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Abstract 

In this original final project, called “Modelling and control of semi-active fluid viscous 

dampers in structural vibration optimization” the behaviour and usefulness of a device referred 

to as “variable orifice fluid viscous damper” is analysed in the context of improving the 

dynamic response of structures. Nowadays, in the civil engineering field, the presence of 

strategies to act on the behaviour of structures subjected to external inputs such as earthquakes 

or wind gusts is more and more often present. These strategies in literature are divided into 

three main approaches: passive control, semi-active control, and active control. Passive control 

of structures consists in exploiting devices that are fixated on a certain behaviour that cannot 

be modified in real-time it can be also considered a redesign of the structure parameters. Active 

control of structures, instead, exploits solutions that are capable of dynamically modifying the 

characteristics of the structure, requiring a relevant amount of energy to the actuators (which 

is particularly critical during an exceptional event such as an earthquake) that must be perfectly 

controlled to avoid the destabilization of the structure. Semi-active control of structures 

represents the compromise between the two previous approaches, it exploits devices that are 

capable of modifying their mechanical parameters in real-time, that do not need a relevant 

amount of power to work, and also are not capable of destabilizing a structure because they do 

not possess actuators. In this context, the specific “variable orifice fluid viscous damper” device 

was considered and studied starting from a literature survey that was fundamental to obtaining 

the necessary information for building a model that could integrate the device to analyse its 

effect. In the MATLAB/Simulink environment, the equation of motion of the systems was 

linearized and put into state-space form to create an LTI system for the simulations. After this 

step two main control algorithms were considered, the PID and the MPC controller. Many 

simulations were carried out considering various tuning of the controllers, different levels of 

approximation of the model, and also different sampling times, which is a fundamental 

parameter for the computational weight of the controller. After this step, the sensors, filters, 

and delay of the real components were added to the model to decrease even the approximation 

and move closer to a hypothetical real application of the device in a specific structure.  
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Introduction 

Engineering is defined as the activity of applying scientific knowledge to the design, building 

and control of systems and devices. It branches into many subjects that developed each other 

at times independently from the others. This thesis work, developed in collaboration with the 

National Technical University of Athens, focuses on the combination of two different branches: 

control theory and structural engineering. 

A civil engineering structure represents a system that is often subject to dynamic loadings, such 

as natural events, for which the energy input must be dissipated guaranteeing that the integrity 

of the construction is not compromised. The strategies to improve the dynamic response of a 

structure are three: active control, passive control, and semi-active control. Passive control of 

structures exploits the implementation of devices that are capable of dissipating the energy 

input to the system without any real-time modification, which is substantially a redesign of the 

characteristic parameters of the structure; active control relies on actuators capable of 

modifying the behaviour of the structure through an input force, it requires a vast amount of 

energy and a careful design to avoid the destabilization of the system itself; semi-active control 

represents a trade-off between the two previous approaches, in this method the devices require 

a small amount of energy, they are capable of varying their behaviour in real-time, and 

intrinsically guarantee the stability of the structure thanks to their working principle that does 

not input energy to the construction but only dissipates it. In this context, control theory 

represents a fundamental building block for the optimization of the structure, since the 

thorough research on the topic of the last decades created a wide range of algorithms that can 

be applied to the specific case under study, also with algorithms based on artificial intelligence 

that are constantly being researched and developed in the field. 

In chapter one of the present document, a state-of-art review is argued, presenting the various 

devices used in the context of vibration control optimization, categorized into active, passive, 

and semi-active approaches. Chapter two focuses on the specific device chosen for the 

application, i.e., a semi-active fluid viscous damper capable of varying its damping coefficient 

in a certain range and analyses it thoroughly from a technical and an analytical point of view. 

Chapter three focuses on the control algorithms chosen for the specific application of the thesis, 

which are Proportional Derivative Integrative and Model Predictive Control algorithms, 

introducing the mathematical theory behind them and allowing to grasp the differences 
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between the two. Chapter four explores how the model was built highlighting the most 

important aspects and illustrates the various simulations evaluating the results through the 

comparison of two performance indexes.  
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Chapter 1 

State of the art in vibration control 

1.1 Introduction to vibration control 
Structural control devices have been the subject of research in the field of engineering for many 

decades. The objective of these devices is the alleviation of the response in buildings and 

bridges to a dynamic loading given typically by a seismic event or strong gusts of wind. The 

task of structural control is to determine a technique that, after measuring a response of the 

system, determines the action to enhance its safety and dynamic behaviour. There are various 

approaches to the problem given by natural hazards, such as active, passive, hybrid, and semi-

active damping strategies. 

An active structural control system consists of sensors located about the structure to measure 

either external excitations or structural response variables, or both, devices to process the 

measured information and compute the necessary control force needed based on a given control 

algorithm, and actuators powered by external sources to produce the required forces [83], these 

forces can be both used to add and dissipate energy in the structure [37]. The control strategy 

is called feedback control when only the structural response is measured, instead, it is referred 

to as feedforward control when only the excitation to the building is measured. A third scenario 

is called feedback-feedforward control, and it exploits the measurements of both the response 

and the excitation quantities [83]. 

The advantages of an active control system with respect to a passive one are the following: 

(a) improved response control of the structure; (b) lower sensitivity to ground behaviour; 

(c) mitigation of many kinds of input to the structure; (d) selectivity of the control strategy; for 

example, it could be chosen to improve human comfort over structural behaviour under some 

peculiar circumstances and so on [83]. Active damping strategies of structures rely on the input 

forces given by electrohydraulic or electromechanical actuators, these actuators are designed 

to influence several vibration modes of the system; hence this technique is most suited for 

structures with many degrees of freedom. The actuators used for an active control strategy of 

the system require an external power source of considerable energy. Active control systems 

can adapt to a wide range of operating conditions and structures. 

The main drawbacks of active control systems are: 
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• The implementation costs 

• The need for a high energy source during a natural event such as an earthquake 

• The possibility of destabilizing the structure if the control system is not well designed, 

or has a malfunction 

Passive damping strategies do not rely on actuators of any sort, they do not require an external 

power source for operation and they utilize the motion of the structure to develop the control 

forces; they are used to increase the energy dissipation capacity of a structure through localized, 

discrete devices, and may increase the stiffness and strength of the structure to which they are 

attached; the forces imparted by passive devices are developed in response to the motion of the 

structure. The dissipated energy in a passively controlled structural system cannot be increased 

in any way by passive control devices [37]. The passive technique for protecting structures is 

based on the principle that the input energy to the system is transformed into both kinetic and 

potential (strain) energy which must be either absorbed or dissipated through heat. The 

performance of the structure can be improved if a part of this input energy is absorbed by the 

passive devices instead of the structure itself. Passive systems are unable to adapt to changes 

in the structural properties and the stochastic nature of external excitations due to their fixed 

behaviour. 

Hybrid vibration control refers to a combined application of active and passive control systems. 

A hybrid system incorporates both typologies of devices, this allows the structure to reach the 

highest levels of performance exploiting the best features of both strategies, also, the presence 

of passive elements allows for a smaller effort of active components. Hybrid techniques are 

utilized typically in very high-end applications, such as skyscrapers or viaducts, and they 

incorporate both actuators connected to a high-power source of energy and devices such as 

isolators. Notably, also hybrid systems are not free of the necessity for a reliable and high-

power source of energy in critical conditions. 

Control strategies based on semi-active devices appear to combine the best features of both 

passive and active control systems [83]. Typically, semiactive control devices do not add 

mechanical energy to the structural system, therefore bounded-input bounded-output stability 

is always guaranteed; semiactive control devices, moreover, are often viewed as controllable 

passive devices [37]. A semi-active system exploits passive devices capable of varying their 

characteristic parameters such as damping coefficient and/or stiffness in real time. It does so 

by modifying its mechanical properties or some other specific feature. The approach is possible 

thanks to the measurement of the structural response and/or the excitation given by the input 
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and a control loop that computes the necessary action of the device. Since there are no actuators 

in this strategy, also in this case as in the passive approach the motion of the structure is used 

to develop the control forces. The variation of the properties of the device is possible thanks to 

a small source of energy such as a battery pack, this allows to solve the energy issue typically 

related to active control systems. 

Control strategies, also in this kind of application, are referred to as: feedback, feedforward, or 

feedback-feedforward depending on if the sensors compute the control action measuring 

respectively: the response of the system, the excitation of the input, or both. Preliminary results 

have shown that “well-designed semiactive systems perform significantly better than passive 

ones and that they also have the potential to achieve, or even surpass, the performance of active 

systems” [37]. 

Semi-active, hybrid and active control of structures are considered the natural evolution of 

passive control techniques. They rely on devices capable of processing the data in real time, to 

develop control actions with the smallest time lag possible. This allows an improved structural 

behaviour and enhanced safety of the structure. 

 

1.2 Typical devices employed in the passive control strategy 
Vibrating structures dissipate energy due to internal stressing, rubbing, cracking, and plastic 

deformation. A large energy dissipation capacity implies also smaller amplitudes of vibration; 

some structures have a very low damping coefficient, which implies very large amplitudes of 

oscillation even for moderate inputs. Many different methods for increasing the damping are 

utilized in real-world applications, and they mainly focus on converting kinetic energy to heat 

or transferring energy among vibrating modes. These methods exploit a various range of 

materials and devices for enhancing damping, stiffness, and strength of the system and can be 

used also for the rehabilitation of ageing structures [37]. 

 

• Base isolation devices 

The base isolation approach has the objective to decouple a superstructure from its 

substructure, therefore limiting the influence of the seismic input on the building. The devices 

aim to reduce the fundamental frequency of structural vibration to a value lower than the main 

frequency of the earthquake input, which is equivalent to increasing the natural period of the 

structure and dissipating a part of the energy to reduce the acceleration transmitted to the 



Andrea Troise   Master’s degree in Mechatronic Engineering 

 6 

superstructure. The energy given by the ground motion at higher frequencies is deflected, and 

this makes the solution very attractive for a building containing expensive equipment. 

Natural rubber bearings (NRB) are a very common type of base isolation device built of 

alternating steel with a thickness between 2.5 to 4.5 mm and rubber layers with thickness from 

3 to 9 mm, showing high damping, horizontal flexibility, and high vertical stiffness. High 

damping rubber bearings (HDRB) are similar to this design, using a special synthetic rubber 

that can dissipate energy through loop cycles. Notably, the size, height, and fundamental 

natural period of base-isolated buildings increase steadily with time, indicating that base-

isolation is reaching maturity [64]. 

Pure friction base isolators base their working principle on sliding friction, they are effective 

for a wide range of input frequencies. The frictional force is proportional to the mass of the 

structure, and they have the capability of reducing torsional effects given by asymmetric 

buildings [43]. 

Lead rubber bearing systems are laminated elastomeric bearings with a lead plug down their 

centre used to increase the hysteretic energy dissipation capabilities of the device. An issue 

with the device is the impossibility to check the conditions of the core from outside after a 

seismic event. The behaviour can be modelled with a set of nonlinear equations. In [70] the 

author describes the tests on the devices, the results, and a design procedure for selecting the 

size of the lead plug. 

Resilient friction base isolation systems (R-FBI) are made of concentric layers of 

polytetrafluoroethylene plates containing a central core of rubber. The system can mix the best 

features of friction damping with the resistance of rubber, which allows spreading the 

displacement and the velocity throughout the height of the device [59]. 

Electric de France (EDF) systems represent an accustomed device for nuclear power plants in 

high seismicity regions, this kind of isolator is made by a double raft interposed with reinforced 

neoprene pads and friction plates, therefore typically overlapping various layers of laminated 

neoprene with lead-bronze plate on top. The plate exploits friction with a steel plate on the base 

of the structure to decouple the structure from the ground. The neoprene pads behave as a filter 

between the primary structures and the ground, limiting the horizontal earthquake forces and 

accelerations experienced by the structures, while the low natural frequency of the predominant 

horizontal mode minimizes participation of higher structural modes [35]. 

Sliding bearings combine the best characteristics of EDF and R-FBI base isolation devices, it 

is therefore made by alternating layers of polytetrafluoroethylene with a central core of rubber 

with a frictional plate on top. The resulting behaviour is the one of an R-FBI system for low 
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seismic excitation, and a frictional behaviour (EDF) for high seismic inputs, which improves 

the safety of the system [85]. 

 

• Metallic yield dampers 

Inelastic deformation of metals is exploited in metallic yield dampers as a technique to dissipate 

the energy input to a structure. These devices, often referred to as “ADAS” (added damping 

and stiffness), are built using mild steel plates shaped in various ways, such as triangular, x-

shaped, honeycomb, and others, also exploiting materials such as shape-memory alloys, they 

include torsional beams, flexural beams, and U-strip energy dissipators [19,87,92]. 

Metallic yield dampers possess many desirable characteristics such as stable hysteretic 

behaviour, low-cycle fatigue property, high reliability, and low sensitivity to temperature 

variations [37]. The amount of energy dissipated by the device can be measured by evaluating 

the area within a hysteresis loop of displacement vs shear force, nevertheless, it is not easy to 

characterize the hysteretic behaviour of the component under arbitrary cyclic loading given 

that inelastic behaviour follows non-linear relations and depends on microscopic mechanics 

factors. 

To utilize metallic dampers within a structural system, design guidelines and theoretical plus 

experimental studies are necessary, moreover, the devices transform a linear system into a non-

linear one due to their behaviour [37]. 

 

• Friction dampers 

The friction that develops between two solid bodies sliding on each other is utilized as an 

energy-dissipation technique in the friction dampers. 

The stick-slip phenomenon consists of the abrupt variation of the friction coefficient between 

the two bodies within its static and dynamic value, and this effect must be minimized during 

the design of the friction damper device because it introduces a high-frequency excitation that 

is counterproductive to the energy dissipation objective. 

During the load, the friction damper imposes slippage in both compression and tension, 

dissipating the energy input and avoiding its damaging effect on the structure, furthermore it is 

important to choose compatible materials for the device to maintain a constant behaviour 

during the period of use. The sliding interfaces are made of steel on steel, brass on steel, or 

graphite impregnated bronze on stainless steel; the choice of the interface composition is very 

relevant in terms of the time resistance features of the device [37]. 
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 A very common device is called the “Pall device”, and it has been extensively studied in the 

field; it is installed in an X-braced frame, and it is designed not to slip during windstorms or 

moderate earthquakes; under the severe working condition the devices slip at a predetermined 

optimum load before yielding occurs in primary structural members; the devices often require 

a nonlinear analysis to explore the behaviour under stress conditions. Experimental and 

analytical results show that the devices can reduce inelastic deformation demands, and reduce 

damage quantified by monitoring permanent deformations [63]. 

For its characteristics and ease of installation, the device is well fit in the context of retrofitting 

old structures to improve their seismic behaviour and therefore enhance their protection. Some 

specific devices incorporate a mixture of a friction damping and viscoelastic damping 

mechanism in series, in such a way it is possible to manage the inputs by entrusting the most 

severe inputs to the friction damper and the milder ones to the viscoelastic damper [67,68,89]. 

This kind of device generates a hysteretic loop that has the same features of Coulomb’s model 

of friction hysteresis, it provides a good performance that is not significantly affected by the 

number of loading cycles. 

 

• Viscoelastic dampers 

For seismic applications, only a certain class of viscoelastic dampers is exploited, which can 

dissipate energy at all deformation levels, but these devices are primarily intended for 

alleviating wind inputs. The dissipation of energy inside the device starts when the vibration 

of the structure causes relative motion between the outer and the inner layer of the device. 

To dissipate energy by exploiting the shear deformation of the viscoelastic layers, the dampers 

employ materials such as copolymers or glass-like matter. They are built by bonding steel 

plates with viscoelastic material layers. The behaviour of the device under dynamic loadings 

depends on vibrational frequency, strain, and ambient temperature. The device is effective in 

reducing the inelastic ductility demand of the test structure under severe seismic phenomena; 

the design damping ratio added by the dampers should be higher than the one of the structures 

itself to reduce the inelastic response, because the equivalent damping ratio of the structure 

after yielding would be much higher than the inherent damping ratio of the linear structure 

[37]. A linear structural system stays linear even after the insertion of viscoelastic dampers 

because the devices increase damping and stiffness properties without exploiting nonlinear 

effects, differently from what happens with metallic or frictional dampers [98,99]. 
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The natural period of a visco-elastically damped system varies slightly with the temperature, 

but if the design is developed as a stiff device, then the damping ratio shows to be much less 

sensitive to the temperature variation [45]. 

The effectiveness of viscoelastic dampers applied to reinforced concrete structures or steel 

structures under a various range of seismic inputs was demonstrated in [22,23,32,52,81], in 

which the in-depth analysis showed that the addition of viscous fluid dampers can reduce the 

damage to the structure by limiting inelastic deformations. 

The material of the damper shows linearity over a broad range of strains with constant 

temperature, but with large strains, the self-heating effect is evident because the dissipated 

energy is converted into heat. This results in a nonlinear behaviour of the component, which is 

present also if the stress-strain response of the material is linear because in general, it represents 

only an approximation of the behaviour [37]. 

 

• Fluid viscous damper 

Viscous fluid dampers over the years have been widely used in the military, aerospace, and 

automotive industry. This kind of damper exploits the technique of fluid orificing in order to 

dissipate the energy input to the structure. The device consists of a housing filled with highly 

viscous fluid and a piston that has a certain number of orifices that allow the fluid to pass from 

one side to the other of the chamber. The dissipation of the energy takes place due to the 

movement of the piston in the fluid. Considering a Newtonian fluid inside the chamber, the 

force produced by the device is directly proportional to the velocity of the piston [37]. 

The devices have some features that make them very appealing in the structural engineering 

context, in particular the linear behaviour over a very broad range of frequencies of the inputs, 

the very low sensitivity to temperature variations, and the reduced dimensions. 

In [25,55], the study of the device is modelled in the following way: 

 𝐹 +	𝜆!𝐷![𝐹] = 𝐶"𝐷#[𝑋] (1.2.1) 

In which 𝐹 = output force, 𝜆, 𝐶", 𝑟 and 𝑞 are constants that depend on the material, 𝐷![𝐹] and 

𝐷#[𝑋] are fractional derivatives. Choosing 𝑟 and 𝑞 equal to 1 yields the Maxwell model, in 

which 𝜆 is the relaxation time and 𝐶" the constant damping coefficient. The second term in the 

equation disappears for a low damping force rate, which translates to input frequencies lower 

than a value close to 4 Hz. The model in that case becomes: 

 𝐹 = 𝐶"�̇� (1.2.2) 
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The device is often described through another relationship: 

 𝐹 = 𝐶"𝑉$  (1.2.3) 

In which n is an exponent in the range 𝜎 ∈ [0.1; 2] and V is the velocity of the piston head 

inside the damper. For the special design of the orifices, it is possible to obtain lower values of 

𝜎, which causes the force to flatten at high velocities. 

 

• Tuned mass dampers 

Passive tuned mass dampers are devices consisting of a mass mounted on one or 

more damped springs, which are tuned to have an oscillation frequency as close as possible to 

the resonant frequency of the building, in order to reduce the amplitude of the oscillations. 

