
POLITECNICO DI TORINO
Master of Science in Electronic Engineering

Master Thesis Dissertation

High-performance Digital Control of
Power Converters

Supervisors
Prof. Salvatore Musumeci
Dr. Fabio Mandrile

Candidate
Samuele Fabbri

October 2022

Summary

During the implementation of a power converter digital control system, one of the
usual main drawbacks is the required programming time which introduces a delay between
the system design and simulation and the experimental phase. An effective way to
minimize it is achieved by specific tools which automatically generate the needed code
for the target platform, hence, for instance, either C code for a microcontroller or HDL
code for an FPGA. In this thesis, the Simulink HDL Coder tool effectiveness is validated
for the automatic generation of DC/DC and DC/AC power converters digital control
systems VHDL codes. In particular, two different high-performance digital average
current control systems are designed and simulated on Simulink. Then HDL Coder is
used to automatically generate the corresponding VHDL code. At last, the control systems
are implemented on an FPGA and their correct operation is experimentally tested on the
corresponding power converter. After addressing the main digital average current control
issues, a PWM modulator and a current controller are implemented for a four-quadrant
DC/DC H-bridge converter. Then, the same system is extended for the current control of a
DC/AC three-phase inverter, designing a carrier-based space vector PWM modulator. In
both modulation cases, a multisampling double-update strategy is exploited. Moreover,
a dSPACE rapid prototyping system is used to provide a visual user interface, where the
main reference and control signals can be visualized. As a final application, the digital
current control system is adapted to the torque control of a permanent magnet assisted
synchronous reluctance motor.

ii

Acknowledgements

This thesis represents the conclusion of my master’s degree journey. I would like
to thank my supervisors, Prof. Salvatore Musumeci and Dr. Fabio Mandrile, who have
guided and helped me in this work. I would also like to thank all the people at the PEIC
laboratory of the Politecnico di Torino who I had the pleasure to meet. A heartfelt thanks
to my family that has always supported me in every possible manner during this journey.
Finally, I would like to thank all my friends who have made this experience unforgettable.

iv

To my family.

Contents

List of Tables viii

List of Figures ix

1 Introduction to Digital Control - Average Current Mode Control 1
1.1 Case Study: Two-Quadrant DC/DC Converter for Electric Motor Driving 2

1.1.1 Converter Working Principle 4
1.1.2 Converter and Load DC Equivalent Model 4
1.1.3 Load Output Filtering Operation 6
1.1.4 Converter and Load Equivalent Discrete Model 7

1.2 Digital Current Control Theory . 9
1.2.1 Analog PWM . 9
1.2.2 Uniformly Sampled Digital PWM 11
1.2.3 Sampling and Updating Strategies 12

1.3 Average Current Controller - PI Regulator and Control System 19
1.3.1 PI Regulator and Control Scheme Design 20
1.3.2 Average Current Controller Discretization 25
1.3.3 Integral Anti-Windup Implementation 27
1.3.4 Dead Time Discussion and Implementation 29

2 Current Controller Implementation on Simulink 33
2.1 PWM Modulator Block Scheme . 35

2.1.1 Triangular Generator Block Scheme 36
2.1.2 Comparator Block Scheme . 39

2.2 Moving Average Block Scheme . 41
2.3 Current Controller Block Scheme . 43
2.4 Average Current Control System Block Scheme 46
2.5 Discrete Time Converter Equivalent Model 47
2.6 Automatically Generated Code Modifications Summary 51

3 Control System Implementation on Vivado and Simulations 53
3.1 Control System Experimental Validation Setup 54

vi

3.2 ADC Implementation and Test . 57
3.3 DAC Implementation and Test . 62
3.4 PWM Modulator Test . 68
3.5 Modules Protection Block Operation and Test 71
3.6 Averager Test . 72
3.7 System Test with Discrete Time Plant Equivalent Model 75
3.8 Control System Experimental Validation 75

4 Three-Phase Inverter Average Current Control Implementation 79
4.1 Three-phase Inverter Operation . 80
4.2 Clarke’s and Park’s Transforms . 83
4.3 Sine and Cosine Functions Generator Implementation and Test 84
4.4 Clarke’s and Park’s Transforms Implementation and Test 86
4.5 Implemented PWM Modulation Technique 92
4.6 Three-Phase Inverter Current Control System Implementation and Test . 93

5 Implementation of a User Interface on a dSPACE Rapid Prototyping System101
5.1 SPI Protocol Design . 101
5.2 FPGA Implementation and Experimental Validation 104

6 Electric Motor Torque Control Implementation 107
6.1 System Description and Encoder Implementation 107
6.2 Deployed Setup and Experimental Validation 110

7 Conclusions 115

Bibliography 117

vii

List of Tables

1.1 Digital PWM modulator comparison laws depending on run-up and run-
down phases of the triangular carrier. 14

2.1 SR Flip-Flop truth table. 36
3.1 Logic Analyzer channels and PWM modulator outputs correspondence. 69
3.2 Logic Analyzer channels and protection block outputs correspondence. . 73
3.3 Reference and measured load current average values comparison. 77

viii

List of Figures

1.1 Two-quadrant DC/DC converter topology with LRE load. 2
1.2 High-side and low-side IGBTs switching functions example. 3
1.3 Two-quadrant DC/DC converter with LRE load large-signal equivalent

model. 4
1.4 Two-quadrant DC/DC converter and LRE load DC equivalent model. . . 5
1.5 Two-quadrant DC/DC converter and LRE load DC equivalent model with

moving averages. 5
1.6 Two-quadrant DC/DC converter Laplace-domain equivalent model. . . . 6
1.7 Two-quadrant DC/DC converter Laplace-domain equivalent model with

moving averages. 7
1.8 Two-quadrant DC/DC converter with LRE load discrete time block scheme. 9
1.9 Analog PWM modulator: example waveforms and block scheme imple-

mentation. 10
1.10 Digital PWM modulator: example waveforms and block scheme imple-

mentation. 11
1.11 Example of controlled current and reconstructed average value with syn-

chronized sampling and switching processes. 13
1.12 Single-sampling single-update mode synchronized with the maximum

(a) and minimum (b) of the triangular carrier example. 16
1.13 Double-sampling double-update mode example. 16
1.14 Multisampling multiupdate mode example. 17
1.15 Multisampling double-update mode example. 18
1.16 Overall closed-loop system block scheme. 19
1.17 Closed-loop system block scheme. 21
1.18 Closed-loop system block scheme with feedforward insertion (a) and new

equivalent block scheme when applying this technique (b). 22
1.19 Closed-loop system block scheme highlighting the control system com-

ponents. 22
1.20 Equivalent load and PI regulator transfer functions (a) and open-loop gain

(b) Bode diagrams with pole-zero cancellation method. 24
1.21 Equivalent load and PI regulator transfer functions (a) and open-loop gain

(b) Bode diagrams with damping ratio based method. 26

ix

1.22 Discrete average current controller implementation. 27
1.23 Detail of the current controller with anti-windup implementation. 29
1.24 Digital PWM modulator with (on the right) and without (on the left) dead

time insertion. 30
2.1 Design process flowchart. 34
2.2 PWM modulator subsystem organization. 35
2.3 Triangular generator block scheme for the DSDU strategy. 36
2.4 Triangular generator block scheme for the MSDU strategy. 37
2.5 Triangular generator sampling trigger signal generator block scheme. . . 38
2.6 Triangular generator controller execution signal generator block scheme. 38
2.7 Triangular generator commands generation example. 39
2.8 Comparator block scheme. 40
2.9 Short circuit at control voltage update instant due to overwriting operation

example. 41
2.10 Comparator short circuit detection and avoidance subsystem block scheme. 41
2.11 Comparator short circuit detection subsystem block scheme. 42
2.12 Comparator dead time generation subsystem block scheme. 42
2.13 Averager block scheme. 43
2.14 H-bridge converter topology with LR load. 43
2.15 H-bridge converter and load DC equivalent model. 44
2.16 H-bridge converter and load rearranged DC equivalent model. 44
2.17 Current controller block scheme. 45
2.18 Current controller integral saturation and anti-windup subsystem block

scheme. 46
2.19 Control system block scheme. 47
2.20 Plant block scheme. 47
2.21 Plant dead time effect block scheme. 48
2.22 System with plant realized in PLECS block scheme. 49
2.23 H-bridge converter topology realized in PLECS. 49
2.24 System with discrete time plant equivalent model block scheme. 49
2.25 Current scope simulation results: current in the two plants and reference

value (a) and difference between the current waveforms (b). 50
3.1 PCB organization. 54
3.2 Setup for the control system components experimental validation. . . . 55
3.3 Guasch IGBTs power stack schematic from [12]. 56
3.4 System components implemented on the FPGA. 57
3.5 AD7276 SPI protocol timing diagram from [13]. 58
3.6 AD7276 manager FSM state updates (a) and outputs (b). 59
3.7 AD7276 manager entity organization. 60
3.8 AD7276 manager block design in Vivado. 61
3.9 AD7276 manager operation waveforms. 61
3.10 DAC124S085 SPI protocol timing diagram from [14]. 63

x

3.11 DAC124S085 register specifications from [14]. 63
3.12 DAC124S085 manager FSM state updates (a) and outputs (b). 64
3.13 DAC124S085 manager entity organization. 65
3.14 DAC124S085 manager block design in Vivado. 66
3.15 DAC124S085 oscilloscope waveforms. 67
3.16 ADC7276 and DAC124S085 managers block design in Vivado. 67
3.17 ADC7276 and DAC124S085 cascade oscilloscope waveform. 68
3.18 PWM modulator block design in Vivado. 68
3.19 PWM modulator example waveforms obtained with the Logic Analyzer. 69
3.20 PWM modulator overwriting and short circuit avoidance operations when

the control voltage is smaller than or equal to DT/2 example (a) and zoom
on the dead time insertion in correspondence of the control voltage change
(b). 70

3.21 Protection block design in Vivado. 73
3.22 Protection block Logic Analyzer waveforms. 73
3.23 Averager block design implementation in Vivado. 74
3.24 Averager block operation example. 74
3.25 Control system and discrete time plant equivalent model simulation. . . 75
3.26 Control system experimental validation setup. 76
3.27 Control system block design implementation in Vivado. 76
3.28 H-bridge converter load current waveforms. 77
4.1 Three-phase inverter topology. 79
4.2 Three-phase inverter topology with virtual ground. 80
4.3 Three-phase inverter phase equivalent model considering moving averages. 82
4.4 Sine and cosine generator block scheme. 85
4.5 Sine and cosine generator block scheme top-level view. 86
4.6 Sine and cosine generator block design in Vivado. 86
4.7 Sine and cosine generator oscilloscope waveforms with reference fre-

quency set to (a) 50 Hz, (b) 60 Hz and 100 Hz (c). 87
4.8 Inverse Clarke’s and Park’s transforms block scheme in Simulink. . . . 88
4.9 Inverse Clarke’s transform block scheme in Simulink. 88
4.10 Inverse Park’s transform block scheme in Simulink. 88
4.11 Inverse transforms top-level view block scheme in Simulink. 89
4.12 Inverse Clarke’s and Park’s transforms block design in Vivado. 89
4.13 Inverse Clarke’s and Park’s transforms oscilloscope waveforms. 90
4.14 Inverse and direct Clarke’s and Park’s transforms block scheme in Simulink. 90
4.15 Direct Clarke’s transform block scheme in Simulink. 90
4.16 Direct Park’s transform block scheme in Simulink. 91
4.17 Inverse and direct Clarke’s and Park’s transforms top-level view block

scheme in Simulink. 91
4.18 Inverse and direct Clarke’s and Park’s transforms block design in Vivado. 92
4.19 Inverse and direct Clarke’s and Park’s transforms ILA values. 92

xi

4.20 Three-phase inverter current controller block scheme. 93
4.21 Three-phase inverter control system block scheme. 94
4.22 Three-phase inverter averager block scheme. 94
4.23 Three-phase inverter PWM modulator block scheme. 95
4.24 Three-phase inverter current controller block scheme in Simulink. . . . 95
4.25 Zero-sequence injection block scheme. 96
4.26 Control voltages generation block scheme. 96
4.27 Three-phase inverter control system PI regulator block scheme. 97
4.28 Three-phase inverter control system block design in Vivado. 97
4.29 Three-phase inverter experimental setup. 98
4.30 Three-phase inverter oscilloscope waveforms with a 50 Hz fundamental

frequency, 0 A reference q-axis current and (a) 5 A, (b) 10 A and (c) 15 A
reference d-axis current values. 99

5.1 NTC temperature sensor ADC conditioning circuit. 103
5.2 Three-phase inverter control system with dSPACE system deployment

block design in Vivado. 104
5.3 Three-phase inverter control system with dSPACE system deployment

experimental setup. 105
5.4 Commands and reference signals dSPACE system visual interface. . . . 106
5.5 Plots dSPACE system visual interface. 106
6.1 A and B signals steady-state operation example. 109
6.2 Torque control system block scheme. 110
6.3 Torque control system block design in Vivado. 110
6.4 Motor Under Test and Driving Machine block scheme. 111
6.5 Motor Under Test and Driving Machine setup. 112
6.6 Torque regulation oscilloscope waveforms. 112
6.7 Torque regulation after a reference step plot. 113
6.8 Torque control system with external speed loop block scheme. 113
6.9 Speed regulation plot. 114
6.10 Speed regulation after a load torque variation plot. 114

xii

Chapter 1

Introduction to Digital Control -
Average Current Mode Control

In each power electronics system, independently of the kind of power converter which
is considered, the overall performance is affected by both the converter and the control
system designs. The choice of the control strategy and its actual implementation are
therefore fundamental in these systems. In particular, a good control system should
mainly be able to provide a [1]:

• stable closed-loop system, to avoid diverging responses;

• very low, ideally null, error in steady state, in order to be able to perfectly track a
reference;

• high dynamic response, to fastly modify the variable under control after reference
variations.

From a first implementation perspective, the controller can be both analog or digital: even
though the former one is the best for what concerns the system speed, the latter introduces
a series of advantages that are hereby reported [2]:

• possibility to implement sophisticated control laws;

• correction of nonlinearities, parameter variations and construction tolerances by
means of auto-tuning strategies;

• reprogrammability of the controller without the need of hardware modifications;

• absence of thermal drifts and ageing effects.

It is therefore evident how digital control offers important functionalities, when com-
pared to an analog one, which can be essential in specific power electronic applications.
For this reason, in the following sections a digital control strategy and its design are pre-
sented: first, a test case, namely a two-quadrant DC/DC converter, is analyzed. Secondly,

1

Introduction to Digital Control - Average Current Mode Control

a review of digital current control is reported, in order to understand its main peculiarities
and issues. Finally, the proposed control system, which includes a current controller
based on a PI regulator and a pulse width modulation (PWM) technique, is presented.

1.1 Case Study: Two-Quadrant DC/DC Converter for
Electric Motor Driving

In order to better understand the main features and characteristics of digital current
control, it is useful to focus on a specific converter topology: for this reason, the two-
quadrant DC/DC converter depicted in Figure 1.1 is considered and will be analyzed in
this section. It is anyway important to point out that the same concepts can be applied
and adapted also to other power converters. The system is composed of the following
elements:

• input DC voltage source Vin;

• two IGBTs, with free-wheeling diodes, implementing the switching leg;

• inductance L, with its ESR R;

• output DC voltage source E.

For example, taking into account the particular kind of LRE load, this can be the case
of a converter connected to an electric motor [3][4], where the output voltage source
represents the back-emf of the motor. Finally the following conditions, independently of
the actual inductor current value and direction, are always guaranteed:{︄

𝑉𝑖𝑛 > 𝐸 + 𝑅 |𝑖(𝑡) |
𝐸 > 𝑅 |𝑖(𝑡) |

(1.1)

Vin

qHS(t)

qLS(t)

L R

E

i(t)

Figure 1.1: Two-quadrant DC/DC converter topology with LRE load.

2

1.1 – Case Study: Two-Quadrant DC/DC Converter for Electric Motor Driving

Assuming the two IGBTs as ideal switches, their switching operation can be summa-
rized by their switching functions [4], which are defined in (1.2) and (1.3).

𝑞𝐻𝑆 (𝑡) =
{︄

1, when the high-side IGBT is on
0, when the high-side IGBT is off

(1.2)

𝑞𝐿𝑆 (𝑡) =
{︄

1, when the low-side IGBT is on
0, when the low-side IGBT is off

(1.3)

It is important to highlight that these switching functions are complementary, as depicted
in Figure 1.2 in order to avoid the simultaneous activation of the transistors which would
lead to the short circuit of the input voltage source.

t

1

TON TS

qHS(t)

t

1

qLS(t)

Figure 1.2: High-side and low-side IGBTs switching functions example.

Considering a switching period, the duty cycle of the converter can be defined as the
ratio between the high-side IGBT on-time and the switching period, as reported in (1.4).

𝑑 =
𝑇𝑂𝑁

𝑇𝑆
(1.4)

Generally, the on-time of each transistor is not fixed but can be for example adjusted by
the action of a controller. This means that the TON value, and consequently the duty
cycle, is not constant. Due to this mechanism, the duty cycle of the converter becomes
a function of time and is conveniently defined as the moving average of the high-side
transistor switching function considering a switching period, as it is summarized in (1.5)
[2].

𝑑 (𝑡) = 1
𝑇𝑆

∫ 𝑡+𝑇𝑆

𝑡

𝑞𝐻𝑆 (𝜏)d𝜏 (1.5)

3

Introduction to Digital Control - Average Current Mode Control

1.1.1 Converter Working Principle
The converter operation can be explained referring to [2]. In an ideal case, the two

IGBTs act as ideal switches. If this assumption is valid, the equivalent model depicted
in Figure 1.3 can be derived, noticing that when the high-side IGBT is turned on the
voltage applied to the inductance, denoted in the figure as v*(t), is Vin, whereas when the
low-side IGBT is active the applied voltage is null. Hence, the behaviour of v*(t) is that
of a square wave and can be summarized in (1.6) considering the switching function of
the high-side trasistor reported in (1.2).

𝑣∗(𝑡) = 𝑞𝐻𝑆 (𝑡) · 𝑉𝑖𝑛 (1.6)

L R

Ev*(t)

i(t)

vR(t)vL(t)

Figure 1.3: Two-quadrant DC/DC converter with LRE load large-signal equivalent model.

The total voltage vL(t) which is applied to the inductor is derived in (1.7):

𝑣𝐿 (𝑡) = 𝑣∗(𝑡) − 𝑣𝑅 (𝑡) − 𝐸 = 𝑣∗(𝑡) − 𝑅𝑖(𝑡) − 𝐸 (1.7)

As can be seen, it depends both on the current i(t) flowing in the inductance and on the
voltage v*(t) applied to the load. Recalling also (1.1), the following two cases can be
obtained depending on the possible IGBTs states.

1. 𝑣𝐿 (𝑡) = 𝑉𝑖𝑛 − 𝑅𝑖(𝑡) − 𝐸 > 0, which gives an increase of the inductor current, when
the high-side IGBT is active and the low-side IGBT is turned off;

2. 𝑣𝐿 (𝑡) = −𝑅𝑖(𝑡) − 𝐸 < 0, which gives a decrease of the inductor current, when the
high-side IGBT is turned off and the low-side IGBT is active.

1.1.2 Converter and Load DC Equivalent Model
Considering the average values of the system quantities, the DC equivalent circuit

represented in Figure 1.4 can be derived. In order to do so, the average value of v*(t) is
computed in (1.8) considering the duty cycle to be constant and exploiting (1.4). Then,
by looking at the equivalent circuit, the duty cycle value in steady-state condition can be

4

1.1 – Case Study: Two-Quadrant DC/DC Converter for Electric Motor Driving

easily derived as shown in (1.9), which highlights the dependence between the average
current flowing in the load and the corresponding duty cycle value.

𝑉∗ =
1
𝑇𝑆

∫ 𝑇𝑆

0
𝑞𝐻𝑆 (𝑡)𝑉𝑖𝑛 dt =

1
𝑇𝑆
𝑉𝑖𝑛

∫ 𝑇𝑂𝑁

0
dt =

𝑇𝑂𝑁

𝑇𝑆
𝑉𝑖𝑛 = 𝑑𝑉𝑖𝑛 (1.8)

R

EdVin

I

VR

Figure 1.4: Two-quadrant DC/DC converter and LRE load DC equivalent model.

𝑑𝑉𝑖𝑛 = 𝑉𝑅 + 𝐸 ↔ 𝑑 =
𝑉𝑅 + 𝐸
𝑉𝑖𝑛

=
𝑅𝐼 + 𝐸
𝑉𝑖𝑛

(1.9)

As aforementioned, the duty cycle is in general a function of time. For instance,
it can be modified as the result of a controller operation or if a different load average
current is needed. For this reason, the DC equivalent model represented in Figure 1.4 is
modified accordingly considering the moving averages in Figure 1.5, which underlines
the dependence over time of both duty cycle and load average current. Exploiting (1.5),
the moving average of v*(t) is computed in (1.10) which shows that a variation of the
converter duty cycle directly implies a variation of the average voltage which is applied
to the load.

𝑉∗(𝑡) = 1
𝑇𝑆

∫ 𝑡+𝑇𝑆

𝑡

𝑞𝐻𝑆 (𝜏)𝑉𝑖𝑛d𝜏 =
1
𝑇𝑆
𝑉𝑖𝑛

∫ 𝑡+𝑇𝑆

𝑡

𝑞𝐻𝑆 (𝜏)d𝜏 = 𝑑 (𝑡)𝑉𝑖𝑛 (1.10)

R

Ed(t)Vin

I(t)

VR

Figure 1.5: Two-quadrant DC/DC converter and LRE load DC equivalent model with
moving averages.

5

Introduction to Digital Control - Average Current Mode Control

1.1.3 Load Output Filtering Operation
An important consideration regards the filtering operation provided by the LR series

at the output, as explained in [2]. Starting from Figure 1.3 and applying the Laplace
transform, the equivalent model depicted in Figure 1.6 is obtained. This can be then
exploited to easily compute the transfer function from the load input to the load current,
as reported in (1.11).

𝑖(𝑠)
𝑣∗(𝑠)

|︁|︁|︁|︁
𝐸 (𝑠)=0

=
1

𝑠𝐿 + 𝑅 (1.11)

L R

E(s)v*(s)

i(s)

vL(s) vR(s)

Figure 1.6: Two-quadrant DC/DC converter Laplace-domain equivalent model.

As can be seen, (1.11) presents a low-pass filtering behavior, leading to the fact that
the load current average in the switching period is capable of tracking the load voltage
average value variations. Anyway, since v*(t) is a square wave and the low-pass filtering
operation is not ideal, the instantaneous output current also shows a ripple due to the
residual presence of the switching frequency component, along with its harmonics, in the
spectrum.

In order to derive the transfer function from duty cycle to load current, first the moving
averages need to be considered for the variables in the model depicted in Figure 1.6. Then,
the Laplace transform is applied to (1.10), giving (1.12).

𝑉∗(𝑠) = 𝑑 (𝑠)𝑉𝑖𝑛 (1.12)

The equivalent model depicted in Figure 1.7 can be then immediately obtained. This is
useful to easily compute the wanted transfer function in (1.13).

𝐼 (𝑠)
𝑑 (𝑠)

|︁|︁|︁|︁
𝐸 (𝑠)=0

=
𝑉𝑖𝑛

𝑠𝐿 + 𝑅 (1.13)

As shown, (1.13) presents again a low-pass filtering behavior. This proves that, in
particular, the load current moving average tracks the duty cycle variations.

6

1.1 – Case Study: Two-Quadrant DC/DC Converter for Electric Motor Driving

L R

E(s)d(s)Vin

I(s)

VL(s) VR(s)

Figure 1.7: Two-quadrant DC/DC converter Laplace-domain equivalent model with
moving averages.

1.1.4 Converter and Load Equivalent Discrete Model
For the design of the current controller and for simulation reasons that will be more

clear in the following chapters, it is useful to derive the converter and load equivalent
discrete model. Recalling (1.6) and (1.7), (1.14) is derived.⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑣𝐿 (𝑡) = 𝐿 d𝑖(𝑡)
d𝑡

𝑣∗(𝑡) = 𝑞𝐻𝑆 (𝑡)𝑉𝑖𝑛
𝑣𝐿 (𝑡) = 𝑣∗(𝑡) − 𝑅𝑖(𝑡) − 𝐸

(1.14)

Replacing the first and second equation in the third one and rearranging its terms, the
expression reported in (1.15) is derived.

d𝑖(𝑡)
d𝑡

=
−𝑅
𝐿
𝑖(𝑡) + 𝑣

∗(𝑡) − 𝐸
𝐿

=
−𝑅
𝐿
𝑖(𝑡) + 𝑞𝐻𝑆 (𝑡)𝑉𝑖𝑛 − 𝐸

𝐿
(1.15)

The equation notation can be simplified by defining Δ𝑣(𝑡) = 𝑞𝐻𝑆 (𝑡)𝑉𝑖𝑛 − 𝐸 , obtaining
(1.16).

d𝑖(𝑡)
d𝑡

=
−𝑅
𝐿
𝑖(𝑡) + Δ𝑣(𝑡)

𝐿
(1.16)

Considering the equivalent model depicted in Figure 1.3, the two-quadrant DC/DC con-
verter and load cascade can be described by the continuous time-invariant state-space
equations reported in (1.17) [2][3][5][6].{︄

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)

(1.17)

All the state-space vectors and matrices, which are reported in (1.18), can be directly
found by comparing (1.16) with the equations reported in (1.17). Notice that, for this

7

Introduction to Digital Control - Average Current Mode Control

particular case, the state space vectors and matrices are reduced to one dimension.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥(𝑡) = [𝑖(𝑡)]
𝑦(𝑡) = [𝑖(𝑡)]
𝑢(𝑡) = [Δ𝑣(𝑡)]
𝐴 = [−𝑅

𝐿
]

𝐵 = [1
𝐿
]

𝐶 = [1]
𝐷 = [0]

(1.18)

The state-space model reported in (1.17) can be discretized assuming the input 𝑢(𝑡) to be
constant for a sampling interval Ts, which is sufficiently small, obtaining (1.19)[2].{︄

𝑥𝑘+1 = 𝐴𝑑𝑥𝑘 + 𝐵𝑑𝑢𝑘
𝑦𝑘 = 𝐶𝑑𝑥𝑘 + 𝐷𝑑𝑢𝑘

(1.19)

where, in the considered case:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝐴𝑑 = 𝑒

𝐴𝑇𝑠

𝐵𝑑 =
∫ 𝑇𝑠
0 𝑒𝐴𝑡d𝑡 = 𝐴−1(𝐴𝑑 − 𝐼)𝐵

𝐶𝑑 = 𝐶

𝐷𝑑 = 𝐷

(1.20)

Therefore, for this particular system in which the continuous state space matrices and
vectors are respectively simple constants and variables, (1.21) can be immediately derived,
leading to the discrete equivalent model block scheme represented in Figure 1.8 exploiting
also (1.19). ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐴𝑑 = 𝑒
𝐴𝑇𝑠 = 𝑒

−𝑅
𝐿
𝑇𝑠

𝐵𝑑 = 𝐴
−1(𝐴𝑑 − 𝐼)𝐵 = −𝐿

𝑅
(𝑒 −𝑅

𝐿
𝑇𝑠 − 1) 1

𝐿
= 1−𝑒

−𝑅
𝐿
𝑇𝑠

𝑅

𝐶𝑑 = 𝐶 = 1
𝐷𝑑 = 𝐷 = 0

(1.21)

8

1.2 – Digital Current Control Theory

Vin Bd z-1

Ad

qHSk

Ek

v*k Δvk ykxkxk+1

Figure 1.8: Two-quadrant DC/DC converter with LRE load discrete time block scheme.

