pass.

These three options offer a great deal of flexibility. It is indeed possible to gen-
erate weights independently of input sequences and also entire program execution.

We will later see how these options became so useful.

3.2.3 Simulation output propagation
There is not much to say about this feature, it is simple as it sounds. If the option
OPT_FIRST_LAYER_FROM_FILE is true, then the set of files corresponding to the
output is read and a matrix inside the program is filled. After that, the program
continues executions. Finally, if the option OPT_SAVE_PROB_VEC is true, the output
of the network is saved on a file with space-separated values.

14

Proposed approach

3.3 Operating System Environment
The highest level of the project was using the Operating System for gathering all
the data and also analyzing it. Indeed, several bash scripts and simple programs
were created for that purpose.

The most important of all are the start_fault_campaign scripts. These scripts
are the heart of the project. Those are responsible for organizing the files, running
the simulation and a preliminary analysis of the data, to see if there is any difference
between the gold data and the faulty one or if the fault is completely masked4.
Generally speaking, these scripts have the following behavior:

1. Verify the weights sequences files exist, if not generate them.

2. Iterate for each stimulus for each fault.

3. If the fault-stimulus pair has been processed, skip it, otherwise run the
corresponding simulation.

4. Check the differences between the faulty simulation over the golden one.

5. Activate the output, meaning apply the ReLU function,

6. check the differences between the faulty activated output over the golden one.

3.3.1 Optimization
As said in subsection 3.1.7, some optimizations were needed to speed up the data
gathering. Also at this level, some were made.

• Having switched from simulating six channels to just one, the higher level
script needed to:

1. change the name for the relevant files. That is because the simulation
will always enumerate the channels starting from 1, so also the input files
needed to be correctly enumerated.

2. change the fault location. Again, only channel 1 exists, so it is impossible
to inject a fault into channel 2.

• To maintain a fresh process state, instead of simply using two for loops (as it
was initially done), the external loop was replaced by an exec of the script
itself paired with a numeric increasing argument.

4We will add details in chapter 4, but for completely masked fault I fault which doesn’t affect
the output of the layer

15

Chapter 4

Experimental Results

Using the environment explained in the previous chapter, three main experiments
were carried out:

• full 28x28 architecture injecting in the weights lines

• full 28x28 architecture injecting in the results bits

• halved 14x14 architecture injecting in the weight lines

Each experiment was performed by simulating 1’000 stimuli. For each stimulus,
a total of 200 different faults were injected for a total of 200’000 simulations. The
software used for the simulation is modelsim.

After running all the simulations, for ease of analysis, the data were gathered in
a sqlite .db file which is relatively small than the plain text representation used
in the previous step. The analysis was then performed using python interactively
with the software JupyterLab.

4.1 Network parameters
For understanding the behavior of the network, a number of statistics over the
network’s parameters (including inputs and outputs) had to be gathered. Firstly,
the distribution of the weights. It is noticeable in figure 4.1 that almost one-third
of the interval of possible values is empty. Indeed, all the weights lie in the interval
[−67, 105]. Furthermore, most of the weights are concentrated around [−60, 59],
potentially reducing the number of bits needed for representing network weights.
Another interesting analysis is the bit’s weights distribution. This is computed
considering the binary value of each weight, then the distribution is computed as
the number of 1s that appear in each position. The result is shown in figure 4.2.
The distribution resembles a uniform distribution. It will be important to note that
bit 1 is the MSB (and as so, also the sign bit), while bit 8 is the LSB important. It
is possible to see that positions 8 and 2 are the most common with a total count of
just less than 80, while positions 3 and 6 follow. The least common position is 4
with 70 apparitions. The bits distribution guarantees there is no bias in the results
shown below.

16

Experimental Results

Figure 4.1: Weights distribution

Figure 4.2: Bits weights distribution per position (value 1)

Figures 4.3 and 4.4 show the weights distribution per channel. We can see a
general trend which is having a number slightly higher of weights towards the left of
the graph. Channel 5 has the narrowest distribution among the six channels. That
might be a reason why, as we shall see later, channel 5 has the smallest number of
critical faults with respect to the others.

Finally, figure 4.5 shows the distribution of the input stimuli. There are a total
of 1’000 stimuli representing digits between 0 and 9. Once again, the distribution
is similar to a uniform distribution, which makes the further analysis less prone to
errors due to bias in the inputs.

