
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Dynamic Provisioning and
Run-time Optimization of Cloud

Workloads

Supervisor
prof. Fulvio Risso

Candidate

Jacopo Marino

Company supervisor
PUNCH Torino S.p.A.

dott. Mauro Bighi

October 2022

Ai miei genitori

Summary

Cloud computing has become very important nowadays for companies, and many
of them started offloading job computations instead of increasing the on-premise
capacity: the dispatch of those jobs is usually done manually by users, leaving them
the choice of the instance and provider to be used. The scope of this thesis is to
analyze possible improvements given by the introduction of machine learning in the
decision process: the idea was to create a new unit, independent from the scheduler
already implemented in the company, having the possibility to extend it to every
system deployed. The user is still the author of the choice because he/she is given
more information to improve the decision and is not bypassed.

The designed system consists of 2 internal predictors, so it assumes the name
of two-stage predictor. Each stage exploits machine learning, but instead of using
just one single algorithm, it uses several algorithms to achieve better performance:
each one is independently tuned with a set of hyperparameters, with the training on
available data as the following step. After the training phase, the best performing
algorithm is selected and used for that predictor, in a way that each predictor is
independent of the algorithm that is used. The system was tested on 2 projects,
considering the combination of two features: data augmentation and Continuous
Machine Learning (CML).

The analysis conducted shows two important and different outcomes, that are
different but bring to the same final considerations. The first one shows how the
system can be wrong if not constantly trained when new data is available, leading
to a higher cost with respect to the optimal solution. The second one shows that
the system, if well trained and updated, can follow the evolution over the time and
learn from data, leading to a potential saving of about 10%. Different results could
be obtained under different initial conditions.

As concluding remark, the introduction of machine learning to the job dispatch
problem can be effective and lead to optimal solutions only under some conditions.
The advantage is the total cost reduction if the current dispatching is not optimal
or validate the latter if there is no reduction. The drawback is that the system must
be kept updated to follow the evolution of data through time, otherwise, prediction
can become inaccurate and lead to much higher costs than expected: the conditions
are the number of data available and the application of CML.

4

Contents

1 Introduction 8

1.1 Objectives . 8

1.2 Outline . 9

2 Introduction to cloud computing 11

2.1 Public cloud . 11

2.2 Private cloud . 12

2.3 Hybrid cloud . 12

2.4 Multi-cloud . 12

2.5 Cloud costs . 13

2.5.1 Virtual Machine (VM) . 14

2.5.2 Bare Metal (BM) . 14

3 Introduction to machine learning 16

3.1 Regression algorithm . 16

3.2 Machine Learning algorithms . 17

3.2.1 Multi-Layer Perceptron (MLP) 17

3.2.2 Support-Vector Machine (SVR) 18

3.2.3 Linear Support-Vector Machine (LSVR) 18

3.2.4 Random Forest (RF) . 18

3.2.5 Decision Tree (DT) . 18

3.2.6 Linear Regression (LR) . 19

3.2.7 Polynomial Regression (PR) 20

3.2.8 K-Nearest Neighbors (KN) 21

3.2.9 Mean Value (MV) . 21

5

4 HPC at PUNCH Torino S.p.A. 23

4.1 Company introduction . 23

4.2 Current infrastructure . 23

4.2.1 Altair PBS Professional . 23

4.2.2 Cloud providers . 25

4.2.3 Instances . 25

5 Related work 27

5.1 Two-Stage Machine Learning Approach 27

6 System architecture 29

6.1 Two-stage predictor . 30

6.2 Pre-runtime parameters . 31

6.3 Runtime parameters . 32

6.4 Output . 33

7 Implementation 34

7.1 Data available . 34

7.1.1 Feature extraction . 34

7.2 Data augmentation . 35

7.2.1 Estimation of other clouds performance 37

7.3 Machine Learning predictors . 39

7.3.1 Hyperparameter search . 40

7.3.2 Training . 40

7.3.3 Validation . 41

7.3.4 Performance evaluation . 41

7.4 Runtime parameters prediction . 41

7.5 Runtime prediction . 41

7.6 CML (Continuous Machine Learning) 42

8 Results 43

8.1 Comparison between ML algorithms performance 43

8.1.1 Runtime parameters . 44

8.1.2 Runtime output values . 44

8.2 Predictions with CML . 45

8.2.1 Project A . 45

8.2.2 Project B . 52

8.3 Summary . 53

6

9 Conclusions 55

9.1 Improvements . 55

A Used tools 57

A.1 Sklearn library (Python) . 57

A.1.1 Fitting and predicting: estimator basics 57

A.1.2 Automatic parameter searches 58

Bibliography 60

7

Chapter 1

Introduction

In the last years, cloud computing started to be used by users and companies to
improve their flexibility or their workflows. This paradigm became very important
in companies businesses, allowing access to top-notch hardware paid only for the
actual usage; these factors are relevant both for small companies and for bigger ones:
the first can access hardware avoiding upfront costs that could not be affordable,
while the second can increase the usage percentage by paying resource only when
allocated or needed, saving money on the long run.

Some companies use cloud computing for running HPC simulations, leveraging
cloud providers’ performance: users prepare models on their personal computers
(such as laptops for example), upload them to be run on the cloud and analyze the
results when ready, downloading, or working on them on a remote desktop deployed
in the cloud.

In order to manage the emerging needs of big companies, some open-source
projects and some products appeared on the market to help this kind of computa-
tion management: most of these products use several FIFO queues that are utilized
to schedule simulations on cloud providers’ instances. In this situation, the choice
is left to users and there is no entity between job submission and queue choice:
the scheduling is done simply by following the order of jobs submission without
considering simulations details or users’ needs (such as lower cost or lower running
time).

1.1 Objectives

The objective of this thesis is not to create a smart scheduler from scratch, but
to start from the ones already on the market and create a sort of standalone pre-
processing unit independent from the actual queue manager, to be integrated seam-
lessly with almost all systems, helping users decide which queue is the most suitable
for their needs and then proceed the usual way. This unit should be able to predict
the execution time of a simulation: it should exploit previous data to gain knowl-
edge and improve its skills continuously following step by step the evolution of the
simulation set.

8

Introduction

Figure 1.1: FIFO queues for job dispatching

The implementation of this prediction unit should use the cutting-edge tech-
nologies offered by the current level of technology: machine learning. This will
allow the model to learn on the job, with training on past data and on newer ones
when available.

1.2 Outline

• Chapter 2: introduction to cloud computing and deployment strategies
(public, private, hybrid, and multi), analyzing costs of instances used in the
following chapters.

• Chapter 3: introduction to the machine learning terminology, with a focus
on algorithms used in Chapter 7.

• Chapter 4: a brief description of the company, with a focus on its current
cloud infrastructure and queue manager used.

• Chapter 5: previous work related to a similar application field, using ma-
chine learning for cloud execution time prediction.

• Chapter 6: a high-level description of the system, focusing on its architecture
and functionalities.

• Chapter 7: system implementation and choices made to make it suitable for
HPC application.

• Chapter 8: results of the system, analysis of benefits and drawbacks, with
and without data augmentation and continuous machine learning.

9

Introduction

• Chapter 9: conclusions about the thesis work, with a brief discussion on the
possible improvements.

10

Chapter 2

Introduction to cloud computing

Cloud computing is the access, via the internet, to computing resources, data stor-
age, virtual or private servers, software platforms, etc., hosted in a remote data
center managed by a cloud provider. Cloud providers offer these resources with dif-
ferent billing options, to let users decide what is the best option to go for. Compared
to the traditional on-premise solution, this paradigm allows users and companies
to get powerful resources in a very short time, without waiting for hardware to be
bought and set up locally: this can help in saving time and money for the purchase,
installation, configuration, management and maintenance of an on-premise solution.
These considerations lead to agility and scalability of the cloud: companies that
need to scale up the performance of the system can simply add more instances and
pay for them, taking also advantage of cloud provider regions deploying resources
closer to the users to reduce latency [1].

Cloud computing is based on virtualized IT infrastructure, which includes servers,
operating systems, networking, and so on: providers can offer dedicated hardware
to users or a portion of that using VMs to isolate users and avoid data leaks be-
tween them: for example, a single physical server can be divided in n VMs and each
of them sold to a different user. Virtualization allows cloud providers to maximize
the system resource usage, selling unused server capacity to other customers. Not
surprisingly, the virtualization approach has been adopted also by companies to
manage the on-premise infrastructure, so that the maximization approach can be
used there as well, avoiding waste of resources: this again improves the agility of
the system to adapt to resource utilization [1].

2.1 Public cloud

Public cloud is a type of cloud computing in which cloud providers offer computing
resources to users over the public internet: these resources can be free (free-tier) or
billed according to pay-per-use or monthly subscription models. Cloud providers
own, manage, and have all responsibilities for data centers and the deployed hard-
ware: users use resources, without worrying about malfunctions or service inter-
ruptions. Public cloud is a multi-tenant environment: this means that the cloud
provider’s data centers are shared by all public cloud customers. In the case of lead-
ing public cloud providers, Amazon Web Services (AWS), Google Cloud Platform

11

Introduction to cloud computing

(GCP), Microsoft Azure, and Oracle Cloud Infrastructure (OCI), those customers
can number in the millions. Many companies are moving portions of their comput-
ing infrastructure to the public cloud, getting agility and flexibility: this means the
possibility of scaling up and down following the company’s current needs, reducing
cost since customers pay only for what they use [1].

2.2 Private cloud

Private cloud is a cloud environment in which all resources are accessible by one
customer only. This solution combines the benefits of cloud computing (scalability,
flexibility, etc.) but keeps access control, security, and resource choice of the on-
premise solution. A private cloud solution is typically hosted on-premise in the
customer’s data center, but it can be hosted on a cloud provider infrastructure
or built on the rented infrastructure of an off-site data center. Many companies
choose private cloud over public cloud because is an easier way (or the only way) to
meet their regulatory compliance requirements. Other companies choose this model
because they have to deal with confidentiality, intellectual property, sensitive data,
etc. (e.g. GDPR in Europe). By building private cloud architecture according
to cloud-native principles, an organization gives itself the flexibility and agility to
off-load workloads to public cloud or run them in a hybrid cloud environment [1].