1.2 Digital Current Control Theory
In order to understand the main issues and features of digital current control, in this

section a review of the analog PWM modulator is provided. After that, the main charac-
teristics of digital current control are presented, starting from the digital implementation
of the PWM modulator and a comparison with the analog one. The analysis hereby
reported is mainly inspired by [2]. To explain these concepts, the two-quadrant DC/DC
converter with LRE load depicted in Figure 1.1 is assumed as a title of example. Notice
that anyway all the concepts can be adapted also to other power converters. In the follow-
ing discussions, the variable to be controlled is always the inductor current highlighted
in the figure as i(t).

1.2.1 Analog PWM
As explained in [2], among the different modulation techniques that can be exploited

for power converters, pulse width modulation (PWM) is certainly the most widely used.
Its main advantages are the ease of implementation and the constant converter frequency
operation, which allows easier output low-pass filters design with respect to other tech-
niques, such as pulse frequency modulation for instance. The outputs of the PWM
modulator are the switching functions of the converter transistors. In the analog case, it
is basically composed of:

• a comparator, which compares a carrier signal, that can be either a trailing-edge or
leading-edge sawtooth waveform, or a triangular waveform, with a control voltage
signal given by the controller;

• a logic inverter, whose input is the output of the comparator.

Notice that, in a real case, gate drivers are needed to provide the correct voltage level to
the transistors of the converter in order to properly turn them on.

9

Introduction to Digital Control - Average Current Mode Control

In Figure 1.9, an example of analog PWM modulator block scheme and possible
waveforms exploiting a triangular waveform carrier is depicted. In the figure, the output
of the comparator provides the switching function of the high-side switch qHS(t), whereas
through the inverter the switching function for the low-side transistor qLS(t) is generated.
Furthermore, the presence of gate drivers, necessary in real applications, is highlighted.
Notice that the variation of the control voltage vcontr(t) is exaggerated in the figure to em-
phasize its effect on the pulses width: in practical cases, the bandwidth of vcontr(t) is well
below the switching frequency 1/TS, meaning that it slowly changes inside a switching
period.

TS

vTR(t), vcontr(t)

qLS(t)

qHS(t)

vcontr(t)

t

t

t

qLS(t)vTR(t)
vcontr(t)

Comparator

qHS(t)

1

1

Gate
Drivers

VTR

Figure 1.9: Analog PWM modulator: example waveforms and block scheme implemen-
tation.

In the case of an analog current control implementation, vcontr(t) is properly generated
by a current controller in order to make the controlled variable to follow a certain current
reference signal. Since the control voltage is allowed to be modified in every time instant
of the PWM modulator operation, when its amplitude changes the comparator is able to
modify its output accordingly inside the same switching period TS where the variation
occurred. This means that the delay introduced by the PWM modulator between control
voltage variations and converter duty cycle adjustments is the minimum one, ideally null,
and can be therefore neglected.

A final important consideration regards the relationship between the duty cycle of the
high-side switch and the control voltage signal. By looking at one modulation period,
(1.22) can be found considering a constant control voltage signal Vcontr, giving a constant
duty cycle.

𝑑 =
𝑉𝑐𝑜𝑛𝑡𝑟

𝑉𝑇𝑅
(1.22)

10

1.2 – Digital Current Control Theory

The result is still correct for a varying vcontr(t) if its bandwidth is much lower than the
switching frequency, which is usually the case, as aforementioned. This means that, under
this consideration, the duty cycle will follow the control voltage signal evolution, carrying
its informative content. This is a fundamental aspect, since as it was demonstrated in the
previous section, the load current is able to track the duty cycle variations, which in turn
follows the trajectory of the control voltage. As a result, by properly generating vcontr(t), it
is possible to correctly control the load current. Furthermore, another interesting feature
appears when the amplitude of the triangular carrier waveform VTR is unitary: in fact,
in this case, the control voltage signal provided by the current controller is identical, in
terms of value, to the wanted duty cycle.

1.2.2 Uniformly Sampled Digital PWM
As discussed in [2], the easiest way to implement a digital PWM modulator is to start

from its analog implementation and replace each block with its corresponding digital
one. For instance, referring to the example reported in Figure 1.9, a binary counter is
exploited to generate the triangular waveform and relational operators can be deployed
to implement the functionality of comparator and logic inverter. This can be easily done
with a microcontroller, Digital Signal Processor (DSP) or Field Programmable Gate Ar-
ray (FPGA). A block scheme deploying these modifications and some possible operation
waveforms for the digital PWM modulator case are shown in Figure 1.10.

Binary
counter Relational

Operators

N
TS

qLS(t)

qHS(t)
t

t

t
qLS(t)

qHS(t)

Gate
Drivers

vcontr(t)2N-1

0

clk

vcontr(t)

1

1

N

Figure 1.10: Digital PWM modulator: example waveforms and block scheme implemen-
tation.

As can be seen, the operation is almost the same as that of the analog case. Anyway,
some differences need to be commented: first of all, being in digital domain, the triangu-
lar carrier and the control voltage can only assume discrete values, which basically bring
a precision loss in the duty cycle value which is applied to the converter depending on
the number of bits N on which they are represented. Furthermore, since the switching

11

Introduction to Digital Control - Average Current Mode Control

frequency of the devices inside the converter depends on that of the triangular carrier,
the number of bits N and the clock frequency have a strong impact on the performance:
if the clock frequency is fixed, in order to have a certain switching frequency a specific
number of bits for the triangular waveform is needed; this means that the number of bits
for representing the output values could be limited, leading to a poor resolution. This
last issue can be solved if for example a Phase-Locked Loop (PLL) is available, since it
allows to increase the clock frequency and, consequently, to use a higher number of bits
for the triangular carrier and control voltage representation.

Second of all, for reasons that will be motivated later, in the average current digital
control case the update of the control voltage is allowed only in specific instants. These
coincide, in the so called double-update mode, with the moments in which the maximum
or minimum value of the triangular carrier is reached, as shown in Figure 1.10. Anyway,
independently of the strategy which is exploited, the control voltage amplitude is not
continuously updated.

Finally, a last important issue regards the delay: if infinite resolution is assumed for
both the triangular carrier and the control voltage, the operation of the digital PWM
resembles that of an analog one where the control voltage is kept constant until the
following update instant. Notice that this problem cannot be neglected: in the analog
case, the control voltage is allowed to vary in every time instant inside the switching period,
hence with no time delay; on the other hand in the digital PWM case, as aforementioned,
control voltage changes are permitted only at fixed instants inside the switching period,
depending on the selected updating mode. This means that the control voltage variations
due to system disturbances or due to a change in the reference signal is effectively applied
with a certain delay, denoted as PWM modulator delay, which depends on the updating
strategy. This is crucial since this implies an increase in the digital system response delay,
leading to a lower phase margin and then to a lower control system bandwidth.

1.2.3 Sampling and Updating Strategies
When deploying a digital current controller, one of its fundamental aspects to be

designed is a proper data acquisition path, which is basically composed of a current sen-
sor, a signal conditioning circuit and an ADC. In particular, a uniformly sampled signal
can be exactly reconstructed if the Shannon’s sampling theorem is not violated, hence
when the signal bandwidth is at most equal to half the sampling frequency of the ADC.
Considering that the inductor current in the converter is affected by the high-frequency
ripple, the sampling frequency should be sufficiently higher than the switching frequency
in order to be able to correctly reconstruct the signal. In general, as will be explained in
the following, the whole control system delay can be reduced by increasing the sampling
frequency, leading therefore to a higher bandwidth.

12

1.2 – Digital Current Control Theory

As reported in [2][7], many sampling and updating strategies are possible. A con-
ventional solution is to implement a single-sampling single-update (SSSU) or a double-
sampling double-update (DSDU) mode, in which the sampling frequency is set equal to
either the switching frequency or twice its value respectively. Notice that this always
leads to a violation of the Shannon’s theorem as explained above. However, this is not a
drawback by means of synchronization: in fact, referring to the system in Figure 1.1, the
average value of the inductor current can be automatically reconstructed, simplifying the
overall control system design since low-pass filters are not needed to remove the ripple, if
a precise sampling instant is chosen: in a steady-state situation, the current ripple is such
that, if a switching period is considered, the initial and final value of the current are equal.
This means that in the middle of the time interval where the inductor current slope is
positive or negative, the value of the inductor current is exactly its average value. Notice
that, in the considered type of converter, this is equivalent to say that the sampling instants
should be in the middle of the time intervals in which the high-side or low-side IGBTs
are respectively active. As shown in Figure 1.11, the synchronization condition in the
steady-state situation corresponds to sampling the current when the triangular waveform
reaches either its maximum or minimum value, in single-sampling mode, or both of them,
in double-sampling mode.

TS t

t

vcontr(t)

2N-1

0

qHS(t)

t

I(t)

t

Irec(t)

Figure 1.11: Example of controlled current and reconstructed average value with syn-
chronized sampling and switching processes.

13

Introduction to Digital Control - Average Current Mode Control

An important point which is stressed in [8] for what concerns the PWM modulator
is that the comparison laws between the digital control voltage representation and the
triangular carrier depend on the run-up and run-down phases of the latter one, in order to
be able to provide symmetrical switching functions with respect to the sampling instant.
This is a crucial aspect that is needed to guarantee that the sample exactly corresponds
to the average inductor current value. To highlight this consideration, referring to the
examples depicted in Figure 1.10 and Figure 1.11, the comparison laws which are needed
to generate the switching functions qHS(t) and qLS(t) are summarized in Table 1.1, con-
sidering the control voltage as the first operand and the triangular carrier as the second one.

Run-up phase Run-down phase

qHS(t) > ≥
qLS(t) ≤ <

Table 1.1: Digital PWM modulator comparison laws depending on run-up and run-down
phases of the triangular carrier.

Nevertheless, aliasing effects can still be present whether the sampling instant is not
precise or the sampling frequency is not exactly equal to once or twice the switching
frequency. For this reason, an integral action is typically present in the current controller,
in order to compensate any steady-state error that can be eventually present.

As aforementioned, the purpose of the current controller is to generate a proper
control voltage vcontr(t) starting from the comparison between the controlled variable and
a reference signal. As opposed to the analog current controller, in the digital case its
operation is triggered with a frequency which is at most equal to the sampling frequency,
hence only when new sampled data is available. This is also due to the fact that, when the
sampling trigger signal is received by the ADC, a certain amount of time elapses from
the sampling event until the sampled data is available to the current controller. The ADC
delay is given by two aspects:

1. The ADC operation is not instantaneous but requires a certain amount of time to
complete the conversion;

2. Depending on the communication protocol, the sampled data is transferred to the
current controller. In case of a serial communication protocol, the transmission
time is strongly influenced by the ADC resolution, hence by the number of bits on
which the sampled quantity is represented.

In addition to the ADC delay, the execution of the current controller introduces a compu-
tational delay which is necessary to determine the correct control voltage, and duty cycle
value, corresponding to the sampled data. The presence of these two delay contributions

14

1.2 – Digital Current Control Theory

makes it impossible to sample the average inductor current and simultaneously update
the control voltage with the corresponding value.

The update of the control voltage value can be allowed right after the end of the
current controller execution; anyway, this may lead to a double-crossing of the triangular
carrier, compromising the switching functions pulses symmetry with respect to the sam-
pling instants, which is beneficial for the output spectrum, and incrementing the number
of switching events that occur in a switching period, increasing the power dissipation.
For these two reasons, it is useful to update the control voltage at the following sampling
instant. In order to do so, the sum of the ADC delay and the computational time needs to
be smaller than TS and TS/2 in the SSSU and DSDU modes respectively.

It is important to highlight that in the discussion only one ADC, for the controlled
variable, has been considered; in general, more than one sampled variable is required
for the current controller execution. Depending on the system specifications and on the
available hardware, this may become a limiting factor for the sampling and updating
strategy in certain applications.

Two summarizing examples of the SSSU mode where the sampling instant coincides
with the maximum and the minimum value of the triangular carrier are depicted in Figure
1.12a and Figure 1.12b respectively, whereas a DSDU mode scheme is reported in Figure
1.13. The dashed arrows link each sampling instant with the instant in which the control
voltage is updated with the corresponding value.

Without considering the ADC delay, the digital current controller computational time
and the PWM modulator delay can be computed for the two strategies, as shown in [2]
and [7]. In particular, they are reported in (1.23) and (1.24) for the SSSU and DSDU
modes respectively, considering a triangular carrier. As can be immediately derived, the
total control system delay is halved in the DSDU case with respect to the SSSU one,
leading to a higher control system bandwidth. The result is still valid if the ADC delay is
considered as long as the sum between the digital current controller computational time
and the ADC delay is smaller than TS, for the SSSU mode, and TS/2, for the DSDU mode.

𝑡𝑆𝑆𝑆𝑈 = 𝑡𝑐𝑜𝑚𝑝_𝑆𝑆𝑆𝑈 + 𝑡𝑃𝑊𝑀_𝑆𝑆𝑆𝑈 = 𝑇𝑆 +
𝑇𝑆

2
= 1.5𝑇𝑆 (1.23)

𝑡𝐷𝑆𝐷𝑈 = 𝑡𝑐𝑜𝑚𝑝_𝐷𝑆𝐷𝑈 + 𝑡𝑃𝑊𝑀_𝐷𝑆𝐷𝑈 =
𝑇𝑆

2
+ 𝑇𝑆

4
= 0.75𝑇𝑆 (1.24)

Another strategy which can be adopted is that of multisampling multiupdate (MSMU)
[2][7]. In this solution, the inductor current is sampled NMS times, where NMS is an
integer number higher than 2, within a switching period TS and, consequently, the control
variable is updated NMS times in the same time interval. An example is reported in Figure

15

Introduction to Digital Control - Average Current Mode Control

TS

2N-1

0
t

t

t

Sampling instant

Updating instant

vcontr(t)

(a)

TS

2N-1

0
t

t

t

Sampling instant

Updating instant

vcontr(t)

(b)

Figure 1.12: Single-sampling single-update mode synchronized with the maximum (a)
and minimum (b) of the triangular carrier example.

TS

2N-1

0
t

t

t

Sampling instant

Updating instant

vcontr(t)

Figure 1.13: Double-sampling double-update mode example.

16

1.2 – Digital Current Control Theory

1.14, in which the dashed arrows link each sampling instant with the instant in which the
control voltage is updated with the corresponding value. Notice that, in this case, the sum
between ADC delay and current controller computational time needs to be smaller than
TS/NMS.

TS

2N-1

0
t

t

t

Sampling instant

Updating instant

vcontr(t)

Figure 1.14: Multisampling multiupdate mode example.

As reported in [7], the total control system delay, considering the current controller
computational time and the PWM modulator delay and neglecting the ADC delay, can
be expressed in (1.25).

𝑡𝑀𝑆𝑀𝑈 = 𝑡𝑐𝑜𝑚𝑝_𝑀𝑆𝑀𝑈 + 𝑡𝑃𝑊𝑀_𝑀𝑆𝑀𝑈 =
𝑇𝑆

𝑁𝑀𝑆
+ 𝑇𝑆

2𝑁𝑀𝑆
=

1.5𝑇𝑆
𝑁𝑀𝑆

(1.25)

Notice that this expression summarizes also the SSSU and DSDU strategies for NMS equal
to 1 and 2 respectively. By looking at the expression, the control system delay can be re-
duced in this case with respect to the previous ones by increasing the multisampling factor
NMS and, consequently, the sampling and updating frequency. This conclusion can still be
drawn if the ADC delay is considered, as long as the sum between ADC delay and current
controller computational time is smaller than TS/NMS. Ideally, the delay can also be null:
in fact, as NMS approaches infinity, the behaviour of the PWM modulator becomes that of
the analog case, in which the delay can always be considered null, as previously explained.

However, this strategy presents a drawback: in order to obtain the inductor average
current value, the switching ripple of the current needs to be filtered as opposed to the
previously reported modes, needing then a more complicated system with respect to the
other two cases. As explained in [7], the most effective way to achieve this operation is to
implement a moving average filter (MAF) considering only the samples inside a switching
period, even if this technique leads to an increase in the control system delay equal to TS/2.

17

Introduction to Digital Control - Average Current Mode Control

Finally, in the multiupdate strategy case the drawback of multiple intersections be-
tween control voltage and triangular carrier is present, as shown in the example depicted
in Figure 1.14: as previously explained, this should be avoided in many applications. For
these reasons, in the following chapters a multisampling double-update (MSDU) strategy
will be implemented, since it does not present the multiple intersections problem and,
as explained in [7], considering the moving average filter, the control system delay is
comparable with that of the DSDU one for a high multisampling factor NMS. The MSDU
mode total control delay expression is reported in (1.26).

𝑡𝑀𝑆𝑀𝑈 = 𝑡𝑐𝑜𝑚𝑝_𝑀𝑆𝐷𝑈 + 𝑡𝑃𝑊𝑀_𝑀𝑆𝐷𝑈 + 𝑡𝑀𝐴𝐹 =
𝑇𝑆

𝑁𝑀𝑆
+ 𝑇𝑆

4
+ 𝑇𝑆

2
= 0.75𝑇𝑆 +

𝑇𝑆

𝑁𝑀𝑆
(1.26)

Anyway, this strategy introduces some important features with respect to the DSDU
case: first, the synchronization is not required to obtain the current average value. Fur-
thermore, the time distance from the moment in which the average current value is
obtained to that in which the control voltage is updated is minimized. A MSDU strategy
example is depicted in Figure 1.15. Notice that the dashed arrows link the sampling
instant corresponding to the last sample on which the moving average is computed with
the instant in which the control voltage is updated with the corresponding value.

TS

2N-1

0
t

t

t

Sampling instant

Updating instant

vcontr(t)

Figure 1.15: Multisampling double-update mode example.

18

1.3 – Average Current Controller - PI Regulator and Control System

1.3 Average Current Controller - PI Regulator and Con-
trol System

When a controller is designed, its parameters choices need to be referred to a specific
power converter topology and to the system specifications. For this reason, considering
the system reported in Figure 1.1, the following characteristics have been considered:

• input voltage source: Vin = 600 V;

• inductance: L = 4 mH;

• inductor ESR: R = 500 mΩ;

• output voltage source: E = 300 V;

• switching frequency: fS = 10 kHz.

• control system bandwidth: fBW = 𝑓𝑆𝑊
20 = 500 Hz

Furthermore, when implementing a closed-loop system, one of its main features to
be guaranteed is stability, usually designing a phase margin in the range [45 - 60]°, at
least. On the other hand, it should have a large bandwidth in order to quickly detect
variations in the reference signal. This is selected by designing the transfer function
of the current controller. Finally, to provide a null steady-state error, an integral action
must be provided, leading to the fact that the open-loop gain, considering the cascade of
the current controller, the PWM modulator, the power converter and the load, needs to
present a pole in the origin [2][3][4].

The block scheme of the overall closed-loop system is depicted in Figure 1.16 consid-
ering the moving average of the load current as the controlled variable. In order to design
the current controller, it is necessary to analyze the PWM modulator and the converter
and load transfer functions.

Current
Controller

I*(s)

I(s)

PWM
Modulator

Converter
and Load

I(s)

Figure 1.16: Overall closed-loop system block scheme.

As previously explained, the purpose of the PWM modulator is to provide the two
IGBTs with the corresponding switching functions qHS(t) and qLS(t). If the moving
averages are considered, starting from the average control voltage Vcontr(t) the output of

19

Introduction to Digital Control - Average Current Mode Control

the PWM modulator is the converter duty cycle d(t). Its transfer function is reported in
(1.27), where d(s) and Vcontr(s) are respectively the Laplace transforms of the duty cycle
and the average control voltage, and VTR is the triangular carrier amplitude. As shown,
it presents only a gain term which can be taken into account if a proper voltage scaling is
introduced in the current controller.

𝑑 (𝑠)
𝑉𝑐𝑜𝑛𝑡𝑟 (𝑠)

=
1
𝑉𝑇𝑅

(1.27)

Considering again the moving averages, the converter transfer function can be easily
obtained in (1.28) by rearranging (1.12).

𝑉∗(𝑠)
𝑑 (𝑠) = 𝑉𝑖𝑛 (1.28)

For what concerns the load, by performing a simple analysis of the Laplace-domain circuit
depicted in Figure 1.6 and considering the moving averages values, (1.29) is obtained.

𝑉∗(𝑠) − 𝐸 (𝑠) = (𝑠𝐿 + 𝑅)𝐼 (𝑠) (1.29)

As will be also more clear in the following discussion, the output voltage source acts as
a disturbance for the average current control. For this reason, a feedfoward technique
can be exploited to compensate for the dependence of the inductor current on the output
voltage source; then the load transfer function, considering the moving averages, can be
computed in (1.30), where a first-order low-pass filter operation with a single pole is
shown.

𝐼 (𝑠)
𝑉∗(𝑠) =

1
𝑠𝐿 + 𝑅 (1.30)

It follows that the current controller needs to introduce both a single zero and a pole in the
origin, in order to obtain the wanted open-loop gain. Consequently, the current controller
is composed of a PI regulator, whose transfer function is:

𝐺𝑃𝐼 (𝑠) = 𝐾𝑃 +
𝐾𝐼

𝑠
=
𝑠𝐾𝑃 + 𝐾𝐼

𝑠
(1.31)

In the following subsections the PI regulator is designed in continuous time and
then discretized, addressing also the integral windup problem. Finally a discussion on
transistors dead time is presented.

1.3.1 PI Regulator and Control Scheme Design
As explained in [2], in order to design the digital average current controller, it is

useful to start from its design in continuous time and then proceed to its discretized
implementation. In the following discussion, the control system delay, composed of

20

1.3 – Average Current Controller - PI Regulator and Control System

ADC delay, digital current controller computational time and PWM modulator delay,
will be neglected. In Figure 1.7, the equivalent model of the system to be controlled
considering the moving averages is depicted: referring to that figure, the main purpose
of the control system is to provide the duty cycle d(s) which allows to obtain a specific
load average current. Recalling (1.29), the block scheme represented in Figure 1.17 can
be derived.

I*(s)

E(s)

1
sL+R

I(s)

I(s)

V*(s)

Load

KI

sKP+

PI regulator

Figure 1.17: Closed-loop system block scheme.

As can be seen, in this case the load current depends on both the reference average
current signal I*(s) and the output voltage source E(s). Since the latter term can be consid-
ered as a disturbance, as previously mentioned, a feedforward technique is implemented
to delete its contribution, allowing the load current to depend only on the reference signal.
The insertion of the feedforward and the new equivalent block scheme are reported in
Figure 1.18a and Figure 1.18b respectively.

It is important now to notice that the overall system is composed by the cascade of
current controller, PWM modulator, converter and load. In order to obtain the equivalent
block scheme in Figure 1.18b, the action of PWM modulator and converter needs to
be compensated inside the current controller. Since they are two simple gain terms, as
shown in (1.27) and (1.28), a voltage scaling is accordingly included in the current con-
troller. The overall control system block scheme is entirely represented, highlighting all
the components that will be included in the current controller in the following discussion,
in Figure 1.19. It is important to underline that the block scheme reported in Figure 1.19
is equivalent to that of Figure 1.18b and for this reason the latter one is exploited for the PI
regulator design, considering a perturbation and linearization of the depicted quantities
around the DC working point [5][6].

The open-loop gain of the system can be computed in (1.32) referring to Figure 1.19.
As can be seen, a pole in the origin is present, as wanted.

𝑇 (𝑠) = 1
𝑠

𝑠𝐾𝑃 + 𝐾𝐼
𝑠𝐿 + 𝑅 =

1
𝑠

𝐾𝑃

𝐿

𝑠 + 𝐾𝐼
𝐾𝑃

𝑠 + 𝑅
𝐿

(1.32)

In order to provide the above described features, an accurate choice of the PI regulator

21

Introduction to Digital Control - Average Current Mode Control

I*(s)

E(s)

1
sL+R

I(s)

I(s)

V*(s)

E(s) Load

Feedforward

PI regulator

KI

sKP+

(a)

I*(s) 1
sL+R

I(s)

I(s)

V*(s)

Equivalent loadPI regulator

KI

sKP+

(b)

Figure 1.18: Closed-loop system block scheme with feedforward insertion (a) and new
equivalent block scheme when applying this technique (b).

VTR

Vin sL+R

I*(s)

E(s) E(s)

Feedforward

KI

sKP +

PI regulator

1
VTR

Load

Output
voltage

PWM
Modulator

I(s)

I(s)

Control
voltage
scaling

Current controller

V*(s) Vcontr(s) d(s)

Control system

1

Converter
gain

Vin

Figure 1.19: Closed-loop system block scheme highlighting the control system compo-
nents.

parameters is needed. One possible solution is to apply the pole-zero cancellation method
[4]; if this is the case, the open-loop gain becomes the one reported in (1.33), in which
the open-loop gain phase is always −90◦ and the bandwidth of the system is selected by
the proportional term KP.

𝑇 (𝑠) = 1
𝑠

𝐾𝑃

𝐿
(1.33)

The value of KP can be found in (1.35) considering that the magnitude of the open-loop
gain at the bandwidth frequency is unitary:{︄

|𝑇 (𝑗𝜔𝐵𝑊) | = 1
𝜔𝐵𝑊

𝐾𝑃
𝐿

|𝑇 (𝑗𝜔𝐵𝑊) | = 1
(1.34)

22

1.3 – Average Current Controller - PI Regulator and Control System

𝐾𝑃 = 𝜔𝐵𝑊𝐿 = 2𝜋 𝑓𝐵𝑊𝐿 (1.35)

The integral term KI can be immediately computed in (1.36) considering that in the
pole-zero cancellation method the frequency position of both the pole and the zero is the
same one.

𝐾𝐼

𝐾𝑃
=
𝑅

𝐿
↔ 𝐾𝐼 = 𝐾𝑃

𝑅

𝐿
(1.36)

The Bode diagrams of the equivalent load and the PI regulator transfer functions and of
the open-loop gain are depicted in Figure 1.20 for the calculated KP and KI parameters
given the system specifications: as expected, the phase is always equal to −90◦ and the
bandwidth of the whole system is set to 500 Hz, as highlighted in Figure 1.20b.

Another possible solution for the selection of the PI regulator parameters can be that
of analyzing the open-loop gain expression and choose the KP and KI values in order to
obtain a specific bandwidth and phase margin in the range [45 - 60]° exploiting (1.37)
and (1.38) respectively, as explained in [2].

1 = |𝑇 (𝑗𝜔𝐵𝑊) | =
1

𝜔𝐵𝑊

√︄
(𝜔𝐵𝑊𝐾𝑃)2 + 𝐾2

𝐼

(𝜔𝐵𝑊𝐿)2 + 𝑅2 (1.37)

𝜙 = 180◦ − ∠𝑇 (𝑗𝜔𝐵𝑊) = 180◦ − 90◦ + arctan(𝜔𝐵𝑊𝐾𝑃
𝐾𝐼

) − arctan(𝜔𝐵𝑊𝐿
𝑅

) (1.38)

Both the two presented methodologies are valid as long as all the converter elements
values are known. However, referring to the particular system under control, the inductor
ESR is a parasitic component, which cannot be easily measured. This can be the case
for many applications and, for this reason, the KP and KI values cannot be computed
basing on these derivations. Furthermore, the damping ratio of the closed-loop system is
not taken into account in these two strategies, even though it is a fundamental aspect in
current controllers in order to have a better control on possible current overshoots after a
change in the reference average current value [4][5].