4.2 Faults
All the faults are Stuck-at of the type stuck-at. This type of fault is one of the
simplest and it is modeled as a line that always has a fixed value. As written

17

Experimental Results

Figure 4.3: Weights distribution per channel

above, three experiments were performed and all of them have similar faults (i.e.
the location of the injection and its value).

4.2.1 Fault campaign 1
FC (Fault Campaign) 1 had the goal of investigating the outcome of faults injected
in the weight’s input of the PEs. A total of 200 faults were randomly generated,
choosing the channel, the faulty element (row and column), the bit, and its value
(whether to be high or low)

Figure 4.6 shows the number of faults per each row while figure 4.7 shows the
distribution of faults per each column of the architecture. This data is used for
normalizing the fault distribution of faults per row and column, since the number
of injections is relatively small, compared to the number of rows and columns.

Figure 4.8 shows the number of faults for each bit. Each bar represents the
number of faults that are injected in that bit position, regardless of the faulty PE

18

Experimental Results

Figure 4.4: Weights distribution per channel - detailed

Figure 4.5: Stimuli distribution

or channel.
Finally, figure 4.9 shows the number of fault per channel. A uniform distribution

emerges.

19

Experimental Results

Figure 4.6: Number of faults per each row

Figure 4.7: Number of faults per each column

4.2.2 Fault campaign 2
In FC 2 the injected lines were the 32-bits output of the PEs. Differently from the
first campaign, here the faults were not randomly generated. Instead, for the sake
of comparison, the faults were constructed starting from those of FC 1 with the
obvious exception of randomly choosing a different bit to inject. The distribution
of faults with respect to rows and columns is not much different from that of FC
1, in fact, they should be the same. That is not possible because of the injection
point. In FC 1 the transmission lines between PEs were injected, since those lines
coincide with the output of one PE and the input of the following. Differently, in
this context, the injection is directly on the output of the PE. For that reason there
is a slight difference between the two, but figures 4.6 and 4.7 completely describe
the distribution of faults for FC 2 as well.

Figure 4.10 show a 2D histogram of the injection location combining rows and
columns. As said in the previous paragraph, this representation is also valid for
FC 1. It is shown that the locations of injection don’t have a uniform distribution
as it would be ideal. That is because of the limited power the whole experiment
was subjected to; indeed the time required to make enough injections with a
(much bigger) set of faults satisfying all the uniformity would be long that such an
experiment would be out of the scope of this thesis.

The faults distribution over the channels is the same as one of FC 1 and so refer
to the previous subsection and specifically to figure 4.9.

20

Experimental Results

Figure 4.8: Number of faults per injected bit

Figure 4.9: Faults per channel

It is worth looking at the fault distribution per bit since in this context there
are 32-bits rather than 8. As expected, the distribution is not homogeneous, indeed
the number of faults is small compared to the number of possible bits, resulting in
a higher number of injections for some bits, like bit 1 or bit 13.

21

Experimental Results

Figure 4.10: 2D histogram describing the number of injections per single location
on the systolic array.

Figure 4.11: Number of faults per each injected bit

4.2.3 Fault campaign 3

FC 3, as anticipated, is different from the other two. Indeed only a quarter of the
hardware is present since instead of having a 28 × 28 array per channel, it is a
14 × 14 one. This means that also the position of the faults has to be different.
The faults were generated starting from those of FC 1, retaining the locations for
the channel, bit and value. The injected PE changed according to the following

22

Experimental Results

two rules, given x is the location considered1:

• if x mod 14 /= 0 then the new location x′ would be assigned the value x′ = x
mod 14

• else x′ = random value

The reason to generate a random value lies behind the structure of the VHDL
architecture. Since the fault is injected in the transmission lines between two PE,
the line 0 would correspond to the external input applied to the systolic array,
which is an undesirable situation for the purposes of this thesis.

Figures 4.13, 4.12a and 4.12b show the distribution on rows and columns.
Unluckily the random generation was a bit repetitive to the point of having 7
injections on the same PE; that is unavoidable with the number of this thesis,
the injections were too few compared to the other parameters of the experiments.
Nevertheless, they will serve as a good approximation.

(a) Faults per row

(b) Faults per column

Figure 4.12: Figures

1In this context x can be both the value of the row and the value of the column.