TMDs are used mostly to alleviate wind excitations in high-rise structures such as skyscrapers, 

they can be tuned to a single structural frequency, therefore, more than one device may be 

necessary to reach the desired level of safety in the building. 

Both analytical and numerical results demonstrate that the capability of TMDs of improving 

the dynamic behaviour of the same structure during different earthquakes or of different 

structures during the same earthquake is dramatically different, varying from good 

performance to no effect. This behaviour highlights a certain dependency of the attained 

reduction in response to the characteristics of the ground motion that stimulates the structure. 

The reduction is large for resonant inputs and becomes less evident as the main frequency of 

the input gets further away from the natural frequency of the structure to which the device is 

tuned [37]. 

[48,57] Highlight how the optimal configuration of a TMD system can be very different 

depending on the individual features of a structure, from the spring-mass type to the circular 

track type and the pendulum type. 

Some design features must be carefully controlled in a TMD system: for sliding masses, a 

surface with low-friction bearings is necessary for a response at any level of excitation. The 

travel of the TMD with respect to the building is a key factor as well, as the amount of mass 

that can be positioned on the top of the structure [37]. 

In [62] analytical results highlight how applying TMDs to base-isolated systems allows for the 

absorption of the seismic input without degradation of the isolating effect given by base 

isolation devices.  
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• Tuned liquid dampers 

The tuned liquid dampers principle for dissipating energy and reducing the dynamic response 

of structures is like the one of tuned mass dampers, with the difference that the mass is in a 

liquid state and is generally placed on the highest floor of the building. The dissipative effect 

takes place by means of wave breaking and viscous action. A variant of the device consists in 

tuned liquid column dampers (TLCD), which dissipate energy by the motion of the liquid 

through an orifice with some specific design characteristics. The devices are cheaper than TMD 

and are easier to tune to the desired frequency. 

The improvement in structural performance given by the device has been proved in [44], 

pointing out that it is able to add indirect damping to the system. The performance was analysed 

also in [86,90], with reference to the wind inputs and the analysis of a single degree of freedom 

structure, with positive results that led to many practical applications, in particular for wind 

response alleviation. In [91] the analysis of the device focuses on the shape of the container, 

which is geometrically the same as a nutation damper, in [15] a rectangular container filled 

with two immiscible fluids is used for adding damping to the response of the structure; [33] 

studies containers with rectangular shape partially filled with water.  

TLD must be tuned to the desired frequency, they provide a highly non-linear response due to 

the liquid sloshing and going through orifices. In TLCDs the fundamental frequency of the 

device depends on the length of the column of fluid. A good fit between the real behaviour and 

the hypothetic one was found in the small oscillations case. It is also possible to tune the TLD 

to two different frequencies in two orthogonal directions of motion, by adjusting tank length in 

those directions. With respect to TMDs, the maintenance costs are much smaller and the 

excitation threshold for the response of the device is also lower. The tank is typically made of 

polypropylene, which makes the installation of the device sufficiently easy, also for existing 

buildings. For large oscillation inputs, the system is not very sensitive to tuning, which happens 

instead for small oscillations [37]. 

 

1.3 Typical devices employed in the semiactive control strategy 

• Variable orifice dampers 

Variable orifice dampers are devices that can be controlled by varying the aperture of the 

orifices present on the piston, therefore varying the resistance to the flow of the viscous fluid 

present in the chamber; this allows the modification of the force/velocity characteristics of the 

device. The typical time required to vary from a fully open valve configuration to a fully closed 
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one is in the order of milliseconds. They typically operate with a low energy requirement 

(50W). 

In [66] the device is characterized in-depth and a flow model is built for it; the dissipator is 

referred to as the “Semiactive Vibration Absorber” (SAVA). The procedures to identify model 

parameters in the laboratory are described as the device results able both to store and dissipate 

energy. The results show that the variable orifice dampers are a robust, reliable, and 

inexpensive mean of improving the dynamic behaviour of a structure. 

In [60] a semiactive control strategy based on variable slip-force level dampers is presented, it 

exhibits bilinear hysteresis with a ductility factor equal to two. The device behaves linearly 

regardless of the seismic input and a decentralized control algorithm is employed which utilizes 

local response information. The system is applied initially to a single degree of freedom 

structure and then in a 20 DOF multi-story structure. The results show how the device allowed 

to maintain the structure in linear behaviour. 

A fuzzy control methodology is used in [20] to control semi active hydraulic dampers (SHD) 

installed in combination with steel bracings and placed at different floor levels on a five-story 

steel building. The FLC is used for the bottom device and other controllers are assumed to 

provide control commands for the variable damping coefficient of the device in a certain 

proportion to that obtained for the bottom-most controller. The simulation is developed in 

MATLAB Simulink environment using the 1940 El Centro earthquake signal as input. The 

results highlight how the SHD are able to provide an efficient semi active control strategy and 

that the maximum damping coefficient and damper capacity are the most important factors in 

the response of the structure. 

Pneumatic and hydraulic versions of the device with resettable characteristics are used in [42] 

to control a three-story scaled frame subject to random inputs. The device under study is 

modelled like a linear spring that is occasionally reset to extract energy from the vibrating 

structure. The results highlight that the device employed can provide good structural control. 

An on/off oil damper with a built-in controller is presented in [47], using a decentralized 

algorithm for control that gives independence to each device and allows a simple 

implementation. A two-dimensional 20-story frame is controlled with the device which results 

able to dissipate twice as much energy as an ordinary passive damper. 
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• Smart tuned mass dampers 

Smart TMDs are an improvement of standard TMD since their varying stiffness allows the 

device to alleviate more than one resonant frequency thanks to real-time control of the device. 

The variation of stiffness of the device is strongly dependent on the instantaneous estimation 

of frequency and period by a controller. This sort of improvement to the passive version of the 

device can also be applied to TLDs. 

In [50] a semiactive TMD with MR implementation is used for a 2-dimensional model of a 12-

story frame subject to seismic inputs. The performance of the system is evaluated by 

comparison with an active TMD, and the system is controlled online with a saturated optimal 

control strategy. The results show that the STMD is not as effective as the active version, but 

it is cheaper and has lower power requirements. In [80] the device referred to as a “ground 

hook tuned mass damper” (GHTMD) is used for the reduction of floor vibrations due to human 

movements. The structure tested is a metal deck on a shaker table. The results are compared 

with the behaviour of a passive TMD, and they show that the STMD is better at reducing 

uneven weight distribution caused by equipment or other loads. 

 

• Electro and magnetorheological dampers 

Electro and magnetorheological dampers rely on controllable fluids, which are able to 

reversibly change from a free-flowing, linear viscous fluid to a semi-solid when exposed to an 

electric (for electrorheological fluids) or magnetic (for magnetorheological fluids) field [83]. 

In presence of a strong field, the particles of the liquid polarize and align, thus increasing 

exponentially the resistance to the flow. The presence of the field can modify the behaviour 

from a viscous fluid to a yielding solid within milliseconds. 

Magnetorheological fluids typically consist of micron-sized magnetically polarizable particles 

dispersed in a medium such as mineral or silicone oil. The sudden transition allows the 

construction of large bandwidth devices. The fluids can operate from -40°C to 150°C with 

slight variations in the yield stress. They show a certain sensitivity to impurities and many 

additives can be used to enhance properties such as stability, seal life, bearing life, and so on. 

The behaviour of the device can be modulated by varying the field and therefore obtaining 

different kinds of responses depending on the need and the control strategy utilized. 

In [36] magnetorheological dampers in active bracings are used in a scaled model subject to 

earthquake loadings, and the results highlight how Sliding Mode Control (SMC) performs 

better than both Linear Quadratic Regulator (LQR) and skyhook controllers. 



Andrea Troise   Master’s degree in Mechatronic Engineering 

 14 

The use of the MR dampers for bridge control is analysed in [51] on a 1:12 scaled model with 

two dampers. The damping force is controlled aiming at minimizing the rate of change of 

energy in the system with Fuzzy Logic (FLC), fuzzy logic plus sliding mode, and Lyapunov-

based control strategies. The results show how in general the use of dampers improves the 

behaviour and, more specifically, how FLC has the best performance out of the three methods. 

A wireless control system for a half-scaled three-story steel structure is employed in [54] and 

it is subjected to the El Centro earthquake signal on a shaking table. Linear Quadratic Gaussian 

(LQG) control was used in a centralized and decentralized fashion. The results suggest that the 

performance of the decentralized strategy is better due to robustness and performance factors. 

In [53] centralized and decentralized LQG control of a 20-story frame with MR dampers were 

analysed with four different scenarios ranging from fully centralized to fully decentralized 

control. The study concluded stating that the performance difference between the strategies is 

almost neglectable, but the decentralized control is more robust. 

Podium structure buildings behaviour was analysed in [95] using scaled models, testing 4 

different scenarios, ranging from no control to multilevel logic control algorithm of MR 

dampers. The tests highlighted how the values of displacements and acceleration decreased up 

to 70% with respect to the uncontrolled system and about 35% for the passive version of the 

system. 

In [29] the Cape Girardeau Bridge is used as a benchmark problem with 24 magnetorheological 

fluid dampers with 1000 kN capacity each. The system is controlled with H2 and LQG control 

strategies and subjected to the 1985 Mexico City, 1999 Gebze and 1940 El Centro earthquakes. 

The conclusion highlights an improvement in all responses. In [58] the same bridge was 

controlled with Sliding Mode Control (SMC) and Linear Quadratic Gaussian (LQG) methods, 

and the SMC resulted being the more effective. 

In [69] shake table tests were performed on a steel frame model with MR dampers in active 

bracing using the signals from the 1976 Friuli, and the 1994 Northridge earthquakes. The study 

exploited an instantaneous optimal control algorithm and the presence of MR dampers allowed 

a reduction in displacements of about 35% with respect to the passive device condition. 

 

• Variable friction dampers 

This improvement of passive friction damper, typically made by a structural bracing connected 

to a friction shaft, allows the control of the device by adjusting the presence of slippage to the 
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desired amount, this can be achieved by varying the normal component of the force to the 

surfaces by hydraulic, electromagnetic, and piezoelectric actuators. 

In [96] the authors tested the device proving that it can reduce displacement, as well as velocity 

and acceleration of a high-rise building. In [28] a smart piezoelectric friction damper is used 

for a tall building to improve the dynamic behaviour under wind loadings, the results show 

how the device results efficient also with different control strategies.  

 

1.4 Typical devices employed in the active control strategy 

• Active tuned mass damper 

ATMDs, also known as “active mass drivers”, exploit actuators connected to a TMD to control 

the vibration of a structure. The forces from the actuator can be employed to increase the 

efficiency of the device and its robustness to changes in the dynamic behaviour [83]. The device 

can overcome the main issue of passive TMDs by being able to counteract more than one 

resonant frequency of the structure with a single device. It works well for wind gusts and 

earthquakes, but it is difficult to accurately compute the fundamental frequency of a structure. 

The device also, is not as effective for irregular structures under strong ground motion, because 

the presence of many different modes of vibration may significantly increase the dynamic 

response [31]. 

It is possible to distinguish between two alternative versions of this device, one is also called a 

“hybrid mass damper”; it needs more space for the installation and is able to act on both 

longitudinal and torsional motion, while the other is referred to as “active mass damper” and 

can act only on one specimen of motion, either torsional or longitudinal, which is the reason 

why more than one of these devices is usually installed in active control applications. 

Li et al. in [49] exploit the H2 control strategy to analyze the response of a big offshore platform, 

and the results highlight how the ATMD strategy performs better than the TMD one. 

In [93] an ATMD is analysed on a possible installation to counteract wind gusts with different 

control algorithms: Linear Quadratic Gaussian (LQG), H¥ and Sliding Mode Control (SMC), 

all three strategies performed well in improving the dynamic response of the structure. 

Most of the research in the field is focused on implementing a single ATMD on structures, but 

there are some exceptions, in [41] Ikeda et al. discuss the use of two ATMD to counteract both 

lateral and torsional dynamic effects on a ten-story building with steel frame. The discussion 

highlights how the reduction in lateral and torsional vibration is respectively at 26% and 11% 

for earthquake inputs. 
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In [34] Guclu and Yazici analyse the behaviour of a two-dimensional 15-story structure with 

15 degrees of freedom controlled with a Proportional Derivative (PD) and a Fuzzy Logic 

controller to control ATMDs placed on the first and on the 15th floor. The results of the analysis 

show that the Fuzzy Logic controller is more effective than the PD in improving the behaviour 

of the system. 

 

• Distributed actuators 

Active strategies often exploit inputs from several actuators spread across the structure. 

The control strategy used, and the placement of actuators are strongly dependent on the 

individual properties of a structure, and its simulated uncontrolled response. In this kind of 

solution, the control strategy used is typically a robust one since increasing the number of 

devices necessary for the control means increasing the failure or destabilisation probability. In 

fact, a supercomputer may be necessary to compute the necessary actions in real time, which 

increases the implementation costs and the algorithm complexity [31]. 

In [12] a computational model for control with thousands of distributed actuators for large 

structures is presented, focusing on different kinds of inputs such as wind, earthquake, and 

impact loadings. 

In [1-11] Saleh and Adeli discuss parallel algorithms to simultaneously optimize and control 

structural systems with distributed actuators. In the study, they analyse micro and macro 

tasking on high-performance processors that share memory. 

In [74,75] Saleh and Adeli focus on the solution of the Riccati equation, needed for the 

application of the LQR algorithm, using parallel vector algorithms optimized for shared-

memory supercomputers. 

The saturation working condition in which the force input by the actuators is not enough to 

stabilize the structure is analysed in [14], the results of the study show that the saturation is not 

detrimental for the 2D six-story frame analysed. 

Saleh and Adeli in [78] analyse a 3D multi-storey building structure controlled with distributed 

actuators, subject to earthquake motions and wind gusts from both directions. Different options 

for the placement of the actuators are studied. The results highlight how the most effective 

placement depends on the specific characteristics of the structure and that the unbraced 

moment-resisting frames are the most effective. 

Optimal control of multi-storey building structures subject to blast-type loadings is presented 

in [73], analysing both internal and external blasts on different floors. The results show how a 

careful placement of the controllers can improve considerably the behaviour of the structure. 
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Chase et al. in [24] analyse a 2D five-story frame with distributed actuators controlled by the 

H¥ control algorithm, which guarantees stability also in saturation and fault conditions. 

 

• Active tendon systems 

Active tendons are prestressed tendons placed between various stories of a structure, used to 

adjust the level of tension in the cables, thus controlling the magnitude of the controlled force 

to the construction. They exploit hydraulic or piezoelectric actuators and are utilized for active 

control. Active tendon systems act by modulating the level of tension of the tendons, hence 

controlling the amplitude of the force to the structure, they are typically used in cable suspended 

bridges. 

In [71] an active tendon system is presented for a 142.5m cable-stayed pedestrian bridge subject 

to the 1952 Taft earthquake and controlled with a Lyapunov-based controller. The results show 

that the response of the bridge is significantly improved thanks to the system. 

In [29] an active tendon system with either hydraulic or piezoelectric actuators is used to 

control two scaled models of cable-stayed bridges. The study focuses mainly on wind loadings. 
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Chapter 2 

Variable aperture fluid viscous dampers 

2.1 Sources and fundamentals of fluid viscous dampers 
This chapter explores the fundamental characteristics of the dampers under study, it is mainly 

based on the very detailed technical report NCEER-95-0011 by M.D. Symans and M.C. 

Constantinou, which was the result of research conducted at the University of Buffalo, State 

University of New York. The results presented in the report represented a basis for all the 

studies of the device in the following years, this included. Moreover, the insights taken by other 

research papers are cited in the text itself with the classic square bracket format. 

Fluid viscous dampers were first used in the French military field at the end of the nineteenth 

century. They were considered a national secret until the first world war when they were shared 

with French allies, the United Kingdom, and the United States of America. Since then, the 

application of the device has spread from the automotive field to the aerospace one, being used 

for suspensions and payload dampers, and has nowadays become ubiquitous in many fields of 

engineering. The extensive applications of fluid viscous dampers to vibration control of 

structures were proven in military applications during the decades of the cold war, but the 

devices were made commercially available only during the last decades of the twentieth 

century. 

In physical systems, damping is produced by processes that dissipate the energy stored in the 

oscillation. The typical level of damping of a building is very low, and so is the amount of 

energy dissipated during an external disturbance such as a seismic input, bringing the structure 

beyond its elastic limit, and causing permanent deformations, therefore risking the collapse. 

The idea of additive damping elements is to make sure that the energy is dissipated by them, 

rather than by the structure itself, hence acting as a protective device. A fluid viscous damper 

generally consists of a piston in the damper housing typically filled with a compound of silicone 

oil with kinematic viscosity equal to 100	%%
!

&
 and specific weight equal to 9.78 '(

%". The fluid 

is non-toxic, inert, non-flammable, modellable as an uncompressible fluid and stable for very 

long periods. A pressure differential across the piston head is responsible for the force 

generated by the fluid damper, which converts seismic energy into heat.  
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The presence of an accumulator and a control valve prevents the generation of a restoring force 

in the device, given by its compressibility. Typically, piston motions with a frequency lower 

than 4 Hz display no stiffness properties; this cut-off frequency may be desired, it is a function 

of the design of the device, and it depends on the dimension of the accumulator. 

 

 
Figure 2.1: Passive fluid viscous damper, image inspired from technical report NCEER-95-0011 

 

Viscous fluid dampers display a linear viscous response for a broadband range of frequencies 

and a compact design, they can reduce contemporarily both stress and deflection within a 

structure subjected to a transient. This happens because the device modulates the output force 

as a function of the velocity only, which inherently provides a behaviour that is out-of-phase 

with stresses due to the flexing of the structure. 

 

 
Figure 2.2: Semi-active fluid viscous damper, image inspired from technical report NCEER-95-0011 
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The dampers are often referred to as “inertial dampers” because of the dependence of the force 

output of the device on the speed of the fluid through the orifices. In figure 2.2 the 

modifications needed to create a semi-active device are visible, in particular the addition of an 

external bypass loop with a control valve. In this form, the device is referred to as a “two-stage 

damper”, because typically the control valve can only be in the “fully open” or in the “fully 

closed” position. The control valve is a D.C. solenoid valve in which the solenoid coil can 

either be fully energized or de-energized. 

