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Summary

Graph heterophily, also called disassortativity, is a property of networks that models
the likelihood of nodes with different characteristics being connected. Several
real-world graphs present high levels of heterophily, such as computer networks,
where clients usually connect to servers, and dating applications, where users tend
to connect with users of the opposite gender. Despite the relevant contexts in
which heterophilous graphs are observed, current approaches fail to map nodes to
meaningful low-dimensional embeddings. Indeed, Graph Neural Networks (GNNs),
currently the state-of-the-art models for machine learning on graph-structured
data, implicitly assume homophily, leading to worse performances on disassortative
networks. Notwithstanding several works defining novel GNN architectures for
heterophilous settings, there is still insufficient understanding of the relation between
GNN performances and graph disassortativity.
In this context, this thesis focuses on two main objectives. First of all, the impact
of heterophily on GNN performances is discussed. In particular, it is shown that
GNNs can still achieve good performances under heterophily if other conditions are
met. Previous works already identify other graph properties beyond heterophily
that affect GNN performances, but they rely on the assumption of node features
being very informative for node labels, which is not always observed in real scenarios.
Therefore, in this thesis, the classification capabilities of a Graph Convolutional
Network (GCN), chosen as example given its popular and simple design, are
modeled in a context without node features, where only graph structural properties
are considered. In this setting, it is shown that a target node is likely to be correctly
classified if the majority of its 1-hop neighbors have neighbors that, for the most
part, share the same label as the target node. To numerically quantify this property,
a new metric is introduced: 2NCS (2-hop Neighborhood Class Similarity), defined
as the average over neighbors of the percentages of their neighbors with the same
label as the target node. Through extensive experiments on real and synthetic
graphs, it is shown that nodes with high 2NCS values are usually correctly classified
by a GCN, also in some scenarios where features are present. Therefore, 2NCS
appears to be an informative metric to estimate GCN performances.
Secondly, two new GNN models for node classification on heterophilous graphs
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are proposed: GATH (GAT for Heterophily) and GCNH (GCN for Heterophily).
GATH leverages an extended attention mechanism to learn a weight between any
pair of nodes in the graph. This weight defines the importance of the message
coming from that node. Additionally, GATH separately computes an embedding
for the target node and its neighborhood, merging them only at the latest stage
through a learnable coefficient. Moreover, messages for a target node are aggregated
also from nodes that are not directly connected but might still be informative in
heterophilous settings. In conclusion, structural information, namely the node
degrees and the distance between the nodes, is added to the feature embeddings as
input to the attention weight computation. GCNH is a simpler model that extends
GCN by separately learning embeddings for the target node and the neighbors.
Experiments on real and synthetic graphs show that GATH and GCNH can achieve
competitive performances compared to state-of-the-art methods on heterophilous
graphs.
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Chapter 1

Introduction

This chapter introduces the problems of Graph Neural Networks on heterophilous
graphs and defines the research questions that this thesis aims at answering. We
then present the contributions of the work and we describe how the thesis is
organized in its various chapters.

1.1 Scenario
In the latest years, Graph Neural Networks (GNNs) have achieved state-of-the-art
performance on graph-structured data. The main reason behind their success
consists in their ability to effectively represent information related to the graph
structure, instead of just considering each node as a single instance. However,
despite their success, experimental evidence has shown that GNN performance is
severely hindered on some graphs presenting high levels of heterophily. Heterophily
is a property of networks describing the extent to which nodes are connected to
dissimilar nodes. Similarity can be measured in terms of node features or labels.
Heterophilous graphs are present in many real-world scenarios. One example are
computer networks, where clients tend to connect to servers and vice-versa, but
it is unlikely for a client to directly communicate to another client. Similarly, in
dating applications users tend to connect to users of the opposite gender. The
large diffusion of heterophilous networks in real-world settings motivates the need
to further investigate and improve GNN performance on these graphs.

1.2 Research questions
Within the context of GNN performance on heterophilous graphs, this thesis aims
at answering two main questions.
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Introduction

RQ1. Do GNNs perform badly on all heterophilous graphs? Are there other metrics
beyond heterophily that can be useful to characterize GNN performance on
graphs?

RQ2. Is it possible to extend the design of GNNs in order to improve performance
on heterophilous graphs?

The first question is relevant to gain a deeper understanding about the relation
between GNN performance and graph properties. On the one hand, this allows
to better characterize the behavior of existing GNNs and predict which scenarios
are problematic for them. On the other hand, clarifying the limitations of current
GNNs is helpful to improve them.
The second question, instead, has a more practical focus. The goal is to create new
GNN models that improve performance on graphs that currently represent difficult
benchmarks for GNNs. This allows to extend the scenarios on which GNNs can be
successful and enlarge their impact.

1.3 Contributions
This thesis provides two main contributions. First of all, an intuitive analysis of
the learning process of a GCN shows that, in a scenario where features are not
considered, the capability to correctly classify a node is affected by the labels of
the 1-hop and 2-hop neighbors. To numerically quantify this property, we define
a new metric, 2-hop Neighborhood Class Similarity (2NCS). We show that this
metric provides useful insights about how favorable the graph structure is for a
GCN, improving on homophily ratio and other existing measures.
Secondly, the thesis contains the definition of two GNN-based models for het-
erophilous graphs: GATH (GAT for Heterophily) and GCNH (GCN for Het-
erophily). GATH relies on an extension of the attention mechanism to learn
weights among pairs of nodes that indicate how much the two nodes are relevant
to each other. This allows to assign more importance to the messages of the nodes
that are classified as more relevant and filter out the information carried by nodes
that are not important. Moreover, GATH enlarges the scope of the neighborhood
to aggregate information also from nodes that are not directly connected. Indeed,
in heterophilous graphs useful information can be located in different portions of
the graph. In conclusion, GATH separately computes an embedding for the target
node and for the neighborhood and merges them only as a final stage, learning a
coefficient that balances the contributions of the two. GCNH is, instead, a simpler
model that extends the design of GCN by separately learning the embedding for
the neighborhood and for the target node. These are then merged at the end
using a learnable weight, similarly to GATH. Experiments on real and synthetic
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graphs show that GATH and GCNH achieve competitive results compared to
state-of-the-art models.

1.4 Thesis overview
The thesis is organized as follows. In Chapter 2, we present the basics of machine
learning on graphs and we describe the architectures of the most common graph
neural networks. Moreover, we introduce the problem of graph neural network
performance on heterophilous graphs and we present several metrics to measure
heterophily.
In Chapter 3, we report an overview of the existing approaches to improve GNN
performance on heterophilous graphs. Then, we explain Cross-Class Neighborhood
Similarity (CCNS), a metric that attempts to characterize GCN performance on
heterophilous graphs, and we discuss its strength and limitations.
Chapter 4 introduces the real-world and synthetic datasets used in the thesis. The
presented graphs are commonly used in works dealing with heterophilous networks
and cover a wide range of heterophily values.
In Chapter 5, we propose a new metric to characterize a graph property that is
relevant for GCN performance: 2-hop Neighborhood Class Similarity (2NCS). We
introduce the metric through an analysis of the learning process of a simplified GCN
model and we evaluate it by observing how informative it is for GCN performance
on several graphs.
Chapter 6 describes the two GNN models introduced in this thesis: GATH (GAT for
Heterophily) and GCNH (GCN for Heterophily). We then analyze their performance
in detail in Chapter 7. We report comparisons with state-of-the-art models and we
perform ablation studies to show the importance of the different design choices.
Chapter 8, in conclusion, summarizes the main findings of the thesis, points out
the most relevant limitations of the work and proposes future directions to expand
the study and the experiments.
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Chapter 2

Background

In this chapter, we define the notation used throughout the thesis and the problem
of supervised node classification that this work deals with. Moreover, we introduce
Graph Neural Networks from a general perspective and we describe the most
common GNN architectures. To conclude, we present the notion of heterophily in
graphs, we justify why it is relevant to analyze its relation with GNN performance
and we provide an overview on the different existing metrics to measure heterophily
and, more in general, to gain information about the connectivity patterns in a
graph.

2.1 Problem statement and notation
Let G = (V, E) be an unweighted and undirected graph, where V is the set of
nodes and E is the set of edges. The connectivity information in the graph can
also be represented by means of the adjacency matrix A ∈ Rn×n, where n = |V | is
the number of nodes and each element of the matrix Aij is equal to 1 if nodes i and
j are adjacent to each other, equal to 0 otherwise. Each node is associated to a
feature vector xi of size f , and the complete set of features in the graph is denoted
as X ∈ Rn×f . Each node is also associated with a label yi ∈ C representing the
class the node belongs to, where C represents the set of labels. The set of nodes
with label c ∈ C is denoted as Vc. The set of adjacent nodes to a node i (also called
neighbors) is denoted as N(i), and the degree of the node |N(i)| is also denoted as
di. The symbol N ′(i) is used to denote the set of nodes connected to i plus the
node i itself. The symbol Nk(i) is used to identify the set of nodes up to k hops
away from node i (i.e. nodes up to the k-hop neighborhood). The number of nodes
adjacent to node i that have label c ∈ C is denoted as d

(c)
i . I indicates the identity

matrix.
The task considered in this work is supervised node classification, which corresponds
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Background

to learning a mapping F : V → C exploiting the information of the graph G, the
features X and the labels such that the loss L(yi, ŷi) is minimized, on average, for
the nodes in the training set, where ŷi = F(G, X, i) is the predicted label for node
i and the loss function L(·, ·) is used to describe the distance between the true
label yi and the predicted label.

2.2 Dealing with graph-structured data
Deep learning has witnessed an outstanding expansion in numerous fields thanks
to its ability to extract relevant features from data and automatically recognize
relevant patterns that help solve a wide variety of tasks. However, most of the
common deep learning approaches are designed to operate on data with a specific
structure. In particular, the two most developed and popular areas in which
deep learning thrives are computer vision and natural language processing, which
deal respectively with images, an example of grid-structured data, and with text,
naturally represented as a sequence. However, real-world data can assume much
more complex structures that cannot be represented as grids or sequences without
a significant loss of relevant information.
One class of data that would suffer from being simplified into a grid or a sequence
is graph-structured data, where different entities in the dataset are characterized
both by their own features and by their interactions with the other entities. Graphs
can be used to effectively model several real-world data, such as social networks,
computer networks and protein structures. To understand why adapting graph-
structured data to images or sequences may be problematic, it is important to
underline the differences between these data structures.
One important property that distinguishes graphs from images or sequences is the
notion of order. As a matter of fact, both images and sequences intrinsically define
an ordering between the different elements in the data (for example, each pixel
in an image is surrounded by other pixels with a specific spatial structure, and,
similarly, words in a sentence follow a defined ordering and it is straightforward to
understand which word comes before another one). This property, however, does
not hold with graphs, where there is no notion of order between the neighbors of a
node. The deep learning architectures dealing with images or sequences, in most
cases, assume an ordering among the inputs. Therefore, when applied to graphs,
they introduce an assumption that may bias the results.
Moreover, another relevant difference is the fact that in images the number of
neighbors for a center pixel is fixed and always the same, whereas in graphs each
node can have a different number of neighbors.
Taking these observations into consideration, it is clear that the approaches that
target images or sequences cannot be directly applied to graphs without the
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introduction of wrong assumptions in the data and loss of relevant information.
This motivates the development of Graph Neural Networks (GNNs), a more flexible
neural network paradigm that extends the aforementioned architectures to graph-
structured data.

2.2.1 Graph Neural Networks
Graph Neural Networks are a class of neural networks specifically designed to
target graph-structured data. They were originally introduced by [1] and [2] but
they gained popularity in more recent years. The basic idea behind GNNs is to
compute an embedding hu ∈ Re for each node u in a latent space of size e based
on a computational graph that differs depending on the position of the node in
the graph. In particular, as depicted in Figure 2.1, the computational graph for
each node is composed of the 1-hop neighbors at the penultimate layer. Then, each
node in this layer is connected to its 1-hop neighbors, and this structure can be
expanded for any number of layers.

Figure 2.1: Example of computational graph for the target node A given the
graph structure. Each node at each layer is connected to all its neighbors in the
original graph. The image is taken from [3].

We can observe that this formulation defines a flexible framework that can
represent any structure around a node.
The computational graph is then exploited to generate an embedding for the target
node. In particular, each node at each layer is represented by an embedding in a
latent space, and these embeddings are manipulated according to the following two
steps:

• message transformation: at each layer l, the embeddings (also called messages)
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of the nodes u in the previous layer hl−1
u are transformed:

ml
u = MSGl(hl−1

u ) (2.1)

• message aggregation: to generate the message for the target node, the trans-
formed messages of its neighbors and of the node itself are aggregated:

hl
v = AGGl({ml

u, u ∈ N ′(v)}) (2.2)

The messages at the final layer correspond to the node embeddings and can be
used to perform several downstream tasks. For node-level tasks such as node
classification, we can use the single node embeddings, whereas for link-level tasks
(e.g. link prediction) or graph-level tasks (e.g. graph classification) we can exploit
the combination of the embeddings of different nodes.
The definition of the MSG and AGG functions mentioned above changes depending
on the GNN design. We introduce two of the most common GNN architectures in
the following.

2.2.2 Graph Convolutional Network
Graph Convolutional Networks (GCNs) are a particular class of GNNs introduced
by [4]. They are inspired by Convolutional Neural Networks (CNNs), which
achieved great success in the field of computer vision thanks to their ability to
capture repeating patterns in images through the convolution operation, i.e. the
multiplication between a fixed-size filter and different patches of the image. However,
this notion of convolution strongly relies on two specific characteristics of images:
the number of neighbors of a central pixel is fixed for all pixels and there is a notion
of ordering among the neighbors, so changing the order of the pixels will change
the results. These two assumptions are not true in graphs, and therefore the notion
of convolution must be extended for this specific case.
To this end, [4] define the message transformation MSG as a learnable linear layer
and the aggregation function AGG as a weighted average of the messages from
the neighboring nodes, where the weighing factors are the target nodes’ degrees.
Overall, the layer-wise propagation rule of GCN for a node v can be written as

hl
v = σ(

Ø
u∈N ′(v)

W l hl−1
u

|N ′(v)|) (2.3)

where σ is a non-linearity such as ReLU and W l ∈ Rel×el−1 is a learnable matrix
for the l-th layer. The size of the embeddings at each layer can vary. We can also
express the same formulation in matrix form:

H l = σ(D̃− 1
2 ÃD̃− 1

2 H l−1(W l)T ) (2.4)
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where H l ∈ Rn×el is the matrix containing the node embeddings at layer l, Ã = A+I
is the adjacency matrix with added self-connections (note that adding self-loops
corresponds to adding the identity matrix to the adjacency) and D̃ ∈ Rn×n is a
diagonal matrix whose values on the diagonal are defined as D̃ii = q

j Ãij = di (i.e.
D̃ii is the degree of node i). At the first layer l = 0, the node embeddings are the
node features, i.e. H0 = X and e0 = f .