23

Experimental Results

Figure 4.13: 2D histogram describing the number of injections per single location
on the systolic array

4.3 Metrics
In this section, the actual results of the experiment will be highlighted.

The faults are categorized following the same criteria of [5]. First of all, if the
output of the network of the faulty execution is the same as the output of the
golden execution of the network, the fault is classified as masked. Otherwise, the
fault is classified as observed and there are four sub-categories:

• Good: the top-ranked element is the same as the gold execution one and the
confidence of the network is higher than the golden execution;

• Accept: the top-ranked element is the same as the gold execution one and
the confidence is smaller within 5

• Warning: the top-ranked element is the same as the gold execution one and
the confidence is smaller and greater than 5

• Critical: the top-ranked element is different.

The architecture performed quite well. Figure 4.14 shows the performance of the
three FC. As expected, the most critical case is FC 3. That happens because the
same faulty PE process the image four times in four different places. On the other
hand, FC 2 performed the best, because the faults were injected in the output of
the PEs before the activation of the node. This means that about half of the bits

24

Experimental Results

change the resulting value in tiny amounts. The last 9 bits (from bits 24 to 32) are
completely ignored, while bits 16 to 23 constitute the output after the activation.
Bits 2 to 22 saturate the value. Indeed, the activation node checks whether the
value made by bits 2 to 23 "fits" inside an 8-bit register. If it is bigger, the value
is saturated to 0xFFFF. Finally, if bit 1 (the MSB and sign bit) is set, the output
gets a value of 0.

Another way to see the data is to understand that a fault in the output of a PE
is propageted when the fault bit is multiplied with the other input, while a fault
in the output stays as it is. In other words: the faults of FC 2 are a subset of
those seen in FC 1.

(a) FC 1 (b) FC 2 (c) FC 3

Figure 4.14: [%]Safety performance for the three FC. The graphs show the
percentage of injections for the different categories.

The results for each FC are now presented.

4.3.1 Fault campaign 1
Processing element position

The position of the injected PE is very important. Something that was not specified
before is that the fault is obviously propagated throughout the line of the injected
PE. In facts, the input on west (or north) is copied (whether faulty or not) to
the east (or south). It is clear from figure 4.15a that the deeper the row, the
smaller the probability of having an unsafe fault. That happens because the fault
is injected in the vertical lines of the PE (i.e. on north and south, allowing the
fault to be propagated in that direction.

Figure 4.7 shows a completely different trend. The fault number is about
constant and does not show any particular correlation with the faults. Obviously,
that is due to the path taken by the weights on the architecture. Looking at figure
2.3, we can see the weights enter in ci and then for each cycle proceed vertically.
The stimulus, instead, proceeds horizontally and that is why we see no correlation
in figure 4.7

25

Experimental Results

(a) Safety per row (b) Safety per column

Figure 4.15: Number of faults per each row and column. On the left is the plain
number (in red), and on the right, the number is normalized with respect to the
number of injections.

Back at figure 4.6, we can see that most of the critical faults are located before
row 10. And in general, the number of unsafe faults (accept, warning and critical)
decreases with the depth of the row. Figure 4.16a show the cumulative distribution.
We can see the distribution is a little bit more than linear. Figure 4.16 shows
the cumulative distribution for both the types. Note how much more linear the
distribution is for the columns.

(a) Cumulative number of un-
safe faults per row normalized
with respect to the number of
injections.

(b) Cumulative number of un-
safe faults per row normalized
with respect to the number of
injections.

Figure 4.16: Cumulative number of unsafe faults per injected row (on the right)
and column (on the left). The orange lines represent a linear approximation of the
data

26

Experimental Results

Channel

The term channel, as explained before, correspond to the third dimension of the
layer. Data show a clear relationship between the safety of the channel and the
injected channel. The following table shows the number of faults per each type per
channel. Part of the data is reported in the next figures. Figure 4.17b shows clearly
that the number of injections on the fourth channel produced a higher number of
unsafe faults and it is prevalent also between accept and warning fault types.