 
2.2 Integrated electronics and solenoid valve 
As shown in figure 2.3, the external valve possesses a whole apparatus that must receive a 

certain number of signals, both to supply power to the valve and to monitor its proper 

behaviour. The voltage supply required is typically 24	𝑉)*  which is very low. The complete 

list of signals is presented in the following table 

 
Table 2.1: List of electric signals necessary for the functioning of the solenoid valve 

Signal Technical Specifications Notes 

𝑉! 
Power supply at 24	𝑉#$ for solenoid power stage and driver 

logic 
Input – power supply 

𝑉" Power supply at 0 𝑉#$ for solenoid power stage and driver logic Gnd – power supply 

AGND Ground signal Gnd – analog signal 

ENABLE 
Enable or disable the driver 

(4 ÷ 20	𝑚𝐴 for current-input version) 
Input – on/off signal 

INPUT+ Reference analog differential input of ±10	𝑉#$ maximum range 

(4 ÷ 20	𝑚𝐴 for current-input version)	
Input – analog signal 

INPUT- 

MONITOR Monitor analog input ±10	𝑉#$ maximum range Output – analog signal 

FAULT Fault (0𝑉) or normal working (24𝑉) Output – on/off signal 

 

As reported in the table, the inputs to the integrated electronics of the valve can either be 

voltages or currents, this clearly implies that the command signal for the algorithm will be in 

the respective form. The datasheet of this specific valve reports a maximum power supply 

needed equal to 35𝑊, this allows battery operation during blackouts, which is a critical 

advantage in the context of control during extreme events. 
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Figure 2.3: Functioning scheme of the solenoid valve from ATOSâ datasheet of LIQZP-LE-803L4 

 

The valve present in the external bypass loop can be described as a two-stage normally closed 

valve. When no input signal is applied the valve stays closed, and the resulting behaviour is the 

one of a standard passive fluid viscous damper. Conversely, when the electric signal is active 

the solenoid creates an electromagnetic force that opens the spool. The force that the solenoid 

exerts must overcome a certain threshold, which is the force of the reset spring placed inside 

the valve. When the spool is in an open position the damping level is much lower than the 

passive value. Another very important feature of this kind of valve is its “failsafe” 

characteristic, which automatically closes the spool in case of a power loss, allowing maximum 

damping in an emergency situation. 

The solenoid valve actually allows also partial openings of the spool, which create a broader 

range of possible damping coefficients, nevertheless the control of the two-stage damper is 

easier and often more convenient than the other variants. 

Figure 2.4 from the datasheet results particularly useful in terms of understanding the behaviour 

of the valve with respect to the control signal given. The control signal can be in two different 

ranges: −10 ÷ +10𝑉, 4 ÷ 20	𝑚𝐴. These ranges allow the movement of the spool in two 

opposite directions as indicated by the 𝐴 → 𝑇 and the 𝑃 → 𝐴 notation, which are highlighted 
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in figure 2.3. The curve that describes the flow variance with the control signal is bilinear, it 

has a slope of 5	%	-.	%/0	.1-2
3-14/56

 in the central zone and a slope of 11,25	%	-.	%/0	.1-2
3-14/56

 for the 

remaining portion of the graph. The variation is slower for voltages up to an absolute value of 

2𝑉, from that point on the increase of the flow is quicker. Depending on the dimension of the 

valve, the maximum flow rate can vary from 500	 𝑙𝑡 𝑚𝑖𝑛I  to 5000	 𝑙𝑡 𝑚𝑖𝑛I  and the maximum 

pressure from 350	𝑏𝑎𝑟 to 420	𝑏𝑎𝑟. From the diagram, it can be noticed that one side only of 

the whole graph can be considered since a change in the sign of the reference signal does not 

change the percentage of the regulated flow with respect to the maximum value. 

Typically, current control has some advantages compared to voltage control, it allows a more 

precise behaviour due to the fact that the current build-up effect is neglectable. 

 

 
Figure 2.4: Regulation diagram of the solenoid valve from ATOSâ datasheet of LIQZP-LE-803L4 

 

Following the arrival of the control signal (either in voltage or current) an oscillator excites the 

position transducer present inside the valve, which produces an electric signal proportional to 

the position of the spool, the signal of the desired spool position gets compared with the one of 

the instantaneous position and the error is reduced to zero. This feedback loop allows precise 

positioning of the spool at every time instant. 
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2.3 Dissipation of energy and theoretical considerations 
The output force of the damper can be written as: 

 𝐹 = 𝐶(𝑡)|�̇�|7𝑠𝑔𝑛(�̇�) (2.3.1) 

Where �̇� is the velocity of the piston head, C is expressed as a function of time because in 

variable devices the damping coefficient changes depending on the aperture of the orifices.  

𝛼 is a coefficient that is a function of the design of the orifice on the piston head, typical values 

range from 0.1 to 2. The orifice design is typically referred to as “fluidic control orifice”, a low 

value of 𝛼 is desired in presence of high-velocity shocks, very common in military applications. 

It is not rare to find devices with a unitary value of 𝛼. 

Supposing a sinusoidal cycle of the fluid damper described by equation 1, the trajectory of the 

piston head can be expressed as: 

 𝑢 = 𝑢- sin(𝜔-𝑡) (2.3.2) 

The energy dissipated in the previously defined cycle is: 

 
𝑊 = W 𝑃�̇�𝑑𝑡

8

"
= Y𝑃𝑑𝑢 = 𝜋𝑃-𝑢- sin(𝛿) (2.3.3) 

T is the period 𝑇 = 9:
;%

 , 𝜔" the frequency and 𝑢" the amplitude of the sinusoidal cycle. P is the 

force needed to keep the device in motion. 

Integrating equation (2.3.1) and equation (2.3.3) yields the expression of the dissipated work: 

 

𝑊<=&& =
Γ9 \1 + 𝛼2]
Γ(2 + 𝛼) ∙ 4 ∙ 27 ∙ 𝐶 ∙ 𝑢->?7 ∙ 𝜔-7 (2.3.4) 

With Γ equal to the gamma function Γ(𝑧) = (𝑧 − 1)! 

It may be useful to express the dissipated energy as a function of the maximum value of the 

dissipator response 𝑃%/0 = 𝐶𝑢"7𝜔"7, this brings to: 

 

𝑊<=&& =
Γ9 \1 + 𝛼2]
Γ(2 + 𝛼) ∙ 4 ∙ 27 ∙ 𝑃%/0 ∙ 𝑢- (2.3.5) 

This equation is very interesting in terms of understanding the effect of the coefficient 𝛼 on the 

behaviour of the damper. 
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Figure 2.5: Plot of the energy dissipated by the device as a function of the coefficient Alpha 

 

Parametrizing the value of 𝑃%/0𝑢" and plotting the expression it is possible to notice how, for 

low values of alfa, the energy dissipated by the damper is higher. 

In detail, the case of 𝛼 = 0.1 yields dissipated energy equal to 𝑊<=&& = 3.88245 ∙ 𝑃%/0𝑢", 

while for 𝛼 = 2, the value is 𝑊<=&& = 2.667 ∙ 𝑃%/0𝑢". 

A choice of a damper with 𝛼 = 0.1 ensures therefore that the device dissipates 45.57% more 

energy compared to a device with 𝛼 = 2. 

Values of 𝛼 = 2 are very common for dampers with common cylindrical orifices, instead, 

devices with low values of 𝛼 require a more complex and technologically advanced design of 

orifices. 

Considering equation (2.3.2), the force needed to maintain the sinusoidal motion can be 

expressed in the following way: 

 𝑃 = 𝑃@ sin(𝜔𝑡 + 𝛿) (2.3.6) 

In which 𝑃@ is the amplitude of the force exerted, and 𝛿 is the phase angle between the force 

and the imposed displacement. This relation can be expanded in this form: 

 𝑃 = 𝑃@ sin(𝜔𝑡) cos(𝛿) +𝑃@ cos(𝜔𝑡) sin(𝛿) (2.3.7) 
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Using the following quantities: 

 
𝐾> =

𝑃"
𝑢"
cos(𝛿) ;	𝐾9 =

𝑃"
𝑢"
sin(𝛿) (2.3.8) 

Which represent two different typologies of stiffness, 𝐾> is called “storage stiffness” which is 

recoverable energy, instead 𝐾9 is called “loss stiffness”, associated with energy that is not 

stored anywhere, that has just been lost during the motion. 

Equation (2.3.7) can be rewritten in the following form: 

 
𝑃 = 	𝐾>𝑢 +

𝐾9
𝜔 �̇� (2.3.9) 

The force represented in this form has two contributions, the first is in phase with the motion 

and is due to the stiffness of the damper, the second term is 90° out of phase with the motion 

and is given by the viscosity of the damper. 

From (9) the damping coefficient of the device can be obtained, and it has the following form: 

 
𝐶 =

𝐾9
𝜔  (2.3.10) 

Combining equation (2.3.8) and (2.3.3) the following expression is obtained: 

 
𝐾9 =

𝑊<

𝜋𝑢@9
 (2.3.11) 

The expression just shown becomes very useful because it allows to obtain the specific 

parameters of the device from the values measured during a test. Therefore, knowing the 

dissipated energy 𝑊<, the amplitude of both the velocity and the force, 𝑢@ and 𝑃@ all the other 

relevant parameters are easily found. 

 

 
Figure 2.6: Bode plot of the coefficients 𝐶 and 𝐾! with frequency, from [87] 
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Figure 2.6, from [56], shows how the values of the damping coefficient 𝐶 and the storage 

stiffness 𝐾> have an almost constant behaviour below a certain frequency of motion of the 

device, which can be considered equal to	4 ÷ 5𝐻𝑧. The damping coefficient tends to get 

smaller for higher frequency inputs, while the storage stiffness quickly increases moving 

towards the right of the bode diagram. 

The graph below shows a typical displacement-force plot of the device under a complete 

sinusoidal motion with the damping switching from low to high values. These graphs consider 

motion below the cut-off frequency pointed out before because at higher frequencies the 

behaviour does not result linear anymore. 

 

 
Figure 2.7: Theoretical plot of displacement of the device as a function of the force 

 

Often the tests on the device are multi-stage, which means that the damping coefficient 

gradually increases during the sinusoidal motion, giving rise to a more cyclical behaviour as 

shown below. 

 

 
Figure 2.8: Experimental plot of displacement of the device versus the force, with a variation of the damping coefficient, from 

technical report NCEER-95-0011 
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2.4 System response time 
A fundamental parameter of the semi-active fluid damper is the response time, which is the 

time needed for a complete variation of the damping coefficient, from minimum to maximum 

or vice versa. This parameter is clearly important because it causes a certain delay from the 

ideal behaviour of the device in which the variation happens instantly. 

The response time is evaluated during the saturation condition of the command signal, and it 

can be separated into two different contributions, the first is a static response time, 𝑡> and is 

relative to the delay given by the electronic response of the integrated ECU together with the 

presence of static friction, the second one, 𝑡9 counts the time needed from the initial motion of 

the spool to the final position of the control valve, so the actual time in which the damping 

coefficient varies. 

 

 
Figure 2.9: Variation of the command signal in saturation conditions, from technical report NCEER-95-0011 

 

Depending on the structure of the valve in the application, the response time may or may not 

be identical for the opening procedure and the closing one, both for reasons related to the flow 

of oil inside the cylinder and for the presence of the reset spring. 

In general, this kind of delay is quite reduced and allows proper control of the device during 

the whole period. The specific value depends on the particular dimension of the valve and the 

damper used in the application, but in general the sum of 𝑡> and 𝑡9 is safely in the range 

20 ÷ 35	𝑚𝑠. 
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2.5 Analytical models 
The fundamental equation of the device, representative of the force being exerted is (1): 

 
𝐹 = 𝐶(𝑡)|�̇�|7𝑠𝑔𝑛(�̇�) (2.5.1) 

In which 𝐶(𝑡), which is the damping coefficient of the device, can vary inside a certain range: 

 𝐶%=A ≤ 𝐶(𝑡) ≤ 𝐶%/0 (2.5.2) 

Where 𝐶%=A is the damping coefficient corresponding to the valve fully open, while 𝐶%/0 is 

the damping coefficient related to a passive behaviour with the control valve completely closed. 

This model, which is called the “Viscous Dashpot Model” represents very well the behaviour 

of the device for inputs with frequencies lower than the cut-off frequency, so around 4	𝐻𝑧, 

nevertheless it is representative of a broader range of frequencies when the damper is built with 

a balanced piston rod structure instead of a rod make-up accumulator. 

An alternative model to evaluate the viscoelastic effects inside the device is referred to as the 

“Viscoelastic Maxwell model”, and it is dependent on the force as well as its derivative and 

the velocity of the piston rod: 

 𝐹(𝑡) + 𝜆�̇�(𝑡) = 𝐶(𝑡)�̇�(𝑡) (2.5.3) 

In which the constant 𝜆 represents the “relaxation time” and 𝐶(𝑡) is the damping coefficient 

value at a generic instant of time. The model has to be calibrated with the values of the damping 

coefficient with respect to the frequency of the input. 

A different kind of approach that can be exploited to build an analytical model of the device is 

the fluid dynamics one. The mass flow rate equilibrium is equal to: 

 𝑑
𝑑𝑡
(𝑚) =

𝑑
𝑑𝑡
(𝜌𝑉) = 𝜌=𝑄= − 𝜌-𝑄- (2.5.4) 

In which 𝑡 is time, 𝑚 is the mass of fluid inside the volume 𝑉, 𝜌 is the fluid mass density and  

𝑄 is the flow rate, and in the equilibrium equation, the subscript 𝑖 and 𝑜 refer to input and 

output respectively. The previous equation can be expanded as: 

 𝑑
𝑑𝑡
(𝜌𝑉) = 𝜌

𝑑𝑉
𝑑𝑡 +

𝑑𝜌
𝑑𝑡 𝑉 = 𝜌

𝑑𝑉
𝑑𝑡 + 𝑉

𝑑𝜌
𝑑𝑃

𝑑𝑃
𝑑𝑡  (2.5.5) 

In which 𝑃 represents the pressure within the fluid volume. It is now useful to analyse the 

definition of the bulk modulus of a fluid 𝛽: 

 𝑑𝑃 = −𝛽
𝑑𝑉
𝑉  (2.5.6) 
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𝛽 is a function of the pressure and the temperature of the fluid under study. Now considering 

an infinitesimal amount of mass: 

 𝑑𝑚 = 𝑑(𝜌𝑉) = 𝜌𝑑𝑉 + 𝑉𝑑𝜌 (2.5.7) 

The following is obtained: 

 𝑑𝑉
𝑉 = −

𝑑𝜌
𝜌  (2.5.8) 

And putting together equations (2.5.5), (2.5.6) and (2.5.8) the following relation is obtained: 

 
𝑑
𝑑𝑡
(𝜌𝑉) = 𝜌 j

𝑑𝑉
𝑑𝑡 +

𝑉
𝛽
𝑑𝑃
𝑑𝑡k (2.5.9) 

And in this relation 𝜌 <3
<4

 is related to the boundary deformations and 𝜌 3
B
<C
<4

 describes instead 

the compressibility of the fluid. Combining (2.5.9) with (2.5.4) and assuming a constant fluid 

density yields the following: 

 𝑑𝑉
𝑑𝑡 +

𝑉
𝛽
𝑑𝑃
𝑑𝑡 = 𝑄= − 𝑄- (2.5.10) 

In a closed chamber condition 𝑄= is equal to zero and 𝑄- is equal to: 

 𝑄- = 𝑘D!𝐴D!𝑣D! + 𝑘/E𝐴/E𝑣/E (2.5.11) 

In which 𝐴 is the orifice area, 𝑣 is the velocity of the fluid through the orifice, the subscript 𝑝𝑟 

refers to the primary orifice, while the subscript 𝑎𝑢 refers to the auxiliary orifice present on the 

outside loop and regulated by the control valve. 

Using the conservation of energy is possible to relate the velocity of the fluid through the orifice 

with the pressure drop ∆𝑃 across the orifice: 

 

𝑣 = j
2∆𝑃
𝜌 k

>
9
 (2.5.12) 

This representation works well for the orifice present in the external loop, containing the 

control valve, but not for the one present in the piston head of the damper, due to the peculiar 

shape of the orifices in the piston head which guarantee a linear relationship between the output 

force and the relative velocity of the piston within the fluid, which is the following: 

 
𝑣D = 𝛿 j

2∆𝑃
𝜌 k

>

 (2.5.13) 
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Where the exponent of unity is present to emphasize the linearity of the relation, and 𝛿 is 

necessary to maintain dimensional equivalence. 

 

 
Figure 2.10: Functioning scheme of the semi-active fluid viscous damper, inspired by technical report NCEER-95-0011 

 

Referring to the scheme in figure 2.9, it is possible to write the mass conservation equations 

for chamber 1 and chamber 2, which are respectively: 

 𝑑𝑉>
𝑑𝑡 +

𝑉>
𝛽>
𝑑𝑃>
𝑑𝑡 = −𝑘D!𝐴D!𝛿 p

2(𝑃> − 𝑃9)
𝜌 q

>

+ 

−𝑘/E𝐴/E p
2|𝑃> − 𝑃9|

𝜌 q

>
9
sgn(𝑃> − 𝑃9) 

(2.5.14) 

 

 𝑑𝑉9
𝑑𝑡 +

𝑉9
𝛽9
𝑑𝑃9
𝑑𝑡 = 𝑘D!𝐴D!𝛿 p

2(𝑃> − 𝑃9)
𝜌 q

>

+ 

+𝑘/E𝐴/E p
2|𝑃> − 𝑃9|

𝜌 q

>
9
sgn(𝑃> − 𝑃9) 

(2.5.15) 

 

In these equations, it has been assumed that the fluid cannot enter the accumulator chamber 

when in the actual dynamics of the damper it does through a small orifice. To account for the 

accumulator effect the spring stiffness and face plate area of the scheme can be adjusted 

properly. Equating the fluid pressure force to the spring stiffness force it is obtained the 

following: 

 𝐾/𝑢/ = 𝑃>𝐴. (2.5.16) 
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In which 𝐾/ is the accumulator spring stiffness, 𝑢/ is the accumulator faceplate relative 

displacement, and 𝐴. the faceplate area. The total volume of the first chamber can be found as: 

 𝑉> = (𝐿> − 𝑢 + 𝑢/)𝐴D (2.5.17) 

Where 𝐿> is the length of the chamber, 𝑢 is the relative displacement of the piston head and 𝐴D  

is the piston head area. The volume of chamber two instead can be written as: 

 𝑉9 = (𝐿9 + 𝑢)t𝐴D − 𝐴!u (2.5.18) 

Where 𝐿9 is the length of the chamber, and 𝐴! is the piston rod area. The values of 𝐿> and 𝐿9 

are changed to account for the quantity of fluid present in the bypass loop. The last four 

equations are put together to obtain the following two first-order nonlinear differential 

equations: 

 

𝑑𝑃#
𝑑𝑡

=

,𝐴$%�̇� − 𝑘$%𝐴$%𝛿 2
2(𝑃# − 𝑃&)

𝜌 7
#
− 𝑘'(𝐴'( 2

2|𝑃# − 𝑃&|
𝜌 7

#
&
sgn(𝑃# − 𝑃&):

2;𝐿# − 𝑢 +
𝑃#𝐴)
𝐾'

?
𝐴$
𝛽#
+
𝐴)𝐴$
𝐾'

7
 

(2.5.19) 

 

 𝑑𝑃>
𝑑𝑡 = vt𝐴! − 𝐴Du�̇� + 𝑘D!𝐴D!𝛿 p

2(𝑃> − 𝑃9)
𝜌 q

>

+ 

+𝑘/E𝐴/E p
2|𝑃> − 𝑃9|

𝜌 q

>
9
sgn(𝑃> − 𝑃9)w x

𝛽9
t𝐴D − 𝐴!u(𝐿9 + 𝑢)

y 

(2.5.20) 

There exist a relation useful to compute the bulk modulus of the silicone fluid: 

 𝛽= = 864 + 4.166𝑃= (2.5.21) 

Where 𝑃= represents the pressure in chamber 𝑖. The equation relating the force output with the 

pressure differential across the chambers is the following: 

 𝐹 = 𝑃>𝐴D − 𝑃9t𝐴D − 𝐴!u + 𝐹.sgn(�̇�) (2.5.22) 

In which 𝐹. represents the force threshold to overcome the friction between the piston rod and 

the oil seals. The force can be computed after solving the differential equations that require the 

knowledge of displacement 𝑢, the velocity �̇�, and the adjustable area of the orifice 𝐴/<F. This 

fluid mechanics model does not account for the dynamics of the control valve in the external 

bypass loop. The fluid mechanics model can be used to make predictions on force-displacement 
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loops with some small approximations, in fact, it results possible to relate the aforementioned 

area with the displacement of the spool: 

 𝐴/<F(𝑡) = 𝜋𝑑𝑠(𝑡) (2.5.23) 

Where 𝑑 is the diameter of the spool and 𝑠(𝑡) is the spool displacement. 

