
POLITECNICO DI TORINO

Master Degree in Computer Engineering

Master Thesis

EGO-T3

Test Time Training for Egocentric videos

Supervisor
Prof.ssa Barbara Caputo
Co-supervisors:
Dott. Mirco Planamente
Dott.ssa Chiara Plizzari

Candidate
Simone Alberto Peirone

October 2022

Abstract

In the last few years, the technological advancement of wearable cameras has
led to an increasing interest in egocentric (first-person) vision. The ability to cap-
ture activities from the user’s perspective has provided significant opportunities
for a more in-depth study of human behavior compared to the third-person set-
ting, as sensors are much closer to actions and embed a natural form of attention
that stems from the human gaze direction. The research community highly bene-
fited from egocentric vision for a variety of different tasks, such as human-object
interaction, action prediction and anticipation, wearer pose estimation, and video
anonymization.

A crucial aspect for several video-related tasks is their multimodal nature. Au-
dio, RGB, and optical flow provide complementary insights that are critical to a
thorough understanding of the real world. In contrast, continuous head movement,
variations in lighting conditions and differences in the way humans complete the
same task represent a source of bias that strengthens the coupling between the
model’s predictions and the training domain, affecting its ability to generalize to
unknown environments. Several Domain Adaptation (DA) techniques have been
proposed to make models more robust. Among these, Unsupervised Domain Adap-
tation (UDA) combines labeled source data and unlabeled target data to reduce
the distance of the extracted features across different domains. However, real-world
applications require more flexibility, as target samples are often scarce, unrepresen-
tative or even private, limiting the applicability of UDA. Test Time Training (TTT)
appears to be a viable solution to these issues, with domain adaptation performed
directly at test time under the simple assumption that input samples provide clues
on the actual distribution of the target domain which could be used to improve
predictions.

With TTT, models undergo multiple adaptation steps at test time by minimiz-
ing an adaptation loss on target data and updating normalization statistics. This
work provides, for the first time, a comparative analysis of multiple adaptation
techniques on the EPIC-KITCHENS dataset. Particular attention was given to
the analysis of their dependence on batch normalization layers and the impact of
repeated adaptation steps, two critical concerns for real-time and power-constrained
applications. Experiments indicate strong accuracy improvements, with up to 3.6%
(absolute) gain over several baselines across a variety of settings, suggesting that
TTT effectively improves model performance in the presence of dynamic environ-
ments.

Contents

List of Tables iii

List of Figures iv

1 Introduction 1
1.1 Research goal and contributions . 3

2 Deep Learning 4
2.1 Introduction . 4
2.2 Neural networks . 5

2.2.1 The artificial neuron . 5
2.2.2 Feed-forward neural networks 6
2.2.3 Loss functions . 6
2.2.4 The learning process . 8
2.2.5 Activation functions . 9
2.2.6 Regularization . 11
2.2.7 Normalization layers . 12

2.3 Convolutional Neural Networks . 14
2.3.1 Convolutional layer . 14
2.3.2 Pooling layers . 16
2.3.3 Inception network . 17

3 Egocentric action recognition 18
3.1 Video action recognition . 18

3.1.1 Multi-Modality . 19
3.2 First person action recognition . 21
3.3 Datasets . 21

3.3.1 EPIC-Kitchens . 21
3.4 Architectures . 23

3.4.1 2D ConvNets . 23
3.4.2 3D ConvNets . 25
3.4.3 Multi-Stream Inflated 3D ConvNets 25

i

4 Domain Adaptation 27
4.1 Transfer Learning . 27

4.1.1 Formal introduction . 28
4.2 Unsupervised Domain Adaptation 29

4.2.1 Discrepancy-based UDA . 29
4.2.2 Adversarial methods . 31

4.3 UDA for Action Recognition . 33
4.3.1 MM-SADA . 33
4.3.2 CoMix . 34
4.3.3 TA3N . 35
4.3.4 RNA . 35

5 Test Time Adaptation 38
5.1 Introduction . 38
5.2 Batch normalization . 40
5.3 Class Relative losses . 41

5.3.1 Entropy Minimization (ENT) 41
5.3.2 Information Maximization (IM) 43
5.3.3 Minimum Class Confusion (MCC) 43
5.3.4 Complementary Entropy (CENT) 45
5.3.5 TENT . 47

5.4 Feature level losses . 47
5.4.1 Relative Norm Alignment (RNA) 47

6 Experiments 48
6.1 Experimental setting . 48
6.2 Do we need Test Time Adaptation? 50

6.2.1 Class imbalance . 50
6.3 Test Time Adaptation . 52

6.3.1 Class losses . 52
6.3.2 Feature losses . 56

6.4 Adapting on seen domains . 60
6.5 The impact of Batch Normalization 61

6.5.1 Updating BN statistics at test time 62
6.6 Multi-step adaptation . 65
6.7 Comparison with UDA . 69
6.8 Beyond action recognition . 70

6.8.1 Improving the optical flow estimation 72

7 Conclusions 76

Bibliography 78

ii

List of Tables

5.1 Summary of several Domain Adaptation techniques 40
5.2 Entropy of predictions on source and target datasets 42
6.1 Top-1 accuracy of RNA-Net [1] on seen and unseen domains 50
6.2 Top-1 per-class accuracy of RNA-Net [1] on seen and unseen domains 51
6.3 Comparison of class losses on top-1 accuracy. 53
6.4 Comparison of class-relative losses on the top-1 per-class accuracy. . 54
6.5 Comparison of TENT losses on the top-1 accuracy 55
6.6 Comparison of feature losses on the top-1 accuracy. 56
6.7 Comparison of feature losses on top-1 per-class accuracy. 56
6.8 Combination of class and feature losses on top-1 accuracy. 57
6.9 Comparison of the class losses on seen domains. 60
6.10 Different performance based on the value of the momentum param-

eter of normalization layers. 63
6.11 Comparison of class losses on top-1 accuracy after 5 steps. 65
6.12 Comparison of class losses on top-1 accuracy after 5 steps. 66
6.13 Best top-1 accuracy using RNA-Net (Multi-DG) + TTA. 69
6.14 Comparison of UDA methods for RGB+Audio. 69
6.15 Comparison of UDA methods for RGB+Flow. 69
6.16 Performance drop at test-time with the optical flow estimated by

PWC-Net . 72
6.17 Comparison of several TTA techniques on optical flow generated by

PWC-Net . 72

iii

List of Figures

1.1 Camera setting used to collect the Epic-Kitchens dataset 2
2.1 Architecture of a Feed-Forward Neural Network 7
2.2 Gradient descent . 9
2.3 Activation functions . 10
2.4 Dropout . 12
2.5 Data augmentations . 13
2.6 2D Convolution . 15
2.7 Pooling layer . 16
3.1 Sample actions from the UCF-101 dataset 19
3.2 An optical flow frame from the Sintel dataset [2] 20
3.3 The optical flow color coding scheme 20
3.4 Actions and objects distributions in Epic-Kitchens-100 22
3.5 Distribution of Epic-Kitchens’ samples 22
3.6 Samples from EPIC-Kitchens . 23
3.7 2D-ConvNet + LSTM . 24
3.8 Activation maps of C3D . 25
3.9 I3D Inception . 26
3.10 Two-stream Inflated 3D ConvNet [3] 26
4.1 Deep Adaptation Network (DAN) 30
4.2 DeepCoral Architecture . 31
4.3 Domain Adversarial Neural Networks 32
4.4 Multi-Modal Self-Supervised Adversarial Domain Adaptation (MM-

SADA) . 34
4.5 CoMix architecture . 35
4.6 Features norm-unbalance of the RGB and Audio modalities 36
4.7 RNA-Net . 36
5.1 Entropy minimization (ENT) . 42
5.2 Information Maximization (IM) . 43
5.3 Minimum Class Confusion (MCC) 45
5.4 Complementary Entropy (CENT) 46
6.1 Class distribution of Epic-Kitchens 51
6.2 Comparison of ENT and RNA gradients (RGB+Flow) 58

iv

6.3 Comparison of ENT and RNA gradients (RGB+Audio) 59
6.4 Normalized mean displacement between train and test statistics . . 62
6.5 Accuracy drop without batch normalization updates after one adap-

tation step . 62
6.6 Impact on top-1 accuracy of the momentum hyper-parameter of nor-

malization layers (multiple adaptation steps) 64
6.7 Multi-step adaptation on uni-modal models 67
6.8 Multi-step adaptation on multi-modal models 68
6.9 Accuracy improvements compared to UDA. 70
6.10 Optical flow frames generated with the TV-L1 algorithm and PWC-Net 71
6.11 Optical flow estimated using FlowFormer [4] 74
6.12 Zoom of the optical flow estimated by FlowFormer 75
6.13 Effect of TTA on the optical flow estimated by FlowFormer 75

v

Chapter 1

Introduction

The past few years have seen an exciting growth of deep learning, which has rev-
olutionized our approaches to countless fields, from more classical tasks such as
image classification, natural language processing, and recommendation systems to
the astonishing recent achievements in image generation from textual prompts. As
models have become increasingly complex, with billions of parameters requiring
large data sets for training, a new trend has emerged to move deep learning so-
lutions closer to the end users. In our everyday life, the smartphone keyboard
predicts the next word based on the current sentence we are writing, the speech
recognition models of our home assistants allow us to seamlessly control the lights
in our homes, and we can edit photos to remove unwanted parts or add filters with
just a tap.

Computer vision is one of the fields that has benefited the most from recent
advances in deep learning, with remarkable advancements in a range of tasks from
image classification, object detection and image segmentation to video-related tasks
such as classification, detection and anticipation of actions. The application of deep
learning techniques to videos has proven to be particularly challenging for at least
three main reasons. First of all, videos combine a spatial and a temporal dimension
that are essential for a better understanding of what is happening in the video, in
addition to its visual content. Joint learning from both is a crucial issue for several
video-related tasks. Second, video incorporates multiple sources of information.
RGB frames capture the visual aspect of the environment, audio detects sound
events and optical flow shows the relative movement of elements in the scene. Each
of these and other sources provides particular insights that may or may not be
crucial, depending on the task, although learning from multiple modalities has
proven to be a difficult task [5, 1]. Finally, the computational costs associated with
video processing and the scarcity of high-quality datasets have been a huge obstacle
for the research community even though the situation drastically improved in the
last decade.

1

1 – Introduction

Figure 1.1: Camera setting used to collect the Epic-Kitchens dataset [6]. The
wearable camera points directly at the action in progress, just like the gaze of its wearer.

As far as video-related tasks are concerned, research has long focused on third-
person vision, that is, video in which the camera is external to the recorded action,
mainly because of the difficulty of collecting first-person video due to the bulky
equipment required. The availability of wearable cameras has dramatically im-
proved this situation, making first-person video recording much more accessible
and leading to the birth of egocentric vision. Head-mounted cameras record from a
point of view that coincides with that of the wearer, providing a view of the actions
that are taking place that is strongly affected by the movement of the operator’s
head. Because humans tend to focus their gaze on what they are doing and on
the position of their hands [7], camera movement provides an attention mechanism
that continuously follows the unfolding of the action, unlike third-person videos
in which the point of view is fixed and the action itself moves within the scene,
possibly occluded by other objects or humans. The change in perspective between
third-person and first-person video has a dramatic impact on the ability of deep
learning models to better understand the environment and the way humans interact
with it, a crucial step to bring unprecedented solutions in everyday life. Egocentric
vision can foster the development of new assistive technologies for human beings,
such as real-time audio descriptions of the world to support a visually impaired
person or to remind a person with short-term memory impairment where they left
their keys.

The very dynamic nature of egocentric videos highlights a problem, known as
domain shift, common to countless fields of deep learning, namely the inherent
difficulty of models to adapt to different domains. This problem stems from the

2

1 – Introduction

fact that models learn to solve tasks directly from data, which can lead them to
incorporate knowledge that is completely irrelevant to the task at hand, degrading
their ability to generalise. As far as action recognition is concerned, humans are
able to recognise a person running, regardless of whether he or she is on an athletic
field or in a gym. The same does not apply to neural networks. If during training
the model was only trained on videos of people running outdoors, it might not
recognise a person running indoors, simply because it has learnt to look for an
outdoor environment to classify the action.

Egocentric vision not only suffers from the domain shift from these macroscopic
changes in the environment, but also from the continuous variations in the back-
ground of the captured actions, which constitute a further source of confusion in
the model’s predictions. Several approaches have been proposed to bridge the gap
between different domains. Most of these techniques operate in the training phase,
either by stimulating the model to better generalise across multiple training do-
mains, or by learning better representations for a specific target domain.

A recent emerging trend is represented by Test Time Training (TTT), which
exploits samples from the target domain to tune the model parameters by mini-
mizing an adaptation loss. With TTT the entire adaptation process is postponed
to the test phase. Test Time Adaptation (TTA) is a more rigorous version of Test
Time Training, which precludes access to training data as the adaptation process
must be based exclusively on available target data.

1.1 Research goal and contributions
This work explores the applicability of Test Time Adaptation (TTA) techniques to
egocentric vision, and in particular to improve the performance of a First Person
Action Recognition (FPAR) task (see Sec. 3). All experiments were performed
on the popular Epic-Kitchens dataset [8]. The aim is to investigate whether TTA
is well-suited to address the dynamic nature of egocentric vision, with a focus on
analysing what is the main enabler of the most common adaptation approaches, as
well as one of its most noticeable limitations, namely the dependence of the adapta-
tion process on the statistics collected by batch normalization layers. Experiments
are performed over different modalities to assess how much each modality suffers
from the domain shift problem and whether or not TTA can be useful in improving
performance. Particular attention is devoted to the analysis of multiple adaptation
step.

Finally, the last contribution lays the groundwork for further development of
TTA techniques beyond FPAR, with a focus on sim2real adaptation of the optical
flow estimated by a state-of-the-art network.

3

Chapter 2

Deep Learning

This chapter and its subsections provide an overview of modern deep learning,
paying particular attention to the aspects most closely related to our work. First,
Section 2.1 presents the motivations that led to the development of deep learning.
Section 2.2 covers the fundamental concepts behind neural networks, starting from
the perceptron model and addressing several aspects of the training process. Then,
sections 2.3 extends the theory on neural network with visual applications.

2.1 Introduction

Deep learning arose from the idea of replicating the majestic processes that regulate
the human brain. The first efforts to model the behaviour of networks of neurons
with computational circuits date back nearly a century, with the theoretical work of
McCulloch and Pitts (1943) [9] and the first implementation by Frank Rosenblatt
(1958).

Conventional machine learning and statistical approaches, like Logistic Regres-
sion (LR) or Support Vector Machines (SVM), are often described as shallow meth-
ods, given their simple architectures consisting of a few computational layers that
provide limited modelling capability. Indeed, learning in high-dimensional spaces
poses a difficult challenge for shallow methods. To address this issue, shallow meth-
ods rely on feature engineering to extract meaningful information from raw data
before applying any learning process. However, the cost of feature engineering be-
comes prohibitively high as the dimensionality increases and data becomes more
sparse. The problem becomes particularly relevant in the context of vision ap-
plications, as images and videos consist of billions of pixels with little correlation
between them. A single pixel in an image has little or no statistical significance but
is part of local and global structures that provide insights into the image content. It
is not surprising that the popularity of deep learning stems, at least initially, from

4

2 – Deep Learning

applications related to image classification, a notable example being the model pro-
posed by Yann LeCun for handwritten zip code recognition [10]. The goal of deep
learning is to learn directly complex structures and patterns directly from data.

2.2 Neural networks
Biological neural networks are sparse interconnections of neurons that exchange
information through electrical signals. Each neuron receives electrical impulses from
its neighbours in the network and propagates an electrical impulse if the inputs are
above a certain threshold. Similarly, artificial neural networks are large circuits
of simple units, the so-called artificial neurons, that mimic the interconnections
of their biological counterparts. Each neuron computes a linear combination of
its inputs and propagates an output value to all its neighbouring neurons. The
similarity between biological and artificial neural networks is mostly conceptual, as
the high-level mechanisms governing the human brain are still poorly understood.

The term deep refers to the layout of the network as neurons are typically or-
ganized in several layers. Tens or hundreds of layers form a computational graph
between inputs and outputs, a significant difference from shallow methods that al-
low neural networks to discover high-level concepts directly from low-level features,
e.g. the pixel of an image, by stacking multiple layers of knowledge. From a the-
oretical point of view, the large scale of the computational graph enables neural
networks to act as universal function approximators [11]. As a result, neural net-
works have been successfully used in various applications, from speech recognition
to image synthesis, thanks to their high flexibility and little dependence on the
peculiarity of the application domain.

2.2.1 The artificial neuron
Biological neurons connect to external stimuli or other neurons through tiny fila-
ments called dendrites which receive inputs in the form of electrical signals. If the
voltage potential reaches a certain threshold, the neuron discharges by firing an
electrochemical pulse through its axon. An artificial neuron is the mathematical
analogue of the biological neuron and models the same mechanism by computing a
linear combination of its inputs, plus a bias term, followed by an activation function
that decides whether the neuron should be active or not.

The first prototype of an artificial neuron was proposed by Frank Rosenblatt in
1958, under the name of Perceptron [12]. Potentiometers were employed to imple-
ment the input weights while a simple threshold function acted as the activation
function, similarly to its biological counterpart. Equation 2.1 translates in math-
ematical terms the function implemented by the Perceptron, where xi and wi are
respectively the i-th input and its associated weight, b is a bias term and στ is the

5

2 – Deep Learning

threshold function (Eq. 2.2).

y = f(x) = στ (wT x + b) = στ

AØ
i

wixi + b

B
(2.1)

στ (y) =
y ≥ τ 1

y < τ 0
(2.2)

Neurons can be composed to implement arbitrarily complex functions. The non-
linearity introduced by the activation function allows neurons to represent nonlinear
functions. If the activation function were not present, neurons would be able to
implement only linear functions and their composition would also be linear. In
addition to the στ , several activation functions have been proposed over the years.
Section 2.2.5 provides more details on the most commonly used ones.

2.2.2 Feed-forward neural networks
To extend the limited modelling capability of a single neuron, multiple neurons
sharing the same inputs can be stacked to form a so-called layer which is defined
the vector mapping fθ(x).

fθ(x) = σ(WT x + b) (2.3)

A Feed-Forward Neural Network, also known as Multi-Layer Perceptron, is a se-
quence of multiple layers, forming an arbitrarily deep computational path between
inputs and outputs. Data flows from the first layer, the input layer, through a series
of hidden layers before reaching the output layer. Overall, the network defines a
mapping which is the composition of the mappings of each layer.

y = (fθ1 ◦ fθ2 ◦ fθ3)(x) (2.4)

The parameters θ of the network are tuned using an iterative optimization approach
to minimize a loss function computed on the output of the last layer of the network.

2.2.3 Loss functions
Conceptually, loss functions measure the fitness of the neural network to solve a
certain task. The objective of the training process is to find the parameters θ∗

which minimize the loss function over the training data.

θ∗ = arg min
θ

L(x; θ) (2.5)

6

2 – Deep Learning

x1

x2

x3

x4

xn

...

h
(1)
1

h
(1)
2

h
(1)
3

h(1)
p

...

h
(2)
1

h
(2)
2

h
(2)
3

h(2)
q

...

h
(3)
1

h
(3)
2

h
(3)
3

h(3)
r

...

y1

yk

...