Masked faults

Channel 1 17888
Channel 2 22113
Channel 3 21277
Channel 4 19163
Channel 5 25106
Channel 6 24234

Good faults

Channel 1 12337
Channel 2 6809
Channel 3 5801
Channel 4 5516
Channel 5 4584
Channel 6 5230

Accept faults

Channel 1 729
Channel 2 1462
Channel 3 773
Channel 4 2271
Channel 5 575
Channel 6 378

27

Experimental Results

Warning faults

Channel 1 1984
Channel 2 4572
Channel 3 2120
Channel 4 7015
Channel 5 4728
Channel 6 3150

Critical faults

Channel 1 62
Channel 2 44
Channel 3 29
Channel 4 36
Channel 5 7
Channel 6 10

Furthermore, as figure 4.17a that most of those faults are of accept and warning
type. On the other hand, the first channel is responsible for most of the critical
faults. This aspect should be investigated since this last result could be biased by
the total number of critical faults which is quite small. Another observation that
might lead to the biased hypothesis comes from the fact that accumulating the
unsafe faults (figure 4.17b) the faults on channel 1 are the least.

Finally, another little observation arises: channel 1 is responsible for 30% of the
total number of good faults (which increase the top-rank probability). It might
be interesting to how this channel is responsible for the better performance of the
network.

(a) Number of different faults per
injected channel.

(b) Number of unsafe faults (i.e. aggregat-
ing accept, warning and critical faults) per
injected channel.

Figure 4.17: faults distribution per channel

28

Experimental Results

Bit position

The bit position is obviously much more important. Indeed, the position of the bit
might make a huge change in the value of the weight. For example, if the original
value is −23, in binary 0xE9, when injecting bit 1 with a stuck-at 0, the new value
would be 0x69 which correspond to 105. Not only does the sign change but also
the absolute value is much different.

Figure 4.18a show the distribution of the types of fault per each bit position. As
expected, the more important the bit position, the worse the fault is. Indeed, most
of the critical faults come from bits 1 to 4 which are the most important. Also, the
accept faults come from the higher bits. In general, the higher the bit position, the
more significant the difference in value.

(a) Number of faults per each injected bit
position

(b) Number of faults per each injected bit
position

Figure 4.18b shows the number of unsafe faults, aggregating the three types.
Overall the last three bits are the less critical. It is important to underline that
for this FC, the injected values are the input to the PE, so the faulty value is
propagated through the multiplication inside the PE.

29

Experimental Results

Stimulus

The analysis of a possible relationship between the stimulus and the fault types is
much unsatisfying because there is not a clear pattern. What can be said is that
there seem to be stimuli which are more susceptible to injections than others. A
deeper analysis should be made, but in general (figure 4.19) stimuli representing 9
seem to be much more susceptible to critical faults. Indeed there is a clear spike on
that label. Otherwise, stimuli representing 1, 7 and 9 are the more prominent for
accepting faults. On the other hand, there is no statistical difference in warning
faults.

Figure 4.19: Number of faults per each stimulus

30

Experimental Results

Fault value

Figure 4.20 shows the number of faults per fault value. We see that the stuck-at
1 faults are more severe than the stuck-at 0. Indeed more than 75% of the faults
are stuck-at 1. This fact might depend on the location of the faults. Indeed it is
possible that most of these faults are injected in the most significant bits of the
input, thus completely changing the weights’ values.

Figure 4.20: Number of faults per fault value (i.e. whether they are stuck-at 0 or
stuck-at 1)

Finally, figure 4.21 shows the ratio of stuck-at 1 faults to both types. Bits 2 to
8 show the aforementioned trend. On the other hand, it is interesting to note that,
although more than 75% of the faults are stuck-at 1, most of the faults in bit 1 (the
most important) are stuck-at 0. Indeed, less than 1/3 of the faults are stuck-at 1.

Figure 4.21: Number of unsafe faults comparison between stuck-at 1 and stuck-at
0. In yellow is the number of unsafe faults normalized per bit injection. In blue is
the number of unsafe faults generated by a stuck-at 1.

31

Experimental Results

4.3.2 Fault Campaign 2
Processing element position

Differently than FC 1, in this case, the injections are on the result lines of the PEs.
This means that the faults are not propagated, indeed looking at figures 4.22 we
can see there is not a clear trend or any sort of pattern. The number of faults, in
this context, is a random variable.

(a) Number of faults per row (b) Number of faults per column

Figure 4.22: Number of faults per each row and column. On the left is the plain
number (in red), and on the right, the number is normalized with respect to the
number of injections.