For these reasons, an approach based only on inductance and bandwidth values,
considering also the damping ratio, will be exploited for the following current controller
design [4]. In order to set a specific controller bandwidth, referring to the expression
reported in (1.32), two assumptions need to be made: first, at the bandwidth frequency,
𝜔𝐵𝑊𝐿 ≫ 𝑅, which means that the inductor ESR can be neglected for the parameters
choice. Secondly, the frequency of the zero is set as reported in (1.39).

𝐾𝐼

𝐾𝑃
=
𝜔𝐵𝑊

5
(1.39)

Under these hypotheses, the expression reported in (1.33) is correct and the propor-
tional gain can be design exploiting (1.35). Moreover, the integral gain can be computed

23

Introduction to Digital Control - Average Current Mode Control

M
ag

ni
tu

de
 (

dB
)

P
ha

se
 (

de
g)

Frequency (rad/s)

(a)

M
ag

ni
tu

de
 (

dB
)

P
ha

se
 (

de
g)

Frequency (rad/s)

(b)

Figure 1.20: Equivalent load and PI regulator transfer functions (a) and open-loop gain
(b) Bode diagrams with pole-zero cancellation method.

24

1.3 – Average Current Controller - PI Regulator and Control System

by rearranging (1.39). The final values of the proportional and integral terms which are
used for the design are then reported for clarity in (1.40):{︄

𝐾P = 𝜔𝐵𝑊𝐿

𝐾 I = 𝐾𝑃
𝜔𝐵𝑊

5
(1.40)

The equivalent load and the PI regulator transfer functions and the open-loop gain Bode
diagrams are depicted in Figure 1.21 for the corresponding KP and KI values: as can be
seen, the bandwidth of the whole system is set to 500 Hz with good approximation, as
highlighted in Figure 1.20b. Furthermore, the phase margin is sufficiently higher than 60◦.

Referring to the closed-loop gain, reported in (1.41), the second term structure is
identical to that of a second-order closed-loop system [5]: the corresponding damping
ratio is derived in (1.42)

𝐺𝐶𝐿 (𝑠) =
1
𝑠
𝑠𝐾𝑃+𝐾𝐼
𝑠𝐿+𝑅

1 + 1
𝑠
𝑠𝐾𝑃+𝐾𝐼
𝑠𝐿+𝑅

=
𝑠𝐾𝑃

𝑠2𝐿 + 𝑠(𝑅 + 𝐾𝑃) + 𝐾𝐼
+ 𝐾𝐼

𝑠2𝐿 + 𝑠(𝑅 + 𝐾𝑃) + 𝐾𝐼
(1.41)

𝜁 =
𝑅 + 𝐾𝑃
2
√
𝐾𝐼𝐿

(1.42)

By substituting the proportional and integral gain expressions derived in (1.40) in
(1.42) and neglecting the inductor ESR, the damping ratio can be computed in (1.43),
which shows that these parameters choice corresponds to an overdamping situation,
independently of the actual R value.

𝜁 =
𝐾𝑃

2
√
𝐾𝐼𝐿

=
𝜔𝐵𝑊𝐿

2
√︃
𝜔𝐵𝑊𝐿

𝜔𝐵𝑊
5 𝐿

=

√
5

2
> 1 (1.43)

However, due to the presence of the first term in (1.41), a small overshoot will anyway be
present after a step change in the reference average current signal.

1.3.2 Average Current Controller Discretization
The average current controller which has been presented in the previous section was

designed in continuous time. In order to obtain its digital implementation, a proper
discretization technique needs to be adopted for the PI regulator. Before proceeding, it
is important to highlight that in the digital case, the controller introduces a delay which
has been neglected in the continuous time design. Its main effect is a reduction of the
phase of the open-loop gain. Anyway, as could be seen in Figure 1.21b, the phase margin
obtained with the particular PI regulator parameters choice is well above 60◦. For this rea-
son, this drawback is not taken into consideration and the same design parameters are kept.

25

Introduction to Digital Control - Average Current Mode Control

M
ag

ni
tu

de
 (

dB
)

P
ha

se
 (

de
g)

Frequency (rad/s)

(a)

M
ag

ni
tu

de
 (

dB
)

P
ha

se
 (

de
g)

Frequency (rad/s)

(b)

Figure 1.21: Equivalent load and PI regulator transfer functions (a) and open-loop gain
(b) Bode diagrams with damping ratio based method.

26

1.3 – Average Current Controller - PI Regulator and Control System

As reported in [2], a simple way to discretize the PI regulator is to replace the
continuous time integration with its numerical approximation. This can be done by
means of an Euler or a trapezoidal integration method. Considering the Backward Euler
integration method, the substitution to be performed to obtain the discrete model is:

𝑠 =
𝑧 − 1
𝑧𝑇𝑠

(1.44)

By substituting (1.44) in (1.31), it is possible to derive the PI regulator transfer function
in the Z-domain as shown in (1.45).

𝐺𝑃𝐼 (𝑧) = 𝐾𝑃 + 𝐾𝐼𝑇𝑠
𝑧

𝑧 − 1
(1.45)

The corresponding block scheme is reported in Figure 1.22, where the insertion of the
feedforward voltage and the output scaling are highlighted. With respect to the continuous
time scheme in Figure 1.19, the triangular carrier amplitude becomes 2𝑁 − 1 instead of
VTR, where N is the number of bits on which both the control voltage and the triangular
carrier are represented and that is selected, along with the clock frequency, to obtain the
wanted transistors switching frequency. Notice that the control voltage produced at the
output is kept constant until the following updating instant, namely after a half switching
period, so that the behaviour of vcontr(t) illustrated in Figure 1.10 can be obtained. Finally,
it is important to highlight that the term Ts refers to the period of the current controller
operation which is, as mentioned, half of the switching period.

I*
k

Ik

εk Vcontr,k

KP

Ek

KITS

z-1

2N-1
Vin

Figure 1.22: Discrete average current controller implementation.

1.3.3 Integral Anti-Windup Implementation
The integral part operation of the PI regulator basically consists in integrating over

time the error between the load average current and the average current reference signal.

27

Introduction to Digital Control - Average Current Mode Control

As explained in [2], in occurrence of large variations of the latter one, the difference
between these two quantities can be not null for a large amount of time: this means that
for the entire time interval duration until the load average current reaches the reference
value, the integral part of the regulator accumulates the integral of the error. When this
point is reached, the integral part state can be quite large, leading to, typically, a large
overshoot, independently of the phase margin of the system.

This problem can be solved by limiting the integral part dynamics. In general, the output
of the proposed PI regulator needs to be always limited within the power supply range,
hence between 0 and Vin. For this reason, first the proportional part of the regulator is
limited in order to never exceed these bounds. Denoting with 𝜖 the difference between
the load average current and its reference value, and considering also the presence of the
feedforward voltage, this means that:

0 ≤ 𝜖𝐾𝑃 + 𝐸 ≤ 𝑉𝑖𝑛 (1.46)

After that, the integral part is saturated, depending on the proportional part value. In
order not to make the integral state to largely increase, the following strategy is adopted:

1. The difference with positive sign between the proportional part (𝜖KP + E) and each
one of the two bounds (0 and Vin) is computed;

2. The integral part is limited by imposing that its absolute value needs to be at most
equal to the smallest computed difference.

In Figure 1.23, the core of the current controller block scheme of Figure 1.22 is depicted
highlighting the presence of the two saturation blocks. For what concerns the integral
part limits, two different scenarios are possible:

1.

𝑉𝑖𝑛 − (𝜖𝐾𝑃 + 𝐸) ≤ 𝜖𝐾𝑃 + 𝐸 →
{︄
𝐼𝑛𝑡_𝑚𝑎𝑥 = 𝑉𝑖𝑛 − (𝜖𝐾𝑃 + 𝐸)
𝐼𝑛𝑡_𝑚𝑖𝑛 = −𝑉𝑖𝑛 + (𝜖𝐾𝑃 + 𝐸)

(1.47)

2.

𝑉𝑖𝑛 − (𝜖𝐾𝑃 + 𝐸) > 𝜖𝐾𝑃 + 𝐸 →
{︄
𝐼𝑛𝑡_𝑚𝑎𝑥 = 𝜖𝐾𝑃 + 𝐸
𝐼𝑛𝑡_𝑚𝑖𝑛 = −(𝜖𝐾𝑃 + 𝐸)

(1.48)

Notice that, in case of a large variation in the reference signal, the proportional part can
be saturated to one of the bounds. This means that the integral part is imposed to be null:
consequently, starting from the following cycle, the integral state is reset. Basically, the
integration resumes only when the load current is close to the reference current value.
In case of a variation of the reference signal which does not imply a saturation of the
proportional part, the integration operation is not stopped, but is subject to a strong
limitation which anyway avoids the windup phenomenon.

28

1.3 – Average Current Controller - PI Regulator and Control System

εk

Ek
Vink

0

Int_max

Int_min

Saturation
MAX

min

Saturation
MAX

min

KP

KITS

z-1

Figure 1.23: Detail of the current controller with anti-windup implementation.

1.3.4 Dead Time Discussion and Implementation
A final important issue which is discussed in [2] for what concerns the control system

is the need of dead times in the transistors operation. In every power converter, short-
circuits of the input voltage sources must be avoided since they lead to a huge increase in
the current circulating in the circuit causing great damages in the devices. Referring to
Figure 1.1, this means that the two IGBTs must not be active simultaneously.

In an ideal case, the switching action of the transistors is instantaneous: it is suf-
ficient then to drive their gates with complementary signals to avoid this situation. In
practical cases, the transistors require a certain commutation time to change their state,
leading to the need of a more sophisticated driving strategy to avoid short-circuits. A
simple solution to solve this drawback is the insertion of dead times in the transistors
switching operation, that basically consists in a time interval in which the switches are
both turned-off and the current circulates in one of the free-wheeling diodes, depending
on the inductor current direction.

This technique can be implemented by providing two different control voltages, one
for each transistor, equally spaced from the nominal one. In order to do so, referring
to a single IGBT operation, it is important to notice that by shifting the control voltage,
the instants when the transistor starts its commutation are accordingly shifted. For
instance, if the control voltage value, considering that it is included in the range [0 -
2N-1] and supposing that it is far from these bounds, is increased by 1, independently
of the considered transistor the condition which implies the switch commutation is met

29

Introduction to Digital Control - Average Current Mode Control

one clock period after the nominal one during the positive slope of the triangular carrier,
whilst it is anticipated by one clock period during the negative slope phase. The opposite
behaviour is obtained when decreasing the control voltage value. As a consequence,
denoting the wanted dead time as td, if the control voltages of the high-side and low-side
IGBTs are respectively decreased and increased by td

2 fclk, a time interval of duration td in
which both the transistors are turned-off is obtained for both the slopes of the carrier. An
example which shows the discussion above is reported in Figure 1.24.

TS

qLS(t)

qHS(t)
t

t

t

2N-1

0
TS

qLS(t)

qHS(t)
t

t

t

2N-1

0
td td

1

1

1

1

Figure 1.24: Digital PWM modulator with (on the right) and without (on the left) dead
time insertion.

The main drawback of the insertion of a dead time in the switching operation is an
error in the voltage which is applied to the inductor [2]: basically, each IGBT is active
for a time interval of duration equal to the dead time less than the desired one in each
switching period. Considering for instance the case in which the load current is positive,
during the time intervals in which both the transistors are turned-off, the current flows
in the low-side IGBT free-wheeling diode, which ideally imposes a null voltage on the
inductor: therefore, the average voltage which is applied to the inductor is reduced, as
a function of the dead time. The same thing happens when the current is negative,
considering that during the dead time intervals the current always flows in the high-side
IGBT free-wheeling diode, applying the input voltage source to the load, increasing the
average voltage applied to it. The error in this voltage is then derived in (1.49)

Δ𝑉 = −𝑉𝑖𝑛
𝑡𝑑

𝑇𝑠
sgn(𝐼𝐿) (1.49)

Anyway, as explained in [2], its effect can be seen as a square wave disturbance, whose
frequency is that of the load current. If the reference current, and then the load current,

30

1.3 – Average Current Controller - PI Regulator and Control System

is a DC signal, then the integral action of the PI regulator is perfectly capable of com-
pensating the voltage error induced by the dead time. In case of an AC reference signal,
anyway the PI regulator action compensates the dead time disturbance effect.

Finally, it is important to highlight the fact that, implementing this technique for the
dead time generation, the gate pulses are always symmetrical with respect to the peak
and the minimum of the triangular carrier. This allows, in general, an improvement in
the output spectrum of the current.

In the following chapter, some other pratical implementation considerations regarding
the dead time generation will be addressed.

31

32

Chapter 2

Current Controller Implementation on
Simulink

When deploying a digital controller, one of the usual main drawbacks is the time
which is needed to produce the code that is used to program the device on which the
controller is implemented. This problem can be solved by exploiting an automated code
generation tool, reducing also the programming effort. The main result of this approach is
that of minimizing the time from simulation to experimental validation. For this reason,
in this chapter the current control system which was presented in the previous chapter,
deploying the MSDU strategy, is implemented on Simulink [9]: in the following sections
each current control system component implementation is presented. Notice that, even
though not reported, all the components have also been simulated to ensure their correct
operation.

After that, exploiting the Simulink HDL Coder [10], synthesizable VHDL code is
generated for a Xilinx FPGA platform. In particular, as will be shown in the follow-
ing chapter, every control system component is implemented and simulated on Vivado
exploiting the generated VHDL code. Then, the overall current control system is im-
plemented and simulated on Vivado exploiting the discrete time equivalent model of the
converter and the load. Finally, the FPGA is programmed and the system is experimen-
tally tested and evaluated. All the design process is summarized in the flowchart depicted
in Figure 2.1.

The current controller, the averager, namely the block which performs the moving
average computation, and the PWM modulator, composed of triangular carrier generator
and comparator, will be implemented on Simulink by exploiting triggered subsystems. It
is important to highlight an operating aspect of these blocks: when the trigger signal is
detected, the outputs of the subsystem are immediately updated, since a register is present
for each output. On the other hand, the inputs are not registered. This consideration is
fundamental for the implementation of the current controller and the averager, as it will

33

Current Controller Implementation on Simulink

be explained in their dedicated sections.

Finally, a MATLAB initialization script has been used for the parameters definition.
Anyway, in the following discussions the values which have been designed are specified,
in order to better clarify the explanation of each component of the control system.

Control System
Design

Simulink
Implementation
and Simulation

Satisfactory
Results?

YES

NO

START

END

VHDL Code
Generation

Vivado
Implementation
and Simulation

Experimental
Validation

Satisfactory
Results?

YES

NO

Figure 2.1: Design process flowchart.

34

2.1 – PWM Modulator Block Scheme

2.1 PWM Modulator Block Scheme
The PWM modulator main purpose is to provide, given a specific input control

voltage, the switching functions for the two IGBTs of the converter, besides the command
signals which are needed for the operation of the current control system, as depicted in
Figure 2.2, where the presence of comparator and triangular generator is underlined. In
particular, according to the multisampling double-update strategy which was explained
in the previous chapter, the following signals are generated:

• a sampling trigger signal in order to activate the ADC sampling operation;

• a control voltage updating signal to enable the control voltage changes in the instants
which correspond to the maximum and minimum values of the triangular carrier;

• a controller execution signal to execute the current controller sufficiently before the
control voltage updating instant.

1

Control_voltage
int161

Gate_HS

3Sampling_trigger

2

Gate_LS

5Vcontr_update Vcontr_update

Triangular

Slope

Controller_execution

Sampling_trigger

Triangular generator

boolean

int16

boolean

int16

boolean

Control_voltage

Triangular

Slope

Gate_HS

Gate_LS

Comparator

boolean

boolean

4Controller_execution

Figure 2.2: PWM modulator subsystem organization.

As explained in the previous chapter, the number of bits N of the triangular carrier and
the clock frequency fclk are crucial designs which select the switching frequency of the
converter. For reasons that will be further explained in the following chapter, the system
clock frequency is set to 80 MHz; in order to obtain a switching frequency which is
around 10 kHz, a 12-bit resolution is selected for the triangular carrier and the control
voltage. In fact, this allows to synthesize a switching frequency fS approximately equal
to 10 kHz, as computed in (2.1).

𝑓𝑆 =
𝑓𝑐𝑙𝑘

2 · (2𝑁 − 1)
≃ 9.768 kHz (2.1)

Finally, it is important to highlight the arithmetic precision which has been used: even
though both triangular carrier and control voltage can be unsigned integer numbers on
12 bits, the triangular carrier generator and the comparator mainly work on 16-bit integer
numbers. This is done in order to operate with a standard type for what concerns the

35

Current Controller Implementation on Simulink

PWM modulator and, besides, due to the fact that, as will be showed in the following
discussions, the comparator needs to elaborate the control voltage for the dead time
generation and can produce also negative numbers.

2.1.1 Triangular Generator Block Scheme
In order to better understand the triangular carrier generator operation, first the block

scheme corresponding to the double-sampling double-update operation is reported. After
that, the generation of the commands for the correct MSDU strategy is shown. In Figure
2.3, the block scheme corresponding to the DSDU strategy is shown. Since the triangular
generator block is included inside the PWM modulator triggered block, its operation is
in turn triggered by the clock frequency signal.

Figure 2.3: Triangular generator block scheme for the DSDU strategy.

As can be seen, a level-triggered SR Flip-Flop is exploited to switch the triangular
carrier slope value for the following time step: when the peak of the triangular carrier is
reached, hence 2N-1, the slope becomes -1; on the other hand, when the carrier is equal
to 0, the slope is set to 1. Notice that the output of the SR Flip-Flop is asynchronously
updated depending on its truth table which is reported for clarity in Table 2.1.

S R Q !Q

0 0 MEMORY MEMORY
0 1 0 1
1 0 1 0
1 1 UNDEFINED UNDEFINED

Table 2.1: SR Flip-Flop truth table.

36

2.1 – PWM Modulator Block Scheme

An accumulator, reported in the top part, produces the correct triangular carrier value,
based on its previous operation step value and on the correct slope. Finally, the value
of the triangular carrier is checked in order to produce the sampling trigger signal in the
instants corresponding to the maximum and the minimum of the carrier and change the
SR Flip-Flop output correspondingly.

In the MSDU case, the triangular generator subsystem is modified as depicted in Figure
2.4. As can be seen, the maximum and minimum values of the triangular carrier are now
exploited to generate the control voltage updating signal, whereas the block scheme
reported in Figure 2.5 is deployed to generate the sampling trigger signal depending on
the adopted multisampling strategy.

S

R

Q

!Q

Tr_S-R
Flip-Flop_slope

boolean

boolean

Z-1 Tr_Delay_slope

int16

Tr_Constant_negative_slope

int16

Tr_Constant_positive_slope

int16

T F

Tr_Switch_slope_selection

int16

++

Tr_Sum_triangular_output
int16

Z-1

Tr_Delay_triangular_output

int16

== 2^N-1

Tr_Compare
To Constant_top

boolean

2

Triangular
int16

3

Slope
int16

== 0

Tr_Compare
To Constant_bottom

boolean

boolean

Tr_Logical
Operator_update

1

Vcontr_update
boolean

4

Controller_execution

Z-1

Tr_Delay_Qn

boolean

5

Sampling_trigger

Triangular

Qn_delayed

Controller_execution

Tr_Controller_execution

boolean

Triangular

Qn_delayed

Sampling_trigger

Tr_Sampling_trigger

boolean

Figure 2.4: Triangular generator block scheme for the MSDU strategy.

As will be explained in the following chapter, the multisampling factor NMS, consid-
ering a whole switching period, is set to 256; the period of the sampling trigger signal
can be computed in (2.2), considering a single edge of the triangular carrier and the
multisampling factor, as a function of the clock period Tclk.

𝑇𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑡𝑟𝑖𝑔𝑔𝑒𝑟 = 𝑇𝑐𝑙𝑘
2𝑁
𝑁𝑀𝑆

2

= 𝑇𝑐𝑙𝑘
1
𝑓𝑐𝑙𝑘

4096
128

= 32𝑇𝑐𝑙𝑘 (2.2)

This means that the sampling trigger signal needs to be generated every 32 clock cycles.
This can be done by exploiting the triangular carrier generator, since it is intrinsically
a counter, considering its last five bits: during the positive and negative edges of the
carrier, the sampling trigger is respectively produced every time all the five bits are equal
to 1 and to 0. The distinction between the two carrier edges is obtained by looking at the
previous step negated output of the SR Flip-Flop. This operation is described in Figure

37

Current Controller Implementation on Simulink

2.5, where Tr_bits is defined as log2
𝑁𝑀𝑆

2 .

Slice
(N - Tr_bits - 1 downto 0)

Tr_BitSlice

ufix5
T

F

Tr_SwitchSamplingTrigger

boolean

Bit Reduce
(AND)

Tr_BitReduce_AND

ufix1

Bit Reduce
(OR)

Tr_BitReduce_OR

ufix1

1

Triangular

int16
2Qn_delayed

boolean
1

Sampling_trigger

Tr_LogicalOperator_sampling

boolean

Figure 2.5: Triangular generator sampling trigger signal generator block scheme.

The subsystem which generates the controller execution signal is represented in Figure
2.6. The current controller execution needs to starts at an instant which is sufficiently
before that of the control voltage update, as a function of its computational time. Besides,
it needs to operate on the most recent available data, hence on the most recent computed
moving average.

== 2^N - 1 - N_contr*Sampling_period

Tr_CompareToConstant_up_cont

boolean

== 0 + N_contr*Sampling_period

Tr_CompareToConstant_down_cont

boolean

T

F

Tr_SwitchController_Execution

boolean

1

Triangular

int16

2

Qn_delayed

boolean
1

Controller_execution

Figure 2.6: Triangular generator controller execution signal generator block scheme.

As will be more clear in the following discussions, in correspondence of the sampling
trigger signal, the averager output is updated with the corresponding value, which is
computed on the samples obtained up to the previous sampling trigger event. For this
reason, the controller execution signal is generated one clock period after the last sam-
pling instant which allows to terminate the controller operation before the control voltage
updating instant. In particular the controller execution signal can be programmed from
the initialization script through the N_contr value: this parameter indicates the sampling
instant, starting from the updating instant and going backwards, after which the controller
is executed.

In the implemented case, N_contr is set to 1; therefore the controller is operated
one clock cycle after the last sampling trigger signal before that of the control voltage
update. Referring to Figure 2.6, this is done by comparing the triangular carrier value
with a constant which depends on the carrier edge: defining Sampling_period as 32, the
comparison with the constant basically selects one of the sampling instants as a function
of N_contr, depending on the corresponding carrier edge. As for the sampling trigger
signal generation, the correct carrier edge is selected by exploiting the negated output

38

2.1 – PWM Modulator Block Scheme

of the SR Flip-Flop. The last clock cycle shift is implemented at the top-level, as will
be explained when the whole control system is presented. An example to clarify the
commands generation is reported in Figure 2.7 considering N_contr equal to 1.

TS

2N-1

0

Sampling
Trigger

Control Voltage
Update

Controller
Execution

Figure 2.7: Triangular generator commands generation example.

2.1.2 Comparator Block Scheme
The block scheme of the implemented comparator is reported in Figure 2.8. As

explained in the previous chapter, two different control voltages, one for each converter
transistor, need to be generated in order to introduce a dead time in the IGBTs operation.
This is done by modifying the control voltage produced by the current controller. In the
implemented case, a 1 ➭s dead time has been deployed; its value in terms of clock cycles
is computed in (2.3).

𝐷𝑇 = 1 ➭s · 80 MHz = 80 (2.3)

Then, the high-side and low-side IGBT control voltages are respectively obtained by
subtracting and adding DT/2 to the original control voltage, which leads to a situation as
that reported for instance in Figure 1.24. After that, the generated control voltages for
the two transistors are compared with the triangular carrier also considering its slope, as
illustrated in Table 1.1.

An important point about this dead time introduction strategy needs to be discussed:
considering the high-side IGBT, its corresponding control voltage is smaller, in terms of
integer value, than that generated by the current controller. This means that, in particular,
the high-side switch cannot be always active within a switching period, which is the
situation of unitary converter duty cycle. The same thing happens for the low-side IGBT:

39

Current Controller Implementation on Simulink

Figure 2.8: Comparator block scheme.

since its corresponding control voltage is always greater than the original one, it cannot
be always active, which corresponds to a null converter duty cycle case. Depending
on the current direction, during the dead time intervals one of the two freewheeling
diodes turns on, making it possible to obtain a situation equivalent, in terms of applied
load voltage, to that of unitary or null converter duty cycle. However, this effect depends
on the current direction, as mentioned, and cannot therefore be achieved in every situation.

After a big reference signal variation, it can be useful anyway to provide these op-
erating cases in order to quickly recover the steady-state operation. For this reason, the
original control voltage value is compared with two constants: when it is bigger than or
equal to (2N-1-DT/2) or lower than or equal to DT/2, the high/side and low-side IGBTs
switching functions are respectively set to 1 and 0, in the first case, and to 0 and 1 in the
second one.

A crucial consideration regards the possibility of short circuits when the control volt-
age is updated due to the introduction of this overwriting operation. An example of this
situation is reported in Figure 2.9; notice that this can happen in occurrence of both the
sampling instants, depending on the overwriting operation.

A simple solution to this problem is provided by the block reported in Figure 2.10:
a first subsystem, shown in Figure 2.11, compares the actual value of each switching
function with the previous time step corresponding one; in case a simultaneous change
in the switching functions, which would lead to a short circuit, is detected, the subsystem
depicted in Figure 2.12 introduces the wanted dead time in the IGBTs switching operation

40

2.2 – Moving Average Block Scheme

TS

qLS(t)

qHS(t)
t

t

t

2N-1

0
td

1

1

O
V
R

Figure 2.9: Short circuit at control voltage update instant due to overwriting operation
example.

by exploiting a level-triggered SR Flip-Flop: in particular, when a short circuit is detected,
both the switching functions are forced to be null. On the other hand, if no short circuit is
detected, this subsystem is transparent and the switching functions are those determined
as previously explained. Notice that this solution cannot replace the dead time generation
achieved through the aforementioned two control voltages since it would compromise the
pulses symmetry with respect to the updating instants.

Comp_Delay_previous_HS_duty

boolean

Comp_Delay_previous_LS_duty

boolean

Comp_Relational
Operator_HS_switching

boolean

Comp_Relational
Operator_LS_switching

boolean

boolean

Comp_Logical
Operator_short_circuit_detection

q_HS

boolean

q_LS

boolean
SC_Detected

q_HS

q_LS
SC_Detected

Comp_Shortcircuit_detection

boolean

1q_HS
boolean

2q_LS
boolean

1

Gate_HS

2

Gate_LS

q_HS
boolean

q_LS
boolean

SC_Detected

boolean

Gate_HS

Gate_LS

boolean

boolean

Comp_Delay_DeadTime

boolean

boolean

Comp_Logical
Operator_DeadTime_HS

Comp_Logical
Operator_DeadTime_LS

boolean

q_HS

q_LS

SC_Detected

Gate_HS

Gate_LS

Comp_DeadTimeGeneration

boolean

boolean

Figure 2.10: Comparator short circuit detection and avoidance subsystem block scheme.

2.2 Moving Average Block Scheme
In Figure 2.13, the block scheme of the triggered subsystem which computes the

moving average is depicted. As will be explained in the following section, for the imple-
mented current controller only the load current and the input voltage values are needed
for its execution, thus only two ADCs are deployed. Referring for instance to Figure 1.19,

41

Current Controller Implementation on Simulink

Z-1

Comp_Delay_previous_HS_duty

boolean

Z-1

Comp_Delay_previous_LS_duty

boolean

Comp_Relational
Operator_HS_switching

boolean

Comp_Relational
Operator_LS_switching

boolean

boolean

Comp_Logical
Operator_short_circuit_detection

1

q_HS

boolean

2

q_LS

boolean
1

SC_Detected

Figure 2.11: Comparator short circuit detection subsystem block scheme.