Input
layer Hidden

layers
Hidden
layers

Hidden
layers

Output
layer

Figure 2.1: Architecture of a Feed-Forward Neural Network. Data flows from
the first layer, through multiple hidden layers, each with a possibly different number of
neurons, to the final output layer.

Cross Entropy loss A network attempting to solve a classification problem must
associate data samples x with the corresponding label y. Namely, the network
estimates a posterior probability distribution p(y|x; θ). By default, the last layer of
the network outputs raw values that lack a probabilistic interpretation. To address
this issue, a softmax function is usually applied to the outputs to normalize the
values into a probability distribution. Note that the exponential function in the
softmax formulation gives much more importance to the high values of yi. Ideally,
the output of the softmax function should have a high peak in correspondence of
correct sample label and be almost flat at all other points, indicating that the
network is very confident in its label assignment.

pc = σ(y)c = eycqC
c=1 eyc

(2.6)

The cross entropy loss function evaluates the distance between the model predic-
tions and the true posterior distribution ŷ ∼ p(y|x), by computing their cross
entropy between the two. ŷ is described by a categorical random variable whose

7

2 – Deep Learning

entry ŷi is 1 if i is the correct sample label, 0 otherwise.

ℓCE(p, p̂) = H(p, p̂) = −
CØ

c=1
yc log p̂c (2.7)

2.2.4 The learning process
Optimization problems are usually phrased in terms of an objective function J(θ)
to be minimized or maximized with respect to the models parameters θ. Typically,
the objective function is the average of a loss function L over the training set.

J(θ) = E(x,y)∼p(x,y)L(x, y; θ) = 1
m

NØ
i=1

L(x(i), y(i); θ) (2.8)

The objective function J(θ) is known as the empirical risk of the model. The term
empirical highlights that the joint distribution of samples and labels at training
time p(x, y) may differ from the distribution of the test data p̃(x, y). The objective
is minimized only on the training data, under the assumption that reducing the
empirical risk might also reduce the risk on the test partition, also known as the
true risk.

If the problem formulation allows formal guarantees about the convexity of the
objective function, then it is solvable in closed form, as in logistic regression or
SVMs. In general, neural networks are highly nonlinear, which makes this approach
not applicable. Gradient descent is an algorithm for solving optimization problems
when no guarantees on the objective function landscape are available. Gradient
descent updates the model parameters by moving in the direction of the negative
gradient (Fig. 2.2) to reach the minima. Given the current estimate of the model
parameters θt, gradient descent computes the objective function and its gradient at
θt and derives the new parameters θt+1, as in Eq. 2.9. The training process ends
once the magnitude of the steps falls below a certain threshold.

θt+1 = θt − γ∇J(x, y; θt) (2.9)

The learning rate γ controls the size of the gradient descent steps and is a critical
hyper-parameter. A small learning rate slows down the optimization process, while
a high value may prevent the gradient descent algorithm from reaching a minimum.
A popular technique consists of using a rather high learning rate during the early
stages of the training process and gradually reducing it using a decay function.
Note that the performance of gradient descent depends on the starting point θ0

and may reach a solution that is not globally optimal.

Stochastic Gradient Descent Computing the objective function over the en-
tire training set is often computationally unfeasible. Instead, Stochastic Gradient

8

2 – Deep Learning

w[0]

w[1]

w[2]

w[3]

w[4]

Figure 2.2: Gradient descent. The gradient is orthogonal to the contour lines of
the function. Following the direction of the negative gradients, gradient descent moves
towards the minimum point.

Descent (SGD) is a variant of the gradient descent algorithm that computes the
objective function and its gradient on randomly sampled portions of the dataset,
called mini-batches. Given a mini-batch of m samples, the parameters are updated
according to:

θt+1 = θt − γ

A
1
m

mØ
i=1

∇L(x(i), y(i); θt)
B

(2.10)

SGD greatly speeds up the learning process at the cost of a reduced accuracy in
gradient estimation. Somewhat surprisingly, the noise introduced by the sampling
process may also have a regularization effect and help escape local solutions.

2.2.5 Activation functions

Activation functions introduce non-linearities into the computational graph of neu-
ral networks and are a key aspect of their modeling capability. The choice of the
activation function directly affects how the neurons are involved in the training
process. Indeed, the derivative of the activation function controls the propagation
of the gradient flowing from the output to the input of the neuron. If the derivative
is zero, the gradient flow is interrupted and the neuron does not learn anything.

Binary Step As previously discussed, the binary step function outputs a constant
1 if its inputs grows above a certain threshold, usually zero. The derivative of
the function is always zero, which prevents learning through gradient updates.

9

2 – Deep Learning

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

x

f
(x

)

Binary step

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

x

f
(x

)

Sigmoid

−10 −5 0 5 10

0

2

4

6

8

10

x

f
(x

)

ReLU

−10 −5 0 5 10

0

2

4

6

8

10

x

f
(x

)

Leaky ReLU

Figure 2.3: Common activation functions. The plots show four popular activation
functions, in blue, and their derivatives, in red

Therefore, the binary step function is almost never used in practice.

H(x) =
1 for x ≥ 0

0 for x < 0
(2.11)

Sigmoid The Sigmoid is a smooth function that maps the input in the interval
[0,1], with two horizontal asymptotes as x → ±∞. Its derivative has significant
magnitude around zero and vanishes quickly. Therefore, the interval in which the
neuron learns from its inputs is limited and the gradient flow is blocked when the
input falls outside the active region around zero. Also, the derivative is always
positive, indicating that the gradient updates have the same sign of the incoming
gradient, limiting the parameters range explored by the neuron during the training
process.

σ(x) = 1
1 + e−x

(2.12)

ReLU The Rectified Linear Unit (ReLU) is a very popular activation function in
deep learning. It implements the identity function for positive inputs and is zero in

10

2 – Deep Learning

all everywhere else. The ReLU function is unbounded and the derivative is positive
and constant in the right half of its domain.

ReLU(x) =
x for x ≥ 0

0 for x < 0
(2.13)

Leaky ReLU The zero derivative of ReLU in the negative half of its domain
prevents learning in that region. Leaky ReLU adds a small linear contribution
in the negative region to enable the neuron to learn. Also, the derivative of the
Leaky ReLU function has both positive and negative regions, improving the learning
process.

Leaky ReLU(x) =
x for x ≥ 0

0.1x for x < 0
(2.14)

2.2.6 Regularization
Models usually access only a portion of the dataset during training which may lead
the model to exhibit excellent performance on training data and drop sharply on
the unseen samples. A model that over-fits the training data captures not only
meaningful information but also noise and residual information that is irrelevant
to the task. Regularization describes a set of techniques that improve the gen-
eralization ability of machine learning models, from very mathematically rigorous
gradient penalties to more empirical approaches that aim to introduce noise into
the training process with the goal of preventing or reducing overfitting.

Norm penalties

L2 regularization adds the norm of the model parameters θ to the objective function
of the model.

J̃(θ) = J(θ) + λ

2 ||θ||22
∇θJ̃(θ) = ∇θJ(θ) + λθ

(2.15)

Equation 2.15 show the updated objective function and its gradient. When com-
puting the weights update, the contribution of the L2 norm progressively shifts the
weights towards the origin. The regularization factor measures the complexity of
the solution represented by the parameters and drives the models towards simpler
hypothesis. In other words, smaller weights assign less importance to the individual
sample features, requiring the network to focus more on significant features and less
on the noise.

11

2 – Deep Learning

Dropout

Dropout [13] sets to zero randomly selected neurons or connections between differ-
ent neurons with probability p, forcing the network to develop redundant paths and
improving its resistance to noise. Conceptually, training a model with dropout is
equivalent to training a large ensemble of smaller networks, each consisting of the
neurons retained at each iteration. Dropout is typically applied after the fully con-
nected layers of the network and is usually active only at training time. To ensure
that the activations computed at training and test time have similar magnitudes,
the latter are scaled by the probability factor p to account for the different number
of active neurons at each step.

dropout

×

×

×

×

×

×

×

Figure 2.4: Dropout

Data augmentations

A common technique to reduce overfitting, especially in the presence of a small
training dataset, consists in creating fake samples from the real training data by
applying various augmentations, from affine transformations to noise injection and
colour manipulation. Data augmentations effectively increase the model invariance
to small alterations of the input, improving generalization.

2.2.7 Normalization layers

The deep nature of neural networks has undoubtedly proved to be very effective in
solving complex problems. Although powerful, this architecture results in generally
unstable inputs at each layer, as small variations in the deepest layers add up
quickly and are amplified in the shallower layers. This problem is known as internal
covariance shift and becomes even more relevant when using Stochastic Gradient
Descent as the inputs change at each training iteration. Smaller learning rates and
regularization techniques may mitigate the problem at the cost of a slower training
process or worse performance.

12

2 – Deep Learning

Figure 2.5: Common data augmentations applied to an RGB image. Images from
[14].

Batch Normalization

Batch Normalization (BN) [15] normalizes layer outputs to a Gaussian distribu-
tion, ensuring similar input distributions among different batches of data. Batch
normalization can be incorporated into neural networks like any other layer, and
its behavior varies depending on whether the network is in training or evaluation
mode. In training mode, the BN layer computes the empirical mean and variance
of its input data x. The mean is subtracted from the input and the result is divided
by the variance to make it Gaussian distributed. Finally, two learnable parame-
ters, γ and β, allow the network to undo the transformation introduced by the
normalization layer, if the gradient updates point the network in that direction.

µB = 1
n

nØ
i=1

xi σB =
öõõô 1

m

nØ
i=1

(xi − µB)2 (2.16)

yi = xi − µB

σB
γ + β (2.17)

The network keeps running estimates of the mean µ̃ and standard deviation σ̃
statistics computed over the training data. During testing, the running estimates
are used in place of the batch statistics since the underlying data distribution of
test data is not known.

µ̃ = (1 − λ)µ̃ + λµB σ̃2 = (1 − λ)σ̃2 + σ2
B (2.18)

The authors of [15] shows the integration of batch normalization into existing net-
works dramatically speeds up the training process by allowing the use of higher
learning rates. Also, batch normalization improves the resilience of the network
with respect to weights initialization.

13

2 – Deep Learning

Other normalization layers

Batch normalization depends on large batch sizes to compute accurate estimates of
the mean and variance of the training data. Motivated by this limitation, several al-
ternatives have been proposed able to work on single samples. Layer normalization
[16] transforms each input channel of each sample separately. Group Normaliza-
tion [17] generalize the approach of Layer Normalization by operating on groups of
channels.

2.3 Convolutional Neural Networks
Theoretically, MLPs are capable of modelling any function [11], but they lack any
sort of spatial or temporal awareness over the processed data. Images have a 2d
structure that makes neighbouring pixels highly correlated one to the other. The
relative position of pixels is critical to understanding the actual content of the
image. Neural networks may or may not discover this out of sight information
during training, creating stronger connections between close pixels. A more clever
approach is to embed this prior knowledge on the input structure inside the network
architecture. Convolution Neural Networks (CNN) are a subset of neural networks
that include convolutional layers to learn local features from the input.

CNNs have been a milestone in the development of deep learning, from Yann
LeCun’s early work [10] to the drastic advances of recent years that led to above
human-level performances in a wide variety of computer vision tasks.

2.3.1 Convolutional layer
Convolution is a mathematical operator commonly used in signal processing and
computer vision to express how a function interacts with another function by sliding
over it. Formally, the convolution of two real-valued functions f and g is expressed
as:

(f ∗ g)(t) :=
Ú ∞

−∞
f(τ)g(t − τ)dτ (2.19)

where the integral variable τ moves function g over all the real axis. A similar
equation describes convolution in the discrete domain:

(f ∗ g)[n] =
∞Ø

m=−∞
f [m]g[n − m] (2.20)

In computer vision, convolution is widely used to implement several image filters,
from sharpening to blur addition and edge detection, and is based on discrete
convolution. A fixed size matrix, known as the kernel, slides over the image pixels
and, for each position of the kernel relative to the input image, pixels are weighted

14

2 – Deep Learning

0 1 1 1 0 0 0
0 0 1 1 1 0 0
0 0 0 1 1 1 0
0 0 0 1 1 0 0
0 0 1 1 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0

∗
1 0 1
0 1 0
1 0 1

=

1 4 3 4 1
1 2 4 3 3
1 2 3 4 1
1 3 3 1 1
3 3 1 1 0

1 0 1
0 1 0
1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 2.6: 2D Convolution. The values in the red box (matrix on the left) are
weighted according to the kernel values (matrix in the middle) and mapped to the output
(matrix on the right).

according to the values of the kernel and summed together. Figure 3.7 shows an
example of a 2D convolution on a matrix.

RGB images are equivalent to a stack of 2d matrices, one for each color channel.
2D convolution can be easily extended to support RGB images by making the kernel
three dimensional as well. A convolutional layer typically embeds multiple filters
that are applied independently on the input data. Starting from different initial
weights, each filter can learn different local characteristics of the input. Outputs
are then piled together as if they were color channels (feature map). The number
of filters is referred to as the depth of the convolutional layer.

As shown in Fig. 3.7, the output is computed only when the two matrices, the
input and the kernel, fully overlap. As a result, the size of the output is smaller
than the input, and some boundary information may be lost in the process. Adding
padding around the input avoids losing boundary information and preserves the in-
put size. Sometimes, a smaller output may be helpful to compress the information,
learn higher level features and reduce the effect of noise. The stride parameter con-
trols the step size of the sliding kernel. A stride greater than 1 results in a smaller
output, since some positions of the kernel are skipped. Remarkably, the stride can
take values less than 1. In this case, the operation is referred to as fractionally-
strided convolution or deconvolution. The main use case of deconvolution is learning
an upsampling function for input features, such as mapping an image to a higher
resolution.

Another significant improvement brought by convolutional layers over fully con-
nected layer is weights sharing. The same kernel slides over the entire image, unlike
MLPs where the size of the weights matrix scales with the number of inputs and
outputs.

15

2 – Deep Learning

Receptive field The receptive field of a neural network identifies the input region
involved in computing an output feature; for example, a 3x3 kernel summarizes nine
values to produce each output feature. The cascading convolutional neural network
extends the receptive field when the receptive fields of input features are further
combined to compute the output. In other words, the receptive field defines how
far each feature is able to see. Larger kernels result in larger receptive fields, but
the associated computational cost grows rapidly.

2.3.2 Pooling layers

Pooling levels divide the input into several smaller patches and reduce each patch
to a single value using a synthesis function, such as max or avg. Depending on
the patch size, the result is a dramatic down-sampling of the input that reduces
the computational cost and memory usage of successive layers of the network and
improves model invariance with respect to small transformations. In fact, if a
feature is slightly translated, it is likely to still be part of the same patch, leaving
the output of the pooling layer unaffected.

feature maps
layer (l − 1)

feature maps
layer l

Figure 2.7: A pooling layer. Each square patch from the input feature maps (left) is
reduced to a single value of the output (right) using a synthesis function.

Common pooling functions compute the maximum or the average values of the
patch though more complex approaches have been discussed in the literature, e.g.
L2 Pooling computes the norm of the patch. As for convolutional layers, pool-
ing layers are controlled by the stride and padding hyper-parameters to reduce or
enlarge the size of the output maps.

16

2 – Deep Learning

2.3.3 Inception network
The architecture proposed by [18, 19] addresses some inefficiencies found in the
design of deep neural networks, as most architecture are developed by stacking
multiple layers of convolutional and pooling layers. Large convolutional kernels
capture information from a large spatial region, although they entail high compu-
tational costs and can be inefficient when the information content of the region is
sparse. Rather than processing large regions, a better approach would be to use
smaller kernels that try to find highly correlated patterns between the features, as
suggested by the work of [20]. The authors of [18] introduce the Inception module,
which calculates the convolution operation using several kernels of varying sizes,
each aimed at extracting correlation patterns at different scales. The resulting
filters are then concatenated to form the final output of the layer. Furthermore,
to reduce the costs associated with convolution, the Inception module reduces the
input dimensionality by using a 1x1 convolution layer before applying the heavier
operations.

17

Chapter 3

Egocentric action
recognition

This chapter introduces the action recognition task and provides an overview of the
main contributions from the existing literature. Section 3.1 outlines the objectives
of video action recognition and defines the concept of multi-modal learning. Section
3.2 focuses on first-person action recognition, analyzing the peculiarities and critical
aspects of this setting compared to the third-person scenario. Finally, 3.4 describes
the main deep learning architectures developed for video action recognition.

3.1 Video action recognition
The goal of action recognition is to classify what happens in a video clip, similar
to how image classification understands image content by associating samples and
labels. Essentially, an action is described by a short phrase made up of a verb
and a noun, e.g. wash the spoon or take the plate. An action is usually short
duration and lasts only a few seconds while an activity is a long sequence formed
by the succession of multiple actions. Although image classification and action
recognition may seem conceptually similar, a number of challenges make the latter
much more challenging than the former.

Compared to images, videos introduce an element of dynamism, individual
frames provide a limited view of what is happening, and predictions must consider
information coming from multiple frames. However, simply examining multiple
frames may not be sufficient, as the relative order of the frames is also relevant,
e.g. to disambiguate between open and close actions, it is necessary to observe
the action in the correct temporal direction. Therefore, a good understanding of
the video content comes from an effective combination of both spatial and tempo-
ral features. Various methods have been studied to achieve this goal, with several
proposals attempting to extend established techniques for image-related tasks.

18

3 – Egocentric action recognition

Figure 3.1: Sample actions from the UCF-101 dataset [21] depicting several
human activities from a third-person point of view.

An additional problem that profoundly affects all video-related tasks is the com-
putational and memory costs required for video processing, which increase linearly
with respect to the number of frames involved and limits the scope of various deep
learning-based techniques.

3.1.1 Multi-Modality

Videos are not limited to RGB frames. In fact, they provide multiple sources of
data that contribute unique and complementary details to more informed predic-
tions, an approach known as multi-modal learning. The availability of several of
these modalities in large-scale datasets, e.g., Epic-Kitchens [12] and Ego4d [25], has
fostered the development of new techniques that take advantage of the peculiarities
of each modality.

Audio Audio data can provide complementary information to purely visual stream
and is not limited by the camera field of view. For example, it is possible to detect
whether water in a pot is boiling through audio, even if the pot is not framed. On
the other side, audio can easily confuse similar objects made with similar materials,
such as a can and a pot [22]. The authors of [22, 23] analyzed the impact of sound
of noun and verb classification over the Epic-Kitchens dataset [8]. Audio alone has

19

3 – Egocentric action recognition

poor performance, but it is useful for improving the accuracy of the verb recogni-
tion problem when used in a multi-modal context [24]. Usually, fixed size audio
segments are first converted to a spectrogram and processed by a CNN backbone
as if they were a 2d image [24]. Therefore, learning from audio is a lightweight task
compared to other data sources that incur much higher computational costs.

Optical flow Optical flow [25] detects the direction of motion between adjacent
frames, i.e. how the position of pixels is mapped from one frame to the following,
providing an hint on which areas of the image are involved by the action. Comput-
ing the optical flow remains a computationally expensive task [26] although recent
studies have addressed the problem using supervised techniques based on CNNs
[27, 28] with significant speedups [29]. More recent developments explored unsu-
pervised optical flow estimation [30]. By focusing only on motion, optical flow is
less affected by visual characteristics, e.g. color or text, that are a huge obstacle to
generalization.