Channel

The injected channel, as seen in the previous section, is strongly related to the fault
type. Indeed, figure 4.23b shows the same pattern as before: the fourth channel is
the most critical. Different story when looking at figure 4.23a. Differently from FC
1, channel 2 has an important role this time.

Bit position

In this FC there are 32 bits to inject, corresponding to the output of a PE. The
injection is performed before the activation function (in this case a ReLU). Figure
4.24a this fact. Indeed for any type of fault, bits 24 to 30 never participate in a
non-masked fault. That is true because this specific implementation of the ReLU
just ignores the last 9 bits. On the other hand, the first half of the bits are the
most critical: when any bit between 1 and 15 is set, the output of the ReLU gives
0x7F (or 127), saturating the output. This means that any fault in one of those
positions will insert into the network a weight outside the range (refer to figure
4.1).

32

Experimental Results

(a) Number of different faults per
injected channel.

(b) Number of unsafe faults (i.e. aggregat-
ing accept, warning and critical faults) per
injected channel.

Figure 4.23: Faults distribution per channel

Bit 16 correspond to the sign of the result and the remaining bits (17 to 23)
compose the result otherwise. Figure 4.24b shows the number of unsafe faults per
bit position normalized with respect to the number of injections. It is clear that
the critical bits are those which saturate the output.

(a) Number of faults per bit position

(b) Number of unsafe faults per bit position
normalized to the number of injections

33

Experimental Results

Stimulus

Similarly to what we saw in FC 1, some stimuli are more prone to criticality than
others. Figure 4.25 shows, analogously as FC 1, that stimuli representing 9 are
more frequent than others when talking about critical faults. With respect to the
other types, there is not much to say, stimuli 1 and 7 are a little bit more frequent,
but there are no spikes as seen before.

Figure 4.25: Number of faults per stimulus class

Fault value

For this fault campaign, the stuck-at 1 injections are responsible for almost 100%
of the unmasked faults. This datum was more than expected, after understanding
that half of the bits can saturate the output. Figure 4.26 shows the number of
faults with respect to the fault value. Figure 4.27 shows the number of faults
comparing the stuck-at 1 with the total. The only bit which makes an exception (as
seen in FC 1) is bit 1. That might be due to the fact that the activation function
outputs 0 if the 32-bit value is negative. A fault stuck-at 0 fault in that bit might
change the value from negative to positive.

34

Experimental Results

Figure 4.26: Number of faults per fault value

Figure 4.27: Number of unsafe faults comparison between stuck-at 1 and stuck-at
0. In yellow is the number of unsafe faults normalized per bit injection. In blue is
the number of unsafe faults generated by a stuck-at 1

4.3.3 Fault campaign 3
Processing element position

The faults are in the same positions of FC 1, modified with the rules explained
above. For this reason, the general trend of the number of faults per row and
per column is the same as FC 1. This means that the faults per column have no
clear trend. Figure 4.28 shows the pattern. Exactly as seen for FC 1, the number
of faults decreases when the depth increases. The effect is surely less dramatic
because there are half the rows than before.

35

Experimental Results

Figure 4.28: Number of faults per row

Channel

This experiment confirms what was already established in the previous sections.
Channel 4 is indeed the most susceptible of the 6. Furthermore, most of the critical
faults come from channel 1. Once again this result might be misleading, in this case,
the reason lies behind the injection positions. Indeed, they are (almost) exactly
the same as for FC 1, and for that reason might lead to the same result.

(a) Number of different faults per
injected channel.

(b) Number of unsafe faults (i.e. aggregat-
ing accept, warning and critical faults) per
injected channel.

Figure 4.29: Faults distribution per channel

36

Experimental Results

Bit position

The results of this analysis are predictable too. The higher the bits the more
critical the fault. Also, the critical faults number decreases exponentially with
the bit position, indicating that a change in those bits is most likely to produce a
critical error. Bits 5 and 2 are prominent for accept and warning faults.

Figure 4.30: Number of faults per bit

Stimulus

The number of faults per stimulus is a little different than the other campaigns.
Indeed, we can see that in this case, the critical input is the stimulus representing 2.
In all three cases, these stimuli have a significant number of faults, while the stimuli
that in the other fault campaigns were most susceptible are not that important.

