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Summary

Chirped and tapered Quantum Dot semiconductor optical amplifiers (SOAs) are
a valid solution for the direct amplification of ultra-short pulsed sources such
as mode-locked lasers, thanks to their broad gain bandwidth and fast recovery
times. Traditionally, the SOAs are operated in a so-called single-pass configuration:
the radiation enters from one facet, it is amplified and exits from the opposite
side. However, it was found out in [7] that a double-pass configuration, where the
radiation is extracted from the same facet it is injected into, can lead to enhanced
performances, increasing gain and output power, with a limited degradation of the
amplified pulses duration, making this configuration a possible future standard for
the amplification of light sources.
The main objective of this thesis work consists in the enhancement of an existing
time-domain traveling-wave (TDTW) model to allow the simulation of QD layers
with different optical properties ("chirped layers") and to include stimulated emission
from the second QD excited state, which is typically neglected in theoretical laser
models. Those improvements were implemented in an existing TDTW simulator
in MATLAB. The reliability of the simulator to predict the behaviour of chirped
QD SOAs is validated through the direct comparison of the numerical results with
the experimental data measured by the Photonics group at Heriot-Watt University,
Edinburgh, on a chirped, tapered and multi-section QD SOA.
After a brief introduction to the problem and a state-of-the-art review in the first
chapter, in the second one I concisely examine the peculiar aspects of Quantum
Dot physics, with particular attention to their optical properties. Then, in the
third chapter, I derive and discuss the equations constituting the TDTW model.
In the fourth chapter, I present the device under test alongside the experimental
setups considered. In the fifth chapter I extensively describe the main details of
the MATLAB implementation of the TDTW model and, finally, in the last chapter,
I report and discuss the most relevant simulations results.
The main results presented in this thesis are the following. I found out that this
simulator is able to predict the tunable spectral asymmetry affecting the output
power spectra at the rear and front facets of the considered SOA under continuous
wave biasing conditions, in which the device works as a SLED. Three main spectral
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components are registered at 1210 nm, 1240 nm and 1280 nm. Their relative weights
can be tuned by changing the front and rear section driving currents. Results
are in good agreement with the reference measurements. Moreover, I performed
simulations with an external optical excitation in order to test the amplifying
capabilities of the device, in both single and double pass amplification configurations.
In agreement with the experimental data, considering a source pulse with average
power of 2.5 mW and pulse duration of 2.3 ps, the SOA under test in double pass
configuration offers an enhancement of signal gain up to almost 4.1 dB with respect
to the same device in single pass configuration. This comes without significant
pulse degradation: the pulse duration varies between 2.4 ps and 2.7 ps.
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Chapter 1

Introduction and Thesis outline

In the spectral region for wavelengths in the range 1.1−1.3 µm, Quantum Dot-based
active materials caught a considerable amount of interest and show significant
promise because the average Quantum Dot size can be finely engineered in order to
target a particular wavelength of interest. This latter promising feature has been
enabled prominently by the improvements made in the field of epitaxial growth
techniques, that allow to create semiconductor heterostructures wherein carriers
are confined in one or more directions, on a scale comparable with- or even smaller
than- the de Broglie wavelength. Among the reduced dimensionality structures,
there are:

• Quantum Wells, one-dimensional confinement, two free directions (2D
structures);

• Quantum Wires, two-dimensional confinement, one free direction (1D
structures);

• Quantum Dots, three-dimensional confinement, no free direction (0D struc-
tures).

These heterostructures, besides being characterized by a different carrier confine-
ment, are also differing for what concerns the energy levels and the density of states,
namely the fraction of states that will be occupied by the system at a given energy.
In particular, Quantum Dots, thanks to the three dimensional confinement of the
carriers on a nanometric scale, present a set of discrete energy levels, which are
quite similar to those of an atom. Between these energy levels, some interband
transitions with specific transition threshold energies can take place and they are
the reason why Quantum Dot materials have particular optical properties that
differ from those of higher-dimensionality structures. Concerning the density of
states, in an ideal case, they are characterized by a series of Dirac’s deltas centered
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at the previously-mentioned transition energies. Dots with different features (e.g.
dimensions), of course, will be characterized by a different set of transition energies.
Moreover, if an array of supposedly identical dots is considered, it could also happen
that these dots do not have perfectly matched features, meaning that they provide
contributions to the total density of states that are slightly detuned with respect to
the nominal, ideal transition energy of the Dirac’s delta. This results in a density
of states that can be assumed to be broadened inhomogeneously.