Figure 3.2: An optical flow frame from the Sintel dataset [2].

Figure 3.3: The optical flow color coding scheme. Brighter colors indicate smaller
motion. Image from [31].

Other modalities Event camera detect sudden brightness changes of individual
pixels with a high temporal resolution [32], minimizing the amount of redundant
data collected as the background is constantly off. Similarly to optical flow, event
stream are quite decoupled with respect to the visual appearance. Unlike optical

20

3 – Egocentric action recognition

flow, events do not incur into high computational costs because they are produced
on the fly by special cameras. As such, the authors of [33] explored the possibility
of hallucinating optical flow features from event data in order to replace the latter
at evaluation time. A similar approach has been explored by [34] to augment RGB
data with motion information coming from the optical frames.

Gaze data track the position of the operator’s gaze and can be exploited to
better identify relevant portions of the field of view [35, 36]. Other modalities
include depth and thermal images, textual narrations, 3d scans...

3.2 First person action recognition
Third-person videos capture human activities from an external point of view, as
the camera operator does not participate in the actions. In contrast, in egocentric
videos, the camera is mounted on the head of the person performing the actions. As
a result, the camera naturally follows the ongoing actions thanks to the operator’s
head movements, providing an occlusion-free view of the objects and interactions
involved in the action. Although egocentric viewing suffers from the narrowness
of the field of view, which is smaller and in continuous motion and almost chaotic
compared to third-person video, it contributes unique features such as gaze direction
and hand-object interactions. Both provide natural examples of attention that can
be useful in discerning which regions of video are relevant at any given moment,
given the key role that hands play in almost every human activity [7].

3.3 Datasets
The application of action recognition techniques to egocentric videos has arisen in
recent years along with the availability of large datasets, the main being EPIC-
Kitchens [6]. Prior to the release of EPIC-Kitchens, egocentric video datasets were
few and limited. Some relevant examples include Charades-ego [37] and EGTEA-
Gaze+ [38] though they limited as they include scripted activities and the latter
is limited to cooking activities. For its dramatic impact, EPIC-Kitchens can be
considered the analogue of Image-Net in the field of egocentric vision.

3.3.1 EPIC-Kitchens
EPIC-Kitchens [6] is a dataset featuring over 55 hours of egocentric videos, collected
by 32 participants for a total of 11.5M frames and 39.6K action segments. All the
recorded activities are everyday tasks, e.g. brewing coffee or washing the dishes, the
participants are highly familiar with. Actions are not scripted and were recorded in
the native kitchen environments of the camera wearer, to improve the naturalness of
the interactions. Actions are not scripted and were performed for long consecutive

21

3 – Egocentric action recognition

Figure 3.4: Actions and objects distributions in Epic-Kitchens-100 [8].

periods, as participants were asked to keep the camera on for the entire time they
spent in the kitchen over a period of three consecutive days. Differences in the
nationalities of the participants and in the visual appearance of the kitchens resulted
in a very diverse and rich dataset in terms of habits and manners depicted.

Figure 3.5: Distribution of Epic-Kitchens’ samples. Left to right: time of day
of the recordings, distribution of actions according to a limited set of macro-categories,
duration of the recorded sequences [6].

Videos are captured using a head-mounted GoPro at 1080p resolution and 59.94
fps and they are annotated using a combination of coarse annotations provided by
the participants and manual transcriptions via Amazon Mechanical Turk. Annota-
tions are not limited to a mere description of the action carried out in each segment
but they provide also bounding boxes and time boundaries. For this reason, Epic-
Kitchens is fertile ground for other tasks such as action anticipation and object
detection.

A recent extension of the dataset, EPIC-Kitchens-100 [8], brought the number
of recorded hours to 100 with more than 20 millions frames.

22

3 – Egocentric action recognition

Figure 3.6: Samples from EPIC-Kitchens.

3.4 Architectures

This section describes the main architectures used in video action recognition, from
the initial 2D model inspired by image-related tasks to the more recent Inflated 3D
ConvNets.

3.4.1 2D ConvNets

Videos are essentially an ordered sequence of frames, which suggests that 2D Con-
vNet architectures can also be applied to video-related tasks without significant
changes. 2D ConvNets have demonstrated to be very effective in the extraction
of interpretable features from images although they completely ignore the tempo-
ral structure. Early approaches to video classification focuses on extending CNNs
with temporal connectivity to learn spatio-temporal features. The authors of [39]
proposed an extensive analysis of several techniques to merge spatial and temporal
information at varying depth levels in the CNN architecture.

Fusion of spatial and temporal features A first approach consists in com-
puting a prediction for each frame separately, completely ignoring any temporal
information and focusing only on the static content of the frame, with remarkable
results as discussed by the authors of [39], hinting that sometimes static appearance

23

3 – Egocentric action recognition

may provide enough context information to correctly predict an action.1 A similar
approach is to extract features separately from multiple frames and merge them
before computing the final prediction. This approach is referred to as late fusion.
Fusion can be implemented using different aggregation functions, from concatena-
tion or summation to more complex strategies for re-weighting the contributions of
each frame. A conceptually similar technique, early fusion, fuses the input frames
by extending the first convolutional layer of the network into the temporal dimen-
sion, an idea common to many of the following approaches. A middle ground is
provided by slow fusion, which distributes the fusion operation over all the convo-
lutional layers, progressively mixing spatial and temporal information.

LSTM Although fusion methods can capture motion between different frames,
they are commutative and thus fail to recover the relative temporal order of features.
Authors of [41] propose to process the features extracted by a 2D ConvNet from
each frame using an LSTM layer that models the temporal evolution of features
from one frame to its subsequent. The network can produce a prediction at each
frame or at the last frame of the sequence.

Frame 1 Frame 2

2D ConvNet 2D ConvNet

LSTM LSTM

Frame n

2D ConvNet

LSTM

Action
classifier

Figure 3.7: 2D-ConvNet + LSTM. The ConvNet component extract spatial features
from the frames that are temporally aggregated by the LSTM layer.

1The models proposed by [39] derive from the Alex Net architecture [40] and were tested on
the Sport-1M dataset [39], a large collection of over a million videos portraying various sport
activities. Most labels encode the name of the sport activity, giving rise to a classification task
that can often be performed simply by looking at static features of individual frames, such as the
environment or sports clothes worn by people.

24

3 – Egocentric action recognition

3.4.2 3D ConvNets
3D ConvNets share the same architecture of their 2D counterparts, but with spatial
convolution filters being replaced by spatio-temporal ones [42, 43, 44, 45]. Each
clip is fed to the network as a 4d volume with shape c × n × h × w where c is the
number of channels, n is the number of frames, h and w are the height and width
of each frame. Differently than 2D ConvNets, 3D filters extends in the temporal
dimension, enabling joint tracking of both motion and appearance. Experiments

Figure 3.8: Activation maps of C3D [44]. The activation maps of the convolution blocks
concentrate on the visual content from the first frames to then focus on smaller details
encoding motion.

show that limited spatio-temporal receptive fields are sufficient to achieve good
performance. The C3D architecture [44] uses 3 × 3 × 3 kernels.

3.4.3 Multi-Stream Inflated 3D ConvNets
A milestone in the development of deep learning has been the ability to transfer
knowledge learned on large datasets, such as ImageNet [46], to other tasks without
training from scratch. Indeed, the large number of parameters in 3D ConvNets is
an obstacle to large-scale training and limits the otherwise promising performance
of this type of network.

The authors of [3] propose to inflate 2D models into 3D ConvNets, by simply
adding an extra dimension to all the convolutional and pooling layers, e.g. from
n × n to n × n × n. The result is an architecture known as I3D that can be
bootstrapped using the same parameters of the original 2D model, by replicating
the weights over the time dimension and rescaling them according to the temporal
depth. Given that convolution is a linear operator, the rescaling factor ensures that
a video consisting of a single repeated frame, a so-called boring-video, has the same
pooled activation maps of the original frame.

The I3D architecture can process not only RGB frames but also optical flow
inputs to integrate motion information. The authors of [3] propose a two-stream
architecture with a late fusion strategy to mix the predictions of the two modalities.
This approach, called multi-modal learning, is particularly suited for egocentric
vision where some modalities, e.g. RGB, are deeply and negatively impacted by

25

3 – Egocentric action recognition

Figure 3.9: The Inflated Inception-V1 architecture [3]. Note that temporal stride
of the first two pooling operations is 1. The absence of temporal pooling in the initial
layers helps the network preserve spatial details.

some of the peculiar characteristics of egocentric videos, such as egomotion, while
others, e.g. Audio, are less affected. A multi-modal network can benefit from the
insights brought by each modality to compute more informed predictions.

Figure 3.10: Two-stream Inflated 3D ConvNet [3]. RGB and optical flow frames
are processed by two different 3D ConvNets to extract both spatial and temporal infor-
mation. The predictions are then averaged across the two models.

26

Chapter 4

Domain Adaptation

This chapter provides an overview of different deep learning techniques that seek
to transfer knowledge across different domains. Section 4.1 formally introduces the
field of Transfer Learning (TL) and presents a classification of the main approaches
available in the literature. Section 4.2 focuses on Unsupervised Domain Adaptation
(UDA), a particular DA setting in which unlabelled samples from the target domain
are available at training time. Finally, Section 4.3 explores the main approaches
for UDA in video action recognition.

4.1 Transfer Learning
An important contribution to the success of deep learning comes from its data-
driven approach as models learn how to solve tasks directly from data by training
on large datasets over long periods of time. However, the strict dependence of the
training process on data may prevent the model from learning hypothesis that are
general enough to be transferred on different data domains. Indeed, it is difficult
for models to distinguish between dataset properties that are relevant for the task
and others that are simply an insignificant source of bias [47, 48, 49].

The main source of bias is the selection process used to create the dataset, as
the samples collected for each class may provide an unrepresentative view of that
class. As an example, authors of [49] compare samples of the car class belonging
to different datasets showing that some datasets only include a limited set different
car models, e.g. sport cars, or have a limited variability in terms of orientation of
the image subject, lighting conditions or visual appearance. Deep learning models
tend to embed these sources of bias in their decision process, leading to degraded
performance when tested with samples having a different visual appearance with
respect to the training data. The discrepancy between train and test data is known
as domain shift and represents a dramatic barrier to the transfer of knowledge
across different domains.

27

4 – Domain Adaptation

Transfer Learning (TL) [50] is a broad field that encompasses all techniques
oriented toward the transfer of hypotheses learned over one or more source domains
to a labeled or partially labeled target domain.

4.1.1 Formal introduction
Following the notations proposed by [51, 52, 53], a domain D = {X , T } is defined
by a data space X = {xi} distributed according to P (X) and by a task T =
{Y , P (Y|X)} that defines a conditional distribution P (Y|X) between X and a label
space Y . In a typical machine learning problem, a model M is trained on a source
domain Ds = {X s, T s} to learn a predictive function h that is then evaluated on
the target domain Dt = {X t, T t}. In the simplest setting the source and target
domains coincide, i.e. Ds = Dt and T s = T t, and the predictive function h can be
directly applied to the target domain without any additional tuning. The scenario
in which both the training and the evaluation samples belong to the same dataset
falls under this case. On the other side, if the source and target domains are
different, i.e. Ds /= Dt, the h function learned on the source domain is not valid
anymore on the target. The objective of TL is to favour the transfer of knowledge
learned on one domain to a different one.

Homogeneous and heterogeneous TL Depending on the similarity between
source and target data, the authors of [53] distinguish two variants of TL. In ho-
mogeneous TL, source and target share the same representations X s = X t even
though the two marginal probability distributions may differ, i.e. P (X s) /= P (X t).
For example, in a classification problem, both X and Y can represent images, but
belonging to different datasets and with different distributions.

In heterogeneous TL, source and target have different representations and there-
fore also different distributions. This scenario is typical of multimodal problems as
different modalities can be used to represent the same information.

Inductive and transductive TL The goal of Inductive TL is to address a task
on a partially labeled or unlabeled target domain by learning meta-knowledge that
is not directly related to the task [54, 50]. Learning additional concepts that are
not directly related to the target task may be useful to indirectly induce improve-
ments in the main objective, possibly exploiting the labels of the source domain if
available. For example, in image classification models, invariance with respect to
affine transformations of the input image is a useful precondition for learning more
robust hypotheses. Another common approach consists in projecting source and
target data in a shared low-dimensional subspace where the differences between the
two domains are less noticeable.

In transductive TL, the task is shared between the two domains even though the
two datasets differ in their representation, i.e. X s /= X t, or probability distribution,

28

4 – Domain Adaptation

P (X s) /= P (X t).
Unsupervised TL is the most difficult setting, since both tasks and datasets are

different though related, and no label is provided.

4.2 Unsupervised Domain Adaptation
Unsupervised Domain Adaptation (UDA) is a particular transductive TL setting
where the source and target share the same task T s = T t and the same represen-
tations X s = X t but have different probability distributions P (X s) /= P (X t). This
chapter focuses on common deep learning methods for UDA that learn to bridge the
domain gap directly from raw data. Loosely following the classification proposed
by [52], UDA methods can be organized into the following categories, depending
on the approach used.

• Discrepancy-based: these methods attempt to reduce the discrepancy between
the generated features across different domains by minimizing a distance met-
ric between the two [55, 56].

• Adversarial networks: methods in this category typically add a domain dis-
criminator that distinguishes between source features and target features. The
goal of the feature extractor is to increase classifier confusion, and to do this it
must produce features that are more difficult for the classifier to distinguish,
that is, more invariant between different domains [57, 58].

• Pseudo-labelling methods: the model pretrained on the source domain may be
used to predict pseudo-label for the target domain, to overcome its lack of
labeled samples.

• Reconstruction-based methods: these methods learn to decouple domain-specific
and domain-invariant features with the use of autoencoders pairs. Among
these methods, Domain Separation Networks (DSN) [59] introduce a shared
autoencoder to learn domain-invariant representation and a separate autoen-
coder for each domain to learn domain-private representations. Represen-
tations learned from the shared network are encouraged to be similar across
domains, while private autoencoders learn dissimilar representations to encode
the domain specific information.

4.2.1 Discrepancy-based UDA
Discrepancy-based methods promote the alignment of features across different do-
mains.

29

4 – Domain Adaptation

MK-MMD A naive approach to the comparison of two probability distributions
would be to look at their empirical means even though the mean is usually not
enough to properly describe a probability distribution. A more general approach
is provided by Maximum Mean Discrepancy (MMD) [55] which allows to compare
probability distributions in an higher and possibly infinite dimensional space. With
MMD, the distance between two distributions P and Q over X is computed in an
Hilbert space Hk, defined by a mapping ϕ : X → Hk and by a kernel k(x, y) =
⟨ϕ(x), ϕ(y)⟩ that allows to compute the inner product in the high-dimensional space
without an explicit mapping. If the mapping is the identity function, then the
resulting MMD formulation is equivalent to the distance between the means of the
two distributions.

d2
k(P, Q) =∆ ||Ex∼P [ϕ(x)] − Ey∼Q[ϕ(y)]||2Hk

= Ex,x′∼P [k(x, x′)] + Ey,y′∼P [k(y, y′)] + Ex∼P,y∼P [k(x, y)]
(4.1)

The Deep Adaptation Network proposed by [60] adds a regularization term to the
CNN loss to reduce the discrepancy between the high-level features learned from
source and target samples at the top l layers.

L = Lc({xs
i , ys

i }) + λ
Ø

l

d2
k(Ds

l , Dt
l) (4.2)

Figure 4.1: Deep Adaptation Network (DAN) proposed by [60] and adapted from
AlexNet [61]. The first layers are either frozen (conv1-conv3) or fine-tuned (conv3-conv4).
The MK-MMD loss is applied to the features extracted by the top fully connected layers
as they are closer to the specific task.

CORAL CORAL [56] aligns the second order moment of the high-level features
extracted across different domains and acts as a regularization term alongside a
traditional supervised loss. Formally, the CORAL loss is defined as the Frobenius
norm of the difference between the covariance matrices, CS and CT , of the source
and target features extracted by the last fully connected layer of the network.

LCORAL = 1
4d2 ||CS − CT ||2F (4.3)

30

4 – Domain Adaptation

Figure 4.2: DeepCoral Architecture [56]

Other discrepancy-based approaches Kullback-Liebler divergence (KL) [62]
and Jensen-Shannon Divergence (JSD) [63] measures the divergence between two
probability distributions and may be used to align the predictions produced by a
model across different domains [64, 65]. Other approaches exploit Batch Normal-
ization layers to mix normalization statistics from different domains [66] or to use
domain-specific normalization [67].

4.2.2 Adversarial methods
Adversarial methods for domain adaptation aim at extracting domain invariant
features by optimizing the supervised task on the source domain and a domain
discrimination task on source and target data. The adjective adversarial suggests
that the two tasks are treated as opposite objectives to be minimized at the same
time, as in a game. The concept of multiple networks competing against each other
to achieve different goals has became popular in recent years with the advent of
Generative Adversarial Networks (GAN) [68].

Domain Adversarial Neural Network

The adversarial architecture proposed by [57] is composed of a shared backbone for
features extraction and two classifiers, one that predicts class labels on source sam-
ples (label predictor) and a second that outputs a domain label (domain classifier),
e.g. source or target. Overall, the network objective is defined as a weighted sum
of two supervised contributions: a cross-entropy loss Lc for the label predictor and

31

4 – Domain Adaptation

Figure 4.3: Domain Adversarial Neural Networks [57]. The gradient of the clas-
sification loss Lc flows end to end with modifications. On the contrary, the gradient of
the domain classification loss Ld is propagated unchanged through the domain classifier
layer and reversed in sign when it passes through the feature extractor.

a binary cross-entropy loss Ld for the domain classifier.

L = Lc(Ds) + λLd(Ds, T s) (4.4)

Without any additional constraint, the optimization of the loss in Eq. 4.4 would
result in intermediate features that are highly discriminating as a result of the
minimization of the domain classification loss. Ideally, the domain classifier should
be as good as possible at distinguishing between source and target samples, while
the feature extractor should focus on producing features that are not so easy to
classify. To enforce this constraint, the author of [57] introduce a Gradient Reversal
Layer (GRL) between the features extractor and the domain classifier. The GRL
implements a pseudo function Rλ(x) that behaves like an identity function in the
forward pass and that has a negative gradient in the backward pass.

Rλ(x) = x ∇xRλ(x) = −λI (4.5)

This trick effectively forces the feature extractor to learn more difficult features
to classify as it receives gradient updates that maximize the classifier’s loss. In-
deed, the feature extractor and the domain classifier are adversaries as they pursue
opposite goals.

Adversarial Discriminative Domain Adaptation

The Adversarial Discriminative Domain Adaptation (ADDA) strategy proposed by
[58] is conceptually similar to DANN. Starting with a network pretrained on the
source domain, ADDA seeks to train an encoder on the target domain to obtain

32

4 – Domain Adaptation

intermediate features as indistinguishable as possible from those of the source do-
main. Then, the resulting encoder is used to replace the feature extractor of the
pretrained network to classify the target samples. A noticeable advantage of ADDA
compared to DANN is that it does not require access to source data to bridge the
domain gap.