Fault value

In this context, the stuck-at 1 faults have a role less important than previously.
Indeed, even though most of the faults are still stuck-at 1, there is an important
increase in the other type. Figures 4.33 and 4.32 demonstrate the concept.

In general, stuck-at 1 faults are more critical than stuck-at 0. As seen with the
channel, it is clear that the different locations are more susceptible to faults than
others. To better investigate this aspect (and generalize it) it would be interesting
to change the implemented network, either retraining the network, thus changing
the distribution of the weights, or using another network altogether.

37

Experimental Results

Figure 4.31: Number of faults per stimulus

Figure 4.32: Number of faults per fault value

38

Experimental Results

Figure 4.33: Number of unsafe faults comparison between stuck-at 1 and stuck-at
0. In yellow is the number of unsafe faults normalized per bit injection. In blue is
the number of unsafe faults generated by a stuck-at 1

39

Chapter 5

Conclusions

In this thesis we discussed the mapping of a convolutional layer to a systolic array,
creating a neural accelerator, and later analyzed the reliability of the architecture
injecting permanent faults.

The result obtained shows that a reliable neural accelerator is in fact possible
without reinventing the wheel, that is using a well-known architecture such as a
systolic array. The gathered experiments showed that the architecture seems to be
safe, on average, in 85% of the total injections, masking the 68%. Furthermore,
the critical faults were only a minimum percentage of 0.22% in the worst case.

Another interesting result shows how the channels do not have the same criticality,
indeed channel 4 is the most problematic, while on the other hand, the safest is
channel 1. This result should be more investigated since it might depend on the
training of the network. Interestingly, we saw that almost 75% of the unsafe faults
were caused by stuck-at 1 faults.

The reliability of the network, as seen in other studies, heavily depends on the
injected bit. The results show that the more important the injected bit, the higher
the probability of unsafe fault. This is true with some exceptions. Indeed it was
not always the MSB the most critical, but the most important first half in general.

Note that the injected layer was the first which is the most sensible (as shown
by [5]) layer among all.

In conclusion, the result obtained is in line with the expectation and the results
seen in the literature. Nevertheless, more research has to be done to better assess the
weaknesses of neural networks in general. In future works, it would be interesting to
inject faults in the stimuli lines of the systolic array and to study a good trade-off
between chip area and reliability.

40

Appendix A

Failed attempt

Given the structure of the systolic array, as explained in section 2.3, it would
have been efficient to exploit the horizontal overlapping region using additional
hardware and indeed such an attempt was made, trying to dynamically generate the
input stimuli sequences. A piece of hardware, called selective shift register, was
created and indeed it can generate the correct input sequences using less memory
for storing the input sequences.

This chapter will first be explained the general idea and then a working imple-
mentation will be shown.

A.1 Horizontal overlapping region
As shown in figure 2.9b (shown again below) each sequence share j − stride values
with the horizontal-next sequence. This means it in theory is possible to forward
those common values from one PE to the next (vertically-next). The new non-
shared values must come from the outside though, for generating the complete
sequence. In each "input cycle" (i.e. at the beginning of each new column, given the
input is ordered as shown in the figure with yellow and green lines) a new element is
injected in the sequence. To be clear, the number of elements injected for creating
the new sequence is dependent on the stride parameter. Indeed, since j − stride
values are shared, the other stride values need to be injected as explained above.

A.2 Working hardware implementation
For achieving the behavior explained in the previous section, a quite complex
system was created. Figure A.2 shows such a system. It is a shift register, but each
cell can get its data directly from the outside, through the multiplexer if the fire
signal (depicted in blue) goes high. The fire signal is forwarded each clock cycle,
enabling the subsequent cells to get data from the outside. Finally, the fire signal
has to be synchronized with the rest of the architecture for it to be functional.
Indeed, the implementation is thought using a counter and a digital comparator
such that the counter resets each j clock cycles and the comparator fire when

41

Failed attempt

Figure A.1: Horizontal overlapping region

the value is equal to j.
Figure A.3 shows a questasim simulation of the hardware. The fire signal goes

high each 3 clock cycles. The signal input, corresponds to the outside input which
is not shared between sequences while the signal output shows the output of each
cell of the register. The signal fire_line shows when the fire goes high for each
multiplexer allowing the corresponding input to get inside the register.