2.3 Hybrid cloud

Hybrid cloud is a combination of public and private cloud environments. This
solution connects the company’s private cloud and the public cloud services into
a single flexible infrastructure, in which there is a level of orchestration between
resources to use them seamlessly and move workloads between the two clouds. This
solution can be used to manage peak loads, using the private cloud capacity during
normal behavior and off-loading some computing resources only when needed [1].

2.4 Multi-cloud

Multi-cloud is the use of two or more clouds from two or more different cloud
providers, using resources from all based on needs and/or providers’ offers. This
solution can be integrated with the hybrid cloud, so it becomes a hybrid multi-
cloud, which uses two or more cloud providers and the private cloud infrastructure.
Multi-cloud solution helps the company to avoid vendor lock-in, so if a provider
drops a service it is possible to migrate to another provider and avoid business
interruption. Multi-cloud is managed through platforms created for this purpose,
providing visibility across multiple cloud providers with a central dashboard in
which it is possible to check which nodes and clusters are up and running, plus
other parameters [1].

12

Introduction to cloud computing

Figure 2.1: Hybrid multi-cloud example with 3 public clouds

2.5 Cloud costs

Cloud providers have different types of billing, depending on the instances’ usage
and their SLAs (Service Level Agreements): pay-per-use, preemptible, and reserved
[2].

Pay-per-use Users are charged a quota directly related to their use of resources,
so based on the time usage; there is a minimum time interval equal to 1 minute,
after which the billing will be per-second based.

cinstance = pinstance ·min{1 minute, tallocation} (2.1)

Preemptible Users are charged the same way as the previous type, but in this
case, the instances can be preempted by the cloud provider if needed: the advantage
is a big discount on instance costs, and the disadvantage is that they can be used
only by workloads that can handle interruptions, such as batch processes.

cinstance = (1−∆) · pinstance ·min{1 minute, tallocation} (2.2)

where ∆ is the discount applied on this billing method.

Reserved Users are charged for a period of time (that depends on their choices)
and they can have an upfront cost (total or partial), monthly billing, or a combi-
nation of the two. The total cost for the instance will be the sum of the monthly
billing, plus the upfront cost if present. Some providers can offer a discount if this
method is chosen.

cinstance = pmonthly ·#months+ pupfront (2.3)

13

Introduction to cloud computing

2.5.1 Virtual Machine (VM)

Cloud providers offer a set of instances based on the resources that they have: a
particular type of Virtual Machine is also called a VM shape. Usually, VM shapes
are provided with a fixed set of resources, but providers can offer options to get VM
more suitable for users’ needs, giving them the opportunity the choose the amount
of vCPUs and RAM: they are called flexible VMs.

Instance Size vCPU Memory (GiB)
c6a.large 2 4
c6a.xlarge 4 8
c6a.2xlarge 8 16
c6a.4xlarge 16 32
c6a.8xlarge 32 64
c6a.12xlarge 48 96
c6a.16xlarge 64 128
c6a.24xlarge 96 192
c6a.32xlarge 128 256
c6a.48xlarge 192 384

Table 2.1: Example of AWS VM fixed shapes [3]

The total pay-per-use cost for a fixed shape VM can be computed by multiplying
the instance unit cost by the allocation time.

cVM = pVM ·min{1 minute, tallocation} (2.4)

where pVM is the unit price of the chosen VM instance. In the case of flexible VMs,
both vCPUs and RAM must be considered in the computation.

cVM = (pvCPU ·#vCPUs+ pRAM · sizeRAM) ·min{1 minute, tallocation} (2.5)

where pvCPU is the unit cost of a virtual CPU (vCPU) and the pRAM is the unit
cost of the RAM.

2.5.2 Bare Metal (BM)

Bare Metal instances provide more performance because users can rely on hardware
instead of a virtualized environment: all instance resources (CPU, RAM, etc.)
belong to a single user. This solution can offer better performance in some cases,
so some providers offer this kind of instance. The price model is similar to VMs:
pay-per-use or reserved; in the first case, the cost can be computed by multiplying
the instance unit cost by the allocation time.

cBM = pBM ·min{1 minute, tallocation} (2.6)

14

Introduction to cloud computing

Instance Shape OCPU Memory (GB)
BM.Standard2.52 52 768
BM.Standard.E2.64 64 512
BM.Standard.E3.128 128 2048
BM.Optimized3.36 36 512

Table 2.2: Example of Oracle BM shapes [4]

15

Chapter 3

Introduction to machine learning

3.1 Regression algorithm

Regression analysis is a collection of statistical methods used in statistical modeling
to estimate the relationships between a dependent variable (commonly referred to
as the outcome or response variable, or a label in machine learning terminology)
and one or more independent variables (often called predictors or features). The
most frequent type of regression analysis is linear regression, in which the line (or
a more sophisticated linear combination) that best fits the data according to a
certain mathematical criterion is found. The method of ordinary least squares,
for example, computes the unique line (or hyperplane) that minimizes the sum of
squared differences between the true data and that line (or hyperplane) [5].

A regression algorithm’s output is a continuous value, which means that it will
provide a real number starting from one or more inputs. A model can be described
as a function, whose parameters are tuned during the training phase, analyzing
available data. Regression models involve the following components [5]:

• the unknown parameters, often denoted as a scalar or vector β

• the independent variables, which are observed in data and are often denoted
as a vector Xi (where i denotes a row of data)

• the dependent variable, which are observed in data and often denoted using
the scalar Yi

• the error terms, which are not directly observed in data and are often denoted
using the scalar ei

Most regression models propose that Yi is a function of Xi and β, with ei repre-
senting an additive error term that may stand in for un-modeled determinants of
Yi or random statistical noise [5]:

Yi = f(Xi, β) + ei (3.1)

16

Introduction to machine learning

3.2 Machine Learning algorithms

The machine learning task of learning a function that maps an input to an output
based on example input-output pairs is known as supervised learning. It derives a
function from labeled training data, which consists of a set of training examples.
Each example in supervised learning is a pair consisting of an input object (usually
a vector) and the desired output value (also called the supervisory signal). A su-
pervised learning algorithm examines the training data and generates an inferred
function that can be used to map new examples: in an ideal scenario, the algo-
rithm will be able to accurately determine the class labels for unseen data; this
requires the learning algorithm to be able to generalize from the training data to
unseen situations in a reasonable way. The statistical quality of an algorithm is
measured through the so-called generalization error: a measure of how accurately
an algorithm is able to predict output values for previously unseen data [6].

3.2.1 Multi-Layer Perceptron (MLP)

A Multi-Layer Perceptron is a fully connected class of feedforward artificial neural
networks (ANN). An MLP is composed of at least three layers of nodes: the input
layer, one or more hidden layers, and the output layer. Each node of hidden and
output layers is a neuron that implements a non-linear function. The MLP uses
a supervised learning approach called backpropagation for the training phase. The
MLP and a linear regression differ because the former has multiple layers and non-
linear activation. It can distinguish data that is not linearly separable [7].

Figure 3.1: MLP network example with one hidden layer

17

Introduction to machine learning

3.2.2 Support-Vector Machine (SVR)

Support Vector Machines (also support-vector networks) are supervised learning
models, in which learning algorithms analyze data for classification and regression
problems. Given a set of training examples, each one labeled with one of two
categories, an SVM training algorithm builds a model to assign new examples to
one category or to the other, making it a non-probabilistic binary linear classifier.
SVM maps training examples to points in space, to maximize the gap between the
two categories: new examples are mapped in the same space and predicted with a
label (that identifies a category) based on which side of the gap they fall. In addition
to linear classification, SVM can efficiently perform a non-linear classification using
what is called the kernel trick, implicitly mapping their inputs into high-dimensional
feature spaces [8].

3.2.3 Linear Support-Vector Machine (LSVR)

The Linear Support-Vector Machine works in the same way as an SVM, using a
linear kernel for training and predictions [8].

3.2.4 Random Forest (RF)

The Random Forest (or random decision forest) is an ensemble method for classifi-
cation, regression, and other tasks that consists in building a multitude of decision
trees during the training phase. Ensemble methods use multiple learning algorithms
to obtain better performance in the prediction than using any single constituent
algorithm alone. For the classification task, the output of a random forest is the
class selected by the majority of trees, while for the regression task it is the aver-
age prediction of every single tree. The advantage of random forests with respect
to decision trees is the trend of the latter to overfit over training data: generally
random forests outperform decision trees, but data characteristics can affect their
performance [9].

Random forests are frequently used as blackbox models in businesses, as they
generate reasonable predictions across a wide range of data while requiring little
configuration [9].

3.2.5 Decision Tree (DT)

Decision Tree is a supervised learning approach used in statistics, data mining, and
machine learning. A classification or regression decision tree is used as a predictive
model to draw conclusions about a set of observations. Decision trees where the
target value belongs to a discrete set of values are called classification trees: in these
trees, the leaves represent the class labels, while branches represent the conjunctions
of features that lead to the class label. Decision trees where the target value can
assume continuous values (usually real numbers) are called regression trees [10].

18

Introduction to machine learning

Figure 3.2: Random Forest example with n estimators

Decision trees are among the most popular machine learning algorithms given
their intelligibility and simplicity. In decision analysis, a decision tree can be used
to explicitly visualize decisions and decision-making. In data mining, a decision tree
describes data (but the resulting classification tree can be an input for decision-
making) [10].

Figure 3.3: Decision Tree example with two features

3.2.6 Linear Regression (LR)

Linear regression is a linear approach for modeling the relationship between a de-
pendent variable (the output) and one or more independent variables (the inputs).
The case of one independent variable is called simple linear regression; for more

19

Introduction to machine learning

than one, it is called multiple linear regression. This term is distinct from mul-
tivariate linear regression, where multiple correlated dependent variables are pre-
dicted, rather than a single scalar variable. In linear regression, the relationships
are modeled using linear predictor functions whose unknown model parameters are
estimated from the data: these models are called linear models [11].