The main objective of this thesis research consists in the numerical simulation of
the two-section tapered semiconductor optical amplifier with chirped quantum
dot-based active region in single and double pass configuration, comparing the
results with the experimental ones showcased in [7]. This is done by expanding the
rate equation model and the time-domain travelling-wave approach presented in [1],
[13] and [17], in order to take into account the chirp of the Quantum Dot layers,
the emission from the second excited state and some experimental details so to
emulate the setup employed in [7] (i.e. the mirror for the double pass configuration
and the external cavity filter). A schematic of said device is reported in Figure 1.1.

Figure 1.1. Schematic of the device under test. Taken from reference [8].

As highlighted by [7], employing such devices for the amplification of ultrashort
pulses offers many advantages, including the low cost, good efficiency and simplicity.
Furthermore, on account of the tapered structure and of the chirp of the layers,
they offer increased output power, short gain recovery times and large gain over
broad bandwidths ([7] and [14]).
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This thesis work is organized as follows:

In Chapter 2, some fundamental concepts related to the physics and fabrication
of Quantum Dots will be presented.

In Chapter 3, the theory of the time-domain travelling-wave model implemented
in the MATLAB simulation will be discussed, dealing with the travelling wave
equations, the multi-population rate equation model and the time-stepped solution
of the field propagation equations.

In Chapter 4, the device and the experimental setup of [7] will be analysed more
in depth, in order to have a better understanding of what has been implemented in
the MATLAB program.

In Chapter 5, the MATLAB code implementation will be examined in detail, with
a reference to the theory and experimental details of the previous chapters.

In Chapter 6, finally, the numerical simulation results will be compared with
the experimental ones of [7] (external optical excitation) and [9] (continuous wave
regime).



Chapter 2

Quantum Dot Basics

Figure 2.1. Representation of a quantum dot, where the particles are
constrained in all directions, making it a zero-dimensional heterostructure.
Taken from reference [11].

In this second chapter, the general concepts behind QD heterostructures will be
shortly reviewed. In particular, in a first section, the main electronic properties
of III-V semiconductor QDs, such as density of states and energy levels, will be
discussed; in a second section, there will be an overview of the main techniques that
can be exploited for the fabrication of QD-based active materials for optoelectronic
applications.
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2.1 III-V semiconductor QDs properties
By employing III-V semiconductors, it is possible to realize QDs that are able cover
the range of wavelengths between 0.9 µm and 1.8 µm [16], used in telecommunication
applications. Depending on the target wavelength, different III-V compounds can
be employed for the creation of the heterostructure.
In order to evaluate the energy levels and the other electronic properties of a
cylindrical QD, we have to start from the evaluation of the electron and hole
eigenstates. Of course, the starting point is the time-independent Schrödinger’s
equation, assuming that the QD dimensions are much larger than the semiconductor
unit cell, meaning that the effective mass approximation can be employed. Within
the parabolic band approximation, it reads:C

− ℏ2

2m∗ ∇2 + U(r)
D

Ψ(r) = EΨ(r) (2.1)

where ℏ is the reduced Planck constant, m∗ is the electron or hole effective mass,
U(r) is the confinement potential for electrons and holes (three-dimensional since
we are considering a zero-dimensional heterostructure). Ψ(r) is the electron or hole
single-particle wavefunction and E represents the energy eigenvalue.
The previous assumption regarding the dimensions of the QD with respect to those
of the semiconductor unit cell also allows us to factorize the wavefunction Ψ(r) in
two terms, one referring to the slowly varying envelope functions φ(r) and another
one referring to the Block functions u (evaluated near the edge of the band, where
k ≃ 0):

Ψ(r) = φ(r)u(k ≃ 0, r) (2.2)

With wavefunctions in this formulation, the equation (2.1) can be rewritten for the
electron or hole envelope functions:C

− ℏ2

2m∗ ∇2 + U(r)
D

φ(r) = Eφ(r) (2.3)