Figure 2.12: Comparator dead time generation subsystem block scheme.

also the output voltage source is exploited to implement the control system. Then, in
general, the same structure for the moving average computation can be replicated if other
quantities average values are needed.

The operation of the averager block can be explained as follows, considering that the
ADCs are characterized by a 12-bit resolution: when the trigger signal is received, the
data coming from the two ADCs is sampled. After that, a delay block, whose delay length
is set to NMS, hence 256 in this case, is deployed. An accumulator is implemented so
that, at every time step, the new sampled data is added to the sum of the previous ones
and the output of the NMS length delay block is subtracted from the accumulator state,
so that the sum of exactly 256 samples is obtained. After that, the average operation is
accomplished by a bit right shift: by executing a right shift of (Tr_bits+1), namely 8 in
this case, positions, the accumulator state value is divided by 256, and the correct average
value considering a switching period is obtained.

Finally, it is important to underline a necessary change in the autogenerated VHDL
code: since the averager is implemented with a triggered subsystem, its outputs are regis-
tered when the block trigger signal, which is generated when the samples are available, is
received. In order to obtain the wanted behavior, it is necessary to modify the generated
code in order to update the average output registers by exploiting the sampling trigger
signal.

42

2.3 – Current Controller Block Scheme

1

I_avrg

1

I

−
+
+

Sum_I_accumulator

Z-256

Averager_I_sub Shift Right
Arithmetic
Length : 8

Averager_BitShift_I

Averager_DataTypeConversion_I

Z-1

Averager_I_sample

2

Vin_avrg

2

Vin

−
+
+

Sum_Vin_accumulator

Z-256

Averager_Vin_sub Shift Right
Arithmetic
Length : 8

Averager_BitShift_Vin

Averager_DataTypeConversion_Vin

Z-1

Averager_Vin_sample

Z-1

Averager_I_accumulator

Z-1

Averager_Vin_accumulator

Figure 2.13: Averager block scheme.

2.3 Current Controller Block Scheme
Prior to the presentation of the current controller, it is important to highlight a

characteristic of the experimentally tested converter. Due to the hardware availability, the
exact two-quadrant DC/DC converter depicted in Figure 1.1 could not be tested. Anyway,
an equivalent converter, namely an H-bridge converter [3][4], which is shown in Figure
2.14, has been exploited.

qHS(t)

qLS(t)

L Ri(t)

qLS(t)

qHS(t)

Vin

Figure 2.14: H-bridge converter topology with LR load.

As shown, with respect to the two-quadrant DC/DC converter reported in Figure 1.1,
a second switching leg is inserted; in particular, its high-side IGBT switching function
is the same as that of the first switching leg low-side IGBT, whereas its low-side IGBT
one is the same as that of the first switching leg high-side transistor. As was done in
the previous chapter, the behavior of the second switching leg can be then equivalently
described as a square wave voltage, ranging from 0 to Vin, as a function of the first
switching leg low-side IGBT switching function. Therefore, the H-bridge converter DC
equivalent model can be immediately obtained and is represented in Figure 2.15.

As explained in the previous chapter, a feedforward technique has been considered
in order to compensate the disturbance introduced by the output voltage source. In this

43

Current Controller Implementation on Simulink

R

d(t)Vin

I(t)

VR
[1-d(t)]Vin

Figure 2.15: H-bridge converter and load DC equivalent model.

case, the second switching leg DC voltage behavior cannot be directly sampled. Besides,
since it depends on the converter duty cycle, an algebraic loop would be present in the
current controller and the control voltage could not be determined. For this reason, the
feedforward voltage is obtained with a slight modification of the previously presented
current controller.

By a simple mathematical rearrangement of the model in Figure 2.15, the converter
DC equivalent model reported in Figure 2.16 is obtained.

R

d(t)2Vin

I(t)

VR
Vin

Figure 2.16: H-bridge converter and load rearranged DC equivalent model.

As can be seen, it is identical to the two-quadrant DC/DC converter DC equivalent model
derived in Figure 1.5 in which the input voltage source value is set to 2Vin and the output
voltage source E is equal to Vin. For this reason, the current controller which was designed
in the previous chapter can be used to control the H-bridge converter as long as some
modifications are provided: in particular, two different solutions are hereby discussed.
The first solution regards the implementation of the current controller considering an
equivalent input source equal to 2Vin: since the ADC samples the effective input voltage
source, whose value is Vin, inside the current controller a multiplication by 2 needs to
be introduced. The feedforward voltage is instead directly obtained by the input voltage
source sampled data. Also, all the saturation operations which were discussed in the
previous chapter, and derived in (1.46), (1.47) and (1.48), need to be referred to the
equivalent input voltage source equal to 2Vin.

44

2.3 – Current Controller Block Scheme

The second solution is obtained by applying another mathematical elaboration, hence
by dividing by 2 all the quantities represented in Figure 2.16. By doing so, the equiva-
lent input voltage source becomes equal to Vin, hence the real one, whereas the output
voltage source is Vin/2. This means that the input voltage ADC sample can be directly
used inside the current controller and that the feedforward is implemented by halving the
sampled value. The difference with respect to the two-quadrant DC/DC converter lies in
the proportional and integral gains. For the mathematical elaboration to be valid on all
the converter, also the value of the inductance needs to be divided by 2. Since the KP
and KI are based, as previously explained, on the inductance value, in this solution also
the value of these gains needs to be halved, in order to obtain the same control system
bandwidth.

The discrete current controller block scheme depicted in Figure 1.22 and 1.23, imple-
menting the first solution, is reported in Figure 2.17. In order to illustrate its operation,
it is important to comment the ADCs conditioning circuit: considering that, as afore-
mentioned, the ADCs are characterized by a 12-bit resolution, their output values are
in the range [0 - 2N-1]. Regarding the relation between the output values and the input
voltage source and the load current values, the range [0 - 2N-1] proportionally corre-
sponds respectively to the ranges [0 - 750]V and [-40 - 40]A. Even though the input
voltage and load current values on which the current controller operates come from the
averager block, they are still 12-bit values with the same correspondence. For this reason,
inside the current controller subsystem, the sampled input voltage needs to be prop-
erly scaled by 750/(2N-1), defined as Vin_GAIN, whereas the load current needs to be
both scaled by 80/(2N-1), defined as I_GAIN, and decreased by 40, namely I_BIAS. The
input voltage value is then left shifted by one position to obtain the 2Vin equivalent value.

2

Vin

3

Iref1

Control_voltage

4

min_lim

~
=
0

PI_Switch_null_Vin

+
+ PI_Sum_output_voltage

+
+

PI_Sum_integration

+−

PI_Sum_int_min_lim

+−

PI_Sum_int_max_lim

++

PI_Sum_feedforward

−+

PI_Sum_error_current

up

u

lo

y

PI_Saturation_dynamic_prop

int_max_lim

int_min_lim

integrator_value

Integral

PI_Integral saturation and anti-windup
PI_Gain_int

PI_Gain_Vcontr

PI_Saturation_Vcontr

PI_Gain_prop

Z-1

PI_Delay_min_lim

Z-1

PI_Delay_integral_state

Z-1

PI_Delay_I

PI_Constant_null_Vin

Shift Left
Logical
Length : 1

PI_BitShift_VinPI_Gain_ADC_Vin

PI_Gain_ADC_I

x

÷

PI_Divide_Vcontr

Z-1

PI_Delay_Iref

Z-1

PI_Delay_Vin

1

I

u-I_BIAS

ADC_Current_Bias

I_GAIN

Vin_GAIN

Figure 2.17: Current controller block scheme.

When the trigger signal is received, all the input quantities are sampled, in order to
avoid variables changes during the controller execution. Starting from the right of the

45

Current Controller Implementation on Simulink

figure, after computing the current error, the proportional part is obtained considering also
the feedforward voltage and is saturated in the range [0 - 2Vin]. The integral part limits are
then derived, accordingly to the equivalent input source value, basing on the expressions
reported in (1.47) and (1.48). The integral part is then computed and saturated as shown
in Figure 2.18. The proportional and integral gains values were computed in (1.40);
anyway, in the discretized current controller case, also the TS term has to be considered.
It is then derived in (2.4).

𝑇𝑆 =
2𝑁 − 1
𝑓𝑐𝑙𝑘

(2.4)

Finally, the control voltage is obtained by dividing the sum of proportional and integral
parts by the equivalent input voltage value, saturating the result in the range [0 - 1], and
scaling it by the triangular carrier amplitude, namely 2N-1. Notice also the presence of a
switch which avoids a division by 0 in case the input voltage source is not connected to
the circuit.

up

u

lo

y

PI_Saturation_Dynamic_integral_max

~= 0

PI_Switch_integral_saturation
up

u

lo

y

PI_Saturation_Dynamic_integral_min PI_Unary_Minus_integral_min_lim

PI_Unary_Minus_integral_max_lim

1 int_max_lim

2 int_min_lim

3 integrator_value

1Integral

PI_Relational_Operator_integral_saturation

Figure 2.18: Current controller integral saturation and anti-windup subsystem block
scheme.

It is important to highlight that the current controller quantities are fixed-point num-
bers. In order to speed up the design of every component, the Fixed-Point Tool, provided
in Simulink, has been exploited. A final important notice regards the need of a modifica-
tion of the VHDL code: in fact, the current controller output registers are updated when
the controller execution trigger signal is received. As is done for the averager block, in
order to obtain the wanted behavior, the generated code is modified since these registers
need to be updated by using the control voltage update signal instead.

2.4 Average Current Control System Block Scheme
In Figure 2.19, the whole control system block scheme is reported. As can be seen,

all the previously described triggered subsystem are present. Besides, a delay block is
inserted to shift the controller execution signal, as aforementioned. Notice also that the
averager trigger signal is delayed: this is to be sure that the averager operates on the

46

2.5 – Discrete Time Converter Equivalent Model

wanted quantities since, as will be explained in the following chapter, its trigger signal
becomes high simultaneously with the change in the sampled data. For what concerns the
average current reference signal, it is provided inside the Vivado environment in single
precision: it is then converted in the corresponding fixed-point representation for the
current controller correct execution.

Figure 2.19: Control system block scheme.

2.5 Discrete Time Converter Equivalent Model
The discrete time equivalent model of the plant, hence the combination of converter

and load, can be exploited to perform a simulation of the overall system in Vivado. In
order to do so, the corresponding VHDL code needs to be generated. For this reason,
the block scheme derived in Figure 1.8 is implemented in Simulink, as shown in Figure
2.20. Besides, recalling (1.49), the subsystem depicted in Figure 2.21 is inserted to
model the dead time effect on the voltage which is provided to the load considering the
switching behavior and the load current direction. Notice that, with respect to (1.49) and
to the scheme reported in Figure 1.8, the equivalent input voltage source value has to be
considered.

1

I

−
+ +

+
Z-1

+
+

Gate_LS

Gate_HS

I

V_dead_time

I

Gate_LS

Gate_HS

V_dead_time

Plant_DeadTimeEffect

1Gate_LS

2Gate_HS

Figure 2.20: Plant block scheme.

At this point, it is useful to perform some control system simulations to verify that
the discretized plant block scheme models with good approximation the converter and

47

Current Controller Implementation on Simulink

== 0

S

R

Q

!QZ-80

== 0

Z-1 == 1

Z-1 == 1

2

Gate_LS

3

Gate_HS

1

I

1

V_dead_time

>= 0

T F

T F

Figure 2.21: Plant dead time effect block scheme.

load real behavior and to show the expected outcome when implementing the control
system on Vivado. Since it is not possible to deploy the MSDU strategy, due to the
triggered subsystems output registers which lead to necessary changes in the generated
VHDL code, the DSDU case has been simulated. In fact, the discretized plant model
validation is independent of the actual designed control strategy; besides, as explained in
the previous chapter, the behavior of these two strategies is similar.

The reference system is implemented in Figure 2.22 by exploiting PLECS Blockset for
the plant realization, which is depicted in Figure 2.23. Then, the plant realized in PLECS
is replaced by the discrete time plant equivalent model reported in Figure 2.20 and the
delay blocks are configured in order to ensure the correct DSDU strategy operation, as
depicted in Figure 2.24. As can be seen, in both the schemes the behavior of the ADCs is
emulated by introducing proper gain and bias blocks. Furthermore, the average current
reference signal consists of a step function. The simulation and step function parameters
are:

• simulation time: 14 ms;

• initial current reference step value: 20 A;

• final current reference step value: −20 A;

• step time: 7 ms.

The current of the two plants is then measured and reported in Figure 2.25a: as can
be seen, the two load currents waveforms are basically overlapped and their average value
is equal, after the transient, to the reference one. Furthermore, the difference between
them is computed in Figure 2.25b: even though a small difference is present, by noticing
that its magnitude is always lower than 20 mA, hence relatively small with respect to
the load average current values, and considering that a clock cycle delay is present in
the two circuits operations, the plant discrete time equivalent model is validated for the
simulation purpose that will be performed in the next chapter.

48

2.5 – Discrete Time Converter Equivalent Model

Iref

Gate_HS

Gate_LS

I

Vin

PLECS
Circuit

Circuit

CLK_80MHz

min_lim

Control_voltage
Gate_HS

Sampling_trigger

Gate_LS

Vcontr_update

Controller_execution

Triangular generator

Comparator
Control_voltage

Gate_HS

Gate_LS

Sampling_trigger

Controller_execution

Vcontr_update

PWM_modulator

Iref_DataTypeConversion

Z-1

Z-1

Z-1

ADC_Vin_GAIN

ADC_I_GAIN

u+I_BIAS

ADC_I_BIAS

I

Vin

Iref

min_lim

Control_voltage

Current_controller

1/I_GAIN

1/Vin_GAIN

Figure 2.22: System with plant realized in PLECS block scheme.

V_dc_in
V: Vin

L1

L: L

V Vm1

A

Am1

1

Gate_HS

1

I

2

Vin

R1

R: R

IGBTD1

IGBTD22

Gate_LS

IGBTD4

IGBTD3

Figure 2.23: H-bridge converter topology realized in PLECS.

1/I_GAIN

1/Vin_GAIN

Figure 2.24: System with discrete time plant equivalent model block scheme.

49

Current Controller Implementation on Simulink

(a)

(b)

Figure 2.25: Current scope simulation results: current in the two plants and reference
value (a) and difference between the current waveforms (b).

50

2.6 – Automatically Generated Code Modifications Summary

2.6 Automatically Generated Code Modifications Sum-
mary

In the previous sections, it was mentioned that some changes in the produced VHDL
need to be introduced in order to obtain the control system wanted behavior. For this
reason, in this section the necessary modifications are listed for clarity: in particular, the
current controller and the averager block generated codes need to be modified.

Starting from the averager block, as shown in Figure 2.19 its operation is triggered
by the ADC_data_ready signal generated by the ADC manager, delayed by one clock
cycle. As a result, also its outputs are updated in occurrence of this signal, Anyway, as
previously described, the output update needs to be performed when the sampling trigger
signal is produced. Therefore, this signal has to be added to the averager entity inputs list
and the block output registers update need to be referred to the sampling trigger signal only.

For what concerns the current controller, as highlighted in Figure 2.19 its operation is
triggered by the controller execution signal generated by the PWM modulator and delayed
by one clock cycle, whereas its output update has to be triggered by the control voltage
update signal. Similarly, the latter signal needs to be added to the current controller entity
inputs list and the output registers update has to be performed in occurrence of the control
voltage update signal instead of the controller execution one.

51

52

Chapter 3

Control System Implementation on
Vivado and Simulations

In this chapter, the different control system components are implemented on a Xilinx
FPGA module and experimentally validated. In particular, the device characteristics are
hereby listed:

• Family: Artix-7 series;

• Device: XC7A35T;

• Package: CSG324;

• Speed: -2.

Starting from the components implementations on Simulink, presented in the previous
chapter, the corresponding VHDL codes are automatically generated and are imported
on the Xilinx Vivado Design Suite [11]. After that, the components are first simulated
to ensure their correct behavior and are then implemented on the FPGA module, which
is inserted on the printed circuit board (PCB) designed at the PEIC laboratory of the Po-
litecnico di Torino reported in Figure 3.1. The main elements of the board are highlighted
in the figure. For what concerns the experimental validation of the control system, only
a few of these are used, apart from the FPGA board, the input power supply filter and the
DC/DC converters:

• 2 ADCs among the many available, to sample the input voltage and the load current;

• The DAC, to visualize the sampled load current;

• The relays, to correctly configure the converter and the load as will be explained in
the following;

• The analog and digital interfaces with the converter.

53

Control System Implementation on Vivado and Simulations

Figure 3.1: PCB organization.

In this chapter, the various reference signals and commands will be directly provided
inside Vivado by means of the Virtual Input/Output (VIO) and Integrated Logic Analyzer
(ILA) Intellectual Properties (IPs). In one of the following chapters, an SPI protocol
will be implemented for the communication with dSPACE MicroLabBox, which will be
exploited for the generation of these signals besides the visualization of the main converter
quantities and state signals on a GUI. Therefore, also the digital interface with dSPACE
will be used. Finally, the encoder interface will be exploited for the implementation of
an electric motor torque control system in the last chapter.

3.1 Control System Experimental Validation Setup
The setup which is exploited for the experimental validation of each control system

component is shown in Figure 3.2. In particular, it consists of:

• The PCB with the FPGA module;

• An oscilloscope;

• A power supply;

• A logic analyzer;

• A function generator.

54

3.1 – Control System Experimental Validation Setup

In the figure, the FPGA programmer and an emergency push button, plugged in the
connector denoted as BUTTON in Figure 3.1, are also present.

Figure 3.2: Setup for the control system components experimental validation.

After the completion of all the components preliminary tests, the whole control system
is implemented on the FPGA and the board is connected, through the corresponding
connectors highlighted in Figure 3.1, to the converter. This consists of an IGBTs power
stack from Guasch, whose schematic, taken from its datasheet [12], is reported in Figure
3.3. Some important characteristics of the power stack are hereby reported:

• maximum DC voltage: 750 V;

• DC-link voltage measurable range: [0 - 750]V;

• IGBTs DC Collector current: 40 A;

• output current measurable range: [-40 - 40]A;

• maximum output RMS current per phase: 25 A, tested with a 10 kHz switching
frequency and 50 Hz output frequency;

• minimum dead time: 1 ➭s.

In order to implement the H-bridge power converter presented in the previous chap-
ters, some steps need to be executed: first, the relay needs to be left open, so that the input
three-phase diode rectifier is not connected to the remaining part of the circuit. Secondly,
a 600 V DC voltage is imposed across the capacitor. Thirdly, since the wanted converter
is composed of two switching legs, only IGBTs T1, T2, T3 and T4 are driven, whereas the
others are not used. Finally, the 4 mH load inductance is placed between the pins U and
V which are highlighted in the figure. The actual inductor ESR is not measured; anyway,

55

Control System Implementation on Vivado and Simulations

as explained in the previous chapters, the control system is designed independently of its
actual value.

The power stack provides also a temperature measurement, by means of an NTC
sensor, and additional active low FAULT state signals, one for each IGBT, that indicate
an error in the corresponding transistor driving voltage and therefore disables the driving
operation, which can restart only after an active low signal, named EN_PWM in the
following discussion, is provided, and the FAULT signals are reset at the high value.
Notice that these state signals are registered and will be used for the design of a modules
protection block in the following discussions.

Figure 3.3: Guasch IGBTs power stack schematic from [12].

In the following sections, the various components of the control system will be
implemented on the FPGA and experimentally tested. In order to clarify the various
components placement inside the system, a block scheme which shows their connection
is depicted in Figure 3.4. The implemented system operation can be easily summarized
as follows: the load current and the input voltage values are sampled by exploiting two
ADCs, whose operation is triggered by the sampling trigger signal generated by the
PWM modulator as described in the previous chapter. The samples are directly fed to a
DAC, whose conversion is triggered every time new samples are available. The moving
average is applied to the two ADCs data samples and the averaged values are provided
to the current controller. Consequently, the corresponding control voltage is computed
and provided to the PWM modulator which generates the IGBTs switching functions,
referring to Figure 2.14. Finally, a modules protection block is inserted: it receives the
transistors switching functions, the two ADCs samples, a signal which is generated by
the emergency button and the aforementioned FAULT signals. Basically, it is used to

56

3.2 – ADC Implementation and Test

enable the IGBTs driving signals only if a protection action is not necessary, as will be
more clear in the following.

ADC

Vin ADC

I
Current

Controller
PWM

Modulator
Modules

Protection

Control System

DAC 4

DAC 3

DAC 2

DAC 1
Oscilloscope CH1

Oscilloscope CH2

DAC

Gate T1

Emergency Button

FAULT Signals

Control
Voltage

Gate HS

Gate LS Gate T2

Gate T3

Gate T4

Gate T6

Gate T5

Gate T7

Moving
Average

Figure 3.4: System components implemented on the FPGA.

3.2 ADC Implementation and Test
As explained in the previous chapter, for the control system execution the input voltage

source and the load current need to be sampled. For this reason, one voltage sensor and
one current sensor are exploited. As reported, the corresponding measurable ranges are
[0 - 750]V and [-40 - 40]A. On the PCB, specific conditioning circuits are designed
in order to adapt these ranges to the ADCs full-scale range (FSR). In particular, the
B-grade AD7276 12-bit resolution ADCs from Analog Devices [13] are exploited: for
performance reasons, the fastest Serial Peripheral Interface (SPI) protocol, among the
two possible ones, is implemented and its timing diagram is reported in Figure 3.5. In
particular, the Serial Clock (SCLK) signal allowed maximum frequency is 48 MHz and is
generated only after the active low Chip Select (𝐶𝑆) is driven low. In the considered case,
the transmission length is 14 bits, hence 14 SCLK cycles are required. Then, a VHDL
code is written in order to generate an apposite manager which, for each ADC, accurately
produces the two signals and at the same time receives the Serial Data (SDATA) bits,
composing the corresponding 12-bit data. Finally, a signal, named ADC_data_ready, is
driven high for one system clock cycle when the conversion is completed and the sampled

57

Control System Implementation on Vivado and Simulations

data is available. Referring to Figure 3.5, the following important timing specifications
need to be respected:

• minimum t1 : 3 ns;

• minimum tQUIET: 4 ns;

• minimum t2: 6 ns.

Figure 3.5: AD7276 SPI protocol timing diagram from [13].

The implemented ADC manager is composed of a Finite State Machine (FMS) whose
state diagram is depicted in Figure 3.6. In particular, Figure 3.6a highlights the input
signals which determine the next state depending on the current state, whereas Figure
3.6b reports the FSM outputs as functions of current state and inputs. The whole ADC
manager scheme, depicted in Figure 3.7, highlights the presence of the various entity
inputs and outputs, the FSM and the Execution Unit (EU). The latter is responsible for
the correct signals timing specifications required by the SPI protocol besides the 12-bit
word reconstruction. For this reason, it is composed of the following elements:

• a counter to set the correct SCLK signal frequency;

• a counter to compute the transitions of the SCLK signal, and consequently its
cycles, to manage the transmission length;

• a counter to guarantee that the 𝐶𝑆 signal stays high for the minimum amount of
time between two transmissions;

• a shift register, whose input is the SDATA signal, to receive and store all the 14
transmission bits;

• an output register, to provide the correct 12-bit data at the output;

• an edge-triggered D Flip-Flop, to generate the ADC_data_ready signal when the
output data is available.

58

3.2 – ADC Implementation and Test

IDLE

reset = 0

START

SCLK_DOWNSCLK_UP

ADC_start = 1

ADC_start = 0

SCLK_transition = 1
last_bit = 0

SCLK_transition = 1
last_bit = 1

SCLK_transition = 0

SPI_WAIT

SCLK_transition = 1
SCLK_transition = 0

CS_up_time_elapsed = 0

CS_up_time_elapsed = 1
ADC_start = 1

CS_up_time_elapsed = 1
ADC_start = 0

(a)
ADC_CSn = 1
ADC_SCLK = 1
run_counter = 0
wait_SPI = 0
shift = 0

ADC_CSn = 0
ADC_SCLK = 1
run_counter = 0
wait_SPI = 0
shift = 1

ADC_CSn = 0
ADC_SCLK = 0
run_counter = 1
wait_SPI = 0
shift = 0

ADC_CSn = 0
ADC_SCLK = 1
run_counter = 1
wait_SPI = 0
shift = 0

ADC_CSn = 1
ADC_SCLK = 1
run_counter = 0
wait_SPI = 1
shift = 0

IDLE

START

SCLK_DOWNSCLK_UP

SPI_WAIT

ADC_CSn = 0
ADC_SCLK = 0
run_counter = 1
wait_SPI = 0
shift = 0

ADC_CSn = 1
ADC_SCLK = 1
run_counter = 0
wait_SPI = 0
shift = 0

ADC_CSn = 0
ADC_SCLK = 1
run_counter = 1
wait_SPI = 0
shift = 1

ADC_CSn = 0
ADC_SCLK = 0
run_counter = 1
wait_SPI = 0
shift = 0

ADC_CSn = 1
ADC_SCLK = 1
run_counter = 0
wait_SPI = 1
shift = 0

ADC_CSn = 1
ADC_SCLK = 1
run_counter = 0
wait_SPI = 1
shift = 0

(b)

Figure 3.6: AD7276 manager FSM state updates (a) and outputs (b).

Depending on the FSM outputs, the blocks in the EU are accordingly enabled. On
the other hand, the outputs of the different counters are exploited to trigger the FSM

59

Control System Implementation on Vivado and Simulations

FSM

>

EN reset

SCLK_counter

counter_SCLK
CLRn

= counter_SCLK_limit

SCLK_transition
run_counter

counter_SCLK_CLRn

>

EN reset

Transition_counter

counter_transitions
CLRn

= counter_transitions_limit

counter_transitions_CLRn

= counter_transitions_limit-1

last_bit

>

EN

EN

reset

CSn_UP_counter

counter_CSn_UP
CLRn

= counter_CSn_UP_limit

counter_CSn_UP_CLRn

CSn_up_time_elapsed

D Q
reset

EN

>

D Q
reset

EN

>

D Q
reset

EN

>

D Q
reset

EN

>

D Q
reset

EN

>

D Q
reset

EN

>

D Q
reset

EN

>

D Q
reset

EN

>

D Q
reset

EN

>

D Q
reset

EN

>

D Q
reset

EN

>

D Q
reset

EN

>

D Q
reset

EN

>

D Q
reset

EN

>

ADC_SDATA

shift

wait_SPI

0 1 2 3 4 5 6 7 8 9 10 11 12 13

REGISTER
>

reset

12

ADC_DATA

end_transmission

D Q
reset

EN

>
S Q

reset

R

>

ADC_data_ready

Data_ready

Output_data

SHIFT_REGISTER

ADC_start
ADC_CSn

ADC_SCLK

Figure 3.7: AD7276 manager entity organization.

state updates. In the figure, also an edge-triggered SR Flip-Flop is present: this is due
to the fact that every ADC, when experimentally tested, generates a wrong first sampled
data. For this reason, the inserted SR Flip-Flop goal is to neglect the first transmission,
enabling the ADC_data_ready signal starting from the second conversion. For simplicity,
the reset and clock signal lines are not indicated in the figure.