2.2.3 Graph Attention Network
The Graph Attention Network (GAT), introduced by [5], is another design of
graph neural network that extends the information representation capabilities of
the GCN. In particular, it introduces in the graph neural network domain the
concept of attention, popular in NLP and computer vision. Thanks to the attention
mechanism, it is possible for a model to assign different levels of importance to
different elements in the input, based on how relevant these elements are considered
for the final prediction. This allows to deal with large and redundant inputs more
effectively, since the attention mechanism is able to discard useless information
and focus on the most relevant parts. To encode this mechanism into GNNs, [5]
define a graph attention layer with the following formulation. The MSG function
is encoded by a learnable linear transformation, represented by a matrix W l for
each layer l. Then, attention scores are computed on the transformed messages
and normalized with a softmax function:

αl
uv = softmaxv(LeakyReLU((zl)T [W lhl−1

u ||W lhl−1
v ])) (2.5)

where || represents the concatenation operation and zl ∈ R2el−1 and W l ∈ Rel×el−1

are learnable parameters at layer l. The attention scores obtained in this way are
used to compute a linear combination of the features of the neighboring nodes, to
which a non-linearity is then applied to obtain the final embedding for the target
node, according to the following formulation:

hl
u = σ(

Ø
v∈N ′(u)

αl
uvW lhl−1

v ) (2.6)

Also in this case, at the first layer l = 0, the node embeddings are the node features.
Following this approach, we can also define multi-head attention, which corresponds
to computing different sets of attention scores (one per head) and using each of them
to generate a different embedding for the target node, which is then concatenated
to those of the other heads. This allows for different heads to focus on different
aspects of the input, therefore capturing more information. For K heads, we can
formulate multi-head attention as

hl
u = ||Kk=1(σ(

Ø
v∈N ′(u)

αl,k
uvW l,khl−1

v )) (2.7)

8



Background

2.2.4 GATv2
As pointed out in [6], the attention mechanism of GAT, reported in Equation (2.5),
is not expressive enough to solve specific problems. In particular, [6] define two
classes of attention: static attention, the one of GAT, and dynamic attention, the
original idea of attention ([7]) and the one implemented by GATv2, an extension
of GAT described in [6]. Going deeper into details, static attention employs a
function that, for any query node, is monotonic with respect to the neighbor scores,
i.e. the ranking of attention coefficients is shared across all nodes in the graph and
is unconditioned on the query node. Dynamic attention, conversely, does not suffer
from this. The limitations of static attention prevent it from being able to solve
specific problems. One example designed by [6] is the dictionary-lookup problem
represented in Figure 2.2.

Figure 2.2: Example of dictionary-lookup problem with 4 key nodes. Letters are
attributes (i.e. node features) and numbers are labels. Each feature corresponds to
one label. The nodes in red are the keys, used as training set, and those in green
are the queries, used as test set. The goal, therefore, is to predict the labels of the
green nodes using their attribute. The image is taken from [6].

Experiments show that the simple GAT cannot solve this problem, being unable
to fit the training set. This confirms the limited expressiveness of this formulation
of attention. To solve this limitation, [6] propose a new formulation of attention,
which, in this thesis, is referred to as GATv2 attention or just attv2 :

αl
uv = softmaxv((zl)T LeakyReLU(W l[hl−1

u ||hl−1
v ])) (2.8)

where the symbols are the same as in Equation (2.5). With respect to the stan-
dard GAT attention, the multiplication with the vector zl is performed after the
non-linearity. Theoretical proofs and experiments in [6] prove that this simple
modification improves the model expressiveness. Indeed, GATv2 easily solves the
dictionary-lookup problem and improves GAT performance on some real-world
datasets.
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2.3 Heterophily in graphs

Graph homophily is a property of graphs defined as the extent to which nodes
that are connected with each other share the same label or similar features. The
concept is inspired by social sciences, where it is observed that people tend to
homogeneously aggregate according to common characteristics or, in other words,
birds of a feather flock together [8]. On graphs, node characteristics are represented
by either the label or the features. A graph with a low level of homophily is
characterized by connections among nodes belonging to different classes or with
different attributes and it can be called heterophilous or disassortative. Although
homophily is a phenomenon observed in many social networks, also heterophilous
graphs are common in several real-world scenarios. We can find an example in
dating networks, in which most of the users (nodes) tend to connect with nodes
of the opposite gender. We can observe another relevant example in computer
networks, in which clients tend to connect to servers and not to other clients.
Despite the importance of real-world applications where data can be encoded into
heterophilous graphs, most of the datasets commonly used for GNN evaluation
present high homophily, and only recent works have observed empirically that
GNN performance on heterophilous graphs suffers from a significant drop [9, 10,
11, 12]. To provide an intuitive explanation of this behavior, we analyze two main
characteristics of the uniform message passing framework [13].
First of all, standard GNNs define the neighbors of a node through graph topology,
i.e. they generate the embedding of the target node by aggregating from the
nodes that are connected to it. Although this works well on homophilous graphs,
where connected nodes tend to share the same label and therefore carry relevant
information, in heterophilous networks this formulation fails to capture long-distance
relationships between nodes of the same class. As a matter of fact, in heterophilous
settings nodes sharing the same label are likely not to be connected, and therefore
a single GNN layer cannot model their interaction. One possible solution to this
problem consists in stacking multiple GNN layers, such that node embeddings
depend on nodes that are located up to the L-th neighborhood, where L is the
number of layers. However, this approach has two main drawbacks. Firstly, the
information coming from nodes at further neighborhoods needs to be propagated
through several layers before reaching the target node, therefore losing expressive
power. Moreover, stacking multiple layers might cause the oversmoothing problem,
i.e. a degradation of performance related to the fact that, when GNNs become
very deep, the computational graphs for most nodes become similar and, therefore,
nodes are encoded into similar embeddings in the latent space [14].
In addition to this, other issues are related to the message aggregation strategy
adopted in GNNs. As a matter of fact, GNNs aggregate information from the 1-hop
neighbors of a node, which therefore play a very important role in the computation
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of the embedding for the central node. For example, in GCN each neighbor provides
the same contribution to the target node embedding as the target node itself. This
is advantageous when the neighbors are informative for the target node, but hugely
detrimental when there are relevant differences between a node and its neighbors.
Indeed, aggregating information from nodes belonging to different classes might
lead to noisy latent representations, making it impossible to correctly recognize
the class each node belongs to.

2.4 Measuring heterophily
Although graph homophily is a relevant property to characterize real-world net-
works, it is not straightforward to define an effective metric to measure the level of
homophily of a graph, since this may be related to different characteristics of the
graph (e.g. labels or features) and might vary in different areas of the graph.

2.4.1 Global measures
The most common measure for heterophily is the edge homophily ratio:

h = |{(u, v) : (u, v) ∈ E ∧ yu = yv}|
|E|

(2.9)

i.e. the fraction of edges in the graph that connect nodes belonging to the same
class. For homophilous networks, this measure tends to 1, whereas it assumes values
close to 0 for networks characterized by the heterophily property. Although it is an
intuitive measure, [15] point out some weaknesses of the edge homophily ratio. As
a matter of fact, they underline how the value of this measure is dependent on the
number of classes in the graph, since, in a graph in which topology is independent on
the labels, the edge homophily ratio of a node u with label yu is d(yu)

u /du ≈ |Vyu |/|V |.
Moreover, the homophily ratio for graphs with strongly unbalanced classes may
be misleading, since it mostly depends on the most common class. Therefore, [15]
introduce a new measure for homophily in graphs that addresses these limitations:

ĥ = 1
|C| − 1

|C|−1Ø
c=0

[hc − |Vc|
n

]+ (2.10)

where |C| is the number of classes, Vc is the set of nodes belonging to class c,
[a]+ = max(a,0) and hc is the class-wise homophily metric defined as

hc =
q

u∈Vc
d(cu)

uq
u∈Vc

du

(2.11)
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where du is the number of neighbors of node u (node degree) and d(cu)
u is the

number of neighbors of node u that have the same label. With respect to the edge
homophily ratio h, ĥ does not depend on the number of classes and handles more
effectively the case of unbalanced classes. Some examples of graphs with various
label-topology relationships and the respective values for h and ĥ are reported in
Figure 2.3. The depicted examples show how ĥ is independent of the number of
classes and is not affected by class imbalance.

Figure 2.3: Comparison between the homophily measures h (2.9) and ĥ (2.10).
Colors indicate labels, pink edges connect nodes of the same class, while purple
edges connect nodes of different classes. (a) and (b) show pure homophily and
pure heterophily, for which both measures are respectively 1 and 0. (c) and (d) are
graphs in which each node is connected to one node of each class. h depends on
the number of classes, whereas ĥ does not. (e) and (f) are random Erdős-Rényi
graphs where edges are independent of labels. h is sensitive to class imbalance,
whereas ĥ is not. The image is taken from [15].

Another global measure of the tendency of nodes with similar attributes or
labels to be connected to each other is the assortativity coefficient introduced by
[16], defined as

rglobal =
q

g Mgg − q
g agbg

1 − q
g agbg

(2.12)

where M is the mixing matrix, in which each cell Mgh is the fraction of edges in the
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network that connect a node with label g to one of label h. Then, ag and bg are the
number of outgoing and incoming edges of all nodes of label g. The assortativity co-
efficient ranges from -1 (fully disassortative network) to 1 (fully assortative network).

Table 2.1 reports the values of the different heterophily measures for eight
different real-world datasets. These datasets are used throughout the thesis and
we provide a detailed description of their characteristics in Section 4. According to
all measures, Cora and Citeseer are homophilous graphs, whereas the others can
be considered heterophilous. In particular, Texas is the most heterophilous among
all, whereas the order of the others slightly changes depending on the metric used.

Cornell Texas Wisconsin Film Chameleon Squirrel Cora Citeseer

h (Eq. (2.9)) 0.30 0.11 0.21 0.22 0.23 0.22 0.81 0.74
ĥ (Eq. (2.10)) 0.06 0.00 0.09 0.01 0.06 0.03 0.77 0.63

rglobal (Eq. (2.12)) -0.07 -0.26 -0.15 0.00 0.03 0.01 0.77 0.67

Rank 4.33 1 3.33 3 5 3.67 8 7

Table 2.1: Homophily measures for eight real-world datasets. The row Rank
reports the average ranks of the datasets according to the different measures, in
increasing order of homophily.

2.4.2 Local measures
The measures described so far provide a value to estimate the homophily level of
the graph as a whole. However, one single value might not be informative enough
to describe the connectivity patterns present in the network, as different nodes
might show different assortativity behaviors [17, 15]. Therefore, it is useful to
define also local assortativity measures that describe the homophily of a single
node. One first measure in this sense is node homophily [18], defined as

hu = 1
|V |

Ø
u∈V

d(yu)
u

du

(2.13)

i.e. the fraction of edges starting from one node that connect it to a node with the
same label.
It is also possible to define a local mixing measure [19], inspired by the global
assortativity coefficient (Equation (2.12)), as

rlocal(l) =
q

g Mgg(l) − q
g a2

g

1 − q
g a2

g

(2.14)
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where Mgh(l) is the weighted sum of edges that connect nodes of class g to nodes
of class h and the weights encode how local the edge is to the current target node
l. In particular, this information is encoded through the personalized PageRank
vector.
Further information about the connectivity patterns of the networks can be observed
through the compatibility matrix H, where each value is defined as

Hkl = |(u, v) ∈ E : yu = k, yv = l|
|(u, v) ∈ E : yu = k|

(2.15)

Note that the compatibility matrix H is very similar to the mixing matrix defined
in Equation (2.12), with the only difference of the normalization factors.

Figure 2.4 shows the compatibility matrixes for the presented datasets, thanks
to which we can observe some more complex patterns related to connectivity
among classes. Homophilous networks (Cora and Citeseer) have higher values
on the diagonal, as nodes of the same class tend to be connected. In Film, the
compatibility matrix shows different patterns for different columns, indicating that
nodes belonging to different classes have, on average, different numbers of incoming
edges from nodes of specific classes. In Cornell and Texas, only one node belongs
to class 1, leading to unreliable results in the matrix. In Chameleon, it is possible to
observe stronger connectivity among nodes of classes 2, 3 and 4 with respect to the
other two classes. In Squirrel, nodes of class 4 have on average more connections
than the nodes of the other classes.

We can make further considerations by observing the distribution of the local
node homophily ratio across nodes in the network in Figure 2.5. In particular,
we can notice that heterophilous graphs like Film and Cornell have a relevant
fraction of nodes with high homophily level, although the majority of nodes are
heterophilous. Moreover, it can be observed that Chameleon and Squirrel have a
more uniform distribution of homophily level across nodes, whereas the distributions
for Film, Texas, Wisconsin and Cornell have a stronger concentration of nodes
with homophily ratio around 0. Distributions for the homophilous graphs, Cora
and Citeseer, are mostly centered around high homophily values (almost 1), but
there is a fraction of nodes with strongly heterophilous connections.
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Figure 2.4: Compatibility matrixes of different datasets
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Figure 2.5: Local homophily distribution of different datasets
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Chapter 3

Related work

This chapter presents an overview on the existing GNN models for heterophilous
graphs. We categorize the different approaches based on the main design choices
and we compare them to the models proposed in this thesis. Then, we present
another related work that shows that GNNs can still perform well on heterophilous
graphs, if some conditions are met, and we explain the measure they introduce,
Cross-Class Neighborhood Similarity (CCNS). This metric is related to GNN
performance on graphs, but we also point out some limitations that motivate the
analysis performed in this thesis.