The relation between the damping coefficient and the control voltage is given by the following 

equation: 

 𝐶 = 𝐶%=A + (𝐶%/0 − 𝐶%=A) exp−𝜇𝑉G (2.5.24) 

In which 𝐶%/0 is the damping coefficient with a fully closed valve, 𝐶%=A is the damping 

coefficient with a fully open valve and the parameters 𝜇 and 𝜑 are evaluated through curve 

fitting. The adjustable area as a function of the command voltage 𝜀 can be expressed in the 

following way: 

 𝐴/<F(𝜀) = 𝐴%/0�1 − exp−𝛾𝜀H� (2.5.25) 

Again, 𝛾 and 𝜁 must be determined empirically. 
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Chapter 3 

Control theory and algorithms  

3.1 General notions of Control theory 
This chapter contains many mathematical results which are pertinent for the application, it 

presents the fundamentals of Proportional Integrative Derivative and Model Predictive Control 

algorithms. The detailed source of the results is present in the bibliography, but it is important 

to highlight that for the PID results the book “PID Control” by Michael A. Johnson and 

Mohammad H. Moradi has been an essential source, and for what concerns the MPC part the 

book “Predictive Control” by F. Borrelli, A. Bemporad and M. Morari and the many research 

papers by A. Bemporad on the topic have been fundamental to synthesize the theory behind 

the algorithms. In the appendix A, some basic results of control theory are presented, therefore 

it can be considered as an introductive part to chapter 3.  

Structural vibration control nowadays is a field of interdisciplinary research. Structures must 

be designed to withstand a specific range of disturbances, which depend mainly on 

geographical factors, for which the design objective concerning the physical system focuses on 

keeping all the stresses and strain below a certain bound. This can be obtained using different 

techniques, very commonly with energy considerations, the bounds imposed on the system 

itself represent a trade-off between human comfort and safety, where the first one concerns 

accelerations, while the second one typically covers displacements and velocities. 

The Physical Design Problem can be tackled either with or without a mathematical modelling 

phase. The modelling phase starts by noting that any model of the system, depending on the 

complexity, always represents an idealization of the actual physical dynamics. This 

simplification of the system, in order to be well-posed, relies on the guarantee that all the 

defined parameters remain within a specified bound in presence of disturbances. It is then 

necessary to select the design parameters (sensor type and location, actuator specifications, 

various transfer functions) to choose the type of bound on the output responses. 

The simplification of the system dynamics aims for a set of equations that can easily be solved 

and also grasp the highlights of the overall behaviour, which is clearly not always possible. 

The model of the system can be built from two starting points: input-output data or first 

principles, both yielding a set of partial or ordinary differential equations. 
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Modelling the system allows to make predictions on the behaviour, that would otherwise be 

obtained only after an infinite number of numerical computer simulations. 

In control design theory, there is not a “best choice” for the controller, in fact, typically different 

alternatives are evaluated based on the specific application and computation requirements. 

The second alternative consists instead directly in selecting some control parameters, which 

can be variables of the system on which some requirement is present or, alternatively, factors 

that can be modified directly in the loop. A strategy to control the parameters is then chosen 

(such as PID, CNN, FL) and through a trial-and-error procedure, a solution to the problem is 

then found. This approach does not give an exhaustive answer to the initial problem because 

in general it lacks a mathematical certainty and does not give any insurance on the effects of 

all the infinite untested inputs and disturbances. 

An active or semiactive control system, in the civil engineering field, is composed of: 

1. Sensors to measure the external inputs and the structural parameters required for the 

control 

2. Processing devices, improving the quality of the signal coming from the sensors and 

performing the computation as instructed by the control algorithm 

3. A certain number of actuators provide the necessary inputs, which are powered by an 

energy source having an entity that depends on the mechanical characteristics of the 

devices 

In control system theory, when only the external excitation is measured, the strategy is referred 

to as open-loop control (or feedforward control). A closed-loop control (also referred to as 

feedback control) strategy requires instead the continuous measurement of the structural 

parameters to make real-time adjustments to the system through the actuators. The 

configuration which utilizes both the measurement of structural parameters and the external 

excitation is called feedback-feedforward control (or less often closed-open-loop control). 

 

3.2 PID controllers 
Proportional-Integrative-Derivative controllers are very common in many fields, because of 

their simplicity and low cost. The basic idea of a PID controller is to have a standard 

architecture for a system and to modify it simply by regulating the gain parameters of the 

proportional, derivative, and integrative blocks. 
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Figure 3.1: Architecture of a feedback system with PID controller 

 

Three different representations of the PID controller can be given, the symbolic representation, 

the time domain representation, and the Laplace domain representation. 

 

 
Figure 3.2: PID controller represented in three different domains (a) symbolic representation, (b) time domain representation, 

(c) Laplace domain representation. From [26]. 

 

In a PID controller, the output is computed as the sum of three contributions. The first 

contribution is proportional to the error signal between the reference and the actual value of 

the variable to be controlled. The second contribution is proportional to the integral of the error, 

so it is a function of the average value of the error itself. The third and final contribution is 

proportional to the derivative of the error, therefore it is a function of the variation velocity of 

the error value. 

The control law of the PID controller can be written as 
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𝑢(𝑡) = 𝐾C𝑒(𝑡) + 𝐾IW𝑒(𝜏)𝑑𝜏
4

"

+ 𝐾)
𝑑𝑒(𝑡)
𝑑𝑡  (3.2.1) 

Where 𝐾C is called proportional gain, 𝐾I is called integral gain, and 𝐾) is called derivative 

gain. There is, however, another way to write the control law, which is more common 

 

𝑢(𝑡) = 𝐾C �𝑒(𝑡) +
1
𝑇I
W𝑒(𝜏)𝑑𝜏
4

"

+ 𝑇)
𝑑𝑒(𝑡)
𝑑𝑡 � (3.2.2) 

With 𝑇I = 𝐾C 𝐾I⁄ , and 𝑇) = 𝐾) 𝐾C⁄ . In literature, it is also very common to use a quantity 

called proportional bandwidth 𝐵C instead of the proportional gain 𝐾C, where 𝐵C represents the 

amount of error comparing it with the maximum value in percentage. 𝐾C = 100 𝐵C⁄ . 

Considering the Laplace transform of (3.6.2) the following relation is obtained 

 
𝑈(𝑠) = 𝐾C j1 +

1
𝑇I𝑠

+ 𝑇)𝑠k𝐸(𝑠) = 𝐾C �
𝑇)𝑇I𝑠9 + 𝑇I𝑠 + 1

𝑇I𝑠
�𝐸(𝑠) (3.2.3) 

Which represents a dynamic LTI improper system, not physically realizable. Therefore, to 

solve the problem it is necessary to filter the derivative action, obtaining the real control law 

 

𝑈(𝑠) = 𝐾C �1 +
1
𝑇I𝑠

+
𝑇)𝑠

1 + 𝑠 𝑇)𝑠𝑁
�𝐸(𝑠) (3.2.4) 

The transfer function of the controller can now be written as: 

 
𝑈(𝑠)
𝐸(𝑠) = 𝐾C +

𝐾C
𝑇I𝑠

+
𝐾C𝑇)𝑠

1 + 𝑠 𝑇)𝑠𝑁
= 𝑃(𝑠) + 𝐼(𝑠) + 𝐷(𝑠) (3.2.5) 

Which can be represented schematically as the sum of three contributions 
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Figure 3.3: PID controller structure as a sum of Proportional, Integral and Derivative contributions 

 

To have better insight into the effect of each component it is necessary to analyze them 

separately. 

Proportional action can be expressed with the following relation 

 𝑈C(𝑠) = 𝐾C𝐸(𝑠) (3.2.6) 

Using only the proportional action, a difference between the requested value and the obtained 

value is produced. The difference can be reduced by increasing the gain 𝐾C, but this can cause 

a highly rippled behaviour following transients. A purely proportional control is typically used 

only in asymptotically stable processes. 

The integral action has the objective of bringing the controlled variable to the set-point value 

 
𝑈I(𝑠) =

𝐾C
𝑇I(𝑠)

𝐸(𝑠) (3.2.7) 

It can be seen as a mechanism to put to zero the error caused by the proportional action. PI 

controllers (Proportional-Integrative) allow better precision without compromising the stability 

of the system, they also guarantee a shorter response time for the system. 

The objective of the derivative action is to improve the stability of the control loop. 

 
𝑈)(𝑠) =

𝐾C𝑇)

1 + 𝑇)𝑁 𝑠
𝐸(𝑠) (3.2.8) 
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The derivative action outputs the derivative over time of the error, that is the reason why these 

kinds of controllers are called velocity controllers. Often this kind of action is not necessary 

for a controller, also because it has the drawback of amplifying the noise at high frequencies, 

which can destabilize the system compromising the quality of the control.  

The instability can be explained considering that the dynamicity of the system causes a certain 

delay between the time in which the input changes to the time in which this change actually 

causes a sensible variation of the controlled variable. Nevertheless, from the knowledge of the 

rate of change is possible to predict the time course of the controlled variable through the 

derivative of the error curve. 

 

3.3 Bandwidth-Limited derivative control 
Real-world processes contain noise, which is typically represented by a high-frequency signal. 

In the bode plot of the PID controller, the behaviour of each of the three components is 

highlighted and allows to make some design considerations. 

The control signal in the Laplace domain can be written in the following form: 

 
𝑈J(𝑠) = 𝑈J

A.(𝑠) − 𝑈A-=&6(𝑠) (3.3.1) 

Where 𝑈J
A.(𝑠) stands for the noise-free control signal and 𝑈A-=&6(𝑠) = [𝐺J(𝑠)]𝑁(𝑠), with 𝑁(𝑠) 

equal to the Laplace transform of the noise signal. 

Since the controller transfer function can be expressed as the sum of three terms (Proportional, 

Integrative and Derivative), then also the control signal given by the noise can be split into 

three contributions: 

 𝑈A-=&6(𝑠) = 𝑈A-=&6C (𝑠) + 𝑈A-=&6I (𝑠) + 𝑈A-=&6) (𝑠) (3.3.2) 

With 

 
𝑈A-=&6C (𝑠) = [𝐺C(𝑠)]𝑁(𝑠), 	𝑈A-=&6I (𝑠) = [𝐺I(𝑠)]𝑁(𝑠), 

	𝑈A-=&6) (𝑠) = [𝐺)(𝑠)]𝑁(𝑠) 
(3.3.3) 

And also 

 
𝐺C(𝑠) = 𝑘C , 𝐺I(𝑠) =

𝑘C
𝜏=𝑠

, 𝐺)(𝑠) = 𝑘C𝜏)𝑠 (3.3.4) 

In figure 3.4, 𝑘C = 5, 𝜏= = 5 and 𝜏< = 5 
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Figure 3.4: Bode plot of Proportional, Derivative, and Integral terms of the PID controller. From [26]. 

 

This plot shows that the Proportional term has a constant magnitude equal to 13.98 dB for the 

whole frequency range, the Integral term possesses a 20 dB/dec attenuation of the noise signals, 

while the Derivative term has the opposite behaviour with a 20 dB/dec amplification of the 

noise signals. 

The solution for this phenomenon is given by a filtering action on the Derivative term, the 

filtering transfer function has the following form 

 
𝐺.(𝑠) = p

1
𝜏.𝑠 + 1

q (3.3.5) 

This yields a derivative term shown below 

 
𝑈A-=&6) (𝑠) = p𝑘C �

𝜏<𝑠
𝜏.𝑠 + 1

�q𝑁(𝑠) (3.3.6) 

In which the modified derivative transfer function is expressed as: 
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𝐺%)(𝑠) = p𝑘C �

𝜏<𝑠
𝜏.𝑠 + 1

�q (3.3.7) 

And this modification in the transfer function of the Derivative term changes the high-

frequency gain and its frequency response: 

 
𝑘)K = lim

;→K
|𝐺%)(𝑗𝜔)| = 𝑘C

𝜏<
𝜏.

 (3.3.8) 

By setting 𝜏. =
M&
A

 the modified derivative term takes the following form: 

 
𝐺%)(𝑠) = �𝑘C j

𝜏<𝑠
(𝜏< 𝑛⁄ )𝑠 + 1k� (3.3.9) 

Yielding the high-frequency gain: 

 𝑘)K = 𝑘C𝑛 (3.3.10) 

Typically, n is chosen to be inside the range 5 ≤ 𝑛 ≤ 20. Choosing 𝑘C = 5, 𝜏< = 0.2 and  

𝑛 = 5, 𝑘)K results to be 27.95 dB, and this is shown in the bode plot below: 

 

 
Figure 3.5: Modified Bode plot with limitation of the derivative term. From [26]. 
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3.4 Tuning of a PID controller 
The main advantage of the Proportional-Integrative-Derivative controller structure is that they 

do not need a detailed model of the system. This phenomenon is evident in the tuning process, 

which can be carried out through a series of experimental tests on the system, or in the 

simulation environment. The direct results of these tests are the gains of the controller to be 

implemented. 

 
𝑃𝐼𝐷(𝑠) =

𝑈(𝑠)
𝐸(𝑠) = 𝐾C +

𝐾C
𝑇I𝑠

+
𝐾C𝑇)𝑠

1 + 𝑠 𝑇)𝑠𝑁
= 𝑃(𝑠) + 𝐼(𝑠) + 𝐷(𝑠) (3.4.1) 

 

3.5 Open loop tuning of PID controllers 
In this method the controller is not connected to the system, the plant of the system is excited 

through a step function, and the response amplitude and time are measured. The static gain of 

the process is computed from the obtained data. 

 
Figure 3.6: Time domain plot showing the variation of output consequently to a ramp input 

 
Table 3.1: Values for open loop tuning of PID controllers 

 𝐾I 𝑇I 𝑇) 

P 
𝑇
𝜇𝜏   

PI 
0.9𝑇
𝜇𝜏  3𝜏  

PID 
1.2𝑇
𝜇𝜏  2𝜏 5𝜏 
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3.6 Cohen-Coon tuning of PID controllers 
This kind of tuning of the Proportional-Integrative-Derivative controller exploits the same data 

extrapolated from the step-function stimulus to the plant of the system but with different 

relations. 
Table 3.2: Values for Cohen-Coon tuning of PID controllers 

 𝐾I 𝑇I 𝑇) 

P 
3𝑇 + 𝜏
3𝜇𝜏    

PI 
10,8𝑇 + 𝜏
12𝜇𝜏  𝜏

30𝑇 + 30𝜏
9𝑇 + 20𝜏   

PID 
16𝑇 + 3𝜏
12𝜇𝜏  𝜏

32𝑇 + 6𝜏
13𝑇 + 8𝜏 

4𝑇𝜏
11𝑇 + 2𝜏 

 

 

3.7 Closed loop tuning of PID controllers (Zieger-Nichols method) 
The Zieger-Nichols method starts the tuning process by inserting a purely proportional 

controller with a low 𝐾C coefficient. The gain is progressively increased to the point in which 

a regular oscillation is present in the behaviour. 𝐾N is defined as the value of the gain 𝐾C for 

which the response of the system is represented by a sinusoidal behaviour with constant 

amplitude, and at that point the period of the oscillation 𝑇N is measured. 

The table below shows the formulas for each gain. 

 
Table 3.3: Values for closed loop tuning of PID controllers 

 𝐾I 𝑇I 𝑇) 

P 0,5𝐾𝑢   

PI 0,45𝐾𝑢 
𝑇𝑢
1,2  

PID 0,6𝐾𝑢 𝑇𝑢
2  

𝑇𝑢
8  
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3.8 Limitation of the derivative action 
Considering once again the derivative action: 

 
𝑈)(𝑠) =

𝐾C𝑇)

1 + 𝑇)𝑁 𝑠
𝐸(𝑠) (3.2.8) 

It may occur that in presence of a step input, the output takes an impulsive form. This effect is 

clearly undesired, and it may cause a saturation of the actuator, as well as damages to it. 

To avoid this problem the derivative action is present only on the controlled variable, and not 

on the error: 

 
𝑈)(𝑠) =

𝐾C𝑇)

1 + 𝑇)𝑁 𝑠
𝑌(𝑠) (3.8.1) 

 

 
Figure 3.7: Structure of the PID controller and connection of the error and output signals 

 

3.9 Desaturation of the integrative action (anti-wind-up) 
At a steady state, the control variable 𝑢(𝑡) should be far from the saturation value, during the 

transient nevertheless it may happen that 𝑢(𝑡) overcomes the saturation levels. When 𝑢(𝑡) is 

saturated, the integral action keeps on integrating the error, causing a phenomenon known as 

“wind-up”. 
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Figure 3.8: Saturation constraints on the actuator 

 

To avoid this problem a desaturation system is introduced in the integrator: if the requested 

value overcomes the saturation value of the actuator, the value of the integral action is put to 

zero. 

 

 
Figure 3.9: Saturation constraints on the actuator implemented inside the system 

 

3.10 Model Predictive Control (MPC) 
Model Predictive Control is a type of control algorithm that exploits a dynamic model to 

anticipate the system behaviour and compute the best control input for the successive time 

instant. Modelling is a fundamental phase of the MPC algorithm, together with the record of 

measurement, which is needed to determine the initial state of the system. The two previous 

steps are complementary, and their overall quality is an index of good state estimation. State 

estimation, therefore, consists in putting together past measurements with the system model to 

predict the most likely value of the state at the current time instant. This dissertation will limit 
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itself to the linear Model Predictive Control algorithm, which is by far the most common in 

both industrial and scientific contexts. 

To properly discuss the MPC control algorithm it is necessary to introduce some basic 

constrained optimization results. 

 

A set 𝑆 ⊆ ℝA is convex if, for all 𝑥>, 𝑥9 ∈ 𝑆 

 𝜆𝑥> + (1 − 𝜆)𝑥9 ∈ 𝑆, ∀𝜆 ∈ [0,1] (3.10.1) 

 
Figure 3.10: (a) 2D representation of a non-convex set, (b) 2D representation of a convex set 

 

A function 𝑓: 𝑆 → ℝ is a convex function if 𝑆 is convex and 

 𝑓(𝜆𝑥> + (1 − 𝜆)𝑥9) ≤ 𝜆𝑓(𝑥>) + (1 − 𝜆)𝑓(𝑥9) 

∀	𝑥>, 𝑥9 ∈ 𝑆, 𝜆 ∈ [0,1] 
(3.10.2) 

An optimization problem  

 min 𝑓(𝑥) 

𝑠. 𝑡.		𝑥 ∈ 𝑆 
(3.10.3) 

is called a convex optimization problem if 𝑆 is a convex set and 𝑓(𝑥) is a convex function. 