Linear regression models are often fitted using the least squares approach, but
they may also be fitted in other ways, such as by minimizing the lack of fit in
some other norm (as with least absolute deviations regression), or by minimizing a
penalized version of the least squares cost function as in ridge regression (L2 - norm
penalty) and lasso (L1 - norm penalty). Conversely, the least squares approach can
be used to fit models that are not linear models. Thus, although the terms least
squares and linear model are closely linked, they are not synonymous [11].

In linear regression, the model states that the dependent variable, yi is a linear
combination of the parameters (but need not be linear in the independent variables).
For example, in simple linear regression for modeling n data points there is one
independent variable: xi, and two parameters, β0 and β1. A straight line would be
described as follow [11]:

yi = β0 + β1xi + ϵi, i = 1, . . . , n (3.2)

In multiple linear regression, there are several independent variables or functions
of independent variables [11].

Figure 3.4: Linear (left) vs Polynomial (right) Regression example

3.2.7 Polynomial Regression (PR)

Polynomial regression is a type of regression in which the relationship between the
independent variable x and the dependent variable y is modeled as an nth-degree
polynomial in x. Polynomial regression fits a nonlinear relationship between the
input x and the corresponding conditional mean of y, denoted as E(y|x). Although
polynomial regression fits a nonlinear model to the data, the estimation problem is
linear, which means that the regression function E(y|x) is linear in the unknown
parameters that are estimated from the data: polynomial regression is considered
to be a special case of multiple linear regression. It uses the same linear regression
of subsection 3.2.6, but before training the model, the input variables are scaled
from a linear domain to a polynomial one, creating inputs (power of one input or
multiplication between inputs) [12].

20

Introduction to machine learning

For example, adding a term in x2
i to the formula 3.2 gives a parabola:

yi = β0 + β1xi + β2x
2
i + ϵi, i = 1, . . . , n (3.3)

This is still linear regression, although the expression on the right hand side is
quadratic in the independent variable xi, it is linear in the parameters β0, β1 and
β2 [12].

3.2.8 K-Nearest Neighbors (KN)

The K-Nearest Neighbors algorithm (k-NN) is a non-parametric supervised learning
method used for classification and regression. In both cases, the input consists of
the k closest training examples in a data set, while the output depends on whether
k-NN is used for classification or regression [13]:

• In classification, the output is a class label. An object is classified by a
plurality vote of its neighbors, with the object being assigned to the class
most common among its k nearest neighbors (k is a positive integer, typically
small). If k = 1, then the object is simply assigned to the class of that single
nearest neighbor [13].

• In regression, the output is the property value for the object. This value is
the average of the values of k nearest neighbors [13].

k-NN is a type of classification where the function is only approximated locally
and all computation is deferred until function evaluation. Since this algorithm
relies on distance for classification, if the features represent different physical units
or come in vastly different scales then normalizing the training data can improve
its accuracy dramatically[13].

Both for classification and regression, a useful technique can be to assign weights
to the contributions of the neighbors, so that the nearer neighbors contribute more
to the average than the more distant ones. For example, a common weighting
scheme consists in giving each neighbor a weight of 1/d, where d is the distance to
the neighbor. The neighbors are taken from a set of objects for which the class (for
classification) or the object property value (for regression) is known. This can be
thought of as the training set for the algorithm, though no explicit training step is
required [13].

3.2.9 Mean Value (MV)

This is not a real regression algorithm, anyway the output is a continuous value.
This algorithm is composed of 5 different sub-algorithms: arithmetic mean, geo-
metric mean, harmonic mean, mode, and median.

Arithmetic mean The arithmetic mean is the sum of all values divided by the
count of them.

1

n

n∑
i=1

xi =
x1 + x2 + . . .+ xn

n
(3.4)

21

Introduction to machine learning

Figure 3.5: K-Nearest Neighbors example with 3 clusters [14]

Geometric mean The geometric mean is the n-th root of the product of all
values. (

n∏
i=1

xi

) 1
n

= n
√
x1x2 . . . xn (3.5)

Harmonic mean The harmonic mean is the reciprocal of the arithmetic mean
of the reciprocals of all values.(

1

n

n∑
i=1

x−1
i

)−1

=

(
x−1
1 + x−1

2 + . . .+ x−1
n

n

)−1

(3.6)

Mode The mode is the value that appears most often in a set of data values [15].
Suppose a set x = {x1, x1, x1, x2, x3}: the mode is the value x1, because is the one
with the highest frequency in the set.

Median The median is the value separating the higher half from the lower half
of a data sample [16].

Each sub-algorithm is used and then all performance results are compared, so
the best one is chosen as the resulting algorithm to be used for predictions.

22

Chapter 4

HPC at PUNCH Torino S.p.A.

4.1 Company introduction

PUNCH Torino S.p.A. is the Core Company that allows the PUNCH Group to
lead the engineering of innovative propulsion systems and control solutions, based
on the unique combined expertise of developing, producing, and integrating proven
technologies, systems, and processes towards turnkey solutions [17].

The company utilizes a hybrid cloud infrastructure to run simulations used
in the development process of an engine, offloading simulations to different cloud
providers and retrieving the results once ready or working on them on remote
desktops deployed on the cloud.

4.2 Current infrastructure

The current infrastructure is a hybrid cloud, composed of computational nodes on-
premise alongside on-demand instances deployed on three cloud providers: Oracle,
Google, and Azure. The management of scheduling is demanded to a commercial
product developed by Altair (PBS Professional), introduced in the subsection 4.2.1:
the users prepare the input files for the simulations, upload them on the web inter-
face of the scheduler, choose which instances they would use, and the system will
dispatch the simulations on the correct queues to satisfy the requirements. Once
the simulations finish, the output data is moved from the instances’ temporary
storage to the warm storage of the cloud provider to which the instances belong.
The scheduler will continue the dispatching until queues are empty or the maximum
number of parallel instances has been reached and monitors when a new simulation
can be submitted to a cloud or on-premise instance.

4.2.1 Altair PBS Professional

Altair PBS Professional is an industry-leading workload manager and job sched-
uler for HPC and High-throughput Computing. PBS Professional is a fast, powerful

23

HPC at PUNCH Torino S.p.A.

Figure 4.1: Current infrastructure [18]

workload manager designed to improve productivity, optimize utilization and effi-
ciency, and simplify administration for clusters, clouds, and supercomputers - from
the biggest HPC workloads to millions of small, high-throughput jobs. PBS Pro-
fessional automates job scheduling, management, monitoring, and reporting, and it
is the trusted solution for complex Top500 systems as well as smaller clusters [19].

Figure 4.2: Simplified version of a queue manager [20]

24

HPC at PUNCH Torino S.p.A.

4.2.2 Cloud providers

The current infrastructure uses three cloud providers (Azure, Google, and Oracle),
plus the on-premise computational units. For each provider, an instance has been
identified to be used, in particular, the choice was made upon HPC instances,
that offer better performance for some types of computations, plus the InfiniBand
connectivity in some cases, to allow the possibility of scaling on more instances.

4.2.3 Instances

The instances chosen are provided by cloud providers for the same purpose: HPC
computing. These instances have some peculiarities with respect to standard ones
because they are optimized for HPC computations and some of them offer the
InfiniBand connectivity with the RDMA over it: Oracle and Azure are actually
offering this feature, while Google is not and this will lead to different uses for
different platforms because the scalability is affected. Table 4.1 reports the 3 types
of instances implemented in the current infrastructure.

Provider Instance #Cores RAM (GB)
Oracle BM.Optimized3.36 36 512
Google c2-standard-60 30 240
Azure HB120rs v3 120 448

Table 4.1: Chosen instances by the company

The Oracle instance is a Bare Metal because it offers slightly better performance
with respect to VM, and it is the only one that offers the InfiniBand connectivity, so
considering the possibility of scaling, it is the only one suitable for the infrastructure
[4].

The Azure instance is quite different from the other 2 because it is a VM that
offers 120 cores, with the InfiniBand support and so it can scale as the Oracle one.
The cloud provider offers also smaller shapes, but they are based on this VM and
it is the same with just the other cores disabled and the same hourly price, so the
reference instance is this one, even if the system will use a smaller shape [21].

The Google instance is similar in the number of cores to the Oracle one: it
exposes 60 vCPUs with hyper-threading, but this functionality is disabled to get
some more performance using only the physical cores, resulting in a VM with 30
cores [22]. This instance does not offer the InfiniBand connectivity, so the scalability
is possible in theory, but in reality, the performance degrades with more than one
instance.

Given the details about instances on cloud providers, it is possible to see in
Table 4.2 the possible scenarios, composed of one or more instances, or even by a
fraction of it (like in the case of Azure).

The Google case considers also scalability, which will be considered later in the
thesis, and for this reason, it is reported here, but in reality, it should not be used.

25

HPC at PUNCH Torino S.p.A.

Provider Instance #Instances #Cores RAM (GB)
Oracle BM.Optimized3.36 1 36 512
Oracle BM.Optimized3.36 2 72 1024
Oracle BM.Optimized3.36 3 108 1536
Oracle BM.Optimized3.36 4 144 2048
Google c2-standard-60 1 30 240
Google c2-standard-60 2 60 480
Google c2-standard-60 3 90 720
Google c2-standard-60 4 120 960
Azure HB120rs v3 1 32 448
Azure HB120rs v3 1 64 448
Azure HB120rs v3 1 96 448
Azure HB120rs v3 1 120 448

Table 4.2: Instances used by the company

InfiniBand and RDMA

The use of RDMA is necessary to get the best performance out of more instances,
otherwise, the results will be just a slower and more expensive solution.

InfiniBand (IB) InfiniBand is a high-performance computing networking com-
munications technology with extremely high throughput and low latency. It is used
for data interconnection both among and within computers. InfiniBand is also uti-
lized as a direct or switched connectivity between servers and storage systems, and
also between the latter. It is scalable and has a switched fabric network topology
[23].