The ADC manager operation can be easily explained by noticing that, when the 𝐶𝑆
signal goes low, each transmission bit is provided by the ADC in correspondence of every
SCLK falling-edge, therefore the shift register enable signal is provided on every SCLK
rising-edge so that the input bit is correctly received. When all the 14 transmission bits
are transferred, the output register is enabled to provide at the output the corresponding
12-bit data and the ADC_data_ready signal is driven high for one system clock cycle; at
the same time, the 𝐶𝑆 signal is driven high for 12.5 ns.

In the figure, different programmable variables can be seen. In the following discus-
sions, the hereby reported specific values are used:

• counter_SCLK_limit = 0;

• counter_transistions_limit = 27;

• counter_CSn_UP_limit = 0.

Considering a 80 MHz system clock frequency, these parameters values correspond to the
generation of a 40 MHz SCLK signal, characterized by 14 cycles inside a transmission.
The obtained t1 and t2 are both equal to 12.5 ns. Finally, it is important to underline that

60

3.2 – ADC Implementation and Test

a single ADC has been considered in Figure 3.7; anyway, since on the PCB, as already
discussed, only the B-grade AD7276 ADCs are present, by deploying other shift and
output registers and SDATA signal lines, the same manager can simultaneously handle
more than one transmission at the same rate by providing the ADCs with the same SCLK
and 𝐶𝑆 signals.

The ADC manager block design implemented in Vivado is reported in Figure 3.8.
As shown, a Clocking Wizard IP generates the 80 MHz system clock frequency, whereas
the VIO IP provides the ADC manager entity with the active low reset signal and with
the always active ADC_start signal which triggers the conversion whenever possible.
The ADC sampled data corresponds to the current flowing in the Guasch power stack
node U, underlined in Figure 3.3, and is therefore expected to be approximately equal
to 2047, since no current is flowing in the circuit. Then, the outputs of the manager
can be visualized in Figure 3.9 by exploiting the ILA IP. In particular, in the figure,
the 𝐶𝑆, SCLK, ADC_data_ready signals and the 12-bit data are reported in this order:
as can be seen, the wanted operation is verified. Anyway, the obtained data does not
exactly correspond to expected value: this is mainly due to the tolerances in the ADCs
conditioning circuits which introduce an error in the sampled quantities. In the setup
which is exploited for the control system experimental validation, this error magnitude
is negligible for what concerns the sampled currents, whereas it is compensated for the
input voltage one. For this reason, in the following discussions a proper multiplication
factor will be considered in the Vin_GAIN term highlighted in Figure 2.17.

clk_in1_0

ADC_SDATA1_0

clk_wiz_0

Clocking Wizard

reset

clk_in1

clk_out1

locked

vio_0

VIO (Virtual Input/Output)

clk
probe_out0[0:0]

probe_out1[0:0]

ADC_AD7276B_0

ADC_AD7276B_v1_0

clk

reset

ADC_start

ADC_SDATA1

ADC_CSn

ADC_SCLK

ADC_DATA1[11:0]

ADC_data_ready

ila_0

ILA (Integrated Logic Analyzer)

clk

probe0[0:0]

probe1[0:0]

probe2[0:0]

probe3[11:0]

ADC_CSn_0

ADC_SCLK_0

Figure 3.8: AD7276 manager block design in Vivado.

Figure 3.9: AD7276 manager operation waveforms.

61

Control System Implementation on Vivado and Simulations

It is important to compute the total conversion time in order to justify the previously
reported multisampling factor NMS choice. The maximum allowed time for the ADC
conversion, hence the sampling trigger period, is computed in (3.1) recalling (2.2).

𝑡𝐴𝐷𝐶,𝑀𝐴𝑋 = 32𝑇𝑐𝑙𝑘 = 32
1

80 MHz
= 400 ns (3.1)

The ADC conversion time can be in turn derived in (3.2) considering that the START
state duration is equal to a system clock period and that the 𝐶𝑆 signal is brought high
during the last SCLK signal rising-edge, as also highlighted in Figure 3.9. As computed,
its value is below the maximum one and the chosen multisampling factor can be used.

𝑡𝐴𝐷𝐶 = 𝑡𝑆𝑇 𝐴𝑅𝑇 + 14𝑇𝑆𝐶𝐿𝐾 = 12.5 ns + 14 · 1
40 MHz

= 362.5 ns < 400 ns (3.2)

Considering a given sampling instant, it is impossible, in the designed control system,
to compute the average based on the most recent samples and to execute the current
controller before the following sampling instant. For this reason, as mentioned in the
previous chapter, the averager output data is updated on every sampling instant whereas
the current controller is executed after the last sampling instant before the control voltage
updating one. This strategy allows a whole sampling period for the current controller
termination.

3.3 DAC Implementation and Test
On the PCB, the DAC124S085 12-bit DAC from Texas Instrument [14], which con-

verts the input data to the corresponding value in the range [0 - 5]V, is present: it
implements a 16-bit SPI transmission, whose timing diagram, taken from its datasheet, is
depicted in Figure 3.10; referring to the figure, the following timing specifications need
to be satisfied:

• maximum SCLK frequency (fSCLK): 40 MHz;

• minimum tSYNC: 10 ns;

• minimum tSS: 10 ns.

Furthermore, on the board four BNC connectors, one for each DAC channel, are
available and can be used to plot various signals waveforms on the oscilloscope.

The content of the 16-bit word, which is provided to the DAC through the serial data
input DIN, is reported in Figure 3.11. As shown, apart from the 12-bit data which needs
to be converted from digital to analog, the remaining 4 bits are exploited to select the
address, hence one of the four channels responsible for the conversion, and to indicate the

62

3.3 – DAC Implementation and Test

Figure 3.10: DAC124S085 SPI protocol timing diagram from [14].

operation code. For this reason, a VHDL code is written in order to implement a DAC
manager which is responsible for the 16-bit word correct generation. In particular, when
the data_ready signal is detected, it samples four 12-bit inputs, one for each channel,
then attaches the corresponding addresses and operation codes; after that, it sends all
the generated words to the DAC in four different transmissions, respecting the 𝑆𝑌𝑁𝐶
signal timing specification. The DAC outputs update is performed only after the fourth
transmission has completed. Finally, notice that the DAC samples the serial data on the
SCLK signal falling-edges: for this reason, the DAC manager sets every transmission bit
value on every SCLK signal rising-edge.

Figure 3.11: DAC124S085 register specifications from [14].

The DAC manager is composed of a Finite State Machine (FMS) whose state diagram
is depicted in Figure 3.12. In particular, Figure 3.12a highlights the signals which
determine the next state depending on the current state, whereas Figure 3.12b reports the
FSM outputs corresponding to each current state and inputs. The whole DAC manager
scheme is depicted in Figure 3.13, where the various entity inputs and outputs, the FSM
and the EU are highlighted. Since it is simple to implement an even integer clock divider
by exploiting a counter, the system clock frequency is set to 80 MHz, as aforementioned,
in order to provide a 40 MHz SCLK signal through the operation of a specific counter.

63

Control System Implementation on Vivado and Simulations

IDLE

reset = 0

START

SCLK_DOWNSCLK_UP

data_ready = 1

data_ready = 0

SCLK_transition = 1
last_bit = 0

SCLK_transition = 1
last_bit = 1

SCLK_transition = 0

SPI_WAIT

SCLK_transition = 1
SCLK_transition = 0

SYNCn_up_time_elapsed = 0

SYNCn_up_time_elapsed = 1
end_channels = 0

SYNCn_up_time_elapsed = 1
end_channels = 1

(a)
DAC_SYNCn = 1
DAC_SCLK = 1
counter_SCLK_en = 0
counter_SYNCn_UP_en = 0
counter_channels_en = 0

IDLE

START

SCLK_DOWNSCLK_UP

SPI_WAIT

shift = 0
busy = 0

DAC_SYNCn = 1
DAC_SCLK = 1
counter_SCLK_en = 0
counter_SYNCn_UP_en = 0
counter_channels_en = 0
shift = 0
busy = 0

DAC_SYNCn = 0
DAC_SCLK = 1
counter_SCLK_en = 0
counter_SYNCn_UP_en = 0
counter_channels_en = 0
shift = 0
busy = 1

DAC_SYNCn = 0
DAC_SCLK = 1
counter_SCLK_en = 1
counter_SYNCn_UP_en = 0
counter_channels_en = 0
shift = 0
busy = 1

DAC_SYNCn = 0
DAC_SCLK = 1
counter_SCLK_en = 1
counter_SYNCn_UP_en = 0
counter_channels_en = 0
shift = 0
busy = 1

DAC_SYNCn = 1
DAC_SCLK = 1
counter_SCLK_en = 0
counter_SYNCn_UP_en = 1
counter_channels_en = 0
shift = 0
busy = 1

DAC_SYNCn = 0
DAC_SCLK = 0
counter_SCLK_en = 1
counter_SYNCn_UP_en = 0
counter_channels_en = 0
shift = 0
busy = 1

DAC_SYNCn = 0
DAC_SCLK = 0
counter_SCLK_en = 1
counter_SYNCn_UP_en = 0
counter_channels_en = 0
shift = 1
busy = 1

DAC_SYNCn = 0
DAC_SCLK = 0
counter_SCLK_en = 1
counter_SYNCn_UP_en = 0
counter_channels_en = 0
shift = 1
busy = 1

DAC_SYNCn = 1
DAC_SCLK = 1
counter_SCLK_en = 0
counter_SYNCn_UP_en = 1
counter_channels_en = 0
shift = 0
busy = 1

DAC_SYNCn = 1
DAC_SCLK = 1
counter_SCLK_en = 0
counter_SYNCn_UP_en = 1
counter_channels_en = 0
shift = 0
busy = 1

(b)

Figure 3.12: DAC124S085 manager FSM state updates (a) and outputs (b).

64

3.3 – DAC Implementation and Test

FSM

>

EN reset

SCLK_counter

SHIFT REGISTER

counter_SCLK
CLRn

= counter_SCLK_limit

SCLK_transition
counter_SCLK_en

counter_SCLK_CLRn

>

EN reset

Transition_counter

counter_transitions
CLRn

= counter_transitions_limit

counter_transitions_CLRn

= counter_transitions_limit-1

last_bit

>

EN reset

SYNCn_UP_counter

counter_SYNCn_UP
CLRn

= counter_SYNCn_UP_limit

counter_SYNCn_UP_CLRn

SYNCn_up_time_elapsed

counter_SYNCn_up_en

data_ready DAC_SYNCn

DAC_SCLK

>

EN reset

Channels_counter

counter_channels
CLRn

= counter_channels_limit

counter_channels_CLRn

counter_channels_en

end_channels

reset

DAC_DIN

>
EN

busy

DATA_CH1

DATA_CH2

DATA_CH3

DATA_CH4

CONCATENATE

2
ADDRESS1

OP_CODE0
2

2
ADDRESS2

OP_CODE0
2

2
ADDRESS3

OP_CODE0
2

2
ADDRESS4

OP_CODE1
2

48
DATA_OUT

shift

PARALLEL_IN

D

SYNC_LOAD

12

12

12

12

Q

Figure 3.13: DAC124S085 manager entity organization.

With respect to the ADC case, the DAC manager presents similar blocks. In particular:

• a counter to set the correct SCLK signal frequency;

• a counter to compute the transitions of the SCLK signal, and consequently its
cycles, to manage the transmission length;

• a counter to guarantee that the 𝑆𝑌𝑁𝐶 signal stays high for the minimum amount of
time between two transmissions;

• a block which concatenates every channel 12-bit data with the corresponding
address and operational code and then every 16-bit word with the other ones;

• a counter to keep track of the transmitted words;

• a shift register, with a synchronous parallel 48-bit input load and a serial output,
Most Significant Bit (MSB) first.

The aforementioned sampling process is intrinsic to the shift register parallel loading:
in fact, the signal which triggers the parallel loading operation is generated by the AND

65

Control System Implementation on Vivado and Simulations

operator between the data_ready signal and the logically negated busy signal. The latter
is kept at the high value for all the four transmissions duration and therefore ensures that
the state of the shift register is overwritten only when no transmission is ongoing. Also
in this case, depending on the FSM outputs, the blocks in the EU are accordingly enabled
and, on the other hand, the outputs of the different counters are exploited to trigger the
FSM state updates.

In the following discussions, the programmable variables which are reported in the
figure are set to the hereby listed values:

• counter_SCLK_limit = 0;

• counter_transistions_limit = 31;

• counter_SYNCn_UP_limit = 0;

• counter_channels_limit = 3.

These parameters values correspond to the generation of a 40 MHz SCLK signal, char-
acterized by 16 cycles inside a transmission. Moreover, the obtained tSYNC and tSS are
both equal to 12.5 ns and greater than the minimum required values.

The DAC manager block design implemented in Vivado is reported in Figure 3.14. As
shown, the Clocking Wizard IP generates the 80 MHz system clock frequency, whereas
the VIO IP provides the DAC manager entity with the active low reset signal, an always
active data_ready signal to trigger the conversion whenever possible and the four channels
respective 12-bit values to be converted. Then, the outputs of the manager can be
visualized on the oscilloscope as depicted in Figure 3.15: in the figure legend, the 12-bit
unsigned integer value data which are transmitted to the corresponding DAC channels
are highlighted. As shown, the DAC correct operation is validated.

clk_in1_0

clk_wiz_0

Clocking Wizard

reset

clk_in1

clk_out1

locked

vio_0

VIO (Virtual Input/Output)

clk

probe_out0[0:0]

probe_out1[0:0]

probe_out2[11:0]

probe_out3[11:0]

probe_out4[11:0]

probe_out5[11:0]

DAC124S805_0

DAC124S805_v1_0

clk

reset

data_ready

DATA_CH1[11:0]

DATA_CH2[11:0]

DATA_CH3[11:0]

DATA_CH4[11:0]

DAC_SYNCn

DAC_SCLK

DAC_DIN

ila_0

ILA (Integrated Logic Analyzer)

clk

probe0[0:0]

probe1[0:0]

probe2[0:0]

DAC_SYNCn_0

DAC_DIN_0

DAC_SCLK_0

Figure 3.14: DAC124S085 manager block design in Vivado.

In order to further check the correct operation of ADC and DAC, the block design
depicted in Figure 3.16 is implemented in Vivado: as shown, 4 ADCs are exploited in

66

3.3 – DAC Implementation and Test

Figure 3.15: DAC124S085 oscilloscope waveforms.

this case and their sampled data are visualized on the oscilloscope by means of the four
DAC channels. In particular, one of the ADCs is fed with a sinusoidal waveform by
means of the function generator depicted in Figure 3.2, whereas the other ones sample
the current flowing in the U, V, W nodes of the Guasch power stack represented in
Figure 3.3 and, therefore, are expected to produce on the oscilloscope constant voltages
whose value is around 2.5 V since no current is flowing in the converter. Anyway, as
aforementioned, the actual obtained values are slightly different due to the tolerances of
the ADC conditioning circuits. The result of the experiment is depicted in Figure 3.17:
as can be seen, the obtained waveforms are the expected ones, demonstrating the two
blocks correct behavior.

clk_in1_0

ADC_SDATA1_0

ADC_SDATA2_0

ADC_SDATA3_0

ADC_SDATA4_0

clk_wiz_0

Clocking Wizard

reset

clk_in1

clk_out1

locked

vio_0

VIO (Virtual Input/Output)

clk
probe_out0[0:0]

probe_out1[0:0]

ADC_AD7276B_0

ADC_AD7276B_v1_0

clk

reset

ADC_start

ADC_SDATA1

ADC_SDATA2

ADC_SDATA3

ADC_SDATA4

ADC_CSn

ADC_SCLK

ADC_DATA1[11:0]

ADC_DATA2[11:0]

ADC_DATA3[11:0]

ADC_DATA4[11:0]

ADC_data_ready

DAC124S805_0

DAC124S805_v1_0

clk

reset

data_ready

DATA_CH1[11:0]

DATA_CH2[11:0]

DATA_CH3[11:0]

DATA_CH4[11:0]

DAC_SYNCn

DAC_SCLK

DAC_DIN

ila_0

ILA (Integrated Logic Analyzer)

clk

probe0[0:0]

ADC_SCLK_0

ADC_SCLK_1

ADC_SCLK_2

ADC_SCLK_3

DAC_SYNCn_0

DAC_SCLK_0

DAC_DIN_0

ADC_CSn_0

Figure 3.16: ADC7276 and DAC124S085 managers block design in Vivado.

67

Control System Implementation on Vivado and Simulations

Figure 3.17: ADC7276 and DAC124S085 cascade oscilloscope waveform.

3.4 PWM Modulator Test
The PWM modulator block design deployed in Vivado is depicted in Figure 3.18. In

particular, to validate its various features, the Logic Analyzer is exploited. In fact, all the
PWM modulator outputs are connected to the EXT pin header. Some example operating
waveforms are reported in Figure 3.19, considering a constant control voltage integer
value equal to 2048, and the correspondence between each Logic Analyzer channel and
PWM modulator output signal is summarized in Table 3.1.

clk_in1_0

clk_wiz_0

Clocking Wizard

reset

clk_in1

clk_out1

locked

vio_0

VIO (Virtual Input/Output)

clk
probe_out0[0:0]

probe_out1[15:0]

PWM_MODULATOR_0

PWM_MODULATOR_v1_0

reset

CLK_80MHz

Control_voltage[15:0]

Gate_HS

Gate_LS

Sampling_trigger

Controller_execution

Vcontr_update

ila_0

ILA (Integrated Logic Analyzer)

clk

probe0[0:0]

probe1[0:0]

probe2[0:0]

probe3[0:0]

probe4[0:0]

Controller_execution_0

Gate_HS_0

Gate_LS_0

Sampling_trigger_0

Vcontr_update_0

Figure 3.18: PWM modulator block design in Vivado.

As can be seen, the wanted dead time is inserted in the switching functions operation.
Furthermore, the control voltage updating signal is placed in the middle points of the
switching functions pulses, which coincide with the maximum and minimum values of
the triangular carrier and, consequently, with the according sampling instants. Moreover,

68

3.4 – PWM Modulator Test

Figure 3.19: PWM modulator example waveforms obtained with the Logic Analyzer.

Logic Analyzer channels PWM modulator outputs

Channel 0 Gate_HS
Channel 1 Gate_LS
Channel 2 Sampling_trigger
Channel 3 Controller_execution
Channel 4 Vcontr_update

Table 3.1: Logic Analyzer channels and PWM modulator outputs correspondence.

the controller execution signal is generated at the previous sampling instant with respect
to the control voltage updating one. The additional clock cycle delay which was discussed
in the previous chapter is, in fact, inserted at the control system level.

Finally, the correct overwriting and consequent necessary short circuit avoidance op-
erations have been validated. An example is reported in Figure 3.20a, where the two
switching functions and the control voltage update signal are reported when the control
voltage value is equal to 40, hence to DT/2, and then changed: as shown, in the first
part the high-side IGBT switching function is always set to its low value, whereas the
low-side IGBT one is always high. When, instead, the control voltage is updated, the
wanted dead time is provided in the switching functions operation avoiding the short
circuit, as underlined in Figure 3.20b, which depicts a zoom on the control voltage vari-
ation region. Notice that only in this experimental validation the control voltage is not
changed in correspondence of its updating signal, since it is provided through the VIO IP
in Vivado. The correct operation is obtained when deploying also the current controller,
which ensures that the control voltage is updated only in the correct instants.

69

Control System Implementation on Vivado and Simulations

The same result is similarly obtained for the case in which the control voltage value
is set to 4055, hence equal to 2N-1-DT/2: in that case, the high-side and low-side IGBTs
switching functions are respectively always high and low until the control voltage value is
changed. Anyway, also in this case the short circuit is correctly avoided by the insertion
of the wanted dead time in the switching functions operations.

(a)

(b)

Figure 3.20: PWM modulator overwriting and short circuit avoidance operations when
the control voltage is smaller than or equal to DT/2 example (a) and zoom on the dead
time insertion in correspondence of the control voltage change (b).

70

3.5 – Modules Protection Block Operation and Test

3.5 Modules Protection Block Operation and Test
It is useful, when validating the whole control system operation, to insert a block in

order to protect both the converter and the system in case control errors or failures in
general occur. For this reason, the IGBTs gate driving signals are enabled only if no error
is detected during the system execution: this is done by simply exploiting AND logic
gates between the PWM modulator outputs and a specific signal, named PROTECTION,
which is set to 0 whenever the driving system needs to be stopped, namely when one of
the following conditions occurs:

• the load current exceeds given limits independently of its direction;

• the input voltage is higher than a given limit;

• the emergency button is pushed, producing an active high signal;

• one of the FAULT signals is driven low.

For what concerns the load current and the input voltage, the ADC sampled data is
exploited: since it provides a 12-bit data in the corresponding range, the samples are
compared with programmable 12-bit bounds accordingly set. In particular, the load
current modulus is imposed to be always lower than 20 A, hence the corresponding
following unsigned values are deployed for its bounds:

• load current maximum bound: 3071;

• load current minimum bound: 1025.

On the other hand, the maximum input voltage bound unsigned value is set to 4000, cor-
responding to a value which is higher than 700 V. For the bounds choice, it is important
to consider that the deployed system implements a current control: an error in the control
strategy has a strong, and dangerous, impact on the controlled current, as opposed to the
input voltage, which is provided by a power supply.

In case a comparison operation results in a bound exceeding, a registered signal is
imposed to 0. In a similar manner, when the emergency button is pushed, a registered
signal is set to 0. The aforementioned PROTECTION signal is therefore obtained by
means of an AND logic gate, whose operands are these two registered signals and all the
FAULT signals. Notice that if one of the two registered signals is set to 0, the driving
operation is immediately stopped and can only resume only when the active low reset
signal is provided, whereas if a FAULT signal is driven low by the Guasch power stack,
the driving operation is stopped until the EN_PWM signal is driven low for the required
amount of time.

71

Control System Implementation on Vivado and Simulations

In the implemented case, the adopted multisampling strategy leads to a more effective
protection block execution: in fact, the load current is monitored NMS times inside a
switching period, with respect to the 2 times characteristic of a double-sampling strategy
for instance. This helps to quickly detect an overcurrent situation as opposed to other
strategies.

Notice that the description above is referred to the deployed H-bridge converter case.
This means that IGBTs T5, T6 and T7 are not driven by the PWM modulator outputs.
Therefore, the protection block also provides an always null signal for these three transis-
tors. Finally, it is important to highlight that the same protection block implementation
can be easily extended also to other power converters and additional quantities can be
monitored, as will be done in the following chapter.

The protection block corresponding VHDL code is implemented in Vivado and is
validated. The deployed block design, which is characterized by the presence of other
H-bridge converter control system blocks, is reported in Figure 3.21. In particular, the
Clocking Wizard IP generates the 80 MHz system clock, whereas the VIO IP provides
the active low reset signal and a constant control voltage value equal to 2048 to the PWM
modulator, which is exploited to provide the gate driving signals to the protection block,
whereas the Sampling_trigger signal is fed to the ADC manager in order to provide the
ADC_start signal and accordingly trigger its sampling operation.

The Logic Analyzer is exploited to visualize the protection block outputs, namely all
the gate driving signals, besides the PROTECTION signal, which are connected to the pin
header denoted as EXT in Figure 3.1. The correspondence between the Logic Analyzer
digital channels and the protection block output signals is reported in Table 3.2, whilst
some operation waveforms are depicted in Figure 3.22. As shown, the T5, T6 an T7
IGBTs driving signals are always null, as wanted, whereas the switching functions of the
other transistors are correctly provided accordingly to the set control voltage value. When
the PROTECTION signal is driven low, all the protection block outputs are consequently
set to 0, as expected: in the case shown in the figure, this is obtained by exploiting the
function generator to provide the protection block with a value which exceeds the current
bounds. However, the same waveforms are obtained also for the other conditions.

3.6 Averager Test
The averager correct operation is evaluated by providing its inputs with constant val-

ues and by checking the averaged outputs after NMS execution cycles. For this reason,
the averager block scheme depicted in Figure 2.13 is slightly modified in order to provide
an active high signal, named Average_computed, after NMS averager block executions,
indicating that the average values have been computed.

72

3.6 – Averager Test

EXT_FAULT_0

FAULTn_T1_0

FAULTn_T2_0

FAULTn_T3_0

FAULTn_T4_0

FAULTn_T5_0

ADC_SDATA1_0

clk_in1_0

ADC_SDATA2_0

FAULTn_T6_0

FAULTn_T7_0

clk_wiz_0

Clocking Wizard

reset

clk_in1

clk_out1

locked

vio_0

VIO (Virtual Input/Output)

clk
probe_out0[0:0]

probe_out1[15:0]

PWM_MODULATOR_0

PWM_MODULATOR_v1_0

reset

CLK_80MHz

Control_voltage[15:0]

Gate_HS

Gate_LS

Sampling_trigger

Controller_execution

Vcontr_update

ADC_AD7276B_0

ADC_AD7276B_v1_0

clk

reset

ADC_start

ADC_SDATA1

ADC_SDATA2

ADC_CSn

ADC_SCLK

ADC_DATA1[11:0]

ADC_DATA2[11:0]

ADC_data_ready

PROTECTION_0

PROTECTION_v1_0

clk

reset

EXT_FAULT

FAULTn_T1

FAULTn_T2

FAULTn_T3

FAULTn_T4

FAULTn_T5

FAULTn_T6

FAULTn_T7

I[11:0]

Vdc[11:0]

ADC_data_ready

PWM_T1

PWM_T2

PWM_T3

PWM_T4

PROTECTION_out

GATE_1

GATE_2

GATE_3

GATE_4

GATE_5

GATE_6

GATE_7

ila_0

ILA (Integrated Logic Analyzer)

clk

probe0[0:0]

probe1[0:0]

probe2[0:0]

PROTECTION_out_0

GATE_1_0

GATE_2_0

GATE_3_0

GATE_4_0

GATE_5_0

GATE_6_0

GATE_7_0

ADC_CSn_0

ADC_SCLK_0

ADC_SCLK_1

Figure 3.21: Protection block design in Vivado.

Logic Analyzer channels Protection block outputs

Channel 0 Gate_1
Channel 1 Gate_2
Channel 2 Gate_3
Channel 3 Gate_4
Channel 4 Gate_5
Channel 5 Gate_6
Channel 6 Gate_7
Channel 7 PROTECTION

Table 3.2: Logic Analyzer channels and protection block outputs correspondence.

Figure 3.22: Protection block Logic Analyzer waveforms.

73

Control System Implementation on Vivado and Simulations

The block design implemented in Vivado is reported in Figure 3.23: the PWM mod-
ulator Sampling_trigger signal is exploited, only for this validation purpose, to provide
the averager block with the ADC_data_ready signal, whereas the constant current and
voltage values are generated by means of the VIO IP and the averager outputs are visual-
ized through the ILA IP.

An example of the averager operation is depicted in Figure 3.24, where the constant
current and voltage integer values are set to 4095 and 1000 respectively. In particular,
the Sampling_trigger signal, the current and voltage computed average values and the
Average_computed signal are shown in the figure in this precise order. As highlighted,
the correct average values are computed after NMS block executions, as indicated by the
appropriate signal.

clk_in1_0

clk_wiz_0

Clocking Wizard

reset

clk_in1

clk_out1

locked

vio_0

VIO (Virtual Input/Output)

clk

probe_out0[0:0]

probe_out1[11:0]

probe_out2[11:0]

PWM_MODULATOR_0

PWM_MODULATOR_v1_0

reset

CLK_80MHz

Control_voltage[15:0]

Gate_HS

Gate_LS

Sampling_trigger

Controller_execution

Vcontr_update

Averager_0

Averager_v1_0

clk

reset

ADC_data_ready

I[11:0]

Vin[11:0]

I_avrg[15:0]

Vin_avrg[15:0]

Average_computed

ila_0

ILA (Integrated Logic Analyzer)

clk

probe0[0:0]

probe1[15:0]

probe2[15:0]

probe3[0:0]

Figure 3.23: Averager block design implementation in Vivado.