3.1 GNNs to deal with heterophily
Experimental evidence has shown a worsening in classification performance for
GNNs when dealing with heterophilous graphs [9, 11]. This is commonly attributed
to the uniform message passing framework of GNNs [13], which introduces noise in
node representations and does not allow for effective aggregation of information
from further nodes. Although it has been pointed out that heterophily is not a
sufficient condition for bad GNN performance [20], it is still true that there exist
specific categories of graphs on which GNNs do not manage to successfully represent
information and achieve good performance, and heterophilous graphs are a superset
of them. Therefore, several works tried to tackle the problem by introducing new
designs in the GNN architecture or modifying the underlying structure of the graph
to make it more suitable for the message passing framework. It is therefore relevant
to study the problem and analyze the works that provided some contributions to
improve representation capabilities on heterophilous networks. According to [13],
the main approaches rely on two categories of improvements:

• Non-local Neighbor Extension: some methods try to expand the scope of GNNs
to reach potentially important nodes located outside of the close neighborhood.
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This approaches rely on the assumption that, since it cannot be assumed that
nodes with the same label are connected, useful information (usually carried
by nodes with the same label) can be discovered also in nodes that belong to
higher-order neighborhoods with respect to a target node.

• GNN Architecture Refinement: other methods modify the GNN architecture
introducing specific designs in order to improve representation capabilities on
heterophilous graphs.

In the following, we present and briefly analyze the main approaches in these
directions.

3.1.1 Non-local Neighbor Extension
The standard design of GNNs aggregates information from 1-hop neighbors to
create an embedding for the target node. Information from nodes located at further
hops can be reached by stacking more GNN layers, but this leads to an indirect
connection that does not allow for effective message passing between the two nodes.
However, in heterophilous networks useful information might be found in nodes that
are not connected to the target node, and these situations are harder to capture for
a GNN. At the same time, the strong influence of the 1-hop neighborhood on the
embedding of the target node can have a negative impact if the connected nodes
are different and carry noisy information. Therefore, a category of approaches
targeting disassortative graphs tries to extend the neighborhood to reach nodes
located further away in the graph. In particular, in [13] this class of approaches are
further categorized into two subclasses: high-order neighbor mixing and potential
neighbor discovery.

High-order neighbor mixing

Methods belonging to the first class create latent representations of nodes using
neighbors at different hops separately and then combine them in a second stage.
For example, MixHop [21] concatenates the GCN layers corresponding to multi-hop
neighbors (specifically 1 and 2-hop neighbors). A similar approach is adopted
in H2GCN [9], where at each message passing step information is aggregated
from higher-order neighborhoods. UGCN [11] proposes to aggregate information
from three distinct neighborhoods (1-hop, 2-hop and top k most similar nodes
based on features) and leverages the attention mechanism to allow the network
to flexibly choose which neighborhood is more relevant for the current graph.
Moreover, TDGNN [22] extends this idea even further by generating different latent
embeddings for the nodes using, separately, different hop neighborhoods up to the
k-hop, and then merges the representations through a simple sum or a weighted
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sum with learnable attention coefficients. Another approach that belongs to this
category is FSGNN [23], where latent embeddings for the nodes are computed
using different hop neighborhoods and by adding or removing self-loops, and then
representations are weighted by learnable coefficients and concatenated into a final
representation.

Potential neighbor discovery

Methods belonging to this class also rely on the assumption that nodes carrying
relevant information might not be connected to the target node and therefore should
be looked for also in other portions of the graph. However, they do not consider the
entire k-hop neighborhood for node representations, but try to understand which
nodes in the graph might be more relevant for the current target node, regardless
of their location. In this context, Geom-GCN [18] maps the input nodes in a
latent space and then defines the relative importance of nodes based on a distance
metric in the latent space, which is able to capture deeper information than the
plain graph structure. Two other approaches, NL-GNN [24] and GPNN [25], after
sampling a subgraph centered on a target node, define an order between nodes in
the subgraph based, respectively, on attention and on pointer networks (a variation
of a bidirectional LSTM in a sequence-to-sequence fashion). Then, messages from
ordered nodes are aggregated using a one-dimensional convolutional layer. In the
same context, HOG-GCN [26] tries to model the relative importance of two nodes
based on the estimation of a homophily degree matrix, that aims at capturing how
likely it is for the two nodes to belong to the same class. The matrix is estimated
from the features and is integrated in the label propagation mechanism. Also UGCN
[11] can be included in this category, since one of its neighborhood aggregations
is based on feature similarity, which is then considered as a metric to estimate
node relative importance. SimP-GCN [27] uses feature similarity to build a new
graph based on kNN and merges representations of this new graph with the original
graph to exploit both sources of information. WRGNN [17] proposes to modify the
input graph by creating new connections among nodes based on two main factors:
structural similarity of nodes and proximity in the original graph. The structural
similarity is encoded by defining the ordered sequence of degrees of the neighbors
and computing the similarity between sequences of different nodes. Edges in the
original graph are also taken into consideration when building the connections for
the transformed graph. Through this transformation, the modified graph has an
increased homophily ratio and simple GNNs can achieve good performance on
node classification. Similarly, BM-GCN [28] leverages an MLP to estimate the
block matrix, representing the likelihood of interconnections between nodes of two
classes. This block matrix is then integrated in the graph convolution operation to
increase the strength of the connection between nodes that are likely relevant to
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each other. In conclusion, GloGNN [29] estimates a coefficient matrix to model the
relative importance of nodes. With respect to a simple attention mechanism, this
formulation allows for negative values as coefficients (useful for connections among
different nodes) and is more efficient thanks to a change in the order of matrix
multiplications. Moreover, the optimization problem is formulated such that it has
a closed-form solution.

3.1.2 GNN architecture refinement
The second macrocategory of approaches modifies directly the GNN architecture by
adopting design choices that can account for more complex relationships than the
standard GNN framework. This category can be further subdivided into three main
approaches: adaptive message aggregation, ego-neighbor separation and inter-layer
combination.

Adaptive message aggregation

The idea of the approaches belonging to this class is to assign different weights
to messages coming from different nodes in the graph based on an estimation
of how relevant the node is to the current target. The weight can be assigned
following diverse methods. For example, in [30], the authors describe GCNs from
a spectral point of view and observes that their standard formulation makes use
of a low-pass filter (represented by the average of the node messages), which
decreases the differences between center node and neighborhood and, if these two
are very different, generates a noisy representation. On the other hand, high-pass
filters amplify the differences and therefore can exploit the information carried
by dissimilar nodes in the neighborhood. In practice, this is implemented in
their model, FAGCN, with the introduction of learnable weights between nodes
that can also assume a negative value. Similarly, ACM [31] adds to the GCN
formulation also an identity filter, consisting of a linear combination of low-pass
and high-pass filters. GBK-GNN [12] is a GCN with two kernels, one tailored
to deal with homophilous node pairs, the other for heterophilous pairs. A gate
(encoded through a MLP) is trained to understand which of the two kernels to
apply to each node pair. Moreover, [32] analyze the redundancy of information
in heterophilous graphs by training a model, SGAT, able to discard useless edges
in the network and perform attention-weighted message passing based on the
remaining edges. On some heterophilous benchmarks, up to 80% of the edges are
found to be redundant or not impactful for model performance. DMP [33] extends
the standard label-based assortativity measure to an attribute-based assortativity
measure by providing insights into the connectivity among nodes that share the
same features. Motivated by the observation that different features show different

20



Related work

levels of heterophily, the authors propose to learn a weight for each feature in the
node embeddings and aggregate messages using these attribute-wise weights. On
a different note, WRGNN [17] models the diversity of relations among nodes by
leveraging a multi-relational graph with different types of edges that are managed
by different filters in the neural network. CPGNN [34] estimates a compatibility
matrix (modeling how likely it is for nodes belonging to one class to be connected
to nodes belonging to another class) and exploits it for message propagation. Also
GGCN [10] moves in a similar direction. Indeed, starting from the analysis of
how node representations change in a multi-layer GCN when heterophily and node
degree vary, the authors propose two key design choices to improve performance on
heterophilous benchmarks. First, they employ degree corrections, as they realize
that low degree nodes are more prone to oversmoothing. Secondly, they employ
signed messages, i.e. based on cosine similarity between node representations, they
multiply the message by a negative sign if the nodes are interpreted as very different
in the embedding space. The different variations of sheaf diffusion-based models
proposed in [35] improve the performance by employing non-symmetric restriction
maps, which can be interpreted as the possibility for nodes to be connected by an
edge with a negative weight. In LWGNN [36], the authors observe that label-wise
propagation is more distinctive on heterophilous graphs. Since labels are not known,
propagation is driven by pseudo-labels estimated for each node. MWGNN [37]
proposes separate graph convolutions, each focusing on a specific feature of the
graph. In particular, three convolutions are learnt: one to encode node features,
another one for topological structure and the last one to represent positional identity.
These three matrixes are then adaptively merged with an attention mechanism,
since their contribution to the representation learning might differ depending on
the characteristics of the graph.

Ego-neighbor separation

Another class of methods elaborates on the observation that if a node is significantly
different from its neighborhood, using the average as aggregation strategy might
lead to significant information loss, since the differences are smoothed into a unique
noisy embedding. This can be seen also from a spectral point of view [9], since
average aggregation is a low-pass filter that cuts high-frequency information that
could, however, be fundamental in heterophilous settings. Therefore, a design choice
that has been proved to help in this sense is to separately create an embedding for
the target node and for the neighborhood and then concatenate them to generate
a final embedding in which information coming from both sources is effectively
preserved. This design choice is exploited in similar forms by several works [9, 17,
10, 31, 23].
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Inter-layer combination

A final class of approaches aims at exploiting information collected by the GCN
at different layers. In particular, starting from the observation that lower layers
capture local interactions whereas deeper layers capture global information, the
embeddings at different layers are concatenated at the end and exploited to perform
predictions. This can be achieved in practice through different implementations.
H2GCN [17] concatenates the embeddings of different layers to create the final
embedding. GCNII [38] adds skip-connections with the first layer at each layer
and manages to create deep architecture without incurring in the oversmoothing
issue. GPR-GNN [39] leverages the generalized PageRank algorithm to allow for
inter-layer combinations of nodes. HLP [40] revisits GPR-GNN by using truncated
SVD of the features.

3.1.3 Categorization of present work

The models proposed in this work extend some of the approaches described above
and they can be framed within the proposed classification of existing methods.
For GATH, the choice to leverage the attention mechanism is related to its abil-
ity to assign variable weights to different node pairs depending on how relevant
they are to each other. This idea is an implementation of the adaptive message
aggregation framework described in Section 3.1.2, since message aggregation is not
uniformly distributed across all neighboring nodes. Moreover, GATH extends the
neighborhood to neighbors up to the k-hop, thus applying the potential neighbor
discovery principle described in Section 3.1.1. However, with respect to existing
methods, GATH exploits both structural and attribute information in the calcu-
lation of the attention weights, thus allowing for more flexibility. In conclusion,
the skip-connections introduced in both GATH and GCNH can be considered as
an implementation of the ego-neighbor separation framework described in Section
3.1.2, as the embeddings for the neighborhood and the center node are computed
separately and aggregated in a later stage.

3.2 Is heterophily the real problem?

After discussing about possible GNN improvements to increase performance on
heterophilous graphs, we now discuss the relation between graph heterophily and
GNN performance.
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3.2.1 GNN performance on heterophilous graphs
The fact that GNN performance is hampered by graph heterophily is supported by
experimental evidence. As a motivating example, Figure 3.1 shows the classification
accuracy of three simple baselines (MLP, GCN and GAT) on synthetic datasets
with variable homophily ratio. Further details on the datasets are available in
Section 4 and Appendix A.1 reports information about the experiments for the
baselines. We can notice that GCN and GAT performance is clearly correlated
with the homophily ratio of the graphs, and, specifically, classification accuracies
on heterophilous graphs are significantly worse than those of MLP, which does not
take any structural information into account and only relies on node features.

Figure 3.1: Node classification accuracy for three baseline models (MLP, GCN
and GAT) on synthetic datasets with variable homophily ratio. More details about
the hyperparameters used for the experiments are available in Appendix A.1.

Nevertheless, the situation is different on real-world datasets. Table 3.1 reports
the classification accuracy for the same three baseline models (MLP, GCN and
GAT) on the real-world datasets analyzed in the work. For Cornell, Texas,
Wisconsin and Film, MLP outperforms GCN and GAT, as expected since they
show strongly heterophilous behaviors. Also the results on Cora and Citeseer
reflect the expectations, as they are homophilous graphs and GCN and GAT can take
advantage of the useful graph information to outperform the MLP. However, results
for Chameleon and Squirrel are not consistent with the previous observations:
despite the low homophily ratio, the best classification accuracy is achieved by
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the GCN, which significantly outperforms the MLP. This behavior contradicts
the assumption that heterophily necessarily leads to poor GNN performance and
motivates the analysis reported in this thesis.

Cornell Texas Wisconsin Film Chameleon Squirrel Cora Citeseer
h 0.30 0.11 0.21 0.22 0.23 0.22 0.81 0.74

GCN 50.27 ± 7.57 57.03 ± 5.05 50.98 ± 4.88 23.27 ± 0.94 67.43±1.95 50.49±1.54 84.29 ± 0.98 73.25 ± 1.42
GAT 61.89 ± 5.05 52.16 ± 6.63 49.41 ± 4.09 27.44 ± 0.89 60.26 ± 2.50 40.72 ± 1.55 87.30±1.10 76.55±1.23
MLP 81.89±6.40 80.81±4.75 85.29±3.31 36.53±0.70 46.21 ± 2.99 28.77 ± 1.56 75.69 ± 2.00 74.02 ± 1.90

Table 3.1: Node classification accuracy for baseline models on datasets with
various edge homophily ratio h. Best results are in bold. Results for MLP and
GAT are taken from [35], results for GCN are obtained with the hyperparameter
configuration described in Appendix A.2

3.2.2 Cross-Class Neighborhood Similarity
Motivated by the good performance of the GCN on real-world heterophilous graphs,
[20] analyze which graph properties affect GCN performance beyond homophily,
finding out that there is a specific category of heterophilous graphs on which the
GCN can perform well. A toy example of this class of graphs is depicted in Figure
3.2, where nodes belong to two classes (blue or orange) and have a single feature (0
or 1). We can notice that the graph is perfectly heterophilous, since every node is
connected only to nodes of the other class (homophily ratio h = 0). However, a
GCN is still able to perfectly classify the nodes in the graph, since the neighborhood
representation is the same for every node belonging to the same class (i.e. every
node of class orange has 4 neighbors with feature 0 and every node of class blue
has 4 neighbors with feature 1). Therefore, it can be concluded that the homophily
ratio by itself is not enough to predict whether a simple GCN performs well on the
graph or not.