4.3 UDA for Action Recognition
Compared to more general scenarios, UDA approaches for action recognition can
potentially exploit the unique characteristics of videos, namely their temporal di-
mension and multi-modal nature. Although the number of UDA methods specif-
ically designed for action recognition is limited, this section describes the most
important approaches in this field.

4.3.1 MM-SADA
The Multi-Modal Self-Supervised Adversarial Domain Adaptation (MM-SADA) ar-
chitecture proposed by [69] is one of the first attempts at exploiting the multi-
modal nature of videos for domain adaptation. MM-SADA extends the approach
of DANN to learn features with a low discrepancy across different domains and dif-
ferent modalities. It incorporates M feature extractors F m, one for each modality
m, which are encouraged to learn features that are similar across different domains
through the adversarial loss Lm

d computed by classifier Dm, as previously discussed
in [57]. Given a sample x belonging to domain d, the corresponding Lm

d loss for
modality m is given by

Lm
d =

Ø
x∈{S,T }

−d log (Dm(F m(x))) − (1 − d) log (1 − Dm(F m(x))) (4.6)

To facilitate the alignment of features across different modalities, MM-SADA intro-
duces an additional self-supervised binary classification task through the classifier
C which is asked to distinguish between features (F 0(x), . . . , F M(x)) sampled from
the same or different actions. A binary label c identifies whether or not all modes
correspond to the same action.

Lc =
Ø

x∈{S,T }
−c log C(F 0(x), . . . , F M(x)) (4.7)

Finally, MM-SADA adopts a late fusion strategy as features from different modal-
ities are fed to separate classifier whose outputs are then averaged to compute the
final predictions. Overall, the training loss L of MM-SADA is a sum of three contri-
butions to encourage alignment across different domains Ld and different modalities
Lc while solving the main supervised task Ly using the standard cross-entropy loss.

L = Ly + λcLc + λd

Ø
m

λm
d (4.8)

33

4 – Domain Adaptation

Figure 4.4: Multi-Modal Self-Supervised Domain Adaptation [69]. Source
(blue) and target (red) samples are fed to two features extractor F RGB and F F low. Two
classifiers DRGB and DF low learn to distinguish between source and target features by
computing a classification loss that is backpropagated through the feature extractors via
a Gradient Reversal Layer. The classifier C discriminates features according to whether
or not they were drawn from the same action. Finally features are sent to two classifier,
GRGB and GF low, and the outputs are averaged to compute the final predictions and the
corresponding supervised classification loss Ly.

4.3.2 CoMix

One could argue that an approach such as MM-SADA does not emphasize the
temporal dynamics of videos. Indeed, the self-supervised loss Lc of MM-SADA
shows similar benefits on the overall performance, regardless of whether the samples
come from the same time instant of the action(s) or from more distant segments,
suggesting that the proposed architecture is not giving much importance to the
temporal dimension of the samples, possibly focusing more on static and time-
invariant features [69]. To address this issue, CoMix [70] maximizes the similarity
between multiple representations of the same video encoded at different speeds and
minimizes the similarity between the representations of different videos. To bridge
the domain gap between different domains CoMix proposes to mix frames from
one domain with the background from another domain. The result retains the
motion pattern of the original frames and allows to define, for each clip, multiple
positive anchors combining slow and fast versions of the same clip as well as mixed
background.

Moreover, CoMix assigns pseudo-labels to target samples whose predictions are
above a certain confidence threshold and moves closer in the embedding space
samples with the same label using a contrastive loss. Finally, a standard cross-
entropy loss is minimized over the labeled samples of the source dataset.

34

4 – Domain Adaptation

Figure 4.5: CoMix architecture [70]. CoMix aligns features using multiple positive
anchors: a) fast and slow versions of the same video, b) samples with mixed background
and c) samples from the target domain with same pseudo-label.

4.3.3 TA3N
TA3N extracts features from each frame using a ResNet backbone [71] pretrained
on ImageNet [72]. To learn features that are more task-specific, the output of
the backbone is further processed by multi-layer perceptron (MLP) Gsf . As in
[57, 69], TA3N exploits an adversarial domain discriminator Gsd to learn spatial
features with a smaller gap across different domains. To aggregate features on the
temporal axis, TA3N follows the approach of [73] to fuse information from multiple
temporal-ordered set of frames at different time scales.

4.3.4 RNA
The authors of [1] observed that training multi-modal models result in an unbal-
ance between the different modalities, as one tends to prevail over the others by
having a larger norm even if its information content is not necessarily larger. Ex-
perimental results show that when RGB and audio models are trained together on
Epic-Kitchens, the audio features have an L2 norm almost three times larger than
that of RGB. To solve this problem, the proposed RNA loss forces the network to
learn how to rebalance the contributions of the different modalities by minimising
the distance between their average feature norms.

ℓRNA =
A
E[h(Xv)]
E[h(Xa)] − 1

B2

(4.9)

where h(·) denotes the L2-norm while Xv and Xa represents the features extracted
from the RGB and Audio modalities respectively.

35

4 – Domain Adaptation

Figure 4.6: Features norm-unbalance of the RGB and Audio modalities. The
green and blue dots represents the mean RGB and Audio features respectively and δ
measures the distance between the norm of the two. Minimization of the RNA loss
reduces the distance δ, encouraging the mean features to have the same norm.

Visually, the average features of the two modalities are on two hyper-spheres of
different radius and the goal of RNA is to make the radius equal for both modal-
ities. In the process, the angle between the feature is not affected, unlike other
loss functions such as cosine similarity that would make the average features more
parallel, leaving more freedom to the model to select the most suitable alignment.
RNA proves to be a viable loss function for both DG and UDA settings, as it can

Figure 4.7: RNA-Net [1]. The goal of the RNA loss LRNA is to align the mean
features norms of the two modalities computed over possibly multiple source domains.

improve the alignment of norms between different domains, allowing the network
to learn equally from each of them.

Relative Norm Alignment by Class (RNA-C)

RNA pushes the network to learn mean features that have the same norm across
different modalities, enabling the models to learn equally from each of them. How-
ever, this approach does not consider the informative content that comes with each
modality. Indeed, some actions are more easily recognisable by looking at RGB
frames, while others rely more on audio clips, suggesting that the balance between

36

4 – Domain Adaptation

the different modalities depends very much on the type of action involved. Based
on this assumption, RNA-C extends the RNA loss by allowing the network to freely
choose the best norm value for each class of actions. The usual RNA loss is com-
puted on the samples of each class c separately and the contributions are summed
up according to the population of each class Nc.

ℓRNA−C =
KØ

c=1

1
Nc

A
E[h(Xv

c)]
E[h(Xa

c)] − 1
B2

(4.10)

Furthermore, in a DG or UDA setting, RNA-C encourages the network to learn
features that have the same norm when extracted from the same action, even if
they come from different datasets, possibly easing the generalisation process. Unlike
RNA, C-RNA is a supervised loss in that it requires the knowledge of class labels to
group features according to the action from which they were extracted. To overcome
this problem, a common self-supervised approach, known as pseudo labelling, uses
the network predictions instead of the ground truth labels, under the optimistic
assumption that the class assignments produced by the network are correct.

37

Chapter 5

Test Time Adaptation

This chapter formally introduces Test Time Adaptation (TTA), with a focus on
its differences from the common approaches of Domain Adaptation and Domain
Generalization. Section 5.2 focuses on one of the most trivial but powerful methods
to address the domain shift problem, namely the update of the Batch Normalization
statistics. Finally, the sections 5.3 and 5.4 provide an overview of some of the most
common loss functions used in TTA.

5.1 Introduction
Traditional techniques for domain adaptation and domain generalization are dif-
ficult to extend to the real-world scenarios. The goal of domain generalization is
to learn more robust predictive functions, usually exploiting multiple source do-
mains that share the same label space, as an attempt to lower the prediction error
on an unseen target domain. The application of domain generalization techniques
requires us to consider certain assumptions. First of all, the number of available
source domains to learn from is usually limited and extrapolating formal guaran-
tees on the average risk estimation error bound is not a straightforward process,
as addressed by [74]. Indeed, even with a substantial number of source domains,
the gap between their data distribution and the distribution of target samples may
still be too large, leading to little or no improvement over similar models trained
on fewer domains. Moreover, literature on domain generalization applications to
actions recognition is rather limited and mostly focused on image-related tasks.
Authors of [75] propose a DG architecture, specifically designed for videos showing
significant improvements with respect to other approaches originally developed for
image tasks. Similarly, recent work by [1] addresses domain generalization by ex-
ploiting the multimodal nature of videos to prevent one modality from prevailing
over the others.

Domain generalization approaches do not exploit the knowledge provided by

38

5 – Test Time Adaptation

the target domain samples, even if unlabeled. The goal of Unsupervised Domain
Adaptation (UDA) [51], on the other hand, is to improve performance on a target
dataset by learning from the target samples in an unsupervised way, making it less
realistic than DG but more effective in practical applications. As already seen for
DG, UDA also requires certain assumptions, mainly related to the availability of
target data at the time of training. Models must be trained from scratch on each
new pair of source and target domains (Ds, Dt). Training usually takes time and
energy, which prevents the implementation of UDA techniques on end devices with
limited computational capabilities, such as the lightweight and inexpensive wearable
cameras used in egocentric vision. For this reason, training is usually performed
on powerful workstations on which both source and target data reside. Moving
videos outside the device that generated them is a possible privacy violation, as
well as costly in terms of time and power required for transmission. Finally, the
most critical issue is the existence and uniqueness of a target domain. Often the
target domain may be not only unavailable but even nonexistent at training time as
the scope of application of the model is not known in advance or it is dynamically
changing.

An alternative approach, Source-Free Domain Adaptation (SFDA), relies only on
unlabeled target data to perform multiple iterative training steps, usually exploiting
an auxiliary task, as in [76]. However, the problem of target data availability still
remains.

Test-Time Adaptation (TTA) solves these problems by shifting the burden of
adapting models to unknown domains to the testing phase, on the assumption
that the available samples provide indications of the true distribution of the target
domain. More formally, the goal of TTA is to update the hypothesis h learned from
possibly multiple labelled source domains Sk = {(xs

k,i, ys
k,i)}i to the current target

domain T = {(xt
i)}i from which the model is sampling.

h : XS → YS
T T A−−→ h̃ : XT → YT (5.1)

As labels are not available for the target domain, it is assumed that the two la-
bel spaces, YS and YT , coincide. In addition, the absence of target labels limits
the number of techniques that can be applied to improve the quality of the model
assumptions. Typical approaches for TTA can be classified into two main classes,
depending on whether or not they require gradient updates through backpropaga-
tion.

Backpropagation-free TTA A first class of TTA approaches focuses on up-
dating the Batch Normalization statistics collected by the model at training time.
These methods do not update model parameters and therefore do not require back-
propagation. Replacing normalization statistics collected on the training data with
online estimates of the target data has been shown to improve the robustness of
the model in presence of covariance shift [77]. More details in Section 5.2.

39

5 – Test Time Adaptation

Loss-based TTA The goal of class-related losses is to improve the quality of
predictions, such as improving the strength of the outputs by optimizing some
side properties of the class distribution produced by the model, like its entropy.
This is achieved by minimizing a loss function calculated on the model results.
Several class-relative losses are analyzed in Section 5.3. Similarly, feature level
losses attempts to improve the model outputs at the feature level, e.g. before
computing the logits. More details in Section 5.4.

Training phase Testing phase
Source data Target data Target data Online

UDA ✓ ✓ - ✓
DG ✓ - - ✓

SFDA - - ✓ ✗
TTA - - ✓ ✓

Table 5.1: Summary of several Domain Adaptation techniques. UDA and DG
do not train the model at testing time. SFDA performs iterative training on target data,
making it not suitable for online applications. TTA trains the model online on incoming
target data.

5.2 Batch normalization
The first class of methods for TTA derives from the assumption that domain shift
primarily results in a deviation from the batch normalization statistics collected at
training time. A trivial example is represented by the batch normalization layers
close to the input. Changes in the environment, e.g. furniture colour or light
conditions, may drastically modify the mean and variance of the frame’s channels
observed by the normalization layers.

A natural solution is to replace the running statistics of the normalization lay-
ers with the mean and variance of the target samples [77, 78]. Prediction-time
normalization ensures that the output of the normalization layers remains in the
same range encountered at training time, as this is the only portion of the input
space explored during training. Outside this region, model behavior can become
unpredictable. The authors of [77] also suggests that prediction-time normaliza-
tion prevents the layers from projecting out of distribution samples into regions
that may result in highly confident predictions.

Depending on the magnitude of the shift between the source and target distri-
butions, the replacement of normalization layer statistics may result in a significant
discrepancy between the activations seen by the model at the time of training and
testing. In other words, prediction-time normalization effectively reduces the do-
main shift problem, possibly at the cost of increased model uncertainty. To alleviate

40

5 – Test Time Adaptation

this problem, the authors of [79] propose to mix the source and target statistics.
The approach, called α-BN, computes, for each BN layer i, a new set of normaliza-
tion statistics {µ̃(i)

new, σ̃(i)
new} as a weighted average of the old estimates computed at

training time over the source data {µ̃(i)
src, σ̃(i)

src} and the running estimates over the
batch of target samples xt, effectively mixing hints coming from both domains.

µ̂(i)
new = (1 − α)µ̂(i)

src + αE(xt) σ̂(i)
new = (1 − α)σ̂(i)

src + α
ñ

var(xt) (5.2)

α ∈ [0, 1] is an hyper-parameter controlling the balance between the old and new
estimates. If α = 0, the statistics are never updated while α = 1 completely neglects
the old estimates. The formulation is completely equivalent to the update rule
employed by BN at training time with α being the momentum hyper-parameter.
Therefore, the implementation of this adaptation approach simply requires to put
the layer in training mode and to select a proper value for α.

Experiments of [79] prove that updating the BN statistics plays a key role in
the adaptation process, leading to very positive results. Moreover, α-BN appears
to be quite robust to the choice of α with respect to the task [79]. Finally, the
method does not require backpropagation and can be easily combined with the
other adaptation techniques described in the following sections.

5.3 Class Relative losses

5.3.1 Entropy Minimization (ENT)
In information theory, the entropy of a probability distribution measures the un-
certainty of its outcomes. If all the outcomes are equally likely, the distribution is
said to have a high information content or an high entropy. If, on the other hand,
all outcomes have a very low probability of occurring, with one exception having
a much higher probability, then there is not much uncertainty about the outcomes
and the distribution has low entropy. In a classification task in which each sample
is to be assigned to only one class, it is preferable for the model to produce pre-
dictions with very low entropy as an higher entropy is a sign of confusion in the
predictive function learned by the model.

Network predictions usually show higher entropy on the unseen data because of
the shift in internal covariance produced by the change in conditions from the time
of training, as shown by Table 5.2. The authors of [80] propose the use of entropy
in supervised learning as an effective regularizer, provided that the classes are not
overlapping. Similarly, a natural solution might be to update the network weights
along the direction that minimizes the prediction entropy, in an effort to strengthen
the network’s confidence.

ℓent(y) = − 1
n

Ø
i

Ø
c

yi,c log yi,c (5.3)

41

5 – Test Time Adaptation

Minimization of prediction entropy does not guarantee the best solution, as the
model may become even more radicalized on incorrect predictions. The authors of
[81] discuss the possibility of running into degenerate solutions when using entropy
minimization alone, as the network may always predict the same class regardless
of the input, effectively minimizing entropy loss but failing to solve the main task
correctly. Moreover, the formulation of the entropy loss gives all the samples the

Class labels

Pr
ob

ab
ilit

y

Figure 5.1: Entropy minimization (ENT). The goal of entropy minimization is to
create a peak in the distribution of labels, flattening the probability of all remaining
labels. The arrows show the effect of the loss on the model predictions.

same weight, possibly biasing the network predictions towards the majority classes
of the batch.

Target domain
Source domains D1 D2 D3

D2-D3 1.2537 1.0941 1.1389
D3-D1 1.1651 1.2773 1.2065
D1-D2 1.0299 0.9738 1.1346

Table 5.2: Entropy of predictions on source and target datasets using an RGB+Flow
(RNA) model without any adaptation technique over the three largest kitchens in Epic-
Kitchens [6]. Values in bold highlight the increase in entropy when the model is applied to
samples from unseen domains. More details on the configuration used for the experiments
are provided in Section 6.

42

5 – Test Time Adaptation

5.3.2 Information Maximization (IM)
Information Maximization (IM) [82, 83, 84] mitigates the detrimental effect of the
entropy loss in the presence of an unbalanced test dataset by enforcing diversi-
fication in the model predictions. The IM loss ℓim is defined as the sum of two
component: the average entropy of the samples, as in the entropy minimization
formulation 5.3, and the negative entropy of the average samples. The first com-
ponent aims to reduce the uncertainty of the predictions, while the second ensures
that they remain globally different to avoid the pitfalls of entropy minimization
alone.

ℓim(y) = − 1
n

nØ
i=1

CØ
c=1

yi,c log yi,c +
CØ

c=1
p̃c log p̃c where p̃c = 1

n

Ø
i

yi,c (5.4)

Class labels

Av
er

ag
e

pr
ob

ab
ilit

y

Class labels

Pr
ob

ab
ilit

y

Figure 5.2: Information Maximization (IM). The goal of information maximization
is to create a peak in label distribution (left plot), like entropy minimization, while en-
suring that the model’s average predictions remain globally diverse, thus avoiding trivial
solutions (right plot).

Although IM represents an improvement over entropy minimization, it still suf-
fers from an assumption about the distribution of samples in the batch. In fact,
imposing globally diverse predictions may be not optimal if the batch contains a
small number of unique classes and may even lead to increase output uncertainty.
This problem is of particular concern in the context of TTA, as batches should
ideally be as small as possible to allow near real-time processing.

5.3.3 Minimum Class Confusion (MCC)
Unlike entropy and information maximization, the Minimum Class Confusion (MCC)
loss, proposed by [85], is a versatile domain adaptation approach that targets a re-
duction of the pairwise class confusion of the model predictions, i.e. the situation

43

5 – Test Time Adaptation

in which a sample is ambiguously classified into two different classes class ci and cj

with an equally high probability. Entropy fails to detect such conditions, as small
perturbations of the probability distribution may have significant impact on the
entropy.

As proposed by the authors of MCC [85], the degree of pairwise confusion over
the model predictions for two classes i and j is measured using a similarity function,
e.g. the dot product, of the vectors y·,i and y·,j, which represent the probabilities
that the samples in the current batch belong to classes i and j, respectively. More
compactly, this is equivalent to calculating a confusion matrix defined as

Ci,j = cT
·,ic·,j (5.5)

Given that the real labels of the samples are not available, C is an approxima-
tion of the real confusion matrix. Ideally, the confusion matrix should be close to
the identity matrix, indicating low between-class confusion and strong prediction
confidence.

The contribution of each sample can be controlled by a weighting mechanism
to give more importance to samples with a low entropy. In fact, high entropy is
a symptom of model uncertainty and learning from uncertain predictions is not
useful as it might simply increase the confusion. Furthermore, favouring samples
with a lower entropy allows the loss to focus on predictions for which the network
is somewhat confident. Therefore, entropy can be considered as a measure of how
much the model can learn from each sample. In the MCC formulation, the entropy
values of the samples are transformed into a probability distribution using the
softmax function with Laplace Smoothing (Eq. 5.6).1 Wii is the weight associated
to sample i. The B factor in the weights computation scales the contributions so
that Ei[Wii] = 1.