𝑆 is typically defined by linear equality constraints 𝐴𝑥 = 𝑏 and convex inequality constraints 

𝑔(𝑥) ≤ 0, 𝑔:ℝA → ℝ%. 

A convex polyhedron is an intersection of a finite set of half-spaces of ℝA. 

A convex polytope is a bounded convex polyhedron. 

These objects can be represented in Hyperplane representation 
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 𝑃 = {𝑥 ∈ ℝA: 𝐴𝑥 ≤ 𝑏} (3.10.4) 

Or in Vertex representation 

 

𝑃 = 	 𝑥 ∈ ℝA: 𝑥 =¡𝛼=𝑣= +¡𝛽F𝑟F

D

FO>

#

=O>

w 

𝛼= , 𝛽F ≥ 0;	¡𝛼= = 1;		
#

=O>

𝑣= , 𝑟F ∈ ℝA 

(3.10.5) 

Linear programming (LP) problems are defined as 

 min 𝑐P𝑥 

𝑠. 𝑡.		𝐴𝑥 ≤ 𝑏, 𝑥 ∈ ℝA 

𝐸𝑥 = 𝑓 

(3.10.6) 

The LP problem in standard form is posed in this form 

 min 𝑐P𝑥 

𝑠. 𝑡.		𝐴𝑥 ≤ 𝑏, 𝑥 ∈ ℝA 

𝑥 ≥ 0, 𝑥 ∈ ℝA 

(3.10.7) 

The conversion from the initial form to the standard form exploits slack variables and splits the 

positive values of x from the negative ones. 

A trick often used to convert a maximization problem into a minimization one is the following 

 max
0
𝑓(𝑥) = −min

0
{−𝑓(𝑥)} (3.10.8) 

A Quadratic Programming (QP) optimization problem has the form: 

 
min

1
2 𝑥′𝑄𝑥 + 𝑐′𝑥 

𝑠. 𝑡. 𝐴𝑥 ≤ 𝑏, 𝑥 ∈ ℝA 

𝐸𝑥 = 𝑓 

(3.10.9) 

A QP is convex if the 𝑄 matrix is positive semidefinite 𝑄 ≽ 0. Assuming that 𝑄 = 𝑄P does not 

cause a loss of generality. 

 
1
2 𝑥

P𝑄𝑥 =
1
2𝑥′ �

𝑄 + 𝑄P

2 +
𝑄 − 𝑄P

2 � 𝑥 =
1
2𝑥′ �

𝑄 + 𝑄′
2 �𝑥 (3.10.10) 

Mixed-integer programming (MIP) can be split in the mixed-integer linear program (MILP) 
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min 𝑐P𝑥 

𝐴𝑥 ≤ 𝑏, 𝑥 = §
𝑥J
𝑥Q¨ 

𝑥J ∈ ℝA' , 𝑥Q ∈ {0,1}A( 

(3.10.11) 

And mixed integer quadratic program (MIQP) 

 
min

1
2 𝑥

P𝑄𝑥 + 𝑐P𝑥 

𝑠. 𝑡.		𝐴𝑥 ≤ 𝑏, 𝑥 = §
𝑥J
𝑥Q¨ 

𝑥J ∈ ℝA' , 𝑥Q ∈ {0,1}A( 

(3.10.12) 

 

3.11 Linear unconstrained MPC 
Given the state space model 

 
©𝑥'?> = 𝐴𝑥' + 𝐵𝑢'

𝑦' = 𝐶𝑥'
 (3.11.1) 

With 

 𝑥 ∈ ℝA, 𝑢 ∈ ℝ%, 𝑦 ∈ ℝD 

𝑥" = 𝑥(𝑡), 𝑥' = 𝑥(𝑡 + 𝑘|𝑡), 𝑢' = 𝑢(𝑡 + 𝑘|𝑡) 
(3.11.2) 

The following equation relates the input and states of the model 

 

𝑥' = 𝐴'𝑥" +¡𝐴F𝐵𝑢'R>RF

'R>

FO"

 (3.11.3) 

The performance index (also referred to as cost function) has this form 

 

𝐽(𝑧, 𝑥") = 𝑥′(𝑃𝑥( +¡ 𝑥′'𝑄𝑥' + 𝑢′'𝑅𝑢'

(R>

'O"

 

𝑤𝑖𝑡ℎ	𝑅 = 𝑅P ≻ 0, 𝑃 = 𝑃P ≽ 0	𝑎𝑛𝑑	𝑄 = 𝑄′ ≽ 0 

(3.11.4) 

The objective is to determine the sequence of inputs that optimally solves the optimization 

problem. Rewriting the cost function in an alternate form 
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𝐽(𝑧, 𝑥") = 𝑧P𝐻𝑧 + 𝑥"P𝐹P𝑧 +

1
2 𝑥"

P𝑌𝑥" (3.11.5) 

The solution is obtained by putting to zero the gradient 

 ∇S	𝐽(𝑧, 𝑥") = 𝐻𝑧 + 𝐹𝑥" = 0 (3.11.6) 

Which gives as an optimal sequence 

 𝑧∗ = −𝐻R>𝐹𝑥" (3.11.7) 

Therefore, the algorithm to solve the unconstrained quadratic function finds the optimal 

sequence of inputs 𝑧∗ by minimizing at each sampling step 𝑡 the quadratic function below: 

 
min
S
𝑓(𝑧) =

1
2 𝑧

P𝐻𝑧 + 𝑥P(𝑡)𝐹′𝑧 (3.11.8) 

With 𝑧 being equal to: 

 

𝑧 = 	 ±
𝑢"
⋮

𝑢(R>
³ (3.11.9) 

The solution is once again obtained putting to zero the gradient of the function 𝑓(𝑧) 

 
∇	𝑓(𝑧) = 𝐻𝑧 + 𝐹𝑥(𝑡) = 0	 ⇒ 𝑧∗ = −𝐻R>𝐹𝑥(𝑡) ⇒ 

⇒ 𝑢(𝑡) = −[𝐼 0				⋯ 0]𝐻R>𝐹𝑥(𝑡) = 𝐾𝑥(𝑡) 
(3.11.10) 

This is particularly interesting because it shows that an unconstrained linear Model Predictive 

Control algorithm equals a linear state feedback. It is important to highlight that for 𝐽(𝑧, 𝑥") =

𝑥(P 𝑃𝑥( +∑ 𝑥'P𝑄𝑥' + 𝑢'P 𝑅𝑢' , 𝑁E = 𝑁(R>
'O" , with the matrix 𝑃 being the solution of the algebraic 

Riccati equation. The MPC is equal to the Linear Quadratic Regulator control for any choice 

of the prediction horizon 𝑁. 
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Figure 3.11: Various signals in the Model Predictive Controller 

 

3.12 Constrained linear MPC 
The constrained case results more interesting because it shows how MPC is a high-level control 

algorithm. The constraints are considered both on the input and output values. 

 
©𝑥'?> = 𝐴𝑥' + 𝐵𝑢'

𝑦' = 𝐶𝑥'
 (3.12.1) 

With the same dimension of the matrices as before, plus the enforced constraints 

 𝑥 ∈ ℝA, 𝑢 ∈ ℝ%, 𝑦 ∈ ℝD 

©𝑢%=A ≤ 𝑢(𝑡) ≤ 𝑢%/0
𝑦%=A ≤ 𝑦(𝑡) ≤ 𝑦%/0

 

𝑢%=A, 𝑢%/0 ∈ ℝ% 

𝑦%=A, 𝑦%/0	 ∈ ℝD 

(3.12.2) 

Therefore, this optimization problem is a constrained quadratic programming problem 

 

min
S
𝑥(P 𝑃𝑥( +¡ 𝑥'P𝑄𝑥'

(R>

'O"

+ 𝑢'P 𝑅𝑢' 

𝑠. 𝑡. 	𝑢%=A ≤ 𝑢(𝑡) ≤ 𝑢%/0 , 𝑘 = 0,⋯ ,𝑁 − 1 

𝑦%=A ≤ 𝑦(𝑡) ≤ 𝑦%/0 , 𝑘 = 1,⋯ ,𝑁 
𝑤𝑖𝑡ℎ	𝑅 = 𝑅P ≻ 0, 𝑃 = 𝑃P ≽ 0	𝑎𝑛𝑑	𝑄 = 𝑄′ ≽ 0 

(3.12.3) 
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The optimization problem can be also expressed in the alternate form 

 
𝑉(𝑥") =

>
9
𝑥"P𝑌𝑥" +minS

>
9
𝑧P𝐻𝑧 + 𝑥"P𝐹P𝑧		(Quadratic objective) 

𝑠. 𝑡.		𝐺𝑧 ≤ 𝑊 + 𝑆𝑥"		(𝐿𝑖𝑛𝑒𝑎𝑟	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠) 

𝑤𝑖𝑡ℎ	𝐻 = 𝐻′ ≻ 0 

(3.12.4) 

Which is a Convex Quadratic Program (CVX QP) in which z is the optimization vector 

containing the sequence of inputs from 0 to 𝑁 − 1. The 𝐻, 𝐹, 𝑌, 𝐺,𝑊, 𝑆 matrices depend on 

𝑄, 𝑅, 𝑃, which are the weight matrices, the bounds on input variable 𝑢, the bounds on output 

variable 𝑦 and the matrices of the model 𝐴, 𝐵, 𝐶. 

The constrained linear MPC algorithm solves at each sampling step the constrained convex QP 

computing the solution 𝑧∗, which is the vector containing all the inputs from 𝑢"∗  to 𝑢(R>∗ , and 

applies only the first term of the vector discarding the others. 

 

3.13 Tracking of a reference signal 
To obtain an MPC control algorithm capable of tracking a certain given signal 𝑟(𝑡), it results 

necessary to extend the state space model with an adding state and to use an incremental 

increase of the input as follows 

 ∆𝑢(𝑡) = 𝑢(𝑡) − 𝑢(𝑡 − 1) 

𝑥E(𝑡) = 𝑢(𝑡 − 1) 
(3.13.1) 

The new state space model assumes the following form: 

 
©𝑥
(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡 − 1) + 𝐵∆𝑢(𝑡)

𝑥E(𝑡 + 1) = 𝑥E(𝑡) + ∆𝑢(𝑡)
 (3.13.2) 

 

 

⎩
⎨

⎧�
𝑥(𝑡 + 1)
𝑥E(𝑡 + 1)

� = §𝐴 𝐵
0 𝐼 ¨ �

𝑥(𝑡)
𝑥E(𝑡)

� + §𝐵𝐼 ¨ ∆𝑢
(𝑡)

𝑦(𝑡) = [𝐶 0] �
𝑥(𝑡)
𝑥E(𝑡)

�
 (3.13.3) 

Which is still linear with states 𝑥(𝑡), 𝑥E(𝑡) and has an input equal to ∆𝑢(𝑡). 

The optimization problem takes the following form: 
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min
S
¡º𝑊Ut𝑦'?> − 𝑟(𝑡)uº9

9 + º𝑊∆E∆𝑢'º9
9

(R>

'O"

 

𝑠. 𝑡.		𝑢%=A ≤ 𝑢' ≤ 𝑢%/0 , 𝑘 = 0,… ,𝑁 − 1 

𝑦%=A ≤ 𝑦' ≤ 𝑦%/0 , 𝑘 = 1,… ,𝑁 

∆𝑢%=A ≤ ∆𝑢' ≤ ∆𝑢%/0 , 𝑘 = 0,… ,𝑁 − 1 

𝑤𝑖𝑡ℎ		[∆𝑢' ≜ 𝑢' − 𝑢'R>], 𝑢R> = 𝑢(𝑡 − 1) 

(3.13.4) 

In this context 𝑧 keeps the same form of a row vector containing all the inputs value from the 

first time instant to the time instant 𝑁 − 1. The weight matrix 𝑊 is the Cholesky factor of 

𝑄(∙) = t𝑊(∙)uP𝑊(∙), which is a diagonal matrix. 

The optimization problem can be reformulated in the following structure: 

 
min
S
𝐽t𝑧, 𝑥(𝑡)u =

1
2 𝑧

P𝐻𝑧 + [𝑥P(𝑡)	𝑟P(𝑡)	𝑢′(𝑡 − 1)]𝐹′𝑧 

𝑠. 𝑡.		𝐺𝑧 ≤ 𝑊 + 𝑆 ½
𝑥(𝑡)
𝑟(𝑡)

𝑢(𝑡 − 1)
¾ 

(3.13.5) 

It is possible to track the 𝑟(𝑡) by considering an additive penalty º𝑊E(𝑢' − 𝑢!6.(𝑡))º9
9, plus, 

it is interesting to highlight that the constraints may also depend on the reference input. 

 

3.18 Disturbance measurement 
The measurement of disturbances is considered in the model as an unmeasured input 𝑑(𝑡) to 

the system, then the optimization problem is once again mathematically formulated, resulting 

very similar to the undisturbed process: 

 
©𝑥'?> = 𝐴𝑥' + 𝐵𝑢' + 𝐵<𝑑(𝑡)

𝑦' = 𝐶𝑥' + 𝐷<𝑑(𝑡)
 (3.14.1) 

 

 

𝑥' = 𝐴'𝑥" +¡𝐴F𝐵𝑢'R>RF

'R>

FO"

+ 𝐴F𝐵<𝑑(𝑡) (3.14.2) 

The optimization problem is still a QP, and it is posed in the following: 
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min
S

1
2 𝑧

P𝐻𝑧 + �𝑥P(𝑡)	𝑟′(𝑡)	𝑢′(𝑡 − 1)	𝑑′(𝑡)�𝐹′𝑧 

𝑠. 𝑡.		𝐺𝑧 ≤ 𝑊 + 𝑆 ¿

𝑥(𝑡)
𝑟(𝑡)

𝑢(𝑡 − 1)
𝑑(𝑡)

À 
(3.14.3) 

The Model Predictive Control intrinsically provides a feedforward action on the reference input 

and the measured disturbance. 

 

3.15 Constraints softening 
In an optimization problem, it often results useful to “soften” the constraints imposed on the 

various variables, in particular to prevent the unfeasibility of the solution. The optimization 

problem assumes the following structure: 

 

min
S
¡º𝑊Ut𝑦'?> − 𝑟(𝑡)uº9

9 + º𝑊∆E∆𝑢'º9
9

(R>

'O"

+ 𝜌Z𝜖9 

s.t. 𝑢%=A ≤ 𝑢' ≤ 𝑢%/0 , 𝑘 = 0,… ,𝑁 − 1 

𝑦%=A − 𝜖𝑉%=A ≤ 𝑦' ≤ 𝑦%/0 + 𝜖𝑉%/0 , 𝑘 = 1,… ,𝑁 

∆𝑢%=A ≤ ∆𝑢' ≤ ∆𝑢%/0 , 𝑘 = 0,… ,𝑁 − 1 

𝑥'?> = 𝐴𝑥' + 𝐵𝑢' , 𝑘 = 0,… ,𝑁 − 1 

(3.15.1) 

And also, the vector 𝑧 changes structure: 

 

𝑧 = ¿
∆𝑢(0)
⋮

∆𝑢(𝑁 − 1)
𝜖

À (3.15.2) 

In this formulation 𝜖= ≥ 0 represents the amount of violation (misclassification) of the i-th point, 

having weight 𝜌Z ≫ 𝑊U ,𝑊∆E. 𝑉%=A and 𝑉%/0 are column vectors with all entries positive or 

null, which correspond to the amount of softening of the i-th constraint. 

The infeasibility of an optimization problem can be related to design errors of the controller, 

modelling errors of the system and also the presence of disturbances during the working phase. 
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3.16 Feasibility of an optimization problem 
Considering the QP optimization problem 

 

min
S
¡º𝑊Ut𝑦'?> − 𝑟(𝑡)uº9

9 + º𝑊∆E∆𝑢'º9
9

(R>

'O"

 

𝑠. 𝑡.		𝑢%=A ≤ 𝑢' ≤ 𝑢%/0 , 𝑘 = 0,… ,𝑁 − 1 

𝑦%=A ≤ 𝑦' ≤ 𝑦%/0 , 𝑘 = 1,… ,𝑁 

∆𝑢%=A ≤ ∆𝑢' ≤ ∆𝑢%/0 , 𝑘 = 0,… ,𝑁 − 1 

(3.16.1) 

Concerning the input constraints, the feasibility is guaranteed if the equations of 𝑢 and ∆𝑢 are 

consistent, instead, the constraints on the output variable are more sensitive, having that for 

𝑁 < ∞ there is no guarantee that the optimization problem will be feasible at all times. Clearly, 

it results impossible to have 𝑁 = ∞ because it would result in an infinite number of constraints. 

 

3.17 Stability and convergence of an optimization problem 
Considering the QP optimization problem in the following formulation 

 

 
min
S
𝑥(P 𝑃𝑥( +¡ 𝑥'P𝑄𝑥'

(R>

'O"

+ 𝑢'P 𝑅𝑢' 

𝑠. 𝑡. 	𝑢%=A ≤ 𝑢(𝑡) ≤ 𝑢%/0 , 𝑘 = 0,⋯ ,𝑁 − 1 

𝑦%=A ≤ 𝑦(𝑡) ≤ 𝑦%/0 , 𝑘 = 1,⋯ ,𝑁 
𝑤𝑖𝑡ℎ	𝑅 = 𝑅′ ≻ 0, 𝑃 = 𝑃′ ≽ 0	𝑎𝑛𝑑	𝑄 = 𝑄′ ≽ 0 

(3.17.1) 

 

Stability depends on the model matrices 𝐴, 𝐵, 𝐶, also on matrices 𝑁,𝑄, 𝑅, 𝑃, and also on the 

saturation constraints on the control input and output variables 𝑢%=A, 𝑢%/0 , 𝑦%=A, 𝑦%/0. 

An important result in the context of MPC stability states that, considering the Model Predictive 

Control law stated in the following: 
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min¡ 𝑥'P𝑄𝑥' + 𝑢'P 𝑅𝑢'

(R>

'O"

 

𝑠. 𝑡. 𝑥'?> = 𝐴𝑥' + 𝐵𝑢' 

𝑢%=A ≤ 𝑢' ≤ 𝑢%/0 

𝑦%=A ≤ 𝐶𝑥' ≤ 𝑦%/0 

𝑥( = 0	 ← "𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡" 

𝑅, 𝑄 ≻ 0 

𝑢%=A < 0 < 𝑢%/0 

𝑦%=A < 0 < 𝑦%/0 

(3.17.2) 

The feasibility of the optimization problem at time 𝑡 = 0 implies that 

 lim
4→K

𝑥(𝑡) = 0 

lim
4→K

𝑢(𝑡) = 0 
(3.17.3) 

Moreover, it implies that the constraint are satisfied for 𝑡 ≥ 0 for all 𝑅, 𝑄 ≻ 0. 