As explained in [16], in order to retrieve analytically the QD wavefunctions, it is
necessary to switch from a set of Cartesian coordinates (x, y, z) to a set of cylindrical
coordinates (x, r, θ). This strategy is enabled by the fact that, according to [18], we
can assume that a lens-shaped QD with radius significantly larger than its height
has a weak confinement in the in-plane directions r and θ (harmonic potential)
and a strong confinement in the growth direction x (infinitely high potential well).
Within these hypotheses, according to [16], the potential in cylindrical coordinates
becomes U(x, r, θ) = ½ m∗ω2r2 + Ux(x). At this point, it is possible to factorize the
electron and hole envelope functions of Equation (2.3) with an in-plane function
ϕ(r, θ) and a transverse one ξ(x); these functions also allow us to separate Equation
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(2.3) in a set of two independent eigenvalue equations:C
− ℏ2

2m∗
d

dx
+ Ux(x)

D
ξ(x) = Enξ(x) (2.4a)C

− ℏ2

2m∗

A
∂2

∂r2 + 1
r

∂

∂r
+ 1

r2
∂2

∂θ2

B
+ 1

2m∗ω2r2
D

ϕ(r, θ) = (E − En)ϕ(r, θ) (2.4b)

Since the potential in the growth direction x was assumed to be an infinitely high
well, it is reasonable to expect a solution for Equation (2.4a) in the typical form
for this kind of problems [15]:

ξ(x) =
ó

2
Lw

sin
3

nπx

Lw

4
(2.5)

where n ∈ N and where Lw is the width of the potential well. The energy eigenvalues
will be consequently discretized and written as

En = ℏ2π2n2

2m∗L2
w

(2.6)

Instead, the solution of the in-plane eigenvalue equation (2.4b) for electrons and
holes, as explained in [16], is in the form of Fock-Darwin eigenstates:

ϕp,m(r, θ) = ϕ0 exp(jmθ) exp
3

−1
2

m∗ω

ℏ
r2
4óm∗ω

ℏ
r

|m|

L|m|
p

3
m∗ω

ℏ
r2
4

(2.7)

where ϕ0 is a normalization constant, L|m|
p are the generalized Laguerre polynomials,

index m ∈ Z is the angular momentum quantum number and index p ∈ W is the
radial quantum number.
Considering once again the assumption that the height of the QD is significantly
smaller than its radius, it is possible to state that only the fundamental trans-
verse energy eigenvalue has a non-negligible contribution. Therefore, the energy
eigenvalues for the complete system result to be discrete and in the following form,
according to [3]:

Ep,m = E1 + ℏω(2p + |m| + 1) (2.8)

It is possible to recognize the various discrete levels, characterised by different sets
of quantum numbers:

• Ground state (GS), with quantum numbers (0,0);

• First excited state (ES1), with quantum numbers (0, ±1);

• Second excited state (ES2), with quantum numbers (0, ±2) and (1,0).
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Figure 2.2. Representation of the QD energy eigenvalues of Equation (2.8).

Considering Pauli’s exclusion principle, it is possible to say that the ground state has
a two-fold degeneracy (µGS = 2), since it is able to host two carriers with opposite
spin. Analogously, we can also say for the same reason that the first excited state
has a four-fold degeneracy (µES1 = 4), while the second excited state has a six-fold
degeneracy (µES2 = 6). A graphical representation of said energy eigenvalues is
reported in Figure 2.2. In addition to these three main levels, Equation (2.8) yields
also infinitely-many equally-spaced eigenstates at progressively high energies. In
reality, this model is valid only at low energies, since, at high energy, the eigenstate
confinement is progressively reduced, causing the levels to become more degenerate
and to be closer to each other.
In real-world quantum dots, progressing towards higher energies, the discrete levels
transition to a continuum of quantum well-like states belonging to the so-called
wetting layer (WL) and, eventually, to the 3D bulk-like states of the separate
confined heterostructure (SCH). Of course, there will be transitions from and to
these states, with their own characteristic times. Notice that, for instance, the
set of SCH states is actually exploited in order to inject carriers in the QD from
the external environment, since, otherwise, it would not be possible to access the
confined discrete states of the QD itself. Basically, the carriers are injected there
with a certain efficiency and then they progressively relax towards the lower energy
levels according to the characteristic escape and capture times of the various levels.
In Figure 2.3, it is possible to appreciate a schematic band structure of the QD,
with the confined QD states, the WL continuum and the SCH continuum.
Not only this, as stated by [16], in real quantum dots it is possible to observe that
the holes are significantly less confined with respect to the electrons. This means
that the QD discrete energy levels in valence band are characterised by a smaller
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Figure 2.3. Schematic of a QD electronic band structure, with the contin-
uum of WL and SCH states in gray.

energy difference with respect to those in conduction band and the continuum of
WL and SCH levels in valence band can be found at lower energies.