RDMA Remote direct memory access (RDMA) is direct memory access from
one computer’s memory to that of another without involving either computer’s
operating system. This allows for high-throughput, and low-latency networking,
which is particularly beneficial in massively parallel computer clusters. RDMA
enables zero-copy networking by allowing the network adapter to move data from
the wire directly to application memory or from application memory directly to the
wire, removing the need for the operating system to copy data between application
memory and the data buffers. Such transfers do not require any effort from CPUs,
caches, or context switches, and they run in parallel with other system tasks: this
reduces latency in message transfer [24].

26

Chapter 5

Related work

This thesis work started from the paper Predicting Workflow Task Execution Time
in the Cloud Using A Two-Stage Machine Learning Approach, in which authors
faced a similar problem: the goal was to apply machine learning to the cloud to
predict the run time of different tasks with different input data [25]. The abstract
of the paper is reported below.

Many techniques such as scheduling and resource provisioning rely on
performance prediction of workflow tasks for varying input data. How-
ever, such estimates are difficult to generate in the cloud. This paper
introduces a novel two-stage machine learning approach for predicting
workflow task execution times for varying input data in the cloud. In
order to achieve high accuracy predictions, our approach relies on pa-
rameters reflecting runtime information and two stages of predictions.
Empirical results for four real world workflow applications and several
commercial cloud providers demonstrate that our approach outperforms
existing prediction methods. In our experiments, our approach respec-
tively achieves a best-case and worst-case estimation error of 1.6 and
12.2 percent, while existing methods achieved errors beyond 20 percent
(for some cases even over 50 percent) in more than 75 percent of the
evaluated workflow tasks. In addition, we show that the models predicted
by our approach for a specific cloud can be ported with low effort to new
clouds with low errors by requiring only a small number of executions
[25].

5.1 Two-Stage Machine Learning Approach

The paper introduced a two-stage prediction approach, in which the desired out-
put derives from the concatenation of two prediction blocks. The considered input
parameters can be divided into two groups: pre-runtime and runtime parameters.
Pre-runtime parameters can be determined before a task is executed on the cloud;
they include the input of a task and the parameters that describe the virtualized
environment in which the task will be executed. Runtime parameters are deter-
mined by executing a task and they reflect the difference between tasks on different

27

Related work

instances and cloud providers. The parameters considered in the paper are reported
in Table 5.1 [25].

Pre-Runtime Parameters Task input data Input parameters of task

VM types
Number of vCPUs,
Memory capacity

Runtime Parameters

uCPU
sCPU
Memory usage
Write operations
Read operations
File transfer
Bandwidth

CPU used time at user level
CPU used time at system level
Memory used by task
Number of written blocks of task
Number of read blocks of task
Size of transferred files by task
Bandwidth used by task

Table 5.1: Parameters used to model task execution times [25]

The first stage of prediction takes as input the pre-runtime parameters and
returns as output the runtime parameters: each item of the output set can be
predicted using any state-of-the-art machine learning regression algorithm. Once
the output set is ready, the pre-runtime and runtime parameters are used together
in the second stage to predict the execution time of the task [25].

The system proposed has been evaluated using different types of tasks from
different software, such as Blender. The data, used in the training and the validation
phases, was collected by running those example tasks on different cloud providers,
using both a single-stage and the two-stage approach, to compare the two solutions
and show how the system introduced performs in comparison to older solutions. The
results show how the two-stage approach can outperform the single-stage, which
usually are based only on pre-runtime parameters to predict the execution time of
the task [25].

28

Chapter 6

System architecture

The goal of the thesis is to create a standalone prediction unit, to be integrated
seamlessly with almost all schedulers present on the market, helping users decide
which queue is the most suitable for their needs. This unit should be able to predict
the execution time (also referred to as the runtime) of a simulation, starting from
inputs known a priori. The next step is to use this output to compute the cost
of the simulation on different cloud providers and schedule it on the right one to
implement a cost-optimization strategy.

The system has been designed to be sitting in between the jobs and the queues,
so starting from Fig.1.1, after the implementation the smart queue management
assumes the form of Fig.6.1. The job submission phase is still demanded to users,
but they are provided with information about the best queue to use, aiming a cost
optimization: if they want to use a specific queue, they are able to do it, because
the system is not substituting them, but it augments the information available to
help in making decisions.

Figure 6.1: Queue management with prediction unit

29

System architecture

6.1 Two-stage predictor

The predictor consists of two sub-predictors, introduced by the paper reported in
the section 5. The first one predicts the runtime parameters starting from the
pre-runtime parameters, while the second one predicts the execution time starting
from both pre-runtime and runtime parameters. The runtime parameters predictor
is actually a set of predictors, because each runtime parameter has its own predictor,
to better manage the differences between the relationships inputs-output.

Figure 6.2: System structure overview

Both predictors have the same structure, and they differ only in the inputs and
outputs. A predictor can be seen as a block that implements a function f , getting
x = {x1, x2, . . . , xn} as input and providing y as result:

f : x → y (6.1)

The function f is implemented by a regression algorithm because the output y is
a continuous value and not a label. Considering this, the internal structure of a
predictor will be now discussed. A predictor is composed of 9 regression algorithms
(MLP, SVR, LSVR, RF, DT, LR, PR, KN, MV) presented in in Chapter 3. During
the training phase, the first step is doing a hyper-parameter search to get the best
algorithms’ parameters that are able to provide the best predictions; the second
step is the actual training of models using the hyper-parameters found, storing the
trained ones on disk to have a copy in case of unexpected program termination.
Once all models are trained, there is a comparison between the performance of each
algorithm, and the best one is marked as the best one for that specific output; after
this, the predictor is ready to be used.

30

System architecture

When a predictor is requested a prediction, it must receive the inputs associated
to it in order to satisfy the request. The predictor searches on disk for the best ML
model and uses it to predict the value, then returns the output.

6.2 Pre-runtime parameters

Pre-runtime parameters are known a priori, and they are related to the characteris-
tics of the VM and to the software used: they don’t need to be predicted and must
be known, otherwise, the prediction will not work. They are 5: cloud, software,
cores, ram and vm type.

Cloud The cloud input defines which platform the job will run on, and it can
assume one of the values in the set c, so a job can run both on cloud providers or
on the on-premise infrastructure.

c = {oracle, google, azure, aws, onprem} (6.2)

Software Based on the simulation that has to be done, different software is chosen
so that it follows the job needs. The software input can assume a value in the set s:
there is one software that is repeated two times (Software2 and Software2Opt), but
it is used in a different manner, and for this reason, it is considered as standalone
for the thesis purpose.

s = {Software1, Software2, Software2Opt, Software3} (6.3)

Cores, ram and vm type The cores input depends on the cloud provider,
because instances are similar but not identical, so the values should be adapted to
follow providers instance shapes. These three inputs are strictly dependent from
each other, because shapes are fixed and so values are a tuple and not independent.

(cores, ram, vm type) (6.4)

v = {1, 2, 3, 4} (6.5)

The vm type input can assume a value in the set v and it was introduced to stan-
dardize the differences between cloud providers because the set of resources on
provider A can be full filled using one instance, while on provider B there could be
the necessity to spread on multiple instances.

The pre-runtime parameters of an entry can be summarized as a tuple, that can
then be fed to the predictors.

(cloud ∈ c, software ∈ s, cores, ram, vm type ∈ v) (6.6)

31

System architecture

Cloud vCPUs RAM (GB) VM Type
Oracle 36 512 1

72 1024 2
108 1536 3
144 2048 4

Google 30 240 1
60 480 2
90 720 3
120 960 4

Azure 32 448 1
64 448 2
96 448 3
120 448 4

Table 6.1: Instance shapes details for pre-runtime parameters

6.3 Runtime parameters

Runtime parameters are not known a priori, so their value can be known only when
a simulation has terminated and is no more in the running state. These parameters
cannot be known, but they can be predicted. They are 4: cput, ncpus, memory
GB, vmem GB.

Cput The cput parameter is the time spent by the CPU to execute the machine
instructions of the simulation. This value follows the characteristics of the instance
used, because it considers all the vCPUs involved used by the simulation to run
and so it is directly proportional to the final output of the system.

Ncpus The ncpus parameter represents the number of used vCPUs by a simula-
tion because it could happen that fewer cores are used and so the instance is not
fully utilized.

1 ≤ ncpus ≤ coresinstance (6.7)

Memory GB The memory GB parameter is the size of the memory utilized
during the simulation run: it is a conversion to Gigabytes because the provided
value is in bytes.

0GB < memory GB ≤ RAMinstance (6.8)

Vmem GB The vmem GB parameter is the size of the virtual memory utilized
during the simulation run: it is a conversion to Gigabytes because the provided
value is in bytes.

0GB < vmem GB ≤ vmeminstance (6.9)

32

System architecture

6.4 Output

The output of the prediction unit is the execution time of the job expressed in
seconds, predicted using both the pre-runtime and runtime parameters.

cloud
software
cores
ram

vm type
cput
ncpus

memory GB
vmem GB


→ timepredicted (6.10)

The output of the system is not only the execution time by the way, but is the
cloud provider with the lowest cost (and the execution time itself). When a job
needs a time estimation, the system is fed with n options, where n is the number
of cloud providers implemented and usable to deploy compute nodes: given an
input tuple t1 with cloud1, other n− 1 tuples are created changing the values to be
coherent along inputs. The cloud parameter is changed with all the other available.
Cores, ram and vm type values are changed accordingly to the table 6.1, to keep
the instance shape equal to the one provided by cloud providers, scaling the ncpus
on the new values so that the ratio ncpus/cores stays constant.

i1 = (cloud1, . . . , cores1, ram1, . . . , ncpus1, . . .)

i2 = (cloud2, . . . , cores2, ram2, . . . , ncpus2, . . .)

. . .

in = (cloudn, . . . , coresn, ramn, . . . , ncpusn, . . .) (6.11)

The entries of the set i = {i1, i2, . . . , in} of all these input tuples are fed into
the prediction system, to get the execution time for each entry. When the time
prediction is available, it is multiplied by the cost of the instance used: these values
are then compared and the best one determines which cloud provider is the cheapest
for the simulation. The provided values are then the best cloud, the predicted time,
and the predicted cost.

i → (cloudbest, timepredicted, costpredicted) (6.12)

33

Chapter 7

Implementation

The system has been implemented using the Python programming language, to
take advantage of the available libraries for machine learning and to speed up the
development: in particular, the library used to implement the machine learning
algorithms is Scikit-learn [26]. The implementation started from tests on ma-
chine learning algorithms exploiting data augmentation, adding Continuous Ma-
chine Learning (CML) as the last step to improve performance in the long run.