Wii = B(1 + exp(−H(yi,·)))qB
i=1(1 + exp(−H(yi,·)))

(5.6)

The W matrix is used to reweight the contribution of the samples to the class
confusion matrix (Eq. 5.7).

Ci,j = cT
·,iWc·,j (5.7)

Depending on the diversity of the current batch, the nonzero values of the confusion
matrix C may be concentrated in smaller regions of the matrix, corresponding to
the labels predicted by the network. To rebalance the contributions of the different
classes, the MCC normalizes each row of C̃ so that the sum is equal to 1 (Eq. 5.8).
In this way, the confusion matrix can also be interpreted in terms of a random walk

1Laplace Smoothing better highlights positive samples without over penalizing the negative
ones.

44

5 – Test Time Adaptation

matrix, whose entry C̃ij defines the probability that a sample classified as belonging
to class i would also be classified as belonging to class j.

C̃i,j = C̃i,j

CØ
k

C̃i,k

(5.8)

Finally, the MCC loss ℓMCC is defined as the sum of all off-diagonal values of C̃.
The minimization of the MCC loss directly reduces the between-class confusion and
indirectly improves the confidence of the model predictions by moving the confusion
matrix towards the identity matrix.

ℓMCC = 1
C

CØ
i=1

CØ
j /=i

C̃i,j (5.9)

Although MCC loss was originally proposed for traditional domain adaptation
scenarios, to be used as a secondary task on unlabeled target data in combination
with a primary task on source data, it can be extended to test-time adaptation
without any modification.

Class labels

Pr
ob

ab
ilit

y

Figure 5.3: Minimum Class Confusion (MCC). The goal of MCC is to reduce the
chance that the network predicts two different classes for the same sample with an equally
high probability.

5.3.4 Complementary Entropy (CENT)
The cross-entropy loss ℓCE, typically used in supervised classification tasks, maxi-
mizes the log-likelihood of the predicted labels y with respect to the ground truth

45

5 – Test Time Adaptation

class labels ŷ, while the predictions for the erroneous classes have no role in the
training process (Eq. 5.10), as they are discarded in the loss computation.

ℓCE = −Eŷ[y] = − 1
N

NØ
i=1

CØ
c=1

ŷi,c log yi,c = − 1
N

NØ
i=1

log yi,g (5.10)

Complementary Objective Training (COT) [86] proposes to combine cross-entropy
loss with a complementary objective function that neutralizes erroneous predictions,
flattening their probability distribution and thus increasing the model uncertainty
about classes that do not match the ground truth. The authors of [86] propose
the Complementary Entropy (CENT) loss function ℓcent as a secondary objective
to maximize the entropy of the erroneous predictions. In mathematical terms, the
CENT loss is defined as

ℓcent = − 1
N

NØ
i=1

KØ
j=1,j /=g

yi,j

1 − yi,g

log yi,j

1 − yi,g

(5.11)

where yi,j is the probability of sample i belonging to class j and g is the index of
the ground truth label. The minimum point of the CENT loss is reached as yi,j →
(1−yi,g)/(K −1), meaning that all the erroneous labels share the same probability.
As a result, CENT is expected to provide better discriminability between the ground
truth and the erroneous labels.

Class labels

Pr
ob

ab
ilit

y

Figure 5.4: Complementary Entropy (CENT). The goal of the CENT loss is to
flatten the distribution of all but the highest probability labels.

Although CENT was originally proposed for supervised scenarios where the
ground truth labels are known, the approach can be easily generalized to the unsu-
pervised context of TTA under the assumption that the ground truth is given by
the network’s strongest prediction.

46

5 – Test Time Adaptation

5.3.5 TENT
Similarly to entropy minimization, TENT [87] updates the model parameters by
optimizing the entropy of the predictions for the target data. However, motivated
by the high dimensionality of the model parameters and by the risk of introducing
unwanted noise by updating the model only on the basis of an unsupervised loss
computed over the target data, TENT updates only the modulation parameters γ
and β of the model normalization layers. As these parameters are applied to chan-
nels, their dimensionality is much smaller compared to the total number of model
parameters. During adaptation, the model leverages the normalization statistics of
the target data, as in [77, 78].

The authors of [87] also note an interesting result of TENT compared to α-BN.
Indeed, while α-BN moves the activation maps closer to those seen at training time,
TENT brings them closer to those produced by an oracle trained on the target data,
suggesting a more task-specific behaviour. However, it can be speculated that this
is mainly due to the choice of the loss function used with TENT, since unsupervised
entropy minimization and supervised cross entropy minimization accomplish similar
goals, especially when the domain shift is modest and the model is already able to
output good predictions without adaptation to be further improved with entropy
minimization.

Two minor extensions of TENT are also considered in this work. Instead of
replacing normalisation statistics with new estimates from the target data, TENT-
off reuses those collected during training. TENT-C updates not only the affine
parameters but also the classifier.

5.4 Feature level losses

5.4.1 Relative Norm Alignment (RNA)
Extending the Relative Norm Alignment loss introduced in Sec. 4.3, the authors
of [88] propose to tackle the norm-unbalance problem in the target domain by
re-balancing the contributions of the the different modalities. Since RNA is an
unsupervised loss, its formulation can be extended to the TTA setting without
further modification:

ℓRNA =
A
E[h(Xm1)]
E[h(Xm2)] − 1

B2

(5.12)

where Xm1 and Xm2 are the features extracted from two different modalities m1
and m2 and h(·) is the usual L2 norm. The RNA-C loss presented in 4.3.4 can
be easily adapted to the TTA setting by using pseudo-labels to group features
extracted from samples presumably belonging to the same action, as in the UDA
application.

47

Chapter 6

Experiments

This chapter translates into experiments the theoretical analysis of Test-Time
Adaptation (TTA) introduced in the previous chapter. Section 6.1 describes the
experimental setting used for the evaluation of the proposed approaches for TTA.
Section 6.2 introduces the problem of domain shift by investigating the drop in
performance that occurs when a model is tested on samples from an unknown dis-
tribution. Section 6.3 explores the application of class and feature losses to improve
the model predictions at test time. To verify whether TTA can also be applied in
the absence of domain shift, Section 6.4 attempts to use the same techniques on
seen domains. A closer look to the impact of Batch Normalization layers on TTA
is provided in Section 6.5. Section 6.6 presents a multi-step extension of TTA,
focusing on the trade-off between accuracy improvements and adaptation steps.
In Section 6.7, the performance of TTA on multi-modal models is compared with
those of SOTA UDA models. Finally, Section 6.8 proposes an extension of TTA to
online estimation of optical flow.

6.1 Experimental setting
All the experiments proposed in this work are performed on the EPIC-Kitchens-55
dataset [6], following the experimental protocol defined by [69] which identifies a
subset of the dataset consisting of the three largest kitchens in terms of number of
labeled samples. These kitchens are referred to as D1, D2 and D3. Unless otherwise
specified, models are trained on the training split of two source domains Di and
Dj and tested on a target third domain Dk. If the target domain coincide with any
of the source domains, it is said to be a seen domain, as samples from the same
distribution were seen during training. On the contrary, it is an unseen domain.

Input During the adaptation phase, 5 equidistant clips are sampled from the
video. Each clip consists of 16 frames adjacent RGB frames and 16 optical flow

48

6 – Experiments

frames, computed using the TV-L1 algorithm [26], with stride 2. Depending on the
length of the video the clips may overlap. The visual samples are augmented using
random crops, scale jitters and horizontal flips. Audio is converted to a 256x256
matrix representing the log-spectrogram of the samples, following the procedure
described by [24]. During the testing phase, the same five equidistant clips are
sampled from the video but no augmentation is applied to the samples, with the
exception of the central crops of the visual modalities.

Implementation Each modality is processed by a separate feature extractor and
classifier. RGB and Flow feature extractors use an I3D model (Sec. 3.4.3) while
Audio processing uses a BN-Inception model [18, 19] pretrained on ImageNet [24].
The extracted features are fed into a classifier, consisting of a fully connected layer,
which produces the raw logits. They are then combined using a late-fusion strategy
that averages the contributions of the different modalities.

Adaptation The target data set is processed using a batch of 32 samples, each
consisting of 5 clips. Clips are divided according to their index within each sample
and an adaptation step is performed for each group to update the model parameters,
i.e. first all clips with index 0 are processed, then all clips with index 1 and so on.
Depending on the technique used, the update may consist of the calculation of new
statistics for the BN layers or the back-propagation of a loss function calculated
on the model predictions or on the intermediate features. Once all the clips have
been processed, the model is evaluated over the same 5 clips without any training
augmentation and the predictions are averaged, as in [24].

Reproducibility Experiments were run on single NVIDIA V100 32GB gpus with
PyTorch 1.11. NumPy and PyTorch random generators were initialised with seed
42 before each run and all the measurements were collected and averaged over three
runs. Each experiment took slightly more than one hour on average. Computa-
tional resources were provided by HPC@POLITO, a project of Academic Comput-
ing within the Department of Control and Computer Engineering at the Politecnico
di Torino (http://www.hpc.polito.it).

49

6 – Experiments

6.2 Do we need Test Time Adaptation?
Table 6.1 reports the top-1 accuracy, i.e. the prediction accuracy for the ground
truth class, for seen and unseen domains, highlighting the dramatic drop in perfor-
mances when evaluating on the latter.1 However, not all the modalities behave the
same. RGB is clearly the worst because of its dependence on visual appearances
that can easily change in different kitchens. The impact of domain shift on RGB
causes its accuracy to be even worse than that of audio alone. On the contrary,
audio is the most robust modality, although the drop is still quite significant. Op-
tical flow has the best accuracy in the both the seen and unseen configurations by
several percentage points, with an accuracy drop only slightly above than that of
audio. Although theoretically optical flow is expected to be quite robust to domain
shift as it only detects motion, practically the algorithms for its computation may
be deeply affected by artifacts and motion blur. Multi-modality configurations con-
firm the same trend, as the combination with RGB worsen the accuracy drop of
both Flow and Spec.

Top-1 accuracy (%)
Seen domains Unseen domains Difference

RGB 53.86 36.64 ▼ -17.22
Flow 61.00 50.53 ▼ -10.47
Spec 52.34 43.32 ▼ -9.02

RGB+Flow 65.43 51.34 ▼ -14.09
RGB+Spec 61.54 51.07 ▼ -10.47

Table 6.1: Top-1 accuracy of RNA-Net [1] on seen and unseen domains. As
expected the accuracy drops when the source domain(s) and the target domain(s) do not
coincide. Although all the modalities are severely affected by the domain gap, Flow and
Spec seem to be slightly more robust compared to RGB. Flow is the best single-modality
configuration and the best multi-modality configuration in combination with RGB.

6.2.1 Class imbalance
In real-world applications, the label distribution of the target dataset is not known
in advance. Indeed, top-1 accuracy may not realistically capture the performance
of a model in an unknown domain since it weights classes according to their size.
To provide a more fair comparison of the different approaches proposed in this

1To limit the number of models to train, the uni-modal models presented in Table 6.1 were
taken from their multi-modal counterparts and tested separately. The top-1 accuracy is expected
to be close to that of uni-modal models trained from scratch, as shown by [1]. In particular, RGB
and Flow models are taken from the RGB+Flow model, while the Spec model is from RGB+Spec.

50

6 – Experiments

ta
ke

pu
t-d

ow
n

op
en

clo
se

wa
sh cu
t

sti
r

po
ur

verb_class

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Fr
eq

ue
nc

y
Source
Target

(a) D1,D2→D3
ta
ke

pu
t-d

ow
n

op
en

clo
se

wa
sh cu
t

sti
r

po
ur

verb_class

0.00

0.05

0.10

0.15

0.20

0.25

Fr
eq

ue
nc

y

Target
Source

(b) D2,D3→D1

ta
ke

pu
t-d

ow
n

op
en

clo
se

wa
sh cu
t

sti
r

po
ur

verb_class

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
eq

ue
nc

y

Source
Target

(c) D3,D1→D2

Figure 6.1: Class distribution of Epic-Kitchens. The class distribution of source
and target domains can vary widely and some classes may be completely absent.

work, the per-class top-1 accuracy measures the contribution of each class equally.
Moreover, the different distribution of classes between source and destination is

Top-1 per-class accuracy (%)
Seen domains Unseen domains Difference

RGB 48.74 26.91 ▼ -21.83
Flow 58.78 44.99 ▼ -13.79
Spec 33.99 31.10 ▼ -2.89

RGB+Flow 60.38 40.42 ▼ -19.96
RGB+Spec 54.53 39.88 ▼ -14.65

Table 6.2: Top-1 per-class accuracy of RNA-Net [1] on seen and unseen do-
mains. Per-class top-1 accuracy averages the accuracies of each class, regardless of their
number of samples. Similarly to Table 6.1, cross-domain performances varies widely and
Flow remains one of the most robust modalities, far outperforming all the other settings,
even when paired with RGB.

itself part of the domain shift problem, as models tend to be more biased towards
the classes they have seen more samples of.

51

6 – Experiments

6.3 Test Time Adaptation
This section explores the use of class and feature losses to improve model pre-
dictions, examining the accuracy gains obtained after one adaptation step over a
number of domain shifts and different configurations.

6.3.1 Class losses
Class losses operate directly on the model outputs, possibly averaged over several
modalities, in an attempt to improve some statistical properties of the predicted
class distribution. Experiments show that different modalities exhibit quite differ-
ent behaviours after one adaptation step with TTA. RGB is the worst modality
in terms of domain shift, although it improves significantly to +2.91 percentage
points with IM loss. However, its performance still suffers heavily from the domain
shift and is inferior to that of audio alone. Flow achieves a fairly substantial im-
provement and is the second best model after adaptation, behind RGB+Flow by a
small margin. The only modality that gets worse results after adaptation is Audio,
although the drop in accuracy is quite small, −0.52 at most, suggesting that when
adaptation is not effective in improving accuracy, at least it does not make it too
much worse.

Multi-modal models follow a similar trend, with RGB+Flow benefiting from the
individual adaptability of the two modality and RGB+Audio suffering from the
poor behavior of Audio.2 As expected, ENT loss tends to perform worse than the
other techniques, as it does not take into account the diversity within each batch of
data. In contrast, both MCC and IM show higher improvements, with the former
far outperforming all other losses in settings where the variability of improvements
is most pronounced (RGB+Audio).

Does class imbalance have a role in adaptation? The top-1 accuracy may
not properly capture the class imbalance of the target dataset as it weights different
classes according to their number of samples. Indeed, looking at the per-class
accuracy from Fig. 6.4, the improvements granted by the different adaptation
techniques are even more noticeable compared to the top-1 accuracy. Also, the
per-class accuracy mitigates the poor adaptability of Audio.

TENT

The objective of the TENT losses is to minimize the entropy of the predictions even
though, differently from the ENT loss, only a subset of the model parameters is

2The learning rates γRGB and γF low are set to 0.001. For Audio, γAudio is set to 0.0001, with
the only exception of the RGB+Audio MCC experiment in which is γAudio = 0.001.

52

6 – Experiments

Top-1 accuracy (%)
Adaptation D1,D2→D3 D2,D3→D1 D3,D1→D2 Mean

R

N/A 36.86 34.94 38.13 36.64
ENT (5.3.1) 39.56 37.01 41.91 39.49 (▲ +2.85)
MCC (5.3.3) 39.56 37.01 41.96 39.51 (▲ +2.87)
IM (5.3.2) 39.60 37.09 41.96 39.55 (▲ +2.91)
CENT (5.3.4) 39.56 37.01 41.96 39.51 (▲ +2.87)

F

N/A 47.23 51.95 52.40 50.53
ENT (5.3.1) 49.56 51.95 57.02 52.84 (▲ +2.31)
MCC (5.3.3) 49.62 51.95 57.07 52.88 (▲ +2.35)
IM (5.3.2) 49.59 51.88 57.02 52.83 (▲ +2.30)
CENT (5.3.4) 49.56 51.95 57.16 52.89 (▲ +2.36)

A

N/A 48.87 40.69 40.40 43.32
ENT (5.3.1) 48.49 39.77 40.36 42.87 (▼ -0.45)
MCC (5.3.3) 48.53 39.92 40.04 42.83 (▼ -0.49)
IM (5.3.2) 48.26 39.69 40.44 42.80 (▼ -0.52)
CENT (5.3.4) 48.49 39.77 40.13 42.80 (▼ -0.52)

R+F

N/A 46.51 48.97 58.53 51.34
ENT (5.3.1) 51.64 50.27 58.98 53.63 (▲ +2.29)
MCC (5.3.3) 51.77 50.28 59.22 53.66 (▲ +2.32)
IM (5.3.2) 51.64 50.19 58.89 53.57 (▲ +2.23)
CENT (5.3.4) 51.64 50.27 58.98 53.63 (▲ +2.29)

R+A

N/A 54.93 46.67 51.60 51.07
ENT (5.3.1) 56.13 47.20 53.42 52.25 (▲ +1.18)
MCC (5.3.3) 56.64 47.51 53.47 52.54 (▲ +1.47)
IM (5.3.2) 55.82 47.20 53.60 52.21 (▲ +1.14)
CENT (5.3.4) 56.06 47.36 53.60 52.34 (▲ +1.27)

Table 6.3: Comparison of class-relative losses on top-1 accuracy after one adap-
tation step. The RGB and Flow models show the greatest improvements, even though
the difference between the different adaptation techniques is very narrow. Values in bold
and underlined are the best and second best values of each modality.

updated in the process. TENT and TENT-C show the most significant improve-
ments, with accuracy close to that of the other class losses or better in the case
of the Flow and RGB+Flow models. While TENT and TENT-C discard the run-
ning estimates of the BN statistics collected during training, TENT-off preserves
them and results in almost insignificant improvements, hinting again that BN has
a key role in adaptation. Compared to class losses (Table 6.3), RGB and Flow
perform slightly better, which, given that the learning rate is small, suggests that
the largest contribution comes from replacing BN running statistics with batch
statistics, which makes it vulnerable to small batch sizes.