Figure 3.2: Toy example of heterophilous graph on which a GCN can achieve
perfect performance. Colors are classes, numbers are features. The image is taken
from [20].
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More in general, thanks to its formulation, a GCN is able to capture the
distribution of features in the neighborhood of a target node. Therefore, under the
assumption that features of nodes belonging to the same class are sampled from
the same distribution, a GCN performs well on nodes for which the neighborhood
distribution is informative for their label. As an example, Figure 3.3 shows two
nodes with the same neighborhood label distribution (i.e. the percentage of
neighbors belonging to each class is the same for the two nodes). Although these
two nodes are perfectly heterophilous, a GCN is still able to recognize the class
blue as characterized by the specific neighborhood distribution [orange : 1

3 , yellow :
1
3 , green : 1

3 ].

Figure 3.3: Two nodes with the same neighborhood distribution. Classes are
colors. The image is taken from [20].

According to this observation, [20] provide a theoretical proof that, under some
assumptions such as a relevant correlation between node labels and node attributes,
a GCN performs well in graphs where the neighborhood label distribution is
informative for the class of a node. It can be noticed that this formulation is in
line with the empirical results that show good GCN performance on homophilous
graphs. Indeed, in homophilous graphs the neighborhood label distribution can
be interpreted as a skewed distribution centered on the class of the target node,
since nodes belonging to the same class tend to connect. Therefore, it is safe to
assume that a GCN performs well on homophilous graphs, but heterophily is not a
sufficient condition to assume bad performance.
To characterize neighborhood distributions in real graphs, and therefore provide
an additional explanation for GCN performance, [20] introduce the notion of
Cross-Class Neighborhood Similarity (CCNS), defined as follows:

s(c, c′) = 1
|Vc||Vc′|

Ø
i∈Vc,j∈Vc′

cos(d(i), d(j)) (3.1)

where c, c′ ∈ C are classes, Vc is the set of nodes in class c, d(i) is the empirical
histogram over |C| classes of node i’s neighbors’ labels and cos(·, ·) denotes the
cosine similarity function.

Figure 3.4 shows the values of the CCNS for all class pairs on the analyzed
datasets. It should be noticed that distinctive per-class neighborhood label distri-
butions correspond to high values on the diagonals of the matrixes. Therefore, it is
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expected to observe high values on the diagonal for the datasets on which GCN
achieves good performance.
By observing Figure 3.4, some considerations can be made. First of all, homophilous
graphs (Cora and Citeseer) have higher values on the diagonal of the table, since
nodes of one class tend to be connected to nodes of the same class, and this repre-
sents a distinctive neighborhood distribution pattern in the graph, thus explaining
the good GCN performance. For heterophilous graphs, different situations can
occur. In Chameleon, neighbor distribution patterns differentiate classes 0 and 1
from classes 2, 3 and 4, but the distinctions within these groups are less evident.
In Squirrel and Film, intra-class similarity (i.e. values on the diagonal) and
inter-class similarity assume similar values, which would lead to the expectation
of bad GCN performance. Tables for Cornell, Texas and Wisconsin are not
informative given the reduced sizes of the graphs (distributions for classes depend
only on a small number of nodes).

3.2.3 Limitations of CCNS
Although CCNS is proved to be a useful metric to model good GCN performance,
there are still some limitations that prevent it from effectively explaining some
results on real-world datasets.

Node degrees

[41] identify one limitation of CCNS in the lack of an analysis of the node degrees. As
a matter of fact, they show that the similarity among labels in the neighborhood can
be reliably estimated only if node degrees are reasonably high, which occurs in the
experimental setting proposed in [20], but might not happen in real graphs. Through
experiments on synthetic datasets, [41] show how graphs with low homophily and
low-degree nodes are still subject to bad GCN performance, regardless of the value
of CCNS. Moreover, they point out that the issues related to low-degree nodes
and label neighborhood similarity are relevant only in heterophilous settings, since
under homophily the negative effects are strongly mitigated. Thus, they claim that
“heterophily is still a challenging problem for GNN models, including GCN” ([41]).

GCN performance on Chameleon and Squirrel

We point out another concern about CCNS by observing the classification perfor-
mance of different models on real graphs. Indeed, from Table 3.1 it is possible to
observe that GCN largely outperforms MLP on Chameleon and Squirrel despite
these datasets being highly heterophilous. The measure of CCNS does not explain
this behavior for two reasons. First of all, good GCN performance due to distinctive
neighborhood patterns should correspond to larger CCNS values on the diagonal
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of the matrixes, but this is not observed in Figure 3.4. Moreover, one important
assumption behind the theoretical proofs in [20] is that features for each class are
sampled from the same distribution, which implies a correlation between node
features and class labels. However, this assumption does not hold for Chameleon
and, especially, Squirrel, where the performance of MLP (only based on features)
is bad (for Squirrel, features allow a very small performance improvement with
respect to random guessing). Therefore, further investigations are required to
deeply understand what other graph properties allow the GCN to achieve good
performance on these graphs.
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Figure 3.4: Cross-Class Neighborhood Similarity matrixes of different datasets
28



Chapter 4

Datasets

In this chapter we present the real-world and synthetic datasets used for evaluation
throughout the thesis.

4.1 Real-world datasets
Most of the experimental evaluations in this work are based on 8 real-world datasets
coming from different scenarios and showing various levels of heterophily. These
datasets are commonly used in most of the works dealing with heterophilous graphs.
In this section, we describe their origin and we present their main characteristics.
Table 4.1 shows some statistics. We can point out that the graphs are in general
small. Indeed, Cornell, Texas and Wisconsin only have about 200 nodes and
the biggest one, Film, has 7600 nodes, which is still a low number compared
to the million of nodes of large-scale graphs used in other settings. Chameleon
and Squirrel are dense graphs, whereas all the others have on average low node
degrees. Cora and Citeseer are representative of homophilous settings, since their
homophily ratio is high, whereas all the others are strongly heterophilous. All
graphs have large feature dimensionality.

Benchmark Cornell Texas Wisconsin Film Chameleon Squirrel Cora Citeseer

#Nodes 183 183 251 7,600 2,277 5,201 2,708 3,327
#Edges 280 295 466 26,752 31,421 198,493 1,433 3,703

#Classes 5 5 5 5 5 5 7 6
#Features 1,703 1,703 1,703 931 2,325 2,089 1,433 3,703

Homophily h 0.30 0.11 0.21 0.22 0.23 0.22 0.81 0.74

Table 4.1: Statistics of real-world datasets.

29



Datasets

We now present into more details what each dataset represents and where it
comes from.

• Texas, Wisconsin and Cornell are webpage datasets collected from the
computer science departments of different universities by Carnegie Mellon
University within the WebKB project1. Nodes represent web pages and edges
are hyperlinks between them. Node features are bag-of-words representations
of the web pages, which are manually classified into five categories: student,
project, course, staff, faculty. The datasets are taken from the public code of
[18].

• Film, also referred to as Actor, is the actor-only induced subgraph of the
film-director-actor-writer network [42]. Nodes correspond to Wikipedia pages
of actors and edges denote the co-occurrence of two actors on the same page.
Node features are some keywords in the Wikipedia pages and labels are
assigned by [18] based on words of the actors’ Wikipedia pages. This dataset
is taken from the public code of [18].

• Chameleon and Squirrel are Wikipedia pages on the specific topics of
chameleons and squirrels. They were collected by [43] and pre-processed by
[18]. Nodes are Wikipedia pages and edges are mutual links between them.
Node features indicate the presence of informative nouns in the Wikipedia
pages. Nodes are classified into five categories based on the average monthly
traffic on the web page. The datasets are taken from the public code of [23].

• Cora and Citeseer are standard citation networks where nodes represent
papers and edges represent citations of one paper by another [44, 45]. Node
features are bag-of-words representations of papers and labels are the academic
topics of the papers. These datasets are treated as undirected and they are
taken from the public code of [18].

4.2 Synthetic datasets
Some experiments in this work are also based on synthetically generated datasets
with variable homophily level. These are taken from [9], that define a graph
generation strategy similar to [21]. After choosing in advance the number of classes
|C|, the number of nodes |V | and the class compatibility matrix H, a small initial
graph is taken as starting point. Then, new nodes are added one by one until the
desired size of the graph is reached, and for each newly added node i the probability

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
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Datasets

Benchmark syn-cora

#Nodes 1490
#Edges 2965 to 2968

#Classes 5
Features Cora

Homophily h [0, 0.1, ..., 1]
Degree Range 1 to 94

Average Degree 3.98

Table 4.2: Statistics for the synthetic dataset.

of an edge pij between i and any other node in the graph j is proportional to both
the degree of the existing node dj and the class compatibility Hyiyj

. In this way,
the degree distribution of the generated graph follows a power law and heterophily
can be tuned through the compatibility matrix H. Nodes are randomly assigned to
a class during generation and the features for each node are sampled from feature
vectors of nodes of the corresponding class in the real benchmark (Cora). Class
sizes of the synthetic graphs are smaller than the class size of the real graphs. Table
4.2 shows some statistics for the generated synthetic datasets. For each of the
specified homophily levels, three different graphs are generated.
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Chapter 5

2NCS: modeling GCN
performance

As discussed in Section 3.2, it has been shown that often lower levels of homophily
are correlated with worse GNN performance. However, it has been pointed out
that this correlation does not hold for all graphs with high heterophily. As a
first effort towards a better description of which graph properties affect GCN
performance, [20] introduce a new measure to characterize the distribution of
labels in the neighborhood of a node. This is shown to be related to the ability
of a GCN to distinguish node classes. Indeed, if the distribution is similar for
nodes belonging to the same class, a GCN is able to correctly classify the nodes of
that class, regardless of their homophily level. To quantify the similarity of the
distributions, they introduce a new metric: Cross-Class Neighborhood Similarity
(CCNS). However, also CCNS has some limitations, as discussed in Section 3.2.3.
This chapter presents a new metric, 2-hop Class Neighborhood Similarity (2NCS),
to measure the average over neighbors of the percentages of their neighbors with
the same label as the target node. An intuitive theoretical analysis of how a GCN
learns and experimental evaluations show that 2NCS is related to the ability of a
GCN to correctly classify a node in a graph.

5.1 Motivation
Analyzing GCN performance in relation to different graph properties represents
an important step in several directions. First of all, it is helpful to gain a deeper
understanding of how a GCN works, what kind of structural information it can
successfully encode in a graph and what properties affect its performance. Moreover,
defining graph properties that allow for good GCN performance can be helpful to
design new GNN architectures that solve existing limitations.
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5.2 2NCS: 2-hop Neighbor Class Similarity
This section introduces 2-hop Neighbor Class Similarity (2NCS), a metric to
characterize a graph property that is relevant to GCN representation capabilities.
The metric is developed by making observation on a simplified GCN model and
analysing its learning process.

5.2.1 The simplified GCN model
One of the main limitations of CCNS is the assumption that the features for nodes
belonging to the same class are drawn from the same distribution. Although this
seems reasonable in theory, it is not observed in some real-world graphs, such as
Squirrel, on which the graph-unaware MLP is hardly able to improve on random
guessing for node classification. Moreover, in several real settings node features
might not be available [46], and the GNN models can be extended to handle also
these situations [34].
This motivates the introduction of a simplified GCN model, in which the feature
matrix is equal to the identity matrix (i.e. X = I, so node features are not
considered). Moreover, the simplified GCN model contains only one layer, it does
not have a non-linearity and the adjacency matrix is not row-normalized, since
normalization does not affect the class probability distribution with just one layer.
Overall, the simplified GCN model can be expressed as

H = softmax(ÃXW ) = softmax(ÃIW ) = softmax(ÃW ) (5.1)

where H ∈ Rn×|C| are the class probabilities for each node, Ã = A + I is the
adjacency matrix with added self-loops and W ∈ Rn×|C| is a learnable weight matrix.
These modifications allow for a more thorough analysis of the model representation
capabilities and a characterization of what graph structural information affect the
model performance.

5.2.2 Learning process of the simplified GCN model
To understand which properties of the graph structure affect the learning process
of the simplified GCN model, it is important to understand how node embeddings
are learned during model training. We use the graph represented in Figure 5.1 as
an example.
In this graph, each node u is characterized by a row in the adjacency matrix Au

that indicates its neighbors. For the matrixes W and H in Equation (5.1), each row
Wu can be interpreted as an embedding of u before aggregating over the neighbors,
whereas Hu is the embedding of u after aggregation, also corresponding to the class
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Figure 5.1: Example of a graph to model simplified GCN learning. Different
colors indicate different node labels.

probabilities for the node. Taking node 0 as example, its final embedding can be
written as

H0 = softmax(W0 + W1 + W3 + W4 + W7) (5.2)

Therefore, the class probabilities for node 0 depend on the embeddings W of the
node itself and of its neighbors.
Then, it is important to understand which terms of the loss affect each Wu. W7,
for example, contributes to the final embeddings H of nodes 0, 5 and 6, plus node
7 itself. Therefore, it is trained on the labels of the nodes whose embeddings it
contributes to, so, for this example, one orange label and three green labels. Since
the training objective is the minimization of the loss, embeddings are updated
such that the probability of the observed label is increased and the probabilities of
the non-observed labels are decreased. Therefore, it can be assumed that, after
training, W7 will have a higher value on the cell corresponding to class green, since
green labels are more frequent in the terms of the loss containing W7. Thus, for a
generic node u, we can state that, in expectation, its embedding Wu after training
will contain a higher value for the class it has observed more often during training,
i.e. the most common class among the node itself and its neighbors.
Given these considerations, we can now analyze what elements in the graph affect
the class probabilities of node 0. As a matter of fact, each term in Equation
(5.2) describes the class distribution of the neighbors of the nodes each embedding
corresponds to. Therefore, we can observe that H0 depends not only on node 0’s
neighbors, but also on the neighbors of its neighbors, i.e. its 2-hop neighbors.