An alternative result in the same context considers another formulation of the optimization 

problem: 

 
min¡ 𝑦'P𝑄U𝑦' + 𝑢'P 𝑅𝑢'

(R>

'O"

 

𝑠. 𝑡. 𝑥'?> = 𝐴𝑥' + 𝐵𝑢' 

𝑢%=A ≤ 𝑢' ≤ 𝑢%/0 

𝑦%=A ≤ 𝐶𝑥' ≤ 𝑦%/0 

𝑥( = 0	𝑜𝑟	𝑁 = ∞ 

(3.17.4) 

The feasibility of the optimization problem at the initial time instant 𝑡 = 0 implies that for all 

𝑅 = 𝑅P ≻ 0, 𝑄U = 𝑄UP ≻ 0: 

 lim
4→K

𝑦(𝑡) = 0 

lim
4→K

𝑢(𝑡) = 0 
(3.17.5) 

For all 𝑡 ≥ 0 the constraints are satisfied. In the following some stability constraints are listed: 
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𝐼𝑛𝑓𝑖𝑛𝑖𝑡𝑒	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛	ℎ𝑜𝑟𝑖𝑧𝑜𝑛					𝑁 → ∞ 

𝐸𝑛𝑑 − 𝑝𝑜𝑖𝑛𝑡	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡					𝑥( = 0 

𝑅𝑒𝑙𝑎𝑥𝑒𝑑	𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡					𝑥A ∈ Ω 

𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡					‖𝑥'?>‖ ≤ 𝛼‖𝑥(𝑡)‖, 𝛼 < 1 

(3.17.6) 

The proof of all the results stated before can be found in the bibliography. 

 

3.18 Constraint horizon and control horizon 
Considering the optimization problem with relaxed constraints in a slightly different version 

than the one stated before: 

 

min
S
¡º𝑊Ut𝑦' − 𝑟(𝑡)uº9

9 + º𝑊∆E∆𝑢'º9
9

(R>

'O"

+ 𝜌Z𝜖9 

𝑠. 𝑡.		𝑢%=A ≤ 𝑢' ≤ 𝑢%/0 , 𝑘 = 0,… ,𝑁 − 1 

𝑦%=A − 𝜖𝑉%=A ≤ 𝑦' ≤ 𝑦%/0 + 𝜖𝑉%/0 , 𝑘 = 1,… ,𝑁J 

∆𝑢%=A ≤ ∆𝑢' ≤ ∆𝑢%/0 , 𝑘 = 0,… ,𝑁 − 1 

∆𝑢' = 0, 𝑘 = 𝑁E, … , 𝑁 − 1 

(3.18.1) 

The constraint horizon 𝑁J limits the number of constraints. Reducing the input horizon 𝑁E 

lowers the performance of the controller but also reduces the computation time. 

 

3.19 Kalman filter for MPC control 
Kalman filter is a commonly used algorithm to filter the signals in a control loop, keeping count 

of the noise and estimating a joint probability distribution over the variables for each 

timeframe. The algorithm estimates the state variables together with their uncertainty range 

and updates these values through a weighted average once the next measurement is available. 

In the following, some important mathematical results are reported for completeness. 

The plant model can be formulated as: 

 
©𝑥
(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢𝑢(𝑡) + 𝐵𝑣𝑑𝑚(𝑡) + 𝐵𝑑𝑑𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷[𝑑𝑚(𝑡) + 𝐷𝑑𝑑𝑢(𝑡)
 

𝑤𝑖𝑡ℎ	𝑑𝑚(𝑡) = 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒	𝑎𝑛𝑑	𝑑𝑢(𝑡) = 𝑢𝑛𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑	𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 
(3.19.1) 

The full mathematical model for the filter can be expressed as: 
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½
𝑥(𝑡 + 1)
𝑥<(𝑡 + 1)
𝑥%(𝑡 + 1)

¾ = ½
𝐴𝐵<�̅� 0 0
0 �̅� 0
0 0 𝐴Ê

¾ ½
𝑥(𝑡)
𝑥<(𝑡)
𝑥%(𝑡)

¾ + ±
𝐵E
0
0
³ 𝑢(𝑡) + ±

𝐵[
0
0
³ 𝑑𝑚(𝑡) + 

+±
𝐵<
𝐵Ë
0
³𝑛<(𝑡) + ±

0
0
𝐵Ì
³ 𝑛%(𝑡) + ±

𝐵E
0
0
³ 𝑛E(𝑡) 

𝑦%(𝑡) = �𝐶%	𝐷<%	𝐶̅	𝐶Ê� ½
𝑥(𝑡)
𝑥<(𝑡)
𝑥%(𝑡)

¾ + 𝐷[%𝑣(𝑡) + 𝐷Í%𝑛<(𝑡) + 𝐷Î𝑚𝑛%(𝑡) 

(3.19.2) 

In which, the various matrices are responsible for managing the inputs of the various signals, 

and then 𝑛<(𝑡), 𝑛%(𝑡) and 𝑛E(𝑡) are, respectively, the modelling errors, the measurement 

noise, and the Gaussian noise on the input of the process. 

 

 
Figure 3.12: Implementation of the Kalman Filter in the model predictive control structure 
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Chapter 4 

Modelling of the structure and simulations 

4.1 Equations of motion and transfer functions 
This chapter describes all the procedures followed for building the model and the strategies 

used to obtain the various results with different control algorithms. 

The equation of motion of a base-excited lumped mass single-degree-of-freedom structure can 

be written as: 

 𝑀�̈�> + 𝐶�̇�> + 𝐾𝑧> = −𝑀�̈�5 (4.1.1) 

Where 𝑀 is the mass of the structure, 𝐾 is the linear elastic stiffness of the undamped structure  

C is the damping coefficient of the structure without additive dampers, 𝑧> is the horizontal 

displacement of the first floor of the structure, �̈�5 is the earthquake input acceleration to the 

system, which multiplied by the mass represents a force input. 

This equation is the starting point for the model, it does not consider the presence of the fluid 

viscous damper and allows to have a comparison between a structure with an additive damper 

and one without it. The viscous dashpot model, presented in chapter 2, has been used to 

represent the behaviour of the fluid viscous damper mainly because of its simplicity in the 

implementation and also because it does not need the interpolation of various parameters 

through shaking-table tests, which would have been prohibitive during the building phase of 

the model. 

The equilibrium relation modelling also the presence of the fluid viscous damper is represented 

by the following equation: 

 
𝑚�̈�> + 𝑐�̇�> + 𝑘𝑧> + 𝜂𝑓(𝑡) = −𝑚�̈�5 

𝑤𝑖𝑡ℎ	𝑓(𝑡) = 𝐶(𝑡)|�̇�(𝑡)|7sgn(�̇�) 
(4.1.2) 

This equation (with 𝜂 = 1) models the presence of a single fluid viscous damper working 

horizontally to the ground, to model a higher number of dampers it is sufficient to increase the 

value of 𝜂 to the number of dampers present in the structure since in that condition the 

maximum force exerted by the dampers will be higher. 

The values considered for the structure 𝑚, 𝑐 and 𝑘 are scalars and their values are the following: 
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 𝑚 = 10000	[𝑘𝑔] 

𝑘 = 2000000	[𝑁/𝑚] 

𝑐 = 2815	[𝑁𝑠/𝑚] 

(4.1.3) 

The equations describing the behaviour of the system can be represented in state space form 

using the following four matrices: 

 

𝐴 = ±
0 1

−
𝑘
𝑚

−
𝑐
𝑚
³ 

 

𝐵 = ±
0 0

−1
1
𝑚
³ 

 

𝐶 = 	 ¿

1 0
0 1

−
𝑘
𝑚 −

𝑐
𝑚

À 

 

𝐷 = ¿

0 0
0 0

−1
1
𝑚

À 

(4.1.4) 

These four matrices allow the creation of a state space model with two inputs, the first input is 

the input force given by the earthquake signal 𝑚�̈�5, and the second input is the force given by 

the semi-active fluid viscous damper. The force given by the damper is considered as a second 

input because it is more convenient to compute it each time instant, this is because it is a 

strongly non-linear function, therefore it results impossible to incorporate it inside the state 

space form in a different way. The images below schematize the structure respectively without 

the additive semi-active fluid viscous damper and with the semi-active fluid viscous damper. 

 
Figure 4.1: Schematic model of the structure without the semi-active damper 
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Figure 4.2: Schematic model of the structure with the semi-active damper 

 

Given that the system has two inputs, it has six transfer functions, the first three are relative to 

the values of displacement, velocity, and acceleration given by the first input, which is the 

earthquake signal, the last three transfer functions instead relate displacement, velocity, and 

acceleration with the second input, which is the input force given by the damper. The transfer 

functions of the structure without the damper, which are also the ones in the multi-input 

structure relating the earthquake input to the states of the system, are the first three ones 

reported below in equation 4.1.5. The natural period of the structure is equal to 𝑇 = 0.4443𝑠, 

and the resonance frequency is equal to 14.1421	𝐻𝑧. 

The transfer functions are present in equation (4.1.5) here below: 

 
𝐻ES) =

−1
𝑠9 + 0.2815𝑠 + 200 

𝐻EṠ) =
−𝑠

𝑠9 + 0.2815𝑠 + 200 

𝐻ES̈) =
−𝑠9

𝑠9 + 0.2815𝑠 + 200 

𝐻.S) =
0.0001

𝑠9 + 0.2815𝑠 + 200 

𝐻.Ṡ) =
0.0001𝑠

𝑠9 + 0.2815𝑠 + 200 

𝐻.S̈) =
0.0001𝑠9

𝑠9 + 0.2815𝑠 + 200 

(4.1.5) 

 

The bode diagrams of each transfer function are present in figure 4.3. The 6 bode diagrams are 

in the same order of the transfer functions present above starting from the top left position and 

advancing in reading order. 
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Figure 4.3: Transfer functions of the system, (a) From the earthquake input to the displacement, (b) from the earthquake input 

to the velocity, (c) from the earthquake input to the acceleration, (d) from the damper force input to the displacement, (e) from 

the damper force input to the velocity, (f) from the damper force input to the acceleration 

  

(a) (b) 

(c) (d) 

(e) (f) 
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4.2 Uncontrolled structure model 

The first model realized is also the simplest one, this model does not possess the additive semi-

active fluid viscous dampers and gives a reference for the structure behaviour. The earthquake 

signal, which is a vector containing time and acceleration components, enters the state space 

model from which displacement, velocity and acceleration are computed each instant through 

the equations of motion of the system. The state space model in this case represents a system 

with a single input. The model outputs the three states, which are displacement, velocity, and 

acceleration of the suspended mass. 

 

 
Figure 4.4: Simulink model of a 1 degree of freedom structure showing an uncontrolled system with displacement, velocity, 

and acceleration as outputs 

 

4.3 Model with uncontrolled fluid viscous damper 
The successive level of complexity in the model is achieved by including the presence of the 

damper in passive form (no control), the force output from the damper as reported in equation 

(4.1.2) is a function of the velocity of the structure as well as its sign, therefore its signal is 

measured from the output and through a simple function the output force from the damper is 

computed. The exponent 𝛼 is considered equal to 0.1, which is a common value in real-world 

devices. 
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Figure 4.5: Simulink model of a 1 degree of freedom structure  with implementation of the input from the fluid viscous damper 

 

The function block present in the feedback loop of the system, shown in figure 4.5, measures 

the velocity value output from the equations in the state space model and computes the force 

given by the passive fluid viscous damper in equation (4.1.2) with a constant passive damping 

coefficient. 

This same model has been used with a different input to obtain the graphs relative to the 

hysteretic behaviour of the structure when subjected to a certain input, specifically sinusoidal 

inputs and signals covering the whole typical band of frequencies of earthquakes, which in 

general is considered in the range 1 ÷ 10	𝐻𝑧. Another kind of input used in these tests is a 

sinusoidal input with a frequency equal to the resonant frequency of the structure, to simulate 

a critical input and obtain the relative graphs. 

Stimulating the system with a sinusoidal input at the resonant frequency, with unitary 

amplitude, the following graphs were obtained: 

 

 
Figure 4.6: Plot of the displacement as a function of the damping force 
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The first graph, plotting displacement on the x-axis and damping force on the y-axis, results 

being particularly interesting because of the resemblance with figures 2.7 and 2.8, this clearly 

shows that the model is a good representation of the actual physical phenomenon. 

 

 
Figure 4.7: Hysteretic plot of the velocity as a function of the damping force in the model 

 

The second graph shows the velocity of the mass on the x axis, while on the y axis the force of 

the device is shown. Zooming the central portion of the plot is possible to observe the hysteretic 

behaviour of the component. It is interesting to notice that the subtended area in the velocity 

vs damping force graph is representative of the energy dissipated by the component, and, more 

specifically, the area is directly proportional to the value of the 𝛼 coefficient. The lower the 

value of 𝛼, the more energy is dissipated by the semi-active fluid viscous damper during the 

motion of the device. 

 
Figure 4.8: Zoom of figure 4.7 plot showing hysteretic behaviour of the device in the model 
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In figure 4.8 the hysteretic behaviour of the semi-active fluid viscous damper is visible, its 

presence is representative of a model that simulates properly the physical phenomena during 

the motion of the structure. The image below shows the plot of the acceleration on the x axis 

versus the damping force on the y axis, the acceleration values are very high because the 

sinusoidal input to the structure is at the resonant frequency, therefore the structure is subject 

to a resonant behaviour and is suffering extreme accelerations. The time course of the diagram 

is similar to the one plotting displacement versus damping force. 

 

 

Figure 4.9: Plot of the acceleration versus damping force exerted by the semi-active fluid viscous damper in the model 

 

4.4 Ideal control of the structure 
Having obtained the graphs relative to the fundamental characteristics of the structure and the 

semi-active fluid viscous damper, the first models with an ideal control algorithm were built. 

Ideal control is referred to the property of the controller to feed back a generic control force 

into the state space model, and this is not possible because the semi-active device allows only 

the variation of the damping coefficient inside a certain range. Nevertheless, these kinds of 

models represent a starting point for the actual control strategy used in the successive steps. 

The control algorithms used, as anticipated in the previous chapter, are the Proportional-

Integrative-Derivative control algorithm, and the Model Predictive Control algorithm. 

The first model is the PID ideal control with saturation. In this model, the velocity signal is 

measured from the output of the state space system, and the error between a reference signal 

and the actual velocity of the structure is input inside the PID controller. This kind of approach 

aims at stabilizing the structure as quickly as possible, and this is because the reference to zero 



Andrea Troise   Master’s degree in Mechatronic Engineering 

 65 

of the velocity signal mathematically speaking refers to a system in a static equilibrium 

condition. The PID controller in this model also features upper and lower saturation constraints 

to make the value of the input force comparable with the one of the uncontrolled damper case. 

It has been tuned with the built-in PID tuner app inside the Simulink environment, through the 

linearization of the plant represented by the state space model of the structure. The tuning 

procedure of the controller was carried out by choosing values that represented a compromise 

between robust behaviour and quick response time. 

 

 
Figure 4.10: Simulink model of a 1 degree of freedom structure implementing ideal PID controller with upper and lower 

saturation constraints 

 

The second ideal model built has a very similar structure to the first one, but it applies a 

different control algorithm. This model once again considers a controller able to feed back into 

the system a control force with upper and lower saturation constraints, it exploits a model 

predictive control algorithm with a built-in Kalman filtering action. The upper and lower 

saturation constraints are built-in in the Model Predictive Control block and the entity of the 

constraints is the same as the ones of the PID controller shown previously. The MPC block 

observes the velocity output from the state-space model and has a reference to zero, this kind 

of setting implies that also in this case the objective of the controller is stabilizing the structure 

as quickly as possible. In this specific MPC controller, the sampling time was set equal to one 

millisecond and the prediction and control horizons were set to 50 units of sampling time. The 

Model Predictive Control block linearizes the equations in state space form after the 

specification of the plant inside the simulation and creates a model to predict the future 
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behaviour of the system knowing the history of the input/output relation of the transfer function 

of the plant. 

 
Figure 4.11: Simulink model of a 1 degree of freedom structure implementing ideal MPC controller with upper and lower 

saturation constraints 

 

4.5 Ideal control versus uncontrolled damper 
The models illustrated were used to simulate the behaviour of a structure with the input of the 

1940 El Centro earthquake, which was recorded by a strong-motion seismograph on the 19th of 

May in the southern portion of California. Through the evaluation of the graphs, it is possible 

to make some considerations on the behaviour of the system. In blue there is the signal with 

the fluid viscous damper in passive conditions, in green the signal with the ideal PID control, 

and in red the signal with the ideal MPC control. The displacement signal of the suspended 

mass present below has a much better behaviour in the Ideal PID and the MPC case, it is also 

interesting to notice that the behaviour given by the passive (uncontrolled) damper keeps the 

displacement in the same order of magnitude of the ideal cases. 

 
Figure 4.12: Seismograph of the El Centro 1940 earthquake 
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Figure 4.13: Displacement signal of the suspended mass following the earthquake input in constant damper case (blue), ideal 

PID control with saturation constraints (green) ideal MPC control with saturation constraints (red) 

 

Concerning the velocity signal of the suspended mass, the graph shows a clear improvement 

using the ideal PID and MPC control algorithms. Comparing the velocity signal with the one 

relative to the damper in passive working conditions it is possible to notice that the velocity in 

the constant damper case is not drastically higher than the other two signals. 

 
Figure 4.14: Velocity signal of the suspended mass following the earthquake input in constant damper case (blue), ideal PID 

control with saturation constraints (green) ideal MPC control with saturation constraints (red) 

 

The acceleration signal of the suspended mass in the model represents the most critical aspect 

in the simulation, the values in the ideal control case and in the passive damper case show the 

real improvement in the structure behaviour given by the control force. The PID and MPC 
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control algorithm guarantee a lower acceleration of the structure together with a more stable 

behaviour throughout the whole simulation. 

 
Figure 4.15: Acceleration signal of the suspended mass following the earthquake input in constant damper case (blue), ideal 

PID control with saturation constraints (green) ideal MPC control with saturation constraints (red) 

 

These graphs show that an ideal control force is capable of effectively reducing the values of 

acceleration of the suspended mass of the structure, this triggers a chain effect for which also 

the velocity and the displacement of the mass result lower than in the non-ideal case. The values 

shown in the graphs above can also be evaluated numerically in the tables showing mean and 

variance of the three cases under study in this specific case. 
 

Table 4.1: Values for open loop tuning of PID controllers 

 Constant damping PID MPC 

Displacement mean 𝜇 −11.1898 × 10/0 4.8063 × 10/0 −26.5464 × 10/0 

Displacement variance 𝜎& 19.587 × 10/1 7.3844 × 10/1 3.4533 × 10/1 

Velocity mean 𝜇 −6.7299 × 10/2 −0.6415 × 10/2 −78.227 × 10/2 

Velocity variance 𝜎& 0.0033109 0.0017866 0.00032571 

Acceleration mean 𝜇 −0.0019 × 10/0 −1.6822 × 10/0 0.31244 × 10/0 

Acceleration variance 𝜎& 0.72917 0.56766 0.10084 

Some values of the table are not reported in a standard scientific notation, this was chosen to 

report all the values in the same row with the same order of magnitude to have a more 

immediate comparison between the digits. From the table, it is possible to notice how the mean 

and variance absolute values of the Constant damping case are higher than the Ideal PID and 
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the MPC scenarios, specifically in the acceleration case in which the variance of the Constant 

damping case results much higher than the others. The bar graphs below show the peak values 

of each signal with the different control strategies. 