7.1 Data available

The data available is the log provided by the PBS Professional queue manager, in
which it is possible to find one entry for each job submitted by users: these entries
have several fields, and some of them are the one used by the prediction system.
The log file can be exported from PBS Professional platform as a CSV file and
then parsed in code. The fields of interest are a subset of the present ones because
not all of them are useful for the scope of the thesis. Each predictor has its own
set of inputs and output, taken from the provided fields: the data submitted is the
same for each predictor, but then internally data are processed to put them in the
correct form and with the correct format.

The number of entries in a dataset is fundamental for the training phase of a
machine learning model, and the available one is about 10K entries. The data set
entries have been grouped by project, and this step allows to avoid interference
between different projects. A project describes a type of product and all related
details: a product can be very different from the others, so it is better to split
data and avoid interference, reducing the noise in predictors and thus getting more
accurate results.

7.1.1 Feature extraction

Not all data provided by logs are useful for the system, and for this reason, features
have been extracted. Feature extraction is the process of defining a set of features

34

Implementation

which will most efficiently or meaningfully represent the information that is im-
portant for analysis and classification [27]. The set of inputs is different for each
sub-predictor because each one uses different inputs to predict a different output.

Consider again the set c = {oracle, google, azure, aws, onprem} containing all
cloud providers possible: the input variable cloud can assume one of those string
values. In order to standardize the input set, converting it to a set of numbers,
and avoid problems with some models, a transformation must be applied. There
are 2 possible ways of doing this: the first is assigning an integer number to each
possible value, while the second is to use One-Hot Encoding (OHE); the latter is an
encoding method to convert categorical data to values that can be understood by
the machine learning model. The variable becomes an array of variables in which
each item can assume only 0 or 1 value: this conversion passes from categorical
variable to n variables, and one of them is set to 1, while the others are set to 0. n
is the cardinality of the set of different values that the variable can assume and in
the case of cloud input n = 5, which is the same of c set.

cloud oracle google azure aws onprem
oracle 1 0 0 0 0
oracle 1 0 0 0 0
google 0 1 0 0 0
azure → 0 0 1 0 0
azure 0 0 1 0 0
...

oracle 1 0 0 0 0

Table 7.1: OHE example of cloud variable

This encoding has been done for cloud and software variables: after this, the
data is ready to be used for further processing and for training models. Obviously,
when new data has to be submitted to the prediction system, the entries must be
pre-processed in the same way described until now, including the OHE: this has
to be done because the system must be fed data in the same way done during the
training phase.

7.2 Data augmentation

Machine learning algorithms need lots of data to be trained in order to get high
accuracy: splitting the data set by project, led to some projects with hundreds of
examples and to some with only few; this is a problem and so it has to be solved,
using existing data to reach around 10K examples for each project. There are two
different data augmentation algorithms that are done by the system: the first is
for data used to train the pre-runtime parameter predictors, while the second is for
data used for the runtime predictor, but both follow the same steps.

• Step 1: each entry is replicated n times, depending on the number of cloud
providers active and usable, changing the cloud column and the related ones,

35

Implementation

which are core, ram, ncpus, cput and runtime, modified using the scalability
analysis described in subsection 7.2.1. With this approach, it is possible to
map the execution time of a job on different cloud providers allowing the
generation of data also for providers never seen by the system, to make the
model ready for all prediction requests.

i1 = (cloud1, cores1, ram1, . . . , ncpus1, cput1, runtime1)

↓
i1 = (cloud1, cores1, ram1, . . . , ncpus1, cput1, runtime1)

i2 = (cloud2, cores2, ram2, . . . , ncpus2, cput2, runtime2)

. . .

in = (cloudn, coresn, ramn, . . . , ncpusn, cputn, runtimen)

• Step 2: each entry is replicated j times, multiplying the values for a random
coefficient which uses a ∆ defined in code and computed as

rc = 1 + random(−∆,∆), 0 ≤ ∆ < 1 (7.1)

The value j is computed by dividing the desired number of examples by
the number of cloud providers and then divided by the number of current
examples: the value obtained is converted into an integer, because is not
strictly necessary to have exactly the number of desired examples, but a
close value. An example for runtime column augmentation is the following
(the cput is also modified because is directly related to runtime, and if not
implemented could lead to problems during predictions):

i1 = (. . . , cput1, runtime1)

↓
i1 = (. . . , cput1, runtime1)

i2 = (. . . , cput1 · rc2, runtime1 · rc2)
. . .

ij = (. . . , cput1 · rcj, runtime1 · rcj)

• Step 3: each entry is replicated 3 times, one for each vm type and columns
are scaled following this change, similar to step 1, but scaling in the same
provider and not between different ones.

i1 = (cloud1, cores1, ram1, . . . , ncpus1, cput1, runtime1)

↓
i1 = (cloud1, cores1, ram1, . . . , ncpus1, cput1, runtime1)

i2 = (cloud1, cores2, ram2, . . . , ncpus2, cput2, runtime2)

i3 = (cloud1, cores3, ram3, . . . , ncpus3, cput3, runtime3)

i3 = (cloud1, cores4, ram4, . . . , ncpus4, cput4, runtime4)

Step 1 is always present, and step 2 can be enabled or not: the reason is that
without step 1 it will be impossible for the system to predict an execution time for
a provider never seen. Step 3 has been implemented and tested, but it is always
disabled because it adds noise to the predictions, so it is better to avoid scaling
instances for the training phase.

36

Implementation

7.2.1 Estimation of other clouds performance

Step 1 of data augmentation estimates the execution time on different providers
with respect to the current one: this is achieved by using benchmarks on cloud
providers with representative simulations, interpolating the scalability curve to ob-
tain models to move between providers instances. These scalability models have
been created from the benchmarks (reference simulations) done with the software
used, and passed to the latter as inputs: these simulations are not from production,
so they cannot leak information about companies, but they are representative and
can be assumed similar to production ones. Benchmarks have been run not for all
cores configurations, but only for a couple of cases (and sometimes only for one,
and more details will be provided on how this situation has been managed).

The estimations are done between different cloud providers keeping the same
vm type: each type is associated with a score, which is the runtime on that specific
platform with that specific resources, with an example shown in Table 7.2. Values
reported are anonymized, in order to not disclose sensitive information about real
runtimes, even if they are benchmark simulations and so not related to the pro-
duction environment. Using Table 7.2, it is possible to estimate the performance

VM Type Oracle Google Azure AWS
1 5287 7034 5660 7442
2 4974 7221 5514 6982
3 4660 7409 5369 6522
4 4346 7596 5259 6061

Table 7.2: Software 1 scores

of a simulation on other cloud providers, by simply taking the ratio of the new and
the old scores, multiplying by it the execution time: the result is the estimation of
the time on the new cloud provider chosen (let [x] denote the standard rounding
function).

timeexecution,new =

[
timeexecution,old ·

CloudScorenew
CloudScoreold

]
(7.2)

For example, if the current provider is Oracle and the new one is Google, assuming
an execution time of 1000 seconds on a vm type 2, it is possible to compute the
desired value as

timeexecution,new =

[
1000 · 7221

4974

]
= 1452s (7.3)

Now, the results obtained will be presented by software, but there is a disclaimer:
benchmarks have been run for all software, but not for all configurations possible.
For this reason, some approximations have been made to continue with the thesis
work and extract information from data, even if the results are incomplete. The
ideal scenario is to collect data for all types of configurations on all cloud providers,
to better shape the trend curves.

37

Implementation

The graphs reported have two types of lines: solid and dotted. The solid curves
represent the interval of interest used for the predictors, while the dotted ones are
the projections of data outside that interval, just to show the trend for more or
fewer cores: the trend lines are valid if the relationship doesn’t change, so they were
not considered in the predictors but shown here to give an idea of the scalability
on a higher and lower number of cores.

Software 1

The benchmarks on Software 1 were run with two configurations: 64 and 192 cores.
Starting from these two benchmarks and assuming the relationship between cores
and time as linear, it is possible to draw the curves that represent the scalability of
cloud providers; the linear dependence has been chosen because there was no other
information, and so this was the only possible way to use those data.

As shown in Fig.7.1, all providers but Google increase their performance with
the number of cores: this trend makes Google the choice to be avoided in case of
more than one instance.

0 32 64 96 128 160 192

4,000

5,000

6,000

7,000

8,000

Cores

E
x
ec
u
ti
on

ti
m
e
(s
)

AWS
Google
Azure
Oracle

Figure 7.1: Software 1 instances’ scaling

Software 2

The benchmarks on Software 2 have been run with 96 cores configurations on all
providers, while more tests were conducted only with Oracle and Azure. With
respect to the previous case, here the results on Google are better with 90 cores
and so it is possible to consider that, in this specific case with this specific software,
the performance should follow the number of cores. To draw the curves for AWS
and Google, it has been used the same trend line of Azure: they use the same curve

38

Implementation

parameters, but obviously with different reference data that are available. The
Oracle curve is better described because the test conducted were more complete so
it is possible to describe its scalability with more precision.

0 32 64 96 128 160 192

100

200

300

400

500

Cores

E
x
ec
u
ti
on

ti
m
e
(s
)

AWS
Google
Azure
Oracle

Figure 7.2: Software 2 instances’ scaling

Software 3

The benchmarks on Software 3 have been run only with the 64 cores configura-
tion, plus additional tests only on the Oracle platform. For this reason, AWS and
Azure have been considered the same way as Oracle due to their ability to improve
performance with the number of cores, modeling them with the same curve: this
assumption has been done to extract a possible scalability model. For Google, the
curve has been modeled differently, because it showed bad scalability and for this
reason, the curve shows how the performance degrades with a higher number of
cores: the parameter of this curve has been extracted from the Software 1 tests
because no other clues were available to create a better model.