However, just considering the most common class between 1 and 2-hop neighbors
might not be informative enough. Indeed, by observing the graph in Figure 5.2, we
can notice that, for node 0, the most common class among nodes of the first and
second hop is orange, which would lead to the hypothesis that a simplified GCN
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Figure 5.2: Example of a graph where the most common label in the 1 and 2-hop
neighborhood is not informative. Different colors indicate different node labels.

cannot correctly classify node 0. However, we can write the expression for the class
probabilities of node 0 as

H0 = softmax(W0 + W1 + W3 + W6) (5.3)

where W0, W1 and W3 mostly observe class green during training, whereas W6
favors class orange. Therefore, H0 will have higher probability for class green.
Hence, we can assume that the simplified GCN is able to correctly classify it. More
in general, we can claim that the simplified GCN can correctly classify a node u
if the majority of its neighbors have, for the most part, neighbors with the same
label as u.

5.2.3 2NCS: a metric for graph structural properties
Given the above considerations, we introduce a new metric to quantify the described
property of a node. The metric is called 2-hop Neighbor Class Similarity (2NCS)
and, for a single node u, we define it as

2NCSu = 1
|N ′(u)|

Ø
v∈N ′(u)

|{z : z ∈ N ′(v) \ {u} ∧ yz = yu}|
|N ′(v)| − 1 (5.4)

where N ′(u) denotes the set of neighbors of u and the node u itself. Note that node
u is removed from the count of neighbors with the same label since the goal is to
understand whether its label can be correctly predicted given the rest of the graph
structure. We can also interpret this problem as the training of a simplified GCN
on the whole graph but node 0 and the evaluation on node 0 as test set. In this
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case, the label of node 0 is not available during training, and therefore it would be
inaccurate to include it in the 2NCS computation. The possible values of 2NCS lie
in the interval [0,1], where 2NCS=0 means that all 1-hop and 2-hop neighbors of a
node have different labels from it and 2NCS=1 means that all 1-hop and 2-hop
neighbors of a node have its same label.
We can also define the graph-level 2NCS as

2NCS = 1
|V |

Ø
u∈V

2NCSu (5.5)

Considering the graph property it represents, we can claim that a simplified GCN
can correctly classify nodes with high 2NCS, and the graph-level 2NCS is informative
of how well a simplified GCN performs. Moreover, in most cases the performance
of the simplified GCN is comparable with the performance of the standard GCN,
and, therefore, 2NCS can be informative also for the standard GCN.

5.3 Analysis and evaluation
This section evaluates how informative 2NCS is in understanding whether a graph
contains structural information that is useful for a GCN to perform classification.
To this end, we present one example of artificial graph on which 2NCS is more
informative than homophily and CCNS to predict GCN performance. Then, we
report the values of 2NCS on real-world datasets, both at node level and graph
level, and we analyze the relation with GCN performance.

5.3.1 2NCS on artificial graphs
To begin with, we analyze 2NCS on artificially designed graphs in order to under-
stand the edge cases of the metric and provide examples of graphs where 2NCS is
more informative about GCN performance than the other existing metrics, namely
homophily ratio and CCNS. We use as an example the graph in Figure 5.3. In this
graph, node features are not available, thus we set the feature matrix to identity
matrix (X = I). The goal of the example is to understand whether a GCN that is
trained on all the other labels except for the one of node 0 can correctly classify
node 0.

Table 5.1 reports the values of homophily ratio, CCNS and 2NCS for node 0 in
the proposed graph. We can observe that the values for homophily and CCNS are
low, indicating that, according to them, the graph structure does not help a GCN
to correctly classify node 0. However, we performed experiments to prove that a
GCN succeeds in the proposed task. Remarkably, the high value of 2NCS for node
0 explains this behavior. Indeed, a GCN correctly classifies node 0 because it is
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Figure 5.3: Example of a graph where 2NCS is more informative than homophily
and CCNS for GCN performance. Different colors indicate different node labels.
Node 0 is connected to the orange nodes 1-8, nodes 1-8 are densely connected to the
red nodes 9-32, nodes 9-20 are densely connected to the green nodes 33-64 which
are also densely connected to the orange nodes 97-104, nodes 21-32 are densely
connected to the green nodes 65-96 which are also densely connected to the orange
nodes 105-112. Nodes have no features.

Metric Node 0

h (Eq. (2.9)) 0
CCNS (Eq. (3.1)) 0.24
2NCS (Eq. (5.5)) 0.85

Table 5.1: Homophily, CCNS and 2NCS for node 0.

connected to nodes 1-8, which are connected to nodes of the same class as node
0. This pattern allows for good GCN performance, but it is not described by the
other two presented metrics.
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Cornell Texas Wisconsin Film Chameleon Squirrel Cora Citeseer

h (2.9) 0.30 0.11 0.21 0.22 0.23 0.22 0.81 0.74
2NCS (5.5) 0.35 0.28 0.30 0.21 0.36 0.26 0.79 0.70

GCN 50.27 ± 7.57 57.03 ± 5.05 50.98 ± 4.88 23.27 ± 0.94 67.43 ± 1.95 50.49 ± 1.54 84.29 ± 0.98 73.25 ± 1.42

Table 5.2: 2NCS measures for eight real-world datasets. GCN performance on
the graphs is reported for comparison.

5.3.2 2NCS on real-world graphs
Graph-level 2NCS

Table 5.2 reports the values for 2NCS for the eight real-world datasets used in the
work. We can observe that high values of homophily correspond to high values of
2NCS, since nodes tend to be connected to nodes with the same label and, therefore,
nodes tend to share their label also with their 2-hop neighbors. However, 2NCS is
able to better discriminate among graphs with low homophily ratio. Indeed, Film
has almost the same homophily ratio as Wisconsin, Chameleon and Squirrel,
even though GCN performance is much worse on it than on the other graphs.
2NCS, conversely, is able to better describe this behavior, since Film has a lower
2NCS value than the other mentioned datasets.

Figure 5.4: Comparison between GCN performance versus homophily ratio and
versus 2NCS. The simplified GCN is the one described in Section 5.2.1, while for
the standard GCN the results are the same as in Table 5.2.

Figure 5.4 reports the performance of different GNNs on eight real-world datasets
ranked by increasing value of, respectively, homophily ratio and 2NCS. There is no
clear correlation between GNN performance and homophily ratio h, since the worst
performance does not correspond to the lowest value of h. The correlation among
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GNN performance and 2NCS, on the other hand, appears to be stronger, although
not perfect. Moreover, we can notice that the performance of simplified GCN and
standard GCN is comparable, and this justifies the extension of the considerations
made on the simplified GCN to the standard GCN.

(a) Chameleon, standard GCN (b) Squirrel, standard GCN

(c) Chameleon, simplified GCN (d) Squirrel, simplified GCN

Figure 5.5: GCN accuracy versus node-level homophily ratio and node-level
2NCS.

Node-level 2NCS

As for the homophily measures, it is hard to encode the complex and various
structure of a graph in a single value of 2NCS. Hence, looking at node-level values
for this metric can provide more insights about local patterns. Figure 5.7 shows
the distributions of node-level 2NCS for the different graphs. We can observe that
homophilous graphs (Cora and Citeseer) have high 2NCS for most of their nodes.
For heterophilous graphs, behaviors are more various: Chameleon shows a similar
distribution of 2NCS values between 0 and 0.7, whereas Film and Squirrel have

39



2NCS: modeling GCN performance

most of their nodes with 2NCS values between 0 and 0.4.
It is also valuable to compare node-level 2NCS values with GCN classification
accuracy. In particular, in Section 5.2.3 we claim that a GCN can correctly classify
nodes with high 2NCS values. To show that this claim holds experimentally,
Figure 5.5 reports the GCN classification performance with respect to different
local 2NCS measures. The figure shows that, for the simplified GCN, there is a
clear correlation between classification accuracy and node-level 2NCS, whereas this
correlation is much less evident with the homophily ratio of the nodes. We can
make a similar consideration for the standard GCN: also in this case, indeed, 2NCS
is a better indicator of GCN performance than the homophily ratio. Therefore,
these experimental results support the claim that a GCN can correctly classify
nodes with high 2NCS value.

Class-level 2NCS

We can observe the ability of 2NCS to capture graph structural properties that are
useful to GCN also at class-level.

(a) Chameleon (b) Squirrel

Figure 5.6: Per-class accuracy for MLP and GCN on Chameleon and Squirrel.

Figure 5.6 shows the accuracies of two different models (MLP and GCN) for
nodes belonging to different classes on two datasets, Chameleon and Squirrel.
The MLP performance is used as a measure of how informative the node features
are for classification, and the comparison between MLP and GCN performance
provides insights into how useful the graph structure is.
For example, Figure 5.6a shows that on Chameleon GCN significantly improves
MLP performance on classes 1 and 4. This behavior is consistent with the per-class
average 2NCS reported in Table 5.3. Indeed, 2NCS values for classes 1 and 4 are
particularly high, indicating that nodes with these labels are well characterized by
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the surrounding graph structure.
We can make similar considerations on Squirrel. In particular, Figure 5.6b shows
that for class 0 MLP outperforms GCN, which is consistent with the low value of
2NCS for class 0 reported in Table 5.3 (indeed, the structural information for nodes
of this class is probably misleading and introduces noise that makes GCN perform
worse than MLP). Class 4, on the other hand, witnesses a large performance
improvement for GCN with respect to MLP, and this is also in agreement with the
high 2NCS value for the class, indicating that the graph structure is informative
for nodes belonging to class 4.

Class 0 1 2 3 4

Chameleon 0.34 0.39 0.29 0.40 0.43
Squirrel 0.15 0.19 0.24 0.28 0.40

Table 5.3: Per-class 2NCS values for Chameleon and Squirrel.

5.4 Limitations
Although 2NCS has been shown to be useful to characterize specific graph structural
properties that affect GCN performance, we can identify also some limitations.
The main weakness is that it completely neglects the impact of node features,
since it only considers the label distribution in the graph. Even though this is
advantageous in scenarios where features are not informative or are not present
at all, it becomes detrimental in graphs where features play an important role.
Moreover, the examples and the experimental evidence provided in this chapter
confirm that high values of 2NCS generally correspond to good GCN performance,
whereas the opposite cannot be shown. Hence, this leads to the conclusion that
2NCS represents a sufficient but not necessary condition for good GCN performance.
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Figure 5.7: Node-level 2NCS distribution of different datasets
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Chapter 6

GATH and GCNH: GAT
and GCN for Heterophily

Despite the fact that heterophilous networks are present in several real-world
applications, standard GNN architectures fail to achieve satisfactory performance
on different heterophilous benchmarks, both real and synthetic, as discussed in
Section 3.2. Although high levels of heterophily do not necessarily imply bad
GNN performance, as pointed out in Section 5, it is still relevant to improve the
GNN architectures in order to extend their representation capabilities also on
the heterophilous graphs that turn out to be problematic. To this end, in this
chapter we present two new GNN-based models, GATH and GCNH. Both models
incorporate intuitive designs that improve the performance of basic GNNs on
heterophilous graphs. This chapter describes the architecture of the two models,
whereas Chapter 7 reports the experimental evaluation of their performance on
real and synthetic datasets, showing their capability to achieve competitive results
with respect to state-of-the-art models.

6.1 GATH
The first GNN-based model proposed in this thesis is GATH (GAT for Heterophily).
Similarly to GAT, GATH leverages an attention mechanism to adaptively learn
a weight between two nodes that is used as coefficient during the message aggre-
gation phase. However, we adopt additional design choices that allow for much
more flexibility than GAT, thus resulting in large performance improvements on
heterophilous settings. In particular, three main characteristics impact on the
model behavior. First of all, we extend the attention formulation with respect
to GAT to improve expressiveness. Secondly, we expand the neighborhood also
to non-connected nodes to aggregate useful information that might be located in
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other portions of the graph. Third, we employ skip-connections to separate the
computation of the embeddings of self-node and neighborhood, which are merged
only as last stage. Each of these components is better described and analyzed in
the following paragraphs. Moreover, Figure 6.1 depicts a visual representation of
the different components of GATH.

6.1.1 Overall formulation
Overall, the GATH layer can be expressed as follows. First, features are projected
into a lower-dimensional space of size e1 through a linear transformation:

hu = LeakyReLU(Wxu + c) (6.1)

where xu ∈ Rf are node u’s features, W ∈ Re1×f is a learnable matrix and c ∈ Re1

is a learnable bias term. This step is helpful because features are generally high-
dimensional (in the order of thousands) and it would therefore be cumbersome to
deal with all of them in the later stages.
Then, attention weights a are computed between a target node and each node up to
its k-th neighborhood, excluding the node itself. Attention weights are computed by
a 2-layer perceptron and are normalized with a softmax function. The information
used as input for attention computation is constituted by the transformed features,
the node degrees and the distance between the nodes. Overall, attention weight
computation can be expressed as

auv = softmaxv(zT
1 LeakyReLU(Z2[hu||hv||du||dv||distuv])) (6.2)

where z1 ∈ Re2 and Z2 ∈ Re2×(2e1+3) are learnable parameters, du is the node degree
of u and distuv is the distance between nodes u and v in terms of number of hops
(i.e. length of shortest path between the nodes).
Subsequently, node embeddings are computed by aggregating information from
the neighbors up to the k-hop using the attention weights a. Moreover, the
contribution of the messages from the neighbors and the message from the node
itself are balanced through a learnable coefficient. Overall, the final embeddings
can be expressed as

h′
u = (1 − b) ·

Ø
v∈Nk(u)

auvhv + b · hu (6.3)

where b is a learnable scalar normalized between 0 and 1 with a sigmoid function,
Nk(u) is the set of nodes up to the k-hop neighborhood of node u and h′

u is the
final embedding for node u. This formulation can be identified with the term
skip-connection, since it introduces a direct path for the self-node embeddings to be
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Figure 6.1: Proposed GATH architecture.
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incorporated in the final embedding, skipping the aggregation. The final embedding
h′

u is then forwarded through a linear layer to perform classification:

ỹu = LogSoftmax(Wclh
′
u + ccl) (6.4)

where Wcl ∈ R|C|×e1 is a learnable matrix, ccl ∈ R|C| is a learnable bias term and
LogSoftmax(·) = log(softmax(·)) is chosen over standard softmax(·) to improve
numerical performance. Note that ỹu ∈ R|C| is the probability distribution over
classes for node u. During inference, GATH assigns to the node the class with
maximum likelihood, i.e.

ŷu = argmax(ỹu) (6.5)

The model is trained to minimize the negative log-likelihood on the training set, i.e.
the normalized sum of the negative log of the probabilities assigned by the model
to the true class. In formulas:

L(ỹ, y) = − 1
|Vtrain|

Ø
u∈Vtrain

log(ỹuyu) (6.6)

where Vtrain is the set of nodes used for training.