53

6 – Experiments

Top-1 per-class accuracy (%)
Adaptation D1,D2 →D3 D2,D3 →D1 D3,D1→D2 Mean

R

N/A 21.69 22.87 36.16 26.91
ENT (5.3.1) 27.76 26.52 40.71 31.66 (▲ +4.75)
MCC (5.3.3) 27.76 26.56 40.77 31.69 (▲ +4.78)
IM (5.3.2) 27.77 26.55 40.73 31.68 (▲ +4.77)
CENT (5.3.4) 27.76 26.52 40.73 31.67 (▲ +4.76)

F

N/A 36.00 44.21 54.75 44.99
ENT (5.3.1) 39.18 49.53 56.15 48.28 (▲ +3.29)
MCC (5.3.3) 39.21 49.53 56.17 48.30 (▲ +3.31)
IM (5.3.2) 39.19 49.44 56.15 48.26 (▲ +3.27)
CENT (5.3.4) 39.17 49.53 56.21 48.30 (▲ +3.31)

A

N/A 28.93 23.98 40.40 31.10
ENT (5.3.1) 29.24 23.97 40.49 31.23 (▲ +0.13)
MCC (5.3.3) 29.27 24.04 40.49 31.26 (▲ +0.16)
IM (5.3.2) 29.02 23.94 41.96 31.64 (▲ +0.54)
CENT (5.3.4) 29.27 23.93 41.96 31.72 (▲ +0.62)

R+F

N/A 27.96 36.10 57.18 40.42
ENT (5.3.1) 34.20 43.87 56.57 44.88 (▲ +4.46)
MCC (5.3.3) 34.47 43.87 56.59 44.98 (▲ +4.56)
IM (5.3.2) 34.20 43.83 56.53 44.85 (▲ +4.43)
CENT (5.3.4) 34.20 43.87 56.57 44.88 (▲ +4.46)

R+A

N/A 34.16 35.07 50.42 39.88
ENT (5.3.1) 40.35 37.93 45.47 41.25 (▲ +1.37)
MCC (5.3.3) 40.04 37.72 45.19 40.98 (▲ +1.10)
IM (5.3.2) 38.41 37.38 45.15 40.31 (▲ +0.43)
CENT (5.3.4) 39.87 37.50 45.31 40.89 (▲ +1.01)

Table 6.4: Comparison of class-relative losses on the top-1 per-class accuracy
after one adaptation step. All the uni-modal models show more substantial accuracy
gains compared to the standard top-1 accuracy.

54

6 – Experiments

Top-1 accuracy (%)
Adaptation D1,D2→D3 D2,D3→D1 D3,D1→D2 Mean

R

N/A 36.86 34.94 38.13 36.64
TENT 40.76 37.78 43.51 40.68 (▲ +4.04)
TENT-off 36.96 34.71 38.36 36.68 (▲ +0.04)
TENT-C 40.76 37.85 43.51 40.71 (▲ +4.07)

F

N/A 47.23 51.95 52.40 50.53
TENT 48.77 53.03 58.62 53.47 (▲ +2.94)
TENT-off 47.23 51.65 52.43 50.43 (▼ -0.10)
TENT-C 48.70 53.03 58.62 53.45 (▲ +2.92)

A

N/A 48.87 40.69 40.40 43.32
TENT 45.72 38.85 41.96 42.18 (▼ -1.14)
TENT-off 48.77 40.85 40.49 43.37 (▲ +0.05)
TENT-C 45.72 38.70 40.49 41.64 (▼ -1.68)

R+F

N/A 46.51 48.97 58.53 51.34
TENT 51.57 50.73 58.98 53.76 (▲ +2.42)
TENT-off 46.61 48.97 58.53 51.37 (▲ +0.03)
TENT-C 51.57 50.88 58.98 53.81 (▲ +2.47)

R+A

N/A 54.93 46.67 51.60 51.07
TENT 54.14 46.90 53.73 51.59 (▲ +0.52)
TENT-off 54.70 46.90 51.60 51.07 (▲ +0.00)
TENT-C 54.11 47.05 53.73 51.63 (▲ +0.56)

Table 6.5: Comparison of TENT losses on the top-1 accuracy after one adapta-
tion step.

55

6 – Experiments

6.3.2 Feature losses
The feature level losses addressed in this section exploit the multi-modal nature of
the models to improve the agreement between the features from different modalities.
Since RNA showed remarkable performance in the DG and UDA settings (Sec. 5.4)
by allowing the network to learn equally from multiple modalities, we can assume
that the same effect can be transferred to the TTA scenario. Indeed, Tables 6.6 and
6.7 suggest that both RNA and its extension, RNA-Class, introduce improvements
close to those of the class losses. Compared to RGB+Audio, the value of RNA loss
on the RGB+Flow model is ∼ 103 times lower, as expected since RGB and Flow
frames are much closer visually than RGB and Audio representations.

Top-1 accuracy (%)
Adaptation D1,D2→D3 D2,D3→D1 D3,D1→D2 Mean

R+F
N/A 46.51 48.97 58.53 51.34
RNA 51.64 50.27 59.02 53.64 (▲ +2.30)
RNA-Class 51.64 50.27 59.11 53.67 (▲ +2.33)

R+A
N/A 54.93 46.66 51.60 51.07
RNA 56.06 47.28 53.38 52.27 (▲ +1.20)
RNA-Class 56.09 47.36 53.33 52.26 (▲ +1.19)

Table 6.6: Comparison of feature losses on the top-1 accuracy. After one
adaptation step, the reported feature losses achieve a top-1 accuracy close to that of the
class losses (Table 6.3) for both RGB+Flow and RGB+Audio. RNA-Class provides very
minor improvements over the vanilla RNA loss.

Top-1 per-class accuracy (%)
Adaptation D1,D2→D3 D2,D3→D1 D3,D1→D2 Mean

R+F
N/A 27.96 36.10 57.19 40.42
RNA 34.33 43.87 56.59 44.93 (▲ +4.51)
RNA-Class 34.33 43.87 56.63 44.94 (▲ +4.52)

R+A
N/A 34.18 35.07 50.42 39.88
RNA 39.85 37.51 45.22 40.86 (▲ +0.98)
RNA-Class 39.92 37.54 45.07 40.84 (▲ +0.96)

Table 6.7: Comparison of feature losses on the top-1 per-class accuracy. Com-
pared to the class losses shown in Table 6.3, RNA and RNA-Class perform slightly worse.

56

6 – Experiments

Combination of feature and class losses

As feature and class relative losses aim to solve different tasks, they may be com-
bined together to improve the adaptation process. Table 6.7 summarizes the combi-
nation of RNA with several class relative losses.34 The IM and CENT losses of the
RGB+Audio model show the greatest improvement through coupling with RNA
compared to the single-loss setting.

Top-1 accuracy (%)
Adaptation D1,D2→D3 D2,D3→D1 D3,D1→D2 Mean

R+F

N/A 46.51 48.97 58.53 51.34
RNA 51.64 50.27 59.02 53.64 (▲ +2.30)
ENT+RNA 51.64 50.27 59.02 53.64 (▲ +2.30)
MCC+RNA 51.64 50.27 59.02 53.64 (▲ +2.30)
IM+RNA 51.64 50.27 59.02 53.64 (▲ +2.30)
CENT+RNA 51.64 50.27 59.02 53.64 (▲ +2.30)

R+A

N/A 54.93 46.67 51.60 51.07
RNA 56.06 47.36 53.38 52.27 (▲ +1.20)
ENT+RNA 56.09 47.20 53.47 52.25 (▲ +1.18)
MCC+RNA 56.71 47.36 53.51 52.53 (▲ +1.46)
IM+RNA 56.06 47.28 53.64 52.24 (▲ +1.17)
CENT+RNA 56.16 47.36 53.60 52.37 (▲ +1.30)

Table 6.8: Combination of class and feature losses on top-1 accuracy. Combin-
ing RNA with class relative losses results in minimal improvements for the R+F model.
On the other hand, while the accuracy of R+A benefits from a larger gain.

Why does RGB+Flow show such uniform improvements? Table 6.8 shows
clearly different behavior of the RGB+Flow and RGB+Audio models, with the
former exhibiting completely homogeneous gains compared to the model without
adaptation, suggesting that class-relative losses are not able to enhance the gains
produced by RNA. To investigate the dynamics of the two losses further, Figures
6.2 and 6.3 show the cosine similarity between the gradients generated by ENT
and RNA for the top 15 network parameters ranked by an importance metric that

3For R+F models the learning rates are set to γRGB = γF low = 0.001, the class relative losses
have weight wCRL = 0.01 while RNA is assigned weight wRNA = 1.

4For R+A models the learning rates are γRGB = 0.001 and γAudio = 0.0001, with the only
exception being the MCC+RNA configuration in which γAudio = 0.001. Both class relative losses
and RNA have weights wCRL = wRNA = 1. For the IM+RNA experiment wCRL = 0.01.

57

6 – Experiments

weighs more the parameters for which the gradient update is more impacting.56 A

Mixed_3b.b3b.bn.bias

Mixed_4d.b1a.bn.bias

Mixed_4e.b2a.bn.bias

Mixed_4c.b1a.bn.bias

Mixed_4b.b1a.bn.bias

Mixed_4d.b3b.bn.bias

Conv3d_1a_7x7.bn.weight

Conv3d_2b_1x1.bn.bias

Mixed_4f.b2b.bn.weight

Mixed_5c.b1a.bn.weight

Mixed_5c.b2a.bn.weight

Mixed_5b.b1a.bn.bias

Mixed_5b.b3b.bn.bias

Mixed_5c.b1a.bn.bias

Mixed_5c.b2a.bn.bias

Network parameters

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
sin

e
sim

ila
rit

y
be

tw
ee

n
gr

ad
ie

nt
s

(a) RGB

Mixed_4d.b1a.bn.bias

Mixed_4b.b1a.bn.bias

Mixed_4f.b2b.bn.weight

Mixed_4c.b1a.bn.bias

Mixed_4d.b3b.bn.bias

Mixed_4e.b2a.bn.bias

Mixed_3b.b1a.bn.bias

Mixed_5b.b1a.bn.bias

Conv3d_2b_1x1.bn.bias

Mixed_5c.b1a.bn.weight

Mixed_5c.b1a.bn.bias

Conv3d_1a_7x7.bn.weight

Mixed_5b.b3b.bn.bias

Mixed_5c.b2a.bn.weight

Mixed_5c.b2a.bn.bias

Network parameters

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
sin

e
sim

ila
rit

y
be

tw
ee

n
gr

ad
ie

nt
s

(b) Flow

Figure 6.2: Comparison of ENT and RNA gradients (RGB+Flow). The gra-
dients in the RGB model show mostly positive cosine similarity, as opposed to the Flow
gradients, which are more skewed toward the negative region. The black dots identify
the measured cosine similarity values, while the solid colored shapes model the estimated
density.

5The importance of a parameter θi with respect to the loss function L is defined as the ratio be-
tween the L2 norm of their gradient update over the L2 norm of the parameter itself || ∂L

θi
||2||θi||−1

2 .
6Data collected on the D1,D2→D3 shift using 1 clip per video over three runs. As in the other

experiments, batch normalization layers are in training mode during the adaptation step.

58

6 – Experiments

Mixed_5c.b3b.bn.bias

Conv3d_2b_1x1.bn.weight

Mixed_3b.b1a.bn.bias

Mixed_5c.b0.bn.bias

Mixed_4d.b3b.bn.bias

Mixed_4c.b1a.bn.bias

Mixed_3b.b3b.bn.bias

Mixed_4b.b1a.bn.bias

Mixed_4f.b2b.bn.weight

Mixed_5b.b1a.bn.bias

Mixed_5c.b2a.bn.weight

Conv3d_1a_7x7.bn.weight

Mixed_5c.b2a.bn.bias

Conv3d_2b_1x1.bn.bias

Mixed_5b.b3b.bn.bias

Network parameters

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
sin

e
sim

ila
rit

y
be

tw
ee

n
gr

ad
ie

nt
s

(a) RGB

4a_pool_proj.weight

4b_pool_proj.weight

4e_double_3x3_2.weight

4a_double_3x3_2.weight

3c_double_3x3_2.weight

4a_double_3x3_1.weight

4a_double_3x3_reduce.weight

3c_double_3x3_1.weight

4c_pool_proj.weight

4e_double_3x3_1.weight

4b_double_3x3_2.weight

4e_double_3x3_reduce.weight

4b_double_3x3_reduce.weight

4b_double_3x3_1.weight

conv1_7x7_s2.weight

Network parameters

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Co
sin

e
sim

ila
rit

y
be

tw
ee

n
gr

ad
ie

nt
s

(b) Audio

Figure 6.3: Comparison of ENT and RNA gradients (RGB+Audio). Compared
with RGB+Flow gradients, RGB here has slightly more negative gradients, although the
average variability is smaller. On the other hand, Audio gradients have a strong positive
similarity.

positive cosine similarity between the two gradients indicates that the two losses are
cooperating to update the weights in the same direction. Conversely, a negative
cosine similarity indicates that the two losses are competing with each other by
updating the weights in opposite directions.

The figures suggest that RNA has a regularization effect on the gradients of the
class losses, which is more pronounced in the RGB+Flow settings as the modality
are already quite aligned, e.g. the RNA loss is small. Moreover, since in RGB+Flow

59

6 – Experiments

the RNA losses are small compared to the class losses, so are their gradients, re-
sulting in minimal adjustments of the model weights that all end up in the same
local minima.

In RGB+Audio, even though the RNA loss is greater than in the previous set-
ting, being the gap between the mean feature norms of RGB and Audio more
significant, the very positive cosine similarity between the two losses does not nec-
essarily lead to an accuracy improvement for two reasons. First, the class losses
are not supervised, so the direction of their gradients may or may not represent the
best possible step to take.

6.4 Adapting on seen domains

Often the magnitude of the domain shift is unpredictable, and in some lucky cases
the domain shift may be entirely absent when the train and test samples belong
to the same domain. In fact, the definition of domain is quite loose, especially in
EPIC-Kitchens, where records belong to the same domain if they were recorded
in the same kitchen, even though the environments inside the same kitchen may
vary widely. In addition to the common domain shift problem, we could introduce

Top-1 accuracy (%)
Adaptation - per-class

R

N/A 53.86 48.74
ENT (5.3.1) 56.15 (▲ +2.29) 53.87 (▲ +5.13)
MCC (5.3.3) 56.14 (▲ +2.28) 53.87 (▲ +5.13)
IM (5.3.2) 56.16 (▲ +2.30) 53.81 (▲ +5.07)
CENT (5.3.4) 56.05 (▲ +2.19) 53.13 (▲ +4.39)

F

N/A 61.00 58.77
ENT (5.3.1) 64.43 (▲ +3.43) 60.72 (▲ +1.94)
MCC (5.3.3) 64.43 (▲ +3.43) 60.72 (▲ +1.94)
IM (5.3.2) 64.45 (▲ +3.45) 60.72 (▲ +1.94)
CENT (5.3.4) 64.44 (▲ +3.44) 60.45 (▲ +1.87)

A

N/A 52.34 33.99
ENT (5.3.1) 53.08 (▲ +0.74) 34.49 (▲ +0.50)
MCC (5.3.3) 53.10 (▲ +0.76) 34.57 (▲ +0.58)
IM (5.3.2) 52.85 (▲ +0.51) 34.31 (▲ +0.32)
CENT (5.3.4) 53.04 (▲ +0.70) 34.54 (▲ +0.55)

Table 6.9: Comparison of the class losses on seen domains. Even in the absence
of domain shift between source and target domain(s), TTA improves the accuracy with
respect to the non adapted models. The leap is quite evident in the per-class accuracy,
suggesting that TTA is particularly effective in adapting the models to the effective
distribution of the evaluation domain.

60

6 – Experiments

a shallower version of domain shift that appears within the domain itself (intra-
domain shift). As the operator moves around, the scene and background change
continuously and so does the visual appearance of the frames, which is a major
source of bias, especially for the RGB frames. Similarly, audio can be disturbed by
completely unrelated background noises. All these aspects lead to the question of
whether TTA is suitable to handle this type of domain shift or if the adaptation
process risks worsening performance too much.

Experiments show that the answer is positive as TTA helps even if the domain
remains the same. Table 6.9 reports the top-1 accuracy after one adaptation step
with different adaptation techniques, showing that all approaches produce positive
improvements, including the Audio modality.7 Moreover, the little improvements
of the latter compared to the other modalities underline the scarce adaptability
of Audio which is consistent with the other TTA experiments on unseen domains
(Tables 6.9 and 6.6).

6.5 The impact of Batch Normalization

Both class and feature losses show rather uniform improvements regardless of the
different adaptation techniques, indicating the presence of a common ground on
which all adaptation losses are based. These layers are usually put in evaluation
mode at test time, which means that their output is calculated based on the previous
estimates of the mean and variance statistics collected at training time. Depending
on the similarity between the training and test samples, the use of these fixed
statistics may result in activation maps that fall outside the regions seen at the
time of training, possibly leading to a deterioration in performance. Figure 6.4
shows the distance between the training statistics and the online values computed
at test time, across different combinations of source and target domains. When
the source and target domains differ, the statistics of the current batch are further
apart than the previous running estimates. In contrast, when the two domains
coincide, the distance is smaller, though not zero, indicating that even within the
same domains there may be discrepancies between the statistics of different samples.

How does this discrepancy affect the adaptation process? Fig. 6.5 shows
the drop in accuracy after one adaptation step using the ENT loss. Regardless
of modality and learning rate to adjust the size of the adaptation steps, accuracy
always decreases or does not significantly improve, indicating that adaptation is
detrimental in this scenario.

7Same configuration as Table 6.3.

61

6 – Experiments

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

Percentage of dataset seen

N
or

m
.

m
ea

n
di

sp
.

D1→D1
D1→D2
D1→D3

Figure 6.4: Normalized mean displacement between train and test statistics
of the first BN layer in the RGB I3D model after one update of its statistics (λ = 0.9).
The distance is computed as the L2-norm of the difference between the running mean
estimated at training time and the updated mean after the adaptation step. The result
is then normalized by dividing it by the running variance. To produce a more readable
plot, distances are smoothed using a moving average of 10 samples.

10−2 10−3 10−4 10−5

−8

−6

−4

−2

0

Learning rates

To
p-

1
ac

cu
ra

cy
dr

op
(p

p)

RGB
Flow
Audio

Figure 6.5: Accuracy drop without batch normalization updates after one
adaptation step. The graph shows the decline in accuracy after an entropy minimiza-
tion step, through a range of decreasing learning rates to adjust the magnitude of the
adaptation updates. Even with small learning rates, the adaptation process results in neg-
ative or marginal improvements, suggesting that adaptation without batch normalization
updates is not going to work.

6.5.1 Updating BN statistics at test time

As using the training statistics does not seem to be a viable approach for test-time
adaptation, a different approach consists in updating the statistics with the new
estimates computed on the test data. This can be achieved by switching the BN
layer into training mode at test time, as discussed in Sec. 5.2. The momentum

62

6 – Experiments

hyper-parameter λ controls the magnitude of the updates.
Table 6.10 explores how this modification leads to quite significant accuracy

gains in several settings, without the need for backpropagation. In addition, Fig.
6.6 compares the accuracy improvements over a fixed number of adaptation steps.
When the statistics update is repeated multiple times, models develop increasing or
decreasing trends depending on the value of the λ hyper-parameter. With λ = 0.9,
the updated statistics tend to deviate too much from the estimates collected at
training time, resulting in worse accuracy gains over time. On the contrary, with
λ = 0.1 the magnitude of the updates is smaller which results in more stable
improvements. Audio appears to be slightly affected by BN updates, regardless of
the momentum parameter.