42

Failed attempt

Figure A.2: Selective shift register (SSR)

Figure A.3: Selective shift register simulation

43

Appendix B

Fully connected layer
implementation

The systolic array architecture has the potential to be exploited also for fully
connected layers, other than for convolutional layers. This means that a network
such as LeNet could be (almost1) fully implemented in hardware with systolic
arrays.

The mapping consists of using only one portion of the systolic array. More
precisely, it is enough to use a line of subsequent PEs, each one for one output of
the layer. Indeed, the main observation to be done is that the inputs are all the
same among all inputs and so they can be using a similar methodology as the one
explained in section 2.3. Figure B.1 shows the representation of a fully connected
layer. It is possible to see that each input is used no times (where no represents
the number of outputs of the layer), each time with different weights. Note that
a bias has to be present and it can be conceptualized as an input neuron that
has constant input 1. This idea is highlighted in figure B.2, which shows how the
architecture can be adapted to this type of layer.

As said, the weights are different for each input, so it is not possible to use the
j-shift register we explained above. That is a problem that might be solved
using a binary multiplexer. The stimulus inputs are instead equal for every neuron.
This means that it is possible to exploit the forwarding nature of the PEs, enabling
thus the use of the first row only.

1it should be studied how to map different layers such as max-pooling layers with systolic
arrays.

44

Fully connected layer implementation

Figure B.1: Fully connected layer sketch

Figure B.2: Fully connected layer implementation with systolic array

45

Appendix C

Fault identification

The systolic array architecture has an interesting and very useful property. It is a
diagnostic property, meaning that it can be used to diagnose a malfunction and
in this case, with the systolic array it is possible to diagnose any stuck-at fault
between the transmission lines of the PEs, provided those are the only fault that
can happen.

Indeed, the reason behind this is extremely simple: when multiplying by 0 the
result has to be 0. Exploiting this postulate it is possible to not only find a fault
but also locate it! This is extremely useful for, as an example, considering a backup
system for the architecture.

Assuming that 1 identifies the matrix 1 × 1T (where 1 is a vector whose
components are all 1), 0 is a null matrix and the first matrix is input from the
west, then the locating procedure is as follows:

1. Input 1 × 0 in the array,

2. Compare the result with the expected,

3. if they do not coincide, a fault in the vertical lines can be located,

4. Input 0 × 1 in the array,

5. Compare the result with the expected,

6. if they do not coincide, a fault in the horizontal lines can be located.

In the context of the convolution, the input sequences are all-zeros or
all-ones. More in detail, when identifying faults in the stimulus lines, the
stimulus sequences are all-ones and the weights sequences are all-zeros. When
identifying the faults in the weights lines are the opposite.

When identifying a fault, it is enough to compare the obtained result with 0.
Indeed, if any of the bits of the result is non-zero, then a fault had happened for
sure.

For locating the fault, we have to make a couple of observations more. Firstly,
we need to underline that the fault is propagated. This means that once the fault
has been injected, it will be also present on the other side of the PE. If, for example,

46

Fault identification

bit 0 of WEST of P34 is stuck at 0, then also bit 0 of EAST will be 0 and thus also
EAST of P35, being the same line, and so on. This means that identifying the first
element to have non-zero bits, will correspond to the fault location. We need to
clarify that first is related to the depth as explained in 2.3, indeed in this case
we need to consider also the orientation (i.e. whether we are searching a fault
horizontally or vertically). Lastly, the faulty bit directly impacts the result, since
its value depends on the inputs which are well known. Specifically, the output
is supposed to have all the bits at 0 and the position of any non-zero bit clearly
indicates the position of the fault bit.

47

Acronyms

AI
artificial intelligence

MAC
multiply-accumulate

ReLU
Rectified Linear Unit

PE
Processing Element

MSB
Most Significant Bit

LSB
Least Significant Bit

FC
Fault Campaign

CNN
Convolutional Neural Network

DNN
Deep Neural Network

NN
Neural Network

49

Bibliography

[1] Annachiara Ruospo, Alberto Bosio, Alessandro Ianne, and Ernesto Sanchez.
«Evaluating Convolutional Neural Networks Reliability depending on their
Data Representation». In: 2020 23rd Euromicro Conference on Digital System
Design (DSD). 2020, pp. 672–679. doi: 10.1109/DSD51259.2020.00109 (cit.
on p. 1).