6.1.2 Attention formulation
As observed in [6] and discussed in Section 2.2.4, the standard formulation of
attention adopted in GAT (Equation (2.5)) is not expressive enough to handle some
specific types of problems. An improved version, attv2 (Equation (2.8)), solves
this limitation by introducing a transformation after the non-linearity. To better
capture the relations among nodes, the attention formulation of GATH follows this
approach. Indeed, as shown in 6.2, the vector z1 multiplies the embeddings after
the non-linearity, providing increased expressiveness.

6.1.3 Neighborhood extension
It has been discussed that, in heterophilous graphs, important information for
node classification might not depend only on the graph structure, that is, some
neighboring nodes might have irrelevant or misleading information whereas non-
connected nodes might carry useful messages. To allow for a more flexible interaction
among nodes in the graph, GATH exploits a variation of the attention mechanism
of GAT [5], generating a weight between two nodes based on how relevant they are
to each other. However, the formulation of GAT has some limitations that hamper
its performance on heterophilous settings.
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As a matter of fact, GAT only aggregates information from connected nodes1. To
incorporate also potentially useful information from further nodes, GATH performs
message aggregation considering nodes up to the k-th neighborhood, where k is
a hyperparameter. However, just aggregating messages from nodes at different
distances might cause the loss of relevant information conveyed by the graph
structure. To address this problem, we take into consideration relevant structural
properties of the nodes when computing the attention weights, namely the node
degrees and the hop-distance between a node and the current target node. We
select node degrees as they are a relevant indicator of the importance of a node in
the graph [17, 47], whereas node distance is meaningful to understand how strongly
two nodes are related.

6.1.4 Skip-connections
By comparing GAT and MLP performance on heterophilous benchmarks (e.g.
Figure 3.1 and Table 3.1), it is possible to observe that in some scenarios GAT can
be largely outperformed by MLP. Since MLP can be viewed as a GAT where the
attention weight matrix corresponds to the identity matrix, it can be hypothesized
that GAT struggles to learn high self-attention weights (i.e. assign high attention
values to the node itself). To facilitate this, skip-connections can be used. Skip-
connections were introduced in the field of Computer Vision [48, 49] and they
achieved great success thanks to their ability to facilitate the learning of the
identity mapping, which consists in keeping a layer equal to the previous one,
thus avoiding the potentially negative impact of more complex transformation. In
GATH, skip-connections play the same role. In particular, through a learnable
gate b, the network can balance the contributions of the messages aggregated from
the neighbors and the message of the target node itself, as expressed in Equation
(6.3). Moreover, this can be interpreted as an implementation of the ego-neighbor
separation principle presented in 3.1.2, since representations for the neighborhood
and for the self-node are merged only at the end of the layer.

6.1.5 Time complexity
We can divide the computation of the time complexity of GATH into the different
steps that characterize the architecture.
First of all, features are projected into lower-dimensional embeddings of size e1
through a matrix multiplication and a non-linear transformation, as expressed

1The original paper ([5]) defines a general formulation of attention that considers also non-
connected nodes, but the provided implementation aggregates information only from 1-hop
neighbors.
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in Equation (6.1). The time required by this step is dominated by the matrix
multiplication, which takes O (ne1f), where n is the number of nodes and f the
feature size.
Then, attention weights are computed according to the formula described in Equa-
tion (6.2). For a node pair (u, v), the computation of the corresponding attention
weight takes O (e2e1) time, since the dominant operation is the multiplication with
the matrix Z2. This computation is performed once for every node pair, i.e. |Ek|
times, where Ek is the set of edges of the graph created by connecting each node
to every other node located up to its k-hop neighborhood. Therefore, the overall
time complexity of the second step is O (|Ek|e2e1).
In conclusion, messages are aggregated from the neighbors using the learnable
parameter b as weight between neighborhood embeddings and self-node embedding,
as shown in Equation (6.3). In this step, the aggregation over neighbors takes
O (|Ek|e1) time, whereas the sum of the contribution of the self-node embedding
takes O (ne1) time. It can be noticed that both these terms are dominated by
the previous ones. Indeed, the aggregation complexity is dominated by the time
complexity derived at the second step, i.e. O (|Ek|e2e1 + |Ek|e1) = O (|Ek|e2e1),
and the sum of self-node embeddings is dominated by the feature transformation,
i.e. O (ne1f + ne1) = O (ne1f).
Summing everything up, we can write the overall time complexity of GATH as
O (ne1f + |Ek|e2e1). We can also compare the time complexity of GATH with that
of GAT [5] and GATv2 [6]: O (ne1f + |E|e1). It can be noticed that there are
two differences between the complexities of the two models. First of all, GATH
employes a 2-layer perceptron to compute attention weights, which leads to a
complexity of O (e2e1) for each node pair, whereas GAT and GATv2 have only one
layer, lowering the complexity to O (e1). However, the most significant difference is
the number of weights to compute: |E| for GAT, |Ek| for GATH. Indeed, |Ek| can
be much larger than |E|, since the number of edges grows, in general, exponentially
every time the neighborhood is enlarged by one hop.

6.2 GCNH
The second model proposed in the scope of this work is GCNH (GCN for Het-
erophily). Despite the flexibility introduced by GATH in learning weights between
different node pairs in the graph, without being limited by the graph connectivity,
in Section 5 we observe that even a very simple model like GCN can achieve good
performance on some heterophilous graphs, namely Chameleon and Squirrel. Al-
though GATH can in principle learn attention weights that resemble the adjacency
weights used by GCN, this does not easily occur in practice, given the small size
of the datasets used and the limited dimensionality of the network layers to avoid
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Figure 6.2: Proposed GCNH architecture.

overfitting. To exploit the capability of GCN to capture specific graph properties
and extend its performance to heterophilous graphs, we introduce GCNH. GCNH
is a simpler model compared to GATH, as it does not involve learnable weights
between nodes. However, it allows for an effective exploitation of the information
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provided by the adjacency matrix, which may be lost in the more complex for-
mulation of GATH. Figure 6.2 provides a visual representation of the behavior of
GCNH.

6.2.1 Overall formulation
As first step, GCNH performs feature transformation through two separate 1-layer
MLPs in order to reduce the feature dimensionality. The two sets of feature
embeddings obtained in this way are used for different purposes: one is used when
nodes act as neighbors, the other when the node is the target. For a node u, this
step can be expressed as follows:

hu = LeakyReLU(W1xu + c1) (6.7)

zu = LeakyReLU(W2xu + c2) (6.8)

where W1 ∈ Re×f and W2 ∈ Re×f are learnable matrixes and c1 ∈ Re and c2 ∈ Re

are learnable bias terms. Then, message aggregation is performed using a learnable
scalar b, normalized between 0 and 1, to balance the contributions of neighborhood
embeddings and self-features. This mechanism can be viewed as a skip-connection
and is analogous to the one employed by GATH. In formulas, the computation of
the node embedding h′

u for a node u can be expressed as

h′
u = (1 − b) ·

Ø
v∈N(u)

hv + b · zu (6.9)

A linear transformation is then applied to the embedding h′
u to get per-class

probabilities:
ỹu = LogSoftmax(Wclh

′
u + ccl) (6.10)

where the symbols are the same as Equation (6.4). The label assigned to the nodes
and the loss used for training are the same described in Equations (6.5) and (6.6).

6.2.2 Time complexity
We can compute the time complexity of GCNH by analyzing separately the different
steps involved in the model.
To begin with, features are transformed into two different sets of embeddings of
lower dimensionality e, as described in Equations (6.7) and (6.8). This step takes
O (nef) time.
Then, messages are aggregated from 1-hop neighbors and merged with the self-node
embedding according to Equation (6.9). The aggregation from neighbors takes
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O (|E|e) time, whereas the weighted sum with the self-node embedding takes O (ne)
time. This last term is dominated by the feature transformation complexity.
Overall, the time complexity of GCNH can be written as O (nef + |E|e). With
respect to GATH, the complexity is significantly lower since there is no attention
weight computation and aggregation is performed only from 1-hop neighbors. This
leads to a relevant increase in efficiency for GCNH compared to GATH.
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Chapter 7

Experiments

This chapter provides experimental evidence of the performance of the two models
introduced in this thesis, GATH and GCNH. First of all, we report results for
node classification on real and synthetic graphs and we compare them with other
state-of-the-art models. Then, we perform ablation studies to evaluate the impact
of the different design choices on the final architecture and the influence of the
different hyperparameters tested. In conclusion, we analyze the parameters learned
by the model for different datasets to understand how different graph properties
affect the model behavior.

7.1 Node classification performance
We evaluate the representation capabilities of GATH and GCNH on the task of
supervised node classification, which is a common choice for models dealing with
heterophilous graphs. We perform the evaluation both on synthetic datasets with
different levels of homophily ratio and on the real-world graphs commonly used in
works dealing with assortative networks. Further information about the datasets is
reported in Section 4.

7.1.1 Baselines
The baselines used for comparison can be divided into two main categories. The
first category includes basic methods, with respect to which we expect large
improvements especially on heterophilous benchmarks given their limited flexibility.
In the following, we introduce the methods belonging to this class.

• MLP: 2-layer perceptron. It is a graph-agnostic model and it is reported to
understand how much information is conveyed by the plain node features.
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• GCN [4]: Graph Convolutional Network

• GAT [5]: Graph Attention Network

The second category of reported baselines is composed of methods that are specif-
ically designed for heterophilous graphs. It is fundamental to compare GATH
and GCNH to these approaches since they are implemented for the same task. In
particular, we present in the following the approaches used for comparison.

• Geom-GCN [18]: method for heterophily that maps nodes to a latent space
and defines a new graph based on embedding similarity

• H2GCN [9]: method that introduces three specific designs to boost per-
formance on heterophilous graphs: ego and neighbor-embedding separation,
higher-order neighborhoods and combination of intermediate representations

• GPRGNN [39]: method that uses PageRank to determine relations between
nodes

• GGCN [10]: method that applies two designs to extend GNNs: degree
correction and signed messages

• O(d)-SD [35]: method based on sheaf diffusion

7.1.2 Experimental setting
We evaluate model performance in terms of classification accuracy, i.e. the percent-
age of nodes in the test set that are assigned to the correct class. Accuracy is a
standard metric for classification performance and it is commonly used in related
works. Moreover, the classes in the considered datasets are quite balanced, thus
accuracy is a reliable metric for this setting.
We test different values for hyperparameters and we select the best ones. We report
further information about the grids for the hyperparameters in Appendix A.4.
We run experiments on a NVIDIA Tesla V100 PCIE with 32 GB. The code is
implemented in Python and deep learning models are defined and trained using
PyTorch.
We compute classification accuracies on 10 different train/validation/test splits for
each dataset, provided by [18], and we report average values and standard deviation
for each dataset. The sizes of the splits are 48%/32%/20%. We train the models
on the training set and the best performing model on the validation set is used on
the test set, on which we compute the accuracy.
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Cornell Texas Wisconsin Film Chameleon Squirrel Cora Citeseer
h 0.30 0.11 0.21 0.22 0.23 0.22 0.81 0.74

MLP 81.89 ± 6.40 80.81 ± 4.75 85.29 ± 3.31 36.53±0.70 46.21 ± 2.99 28.77 ± 1.56 75.69 ± 2.00 74.02 ± 1.90
GCN 50.27 ± 7.57 57.03 ± 5.05 50.98 ± 4.88 23.27 ± 0.94 67.43 ± 1.95 50.49 ± 1.54 84.29 ± 0.98 73.25 ± 1.42
GAT 61.89 ± 5.05 52.16 ± 6.63 49.41 ± 4.09 27.44 ± 0.89 60.26 ± 2.50 40.72 ± 1.55 87.30 ± 1.10 76.55 ± 1.23

Geom-GCN 60.54 ± 3.67 66.76 ± 2.72 64.51 ± 3.66 31.59 ± 1.15 60.00 ± 2.81 43.80 ± 1.48 85.35 ± 1.57 78.02±1.15
H2GCN 82.70 ± 5.28 84.86 ± 7.23 87.65±4.98 35.70 ± 1.00 60.11 ± 2.15 36.48 ± 1.86 87.87±1.20 77.11 ± 1.57

GPRGNN 80.27 ± 8.11 78.38 ± 4.36 82.94 ± 4.21 34.63 ± 1.22 46.58 ± 1.71 31.61 ± 1.24 87.95±1.18 77.13±1.67
GGCN 85.68±6.63 84.86±4.55 86.86±3.29 37.54±1.56 71.14±1.84 55.17±1.58 87.95±1.05 77.14±1.45

O(d)-SD 84.86±4.71 85.95±5.51 89.41±4.74 37.81±1.15 68.04±1.58 56.34±1.32 86.90 ± 1.13 76.70 ± 1.57

GATH 83.78±6.28 84.33 ± 5.24 85.88 ± 4.54 35.75 ± 1.43 49.06 ± 1.55 35.22 ± 1.46 85.98 ± 1.51 76.18 ± 1.59
GCNH 83.51 ± 7.50 86.76±3.71 86.27 ± 2.48 35.93 ± 1.09 71.29±1.51 58.44±2.27 85.05 ± 0.83 75.63 ± 1.10

Table 7.1: Mean classification accuracy and standard deviation for GATH and
GCNH on real-world datasets. Best results are reported in red, second best results
in blue and third best in violet. The results for the baselines are taken from
[35], with the exception of GCN which was implemented and tested as described
in Appendix A.2. Experiments for each dataset are run on the 10 different splits
taken from [18].