Figure 3.24: Averager block operation example.

Finally, notice that the averager block outputs change one clock cycle after the sam-
pling trigger signal is received: this is, as wanted, due to the presence of the delay block
placed on its trigger port as shown in the whole control system block scheme reported in
Figure 2.19.

74

3.7 – System Test with Discrete Time Plant Equivalent Model

3.7 System Test with Discrete Time Plant Equivalent
Model

In this section both the whole control system and the discrete time plant equivalent
model VHDL code, derived from the block scheme reported in Figure 2.24 which imple-
ments a DSDU strategy, is imported in Vivado in order to perform a simulation to verify
the system correct operation. For this reason, a testbench has been written to generate
the proper reset and clock signals besides the reference current signal: in particular,
the latter is initially set to 20 A to then be changed, after 7 ms, to −20 A, whereas the
whole simulation is performed for 14 ms. Notice that these parameters correspond to the
settings exploited for the Simulink simulations depicted in Figure 2.25, in order to be able
to compare that simulation with the one performed in Vivado. The result of the latter
is reported in Figure 3.25. As shown, the obtained load current behavior is similar to
that depicted in Figure 2.25a and the control system correct operation is therefore verified.

Figure 3.25: Control system and discrete time plant equivalent model simulation.

3.8 Control System Experimental Validation
The whole control system is experimentally validated in this section, exploiting the

setup depicted in Figure 3.26. As shown, the PCB is connected to the Guasch power
stack through the corresponding connectors underlined in Figure 3.1. A current probe is
exploited to measure the load current which is showed on the oscilloscope. The power
supply provides the wanted 600 V input voltage source. The inductive load cannot be
seen in the figure, anyway it is connected to the switching legs as specified in the previous
chapter: in particular, a specific control signal, named K1, configures a relay in order to
connect the inductive load to the circuit. The default configuration for the Guasch power

75

Control System Implementation on Vivado and Simulations

stack relay, which is underlined in Figure 3.3, is open as wanted: for this reason, in the
following discussion no specific control signal will be provided.

OSCILLOSCOPE

EMERGENCY BUTTON

PCB

GUASCH POWER STACK

POWER SUPPLY

Figure 3.26: Control system experimental validation setup.

clk_in1_0

ADC_SDATA1_0

ADC_SDATA2_0

EXT_FAULT_0

FAULTn_T1_0

FAULTn_T2_0

FAULTn_T3_0

FAULTn_T4_0

FAULTn_T5_0

FAULTn_T6_0

FAULTn_T7_0

clk_wiz_0

Clocking Wizard

reset

clk_in1

clk_out1

locked

ADC_AD7276B_0

ADC_AD7276B_v1_0

clk

reset

ADC_start

ADC_SDATA1

ADC_SDATA2

ADC_CSn

ADC_SCLK

ADC_DATA1[11:0]

ADC_DATA2[11:0]

ADC_data_ready

CONTROL_SYSTEM_H_BRI_0

CONTROL_SYSTEM_H_BRIDGE_v1_0

clk

reset

CLK_80MHz

Iref[31:0]

ADC_data_ready

I[11:0]

Vin[11:0]

Gate_HS

Gate_LS

Sampling_trigger

Vcontr_update

vio_0

VIO (Virtual Input/Output)

clk

probe_out0[0:0]

probe_out1[31:0]

probe_out2[0:0]

probe_out3[0:0]

PROTECTION_0

PROTECTION_v1_0

clk

reset

EXT_FAULT

FAULTn_T1

FAULTn_T2

FAULTn_T3

FAULTn_T4

FAULTn_T5

FAULTn_T6

FAULTn_T7

I[11:0]

Vdc[11:0]

ADC_data_ready

PWM_T1

PWM_T2

PWM_T3

PWM_T4

GATE_1

GATE_2

GATE_3

GATE_4

GATE_5

GATE_6

GATE_7

DAC124S805_0

DAC124S805_v1_0

clk

reset

data_ready

DATA_CH1[11:0]

DATA_CH2[11:0]

DATA_CH3[11:0]

DATA_CH4[11:0]

DAC_SYNCn

DAC_SCLK

DAC_DIN

ila_0

ILA (Integrated Logic Analyzer)

clk

probe0[11:0]

probe1[0:0]

probe2[0:0]

EN_PWM[0:0]

K1[0:0]

ADC_CSn_0

DAC_SYNCn_0

DAC_SCLK_0

DAC_DIN_0

ADC_SCLK_0

ADC_SCLK_1

GATE_1_0

GATE_2_0

GATE_3_0

GATE_4_0

GATE_5_0

GATE_6_0

GATE_7_0

Figure 3.27: Control system block design implementation in Vivado.

The control system block design implemented in Vivado is reported in Figure 3.27.
As shown, the main previously described components are present: the ADC and DAC

76

3.8 – Control System Experimental Validation

managers, the modules protection block and the control system block, composed of the
averager, the current controller and the PWM modulator. The VIO IP provides the current
reference value Iref, in single floating-point precision, besides the reset, K1 and EN_PWM
signals. Various reference average current values have been tested; the corresponding
load current waveforms are depicted in Figure 3.28, where the tested reference values
are highlighted in the figure legend. The corresponding load current average values,
computed by the oscilloscope, are reported in Table 3.3. As shown, the load current is
controlled with good accuracy, as expected.

Figure 3.28: H-bridge converter load current waveforms.

Reference average current value Load current average value

15 A 14.965 A
10 A 10.013 A
5 A 5.048 A
0 A 0.087 A
−5 A −4.851 A
−10 A −9.817 A
−15 A −14.766 A

Table 3.3: Reference and measured load current average values comparison.

77

78

Chapter 4

Three-Phase Inverter Average Current
Control Implementation

In this chapter, the previously designed average current control system is extended to
a three-wire three-phase inverter with a star connected inductive load, whose topology
is depicted in Figure 4.1. After a quick review of the converter operation, the Clarke’s
and Park’s transfoms are presented, since they can be exploited to obtain a more effective
control system. For this reason, their block schemes are implemented and simulated
on Simulink and experimentally tested by deploying them on the FPGA, importing the
automatically generated VHDL code. After that, they are inserted in the previously
presented control system, which is adapted to the converter specifications and operation.
Moreover, a carrier-based space vector PWM modulation is implemented to increase the
system performance. Finally, the whole control system is implemented on the FPGA and
experimentally validated by testing it on the three-phase inverter realized with the Guasch
power stack reported in Figure 3.3. For this reason, in Figure 4.1 the corresponding
transistors which are driven are highlighted.

Vin

qT1(t)
ia(t)

qT2(t)

qT3(t)

qT4(t)

qT5(t)

qT6(t)
ic(t)ib(t)

A
B

C

L

L L

va(t)

vb(t) vc(t)
N

Figure 4.1: Three-phase inverter topology.

79

Three-Phase Inverter Average Current Control Implementation

4.1 Three-phase Inverter Operation
In this section, the operation of the three-phase inverter depicted in Figure 4.1 is

reviewed referring to a sinusoidal-PWM (SPWM), in which each switching leg is mod-
ulated independently from the others. As explained in [1][3][4], the PWM modulator
operation is identical to that reported in Chapter 1 for the two-quadrant DC/DC con-
verter, comparing in this case the triangular carrier with a set of three-phase sinusoidal
waveforms, hence with same frequency and amplitude but with 120◦ phase shift with
each other. For this reason, the control voltage for each phase needs to be computed
appropriately, as will be explained in this section referring to [2][3][4].

First, it is useful to rearrange the input voltage source as reported in Figure 4.2 where
a virtual ground is highlighted. In the following discussion, vA0(t), vB0(t) and vC0(t) will
be referred as line-to-ground voltages, whereas va(t), vb(t) and vc(t) are named phase
voltages.

0.5 Vin
qT1(t)

ia(t)

qT2(t)

qT3(t)

qT4(t)

qT5(t)

qT6(t)

L

ic(t)ib(t)

0.5 Vin
L L

va(t)

vb(t) vc(t)
N

0
A

B
C

Figure 4.2: Three-phase inverter topology with virtual ground.

Each switching leg operation can be modeled, referring to the virtual ground, as a square
wave: taking as an example phase A and considering complementary switching functions
in the same leg, its line-to-ground voltage can be expressed as:

𝑣𝐴0(𝑡) =
𝑉𝑖𝑛

2
𝑞𝑇1(𝑡) −

𝑉𝑖𝑛

2
𝑞𝑇2(𝑡) =

𝑉𝑖𝑛

2
𝑞𝑇1(𝑡) −

𝑉𝑖𝑛

2
(1 − 𝑞𝑇1(𝑡)) = 𝑉𝑖𝑛𝑞𝑇1(𝑡) −

𝑉𝑖𝑛

2
(4.1)

By considering the moving average quantities in (4.1) and recalling (1.5), (4.2) can be
derived, where the duty cycle of the phase dA(t) is underlined.

𝑉𝐴0(𝑡) =
1
𝑇𝑆

∫ 𝑡+𝑇𝑆

𝑡

(𝑉𝑖𝑛𝑞𝑇1(𝑡) −
𝑉𝑖𝑛

2
)d𝜏 = 𝑉𝑖𝑛𝑑𝐴 (𝑡) −

𝑉𝑖𝑛

2
= 𝑉𝑖𝑛 (𝑑𝐴 (𝑡) −

1
2
) (4.2)

Recalling (1.22) and that the relation is still valid for a slow varying control voltage,
expression (4.3) can be derived. This is a fundamental aspect, since by imposing that
each phase control voltage is a sinusoidal signal whose frequency is much lower than

80

4.1 – Three-phase Inverter Operation

the switching frequency, each line-to-ground voltage moving average will be a sinusoidal
signal at the same frequency.

𝑉𝐴0(𝑡) = 𝑉𝑖𝑛 (
𝑣𝑐𝑜𝑛𝑡𝑟,𝐴 (𝑡)
𝑉𝑇𝑅

− 1
2
) (4.3)

By requiring VA0(t) to be a sinusoidal voltage at the fundamental angular frequency 𝜔
with a given amplitude �̂� , (4.3) can be rearranged to find the control voltage expression
for the switching leg A in (4.4).

𝑣𝑐𝑜𝑛𝑡𝑟,𝐴 (𝑡) = [�̂�
𝑉𝑖𝑛

𝑠𝑖𝑛(𝜔𝑡) + 1
2
]𝑉𝑇𝑅 (4.4)

Similar derivations can be made also for the other phases, considering the according
switching functions and defining the corresponding duty cycles and control voltages. In
particular, by requiring the moving average line-to-ground voltages to be three-phase
sinusoidal waveform, as expressed in (4.5), (4.6) is obtained.⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑉𝐴0(𝑡) = �̂� 𝑠𝑖𝑛(𝜔𝑡)
𝑉𝐵0(𝑡) = �̂� 𝑠𝑖𝑛(𝜔𝑡 − 2𝜋

3)
𝑉𝐶0(𝑡) = �̂� 𝑠𝑖𝑛(𝜔𝑡 + 2𝜋

3)
(4.5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑣𝑐𝑜𝑛𝑡𝑟,𝐴 (𝑡) = (𝑉𝐴0 (𝑡)

𝑉𝑖𝑛
+ 1

2)𝑉𝑇𝑅 = [�̂�
𝑉𝑖𝑛
𝑠𝑖𝑛(𝜔𝑡) + 1

2]𝑉𝑇𝑅
𝑣𝑐𝑜𝑛𝑡𝑟,𝐵 (𝑡) = (𝑉𝐵0 (𝑡)

𝑉𝑖𝑛
+ 1

2)𝑉𝑇𝑅 = [�̂�
𝑉𝑖𝑛
𝑠𝑖𝑛(𝜔𝑡 − 2𝜋

3) + 1
2]𝑉𝑇𝑅

𝑣𝑐𝑜𝑛𝑡𝑟,𝐶 (𝑡) = (𝑉𝐶0 (𝑡)
𝑉𝑖𝑛

+ 1
2)𝑉𝑇𝑅 = [�̂�

𝑉𝑖𝑛
𝑠𝑖𝑛(𝜔𝑡 + 2𝜋

3) + 1
2]𝑉𝑇𝑅

(4.6)

A fundamental aspect can be found by noticing that, in the three-wire case, the
following equation holds:

𝑖𝑎 (𝑡) + 𝑖𝑏 (𝑡) + 𝑖𝑐 (𝑡) = 0 (4.7)

In fact, under this constraint the sum of the three phase voltages va(t), vb(t) and vc(t) is
always null, as shown in (4.8). Consequently, (4.9) can be derived.

𝑣𝑎 (𝑡)+𝑣𝑏 (𝑡)+𝑣𝑐 (𝑡) = 𝐿
d𝑖𝑎 (𝑡)

dt
+𝐿d𝑖𝑏 (𝑡)

dt
+𝐿 d𝑖𝑐 (𝑡)

dt
= 𝐿

d(𝑖𝑎 (𝑡) + 𝑖𝑏 (𝑡) + 𝑖𝑐 (𝑡))
dt

= 0 (4.8)

𝑣𝐴0(𝑡) +𝑣𝐵0(𝑡) +𝑣𝐶0(𝑡) = 𝑣𝑎 (𝑡) +𝑣𝑁0(𝑡) +𝑣𝑏 (𝑡) +𝑣𝑁0(𝑡) +𝑣𝑐 (𝑡) +𝑣𝑁0(𝑡) = 3𝑣𝑁0(𝑡) (4.9)

After that, the moving averages quantities can be considered in (4.9), obtaining (4.10).

𝑉𝐴0(𝑡) +𝑉𝐵0(𝑡) +𝑉𝐶0(𝑡) = 3𝑉𝑁0(𝑡) (4.10)

Notice that the left part of the equation, recalling (4.5), consists of the sum of three
sinusoidal voltages with same amplitude and 120◦ phase shift, whose result is always 0.

81

Three-Phase Inverter Average Current Control Implementation

As a consequence, also VN0(t) is always null, and the neutral can be considered connected
to the virtual ground. This is a crucial aspect, since the phase voltages moving averages
are equal to the corresponding line-to-ground voltages in the three-wire case, as shown
in (4.11). Furthermore, by imposing the control voltages as derived in (4.6), the obtained
phase voltages moving averages describe the wanted three-phase system.⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑉𝑎 (𝑡) = 𝑉𝐴0(𝑡) −𝑉𝑁0(𝑡) = 𝑉𝐴0(𝑡) = �̂� 𝑠𝑖𝑛(𝜔𝑡)
𝑉𝑏 (𝑡) = 𝑉𝐵0(𝑡) −𝑉𝑁0(𝑡) = 𝑉𝐵0(𝑡) = �̂� 𝑠𝑖𝑛(𝜔𝑡 − 2𝜋

3)
𝑉𝑐 (𝑡) = 𝑉𝐶0(𝑡) −𝑉𝑁0(𝑡) = 𝑉𝐶0(𝑡) = �̂� 𝑠𝑖𝑛(𝜔𝑡 + 2𝜋

3)
(4.11)

The same conclusions can be drawn also for instance for LRE loads, as long as the
inductances and resistances values are identical in every phase and that the sum of the
three back-emf voltages is always null [3]. Anyway, the load has been considered to be
composed of inductors only since this is the system which will be experimentally tested
at the end of this chapter.

From a control system point of view, it is useful to notice that if the three control
voltages are properly generated, the three-phase voltages are correctly applied to the load.
Furthermore, since the neutral point is connected to the virtual ground, as aforementioned,
each phase can be modeled as shown in Figure 4.3, where phase A, an LRE load and
moving averages quantities are considered.

L R

Ea(t)VA0(t)

Ia(t)

VL(t) VR(t)

Figure 4.3: Three-phase inverter phase equivalent model considering moving averages.

As can be seen, this is similar to the model depicted in Figure 1.3 if the moving aver-
ages are considered: in this case, the voltage which is applied to the load and the back-emf
are sinusoidal voltages. As a result, all the considerations about the two-quadrant DC/DC
converter are still valid in this case for each phase, as long as the proper adjustments are
introduced. In particular, considering that each phase voltage is a sinusoidal waveform
and that a low-pass filtering operation is introduced by the load, the current in each phase
is respectively a sinusoidal waveform at the fundamental frequency. As a consequence,
starting from the three-phase voltages, three-phase currents are obtained in the star con-
nected load.

82

4.2 – Clarke’s and Park’s Transforms

As aforementioned, the equivalent model depicted in Figure 4.3 is valid for each
phase: for what concerns the average current control system implementation, this means
that three different PI regulators, one for each phase, need to be deployed. Further-
more, with respect to the average current controller presented in Chapter 1, the following
considerations need to be taken into account: first, for each PI regulator, the KP and KI
expressions derived in (1.40) are still valid and have to be referred to the phase inductance
value. Secondly, by noticing that each PI regulator output is the line-to-ground voltage,
whose value is in the range [−𝑉𝑖𝑛2 - 𝑉𝑖𝑛

2], the proportional and integral parts, considering
also a feedforward technique in general, need to be limited and saturated by accordingly
adapting (1.46), (1.47) and (1.48). Finally, a different strategy has to be adopted for
the control voltage generation: since the output of the PI regulator is the line-to-ground
voltage, as computed in (4.6) it has to be divided by Vin, then 0.5 needs to be summed
and in the end the triangular carrier amplitude is multiplied to the result. Each control
voltage is then compared to the triangular carrier by means of three comparators, one
for each phase, inside the PWM modulator block, to generate the transistors switching
functions [3][4].

In the described case, three PI regulators are needed; anyway, a simplified and better
performing control system can be implemented by noticing that the three phases are not
independent from each other by means of (4.7) and by exploiting Clarke’s and Park’s
transforms.

4.2 Clarke’s and Park’s Transforms
As explained in [2][15], in a three-phase electric system each phase is self-consistent

from a mathematical point of view and can be modeled separately from the other ones,
as was done in the previous section. Anyway, due to the three-wire physical constraint
reported in (4.7), an equivalent two-phase system can be obtained. From a control
point of view, this means that only two PI regulators can be deployed instead of three.
This simplification is achieved by applying the Clarke’s transform to a set of three-
phase variables, transforming the abc three-phase reference frame into the 𝛼𝛽 one. This
leads to a two-phase equivalent description of the three-phase system. In this case, the
transformation matrix is reported in (4.12) in the amplitude invariant case.[︃

𝑥𝛼
𝑥𝛽

]︃
=

2
3

[︄
1 −1

2
−1
2

0
√

3
2

−
√

3
2

]︄ ⎡⎢⎢⎢⎢⎣
𝑥𝑎
𝑥𝑏
𝑥𝑐

⎤⎥⎥⎥⎥⎦ =
[︄

2
3

−1
3

−1
3

0
√

3
3

−
√

3
3

]︄ ⎡⎢⎢⎢⎢⎣
𝑥𝑎
𝑥𝑏
𝑥𝑐

⎤⎥⎥⎥⎥⎦ (4.12)

In particular, by recalling (4.7), it can be further simplified as shown in (4.13).{︄
𝑥𝛼 = 𝑥𝑎

𝑥𝛽 =
1√
3
𝑥𝑏 − 1√

3
𝑥𝑐

(4.13)

83

Three-Phase Inverter Average Current Control Implementation

The inverse Clarke’s transform is derived in (4.14) by reversing (4.13) and recalling (4.7).⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑥𝑎 = 𝑥𝛼

𝑥𝑏 =
√

3
2 𝑥𝛽 −

1
2𝑥𝛼

𝑥𝑐 = −
√

3
2 𝑥𝛽 −

1
2𝑥𝛼

(4.14)

An improvement in the average current controller performance can be achieved by
exploiting the rotating reference frame dq instead of the fixed 𝛼𝛽 one. As explained
in [2], by applying the Park’s transform, the dq reference frame rotates around the 𝛼𝛽
one at a constant angular frequency 𝜔: when applying the Clarke’s transform to a set
of three-phase signals, a rotating vector in the reference frame 𝛼𝛽 is obtained with a
frequency equal to that of the three-phase variables. Exploiting the Park’s transform, the
dq frame angular speed can be set equal to that of the rotating vector obtained by means
of the Clarke’s transform: as a result, by doing so in this reference frame the sinusoidal
signals are seen as constant. This is crucial when deploying a PI regulator, since it is able
to provide a null steady-state error only with constant reference signals. By exploiting
these two transforms, this aspect can be achieved.

To summarize, the Clarke’s and Park’s transform are implemented in the three-phase
inverter control system since they lead to a null steady-state error and to a reduction of
the needed PI regulators: basically, considering moving averages quantities, the direct
transforms are applied to the three-phase currents obtaining the equivalent Id(t) and Iq(t)
values. These are the inputs of two PI regulators, which compare these values with
the corresponding reference and compute the V*

d(t) and V*
q(t) two-phase equivalent

voltages corresponding to V*
a(t), V*

b(t) and V*
c(t), which are obtained by applying the

inverse transforms. The direct and inverse Park’s transformation matrices are respectively
reported in (4.15) and (4.16), where 𝜃 = 𝜔𝑡 is the angle between d and 𝛼 reference axes.
Furthermore, in the three-phase inverter case, the phase voltages fundamental frequency,
and consequently that of the three-phase currents, can be set by properly generating 𝜃.[︃

𝑥𝑑
𝑥𝑑

]︃
=

[︃
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)
−𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)

]︃ [︃
𝑥𝛼
𝑥𝛽

]︃
(4.15)[︃

𝑥𝛼
𝑥𝛽

]︃
=

[︃
𝑐𝑜𝑠(𝜃) −𝑠𝑖𝑛(𝜃)
𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)

]︃ [︃
𝑥𝑑
𝑥𝑞

]︃
(4.16)

4.3 Sine and Cosine Functions Generator Implementa-
tion and Test

In order to deploy the direct and indirect Park’s transform, proper sine and cosine
functions at the fundamental frequency need to be provided. For this reason, a specific
subsystem is implemented in Simulink, whose block scheme is reported in Figure 4.4.

84

4.3 – Sine and Cosine Functions Generator Implementation and Test

Figure 4.4: Sine and cosine generator block scheme.

Only in this preliminary test phase it is deployed as a triggered subsystem: when
the whole control system is implemented, it is inserted as a simple subsystem inside
the current controller. Anyway, to emulate the correct operation, its execution will be
triggered by the controller execution signal produced by the PWM modulator during the
experimental test. Referring to the figure, the Sine HDL Optimized block produces sine
and cosine waveforms in a programmable fraction length fixed point representation, as
functions of the input angle normalized with respect to 2𝜋.

In order to do so, the wanted fundamental frequency is given as input to the subsystem
and is multiplied by the execution period, which is computed in (2.4), and is added to an
accumulator. The Sine HDL Optimized block input is the accumulator state, which is set
at 0 every time it is greater than or equal to 1, to avoid overflows situations. In an ideal
case, after a given number of execution steps which depends on the input fundamental
frequency and on the execution period, the accumulator state becomes exactly equal to 1;
anyway, due to both numerical precision errors and dependence on input frequency and
execution period values, this is not generally the case. This leads, at the end of every sine
and cosine waveforms periods, to a distortion which can be neglected as long as the input
frequency is much lower than the subsystem execution one, besides the impossibility of
precisely generate the wanted fundamental frequency.

In Figure 4.5, the top-level view of the sine and cosine generator block scheme is
shown to highlight the presence of bias and gain blocks to adapt the [-1 - 1] range of the
two generated waveforms to the [0 - 4095] acceptable by the DAC, in order to visualize
them on the oscilloscope in the range [0 - 5]V during the experimental phase.

The Simulink HDL Coder tool is then exploited to generate the corresponding VHDL
code which is imported in Vivado. The block design represented in Figure 4.6 is im-
plemented to experimentally test the sine and cosine generator correct operation: in par-
ticular, the Clocking Wizard IP produces the 80 MHz system clock frequency, whereas
the PWM modulator provides the sine and cosine generator with the appropriate trigger
signal. The DAC operation is triggered by the control voltage update signal generated
by the PWM modulator. Finally, the VIO IP produces the system reset signal and the
fundamental frequency value. The generated waveforms are then visualized on the oscil-
loscope: three different tests have been performed, namely by setting a 50 Hz, 60 Hz and

85

Three-Phase Inverter Average Current Control Implementation

a 100 Hz reference frequency. The experiment result is reported in Figure 4.7. As can be
seen, the wanted waveforms are correctly generated.

Figure 4.5: Sine and cosine generator block scheme top-level view.

clk_in1_0

clk_wiz_0

Clocking Wizard

reset

clk_in1

clk_out1

locked

vio_0

VIO (Virtual Input/Output)

clk
probe_out0[0:0]

probe_out1[15:0]

PWM_MODULATOR_0

PWM_MODULATOR_v1_0

reset

CLK_80MHz

Control_voltage[15:0]

Gate_HS

Gate_LS

Sampling_trigger

Controller_execution

Vcontr_update

Sin_cos_0

Sin_cos_v1_0

reset

clk_1

f_ref[15:0]

sin[11:0]

cos[11:0]

DAC124S805_0

DAC124S805_v1_0

clk

reset

data_ready

DATA_CH1[11:0]

DATA_CH2[11:0]

DATA_CH3[11:0]

DATA_CH4[11:0]

DAC_SYNCn

DAC_SCLK

DAC_DIN

ila_0

ILA (Integrated Logic Analyzer)

clk

probe0[0:0]

probe1[11:0]

probe2[11:0]

DAC_SYNCn_0

DAC_SCLK_0

DAC_DIN_0

Figure 4.6: Sine and cosine generator block design in Vivado.

4.4 Clarke’s and Park’s Transforms Implementation and
Test

Prior to the insertion of the Clarke’s and Park’s transforms inside the three-phase
inverter average current controller, their correct operation is checked. In order to do
so, first the inverse transforms are implemented: a triggered subsystem, composed of
the inverse transforms implementations and the sine and cosine generator subsystem,
is deployed in Simulink, as depicted in Figure 4.8. In particular, the sine and cosine
generator block scheme is that reported in Figure 4.4, whereas the two subsystems which
implement the Clarke’s and Park’s inverse transforms, recalling expressions (4.14) and
(4.16) respectively, are depicted in Figure 4.9 and Figure 4.10.

86

4.4 – Clarke’s and Park’s Transforms Implementation and Test

(a)

(b)

(c)

Figure 4.7: Sine and cosine generator oscilloscope waveforms with reference frequency
set to (a) 50 Hz, (b) 60 Hz and 100 Hz (c).

87

Three-Phase Inverter Average Current Control Implementation

Figure 4.8: Inverse Clarke’s and Park’s transforms block scheme in Simulink.

Figure 4.9: Inverse Clarke’s transform block scheme in Simulink.

Figure 4.10: Inverse Park’s transform block scheme in Simulink.

The top-level view is reported in Figure 4.11 to highlight the presence of blocks
needed to correctly plot the generated waveforms on the oscilloscope through the DAC:
in particular, the expected outcome is to obtain three-phase sinusoidal waveforms at the
given reference frequency whose amplitude depends on the dq-frame reference currents
values, provided in single floating point precision. If Iq is kept null, the amplitude of the
three waveforms needs to be equal to the Id value, as can be derived by recalling (4.14)
and (4.16).

88

4.4 – Clarke’s and Park’s Transforms Implementation and Test

Figure 4.11: Inverse transforms top-level view block scheme in Simulink.