7.3 Machine Learning predictors

Both predictors have the same internal structure, composed of a set of machine
learning algorithms, to exploit the differences between them and allow the choice
of the best one, considering the one with the lowest Mean Absolute Percentage
Error (MAPE). The predictor receives inputs, then based on what is the expected

39

Implementation

0 32 64 96 128 160 192

0.5

1

1.5

·104

Cores

E
x
ec
u
ti
on

ti
m
e
(s
)

AWS
Google
Azure
Oracle

Figure 7.3: Software 3 instances’ scaling

output, it retrieves from files the model marked as the best and uses it to predict
the value, returning the output for the following part of the system.

7.3.1 Hyperparameter search

Machine learning algorithms have some parameters (called hyperparameters) that
can be set to change how the algorithm learns and the training time required. A
preliminary phase has been conducted to find a suitable range for each algorithm
because it would be impossible to try all combinations. There are two types of
search: random search and grid search. The random search extracts a random set
of hyperparameters from the global set and uses it to train the model: it is possible
to choose how many random extractions should be done, trying to cover the highest
number of possible combinations, but obviously, at each run, the sets extracted will
be different and so the training is not reproducible unless using always the same sets,
but with this solution, the search will be fixed and no more random. The grid search
is an exhaustive search in the whole space of the hyperparameters: it considers all
the possible combinations of hyperparameters, resulting in a better model tuning,
but with an increase in the search time proportional to the cardinality of sets and
number of hyperparameter analyzed. The search is done for every machine learning
algorithm, each one with its specific hyperparameters to be searched.

7.3.2 Training

When a set of hyperparameters is chosen, the model is trained using them and fed
with the training set. The dataset is split into training and validation sets, using

40

Implementation

a splitting function provided by the library used to implement the ML algorithms.
The training phase proceeds until the maximum number of iterations has been
reached or if the difference within the last 10 iterations is below a certain threshold
(denoting that the algorithm is not improving anymore).

Each predictor is characterized by its inputs and its outputs, and they are taken
from input tuples. The data passed to the predictors is the same, but different
information is extracted: from them, the subset of inputs and the desired output
are extracted and used for the training. Assuming the case of cput predictor,
the inputs are all the pre-runtime parameters and the output is the cput itself,
while the other information is discarded and not considered: the input set becomes
(cloud, software, cores, ram, vm type) and the output value is the cput value.

7.3.3 Validation

The validation set, obtained with the splitting function, is used to validate the
model’s training: this set is used to test if the model is learning and to provide its
accuracy when the training is complete. This phase allows the model’s validation,
checking its performance results and using them for later comparison between dif-
ferent algorithms. A percentage of the dataset is used as the validation set and, in
this case, the amount is 20%.

7.3.4 Performance evaluation

When a hyperparameter search iteration finishes, the error rate of that particular
hyperparameter set is computed and stored; when all iterations are completed,
there is a comparison between those values, and the best one determines which
parameter set will be used for the final training. The performance evaluation used
as a comparison value is the Mean Absolute Percentage Error (MAPE): this is an
average error and for this reason, it suits the need of the system to choose the best
ML algorithm.

7.4 Runtime parameters prediction

The runtime parameters predictor is not a single unit, but it is composed of 4 sub-
predictors (one for each runtime parameter): each one is characterized by its inputs
and its output. All predictors use the pre-runtime parameters as inputs, but they
differ for the output: they can use internally a different algorithm to provide the
result, and at the end, the data are aggregated in a tuple and fed forward to the
system.

7.5 Runtime prediction

The runtime predictor uses as input the data from the previous predictors and the
pre-runtime parameters, while its output is the runtime prediction. It differs from

41

Implementation

Figure 7.4: Runtime parameters predictors detailed

the previous prediction unit just for the input set and output, but the internal logic
is the same.

7.6 CML (Continuous Machine Learning)

The training phase is done only when the system needs to learn from data, so when
no model is ready to be used. Training models only once could be not effective when
data starts to slightly change and so the results could become more imprecise with
time. In order to correct the behavior of the model and to keep the performance, it
is possible to exploit Continuous Machine Learning: the idea is to re-train models
after n new run of simulations, to follow the real scenario of data and avoid missing
information and provide wrong predictions. The training phase is done in the same
way, and for this reason, after each re-training, the model used can change because
the performance is evaluated again to choose the best one and not miss the chance
to get the model that best fits the data.

This feature has been implemented to better follow the real data, considering
also new entries that could potentially be different from the initial data distribution,
and so the idea was to implement the so-called learn on the job feature inside the
system that should learn while doing, potentially improving also performance: the
improvement is not guaranteed, but the prediction error should stay around the
initial value; the same error could increase if the feature is not implemented.

42

Chapter 8

Results

Two projects have been analyzed and used to test the system: Project A and
Project B (names are anonymized to avoid data disclosure). A project describes a
type of product and all related details: a product can be very different from the
others, so data has been split to avoid interference, reducing the noise in predictions
and thus getting more accurate results. Project A simulations have been run on
the same day, while Project B ones have been run on more days: for this reason,
the two representations will slightly differ to better illustrate the results and the
considerations that it is necessary to do on those data.

The system can exploit 2 features introduced in chapter 7: data augmentation
and CML. In order to get exhaustive results, all combinations of these 2 features
have been tested, leading to 4 different scenarios, plus the reference one (labeled
as real). Those scenarios are assigned with labels, in order to distinguish them but
avoid reporting the description every time: A stands for augmentation, C for CML,
and the N prefix means not.

• Real: the real cost of the simulations, computed using real runtime value
from the dataset and multiplied by the instance cost; the system is not used
here, this is the reference value.

• NANC: No Augmentation, No CML; no data augmentation and no CML
(just one training at the beginning).

• ANC: Augmentation, No CML; data augmentation is present, but no CML.

• NAC: No Augmentation, CML; no data augmentation, but the CML is
present (there is a re-training every n entries).

• AC: Augmentation, CML; data augmentation and CML are both present.

8.1 Comparison between ML algorithms perfor-

mance

The performance has been evaluated for all 4 scenarios; it is possible to see from
the graphs (reported below) that is not necessary that the runtime parameters

43

Results

are very accurate because this is not the main point: the goal is to get the best
runtime prediction, and the intermediate values are not displayed or used outside
the system; the only value that could be interesting is the ncpus parameter because
this could tell if the instance would be fully utilized or not, giving the opportunity
to choose a smaller instance to reduce even more the final cost of the simulation.
The algorithms used are reported using labels instead of the full names, and the
mapping is reported in Table 8.1.

Acronym ML algorithm
MLP Multi-Layer Perceptron
SVR Support-Vector Machine
LSVR Linear Support-Vector Machine
RF Random Forest
DT Decision Tree
LR Linear Regression
PR Polynomial Regression
KN K-Nearest Neighbors
MV Mean Value

Table 8.1: ML labels and algorithms mapping

8.1.1 Runtime parameters

The runtime parameters’ performance can be evaluated by looking at each algo-
rithm for each scenario, considering the MAPE as the reference: the values reported
have been rounded to avoid numbers with too many digits. The graph reported in
Fig.8.1 shows the comparison between the cput parameter MAPE, leading to a very
interesting result: using the data augmentation on the runtime parameters is not so
useful and it leads to a bigger error, so it is not good if the system prediction would
stop here. The reason behind the choice of cput parameter to show these results, it
is because that one is directly related to the runtime value for the next predictor,
so it could be an indicator for the global system, more than the other parameters,
which are necessary for the system but don’t show the same relationship with the
runtime. In the case of the ncpus parameter (Fig.8.3), the values reported are 0
because the error is negligible, so the approximation led to 0 values.

8.1.2 Runtime output values

The runtime prediction uses again the MAPE as a reference for performance eval-
uation. The results consider the whole predictors’ chain: this is the error of the
whole system about its output. As it is possible to see, for some algorithms the
data augmentation can help in reducing the average error, while in other cases it
leads to a higher error.

Considering the relationship between cput and runtime, it is possible to see in
Fig.8.5 that all parameters contribute to the final prediction, and so the average
error is not dependent on a specific parameter but on the whole input set.

44

Results

8.2 Predictions with CML

The system performs quite well on data using only one single training phase at the
beginning, but the system can benefit from the CML and it is possible to notice
this from both projects, A and B. The effect of the introduction of the CML can
be seen not on the MAPE value, but in how the system performs on successive
simulations, so in a time interval in which several runs have been scheduled and
executed. Assuming this, there are two behaviors that the results show: Project
A total cost can be reduced using the system, while Project B is an example of
how the system can diverge from real data trends if it is not re-trained after n
simulations, leading to a prediction that seems correct, but that becomes a huge
cost increment while considering the real runtime of simulations.

The results are collected by using a set of simulations not seen by the system
before, and kept separate for this test: the test set must not be shared with the
system like the validation one to avoid fitting the system on a particular set of
data; this approach allows understanding if the system is able to generalize when
newer data is provided to it. There is a loop on the test set, such that for each
iteration a simulation is passed to the system to predict the corresponding runtime.
When the prediction is ready, this information is used to compute the predicted
cost of the simulation: the system also identifies the best cloud provider to be
used and if the predicted provider is the same used by the real simulation, the real
runtime is used to compute the estimated cost, otherwise, if the providers differ the
curves presented in the chapter 7 are exploited to estimate the running time of the
simulation on the predicted provider, obtaining in such a way the estimated cost if
the simulation would have run on the provider chosen by the prediction system. In
the end, it is possible to compare the real cost of the simulations and compare it
with the estimated cost, having a better way for the comparison of the 4 scenarios.

8.2.1 Project A

Project A simulations have been run on two consecutive days, so the results are
reported only as the cumulative cost for those days: the reason is that a curve is not
suitable because the granularity of the data is the day and so a bar representation
is better. The graph in Fig.8.11 reports the comparison between the real total cost
and the prediction using the system for all 4 scenarios: it is possible to notice how
the cumulative predictions are close to the real value, with a ∆ ∼ 1%.