7.1.3 Results on real-world datasets
To assess the effectiveness of the proposed models, Table 7.1 reports classification
accuracies for GATH, GCNH and baselines on the real-world datasets.
We can observe that, on Cornell, Texas and Wisconsin, GATH outperforms the
simple graph-unaware MLP and especially improves the simple GNN models (GCN
and GAT). This behavior can be explained by observing that GATH extends GAT
and GCN allowing for a more flexible importance of the features of the target node,
which, on these datasets, turn out to be very relevant. However, the performance
improvement with respect to MLP shows that GATH is also able to extract useful
information from the graph structure. Moreover, GATH also outperforms Geom-
GCN and GPRGNN, specifically designed for heterophily, and achieves competitive
performance with H2GCN, improving the accuracy on one of the three graphs.
GGCN and O(d)-SD outperform GATH on these three graphs. These observations
confirm the effectiveness of the design choices implemented in GATH, even though
they appear not to be sufficient to outperform state-of-the-art models.
On Film, GATH performs similarly to MLP. Since most models perform worse than
MLP on this dataset and the improvement brought by O(d)-SD is quite small, it
can be assumed that, as observed also in other works [20], the graph structure is not
particularly relevant in this case and it mostly introduces misleading information.
On Chameleon and Squirrel, GATH does not provide satisfactory performance.
This might be explained by observing that features in these two datasets are not
particularly relevant, as proved by the low performance of MLP, whereas the graph
structure by itself is very informative, since GCN provides very good results. GATH
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struggles to learn attention weights that reflect the connections in the graph, and
therefore is not able to perform satisfactory classification.
On the two homophilous graphs Cora and Citeseer, GATH performs quite closely
to GCN and GAT, which are models that thrive in homophilous settings. Therefore,
it can be stated that the increased model complexity of GATH does not hinder the
performance on homophilous graphs.

We can also make some considerations based on the results for GCNH. Quite
surprisingly given the simplicity of the model, GCNH outperforms GATH on 5 out
of the 8 datasets, achieving state-of-the-art performance on three of them. The
very good performance on Chameleon and Squirrel can be justified by observing
that GCNH performs an adjacency matrix-based message aggregation, similarly
to GCN, and this approach is shown to be very successful on these two graphs.
The skip-connection is also proved to be useful given the improved performance
compared to the simple GCN.
On the other heterophilous graphs, GCNH achieves very satisfactory performance,
outperforming all the other models on Texas. This behavior can be motivated
by noticing that node features are informative for these graphs, as proved by the
performance of MLP compared to basic GNNs. In GCN and GAT, indeed, the in-
formation of the features is mixed with information coming from the neighborhood,
which may be misleading. The skip-connection of GCNH solves this problem, since
node features can contribute more to the final embeddings. Moreover, the perfor-
mance improvements of GCNH with respect to MLP show that also aggregating
information from the neighborhood is useful, as long as its contribution does not
overwhelm the self-features.
On the homophilous graphs Cora and Citeseer, GCNH performs worse than
GATH and the simple GNNs, but the gap is not large. This proves that, also
in this case, the added complexity does not worsen performance significantly on
homophilous graphs.

7.1.4 Results on synthetic datasets
Beyond real-world graphs, it is also interesting to analyze GATH and GCNH
performance on synthetic graphs. Indeed, real-world graphs may incorporate more
complex patterns that do not allow for immediate comparison between different
graphs with similar homophily ratio. On the other hand, the synthetic graphs
with variable homophily ratio described in Section 4 can be used to observe the
change in performance related to different homophily levels in graphs with similar
characteristics. To this end, Figure 7.1 shows the classification results of GATH
and GCNH on these datasets.
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Figure 7.1: GATH and GCNH classification accuracies on synthetic datasets.
Results show the average accuracy on 3 datasets for the different values of homophily
ratio.

We can notice that GATH performance is still slightly dependent on the ho-
mophily level of the graph, but the accuracies also on heterophilous graphs are
largely improved with respect to GCN and GAT. Moreover, on the graphs with
high homophily, where the graph structure provides useful information, GATH is
able to positively exploit it, achieving a performance that is very close to GCN and
GAT and perfect accuracy on perfectly homophilous graphs (h = 1).

Similarly, GCNH performance is also less dependent on the homophily level of
the graph with respect to GAT and GCN. In general, GCNH performs similarly to
GATH on heterophilous graphs, which confirms that the skip-connection mechanism
is effective in these settings. On homophilous graphs, GCNH performs slightly
worse than GATH, which can be due to the lower flexibility of GCNH which does
not involve the attention mechanism.

7.2 Ablation studies
To thoroughly understand the behavior of GATH and GCNH it is necessary to
delve into the performance and characterize the impact of each component of the
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models. To this end, this section analyzes the influence of the different design
choices of GATH and GCNH by showing the variation in performance when different
components are added or removed. Moreover, we also describe the influence of the
different hyperparameters on the performance.

7.2.1 Impact of design choices
This section motivates the design choices of GATH and GCNH by analyzing how
their presence affects the model performance.

Skip-connections

The first design choice to be considered are the skip-connections, described in
Section 6.1.4. These allow for the separate computation of an embedding for the
target node and for the neighborhood, which are then mixed as last stage using a
learnable coefficient as weight. This design is present in both GATH and GCNH.

(a) GATH (b) GCNH

Figure 7.2: Comparison between performance of GATH and GCNH with and with-
out skip-connections on synthetic graphs. For GATH, removing skip-connections
means adding self-loops to the adjacency matrix and learning an attention weight
also for the target node. For GCNH, instead, removing the skip-connections is
equivalent to using a plain GCN model.

Figure 7.2a shows the difference in performance between GATH and a modified
version of GATH where skip-connections are removed and self-loops are added
to the adjacency matrix (i.e. the importance of self-features can only be learned
through the attention weights). It is very clear that skip-connections widely affect
the performance, especially on graphs with low homophily. As a matter of fact,
without skip-connections GATH only provides a marginal improvement with respect
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to GAT, and performs largely worse than the MLP on disassortative graphs. This
experiment confirms the hypothesis that it is difficult for the attention mechanism
to learn to give high values to self-attention weights, and skip-connections help
overcome this issue.

Figure 7.2b shows a similar plot for GCNH. In this case, the model without
skip-connections is a simple GCN where message aggregation is performed from
all neighbors and the target node itself. Also in this case, it can be noticed
that the introduction of skip-connections is fundamental to boost performance
on heterophilous graphs, resulting in a 30% improvement. However, in this case,
skip-connections are slightly detrimental for homophilous graphs, leading to a
decrease in accuracy for GCNH with respect to the standard GCN.

Attention of GATv2

Figure 7.3 shows the difference in performance when using the formulation of
attention defined in GATv2 [6] instead of the standard definition of attention for
GAT [5], as described in Section 6.1.2.

Figure 7.3: Comparison between performance of GATH with attv2 and with
standard GAT attention on synthetic graphs.

We can observe that GATH with extended attention consistently outperforms
the version with the standard attention formulation for all homophily levels. Despite
the improvements being small, this confirms that the increased expressivity of attv2
compared to the standard attention translates into an improvement in performance.

58



Experiments

Structural information

Figure 7.4 shows the impact of the addition of structural information to the feature
embeddings when computing attention weights, as described in Section 6.1.3. This
design choice is believed to be important because, when aggregating from nodes up
to the k-hop neighborhood, the structural information of the graph might be lost if
not properly encoded. In particular, the proposed model uses the node degrees of
both nodes and the number of hops between them, i.e. the length of the shortest
path.

Figure 7.4: Comparison between performance of GATH with and without the
use of structural information for attention computation on synthetic graphs.

Also in this case, we can observe that this addition allows for a more compre-
hensive attention weight computation that, eventually, improves the performance.
This confirms the expectation that the structural information can be relevant for
node classification and it is therefore important to retain it when aggregating from
larger neighborhoods.

7.2.2 Impact of hyperparameters

In this section, we analyze the differences in performance related to variations of
the relevant hyperparameters of the model.
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Neighborhood size

The first hyperparameter considered is k, i.e. the number of hops used to define
the extended neighborhood containing the nodes whose messages are aggregated to
create the final embedding for a target node. Figure 7.5 shows how different values
of this parameter affect the model performance.

Figure 7.5: GATH performance for different neighborhood sizes k on real-world
graphs.

We can observe that for Cornell and Wisconsin enlarging the neighborhood
size improves performance and the best results are obtained with the highest value
tested, i.e. 5. For Texas, instead, similar results are obtained with k equal to 2 or
4, whereas enlarging it to 5 is detrimental.
On Chameleon, the best value for k is 2, which is likely due to the fact that enlarging
the neighborhood further introduces many more nodes in the neighborhood since
the graph is very dense and it becomes harder for the attention mechanism to
distinguish which nodes are relevant and which are not. For Squirrel and Film,
the differences in performance for different values of k are very small. In general,
however, it can be stated that larger values of k bring small improvements.
For the homophilous graphs Cora and Citeseer, the best results are achieved
with k equal to 2. This is intuitively justified by observing that enlarging the
neighborhood means increasing the risk to include nodes with different labels in the
message aggregation, since the 1-hop neighbors are likely to share the same label.

Number of epochs

Another relevant hyperparameter is the number of training epochs. Indeed, training
for too many epochs may lead to overfitting, i.e. learning non-relevant patterns in
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the dataset that hinder generalization capabilities. On the other hand, the number
of epochs should be large enough for the model to get as close as possible to a
local optimum for loss minimization. An effective approach to tune the number of
epochs consists in monitoring the variations of the training and validation losses and
accuracies during training. When the training and validation accuracies are both
increasing, the training process should continue. However, when the validation
accuracy starts decreasing, the training should be stopped, since overfitting is
occurring. Due to this, the model used for testing in the experiments of the work
is the model that performs best on the validation set.

(a) GATH (b) GCNH

Figure 7.6: GATH and GCNH performance with different numbers of training
epochs. Results are only reported for the graphs for which different values were
tested.

Figure 7.6 shows how changing the number of training epochs affects the
performance. Results are not reported for Film, Cora and Citeseer, as only one
value for the number of epochs was tested for them. For GATH, the number
of training epochs does not significantly affect the results. For GCNH, instead,
increasing the number of epochs is generally helpful. Moreover, it is relevant to
notice how the optimal number of epochs for Chameleon and Squirrel is much
larger than the one used for the other graphs. The same behavior is observed with
simple GCN, whose performance is optimal on these two graphs when training for
about 1000 epochs, whereas on the other datasets the optimal number of epochs
around 100.
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(a) GATH

(b) GCNH

Figure 7.7: GATH and GCNH performance for different batch sizes. Setting the
batch size equal to |V | is equivalent to having just one batch, i.e. forwarding the
complete training dataset through the model at once. Results are not reported for
Film since only one value was tested for it.

Batch size

Splitting the training dataset into different batches can be helpful for several reasons.
First of all, it allows to handle larger datasets even with limited computing resources,
since the training data do not need to be processed all at once. Moreover, it acts
as a regularization technique, since each batch provides a different contribution to
the gradient descent algorithm and batches are different at every epoch. Therefore,
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(a) GATH

(b) GCNH

Figure 7.8: GATH and GCNH performance for different values of the dropout
ratio, i.e. the percentage of attention weights that are randomly set to zero at each
training epoch. Note that dropout = 0.0 is equivalent to not using dropout at all.

we test different batch sizes to improve model performance. Figure 7.7 shows the
impact of different batch sizes on the model performance. Results are not reported
for Film since the only tested value for the batch size is 300. Indeed, it was not
possible to use |V | as batch size due to memory issues.
Despite the expectations, it can be observed that having several batches does not
improve performance on most graphs, with the only exception of Cornell, Texas
and Wisconsin for GCNH. This can be explained by observing that the datasets
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are generally quite small and therefore batches might not contain enough data to
be representative for the complete graph and incorporate relevant patterns.

Dropout

Dropout is another regularization technique that aims at improving the model
generalization capabilities. In particular, it consists of randomly setting some
parameters to zero during one epoch, such that the model learns alternative
representations to still classify the nodes correctly, without relying to much on
a single pattern. In GATH, dropout is implemented by zeroing some attention
weights, whereas in GCNH it is implemented by setting to zero some values of the
embeddings used for classification.

Figure 7.8 shows how different values of the dropout ratio affect model per-
formance. We can point out that dropout is generally helpful for both GATH
and GCNH, and usually a higher value of dropout ratio corresponds to higher
performance. The only exception is represented by GCNH on Chameleon and
Squirrel, since in this case the best results are achieved without dropout.

7.3 Performance analysis
This section provides deeper insights into model performance by analyzing the
values of the different parameters learned by GATH and GCNH on different graphs.

Coefficient b

The first term to be analyzed is the coefficient b that balances the contribution
of the messages of the self-node and the neighbors in the aggregation phase, as
described in Equations (6.3) and (6.9). This parameter is present in both GATH
and GCNH.

Figure 7.9 shows the values of the parameter b on different graphs. On synthetic
graphs (Figure 7.9b), it can be observed that the value for both GATH and GCNH
significantly decreases for graphs with high homophily, in which the neighbors are
likely similar to the target node and therefore are useful to improve classification.
For heterophilous benchmarks, instead, b is higher, as better results are achieved
if the main contribution to the node embeddings is given by the features of the
node itself. It is also worth noticing that the value of b starts decreasing earlier for
GCNH than for GATH as homophily increases.
On real graphs (Figure 7.9a), however, the values of b are less related to the
homophily ratio. For GATH on Film, b has a large value, which is consistent with
the observation that the graph structure of the dataset is not particularly relevant,
as confirmed also by the largely better performance of MLP on the graph with
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(a) Real graphs

(b) Synthetic graphs

Figure 7.9: Values of parameter b for GATH and GCNH on real and synthetic
datasets.

respect to GCN and GAT. For the other datasets, however, the value of b does not
appear to be related to the graph characteristics and is always between 0.6 and 0.7.
For GCNH, it is relevant to notice that the value of b is low for Chameleon, where
it has already been observed that the structural information derived from the
adjacency matrix is particularly relevant. However, b assumes a higher value on
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Squirrel, where the same observation holds, and node features are even less
informative. Nevertheless, the value of b on Squirrel is lower than on the graphs
with similar homophily ratio, which may indicate that the graph structure is
more relevant in this case. On Film, similarly to GATH, the value of b is high
since the graph structure is not informative for the dataset. Moreover, it can be
noticed that the values of b for Cora and Citeseer, homophilous graphs, are lower
than the values for Cornell, Texas and Wisconsin, heterophilous graphs, which
is consistent with the observations made on the synthetic graphs and with the
intuition that higher homophily corresponds to more relevant graph structure that
plays a more important role in the aggregation for the final embeddings.

Weight distribution

We can make further considerations by observing the attention weights learned by
GATH. This analysis is not applicable to GCNH.

Figure 7.10: Normalized average weight for nodes with same or different labels
with respect to the target node on real graphs. We compute the average weight
for nodes with same and different label and we normalize columns such that, for
each dataset, they sum to one. This is done for visualization purposes, since denser
dataset have significantly lower average weight.