 

  
 

 
Figure 4.16: Peak values of displacement (top left), velocity (top right), and acceleration (bottom) in constant case (blue) PID 

case (orange) and MPC case (yellow) 

 

This kind of visualization of the data gives many insights into the differences among the various 

approaches, in particular, it is clear how the Model Predictive Control algorithm can analyse 

and forecast the behaviour of the system to have a lower value of velocity and acceleration 

peak signals. The PID controller instead keeps all the signals below a certain threshold but is 

not capable to reduce the acceleration and velocity as much as the MPC does, this is certainly 

related to the capability of the Model Predictive Control algorithm to choose a better ideal 

control force. 

Another unit of comparison between the different control algorithms is the RMSe of the various 

signals, which was compared again in the form of bar graphs and is reported below. 
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Figure 4.17: RMSe values of displacement (top left), velocity (top right), and acceleration (bottom) in constant case (blue) 

PID case (orange) and MPC case (yellow) 

 

It is once again clear how both control algorithms give an evident improvement in all three 

signals of the structure, notably the Model Predictive Control can give better performances 

from all points of view. 

These graphs set a reference for the successive simulations, in which the damper works 

according to the real mathematical model, therefore simulating the real behaviour of the 

structure much more effectively. 

 

4.6 Spectral analysis of the signals 
A spectral analysis of displacement, velocity and acceleration signals was performed on the 

constant model to further inspect the behaviour of the system working with the passive damper. 

The analysis also resulted useful for the choice of the sampling time (chapter 4.7) and were 

performed using the Signal Analyzer tool in the MATLAB environment. 
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Figure 4.18: Spectral analysis of displacement signal (top), velocity signal (middle) and acceleration signal (bottom). 

 
It is interesting to notice how the power spectrum of the various signals have different orders 

of magnitude but always show the peak values around 3 Hz. This happens because the typical 

frequencies related to a seismic input are in the range 1-10 Hz and also due to specific 

properties of the structure under study, such as the resonant frequency (or the natural period). 
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4.7 Towards a more realistic model 
The successive steps in the study concern the adaptation of the control strategy to the viscous 

dashpot model, which is strongly nonlinear and also dependent on the velocity of the structure. 

These considerations imply that the control algorithm must approximate the ideal ones 

exploited in the previous pages. Different models were built to explore the effect of this control 

strategy on the behaviour of the structure, also with different sampling times to evaluate how 

the computational weight of the control algorithm affects the results in terms of the 

performance of the structure. The choice of the minimum sampling time was performed 

through a spectral analysis of the velocity signal since it is the one that enters the controller to 

compute the control input. 

 

 
Figure 4.19: Velocity signal of the model in figure 4.4 (above) and spectral analysis of the signal (below). 

 

In figure 4.19 the spectral analysis of the signal shows frequency components up to 500 Hz, 

with a Power Spectrum of -100 dB at 50 Hz. The components over 50 Hz were neglected due 

to their low power, from Shannon’s theorem the minimum sampling frequency was chosen to 

be 100 Hz, which was used in the simulations together with a sampling frequency of 1000 Hz 

to check if the different sampling times perform differently in terms of control algorithm. 
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To build a model that is based on an optimal control algorithm and also considers the real 

behaviour of the device a specific strategy was adopted. The ideal controller was used as a 

reference for the value of the control force to the system, a function computed the value of the 

damping coefficient of the device needed to obtain the control force input by the controller 

using the following relation: 

 
𝐶(𝑡) =

𝑓(𝑡)
|�̇�(𝑡)|7sgn(�̇�) 

(4.6.1) 

Which is obtained from equation (2). If the value of the variable damping coefficient 𝐶(𝑡) was 

inside the attainable range of the device, then it would take that specific value, otherwise, the 

damping coefficient would saturate at the maximum or minimum limit of the range. 

 

 
Figure 4.20: Simulink model of a 1 degree of freedom structure implementing PID controller and semi-active fluid viscous 

damper with a sampling time of one-hundredth of a second 

 

Figure 4.20 shows the model built with the PID controller, choosing a sampling time equal to 

one-hundredth of a second (100 Hz). A MATLAB function with two inputs, specifically the 

ideal control force from the PID controller and the velocity from the state space equation of the 

system computes the value of the damping coefficient and the attainable control force 

instantaneously to create a feedback loop that models the viscous dashpot model of the semi-

active fluid viscous damper. This same model was realized also with a sampling time equal to 

one millisecond to compare the effectiveness of the results. A variation of this model was built 

considering the case in which the damper works in a two-stage condition (BangBang strategy). 

In this case, the damping coefficient can only saturate at the higher or the lower value 



Andrea Troise   Master’s degree in Mechatronic Engineering 

 74 

depending on if the ideal value of the damping coefficient is above or below a certain threshold. 

This model was built because typically the semi-active fluid viscous dampers in real-world 

applications operate in two-stage conditions as mentioned in chapter 2. 

A third model with the same structure was built using the MPC control algorithm, again two 

different sampling times equal to one-hundredth and one-thousandth of a second were applied 

to simulate different computational weights and to compare the results (respectively 100 Hz 

and 1000 Hz) 

 

 
Figure 4.21: Simulink model representing the vibration control of a 1 degree of freedom structure implementing MPC 

controller and semi-active fluid viscous damper with a sampling time of one-hundredth of a second 

 

Once again, the input from the controller enters a function block that computes the ideal 

damping coefficient needed to obtain the control force desired from the controller. The function 

block then outputs the damping coefficient of the device together with the real control force 

obtained through the viscous dashpot model and inputs it into the system. These models 

represent an almost physically accurate behaviour of the semi-active fluid viscous damper 

because the time delay in the variation of the damping coefficient and the noise in the 

measurement of the velocity signal are still neglected in this modelling phase. 

 
4.8 Results of the viscous dashpot modelling phase 
The graphs obtained running the various simulations with different control strategies and 

sampling times were analysed mainly by exploiting the bar graphs concerning the peak values 

and the RMSe values of the signals because they give many insights into the ability of the 

control algorithms to improve the behaviour of the structure through the control of the device. 
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The three graphs below show the peak values of the displacement, velocity, and acceleration 

of the suspended mass in the structure. In blue is the signal of the constant damper case, 

followed by the two MPC simulations with decreasing sampling time, followed again by the 

four PID simulations, firstly the two with the damping coefficient variable inside the range, 

and then the two with the two-stage damper (BangBang strategy). Both are in decreasing 

sampling time. 

 

  
 

 
Figure 4.22: Peak values of displacement (top left), velocity (top right), and acceleration (bottom) in constant case (blue), 

MPC with sampling time 1e-2 (orange), MPC with sampling time 1e-3 (yellow), saturated PID with sampling time 1e-2 

(purple), saturated PID with sampling time 1e-3 (green), BangBang with sampling time 1e-2 (light blue), and BangBang with 

sampling time 1e-3 (dark red). 

The first aspect that is evident from the graphs is that any control strategy causes an 

improvement compared to the behaviour with the constant damper. It is also noticeable that the 

sampling time of the simulation is not a critical aspect of the peak values of the signals, and 

that the different control algorithms do not generate any notable improvement in the peaks. 

Moreover, it is interesting to underline that the results of the PID simulation with the damper 

able to vary inside the range and the damper in the two-stage form are very similar, this means 
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that the BangBang strategy works as well as the standard PID one (at reducing the peak values) 

despite being easier to implement practically in the structure. 

 
The values of RMSe of the signals are interesting to analyse as well: 
 
 

  
 

 
Figure 4.23: RMSe values of displacement (top left), velocity (top right), and acceleration (bottom) in constant case (blue), 

MPC with sampling time 1e-2 (orange), MPC with sampling time 1e-3 (yellow), saturated PID with sampling time 1e-2 

(purple), saturated PID with sampling time 1e-3 (green), BangBang with sampling time 1e-2 (light blue), and BangBang with 

sampling time 1e-3 (dark red). 

 
The RMSe values of displacement, velocity and acceleration show how, despite not being able 

of decreasing the peak values of displacement, velocity and acceleration, the Model Predictive 

Control algorithm still performs better than a standard PID control algorithm, with a decrease 

of approximately 15% in all signals. Furthermore, it is evident how, also in this case, the 

BangBang algorithm works as well as the standard PID one even if it is cheaper to install and 

more convenient from a computational point of view. 
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4.9 Implementing the delay of the real component 
The semi-active fluid viscous damper implements a solenoid valve in the outside loop as 

illustrated in chapter 2. This valve is a device that requires a certain amount of time to change 

its position, the delay is typically comprised between 20	and	35	𝑚𝑠. The simulations whose 

results were shown in the previous pages underline how the ideal semi-active behaviour is 

effective with both control algorithms (PID and MPC) and were able to improve the 

performance of the structure by decreasing the peak values and RMSe of displacement, 

velocity, and acceleration, nevertheless the delay of the physical device was not considered in 

the model. At this point, the implementation of the delay is a key step to exploring the 

effectiveness of the real device. The models considered a constant delay of 30	𝑚𝑠, which 

represents a conservative condition. 

 

 
Figure 4.24: Simulink model representing the vibration control of a 1 degree of freedom structure implementing the delay of 

the real semi-active fluid viscous damper  

 
This same delay implementation was used also for the other simulations, to have a constant 

reference that allows a linear comparison of the results. Once again, the benchmark for this 

simulation was done by evaluating peak values and RMSe of displacement, velocity, and 

acceleration signals. 
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Figure 4.25: Peak values of displacement (top left), velocity (top right), and acceleration (bottom) considering the delay of 

the solenoid valve of the semi-active fluid viscous damper in constant case (blue), MPC with sampling time 1e-2 (orange), 

MPC with sampling time 1e-3 (yellow), saturated PID with sampling time 1e-2 (purple), saturated PID with sampling time  

1e-3 (green), BangBang with sampling time 1e-2 (light blue), and BangBang with sampling time 1e-3 (dark red). 

 

The first three graphs, present in figure 4.25, show that the peak values are reduced with all the 

control strategies even if the model now considers the delay of the solenoid valve in the outside 

loop. This performance improvement results very interesting considering that the delay is a 

critical aspect from the point of view of the efficiency of the control algorithms. The delay in 

the input force to the structure represents the main problem in a practical application because 

it is a factor that directly worsens the quality of the control of the device. It is also interesting 

to highlight that the entity of the reduction of the peak values is very similar to the one of the 

simulations without delay (figure 4.20), this implies that the control algorithm is well tuned 

and does not require a strongly impulsive behaviour from the semi-active device. 
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Figure 4.26: RMSe values of displacement (top left), velocity (top right), and acceleration (bottom) considering the delay of 

the solenoid valve of the semi-active fluid viscous damper in constant case (blue), MPC with sampling time 1e-2 (orange), 

MPC with sampling time 1e-3 (yellow), saturated PID with sampling time 1e-2 (purple), saturated PID with sampling time  

1e-3 (green), BangBang with sampling time 1e-2 (light blue), and BangBang with sampling time 1e-3 (dark red). 

 

In figure 4.26 the graphs show the RMSe values of the model. The results are very interesting 

and show a trend for which there is a significant difference between the MPC control algorithm 

and the PID one, plus the introduction of the delay causes a strong variation of the RMSe 

compared to the previous simulation, present in figure 4.21. In the displacement case, the MPC 

controller performs significantly better than the PID case, which shows RMSe values very 

similar to the ones of the constant damper scenario. The RMSe of the velocity signal possesses 

a similar trend, with the only difference being that the RMSe of the PID simulations is now 

slightly higher than the constant damper case. The final graph, which is the RMSe of the 

acceleration shows a different pattern, in which the MPC has a performance level very similar 

to the constant damper case, while the values of the PID control strategies have values 

approximately 20% higher than the ones of the constant damper case. The MPC control 

algorithm performance level is strictly related to its capacity of modifying the response 

depending on the previous I/O data obtained, a feature that the PID controller does not possess. 
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The hypothesis for this kind of overall behaviour of the RMSe index and the difference 

concerning the previous one (without delay) is that the presence of the delay causes a certain 

degradation of the control loop, therefore making the algorithm less effective at reducing the 

destabilization of the structure. It is necessary to underline that the simulation was performed 

with a constant 30	𝑚𝑠 delay, which is a condition very close to the worst-case scenario. This 

data, therefore, can be considered positively in the context of a possible implementation of the 

semi-active device. In Control theory, the presence of delay in a system is a well-known 

problem, which can be classified either in loss problems or delay problems [94]. The loss 

problems happen when the total delay of the system (computing time delay, delayed response 

of the components, etc) reach a value greater than or equal to the sampling time. The delay 

problem, instead, happens when the total delay of the system has a value smaller than the 

sampling time. The context of the last simulation with the delay of the real component falls 

into the category of loss problems because the entity of the delay is higher than the sampling 

time chosen for the simulations. In general, the effect of a loss problem to a system result 

difficult to be analysed for different reasons, such as the fact that the delay must be modelled 

as a random variable and the different structures of control systems. 

 

 
Figure 4.27: Structure of a generic control system and possible sources of delay   
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Chapter 5 

Conclusions 

Firstly, this thesis work is posed in a specific application of the very extended topics of 

vibration optimization and control theory, it does not aim to treat exhaustively the broad 

number of mathematical and experimental concepts needed for these engineering applications 

but to introduce fairly well the various tools needed to approach the problem, research for any 

improvement in the behaviour of the structures and illustrate the advantages of combining 

different fields such as mechatronics and structural engineering. This thesis work would not 

have been realized without the influence and insights offered by the many references present 

in the bibliography, which occasionally explore more in-depth some specific points, and at 

times move in different research directions, nevertheless, they were fundamental because of 

the thorough analysis of many subjects, representing the pillars of this work. Likewise, 

hopefully, this thesis will someday contribute to research and enrich the vast world of scientific 

knowledge. 

 

After posing the fundamental tools of the control algorithms needed in the third chapter, the 

fourth chapter explores how it is possible to model in Simulink environment a simple structure 

relying on the physical equations of motion, initially without a feedback loop and successively 

including it in the model. A linear model was built because it is more well-fit for the 

implementation of the various strategies, and it has a reduced level of complexity and 

computational weight. The comparison between the results of the simulations and the 

theoretical results presented in chapter 2 allowed to verify the correctness of the model and 

therefore continue the analysis, introducing the various control algorithms and progressively 

decreasing the level of approximation at each new simulation. The behaviour of the control 

algorithms highlighted in general a better performance by the Model Predictive Control than 

the Proportional Integrative Derivative control structure, the choice of two different sampling 

frequencies (100 Hz and 1 KHz) showed that the behaviour of the structure improves in both 

cases and allowed to inspect the possibility of implementing the control algorithm in a real 

application since the microcontrollers available off the shelf nowadays certainly have enough 

computing power. In real-world implementations often a trade-off between performance and 
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complexity of the system is necessary, and for this reason, frequently the PID controller with 

a BangBang strategy is chosen over other solutions. Although the diagrams in figure 4.25 and 

4.26 showed a partial improvement for the BangBang strategy, in which only the peak values 

decreased with respect to the case in which the damper was in a passive working condition, it 

is necessary to underline that the MPC control algorithm poses at each sampling instant an 

optimization problem, which must be solved with a numerical algorithm, has to be feasible, 

and may have stability issues if the robustness to noises is not considered in the design; the 

PID, on the other hand, has a much simpler structure, in which the algorithm operates thanks 

to the different parameters (gains) that are set and fixated in the design procedure without any 

specific real-time requirement and the noises are typically filtered with low pass filters. Finally, 

the BangBang strategy considers only two levels of damping coefficient in the device, 

corresponding to a fully open valve (minimum damping) and a fully closed valve (maximum 

damping) which is less problematic than having a variable damping coefficient inside the 

available range. 
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Appendix A 

1.  Control theory results useful for the application 
This appendix contains some basic results of control theory reported here for completeness and 

sometimes applied in a specific civil engineering context. The appendix is preparatory for 

chapter 3 of the thesis. 

To analyze the consequences of a control strategy to a simple structure model, let us consider 

a structure with n-degrees of freedom that can be modelled as a mass-spring-damper system. 

The equilibrium of forces of the system is written as: 

 𝑴�̈�(𝑡) + 𝑪�̇�(𝑡) + 𝑲𝒙(𝑡) = 𝑫𝒖(𝑡) + 𝑬𝒇(𝑡) (A.1.1) 

In which 𝑴, 𝑪 and 𝑲 represent, respectively, the mass, damping and stiffness matrices 

(𝑛	 × 	𝑛), 𝒙(𝑡) represents the n-dimensional displacement vector, the 𝑛	 × 	𝑚 matrix 𝑫 

represents the position of the actuators, 𝒖(𝑡) is the m-dimensional vector of the actuator forces, 

𝑬 is the 𝑛	 × 	𝑟 matrix representing the location of the excitement and 𝒇(𝑡) is the r-dimensional 

vector of the external excitation. 

Let us consider a control strategy in which the control vector 𝒖(𝑡) is linearly proportional to 

𝒙(𝑡), �̇�(𝑡) and 𝒇(𝑡). The control force fed back to the system is given by 

 𝒖(𝑡) = 𝑪Í�̇�(𝑡) + 𝑲Í𝒙(𝑡) + 𝑬Í𝒇(𝑡) (A.1.2) 

In which 𝑪Í, 𝑲Í  and 𝑬Í are the respective gains that can be a function of time as well. 

By substituting equation (A.1.2) in equation (A.1.1) the following relation is obtained 

 𝑴�̈�(𝑡) + (𝑪 − 𝑫𝑪Í)�̇�(𝑡) + (𝑲 − 𝑫𝑲Í)𝒙(𝑡) = (𝑬 + 𝑫𝑬Í)𝒇(𝑡) (A.1.3) 

It is possible to notice, comparing equation (A.1.3) with equation (A.1.1), that feedback control 

acts on the system modifying the stiffness and the damping matrices, which represent the 

structural parameters, in a way that aims at optimizing the structural response, and the entity 

of this modification entirely depends on the control strategy chosen. Feedforward control, 

conversely, acts aiming at a reduction of the excitation received by the system. 

By contrast, the effect of passive control on a system is less complete, as a matter of fact, in 

this configuration there are no feedback signals, nor the necessity of measuring any stimulation 

because there is no possibility of acting on the system through actuators, in fact, passive control 

is also referred to as “structure redesign”. 
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To clarify the difference between the two strategies, let us consider once again the mass-spring-

damper system, but this time in a static condition 

 𝑴�̈�(𝑡) + (𝑪 + ∆𝑪)�̇�(𝑡) + (𝑲 + ∆𝑲)𝒙(𝑡) = 0 (A.1.4) 

Passive control chooses a new stiffness (or damping depending on the specific type of device) 

before the system is put into motion meaning that ∆𝑪 and ∆𝑲 cannot be modified in real-time. 