Exploiting the scalability curves of chapter 7, in Fig.8.12 is possible to see that
the combination of data augmentation and CML led to a very interesting result: it
is possible to optimize the total costs using the system. If the simulations would
have scheduled with the prediction system, the total cost would have been reduced
by 9.46%. The main advantage shown here is that the system could effectively
reduce the total cost and help the scheduling of simulations on the right cloud
provider to run them at the lowest cost.

Project A final results can lead to another result: the system MAPE could be
lower without the data augmentation, but then looking at the cumulative cost,
allows the system to better generalize over other data and predict a better cloud

45

Results

2 4 6 8 10 12 14 16

MV

KN

PR

LR

DT

RF

LSVR

SVR

MLP

MAPE (%)

A
lg
or
it
h
m

NANC
ANC
NAC
AC

Figure 8.1: Project A cput

5 10 15 20 25 30 35 40 45 50 55

MV

KN

PR

LR

DT

RF

LSVR

SVR

MLP

MAPE (%)

A
lg
or
it
h
m

NANC
ANC
NAC
AC

Figure 8.2: Project A memory GB

46

Results

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

MV

KN

PR

LR

DT

RF

LSVR

SVR

MLP

MAPE (%)

A
lg
or
it
h
m

NANC
ANC
NAC
AC

Figure 8.3: Project A ncpus

2 4 6 8 10 12 14 16 18 20 22 24 26 28

MV

KN

PR

LR

DT

RF

LSVR

SVR

MLP

MAPE (%)

A
lg
or
it
h
m

NANC
ANC
NAC
AC

Figure 8.4: Project A vmem GB

47

Results

1 2 3 4 5 6 7 8 9 10 11

MV

KN

PR

LR

DT

RF

LSVR

SVR

MLP

MAPE (%)

A
lg
or
it
h
m

NANC
ANC
NAC
AC

Figure 8.5: Project A runtime

50 100150200250300350400450500550600650700750750

MV

KN

PR

LR

DT

RF

LSVR

SVR

MLP

MAPE (%)

A
lg
or
it
h
m

NANC
ANC
NAC
AC

Figure 8.6: Project B cput

48

Results

25 50 75 100 125 150 175 200 225 250

MV

KN

PR

LR

DT

RF

LSVR

SVR

MLP

MAPE (%)

A
lg
or
it
h
m

NANC
ANC
NAC
AC

Figure 8.7: Project B memory GB

5 10 15 20 25 30 35 40

MV

KN

PR

LR

DT

RF

LSVR

SVR

MLP

MAPE (%)

A
lg
or
it
h
m

NANC
ANC
NAC
AC

Figure 8.8: Project B ncpus

49

Results

0.5 1 1.5 2 2.5 3 3.5 4 4.5

MV

KN

PR

LR

DT

RF

LSVR

SVR

MLP

MAPE (%)

A
lg
or
it
h
m

NANC
ANC
NAC
AC

Figure 8.9: Project B vmem GB

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

MV

KN

PR

LR

DT

RF

LSVR

SVR

MLP

MAPE (%)

A
lg
or
it
h
m

NANC
ANC
NAC
AC

Figure 8.10: Project B runtime

50

Results

Real NANC ANC NAC AC
0

5

10

15

20

25

21.93 22.03 22.03 22.22 21.76

C
u
m
u
la
ti
ve

co
st

(e
)

Figure 8.11: Cumulative costs, real vs. predicted

Real NANC ANC NAC AC
0

5

10

15

20

21.93 21.93 21.93 21.93

19.86

C
u
m
u
la
ti
ve

co
st

(e
)

Figure 8.12: Cumulative costs, real vs. estimated

provider, which is not possible otherwise. The data augmentation increases the
error, it is true, but the final achievement is better with it. This shows how machine
learning algorithms should not overfit data and going below a certain error threshold
the system would not be able to predict correct values for unseen examples (with
respect to the seen ones during the training phase).

51

Results

8.2.2 Project B

Project B will follow a different representation approach: the time interval consid-
ered is bigger than the other project, so a curve graph can better show the growth
of costs during the time. As it is possible to see in Fig.8.13 the predictions of all
4 scenarios are quite similar, but these are predictions and not estimated values
using the scalability curves of chapter 7: this disclaimer is needed because only
by looking at these data the reader could be fooled thinking that the system will
provide always correct results. The detail that changes how these results could
be read is the chosen cloud provider because it is true that the predictions seem
accurate, but the reality is different looking at estimated data.

0 5 10 15 20 25

50

100

150

200

250

300

Day

C
u
m
u
la
ti
ve

co
st

(e
)

Real
NANC
ANC
NAC
AC

Figure 8.13: Cumulative costs, real vs. predicted

Project B is a very good example to show how the system seems working well,
but when data starts to change it is no longer able to generalize and follow the new
trend: at day 20 the simulations started to be run using the vm type parameter set
to 3 instead of 4. The solution is the already known CML and the data augmenta-
tion, which helps in continuously considering new data when available and scaling
on different providers, following the simulations during the time. In Fig.8.14 the
comparison is between the real cumulative cost with the estimated costs: this is
different from the comparison with predictions. In this case, the system is evaluated
by looking at what effects it has on the scheduling and final cost and this is the
main point: how the system is valuable when compared to the real case by using
the estimations and not the predictions. The curves NANC and NAC overlap and
they are the ones that from day 20 start diverging from the real curve. The curves
Real, ANC, and AC overlap again, but they have the same trend.

In order to better present the results, a cumulative bar graph is reported in
Fig.8.15: here the differences between scenarios are clearly visible.

52

Results

0 10 20 30 40
0

100

200

300

400

500

∆ = 64.85%

Day

C
u
m
u
la
ti
ve

co
st

(e
)

Real
NANC
ANC
NAC
AC

Figure 8.14: Cumulative costs, real vs. estimated

Real NANC ANC NAC AC
0

100

200

300

400

500

282.52

465.75

282.52

465.75

282.52

C
u
m
u
la
ti
ve

co
st

(e
)

Figure 8.15: Cumulative costs, real vs. estimated

8.3 Summary

In conclusion, the results presented show two behaviors, one represented by Project
A and the other by Project B. Project A showed that the system can provide a
possible saving in terms of total costs using different cloud providers with respect
to the one really used during the simulations’ run: exploiting the prediction sys-
tem, the potential saving achievable in this situation is about 9.46%, which is an
interesting percentage. Project B, instead, showed how the system could provide

53

Results

the wrong prediction if not re-trained and the data is augmented, resulting in a
potentially higher cost up to 64.85% like in this case. Both projects have been
chosen to show the benefits of the system and possible drawbacks: the prediction
system should be kept updated and data should be augmented to get the best out
of it.

54

Chapter 9

Conclusions

The system designed and developed to write this thesis can lead to a few key points
about such implementation in a real-world scenario. Machine learning systems must
be kept updated, learning from the new data and not only using information learnt
at the beginning. Data used as input should be augmented not only if the number
of training examples is not enough to train an ML system, but also to provide the
latter with different examples crafted from the real ones: think about a project
in which only one cloud provider is used to run simulations, so the system will be
able to predict accurately only runtimes on that platform and have no clues for the
others; this could fool the system because it has to improvise predictions when they
use a different provider and obviously this will lead to an error that could become
very big like in Project B.

Considering the data augmentation and CML benefits, ML systems are able
to outperform human decisions when a lot of information that can be collected in
tables is present: machines achieve much higher performance with this type of data
called structured. The problems that could arise are evident, but the benefits are
much more interesting than some drawbacks that could be mitigated by simply
augmenting data and re-training the system when n new data entries are available.

9.1 Improvements

There are two main improvements that can be made to make the system more
suitable for real-world scenarios and increase its performance and resiliency.

The first improvement that can be made is related to data collection from
the scheduling system: the prediction unit has been implemented and designed
based on available data, but the data collection was not designed to get data that
would have been used to train machine learning algorithms. For this reason, the
information collected could be changed to allow the prediction system to have more
features in input, hoping for a performance improvement: more features do not
mean adding tons of new information, but adding the right one that will characterize
each simulation type, something that can allow a better generalization over new
data.

55

Conclusions

The other improvement that can be done is running more benchmarks on cloud
providers, to get more information about the runtime on different configurations
(different instances or different numbers of the same one). If more benchmarks had
been available, the scalability curves would have been more accurate, considering
also the case at the end of the interval of interest and allowing the creation of a
better model for cloud providers’ estimation during data augmentation.

There is one more thing that could be done in a real working environment:
use the system as a part of something bigger. The idea is not to stop on a single
prediction system, but to use it to predict the runtimes of a project’s simulations,
have an idea of how much all of them will need to run, and proceed with a schedule
in order to be more productive, like running on weekends in order to have results
ready for the next week and start working on that.

56

Appendix A

Used tools

A.1 Sklearn library (Python)

Scikit-learn is an open-source machine learning library that supports supervised
and unsupervised learning. It also provides various tools for model fitting, data
preprocessing, model selection, model evaluation, and many other utilities [26].

A.1.1 Fitting and predicting: estimator basics

Scikit-learn provides dozens of built-in machine learning algorithms and models,
called estimators. Each estimator can be fitted to some data using its fit method
[26].

The fit method usually accepts 2 inputs:

• The samples matrix (or design matrix)X. The size ofX is typically (n samples,

n features), which means that samples are represented as rows and features
are represented as columns [26].

• The target values y, which are real numbers for regression tasks, or integers for
classification (or any other discrete set of values). For unsupervised learning
tasks, y does not need to be specified. y is usually a 1d array where the i-th
entry corresponds to the target of the i-th sample (row) of X [26].

>>> from sklearn.ensemble import RandomForestClassifier

>>> clf = RandomForestClassifier(random_state=0)

>>> X = [[1, 2, 3], # 2 samples, 3 features

... [11, 12, 13]]

>>> y = [0, 1] # classes of each sample

>>> clf.fit(X, y)

RandomForestClassifier(random_state=0)

Figure A.1: Fit a RandomForestClassifier to some very basic data [26]

57

Used tools

>>> clf.predict(X) # predict classes of the training data

array([0, 1])

>>> clf.predict([[4, 5, 6], [14, 15, 16]]) # predict classes of

new data

array([0, 1])

Figure A.2: Example of prediction [26]

Both X and y are usually expected to be numpy arrays or equivalent array-
like data types, though some estimators work with other formats such as sparse
matrices [26].