In particular, Figure 7.10 shows the normalized average weight for nodes with
same or different label with respect to the target node on the real graphs. It can
be noticed that nodes with the same label receive, on average, higher weights
than nodes with a different label, consistently across all graphs. This behavior is
coherent with the expectation that nodes with the same label carry information
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that is relevant for the correct classification of the target node, and therefore should
play an important role during message aggregation.

Furthermore, we can observe the normalized average weight with respect to
the distance (number of hops) of a node from the target. Figure 7.11 depicts

Figure 7.11: Average weight for nodes at different hop-neighborhoods with respect
to the target node. We compute the average weight for nodes at each hop and we
normalize columns such that, for each dataset, they sum to one. This is done for
visualization purposes, since denser dataset have significantly lower average weight.

how the weights are distributed, on average, across different hops. Interestingly,
in the homophilous graphs Cora and Citeseer, the weight distribution is largely
dominated by the 1-hop neighbors, which is consistent with the fact that in
homophilous graphs 1-hop neighbors tend to be similar to the target nodes and,
therefore, it is useful to aggregate information from them. On the other graphs,
the behavior is more diverse. In Cornell, Texas and Wisconsin, the distribution
is almost uniform across different hops, meaning that relevant nodes are located
in various positions in the graph independently of the distance from the target
node. In Film and Chameleon, weights are mostly located in the first hop, which
is unexpected given the low homophily ratio of these graphs. On Squirrel, in
conclusion, the weight distribution is dominated by the third hop.

Node embeddings visualization

Another useful analysis to characterize the model behavior is the observation of the
distribution of the node embeddings in their latent space. Indeed, this distribution
is informative about how well the backbones of GATH and GCNH map the nodes to
embeddings located in different portions of the latent space based on the observed
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node labels.
Figure 7.12 shows a 2D representation of the node embeddings generated by GATH
before the final linear layer used for classification on the test set. Dimensionality
reduction is performed using TSNE. It can be noticed that the classes for Cora,
Citeseer, Cornell, Texas and Wisconsin appear to be well separated. Indeed,
it is possible to identify different clusters corresponding to different labels, and
this is in line with the high classification accuracy achieved on these graphs. On
Chameleon, it can be observed that classes 0 and 1 are separated from classes 2,
3 and 4, but the separation within these two subgroups is less evident. This is
consistent with the findings derived from the CCNS matrixes in Figure 3.4, where
we observed that the neighborhood patterns of classes in Chameleon allow for an
effective separation of classes 0 and 1 from classes 2, 3 and 4. In conclusion, on
Squirrel and Film, the separation among embeddings in different classes is not
clear, which is consistent with the low classification accuracies of GATH on these
two datasets.
Figure 7.13 shows the same representations for GCNH. Similar considerations
can be made for Cora, Citeseer, Cornell, Texas and Wisconsin, for which the
embeddings are quite well separated into clusters for the different classes. On
Chameleon, the separation among classes appears to be better than the one achieved
by GATH, which is consistent with the significant performance improvement of
GCNH on this graph. However, GCNH identifies several smaller clusters of nodes
belonging to the same class, instead of mapping all nodes belonging to the same
class to the same region in the latent space. Embeddings for Film and Squirrel
still appear not well separated.
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(a) Cora (b) Citeseer

(c) Cornell (d) Texas

(e) Wisconsin (f) Chameleon

(g) Squirrel (h) Film

Figure 7.12: 2D visualization of node embeddings generated by GATH. Dimen-
sionality reduction is performed by means of TSNE.
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(a) Cora (b) Citeseer

(c) Cornell (d) Texas

(e) Wisconsin (f) Chameleon

(g) Squirrel (h) Film

Figure 7.13: 2D visualization of node embeddings generated by GCNH. Dimen-
sionality reduction is performed by means of TSNE.
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Chapter 8

Conclusions

This chapter presents the conclusions of the thesis. First of all, we report the main
findings in relation to the research questions introduced at the beginning. Then,
we elaborate on the limitations and possible future developments for the work
performed.

8.1 Main findings
We present the main findings of this thesis with reference to the research questions
presented in Section 1.2.

RQ1. Do GNNs perform badly on all heterophilous graphs? Are there other met-
rics beyond heterophily that can be useful to characterize GNN performance
on graphs?

Previous works [20] show that GNNs can perform well on some heterophilous
graphs. The work carried out in this thesis confirms this by providing examples
of graphs with low heterophily values where a GCN still achieves good classifi-
cation results (e.g. Figure 5.3). However, as pointed out by [41], heterophilous
graphs are in general harder to classify than homophilous graphs, and this
motivates a deeper analysis of GNN performance on them.
Moreover, this thesis introduces 2-hop Neighborhood Class Similarity (2NCS),
a new metric that measures the average over neighbors of a target node of the
percentage of their neighbors with the same label as the target node. 2NCS
measures a property that is relevant for GCN representation capabilities: if a
node has a high 2NCS value, then it is easier for a GCN to classify it correctly.
2NCS is a relevant metric also because it provides additional information with
respect to homophily. Indeed, high values of homophily correspond to high
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values of 2NCS, but graphs with low homophily ratios can still have high
2NCS values, and these witness good GCN performance, as in the example
reported in Figure 5.3.

RQ2. Is it possible to extend the design of GNNs in order to improve performance
on heterophilous graphs?

GNNs can be extended to improve their performance on heterophilous graphs.
Indeed, this thesis introduces two new GNN-based models that achieve com-
petitive performance with respect to state-of-the-art approaches on real and
synthetic graphs whose homophily ratios cover a large range of values. The
first model, GATH, leverages the attention mechanism to learn a weight be-
tween two nodes, which is then used during message aggregation. Moreover,
GATH aggregates information from non-connected nodes, and this turns out
to be particularly effective on some heterophilous benchmarks where the useful
information is located in different portions of the graph. In conclusion, GATH
implements skip-connections to balance the contribution of the self-node and
neighborhood embeddings, which proves to be fundamental to increase perfor-
mance on some heterophilous graphs.
The second model, GCNH, is a simpler variation of GCN where skip-connections
are implemented following the same formulation of GATH. Despite its sim-
plicity, GCNH achieves very good results on all graphs, outperforming GATH
and several state-of-the-art models on some benchmarks.

8.2 Limitations
One limitation of this thesis are the datasets used for evaluation. The choice
of the datasets is motivated by the fact that they are the same graphs used in
most of the works dealing with GNNs for heterophily. However, the 8 real-world
graphs presented in Section 4.1 show some weaknesses. First of all, their size is
generally small. Cornell, Texas and Wisconsin only contain about 200 nodes,
which results in very large differences in accuracy among different runs, as witnessed
by the large standard deviations reported for results on these graphs (e.g. Table
7.1). Furthermore, the biggest graph is Film with 7600 nodes, which is still
not representative of the large-scale graphs containing million of nodes that are
currently used for other graph machine learning tasks. Moreover, the graphs are
either very homophilous (h ≈ 0.8) or very heterophilous (h ≈ 0.2), so they are not
representative of the complete range of homophily values. The synthetic graphs
used try to solve this problem, but synthetic graphs have limitations on their own,
as they might not be representative of the different properties of real-world graphs.
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We already present some limitations of 2NCS in Section 5.4. An additional weakness
of this metric is that it is derived through intuitions, but it lacks a theoretical proof
of its relation with GCN performance.
In conclusion, evaluations for GATH and GCNH are limited by the computational
time and resources available for the experiments.

8.3 Future work
[15] have pointed out the limitations related to the datasets commonly used for
heterophily and they have proposed 6 larger graphs with low homophily ratio.
The evaluation of GATH and GCNH on these graphs is not performed within
the context of this thesis because of the large computational time and resources
necessary for the experiments. However, future developments of this work will
include the evaluation of the proposed models on these larger benchmarks to assess
their scalability.
To better characterize 2NCS, future works will focus on a stronger theoretical
motivation of the metric and a deeper analysis of the mathematical relationship
between 2NCS and GCN learning capabilities. Another interesting development
consists in extending the definition of 2NCS to incorporate node features and model
their impact on GCN performance. This, however, introduces a significant increase
in the complexity of the scenario used for the analysis, which might lead to the
impossibility to effectively incorporate node features in the metric. Indeed, the
goal of 2NCS is to describe one specific graph property that is related to GCN
performance, not to characterize GCN performance under all possible scenarios,
given the variability of the information GCN can learn.
Another future expansion starts from the observation that GATH performance is
dependent on the density of the graph. Indeed, the number of neighbors to perform
message aggregation might explode when k is large and the graph is dense. To
tackle this problem, one possible solution could be to sample the neighborhood
of a node instead of considering it in its entirety. Several neighbor sampling
strategies exist in the literature [50] and they allow for an increased scalability since
the neighborhood size can be fixed as hyperparameter. However, neighborhood
sampling has two main drawbacks. First of all, it slows down the pre-processing of
the graph, resulting in very long execution times on large graphs, especially for
sophisticated sampling strategies. Secondly, it does not allow to obtain a complete
view of the neighborhood at once. To face this problem, it is common to perform
several rounds during inference such that a different neighborhood is sampled at
each round [51]. By averaging the results of different rounds, it is possible to obtain
a complete view of the neighborhood. This process, however, causes a significant
overhead, and therefore we do not implement it for the models presented in this

73



Conclusions

thesis, since the size of the graphs does not require it.
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Appendix A

Experimental details

This Appendix reports additional details for the various experiments presented in
the work.

A.1 Baselines on synthetic datasets
Figures 3.1, 7.1, 7.2a and 7.2b report results for three simple baselines (MLP,
GCN and GAT) on the synthetic graphs. We have optimized the hyperparameter
configurations for these models among the values reported in Table A.1. For all
experiments on the synthetic datasets, we randomly generate train/evaluation/test
splits with sizes 50%/20%/30%. We compute results on a single split for each
dataset and we average the results of three different graphs for each level of
homophily ratio reported in the figures.

Model #Epochs #Layers Hidden size

GCN {100} {1,2,3} {16}
GAT {100} {1,2,3} {16}
MLP {100} {2} {16,32}

Table A.1: Hyperparameters for GCN, GAT and MLP on synthetic graphs.

A.2 GCN on real-world graphs
In Sections 3.2 and 5, we report results for different variations of a GCN on the
real-world graphs. In particular, Tables 3.1 and 5.2 show the performance of a
standard GCN with 1 layer. The adjacency matrix is not normalized and we
optimize the number of training epochs within the ranges reported in Table A.2.
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Although the search space for hyperparameters is smaller than the one used by
other works [10], it is sufficient to observe relevant differences in performance among
datasets with similar homophily ratio, thus justifying the need for a new metric to
be introduced.

Dataset #Epochs

Cornell, Texas, Wisconsin {100,200,300}
Film {50,100}

Chameleon, Squirrel {500,1000,1500,2000}
Cora, Citeseer {100,200}

Table A.2: Number of epochs for GCN on real graphs.

A.3 2NCS evaluation
Section 5.3 reports several experiments showing the usefulness of 2NCS as a metric
to understand GCN performance on graphs. In Figure 5.4, we report the classifi-
cation accuracies of two variations of GCN. The simplified GCN is described in
Section 5.2.1, whereas the standard GCN is the same presented in Appendix A.2.
For both models, we perform a hyperparameter search using the values reported in
Table A.4.
Then, Figures 5.5 and 5.6 report GCN and MLP performance with respect to
node-level or class-level 2NCS values. Also in this case, the GCN is the same
described in Appendix A.2 and the hyperparameters used for both models are the
best ones from previous experiments. The plots show results for nodes in the test
set for one of the splits taken from [18]. 2NCS is computed only on the nodes of
the training set, since labels of nodes in the evaluation and test set are supposed
to be unknown during training.

A.4 GATH and GCNH results
We optimize the hyperparameters for GATH and GCNH on real-world graphs
through a grid search. In particular, we test different values for all of them and we
select the best combination according to the best performance on the validation set.
The main hyperparameters to be optimized for GATH are listed in the following.

• k: neighborhood size, i.e. message aggregation is performed on nodes up to
the k-hop neighborhood from the target node
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• Batch size: how many samples are contained in each batch. If batch size =
|V |, then the complete training set is forwarded through the model at once at
each epoch

• #Epochs: how many epochs are used for training

• Hidden size: the dimensionality of the generated node embeddings which
will then be inputed to the final linear layer for classification. Note that there
is also another hidden dimension in the attention computation of GATH. This
dimension is set to 16 and it is not optimized for reasons of time

• Dropout rate: the percentage of attention weights that are randomly set
to zero at each epoch. Setting dropout rate = 0 is equivalent to not using
dropout at all

The same hyperparamters are present also in GCNH, with the exception of k,
since GCNH does not aggregate from a larger neighborhood than the 1-hop. The
tested values of hyperparameters for GATH are reported in Table A.3 and those
for GCNH in Table A.4. We chose the numbers of epochs based on observations
related to the evolution of training and evaluation losses on different datasets.

Dataset k Batch #Epochs Hidden Dropout
size size rate

Cornell, Texas, Wisconsin {2,3,4,5} {50,|V |} {100,200,300} {16,32} {0.0,0.25,0.5}
Film {2,3,4} {300} {50} {16,32} {0.0,0.25,0.5}

Chameleon, Squirrel {2,3,4} {300,|V |} {50,100} {16,32} {0.0,0.25,0.5}
Cora, Citeseer {2,3,4} {300,|V |} {100} {16,32} {0.0,0.25,0.5}

Table A.3: Hyperparameters for GATH on real graphs.

Dataset Batch #Epochs Hidden Dropout
size size rate

Cornell, Texas, Wisconsin {50,|V |} {100,200,300} {16,32} {0.0,0.25,0.5}
Film {300} {50} {16,32} {0.0,0.25,0.5}

Chameleon, Squirrel {300,|V |} {500,1000} {16,32} {0.0,0.25,0.5}
Cora, Citeseer {300,|V |} {100} {16,32} {0.0,0.25,0.5}

Table A.4: Hyperparameters for GCNH on real graphs.

For the experiments on synthetic graphs, we apply the same grid search used
for Cora and the best performing hyperparameter configuration is selected for each
single graph.
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A.5 Ablation studies
We obtain the results for the different variations of GATH on the synthetic datasets
(Figures 7.2a, 7.3 and 7.4) and the values of the learned parameters on real-world
graphs (Figures 7.9a, 7.10 and 7.11) using the best hyperparameter configuration
obtained from the grid search described in Appendix A.4.
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