[2] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. «Gradient-based learning
applied to document recognition». In: Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324. doi: 10.1109/5.726791 (cit. on pp. 1, 5, 6).

[3] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. «BinaryCon-
nect: Training Deep Neural Networks with binary weights during propagations».
In: Advances in Neural Information Processing Systems. Ed. by C. Cortes, N.
Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran Associates,
Inc., 2015. url: https://proceedings.neurips.cc/paper/2015/file/
3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf (cit. on pp. 1, 6).

[4] FengFu Li, Bo Zhang, and Bin Liu. «Ternary Weight Networks». In: 2016. doi:
https://doi.org/10.48550/arXiv.1605.04711 (cit. on p. 1).

[5] Annachiara Ruospo, Ernesto Sanchez, Marcello Traiola, Ian O’Connor, and
Alberto Bosio. «Investigating data representation for efficient and reliable
Convolutional Neural Networks». In: 2021. doi: https://dx.doi.org/10.
1016/j.micpro.2021.104318 (cit. on pp. 1, 24, 40).

[6] Lars Wanhammar. «8 - DSP Architectures». In: DSP Integrated Circuits.
Ed. by Lars Wanhammar. Academic Press Series in Engineering. Section 8.7.
Burlington: Academic Press, 1999, pp. 357–385. isbn: 978-0-12-734530-7. doi:
https://doi.org/10.1016/B978- 012734530- 7/50008- 8. url: https:
//www.sciencedirect.com/science/article/pii/B9780127345307500088
(cit. on p. 2).

[7] Marvin Minsky and Seymour A. Papert. Perceptrons: An Introduction to
Computational Geometry. The MIT Press, Sept. 2017. isbn: 9780262343930.
doi: 10.7551/mitpress/11301.001.0001. url: https://doi.org/10.7551/
mitpress/11301.001.0001 (cit. on p. 4).

[8] Kunihiko Fukushima. «Cognitron: A Self-Organizing Multilayered Neural
Network». In: Biol. Cybern. 20.3–4 (Sept. 1975), pp. 121–136. issn: 0340-1200.
doi: 10.1007/BF00342633. url: https://doi.org/10.1007/BF00342633
(cit. on pp. 4, 5).

50

https://doi.org/10.1109/DSD51259.2020.00109
https://doi.org/10.1109/5.726791
https://proceedings.neurips.cc/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/3e15cc11f979ed25912dff5b0669f2cd-Paper.pdf
https://doi.org/https://doi.org/10.48550/arXiv.1605.04711
https://doi.org/https://dx.doi.org/10.1016/j.micpro.2021.104318
https://doi.org/https://dx.doi.org/10.1016/j.micpro.2021.104318
https://doi.org/https://doi.org/10.1016/B978-012734530-7/50008-8
https://www.sciencedirect.com/science/article/pii/B9780127345307500088
https://www.sciencedirect.com/science/article/pii/B9780127345307500088
https://doi.org/10.7551/mitpress/11301.001.0001
https://doi.org/10.7551/mitpress/11301.001.0001
https://doi.org/10.7551/mitpress/11301.001.0001
https://doi.org/10.1007/BF00342633
https://doi.org/10.1007/BF00342633

BIBLIOGRAPHY

[9] Douglas L. Perry. VHDL: Programming by Example. Chapter 2 - «Simulation
Deltas» section. McGraw Hill Professional, 2002 (cit. on p. 13).

51

	List of Figures
	Introduction
	Background
	Systolic array
	Neural Network
	Hardware mapping
	Halved array mapping
	Required hardware

	Proposed approach
	Hardware model
	Test bench
	Convolutions layer
	Channel
	j-shift register
	Systolic array
	Activation block
	Optimizations

	Neural Network program
	Argument parsing
	Input sequence generation
	Simulation output propagation

	Operating System Environment
	Optimization

	Experimental Results
	Network parameters
	Faults
	Fault campaign 1
	Fault campaign 2
	Fault campaign 3

	Metrics
	Fault campaign 1
	Fault Campaign 2
	Fault campaign 3

	Conclusions
	Failed attempt
	Horizontal overlapping region
	Working hardware implementation

	Fully connected layer implementation
	Fault identification
	Acronyms
	Bibliography