The VHDL code is then automatically generated and imported in Vivado to deploy the
block design depicted in Figure 4.12: as shown, the PWM modulator block is exploited
to produce the controller execution trigger signal to correctly generate the sine and cosine
waveforms. The dq-frame reference current and the reference frequency values are
provided by the VIO IP. An example of experimentally obtained waveforms is reported
in Figure 4.13, where the reference frequency, Iq and Id values are respectively set to
50 Hz, 0 A and 10 A. In particular, the oscilloscope data has been converted accordingly
in order to show the measurements in terms of current instead of voltage. As shown, the
expected behavior is obtained.

clk_in1_0

clk_wiz_0

Clocking Wizard

reset

clk_in1

clk_out1

locked vio_0

VIO (Virtual Input/Output)

clk

probe_out0[0:0]

probe_out1[31:0]

probe_out2[31:0]

probe_out3[15:0]

PWM_MODULATOR_0

PWM_MODULATOR_v1_0

reset

CLK_80MHz

Control_voltage[15:0]

Gate_HS

Gate_LS

Sampling_trigger

Controller_execution

Vcontr_update

inverse_0

inverse_v1_0

reset

Trigger

Id[31:0]

Iq[31:0]

fref[15:0]

Ia[11:0]

Ib[11:0]

Ic[11:0]

DAC124S805_0

DAC124S805_v1_0

clk

reset

data_ready

DATA_CH1[11:0]

DATA_CH2[11:0]

DATA_CH3[11:0]

DATA_CH4[11:0]

DAC_SYNCn

DAC_SCLK

DAC_DIN

ila_0

ILA (Integrated Logic Analyzer)

clk

probe0[0:0]

probe1[11:0]

probe2[11:0]

probe3[11:0]

DAC_SYNCn_0

DAC_SCLK_0

DAC_DIN_0

Figure 4.12: Inverse Clarke’s and Park’s transforms block design in Vivado.

The direct Clarke’s and Park’s transforms correct operation is validated by exploiting
the inverse transforms previously designed, as shown by the block scheme reported in
Figure 4.14: the idea is to provide specific reference values at the input and obtain the same
values at the output. The implementation of the direct Clarke’s and Park’s transforms
is based on (4.13) and (4.15), as shown in Figure 4.15 and Figure 4.16 respectively.
As before, a triggered subsystem is exploited, as highlighted in Figure 4.17, to properly
generate the sine and cosine functions depending on the input reference frequency.

89

Three-Phase Inverter Average Current Control Implementation

Figure 4.13: Inverse Clarke’s and Park’s transforms oscilloscope waveforms.

Figure 4.14: Inverse and direct Clarke’s and Park’s transforms block scheme in Simulink.

Figure 4.15: Direct Clarke’s transform block scheme in Simulink.

90

4.4 – Clarke’s and Park’s Transforms Implementation and Test

Figure 4.16: Direct Park’s transform block scheme in Simulink.

Figure 4.17: Inverse and direct Clarke’s and Park’s transforms top-level view block
scheme in Simulink.

The automatically generated VHDL code is then imported in Vivado to deploy the
block design depicted in Figure 4.18. As can be seen, the Clocking Wizard IP provides
the 80 MHz frequency system clock, the PWM modulator block generates the controller
execution signal to trigger the transforms operation, whereas the VIO IP is exploited to
provide the dq-frame reference signals in single floating point precision and the reference
frequency values. An example of the obtained values visualized on the ILA is reported
in Figure 4.19, where the Controller_execution signal, the dq-frame reference values
and the Id and Iq values at the output of the block are depicted in this order, exploiting
the hexadecimal representation. In particular, fref, Iq_ref and Id_ref are respectively
set to 50 Hz, 0 A and 5 A. As can be noticed, the obtained values are identical to the
corresponding reference, proving the direct transforms implementation correct operation.

91

Three-Phase Inverter Average Current Control Implementation

clk_in1_0

clk_wiz_0

Clocking Wizard

reset

clk_in1

clk_out1

locked

vio_0

VIO (Virtual Input/Output)

clk

probe_out0[0:0]

probe_out1[31:0]

probe_out2[31:0]

probe_out3[15:0]

PWM_MODULATOR_0

PWM_MODULATOR_v1_0

reset

CLK_80MHz

Control_voltage[15:0]

Gate_HS

Gate_LS

Sampling_trigger

Controller_execution

Vcontr_update

inverse_direct_0

inverse_direct_v1_0

reset

Trigger

Id_ref[31:0]

Iq_ref[31:0]

fref[15:0]

Id[31:0]

Iq[31:0]

ila_0

ILA (Integrated Logic Analyzer)

clk

probe0[0:0]

probe1[31:0]

probe2[31:0]

probe3[31:0]

probe4[31:0]

Figure 4.18: Inverse and direct Clarke’s and Park’s transforms block design in Vivado.

Figure 4.19: Inverse and direct Clarke’s and Park’s transforms ILA values.

4.5 Implemented PWM Modulation Technique
As explained in [1][4] many PWM techniques are possible to modulate a DC/AC

converter. In the three-wire three-phase inverter case, the performance can be increased,
with respect to the conventional techniques, by injecting particular zero-sequence sig-
nals in the control voltages. One of these methods, which increases the linear region
without compromising the obtained output spectrum, is the min-max injection one. To
explain its operation, it is useful to notice that each line-to-ground voltage is equal to
the corresponding phase voltage. Consequently, the output of each PI regulator is the
phase voltage which needs to be imposed to the load in order to obtain the wanted behavior.

This technique consists of modifying the control voltages exploited by each com-
parator inside the PWM modulator to produce the transistors switching functions, by
simply adding to each PI regulator output the average value between the minimum and
the maximum values among the three phase voltages, with negative sign, as defined in
(4.17), where Va

*(t), Vb
*(t) and Vc

*(t) indicate the outputs of the three PI regulators,
hence the phase voltages moving averages values which need to be applied to the load.

92

4.6 – Three-Phase Inverter Current Control System Implementation and Test

𝑉𝑁0(𝑡) = −
min[𝑉∗

𝑎 (𝑡), 𝑉∗
𝑏
(𝑡), 𝑉∗

𝑐 (𝑡)] + max[𝑉∗
𝑎 (𝑡), 𝑉∗

𝑏
(𝑡), 𝑉∗

𝑐 (𝑡)]
2

(4.17)

This leads to a modification of the control voltages expressions which are reported in
(4.6), as shown in (4.18).⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑣𝑐𝑜𝑛𝑡𝑟,𝐴 (𝑡) = (𝑉
∗
𝑎 (𝑡)+𝑉𝑁0 (𝑡)

𝑉𝑖𝑛
+ 1

2)𝑉𝑇𝑅
𝑣𝑐𝑜𝑛𝑡𝑟,𝐵 (𝑡) = (𝑉

∗
𝑏
(𝑡)+𝑉𝑁0 (𝑡)
𝑉𝑖𝑛

+ 1
2)𝑉𝑇𝑅

𝑣𝑐𝑜𝑛𝑡𝑟,𝐶 (𝑡) = (𝑉
∗
𝑐 (𝑡)+𝑉𝑁0 (𝑡)

𝑉𝑖𝑛
+ 1

2)𝑉𝑇𝑅
(4.18)

Considering the control system implementation without Clarke’s and Park’s trans-
forms, the outputs of the three PI regulators are the corresponding phase voltages, as
aforementioned. Similarly, by applying the direct Clarke’s and Park’s transforms, an
equivalent two-phase system is obtained and only two PI regulators are needed: con-
sequently, their outputs are the wanted phase voltages average values in the equivalent
two-phase system described in the dq-reference frame. The wanted values can be then
obtained by applying the inverse transforms; anyway, the division by Vin can be also
performed in the dq-reference frame, and the inverse transforms can be applied after
these operations. From a mathematical point of view this is equivalent to the previous
description. The implemented current controller block scheme is summarized in Figure
4.20.

abc
dq

Id

Iq

Clarke's and
Park's transforms

PI
Regulator

dq
abc

V*
d

V*
a_norm

V*
b_norm

V*
c_norm

Inverse Clarke's
and Park's transforms

Ia
Ib

I*
d

1
Vin

PI
Regulator

V*
qI*

q
1

Vin

Ic

V*
d_norm

V*
q_norm

V*
B0_norm

V*
A0_norm

V*
C0_norm

Zero
Sequence
Injection

vcontr,b

vcontr,a

vcontr,c

(u+0.5)VTR

Sine-cosine
Generator

fref

sin cos

Figure 4.20: Three-phase inverter current controller block scheme.

4.6 Three-Phase Inverter Current Control System Im-
plementation and Test

In this section, the three-phase inverter current control system is implemented. The
whole block scheme deployed in Simulink is depicted in Figure 4.21. As can be seen,
the same components used for the H-bridge converter control system, reported in Figure
2.19, are present also in this case, appropriately adapted for the three-phase inverter

93

Three-Phase Inverter Average Current Control Implementation

converter. In particular, the averager block is extended to compute the two additional
currents moving averages, as depicted in Figure 4.22. Moreover, the comparator block
depicted in Figure 2.8 is replicated three times inside the PWM modulator, one for each
corresponding phase, as shown in Figure 4.23.

Figure 4.21: Three-phase inverter control system block scheme.

Figure 4.22: Three-phase inverter averager block scheme.

For what concerns the current controller, its block scheme is represented in Figure
4.24. As can be seen, the previously described blocks which implement the direct and
indirect Clarke’s and Park’s transforms are present, besides the sine and cosine generator.
Furthermore, the blocks which perform the division by Vin are placed before the inverse

94

4.6 – Three-Phase Inverter Current Control System Implementation and Test

transform block, as aforementioned. The zero-sequence injection block is implemented,
according to the expression reported in (4.17), as shown in Figure 4.25. Finally, the
correct control voltages are computed based on the expression derived in (4.18), as
shown in Figure 4.26. With respect to the current controller depicted in Figure 2.17, a
few additional differences are present: first, the PI regulators proportional and integral
parts are limited according to expressions (4.19) and (4.20), where 𝜖 denotes the error
between dq-frame reference values and direct transforms blocks output values and E
indicates the feedforward voltage in the dq-frame.

−𝑉𝑖𝑛
2

≤ 𝜖𝐾𝑃 + 𝐸 ≤ 𝑉𝑖𝑛

2
(4.19){︄

𝐼𝑛𝑡_𝑚𝑎𝑥 = 𝑉𝑖𝑛
2 − |(𝜖𝐾𝑃 + 𝐸) |

𝐼𝑛𝑡_𝑚𝑖𝑛 = −𝑉𝑖𝑛2 + |(𝜖𝐾𝑃 + 𝐸) |
(4.20)

Figure 4.23: Three-phase inverter PWM modulator block scheme.

I_GAIN

I_GAIN

I_GAIN

Figure 4.24: Three-phase inverter current controller block scheme in Simulink.

95

Three-Phase Inverter Average Current Control Implementation

Figure 4.25: Zero-sequence injection block scheme.

Figure 4.26: Control voltages generation block scheme.

Secondly, the correction term explained in Chapter 3 is highlighted in the input volt-
age gain term. Finally, the PI regulator block scheme is slightly modified, and simplified,
as shown in Figure 4.27. As aforementioned, the experimental validation is carried out
on an inductive load, hence without the presence of back-emf voltages. Nevertheless,
since in general a feedforward technique can be implemented, the presence of the proper
sum block is highlighted. The figure is referred to the implementation of the d-reference
axis. Anyway, the same block scheme is deployed also for the q-axis. The design of the
whole current controller is achieved by exploiting the Fixed-Point Tool, as was done in
the previous chapters.

The VHDL code corresponding to the shown control system is imported in Vivado
to implement the block design represented in Figure 4.28, after applying the same modi-
fications in the code which were described in the previous chapters. As shown, the same
components described in Figure 3.27 are present. In particular, the modules protection
block is extended to check an overcurrent situation in all the three phases, with respect to
the H-bridge converter implementation. Moreover, only transistor T7, referring to Figure
3.3, is not driven. This is not an issue, since it drives the braking leg, which is not used
in this thesis. By means of the VIO IP, the system reset and the already described K1
and EN_PWM signals are generated. Furthermore, the reference frequency value and
the dq-frame reference single floating point precision values are provided to the control
system.

96

4.6 – Three-Phase Inverter Current Control System Implementation and Test

Figure 4.27: Three-phase inverter control system PI regulator block scheme.

ADC_SDATA1_0

ADC_SDATA2_0

ADC_SDATA3_0

ADC_SDATA4_0

EXT_FAULT_0

FAULTn_T1_0

FAULTn_T2_0

FAULTn_T3_0

FAULTn_T4_0

clk_in1_0

FAULTn_T5_0

FAULTn_T6_0

FAULTn_T7_0

clk_wiz_0

Clocking Wizard

reset

clk_in1

clk_out1

locked

vio_0

VIO (Virtual Input/Output)

clk

probe_out0[0:0]

probe_out1[0:0]

probe_out2[0:0]

probe_out3[31:0]

probe_out4[31:0]

probe_out5[15:0]

ila_0

ILA (Integrated Logic Analyzer)

clk

probe0[0:0]

probe1[11:0]

probe2[11:0]

probe3[11:0]

CONTROL_SYSTEM_INVER_0

CONTROL_SYSTEM_INVERTER_v1_0

clk

reset

CLK_80MHz

ADC_data_ready

Ia[11:0]

Ib[11:0]

Ic[11:0]

Vin[11:0]

Id_ref[31:0]

Iq_ref[31:0]

f_ref[15:0]

Gate_T1

Gate_T2

Gate_T3

Gate_T4

Gate_T5

Gate_T6

Sampling_trigger

Vcontr_update

ADC_AD7276B_0

ADC_AD7276B_v1_0

clk

reset

ADC_start

ADC_SDATA1

ADC_SDATA2

ADC_SDATA3

ADC_SDATA4

ADC_CSn

ADC_SCLK

ADC_DATA1[11:0]

ADC_DATA2[11:0]

ADC_DATA3[11:0]

ADC_DATA4[11:0]

ADC_data_ready

DAC124S805_0

DAC124S805_v1_0

clk

reset

data_ready

DATA_CH1[11:0]

DATA_CH2[11:0]

DATA_CH3[11:0]

DATA_CH4[11:0]

DAC_SYNCn

DAC_SCLK

DAC_DIN

PROTECTION_0

PROTECTION_v1_0

clk

reset

EXT_FAULT

FAULTn_T1

FAULTn_T2

FAULTn_T3

FAULTn_T4

FAULTn_T5

FAULTn_T6

FAULTn_T7

Ia[11:0]

Ib[11:0]

Ic[11:0]

Vdc[11:0]

ADC_data_ready

PWM_T1

PWM_T2

PWM_T3

PWM_T4

PWM_T5

PWM_T6

GATE_1

GATE_2

GATE_3

GATE_4

GATE_5

GATE_6

GATE_7

ADC_CSn_0

ADC_SCLK_1

ADC_SCLK_0

ADC_SCLK_2

ADC_SCLK_3

DAC_SYNCn_0

DAC_SCLK_0

DAC_DIN_0

EN_PWM[0:0]

K1[0:0]

GATE_1_0

GATE_2_0

GATE_3_0

GATE_4_0

GATE_5_0

GATE_6_0

GATE_7_0

Figure 4.28: Three-phase inverter control system block design in Vivado.

97

Three-Phase Inverter Average Current Control Implementation

Several experiments have been performed exploiting the setup depicted in Figure 4.29:
this is identical to that used for the H-bridge control system validation, reported in Figure
3.26. In this case, a star connected inductive load is exploited: each phase inductance
value is equal to 2 mH. For what concerns the design of the KP and KI parameters of
each PI regulator, they are referred to this inductance value, considering a bandwidth
frequency equal to 500 Hz, according to the expressions reported in (1.40).

OSCILLOSCOPE

EMERGENCY BUTTON

PCB

GUASCH POWER STACK

POWER SUPPLY

Figure 4.29: Three-phase inverter experimental setup.

An example of the obtained waveforms, which are low-pass filtered to eliminate
the overshoots caused by the converter switching operation, is depicted in Figure 4.30,
where a 50 Hz reference frequency and a 0 A reference Iq value are imposed, whereas
the reference Id is set to 5 A, 10 A and 15 A. As can be seen, the control system correct
operation is validated.

98

4.6 – Three-Phase Inverter Current Control System Implementation and Test

(a)

(b)

(c)

Figure 4.30: Three-phase inverter oscilloscope waveforms with a 50 Hz fundamental
frequency, 0 A reference q-axis current and (a) 5 A, (b) 10 A and (c) 15 A reference d-axis
current values.

99

100

Chapter 5

Implementation of a User Interface on
a dSPACE Rapid Prototyping System

In the previous chapters the designed control systems have been validated by providing
the necessary commands and reference values by means of the VIO IP inside Vivado,
while simultaneously monitoring the wanted quantities on the oscilloscope by exploiting
the DAC or by means of the ILA IP. This presents a huge restriction, since up to four
quantities can be visualized on the oscilloscope through the DAC and the ILA IP is
limited in terms of data samples which can be analyzed. Moreover, it can be convenient
to design a visual interface to ease the generation of the various commands and references
for the control system execution, which can be provided directly in the wanted format
avoiding the data type conversion blocks highlighted in the previous chapters. For these
reasons, in this chapter the dSPACE MicroLabBox prototyping system [16], which can be
programmed through Simulink to execute specific tasks, is inserted in the developed three-
phase inverter control system. In particular, several SPI communications are designed
and deployed as will be explained in the following sections in order to exchange all
the needed data between the FPGA module and the dSPACE system in both directions.
Consequently, the digital interface with dSPACE connector highlighted in Figure 3.1 is
exploited to implement the communication. Finally, visual interfaces are used to both
provide the control system with the main commands and reference signals and to visualize
the system main quantities.

5.1 SPI Protocol Design
In this section, the implemented SPI interface between the dSPACE system and the

FPGA module is presented. Specifically, due to the dSPACE MicroLabBox specifica-
tions, up to four different SPI communication units can be simultaneously deployed: the
dSPACE system units always act as masters whereas proper slaves have to be designed

101

Implementation of a User Interface on a dSPACE Rapid Prototyping System

in the implemented control system to manage the exchange of data. The same SPI pro-
tocol specifications, which can be defined by programming the dSPACE system through
Simulink by deploying the appropriate blocks, are used for all the four units. In particular,
the following main settings are chosen, considering an active low chip select signal:

• SPI clock (SCLK) signal: 2 MHz;

• clock polarity: low;

• clock phase: trailing;

• number of words: 2;

• bits per word: 32.

Basically, after the chip select is driven low, each master unit and each slave completes a
64-bit transmission, sampling the data line at each SCLK falling-edge. This is done by
appropriately designing each slave by deploying two shift registers. In particular, each
slave:

• when the chip select signal is driven low, loads the two 32-bit words to be transmitted
in the first shift register;

• at every SCLK signal rising-edge, loads the MISO line with the first shift register
most significant bit and shifts the content of the second shift register;

• at every SCLK signal falling-edge, loads the MOSI line bit to the second shift
register least significant bit and shifts the content of the first shift register;

• when the chip select signal is driven high, outputs the second shift register state,
hence the received two 32-bit words;

The transmissions are periodically triggered every 50 ➭s. It is important to highlight that
the transmitted and received words are requested to be 32-bit unsigned integers by the
deployed SPI communication blocks. For this reason, appropriate conversions need to be
introduced in order to both correctly interpret the received data and properly provide the
various references.

In this chapter, only three SPI master units are needed; the fourth one is anyway
deployed since it will be exploited in the following chapter. In particular, on the first SPI
channel, the master receives the outputs of the averager block depicted in Figure 4.22,
hence the moving average values of the three-phase currents and of the input voltage
source. A proper conversion needs to be introduced, considering the already described
I_BIAS, I_GAIN, Vin_GAIN bias and gain terms, considering also the correction term,
to correctly interpret them. Furthermore, it transmits the bounds used in the modules
protection block to detect overcurrent and overvoltage situations. For this reason, starting

102

5.1 – SPI Protocol Design

from single precision floating point numbers inserted by the user, similar gain and bias
terms need to be introduced to apply the conversion into the corresponding 12-bit data,
used by the modules protection block.

On the second SPI channel, the master receives the dq-frame currents computed by
the current controller. Consequently, the received data is divided by a factor as a function
of the fixed point representation used for these two quantities in the current controller. At
the same time, it transmits the dq-frame reference currents values inserted by the user in
floating point single precision after converting them in the proper fixed-point representa-
tion.

Finally, on the third SPI channel, the master receives the Guasch power stack temper-
ature measurement, obtained by exploiting the NTC temperature sensor, and the FAULT
signals values, besides some additional outputs from the modules protection block which
indicate if a protection situation is detected and what caused it, namely the external emer-
gency button, an overcurrent or overvoltage situation based on the ADC samples, or a
FAULT signal which is driven low. The received 12-bit data corresponding to the temper-
ature measurement needs to be properly converted by reversing the expression taken from
[12] and reported for clarity in (5.1), where 𝑅25 = 5 kΩ, 𝐵 = 3375 K and considering that
the RT measurement can be derived by considering that the ADC conditioning circuit
designed on the board corresponding to the NTC sensor is depicted in Figure 5.1. The
received 12-bit data corresponds to the V(RT) value. On the other side, the slave receives
the reference frequency 16-bit unsigned integer value inserted by the user for the sine and
cosine generator and the K1, EN_PWM and reset signals.

𝑅𝑇 = 𝑅25𝑒
𝐵(1

𝑇 [𝐾]−
1

298.15𝐾) (5.1)

Vcc

R

RT A

V(RT)

Vcc = 3.3 V

R = 4.87 kΩ

A = 1.3

Figure 5.1: NTC temperature sensor ADC conditioning circuit.

103

Implementation of a User Interface on a dSPACE Rapid Prototyping System

5.2 FPGA Implementation and Experimental Validation
In this section, the correct dSPACE MicroLabBox system deployment is validated.

In order to do this, an appropriate VHDL code is written to implement a block which
instantiates one slave for each SPI channel, composes the respective words to be transmit-
ted by each one of them and unpacks the received data into the corresponding quantities.
The three-phase inverter control system depicted in Figure 4.21 is deployed again in
this chapter, even though a few modifications need to be introduced: first, by looking
at Figure 4.24, the data type conversion blocks for the dq-frame reference currents are
deleted. Secondly, the dq-frame current values computed by the current controller and the
three-phase currents and the input voltage average values computed by the averager block
are added to the control system outputs. Notice that the automatically generated VHDL
code needs to be modified accordingly also in this case, as was done in the previous
chapters. Finally, referring to Figure 4.28, the modules protection block is adapted to
receive as inputs the bounds for the overcurrent and overvoltage detection, besides adding
the protection signals to the outputs as aforementioned.

The block design which is implemented in Vivado is depicted in Figure 5.2, where
the previously described modifications with respect to that reported in Figure 4.28 can
be noticed.

ADC_SDATA1_0

ADC_SDATA2_0

ADC_SDATA3_0

ADC_SDATA4_0

ADC_SDATA5_0

FAULTn_IGBT_0[0:6]

clk_in1_0

SCLK1_0

CSn1_0

SCLK2_0

CSn2_0

SCLK3_0

CSn3_0

SCLK4_0

CSn4_0

SPI1_MOSI_0

SPI2_MOSI_0

SPI3_MOSI_0

SPI4_MOSI_0

EXT_FAULT_0

clk_wiz_0

Clocking Wizard

reset

clk_in1

clk_out1

locked

CONTROL_SYSTEM_INVER_0

CONTROL_SYSTEM_INVERTER_v1_0

clk

reset

CLK_80MHz

ADC_data_ready

Ia[11:0]

Ib[11:0]

Ic[11:0]

Vin[11:0]

Id_ref[31:0]

Iq_ref[31:0]

f_ref[15:0]

Gate_T1

Gate_T2

Gate_T3

Gate_T4

Gate_T5

Gate_T6

Sampling_trigger

Vcontr_update

Id[31:0]

Iq[31:0]

Ia_AVRG[15:0]

Ib_AVRG[15:0]

Ic_AVRG[15:0]

Vin_AVRG[15:0]

dSPACE_SLAVE_MANAGER_0

dSPACE_SLAVE_MANAGER_v1_0

clk

SCLK1

CSn1

SCLK2

CSn2

SCLK3

CSn3

SCLK4

CSn4

SPI1_MOSI

SPI2_MOSI

SPI3_MOSI

SPI4_MOSI

FAULTn_IGBT[0:6]

EXT_PROTECTION

ADC_PROTECTION

FAULT_PROTECTION

PROTECTION

IA_MEAS[15:0]

IB_MEAS[15:0]

IC_MEAS[15:0]

VIN_MEAS[15:0]

ID_MEAS[31:0]

IQ_MEAS[31:0]

TEMPERATURE[11:0]

CURRENT_LIMIT_MAX[11:0]

CURRENT_LIMIT_MIN[11:0]

VOLTAGE_LIMIT_MAX[11:0]

ID_REF[31:0]

IQ_REF[31:0]

FREQUENCY_REF[15:0]

K1

EN_PWM

reset

SPI1_MISO

SPI2_MISO

SPI3_MISO

SPI4_MISO

ADC_AD7276B_0

ADC_AD7276B_v1_0

clk

reset

ADC_start

ADC_SDATA1

ADC_SDATA2

ADC_SDATA3

ADC_SDATA4

ADC_SDATA5

ADC_CSn

ADC_SCLK

ADC_DATA1[11:0]

ADC_DATA2[11:0]

ADC_DATA3[11:0]

ADC_DATA4[11:0]

ADC_DATA5[11:0]

ADC_data_ready

DAC124S805_0

DAC124S805_v1_0

clk

reset

data_ready

DATA_CH1[11:0]

DATA_CH2[11:0]

DATA_CH3[11:0]

DATA_CH4[11:0]

DAC_SYNCn

DAC_SCLK

DAC_DIN

PROTECTION_0

PROTECTION_v1_0

clk

reset

EXT_FAULT

FAULTn_IGBT[0:6]

Ia[11:0]

Ib[11:0]

Ic[11:0]

Vdc[11:0]

CURRENT_LIMIT_MAX[11:0]

CURRENT_LIMIT_MIN[11:0]

VOLTAGE_LIMIT_MAX[11:0]

ADC_data_ready

PWM_T1

PWM_T2

PWM_T3

PWM_T4

PWM_T5

PWM_T6

EXT_PROTECTION

ADC_PROTECTION

FAULT_PROTECTION

PROTECTION_out

GATE_1

GATE_2

GATE_3

GATE_4

GATE_5

GATE_6

GATE_7

ADC_CSn_0

ADC_SCLK_0

ADC_SCLK_1

ADC_SCLK_2

ADC_SCLK_3

ADC_SCLK_4

DAC_SYNCn_0

DAC_SCLK_0

DAC_DIN_0

GATE_1_0

GATE_2_0

GATE_3_0

GATE_4_0

GATE_5_0

GATE_6_0

GATE_7_0

K1_0

EN_PWM_0

SPI1_MISO_0

SPI2_MISO_0

SPI3_MISO_0

SPI4_MISO_0

Figure 5.2: Three-phase inverter control system with dSPACE system deployment block
design in Vivado.

For what concerns the experimental validation, the setup depicted in Figure 5.3 is
exploited. As shown, it is identical to that depicted in Figure 4.29, apart from the presence

104

5.2 – FPGA Implementation and Experimental Validation

of the dSPACE MicroLabBox system which is connected to the board through the apposite
connector, highlighted in Figure 3.1.