By comparing these two strategies, it is clear that the first one has a much more radical effect 

on the system and is able to enhance in a better way the dynamic performances. 

To analyze thoroughly the control theory, it is necessary to introduce the state equation form, 

which is fundamental for computer simulations, single-input-single-output (SISO) and multi-

input-multi-output (MIMO) systems, as well as time-varying and stochastic systems. 

A relevant amount of configurations can be modelled by a set of first-order differential 

equations which can be described as 

 �̇�(𝑡) = 𝑔(𝑧(𝑡), 𝑢(𝑡), 𝑡) (A.1.5) 

In which 𝑧(𝑡) is the state vector of the system, 𝑢(𝑡) is the input vector that is representative of 

external forces and also disturbances. 𝑢(𝑡) can either be controlled or fixated by external 

factors. For linear time-invariant systems (LTI) the equation reduces to 

 �̇� = 𝐴𝑧 + 𝐵𝑢 (A.1.6) 

Therefore, equation (A.1.6) represents the state-space form of a LTI system, which is the focus 

of this dissertation, considering that structural systems can be represented fairly well by this 

kind of model. 

Let us consider a two-story structure, typically the state vector is chosen to be the horizontal 

displacement of the building, considering that the main components of the input (wind, 

earthquakes) are directed perpendicularly to the ground direction. The equations of motion of 

the system are 

 
𝑚>�̈�>(𝑡) + 𝑐>�̇�>(𝑡) − 𝑐9[�̇�9(𝑡) − �̇�>(𝑡)] + 

+𝑘>𝑥>(𝑡) − 𝑘9[𝑥9(𝑡) − 𝑥>(𝑡)] = 𝑢>(𝑡) (A.1.7) 

 𝑚9�̈�9(𝑡) + 𝑐9[�̇�9(𝑡) − �̇�>(𝑡)] + 𝑘9[𝑥9(𝑡) − 𝑥>(𝑡)] = 𝑢9(𝑡) 

In which 𝑚=, 𝑐= and 𝑘= represent respectively mass, damping coefficient and stiffness associated 

with the i-th story of the structure and 𝑢=(𝑡) the external force related to the i-th floor. 
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Figure A.1: Scheme of a two-story structure 

 

The process to convert the equilibrium of the system (A.1.7) into state space form starts by 

selecting the state vector of the system 

 𝑧 = [𝑥> 𝑥9					𝑦> 𝑦9]8 (A.1.8) 

Where the superscript 𝑇 refers to the transpose of the vector. Equation (A.1.7) can now be 

rewritten as: 

 

�̇�> = 𝑦> 

�̇�9 = 𝑦9 

𝑚>�̇�> = −𝑐>𝑦> + 𝑐9(𝑦9 − 𝑦>) − 𝑘>𝑥> + 𝑘9(𝑥9 − 𝑥>) +	𝑢> 

𝑚9�̇�9 = −𝑐9(𝑦9 − 𝑦>) − 𝑘9(𝑥9 − 𝑥>) +	𝑢9 

(A.1.9) 

With this notation, it is now possible to reconstruct the equations in the form given in (A.1.6) 

in which 𝐴, 𝐵 and 𝑢 are defined as: 

 𝐴 = §09 𝐼9
𝐾 𝐶¨ 										𝐵 = � 09

𝑀R>� 										𝑢 = §
𝑢>
𝑢9¨	 (A.1.10) 

Where 𝐼9 is the 2	𝑥	2 identity matrix, 09 is the 2	𝑥	2 null matrix and 𝑀R> is the inverse of the 

mass matrix. 
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 𝐾 =

⎣
⎢
⎢
⎡−
𝑘> + 𝑘9
𝑚>

𝑘9
𝑚>

𝑘9
𝑚9

−
𝑘9
𝑚9⎦
⎥
⎥
⎤
 (A.1.11) 

 

 𝐶 = ¿
−
𝑐> + 𝑐9
𝑚>

𝑐9
𝑚>

𝑐9
𝑚9

−
𝑐9
𝑚9

À (A.1.12) 

 

 𝑀 = 𝑑𝑖𝑎𝑔[𝑚> 𝑚9] (A.1.13) 

The state vector can be representative of any physical quantity that is of interest for the 

application, therefore not necessarily a displacement or a velocity. 

 

2. Solution of the state equation 
Considering the LTI case and the simplified case given by 

 �̇� = 𝐴𝑧 (A.2.1) 

Having as the initial value of the state vector 

 𝑧(𝑡") = 𝑧" (A.2.2) 

It is possible to prove that the solution to equation (A.2.1) always exists and can be written as 

 𝑧(𝑡) = Φ(𝑡, 𝑡")𝑧",									𝑡 ≥ 𝑡"	 (A.2.3) 

Where Φ(𝑡, 𝑡") is referred to as transition matrix in literature and is the solution of the 

differential equation in matrix form 

 Φ(𝑡, 𝑡") = 𝐴Φ(𝑡, 𝑡"),										Φ(𝑡, 𝑡") = 𝐼 (A.2.4) 

In which Φ(𝑡, 𝑡") has the specific formulation 

 Φ(𝑡, 𝑡") = Φ(𝑡 − 𝑡") = 𝑒(4R4%)^ = 1 + (𝑡 − 𝑡")𝐴 +
1
2!
[(𝑡 − 𝑡")𝐴]9 +⋯ (A.2.5) 

Which converges for any 𝐴. The elements of Φ(𝑡, 𝑡") can straightforwardly be written down 

when 𝐴, called system matrix, can be diagonalized. Let us consider 𝐴 to be a 𝑛	 × 	𝑛 matrix 

with eigenvalues 𝜆F, with 𝑗 = 1,⋯ , 𝑛 and eigenvectors 𝜂F, with 𝑗 = 1,⋯ , 𝑛, this implies 
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 𝜂F8𝜂F = 1,										𝑗 = 1,⋯ , 𝑛 (A.2.6) 

Introducing the 𝑛	 × 	𝑛 matrix 𝑇 and the 𝑛	 × 	𝑛 matrix Λ 

 𝑇 = �𝜂>, 𝜂9, … , 𝜂F� (A.2.7) 

 

 Λ = 𝑑𝑖𝑎𝑔�𝜆>, 𝜆9, … , 𝜆F� (A.2.8) 

It is possible to write 𝐴 as a function of 𝑇 and Λ: 

 𝐴 = 	𝑇Λ	𝑇R> (A.2.9) 

And this is a fundamental result because it allows writing the transition matrix as 

 Φ(𝑡 − 𝑡") = 𝑒(4R4%)^ = 𝑇𝑒(4R4%)_	𝑇R> (A.2.10) 

With 

 𝑒(4R4%)_ = 	𝑑𝑖𝑎𝑔�𝑒(4R4%)`) , 𝑒(4R4%)`! , … , 𝑒(4R4%)`*� (A.2.11) 

The diagonalization is feasible when the quantity of linearly independent eigenvectors for each 

eigenvalue is equal to its multiplicity, otherwise, other mathematical instruments are needed 

such as the Jordan form, not investigated in this dissertation. 

Considering now the most general case introduced in (A.1.6) 

 �̇� = 𝐴𝑧 + 𝐵𝑢 (A.2.12) 

The solution of the state equation is obtained through the Lagrange equation 

 𝑧(𝑡) = 𝑒^4𝑧" + W𝑒^(4RM)𝐵𝑢(𝜏)𝑑𝜏
4

"+

= 𝑧S=(𝑡) + 𝑧S&(𝑡) (A.2.13) 

And, as noticeable, the solution of an LTI system can be split into two independent 

contributions: 𝑧S=(𝑡), zero-input response and 𝑧S&(𝑡), zero-state response. The first one 

corresponds to the response of the state of the system considering only the initial conditions 

and no external inputs, while the second one is the complementary term giving information 

about the behaviour of the system with null initial conditions and only the influence of the 

input. 

The output response can be derived from the following equation 
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𝑦(𝑡) = 𝐶𝑧(𝑡) + 𝐷𝑢(𝑡) (A.2.14) 

Where 𝐶 is the 𝑞	 × 	𝑛 output matrix and 𝐷 is the 𝑞	 × 	𝑝 input-output matrix. By substituting 

equation (A.2.12) in equation (A.2.13) it is possible to obtain 

 

𝑦(𝑡) = 𝐶𝑒^4𝑧" + 𝐶 W𝑒^(4RM)𝐵𝑢(𝜏)𝑑𝜏
4

"+

+ 𝐷𝑢(𝑡) = 𝑦S=(𝑡) + 𝑦S&(𝑡) (A.2.15) 

And, also, in this case, the response can be split into two contributions: 𝑦S=(𝑡), the zero-input 

output response and 𝑦S&(𝑡), the zero-state output response. In the control theory context, to 

decrease the computational weight of the procedure and avoid solving differential equations, 

the Laplace transform is exploited 

 

𝐹(𝑠) = ℒ{𝑓(𝑡)} = W 𝑓(𝑡)
K

"

𝑒R&4𝑑𝑡 (A.2.16) 

With 𝑓(𝑡) being a unilateral time function 𝑓(𝑡): ℝ? → ℝ, the unilateral Laplace transform of 

𝑓(𝑡) is a complex function 𝐹(𝑠): ℂ → ℂ, and 𝑠 = 𝜎 + 𝑗𝜔. The inverse Laplace transform is 

defined as 

 

𝑓(𝑡) = 	ℒR>{𝐹(𝑠)} =
1
2𝜋𝑗 W 𝐹(𝑠)

$?F;

$RF;

𝑒&4𝑑𝑠,					𝑡 ∈ ℝ? (A.2.17) 

The Laplace transform possesses some important properties, illustrated below: 

• Linearity – Being 𝑓>(𝑡) and 𝑓9(𝑡) unilateral time functions, with 𝐹>(𝑠) = ℒ{𝑓>(𝑡)}, 

𝐹9(𝑠) = ℒ{𝑓9(𝑡)} and 𝑐>, 𝑐9 ∈ ℝ, then: 

 
ℒ{𝑐>𝑓>(𝑡) + 𝑐9𝑓9(𝑡)} = 𝑐>𝐹>(𝑠) + 𝑐9𝐹9(𝑠)  

• Time integration – Assuming 𝑓(𝑡) equal to an integrable unilateral time function with 

𝐹(𝑠) = ℒ{𝑓(𝑡)}, then: 

 

ℒ  W𝑓(𝑡)𝑑𝑡
4

"

w =
𝐹(𝑠)
𝑠   

• Time derivation - Assuming 𝑓(𝑡) equal to a n-times derivable unilateral time function 

with 𝐹(𝑠) = ℒ{𝑓(𝑡)}, then: 
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ℒç𝑓̇(𝑡)è = 𝑠𝐹(𝑠) − 𝑓(0R) 

ℒç𝑓̈(𝑡)è = 𝑠9𝐹(𝑠) − 𝑠𝑓(0R) − �̇�(0R) 

⋮ 

ℒç𝑓(A)(𝑡)è = 𝑠A𝐹(𝑠) − 𝑠AR>𝑓(0R) − 𝑠AR9𝑓̇(0R) − ⋯− 𝑓(AR>)(0R) 

 

• Time convolution - Being 𝑓>(𝑡) and 𝑓9(𝑡) unilateral time functions, with 

 𝐹>(𝑠) = ℒ{𝑓>(𝑡)}, 𝐹9(𝑠) = ℒ{𝑓9(𝑡)} the convolution product admits Laplace 

transform and is: 

 

𝑓>(𝑡) ∗ 𝑓9(𝑡) = W𝑓>(𝑡 − 𝜏) ∙ 𝑓9(𝜏)𝑑𝜏
4

"+

= W𝑓>(𝜏) ∙ 𝑓9(𝑡 − 𝜏)𝑑𝜏
4

"+

 

ℒ{𝑓>(𝑡) ∗ 𝑓9(𝑡)} = 	𝐹>(𝑠) ∙ 𝐹9(𝑠) 

 

• Time delay – Let 𝑓(𝑡) a unilateral time function with 𝐹(𝑠) = ℒ{𝑓(𝑡)}, then: 

 
ℒ{𝑓(𝑡 − 𝜏)} = 𝐹(𝑠)𝑒RM&  

• Final value theorem - Being 𝑓(𝑡) a unilateral time function with 𝐹(𝑠) = ℒ{𝑓(𝑡)} and 

supposing that all the roots of the denominator polynomial of 𝑠𝐹(𝑠) have strictly 

negative real part, then: 

 lim
4→K

𝑓(𝑡) = lim
&→"

	𝑠𝐹(𝑠)  

• Initial value theorem - Being 𝑓(𝑡) a unilateral time function with 𝐹(𝑠) = ℒ{𝑓(𝑡)}, 

then: 

 
lim
4→"

𝑓(𝑡) = lim
&→K

	𝑠𝐹(𝑠)  

Through the Laplace transform, the set of equations given by (A.1.6) and (A.2.13) becomes 

 𝑍(𝑠) = (𝑠𝐼 − 𝐴)R>𝑧" + (𝑠𝐼 − 𝐴)R>𝐵𝑈(𝑠) 

 

𝑌(𝑠) = 𝐶(𝑠𝐼 − 𝐴)R>𝑧" + [𝐶(𝑠𝐼 − 𝐴)R>𝐵 + 𝐷]𝑈(𝑠) 

(A.2.18) 

Where 𝑍(𝑠) and 𝑌(𝑠) are respectively the Laplace transform of the state vector and the output 

vector. In presence of zero initial conditions (𝑧" = 0) the solution of a LTI dynamical system 
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can be expressed in terms of the transfer function of the system, defined as the ratio between 

the Laplace transforms of the system output and input 

 
𝐻(𝑠) =

𝑌(𝑠)
𝑈(𝑠) 

(A.2.19) 

3. Frequency response 
Considering a LTI system in the frequency domain, it is possible to analyze the response 

through an input of the form: 

 
𝑢(𝑡) = 𝑎𝑒F;4 ,										𝑢(0) = 0,          𝑡 ≥ 0 (A.3.1) 

Substituting in (A.1.6), the following steady state solution of the state equation is obtained: 

 
𝑧(𝑡) = 𝐻(𝑗𝜔)𝑎𝑒F;4 (A.3.2) 

In which: 

 𝐻(𝑗𝜔) = (𝑗𝜔𝐼 − 𝐴)R>𝐵 (A.3.3) 

Is referred to as the frequency response matrix. It is very important since its knowledge leads 

directly to the solution of the state equation for a LTI system. This happens because, thanks to 

the linearity of the system, the superposition principle can be applied, and also because the 

input can in general be represented as a sum of sinusoids. It can be noticed that it is equal to 

the transfer function 𝐻(𝑠) in which the Laplace variable 𝑠 has been substituted with 𝑗𝜔. 

 

4. Stability 
In the context of LTI systems analysis, it is possible to distinguish two different kinds of 

stabilities. The first one is called internal stability and refers to the boundedness of the zero-

input response of the state equation for any initial state 𝑧". The second type of stability is called 

bounded-input-bounded-output stability and relates to the boundedness of the zero-state 

response in presence of any input 𝑢(𝑡). Stability is probably the most important feature of a 

LTI system. System matrix 𝐴 has 𝑛 eigenvalues 𝜆F and eigenvectors 𝜂F , 𝑗 = 1,⋯ , 𝑛, the state 

as a function of time can be written as 

 
𝑧(𝑡) =¡𝑔F𝑒`,4

F

𝜂F (A.4.1) 
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Where 𝑔F are real numbers function of the initial state 𝑧". Therefore, the stability features of a 

LTI system are given by the eigenvalues 𝜆F. A LTI system is internally stable if and only if all 

the eigenvalues have a real part smaller or equal to zero and those with a null real part have 

unitary minimal polynomial multiplicity. 

A LTI system is asymptotically stable if and only if all the eigenvalues have a real part strictly 

smaller than zero. 

Since real-world physics systems are not perfectly linear, they are typically linearized around 

a certain equilibrium point, therefore it is more interesting to analyze the stability in terms of a 

given equilibrium point of the system. Considering the state equation in the form: 

 �̇�(𝑡) = 𝐴𝑧(𝑡),										𝑧(𝑡") = 𝑧" (A.4.2) 

An equilibrium point 𝑧6 of the system is defined such as: 

 𝐴𝑧6 = 0 (A.4.3) 

Which is unique if the system matrix 𝐴 is nonsingular. Lyapunov stability theorem states that 

an equilibrium state 𝑧6 is said to be stable if, for any 𝑡" and 𝛼 > 0 there exist a number 

𝛿(𝑡", 𝛼) ∈ ℝ such that: 

 ‖𝑧" − 𝑧6‖ ≤ 𝛿 (A.4.4) 

Which implies 

 ‖𝑧(𝑡) − 𝑧6‖ < 𝜀 (A.4.5) 

(True for all 𝑡 ≥ 𝑡". In the case in which 𝛿 is not a function of 𝑡", the equilibrium state is called 

uniformly stable. Lyapunov stability is not a “strong” kind of stability, therefore criteria with 

stricter requirements are also introduced in this context. 

An equilibrium state 𝑧6 is referred to as asymptotically stable if for any time instant there exists 

a constant 𝛿 > 0, which can also be a function of the initial conditions, such that: 

 ‖𝑧" − 𝑧6‖ ≤ 𝛿 (A.4.6) 

With 

 ‖𝑧(𝑡) − 𝑧6‖ → 0,											𝑡 → ∞ (A.4.7) 

And this condition implies that the state converges to the equilibrium point as the time 

converges to infinity when the state is closer than 𝛿 to the equilibrium point. 
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An equilibrium state 𝑧6 is referred to as exponentially stable if there exists two real constants 

𝛼, 𝛽 > 0, such that 

 ‖𝑧(𝑡) − 𝑧6‖ ≤ 𝛼𝑒RB(4R4%)‖𝑧"‖,										𝑡 ≥ 𝑡" (A.4.8) 

For any 𝑧". This condition implies that the state of an exponentially stable system converges to 

the equilibrium point in an exponential fashion without regard to the initial conditions. For 

linear systems, however, the stability of an equilibrium state also implies the stability of any 

other solution. 

 

5. Controllability and Observability 
In control theory, some basic questions about the characteristics of the system to be controlled 

have to be asked, because they are necessary to properly operate on the system under study. 

Controllability (also referred to as reachability in literature) refers to the ability of a system to 

switch from an initial state to any other one due to the effect of the input 𝑢(𝑡). 

A dynamic system �̇� = 𝐴𝑧 + 𝐵𝑢, is said reachable if and only if the reachability matrix 

 
𝑀a = [𝐵 𝐴𝐵 ⋯ 𝐴AR>𝐵] (A.5.1) 

is full rank (rank equal to n). 

Observability analyzes if the dynamical system allows one to determine the state simply by 

knowing the input and output time course. 

A dynamic system �̇� = 𝐴𝑧 + 𝐵𝑢; 	𝑦(𝑡) = 𝐶𝑧(𝑡) + 𝐷𝑢(𝑡) is said observable if and only if the 

observability matrix 

 𝑀@ = [𝐶 𝐶𝐴 ⋯ 𝐶𝐴AR>]8 (A.5.2) 

is full rank (rank equal to n). 
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