Once the estimator is fitted, it can be used for predicting target values of new
data. You do not need to re-train the estimator, as shown in Fig.A.2 [26].

A.1.2 Automatic parameter searches

All estimators have parameters (often called hyperparameters in the literature) that
can be tuned. The generalization power of an estimator often critically depends
on a few parameters. For example a RandomForestRegressor has a n estimators

parameter that determines the number of trees in the forest, and a max depth

parameter that determines the maximum depth of each tree. Quite often, it is not
clear what the exact values of these parameters should be since they depend on the
data at hand [26].

Scikit-learn provides tools to automatically find the best parameter combina-
tions (via cross-validation). In the example in Fig.A.3, we randomly search over
the parameter space of a random forest with a RandomizedSearchCV object. When
the search is over, the RandomizedSearchCV behaves as a RandomForestRegressor
that has been fitted with the best set of parameters [26].

58

Used tools

>>> from sklearn.datasets import fetch_california_housing

>>> from sklearn.ensemble import RandomForestRegressor

>>> from sklearn.model_selection import RandomizedSearchCV

>>> from sklearn.model_selection import train_test_split

>>> from scipy.stats import randint

...

>>> X, y = fetch_california_housing(return_X_y=True)

>>> X_train, X_test, y_train, y_test = train_test_split(X, y,

random_state=0)

...

>>> # define the parameter space that will be searched over

>>> param_distributions = {’n_estimators’: randint(1, 5),

... ’max_depth’: randint(5, 10)}

...

>>> # now create a searchCV object and fit it to the data

>>> search =

RandomizedSearchCV(estimator=RandomForestRegressor(random_state=0),

... n_iter=5,

... param_distributions=param_distributions,

... random_state=0)

>>> search.fit(X_train, y_train)

RandomizedSearchCV(estimator=RandomForestRegressor(random_state=0),

n_iter=5,

param_distributions={’max_depth’: ...,

’n_estimators’: ...},

random_state=0)

>>> search.best_params_

{’max_depth’: 9, ’n_estimators’: 4}

>>> # the search object now acts like a normal random forest

estimator

>>> # with max_depth=9 and n_estimators=4

>>> search.score(X_test, y_test)

0.73...

Figure A.3: Example of random search of hyperparameters [26]

59

Bibliography

[1] IBM, “What is cloud computing?.” https://www.ibm.com/cloud/learn/

cloud-computing

[2] F. Cicchiello, “Analysis, modeling and implementation of cost models for a
multi-cloud Kubernetes context”, December 2021

[3] AWS, “AWS VM shapes.” https://aws.amazon.com/it/ec2/

instance-types/

[4] Oracle, “Oracle VM shapes.” https://docs.oracle.com/en-us/iaas/

Content/Compute/References/computeshapes.htm

[5] Wikipedia, The Free Encyclopedia, “Regression analysis.” https://en.

wikipedia.org/wiki/Regression_analysis

[6] Wikipedia, The Free Encyclopedia, “Supervised learning.” https://en.

wikipedia.org/wiki/Supervised_learning

[7] Wikipedia, The Free Encyclopedia, “Multilayer perceptron.” https://en.

wikipedia.org/wiki/Multilayer_perceptron

[8] Wikipedia, The Free Encyclopedia, “Support-vector machine.” https://en.

wikipedia.org/wiki/Support-vector_machine

[9] Wikipedia, The Free Encyclopedia, “Random forest.” https://en.

wikipedia.org/wiki/Random_forest

[10] Wikipedia, The Free Encyclopedia, “Decision tree learning.” https://en.

wikipedia.org/wiki/Decision_tree_learning

[11] Wikipedia, The Free Encyclopedia, “Linear regression.” https://en.

wikipedia.org/wiki/Linear_regression

[12] Wikipedia, The Free Encyclopedia, “Polynomial regression.” https://en.

wikipedia.org/wiki/Polynomial_regression

[13] Wikipedia, The Free Encyclopedia, “k-nearest neighbors algorithm.” https:

//en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

[14] W. Zhang, “Machine learning approaches to predicting company bankruptcy”,
Journal of Financial Risk Management, vol. 06, 01 2017, pp. 364–374, DOI
10.4236/jfrm.2017.64026

[15] Wikipedia, The Free Encyclopedia, “Mode (statistics).” https://en.

wikipedia.org/wiki/Mode_(statistics)

[16] Wikipedia, The Free Encyclopedia, “Median.” https://en.wikipedia.org/

wiki/Median

[17] PUNCH Torino S.p.A., “PUNCH Torino S.p.A. website.” https://www.

punchtorino.com/

[18] Do IT Systems S.r.l., “Do IT Systems S.r.l. website.” https://www.

doit-systems.it/

60

https://www.ibm.com/cloud/learn/cloud-computing
https://www.ibm.com/cloud/learn/cloud-computing
https://aws.amazon.com/it/ec2/instance-types/
https://aws.amazon.com/it/ec2/instance-types/
https://docs.oracle.com/en-us/iaas/Content/Compute/References/computeshapes.htm
https://docs.oracle.com/en-us/iaas/Content/Compute/References/computeshapes.htm
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Multilayer_perceptron
https://en.wikipedia.org/wiki/Multilayer_perceptron
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Support-vector_machine
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Random_forest
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Linear_regression
https://en.wikipedia.org/wiki/Polynomial_regression
https://en.wikipedia.org/wiki/Polynomial_regression
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://doi.org/10.4236/jfrm.2017.64026
https://en.wikipedia.org/wiki/Mode_(statistics)
https://en.wikipedia.org/wiki/Mode_(statistics)
https://en.wikipedia.org/wiki/Median
https://en.wikipedia.org/wiki/Median
https://www.punchtorino.com/
https://www.punchtorino.com/
https://www.doit-systems.it/
https://www.doit-systems.it/

Bibliography

[19] Altair Engineering Inc., “Altair PBS Professional.” https://www.altair.

com/pbs-professional/

[20] Altair, “Altair pbs professional 2021.1.3 cloud guide.” https://help.altair.
com/2021.1.3/PBS%20Professional/PBSCloudGuide2021.1.3.pdf

[21] Microsoft, “Azure VM shapes.” https://docs.microsoft.com/en-us/

azure/virtual-machines/hbv3-series

[22] Google, “Google VM shapes.” https://cloud.google.com/compute/

vm-instance-pricing

[23] Wikipedia, The Free Encyclopedia, “Infiniband.” https://en.wikipedia.

org/wiki/InfiniBand

[24] Wikipedia, The Free Encyclopedia, “Remote direct memory access.” https:

//en.wikipedia.org/wiki/Remote_direct_memory_access

[25] T.-P. Pham, J. J. Durillo, and T. Fahringer, “Predicting workflow task exe-
cution time in the cloud using a two-stage machine learning approach”, IEEE
Transactions on Cloud Computing, vol. 8, no. 1, 2020, pp. 256–268, DOI
10.1109/TCC.2017.2732344

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python”, Journal of Machine Learning Research, vol. 12,
2011, pp. 2825–2830

[27] P. A. Abhang, B. W. Gawali, and S. C. Mehrotra, “Chapter 5 - emotion
recognition”, Introduction to EEG- and Speech-Based Emotion Recognition
(P. A. Abhang, B. W. Gawali, and S. C. Mehrotra, eds.), pp. 97–112, Academic
Press, 2016, DOI https://doi.org/10.1016/B978-0-12-804490-2.00005-1

61

https://www.altair.com/pbs-professional/
https://www.altair.com/pbs-professional/
https://help.altair.com/2021.1.3/PBS%20Professional/PBSCloudGuide2021.1.3.pdf
https://help.altair.com/2021.1.3/PBS%20Professional/PBSCloudGuide2021.1.3.pdf
https://docs.microsoft.com/en-us/azure/virtual-machines/hbv3-series
https://docs.microsoft.com/en-us/azure/virtual-machines/hbv3-series
https://cloud.google.com/compute/vm-instance-pricing
https://cloud.google.com/compute/vm-instance-pricing
https://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/Remote_direct_memory_access
https://en.wikipedia.org/wiki/Remote_direct_memory_access
https://doi.org/10.1109/TCC.2017.2732344
https://doi.org/https://doi.org/10.1016/B978-0-12-804490-2.00005-1

	Introduction
	Objectives
	Outline

	Introduction to cloud computing
	Public cloud
	Private cloud
	Hybrid cloud
	Multi-cloud
	Cloud costs
	Virtual Machine (VM)
	Bare Metal (BM)

	Introduction to machine learning
	Regression algorithm
	Machine Learning algorithms
	Multi-Layer Perceptron (MLP)
	Support-Vector Machine (SVR)
	Linear Support-Vector Machine (LSVR)
	Random Forest (RF)
	Decision Tree (DT)
	Linear Regression (LR)
	Polynomial Regression (PR)
	K-Nearest Neighbors (KN)
	Mean Value (MV)

	HPC at PUNCH Torino S.p.A.
	Company introduction
	Current infrastructure
	Altair PBS Professional
	Cloud providers
	Instances

	Related work
	Two-Stage Machine Learning Approach

	System architecture
	Two-stage predictor
	Pre-runtime parameters
	Runtime parameters
	Output

	Implementation
	Data available
	Feature extraction

	Data augmentation
	Estimation of other clouds performance

	Machine Learning predictors
	Hyperparameter search
	Training
	Validation
	Performance evaluation

	Runtime parameters prediction
	Runtime prediction
	CML (Continuous Machine Learning)

	Results
	Comparison between ML algorithms performance
	Runtime parameters
	Runtime output values

	Predictions with CML
	Project A
	Project B

	Summary

	Conclusions
	Improvements

	Used tools
	Sklearn library (Python)
	Fitting and predicting: estimator basics
	Automatic parameter searches

	Bibliography