Figure 5.3: Three-phase inverter control system with dSPACE system deployment exper-
imental setup.

The commands and reference signals are provided from the dSPACE system to the
FPGA module by means of the visual interface shown in Figure 5.4. As highighted,
the reset, K1, EN_PWM signals can be easily provided by the user besides the modules
protection block current and voltage bounds and the reference frequency and dq-frame
currents values for the current controller execution. Moreover, the temperature measured
by the NTC sensor, the outputs of the modules protection block and the FAULT signals
are shown. The meaning of the modules protection block outputs is here summarized:

• PROTECTION: indicates if a protection situation has occurred, disabling the gate
driving signals;

• FAULT_PROTECTION: indicates if a FAULT signal is driven low;

• EXT_PROTECTION: shows if the external emergency button is pushed;

• ADC_PROTECTION: indicates if an overcurrent or an overshoot is detected.

105

Implementation of a User Interface on a dSPACE Rapid Prototyping System

Figure 5.4: Commands and reference signals dSPACE system visual interface.

Furthermore, the three-phase currents, the input voltage value and the dq-frame
computed currents are plotted in the interface depicted in Figure 5.5, which refers to the
experiment in which the fundamental frequency and the dq-frame reference currents are
respectively set to 50 Hz, 0 A and 15 A, as also underlined in Figure 5.4.

Figure 5.5: Plots dSPACE system visual interface.

106

Chapter 6

Electric Motor Torque Control
Implementation

In this chapter, the previously designed three-phase inverter average current control
system is adapted to the torque control of a permanent magnet assisted synchronous
reluctance (PMASR) motor. By exploiting the dSPACE system designed in the previous
chapter, a Maximum Torque Per Ampere (MTPA) look-up table is used to provide the
control system implemented on the FPGA module with the dq-frame reference currents
which generate the reference torque requested by the user. Furthermore, an external speed
loop is deployed in order to implement also the motor speed control. After describing
the main system modifications with respect to the previous chapters, presenting also an
encoder, the experimental setup is described and the designed control system is validated.

6.1 System Description and Encoder Implementation
In this section, the torque control of a PMASR motor is implemented. Even though

the purpose of this chapter is not that of reviewing the considered electric motor, a few
characteristics are recalled in order to explain the implemented design. The main electric
motor specifications which will be used in the following discussion are hereby listed:

• rated power: 2.2 kW;

• poles pairs: 2;

• rated speed: 1800 rpm;

• rated torque: 11.7 Nm.

The first test that will be performed in the following section regards the production
of a wanted average torque. As explained in [17][18], the PMASR motor is capable of

107

Electric Motor Torque Control Implementation

producing an average torque whose expression is reported in (6.1), considering the dq-
frame, where p indicates the number of poles pairs, id and iq are the dq-frame currents, 𝜙𝑚
is the flux linkage of the magnets and Ld and Lq denote the inductances in the dq-frame.

𝑇 =
3
2
𝑝(𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞 + 𝜙𝑚𝑖𝑞 (6.1)

This expression is important to highlight that an average torque can be generated by
applying proper dq-frame currents. For this reason, a Maximum Torque Per Ampere
(MTPA) look-up table is exploited: basically, for every given wanted torque value, the
corresponding dq-frame reference currents values are given. An interpolation technique
is used for the values which are not included in the table.

It is important to highlight that the motor can be modeled as a star connected induc-
tive load: for this reason, the previously designed three-phase inverter control system,
depicted in Figure 4.21 and adapted for the communication with the dSPACE system,
is deployed also in this chapter. In this case, the dq-frame reference currents values are
provided by the MTPA look-up table, which is implemented inside the dSPACE system
deployed in the previous chapter, and not directly by the user, that in turn indicates the
requested average torque. Furthermore, a 500 V power supply will be used during the
experimental phase.

Another important difference with respect to the previously designed three-phase
inverter control system concerns the sine and cosine waveforms generator, whose block
scheme is depicted in Figure 4.4. In fact, in this case the angle normalized with respect
to 2𝜋 on which the Sine HDL Optimized block computes the sine and cosine values
is directly computed from the electric motor operation and, consequently, the wanted
frequency is not provided by the user. This is achieved by exploiting the encoder inter-
face depicted in Figure 3.1: in fact, the PMASR motor is equipped with an appropriate
encoder which can be exploited to compute the mechanical rotation angle.

Considering for simplicity a steady-state situation in which the motor speed is con-
stant, three periodic signals are generated: two signals, defined as A and B, are two
identical square waves with 90◦ phase shift, whose edges indicate an angle increment
step Δ𝜃, as highlighted in Figure 6.1. A counter can be then exploited to compute the
angular position of the motor by counting the edges of the A and B signals. An addi-
tional signal, named Z, presents an active low pulse every time the rotor completes a full
revolution. It is important to notice that the A and B signals are sufficient to compute the
motor revolutions; anyway, when the system is turned off, the electric motor can be freely
rotated. Furthermore, the counter state is not memorized and it is set to 0 every time the
system is activated. This basically makes it impossible to always associate the 0 counter
state to the same rotor angular position. However, a crucial aspect for the designed system
which will be explained in the following is to be always able to start the counting operation

108

6.1 – System Description and Encoder Implementation

A

B

Δθ

Figure 6.1: A and B signals steady-state operation example.

from the same position. This aspect can be achieved by exploiting the Z signal: in fact,
when its low pulse is detected, the counter state is immediately reset to 0. This means
that, apart from the first revolution, the counter state null value can be always associated
to the same angular position. Notice that the steady-state condition is not necessarily
requested to retrieve the angular position from the A and B signals: in fact, their edges
can be counted in every condition and the angular position can be consequently computed.

A final important comment on these signals regards the number of pulses which are
generated and, as a result, the Δ𝜃 value. Referring the exploited encoder, both A and B
are trains of 1024 pulses. This means that the total number of edges of the two signals
combined corresponding to a full motor revolution is 4096. Thus, a 12-bit counter is
used and the obtained revolution increment step expressed in radians can be computed in
(6.2).

Δ𝜃 =
2𝜋

4096
=

𝜋

2048
(6.2)

From the electrical point of view, it is crucial to notice that the electrical angle 𝜃𝑒𝑙 is
obtained by multiplying the mechanical angle by the number of poles pairs [3]. In the im-
plemented solution, this is taken into account by increasing the counter in correspondence
of every A and B signals edge by the number of poles pairs instead of 1. The electri-
cal angle is then fed to the current controller for the sine and cosine waveforms generation.

The implemented control system is summarized in Figure 6.2. The current controller
implementation is that depicted in Figure 4.20, with the only exception of the sine and
cosine generator block which receives 𝜃𝑒𝑙 as input instead of the reference frequency
inserted by the user.

Finally, it is important to mention that the MTPA look-up table is referred to a situation
in which the d-axis is aligned with the magnets flux linkage 𝜙𝑚 direction. For this reason,
an offset is added to the counter output in order to associate the 0 counter state with the
motor angular position corresponding to an alignment between the d-axis and the flux
linkage vector.

109

Electric Motor Torque Control Implementation

MTPA
LUT

T*

Current
Controller

PWM
Modulator

Three-phase
Inverter

idq
*

iabc

θel

dSPACE system FPGA

PMASR Motor

Encoder

Motor

Figure 6.2: Torque control system block scheme.

6.2 Deployed Setup and Experimental Validation
In order to validate the torque control of the electric motor, the setup depicted in

Figure 5.3 is accordingly modified: first, the power supply is replaced by another one
which is able to provide more current and a 500 V input voltage. Secondly, the K1 signal
is used to connect the PMASR motor to the U, V and W nodes highlighted in Figure 3.3
instead of the previously deployed star connected inductive load. Finally, the encoder
interface underlined in Figure 3.1 is exploited to provide the A, B and Z signals to the
FPGA module by linking the interface with the EXT pin header through the use of wires.

The block design exploited in Vivado is reported in Figure 6.3. As shown, it is
basically identical to that depicted in Figure 5.2 even though few differences need to be
commented: first, the EN_PWM signal provided from the dSPACE system is used to
enable also the modules protection block modulation outputs, allowing to activate the
control system without driving the transistors. By doing so, the ADCs and DAC oper-
ations and the dSPACE system communications can be activated. In particular, this is
useful to retrieve the aforementioned offset value through dSPACE.

FAULTn_IGBT_0[6:0]

EXT_FAULT_0

ADC_SDATA1_0

ADC_SDATA2_0

ADC_SDATA3_0

ADC_SDATA4_0

ADC_SDATA5_0

CSn2_0

CSn1_0

SCLK1_0

SCLK2_0

SCLK3_0

CSn3_0

SCLK4_0

CSn4_0

SPI1_MOSI_0

SPI2_MOSI_0

SPI3_MOSI_0

SPI4_MOSI_0

clk_in1_0

EXT16

EXT14

EXT15

clk_wiz_0

Clocking Wizard

reset

clk_in1

clk_out1

locked

ADC_AD7276B_0

ADC_AD7276B_v1_0

clk

reset

ADC_start

ADC_SDATA1

ADC_SDATA2

ADC_SDATA3

ADC_SDATA4

ADC_SDATA5

ADC_CSn

ADC_SCLK

ADC_DATA1[11:0]

ADC_DATA2[11:0]

ADC_DATA3[11:0]

ADC_DATA4[11:0]

ADC_DATA5[11:0]

ADC_data_ready

ENCODER_0

ENCODER_v1_0

clk

reset

A

B

Z

Angle_Offset[11:0]

THETA_EL[15:0]

PROTECTION_0

PROTECTION_v1_0

clk

reset

EXT_FAULT

EN_PWM

FAULTn_IGBT[6:0]

Ia[11:0]

Ib[11:0]

Ic[11:0]

Vdc[11:0]

CURRENT_LIMIT_MAX[11:0]

CURRENT_LIMIT_MIN[11:0]

VOLTAGE_LIMIT_MAX[11:0]

ADC_data_ready

PWM_T1

PWM_T2

PWM_T3

PWM_T4

PWM_T5

PWM_T6

EXT_PROTECTION

ADC_PROTECTION

FAULT_PROTECTION

PROTECTION_out

GATE_1

GATE_2

GATE_3

GATE_4

GATE_5

GATE_6

GATE_7

CONTROL_SYSTEM_0

CONTROL_SYSTEM_v1_0

clk

reset

CLK_80MHz

ADC_data_ready

Ia[11:0]

Ib[11:0]

Ic[11:0]

Vin[11:0]

Id_ref[31:0]

Iq_ref[31:0]

THETA_EL[15:0]

RST_CTR_INT

Gate_T1

Gate_T2

Gate_T3

Gate_T4

Gate_T5

Gate_T6

Sampling_trigger

Vcontr_update

Id[31:0]

Iq[31:0]

Ia_AVRG[15:0]

Ib_AVRG[15:0]

Ic_AVRG[15:0]

Vin_AVRG[15:0]

sin[16:0]

cos[16:0]

Vd[15:0]

Vq[15:0]

sin_DAC[11:0]

cos_DAC[11:0]

DAC124S805_0

DAC124S805_v1_0

clk

reset

data_ready

DATA_CH1[11:0]

DATA_CH2[11:0]

DATA_CH3[11:0]

DATA_CH4[11:0]

DAC_SYNCn

DAC_SCLK

DAC_DIN

dSPACE_SLAVE_MANAGER_0

dSPACE_SLAVE_MANAGER_v1_0

clk

SCLK1

CSn1

SCLK2

CSn2

SCLK3

CSn3

SCLK4

CSn4

SPI1_MOSI

SPI2_MOSI

SPI3_MOSI

SPI4_MOSI

FAULTn_IGBT[0:6]

EXT_PROTECTION

ADC_PROTECTION

FAULT_PROTECTION

PROTECTION

IA_MEAS[15:0]

IB_MEAS[15:0]

IC_MEAS[15:0]

VIN_MEAS[15:0]

ID_MEAS[31:0]

IQ_MEAS[31:0]

TEMPERATURE[11:0]

Vd[15:0]

Vq[15:0]

sin[16:0]

cos[16:0]

THETA_EL[15:0]

A

B

Z

CURRENT_LIMIT_MAX[11:0]

CURRENT_LIMIT_MIN[11:0]

VOLTAGE_LIMIT_MAX[11:0]

ID_REF[31:0]

IQ_REF[31:0]

K1

EN_PWM

reset

RST_CTR_INT

Angle_Offset[11:0]

SPI1_MISO

SPI2_MISO

SPI3_MISO

SPI4_MISO

ADC_CSn_0

ADC_SCLK_0

ADC_SCLK_1

ADC_SCLK_2

ADC_SCLK_3

ADC_SCLK_4

DAC_SYNCn_0

DAC_SCLK_0

DAC_DIN_0

GATE_1_0

GATE_2_0

GATE_3_0

GATE_4_0

GATE_5_0

GATE_6_0

GATE_7_0

EN_PWM_0

K1_0

SPI1_MISO_0

SPI2_MISO_0

SPI3_MISO_0

SPI4_MISO_0

Figure 6.3: Torque control system block design in Vivado.

110

6.2 – Deployed Setup and Experimental Validation

Secondly, due to this introduction, the integrators inside the current controller need to
be provided with a dedicated reset signal which need to be produced after the modulation
is enabled. This aspect is achieved by the RST_CTR_INT signal, which is provided by
the dSPACE system: when it is activated, the integrators states are set to 0. Furthermore,
the computed sine and cosine values and the dq-frame voltages are added to the control
system outputs since they are transmitted to the dSPACE system.

Thirdly, the encoder block, which implements the previously described counter based
on the A, B, Z signals, is deployed. Its output, namely the electrical angle 𝜃𝑒𝑙 , is given to
the control system besides the dSPACE slaves manager.

Finally, the dSPACE slaves manager is accordingly modified: in particular, refer-
ring to the implementation presented in Chapter 5, the FPGA modules receives the
RST_CTR_INT signal on the third channel and transmits the dq-frame voltages to the
dSPACE system. Moreover, the fourth channel is exploited to transmit the offset value for
the encoder to the FPGA, whilst the sine and cosine values, the electrical angle computed
by the encoder and the A, B, Z signals are provided to the dSPACE system.

With respect to the block scheme depicted in Figure 6.2, an important additional
comment regards the motor mechanical load. In the following experiments, the setup
depicted in Figure 6.4 is exploited. It is composed of the PMASR motor, namely the
Motor Under Test (MUT), which is connected to a Driving Machine (DM), hence another
electric motor, by means of a shaft on which a torque meter is placed. The two electric
motors are driven by two different three-phase inverters. The actual electric motors setup
is reported in Figure 6.5.

DC

AC

DC

AC

Three-phase
Inverter

Motor
Under Test

Driving
Machine

MUT DM

T,ω

Three-phase
Inverter

Torque
Meter

Figure 6.4: Motor Under Test and Driving Machine block scheme.

The DM can be set to impose either a certain rotational speed or a specific load torque.
In a first experiment, the DM is exploited to impose a 500 rpm rotational speed. After
that, the control system and the modulation are activated, the MTPA look-up table is used
to provide the dq-frame reference currents values from the dSPACE system, the integral
operations inside the current controller are enabled and the torque is measured by means
of the torque meter. The performed test, whose result is depicted in Figure 6.6, consists
of requesting a 10 Nm reference torque to the MUT and checking the correct regulation

111

Electric Motor Torque Control Implementation

MOTOR UNDER TEST

DRIVING MACHINE

TORQUE METER

Figure 6.5: Motor Under Test and Driving Machine setup.

by looking at the torque meter measurement on the oscilloscope. Since this is strongly
affected by noisy oscillations, as can be seen from the instantaneous signal plot, the
torque average value is computed considering the analyzed time interval. As reported,
the average torque value is approximately equal to the wanted one. Then, the system
response due to a torque variation is highlighted in Figure 6.7, by applying a reference
torque step from 0 Nm to 5 Nm. Since also in this case the measurement is affected by
noisy oscillations, a moving average filter is applied and the resulting waveform is plotted.
As can be seen, after the transient has elapsed, the wanted torque value is obtained.

Figure 6.6: Torque regulation oscilloscope waveforms.

112

6.2 – Deployed Setup and Experimental Validation

Figure 6.7: Torque regulation after a reference step plot.

After that, an external speed control loop is added, as shown in Figure 6.8: the speed
of the motor is compared with a reference value and the error between them is fed to a PI
regulator which produces the reference torque value. Thus, through the dSPACE system,
the user provides the wanted reference speed in this case instead of the reference torque,
which is regulated accordingly depending on the speed error. Since the inertia of the
tested PMASR motor is not known, the KP and KI gains values are manually tuned in
order to achieve the wanted regulation [3]. The speed of the motor, in the implemented
case, is obtained by exploiting the mechanical angle.

MTPA
LUT

T*PI
Regulator

ω*

ω

MTPA
LUT

idq
*

dSPACE system

Current
Controller

PWM
Modulator

Three-phase
Inverteriabc

θel

FPGA

PMASR Motor

Encoder

Motor

Figure 6.8: Torque control system with external speed loop block scheme.

A second experiment is then performed by configuring the DM to impose a load torque
independently of the shaft rotational speed: starting from a null value, the reference speed
is set to 500 rpm and then back to 0 rpm. The result of this test is reported in Figure 6.9:
as shown, the motor speed is well regulated. After that, the reference speed is set to 500
rpm and the load torque is varied: this produces a change in the motor speed value. The

113

Electric Motor Torque Control Implementation

speed control reacts to this variation adjusting the reference torque value and the wanted
speed is recovered. An example of this behavior is reported in Figure 6.10 where the
response of the control system due to load torque variations is depicted.

0 1 2 3 4 5

0

100

200

300

400

500

600

Figure 6.9: Speed regulation plot.

0 1 2 3 4 5

0

100

200

300

400

500

600

Figure 6.10: Speed regulation after a load torque variation plot.

114

Chapter 7

Conclusions

In this thesis, the Simulink HDL Coder automatic code generation tool effectiveness
has been validated as a method to minimize the programming time which is necessary
from the design and simulation of a power converter control system to the experimental
validation. Different high-performance digital control systems have been designed and
simulated on Simulink. After that, the corresponding VHDL code has been produced
and used for the control system implementation on a Xilinx FPGA, to be afterwards
experimentally tested. It is worth noticing that the automatically generated code needed
to be manually modified in order to obtain the wanted control system behavior. Even
though the introduced changes were few in number, this aspect compromises the system
complete automatic code generation. Anyway, a script can be used to resolve this
drawback. An average current digital control system has been designed for an H-bridge
converter and then extended to a three-phase inverter. A dSPACE rapid prototyping
system has been deployed in the system to ease and improve the experimental validation.
Finally, the torque control of a permanent magnet assisted synchronous reluctance motor
has been designed and an external speed control loop has been added. In particular, in
this thesis work, I:

• designed several power converters control systems;

• simulated each component of the control systems;

• generated the VHDL code corresponding to each control system through Simulink
HDL Coder and modified it to obtain the wanted operation;

• implemented each control system on the FPGA;

• wrote the VHDL codes for additional blocks which were inserted in the system for
instance for protection reasons or to manage the acquisitions;

• experimentally validated every designed control system.

115

Conclusions

Since every implemented control system has been experimentally tested and the correct
behavior has been always obtained, the Simulink HDL Coder tool effectiveness has
been proved. For these reasons, it can be considered an excellent tool for every system
automatic code generation.

116

Bibliography

[1] Ricardo P. Aguilera et al. “Chapter 2 - Basic Control Principles in Power Elec-
tronics: Analog and Digital Control Design”. In: Control of Power Electronic
Converters and Systems. Ed. by Frede Blaabjerg. Academic Press, 2018, pp. 31–
68. isbn: 978-0-12-805245-7. doi: https://doi.org/10.1016/B978-0-12-
805245-7.00002-0. url: https://www.sciencedirect.com/science/
article/pii/B9780128052457000020.

[2] Simone Buso and Paolo Mattavelli. Digital Control in Power Electronics. Mor-
gan & Claypool, 2006. url: https://ieeexplore.ieee.org/document/
6813194.

[3] N. Mohan, T.M. Undeland, and W.P. Robbins. Power Electronics: Converters,
Applications, and Design. 2nd ed. Wiley, 1995. isbn: 978-0-471-58408-7.

[4] Muhammad H. Rashid. Power Electronics Handbook. 3rd ed. Elsevier Science,
2011. isbn: 978-0-12-382037-2.

[5] R. W. Erickson and D. Maksimović. Fundamentals of Power Electronics. 2nd ed.
Springer New York, NY, 2001. isbn: 978-1-4757-0559-1.

[6] Luca Corradini et al. Digital Control of High-Frequency Switched-Mode Power
Converters. 1st ed. Wiley-IEEE Press, 2015. isbn: 978-1-118-93510-1.

[7] Shan He et al. “A Review of Multisampling Techniques in Power Electronics Ap-
plications”. In: IEEE Transactions on Power Electronics 37.9 (2022), pp. 10514–
10533. doi: 10.1109/TPEL.2022.3169662.

[8] Simone Buso, Tommaso Caldognetto, and Danilo Iglesias Brandao. “Dead-Beat
Current Controller for Voltage-Source Converters With Improved Large-Signal
Response”. In: IEEE Transactions on Industry Applications 52.2 (2016), pp. 1588–
1596. doi: 10.1109/TIA.2015.2488644.

[9] The MathWorks Inc. Simulink - Simulation and Model-Based Design. url: https:
//it.mathworks.com/products/simulink.html.

[10] The MathWorks Inc. HDL Coder - Matlab & Simulink. url: https://it.
mathworks.com/products/hdl-coder.html.

[11] Xilinx. Vivado Design Suite. url: https://www.xilinx.com/products/
design-tools/vivado.html.

117

https://doi.org/https://doi.org/10.1016/B978-0-12-805245-7.00002-0
https://doi.org/https://doi.org/10.1016/B978-0-12-805245-7.00002-0
https://www.sciencedirect.com/science/article/pii/B9780128052457000020
https://www.sciencedirect.com/science/article/pii/B9780128052457000020
https://ieeexplore.ieee.org/document/6813194
https://ieeexplore.ieee.org/document/6813194
https://doi.org/10.1109/TPEL.2022.3169662
https://doi.org/10.1109/TIA.2015.2488644
https://it.mathworks.com/products/simulink.html
https://it.mathworks.com/products/simulink.html
https://it.mathworks.com/products/hdl-coder.html
https://it.mathworks.com/products/hdl-coder.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html

BIBLIOGRAPHY

[12] Guasch componentes y electronica de potencia. MTL-CBI10040N12IXFE Datasheet.
url: https://www.e-guasch.com/onlinedocs/catalogue/datasheets/
power%20stacks/power%20modules/mt%20series/MTL/MTL-CBI0040F12IXHE_
i.pdf.

[13] Analog Devices. 3 MSPS, 12-/10-/8-Bit ADCs in 6-Lead TSOT. AD7276/AD7277/AD7278
Datasheet. url:https://www.analog.com/media/en/technical-documentation/
data-sheets/ad7276_7277_7278.pdf.

[14] Texas Instruments. DAC124S085 12-Bit Micro Power Quad Digital-to-Analog
Converter With Rail-to-Rail Output. DAC124S085 Datasheet. url: https://
www.ti.com/lit/ds/symlink/dac124s085.pdf?ts=1651584000121&ref_
url=https%253A%252F%252Fwww.google.com%252F.

[15] Clarke & Park Transforms on the TMS320C2xx Application Report. Literature
Number: BPRA048. Texas Instruments. 1997. url: https://www.ti.com/lit/
an/bpra048/bpra048.pdf.

[16] dSPACE GmbH. dSPACE MicroLabBox. url: https://www.dspace.com/en/
pub/home/products/hw/microlabbox.cfm.

[17] Hamidreza Heidari et al. “A Comparison of the Vector Control of Synchronous Re-
luctance Motor and Permanent Magnet-Assisted Synchronous Reluctance Motor”.
In: 2021 XVIII International Scientific Technical Conference Alternating Current
Electric Drives (ACED). 2021, pp. 1–6. doi: 10 . 1109 / ACED50605 . 2021 .
9462265.

[18] Minghu Yu. “Analysis of hybrid permanent magnet assisted synchronous reluc-
tance motor for compressor”. In: 2013 International Conference on Electrical
Machines and Systems (ICEMS). 2013, pp. 1256–1259. doi: 10.1109/ICEMS.
2013.6713351.

118

https://www.e-guasch.com/onlinedocs/catalogue/datasheets/power%20stacks/power%20modules/mt%20series/MTL/MTL-CBI0040F12IXHE_i.pdf
https://www.e-guasch.com/onlinedocs/catalogue/datasheets/power%20stacks/power%20modules/mt%20series/MTL/MTL-CBI0040F12IXHE_i.pdf
https://www.e-guasch.com/onlinedocs/catalogue/datasheets/power%20stacks/power%20modules/mt%20series/MTL/MTL-CBI0040F12IXHE_i.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad7276_7277_7278.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/ad7276_7277_7278.pdf
https://www.ti.com/lit/ds/symlink/dac124s085.pdf?ts=1651584000121&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/dac124s085.pdf?ts=1651584000121&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/ds/symlink/dac124s085.pdf?ts=1651584000121&ref_url=https%253A%252F%252Fwww.google.com%252F
https://www.ti.com/lit/an/bpra048/bpra048.pdf
https://www.ti.com/lit/an/bpra048/bpra048.pdf
https://www.dspace.com/en/pub/home/products/hw/microlabbox.cfm
https://www.dspace.com/en/pub/home/products/hw/microlabbox.cfm
https://doi.org/10.1109/ACED50605.2021.9462265
https://doi.org/10.1109/ACED50605.2021.9462265
https://doi.org/10.1109/ICEMS.2013.6713351
https://doi.org/10.1109/ICEMS.2013.6713351

	List of Tables
	List of Figures
	Introduction to Digital Control - Average Current Mode Control
	Case Study: Two-Quadrant DC/DC Converter for Electric Motor Driving
	Converter Working Principle
	Converter and Load DC Equivalent Model
	Load Output Filtering Operation
	Converter and Load Equivalent Discrete Model

	Digital Current Control Theory
	Analog PWM
	Uniformly Sampled Digital PWM
	Sampling and Updating Strategies

	Average Current Controller - PI Regulator and Control System
	PI Regulator and Control Scheme Design
	Average Current Controller Discretization
	Integral Anti-Windup Implementation
	Dead Time Discussion and Implementation

	Current Controller Implementation on Simulink
	PWM Modulator Block Scheme
	Triangular Generator Block Scheme
	Comparator Block Scheme

	Moving Average Block Scheme
	Current Controller Block Scheme
	Average Current Control System Block Scheme
	Discrete Time Converter Equivalent Model
	Automatically Generated Code Modifications Summary

	Control System Implementation on Vivado and Simulations
	Control System Experimental Validation Setup
	ADC Implementation and Test
	DAC Implementation and Test
	PWM Modulator Test
	Modules Protection Block Operation and Test
	Averager Test
	System Test with Discrete Time Plant Equivalent Model
	Control System Experimental Validation

	Three-Phase Inverter Average Current Control Implementation
	Three-phase Inverter Operation
	Clarke's and Park's Transforms
	Sine and Cosine Functions Generator Implementation and Test
	Clarke's and Park's Transforms Implementation and Test
	Implemented PWM Modulation Technique
	Three-Phase Inverter Current Control System Implementation and Test

	Implementation of a User Interface on a dSPACE Rapid Prototyping System
	SPI Protocol Design
	FPGA Implementation and Experimental Validation

	Electric Motor Torque Control Implementation
	System Description and Encoder Implementation
	Deployed Setup and Experimental Validation

	Conclusions
	Bibliography