Top-1 weighted accuracy (%)
Adaptation D1,D2→D3 D2,D3→D1 D3,D1→D2 Mean

R

N/A 36.86 34.94 38.13 36.64
BN(λ = 0.1) 39.22 35.63 42.58 39.14 (▲ +2.50)
BN(λ = 0.5) 40.32 36.94 42.98 40.08 (▲ +3.44)
BN(λ = 0.9) 39.56 37.01 41.91 39.49 (▲ +2.85)

F

N/A 47.23 51.95 52.40 50.53
BN(λ = 0.1) 48.43 54.94 56.22 53.20 (▲ +2.67)
BN(λ = 0.5) 49.11 52.72 57.47 53.10 (▲ +2.57)
BN(λ = 0.9) 49.62 51.95 57.07 52.88 (▲ +2.35)

A

N/A 48.87 40.69 40.40 43.32
BN(λ = 0.1) 47.19 39.77 40.00 42.77 (▼ -0.55)
BN(λ = 0.5) 46.72 37.17 41.11 41.74 (▼ -1.58)
BN(λ = 0.9) 46.89 36.63 41.56 41.37 (▼ -1.95)

Table 6.10: Different performance based on the value of the momentum pa-
rameter of normalization layers. In this scenario, the batch statistics of the normal-
ization layers are updated from the target samples and no adaptation loss is applied. λ
is the momentum hyper-parameter of the BN layers. Results suggest that higher values
of λ slightly degrade the accuracy of visual modalities, e.g. RGB and Flow, while any
value of λ reduces the accuracy of the Audio modality.

Although BN updates are a key component of any adaptation strategy proposed
in this work, they are not suitable for realistic use cases because of their dependence
on the batch size to produce reliable estimates of current batch statistics. In a real-
world application, possibly on a low power device, only a few samples are available
at a time for TTA compared to the much large batch sizes usually used for training.

63

6 – Experiments

1 2 3 4 5
−2

−1
0

1

2

3

4

To
p-

1
ac

cu
ra

cy
ga

in
(p

p)

RGB

1 2 3 4 5
Adaptation steps

Flow

1 2 3 4 5

Audio

λ = 0.1 λ = 0.5 λ = 0.9

Figure 6.6: Impact on top-1 accuracy of the momentum hyper-parameter
of normalization layers (multiple adaptation steps). The value of λ does not
significantly impact on the accuracy of the RGB modality. Flow has the most stable
trend with λ = 0.1 and decreasing performance in the other cases. The audio has inferior
performance to the unadapted model for any value of λ.

64

6 – Experiments

6.6 Multi-step adaptation
This section extends the methods proposed in the previous sections with the pos-
sibility of repeating the adaptation step more than once before producing the final
predictions. Although multi-step adaptation may not be realistically applicable due
to the increased latency, it is interesting from a theoretical point of view to analyze
the robustness of the adaptation techniques and the adaptability of the different
modalities. Table 6.12 shows that RGB is quite robust to multi-step adaptation,

Top-1 accuracy (%)
Adaptation After 1 step After 5 steps

R

N/A 36.64
ENT 39.49 (▲ +2.85) 39.75 (▲ +3.11)
MCC 39.51 (▲ +2.87) 39.68 (▲ +3.04)
IM 39.55 (▲ +2.91) 39.66 (▲ +3.02)
CENT 39.51 (▲ +2.87) 39.62 (▲ +2.98)

F

N/A 50.53
ENT 52.84 (▲ +2.31) 52.05 (▲ +1.52)
MCC 52.88 (▲ +2.35) 52.22 (▲ +1.69)
IM 52.83 (▲ +2.30) 52.04 (▲ +1.51)
CENT 52.89 (▲ +2.36) 52.02 (▲ +1.49)

A

N/A 43.32
ENT 42.87 (▼ -0.45) 42.56 (▼ -0.76)
MCC 42.83 (▼ -0.49) 42.21 (▼ -1.11)
IM 42.80 (▼ -0.52) 41.95 (▼ -1.37)
CENT 42.80 (▼ -0.52) 42.25 (▼ -1.07)

Table 6.11: Comparison of class losses on top-1 accuracy after 5 steps. RGB is
the only modality to show improvements after several adaptation steps, while Flow and
Audio both show decreasing trends.

with small but positive improvements after 5 steps. On the contrary, Flow and
Audio exhibit a decrease in accuracy over time.

65

6 – Experiments

Top-1 accuracy (%)
Adaptation After 1 step After 5 steps

R+F

N/A 51.36
ENT 53.63 (▲ +2.29) 53.35 (▲ +1.99)
ENT+RNA 53.63 (▲ +2.29) 53.35 (▲ +1.99)
MCC 53.66 (▲ +2.32) 53.40 (▲ +2.04)
MCC+RNA 53.64 (▲ +2.30) 53.34 (▲ +1.98)
IM 53.57 (▲ +2.23) 53.27 (▲ +1.93)
IM+RNA 53.64 (▲ +2.28) 53.37 (▲ +2.03)
CENT 53.63 (▲ +2.29) 53.34 (▲ +2.00)
CENT+RNA 53.64 (▲ +2.30) 53.37 (▲ +2.03)

R+A

N/A 51.07
ENT 52.25 (▲ +1.18) 51.80 (▲ +0.73)
ENT+RNA 52.25 (▲ +1.18) 51.71 (▲ +0.64)
MCC 52.54 (▲ +1.47) 52.11 (▲ +1.04)
MCC+RNA 52.53 (▲ +1.46) 51.58 (▲ +0.51)
IM 52.21 (▲ +1.14) 51.41 (▲ +0.34)
IM+RNA 52.33 (▲ +1.26) 52.08 (▲ +1.01)
CENT 52.34 (▲ +1.27) 51.98 (▲ +0.91)
CENT+RNA 52.37 (▲ +1.30) 51.86 (▲ +0.79)

Table 6.12: Comparison of class losses on top-1 accuracy after 5 steps. Accuracy
decreases slightly after 5 steps in all cases, although the decline is more noticeable in the
RGB+Audio setting when RNA is combined with the class losses.

66

6 – Experiments

2.80
2.90
3.00
3.10
3.20
3.30

RG
B

ac
cu

ra
cy

ga
in

1.40
1.60
1.80
2.00
2.20
2.40

Fl
ow

ac
cu

ra
cy

ga
in

1 2 3 4 5
-1.40
-1.20
-1.00
-0.80
-0.60
-0.40

Number of adaptation steps

A
ud

io
ac

cu
ra

cy
ga

in

ENT MCC IM CENT

Figure 6.7: Multi-step adaptation on uni-modal models. Although there are no
clear differences between the different TTA approaches, RGB has a positive trend with
respect to the number of adaptation steps, while the accuracy of Flow and Audio tends
to decrease with further model adaptation.

67

6 – Experiments

2.00
2.10
2.20
2.30
2.40
2.50

R
+

F
ac

cu
ra

cy
ga

in

1 2 3 4 5

0.50
0.75
1.00
1.25
1.50

Number of adaptation steps

R
+

A
ac

cu
ra

cy
ga

in

ENT MCC IM CENT
ENT+RNA MCC+RNA IM+RNA CENT+RNA

Figure 6.8: Multi-step adaptation on multi-modal models. In the RGB+Flow
setting, RNA combined with class losses (solid lines) performs slightly better than class
losses alone. On the other hand, all the RGB+Audio losses have a decreasing trend with
no significant difference between them.

68

6 – Experiments

6.7 Comparison with UDA
Compared to UDA, TTA is much more limited as it exploits only a small batch
of target data to adapt the model to the domain shift. On the other side, this
allows TTA to adapt the model more specifically for the current batch. Therefore,
the adaptation steps are based on a very narrow view of the target domain, as all
updates are discarded once a new batch of data is available. Assuming we have an
oracle that selects the optimal TTA strategy for each multi-modal configuration,
Table 6.13 shows the best accuracy improvements obtained by adapting a multi-
source RNA-Net architecture. Tables 6.14 and 6.15 list the most effective methods

Modality No adaptation Best TTA strategy
RGB+Audio 51.07 MCC (1 steps) 52.54 (▲ +1.47)
RGB+Flow 51.36 MCC (4 steps) 53.85 (▲ +2.49)

Table 6.13: Best top-1 accuracy using RNA-Net (Multi-DG) + TTA.

for UDA over the subset of the EPIC-Kitchens dataset analyzed in this work and
compared against models trained on one source domain only. UDA provides signif-
icant improvements over these baseline values. The DG models used as a starting

Method Top-1 accuracy (%)
Source-only 41.84
MM-SADA [69] 47.75
GRL [57] 43.67
MMD [55] 44.46
AdaBN [89] 41.92
RNA-Net [1] 48.30

Table 6.14: Comparison of UDA methods for RGB+Audio.

Method Top-1 accuracy (%)
Source-only 45.47
GRL [57] 49.40
MMD [55] 46.82
AdaBN [89] 47.20
MM-SADA [69] 50.25
Kim et al. [90] 50.98
STCDA [91] 51.20
TranSVAE [92] 52.60

Table 6.15: Comparison of SOTA UDA methods for RGB+Flow.

point for this work improve on the single source models, but are below UDA in the
case of RGB+Audio and slightly above in the case of RGB+Flow.

69

6 – Experiments

Accuracy (%)

Source Only

RNA-Net (UDA)

RNA-Net (Multi-DG)

Ours

41.84

48.30

51.07

52.54

(a) RGB + Audio

Accuracy (%)

Source Only

TranSVAE (UDA)

RNA-Net (Multi-DG)

Ours

45.47

52.60

51.34

53.85

(b) RGB + Flow

Figure 6.9: Accuracy improvements compared to UDA. The RGB+Audio accu-
racy improves by 4.24 percentage points compared to the UDA SOTA method (RNA-Net
[1]. RGB+Flow improves by 1.25 percentage points over the UDA SOTA (TranSVAE
[92]).

6.8 Beyond action recognition
Optical flow is a robust modality for action recognition. Experiments (Table 6.1)
show that Flow alone clearly outperforms RGB and Audio modalities and comes
very close to the performance of multi-modal approaches. However, the generation
of optical flow frames is far from a solved problem [93]. Traditional algorithms for
the computation of the optical flow from RGB frames date back to the 1981 [25].
These early methods determined the optical flow by solving complex optimisation
problems based on the brightness constancy constraint, which assumes that the
brightness of the scene remains constant in time and space. Besides the fact that
this assumption is not always true, these methods were dramatically slow and
completely unsuitable for real-time applications. In the last few years, several deep
learning approaches have been proposed that learn how to solve the optical flow
estimation task directly from data [93, 29, 28, 94, 4, 30]. Among these, one of the
most notable CNN architectures is PWC-Net [29], which combines a light model
with a processing time in the milliseconds range.

An action recognition pipeline could integrate PWC-Net to produce a rough but
fast estimate of the flow at test time, while still relying on the expensive but more
accurate TV-L1 [26] algorithm for training. Figure 6.10 shows the visual difference
between the official TV-L1 optical flow of Epic-Kitchens [8] and the online estimate
produce by PWC-Net.8 Although the optical flow produced by the TV-L1 algorithm
is by no means sharp, the arm and the hands are clearly distinguishable, which may

8To produce optical flow estimates that are comparable with official TV-L1 frames from Epic-
Kitchens, the i − th flow frame is computed from frames 2i and 2(i + 3) to reduce the effect of
motion blur between adjacent frames.

70

6 – Experiments

be sufficient for the model to understand the type of action taking place. On the
other hand, the flow estimated by PWC-Net is much less accurate and part of the
right arm fades into the background. A model trained on the former may struggle
to recognise the same action from the latter. Furthermore, the two frames of the
optical flow have a very different background, indicating an inconsistent movement
that could be a further confusing element for a model. However, optical flow models

(a) Original frame sequence

(b) TV-L1 (c) PWC-Net

Figure 6.10: Optical flow frames generated with the TV-L1 algorithm and
PWC-Net. The two frames show the relative motion between the second and third
frames of the original sequence (the red arrows indicate the very subtle differences between
the first and last frame). Although the frame is very noisy, TV-L1 allows the two arms
and hands to be clearly identified, whereas the estimate produced by PWC-Net is far less
accurate. TV-L1 and PWC-Net largely agree on the movement of the arm, as the colour
is fairly consistent between the two frames. However, they agree less on the background,
whose color shifts from pink and yellow to blue and green.

are typically trained on synthetic datasets [28, 95, 2], and applying the same weights
to real-world scenarios can produce frames that are more noisy. Furthermore, the
transition from TV-L1 frames to PWC-Net is itself a source of domain shift that
may degrade the performance of the flow backbone of the model. Indeed, a sharp
drop in accuracy is observed when testing on PWC-Net (Fig. 6.16).

Since TTA has proven to be a viable approach to improve model accuracy in the
presence of domain shift, this section explores the applicability of TTA to reduce the
performance drop when replacing TV-L1 frames with online estimates produced by
PWC-Net. Table 6.17 shows the improvements introduced by TTA with respect to
the non-adapted models. Although the accuracy is still far below the performance
obtained with the TV-L1 optical flow, TTA can effectively bridge part of the gap

71

6 – Experiments

Top-1 accuracy (%)
TV-L1 optical flow PWC-Net estimated flow

Flow 50.53 25.04 (▼ -25.49)

Table 6.16: Performance drop at test-time with the optical flow estimated by
PWC-Net on unseen domains. The top-1 accuracy drops dramatically.

between the two sources.

Top-1 accuracy (%)
Adaptation D1,D2→D3 D2,D3→D1 D3,D1→D2 Mean

F N/A 47.22 51.95 52.40 50.53

F†

N/A 29.77 27.36 18.00 25.04
ENT 31.79 32.34 32.22 32.12 (▲ +7.07)
MCC 31.73 32.26 32.22 32.07 (▲ +7.03)
IM 31.83 32.41 32.22 32.15 (▲ +7.11)
CENT 31.73 32.26 32.22 32.07 (▲ +7.03)

Table 6.17: Comparison of several TTA techniques on optical flow generated
by PWC-Net. The symbol F† indicates that the optical flow is estimated using PWC-
Net.

6.8.1 Improving the optical flow estimation
A more recent deep learning method for the estimation of optical flow is the Flow-
Former architecture [4], featuring an encoder-decoder structure and iterative refine-
ments of the estimated optical flow. First, given a pair of images (I(1), I(2)), the
encoder computes the cost volume, similarly to PWC-Net, and augments it using
a variation of the self-attention mechanism proposed by [96]. The result, called
cost memory, is a summary of the local and global matching patterns between the
two frames. Then, the decoder transforms the cost memory into the optical flow V
using recurrent refinements to reduce the distance between the flow estimated so
far and the ground truth.

Like many other deep learning models for the estimation of optical flow, Flow-
Former suffers from a major problem, namely the difficulty of producing clean
results on real-world scenes. Indeed, these models are typically trained on syn-
thetic datasets for which the ground truth can be easily computed as part of the
rendering process [2, 97, 98], while the availability of real-world datasets [95, 99] is
very limited due to the difficulty of generating proper ground truth frames. This
results in lower performance when evaluating a model on real-world images, as the
domain shift between synthetic and real images is quite significant, suggesting that
the adaptation techniques proposed for action recognition could be used to improve

72

6 – Experiments

the quality of the estimated flow. More broadly, there seems to be a lack of studies
on the application of Domain Adaptation techniques to optical flow estimation.

TTA for optical flow estimation

This section proposes a simple but effective application of TTA beyond the action
recognition task addressed so far. Using a loss function specifically designed for
optical flow estimation, TTA is able to reduce the noise introduced by FlowFormer
when tested on real images from the EPIC-Kitchens dataset. Adaptation is per-
formed online, e.g. without resetting the model after each batch, using batch size
1 and learning rate 0.0001. Samples from each video of the dataset are processed
in-order. The FlowFormer model was initially pretrained on the Sintel dataset [2].

L1 smoothness loss A suitable loss function to improve the quality of the es-
timated optical flow is the L1 smoothness loss proposed by [30]. Given a pair of
images (I(1), I(2)) and the estimated optical flow V , the loss encourages the model
to align the boundaries of the optical flow to the visual edges of the first frame.

Lsmooth = 1
n

ØC
exp

A
−λ

3
Ø

c

-----∂I(1)
c

∂x

B -----∂V

∂x

-----+ exp
A

−λ

3
Ø

c

-----∂I(1)
c

∂y

B -----∂V

∂y

D

(6.1)

The first-order spatial derivatives of the first frame I(1) define a cost map that
assigns a lower cost to pixels belonging to a visual edge, and an higher value to
all the others. The cost map is then used to weigh each point of the optical flow
V . If the edges of the V coincide with those of I(1), their associated cost is small.
Otherwise, the cost is larger. By minimization of the average cost for all the points
of the V , Lsmooth penalizes the mismatching edges.

73

6 – Experiments

(a) Original frame sequence

(b) TV-L1 (c) PWC-Net

(d) FlowFormer (e) FlowFormer + TTA

Figure 6.11: Optical flow estimated using FlowFormer [4]. The optical flow
frames generated with TV-L1 and PWC-Net are very noisy and low quality. FlowFormer
greatly improves the estimated flow quality with sharper and cleaner edges. An adapta-
tion step using L1 smoothness loss further improves some minor details of the flow, such
as the edges of the right arm.

74

6 – Experiments

(a) FlowFormer (b) FlowFormer + TTA

Figure 6.12: Zoom of the optical flow estimated by FlowFormer in Fig. 6.12.
The adaptation step sharpens the edges of the hand. The adaptation process also cancels
out the central region that does not correspond to a sharp edge in the original rgb frames
which may not be desirable.

Figure 6.13: Effect of TTA on the optical flow estimated by FlowFormer. The
image is computed as the difference of the optical flow frames estimated by FlowFormer
with and without the application of TTA (L1 smoothness loss).

75

Chapter 7

Conclusions

Egocentric vision is deeply affected by the domain shift problem and by the con-
tinuous changes in background, brightness and perspective produced by camera
movements. In this work, we investigated an approach, Test Time Adaptation,
to improve the accuracy of already robust DG models, borrowing the central idea
of UDA, i.e. adaptation on target data. However, unlike UDA, TTA does not
require data to be accessible during training or to train the model from scratch
for each new domain, some of the main constraints imposed by UDA that make
its application difficult on egocentric datasets. Instead, TTA improves the model
predictions directly on test data using class and feature losses. The application
of TTA techniques effectively improves the top-1 accuracy of the adapted models
after just one adaptation step. However, not all domain shifts are equal, which is
reflected in the different adaptability of the various modalities. The combination
of RNA with other class losses indicates that RNA has a regularization effect on
RGB-Flow models that allows for more stable accuracy improvements, especially
when the adaptation process is repeated multiple times. TTA is able to improve
the accuracy even when the domain is the same, suggesting that the dynamic and
continuous adaptation provided by TTA is very effective for the action recognition
task. In this respect, TTA is more versatile than UDA, as it treats each new batch
of data separately, discarding updates after the prediction has been computed.

Batch Normalization (BN) layers play a key role in successful adaptation. TTA
is effective provided that the BN layers update their statistics on the target samples.
If this is not the case, TTA leads to zero improvements or a decrease in accuracy.
Since BN updates rely on large batch sizes to estimate the statistics of the target,
this constitute a large obstacle for real-world applications of TTA that needs to
be investigated further in future research. Overall, starting from multi-modal DG
models trained on multiple source domains, TTA outperforms UDA by 4.24 points
on RGB+Audio and by 1.25 points when rgb is paired with optical flow. These re-
sults prove that the combination of DG techniques and TTA is an effective strategy
to outperform UDA, without the strict constraints imposed by the latter.

76

7 – Conclusions

TTA was also extended to two real-world tasks in addition to FPAR. Egocentric
vision relies heavily on optical flow, which is computationally expensive. Deep
learning methods for fast optical flow estimation [29] produce inaccurate results that
may dump the performance of the Flow models. Even though most recent solutions
for optical flow estimation produce high quality results [4, 94], the difference with
respect to the optical flow computed by offline methods may still be substantial.
TTA proved to be a viable solution to at least partially recover the performance
of the model when tested on the optical flow estimates. Finally, we explored the
application of TTA directly to optical flow estimation to improve the quality of
the predicted frames. As sim2real methods for optical flow estimation are largely
unexplored, this step wants to stimulate further research in this direction.

77

Bibliography

[1] M. Planamente, C. Plizzari, E. Alberti, and B. Caputo, “Domain generaliza-
tion through audio-visual relative norm alignment in first person action recog-
nition,” in Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 1807–1818, 2022.

[2] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic open
source movie for optical flow evaluation,” in European Conf. on Computer Vi-
sion (ECCV) (A. Fitzgibbon et al. (Eds.), ed.), Part IV, LNCS 7577, pp. 611–
625, Springer-Verlag, Oct. 2012.

[3] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model
and the kinetics dataset,” in proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 6299–6308, 2017.

[4] Z. Huang, X. Shi, C. Zhang, Q. Wang, K. C. Cheung, H. Qin, J. Dai, and H. Li,
“Flowformer: A transformer architecture for optical flow,” arXiv preprint
arXiv:2203.16194, 2022.

[5] W. Wang, D. Tran, and M. Feiszli, “What makes training multi-modal clas-
sification networks hard?,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12695–12705, 2020.

[6] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos,
D. Moltisanti, J. Munro, T. Perrett, W. Price, et al., “Scaling egocentric vi-
sion: The epic-kitchens dataset,” in Proceedings of the European Conference
on Computer Vision (ECCV), pp. 720–736, 2018.

[7] A. Bandini and J. Zariffa, “Analysis of the hands in egocentric vision: A
survey,” IEEE transactions on pattern analysis and machine intelligence, 2020.

[8] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos,
D. Moltisanti, J. Munro, T. Perrett, W. Price, and M. Wray, “The epic-kitchens
dataset: Collection, challenges and baselines,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), vol. 43, no. 11, pp. 4125–4141,
2021.

[9] W. Mcculloch and W. Pitts, “A logical calculus of ideas immanent in nervous
activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 127–147, 1943.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,

78

Bibliography

pp. 2278–2324, 1998.
[11] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks

are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366,
1989.

[12] F. Rosenblatt, “The perceptron: a probabilistic model for information storage
and organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386,
1958.

[13] L. Wan, M. Zeiler, S. Zhang, Y. Le Cun, and R. Fergus, “Regularization of
neural networks using dropconnect,” in International conference on machine
learning, pp. 1058–1066, PMLR, 2013.

[14] “Albumentations.” https://albumentations.ai/docs/introduction/
image_augmentation/. Accessed: 2022-10-12.

[15] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proceedings of the 32nd Inter-
national Conference on Machine Learning (F. Bach and D. Blei, eds.), vol. 37
of Proceedings of Machine Learning Research, (Lille, France), pp. 448–456,
PMLR, 07–09 Jul 2015.

[16] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint
arXiv:1607.06450, 2016.

[17] Y. Wu and K. He, “Group normalization,” in Proceedings of the European
conference on computer vision (ECCV), pp. 3–19, 2018.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1–9, 2015.

[19] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2818–2826, 2016.

[20] S. Arora, A. Bhaskara, R. Ge, and T. Ma, “Provable bounds for learning
some deep representations,” in International conference on machine learning,
pp. 584–592, PMLR, 2014.

[21] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human
actions classes from videos in the wild,” arXiv preprint arXiv:1212.0402, 2012.

[22] A. Cartas, J. Luque, P. Radeva, C. Segura, and M. Dimiccoli, “How much
does audio matter to recognize egocentric object interactions?,” arXiv preprint
arXiv:1906.00634, 2019.

[23] A. Cartas, J. Luque, P. Radeva, C. Segura, and M. Dimiccoli, “Seeing and
hearing egocentric actions: How much can we learn?,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops, pp. 0–0,
2019.

[24] E. Kazakos, A. Nagrani, A. Zisserman, and D. Damen, “Epic-fusion: Audio-
visual temporal binding for egocentric action recognition,” in Proceedings of

79

https://albumentations.ai/docs/introduction/image_augmentation/
https://albumentations.ai/docs/introduction/image_augmentation/

Bibliography

the IEEE/CVF International Conference on Computer Vision, pp. 5492–5501,
2019.

[25] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial intelli-
gence, vol. 17, no. 1-3, pp. 185–203, 1981.

[26] J. Sánchez, E. Meinhardt-Llopis, and G. Facciolo, “Tv-l1 optical flow estima-
tion,” Image Processing On Line, vol. 3, pp. 137–150, 07 2013.

[27] S. Savian, M. Elahi, and T. Tillo, “Optical flow estimation with deep learning,
a survey on recent advances,” in Deep biometrics, pp. 257–287, Springer, 2020.

[28] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van
Der Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical flow with
convolutional networks,” in Proceedings of the IEEE international conference
on computer vision, pp. 2758–2766, 2015.

[29] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “Pwc-net: Cnns for optical flow us-
ing pyramid, warping, and cost volume,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 8934–8943, 2018.

[30] R. Jonschkowski, A. Stone, J. T. Barron, A. Gordon, K. Konolige, and A. An-
gelova, “What matters in unsupervised optical flow,” in European Conference
on Computer Vision, pp. 557–572, Springer, 2020.

[31] G. Chantas, T. Gkamas, and C. Nikou, “Variational-bayes optical flow,” Jour-
nal of Mathematical Imaging and Vision, vol. 50, 11 2014.

[32] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi, B. Taba, A. Censi,
S. Leutenegger, A. J. Davison, J. Conradt, K. Daniilidis, et al., “Event-based
vision: A survey,” IEEE transactions on pattern analysis and machine intelli-
gence, vol. 44, no. 1, pp. 154–180, 2020.

[33] C. Plizzari, M. Planamente, G. Goletto, M. Cannici, E. Gusso, M. Matteucci,
and B. Caputo, “E2 (go) motion: Motion augmented event stream for ego-
centric action recognition,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 19935–19947, 2022.

[34] N. Crasto, P. Weinzaepfel, K. Alahari, and C. Schmid, “Mars: Motion-
augmented rgb stream for action recognition,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7882–7891, 2019.

[35] K. Min and J. J. Corso, “Integrating human gaze into attention for egocentric
activity recognition,” in Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 1069–1078, 2021.

[36] Z. Zhang, D. Crandall, M. Proulx, S. Talathi, and A. Sharma, “Can gaze
inform egocentric action recognition?,” in 2022 Symposium on Eye Tracking
Research and Applications, pp. 1–7, 2022.

[37] G. A. Sigurdsson, A. Gupta, C. Schmid, A. Farhadi, and K. Alahari,
“Charades-ego: A large-scale dataset of paired third and first person videos,”
arXiv preprint arXiv:1804.09626, 2018.

[38] Y. Li, M. Liu, and J. M. Rehg, “In the eye of beholder: Joint learning of gaze
and actions in first person video,” in Proceedings of the European conference

80

Bibliography

on computer vision (ECCV), pp. 619–635, 2018.
[39] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei,

“Large-scale video classification with convolutional neural networks,” in Pro-
ceedings of the IEEE conference on Computer Vision and Pattern Recognition,
pp. 1725–1732, 2014.

[40] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60,
no. 6, pp. 84–90, 2017.

[41] J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga,
and G. Toderici, “Beyond short snippets: Deep networks for video classifica-
tion,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4694–4702, 2015.

[42] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler, “Convolutional learning of
spatio-temporal features,” in European conference on computer vision, pp. 140–
153, Springer, 2010.

[43] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for
human action recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 35, no. 1, pp. 221–231, 2012.

[44] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spa-
tiotemporal features with 3d convolutional networks,” in Proceedings of the
IEEE international conference on computer vision, pp. 4489–4497, 2015.

[45] G. Varol, I. Laptev, and C. Schmid, “Long-term temporal convolutions for
action recognition,” IEEE transactions on pattern analysis and machine intel-
ligence, vol. 40, no. 6, pp. 1510–1517, 2017.

[46] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual
recognition challenge,” International journal of computer vision, vol. 115, no. 3,
pp. 211–252, 2015.

[47] T. Tommasi, N. Patricia, B. Caputo, and T. Tuytelaars, “A deeper look at
dataset bias,” in Domain adaptation in computer vision applications, pp. 37–
55, Springer, 2017.

[48] S. Fabbrizzi, S. Papadopoulos, E. Ntoutsi, and I. Kompatsiaris, “A survey on
bias in visual datasets,” Computer Vision and Image Understanding, p. 103552,
2022.

[49] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in CVPR 2011,
pp. 1521–1528, IEEE, 2011.

[50] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions
on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[51] M. Wang and W. Deng, “Deep visual domain adaptation: A survey,” Neuro-
computing, vol. 312, pp. 135–153, 2018.

[52] Y. Zhang, “A survey of unsupervised domain adaptation for visual recogni-
tion,” arXiv preprint arXiv:2112.06745, 2021.

81

Bibliography

[53] G. Csurka, A Comprehensive Survey on Domain Adaptation for Visual Appli-
cations, pp. 1–35. Cham: Springer International Publishing, 2017.

[54] R. Vilalta, C. Giraud-Carrier, P. Brazdil, and C. Soares, Inductive Transfer,
pp. 545–548. Boston, MA: Springer US, 2010.

[55] A. Gretton, D. Sejdinovic, H. Strathmann, S. Balakrishnan, M. Pontil,
K. Fukumizu, and B. K. Sriperumbudur, “Optimal kernel choice for large-
scale two-sample tests,” in Advances in Neural Information Processing Systems
(F. Pereira, C. Burges, L. Bottou, and K. Weinberger, eds.), vol. 25, Curran
Associates, Inc., 2012.

[56] B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep do-
main adaptation,” in European conference on computer vision, pp. 443–450,
Springer, 2016.

[57] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, “Domain-adversarial training of neural net-
works,” The journal of machine learning research, vol. 17, no. 1, pp. 2096–2030,
2016.

[58] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “Adversarial discriminative
domain adaptation,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7167–7176, 2017.

[59] K. Bousmalis, G. Trigeorgis, N. Silberman, D. Krishnan, and D. Erhan, “Do-
main separation networks,” Advances in neural information processing systems,
vol. 29, 2016.

[60] M. Long, Y. Cao, J. Wang, and M. Jordan, “Learning transferable features with
deep adaptation networks,” in International conference on machine learning,
pp. 97–105, PMLR, 2015.

[61] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Advances in Neural Information Pro-
cessing Systems (F. Pereira, C. Burges, L. Bottou, and K. Weinberger, eds.),
vol. 25, Curran Associates, Inc., 2012.

[62] T. Van Erven and P. Harremos, “Rényi divergence and kullback-leibler diver-
gence,” IEEE Transactions on Information Theory, vol. 60, no. 7, pp. 3797–
3820, 2014.

[63] B. Fuglede and F. Topsoe, “Jensen-shannon divergence and hilbert space
embedding,” in International Symposium onInformation Theory, 2004. ISIT
2004. Proceedings., p. 31, IEEE, 2004.

[64] Z. Meng, J. Li, Y. Gong, and B.-H. Juang, “Adversarial teacher-student learn-
ing for unsupervised domain adaptation,” in 2018 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5949–5953,
IEEE, 2018.

[65] J. Jiang, X. Wang, M. Long, and J. Wang, “Resource efficient domain adapta-
tion,” in Proceedings of the 28th ACM International Conference on Multimedia,
pp. 2220–2228, 2020.

82

Bibliography

[66] Y. Li, N. Wang, J. Shi, X. Hou, and J. Liu, “Adaptive batch normalization for
practical domain adaptation,” Pattern Recognition, vol. 80, pp. 109–117, 2018.

[67] W.-G. Chang, T. You, S. Seo, S. Kwak, and B. Han, “Domain-specific
batch normalization for unsupervised domain adaptation,” in Proceedings
of the IEEE/CVF conference on Computer Vision and Pattern Recognition,
pp. 7354–7362, 2019.

[68] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” Communica-
tions of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[69] J. Munro and D. Damen, “Multi-modal domain adaptation for fine-grained
action recognition,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 122–132, 2020.

[70] A. Sahoo, R. Shah, R. Panda, K. Saenko, and A. Das, “Contrast and mix:
Temporal contrastive video domain adaptation with background mixing,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 23386–23400,
2021.

[71] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

[72] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE conference on computer
vision and pattern recognition, pp. 248–255, Ieee, 2009.

[73] B. Zhou, A. Andonian, A. Oliva, and A. Torralba, “Temporal relational reason-
ing in videos,” in Proceedings of the European conference on computer vision
(ECCV), pp. 803–818, 2018.

[74] J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen, W. Zeng, and
P. Yu, “Generalizing to unseen domains: A survey on domain generalization,”
IEEE Transactions on Knowledge and Data Engineering, 2022.

[75] Z. Yao, Y. Wang, J. Wang, P. Yu, and M. Long, “Videodg: generalizing tem-
poral relations in videos to novel domains,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021.

[76] Y. Sun, X. Wang, Z. Liu, J. Miller, A. Efros, and M. Hardt, “Test-time training
with self-supervision for generalization under distribution shifts,” in Interna-
tional conference on machine learning, pp. 9229–9248, PMLR, 2020.

[77] Z. Nado, S. Padhy, D. Sculley, A. D’Amour, B. Lakshminarayanan, and
J. Snoek, “Evaluating prediction-time batch normalization for robustness un-
der covariate shift,” arXiv preprint arXiv:2006.10963, 2020.

[78] S. Schneider, E. Rusak, L. Eck, O. Bringmann, W. Brendel, and M. Bethge,
“Improving robustness against common corruptions by covariate shift adapta-
tion,” Advances in Neural Information Processing Systems, vol. 33, pp. 11539–
11551, 2020.

[79] F. You, J. Li, and Z. Zhao, “Test-time batch statistics calibration for covariate

83

Bibliography

shift,” arXiv preprint arXiv:2110.04065, 2021.
[80] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy minimiza-

tion,” Advances in neural information processing systems, vol. 17, 2004.
[81] X. Wu, Q. Zhou, Z. Yang, C. Zhao, L. J. Latecki, et al., “Entropy mini-

mization vs. diversity maximization for domain adaptation,” arXiv preprint
arXiv:2002.01690, 2020.

[82] Y. Shi and F. Sha, “Information-theoretical learning of discriminative clusters
for unsupervised domain adaptation,” 2012.

[83] A. Krause, P. Perona, and R. Gomes, “Discriminative clustering by regular-
ized information maximization,” in Advances in Neural Information Processing
Systems (J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta,
eds.), vol. 23, Curran Associates, Inc., 2010.

[84] W. Hu, T. Miyato, S. Tokui, E. Matsumoto, and M. Sugiyama, “Learning
discrete representations via information maximizing self-augmented training,”
in Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, p. 1558–1567, JMLR.org, 2017.

[85] Y. Jin, X. Wang, M. Long, and J. Wang, “Minimum class confusion for versatile
domain adaptation,” in European Conference on Computer Vision, pp. 464–
480, Springer, 2020.

[86] H.-Y. Chen, P.-H. Wang, C.-H. Liu, S.-C. Chang, J.-Y. Pan, Y.-T. Chen,
W. Wei, and D.-C. Juan, “Complement objective training,” in International
Conference on Learning Representations, 2019.

[87] D. Wang, E. Shelhamer, S. Liu, B. Olshausen, and T. Darrell, “Tent: Fully
test-time adaptation by entropy minimization,” in International Conference
on Learning Representations, 2021.

[88] M. Plananamente, C. Plizzari, and B. Caputo, “Test-time adaptation for ego-
centric action recognition,” in International Conference on Image Analysis and
Processing, pp. 206–218, Springer, 2022.

[89] Y. Li, N. Wang, J. Shi, J. Liu, and X. Hou, “Revisiting batch normalization
for practical domain adaptation,” arXiv preprint arXiv:1603.04779, 2016.

[90] D. Kim, Y.-H. Tsai, B. Zhuang, X. Yu, S. Sclaroff, K. Saenko, and M. Chan-
draker, “Learning cross-modal contrastive features for video domain adapta-
tion,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 13618–13627, October 2021.

[91] X. Song, S. Zhao, J. Yang, H. Yue, P. Xu, R. Hu, and H. Chai, “Spatio-
temporal contrastive domain adaptation for action recognition,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 9787–9795, June 2021.

[92] X. Wang, T. Hu, X. Ren, J. Sun, K. Liu, and M. Zhang, “Transvae:a novel
variational sequence-to-sequence framework for semi-supervised learning and
diversity improvement,” in 2021 International Joint Conference on Neural Net-
works (IJCNN), pp. 1–8, 2021.

84

Bibliography

[93] M. Zhai, X. Xiang, N. Lv, and X. Kong, “Optical flow and scene flow estima-
tion: A survey,” Pattern Recognition, vol. 114, p. 107861, 2021.

[94] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for optical
flow,” in European conference on computer vision, pp. 402–419, Springer, 2020.

[95] M. Menze and A. Geiger, “Object scene flow for autonomous vehicles,” in
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[96] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[97] N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy, and
T. Brox, “A large dataset to train convolutional networks for disparity, op-
tical flow, and scene flow estimation,” in IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), 2016. arXiv:1512.02134.

[98] D. Sun, D. Vlasic, C. Herrmann, V. Jampani, M. Krainin, H. Chang, R. Zabih,
W. T. Freeman, and C. Liu, “Autoflow: Learning a better training set for
optical flow,” in CVPR, 2021.

[99] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A
database and evaluation methodology for optical flow,” International journal
of computer vision, vol. 92, no. 1, pp. 1–31, 2011.

85

	List of Tables
	List of Figures
	Introduction
	Research goal and contributions

	Deep Learning
	Introduction
	Neural networks
	The artificial neuron
	Feed-forward neural networks
	Loss functions
	The learning process
	Activation functions
	Regularization
	Normalization layers

	Convolutional Neural Networks
	Convolutional layer
	Pooling layers
	Inception network

	Egocentric action recognition
	Video action recognition
	Multi-Modality

	First person action recognition
	Datasets
	EPIC-Kitchens

	Architectures
	2D ConvNets
	3D ConvNets
	Multi-Stream Inflated 3D ConvNets

	Domain Adaptation
	Transfer Learning
	Formal introduction

	Unsupervised Domain Adaptation
	Discrepancy-based UDA
	Adversarial methods

	UDA for Action Recognition
	MM-SADA
	CoMix
	TA3N
	RNA

	Test Time Adaptation
	Introduction
	Batch normalization
	Class Relative losses
	Entropy Minimization (ENT)
	Information Maximization (IM)
	Minimum Class Confusion (MCC)
	Complementary Entropy (CENT)
	TENT

	Feature level losses
	Relative Norm Alignment (RNA)

	Experiments
	Experimental setting
	Do we need Test Time Adaptation?
	Class imbalance

	Test Time Adaptation
	Class losses
	Feature losses

	Adapting on seen domains
	The impact of Batch Normalization
	Updating BN statistics at test time

	Multi-step adaptation
	Comparison with UDA
	Beyond action recognition
	Improving the optical flow estimation

	Conclusions
	Bibliography