After the analysis of the energy levels of a QD heterostructure, it is also interesting
to study its density of states, since it is influencing the properties of this kind of
materials. Contrary to the density of states in bulk semiconductors (with a square
root profile) and in quantum wells (with a stepped profile), in the case of QDs, the
density of states will be in the form presented in [15]:

DQD(E) = 2
Ø
p,m

δ(E − Ep,m) (2.9)

where Ep,m are the quantum dot discrete levels. In Figure 2.4, the densities of
states for the various heterostructures are reported.

(a) (b) (c) (d)

Figure 2.4. (a) Bulk DOS. (b) Quantum well DOS. (c) Quantum wire DOS.
(d) Quantum dot DOS. All taken from reference [11].
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2.2 Fabrication techniques

Figure 2.5. AFM image of InAs QDs on GaAs substrate. Taken from
reference [25].

After the review of the most important electronic properties of QD of the previous
one, in this section the main fabrication techniques for QD active materials will be
shortly discussed as well. The so-called Molecular Beam Epitaxy (MBE) technique is
for sure the most important and employed one. MBE is comprehensively described
in [10].
First, let’s consider two materials that are fairly lattice-mismatched, for instance
InAs and GaAs (with a 7% lattice mismatch). Starting from a GaAs substrate,
the InAs is deposited with a 2D layer-by-layer mechanism. Due to the mismatch
between the two compounds, the deposited InAs layers will result to be strained.
The strained layers form the wetting layer. This strained deposition carries on
until a certain critical amount of material (critical coverage θc) is reached: at this
point, the 2D layer-by-layer mechanism is naturally substituted by the formation of
pyramid-shaped islands. Those are usually characterised by a nanometric size, even
though their features can vary appreciably depending on the growth parameters.
In Figure 2.5, it is possible to appreciate an atomic force microscopy (AFM)
image of some InAs QDs grown on a GaAs substrate. Of course, not all QDs will
be characterised by the same size, but they will have Gaussian-distributed sizes,
according to the Gaussian distribution related to the inhomogeneous broadening,
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reported in [17]:

Gi = 1
Z

exp
A

−4 ln 2(ℏ∆ωi)2

∆E2

B
(2.10)

where Z is an appropriate normalization constant that grants qi Gi = 1, ∆ωi is
the angular frequency difference between the one of the i-th level and the reference
and ∆E is the Full Width Half Maximum of the Gaussian distribution. This also
modifies the properties of the QDs, leading for instance to a non-delta DOS and to
non-monochromatic emission for QD-based lasers.
The growth of the self-assembled pyramid-shape islands above the 2D wetting
layer is called Stranski-Krastanov growth. As pointed out by [10], the Stranski-
Krastanov growth onsets due to the relaxation of elastic energy, but it doesn’t
cause dislocations at the interfaces between the mismatched materials.
After the QD layer growth, it is common to have the deposition of a capping layer.
It has been proved that the emission wavelength can be tuned by changing the
characteristics of this capping layer [16].



Chapter 3

TDTW model theory

After the analysis of the main QD electronic properties and QD fabrication tech-
niques carried out in the previous one, in this chapter, the focus will be on the
time-domain travelling-wave (TDTW) model. In particular, travelling wave equa-
tions describing the evolution of the field and rate equations describing carrier
dynamics will be expressed. Finally, we will write down the time stepped solution
of field propagation equations. These equations are the foundations for the TDTW
MATLAB program that will be used for the simulation of the device of Figure 1.1.
The time-domain travelling-wave method is of utmost importance for the simulation
of devices like optical amplifiers and lasers. It consists in the solution of the
differential equations describing the evolution of the system by means of a finite
difference scheme. Basically, the device under test is subdivided in slices with
constant length and, for each time step, we compute the evolution of the field
inside each slice. This method is clearly quite computational-heavy, but, for some
simulations, it is the only scheme that allows us to retrieve reasonable results, for
instance in the case of the double-pass configuration for the SOA under test.

3.1 Travelling wave equations
First and foremost, it is possible to express the optical field inside the active material
of the device exploiting the so-called slowly varying envelope approximation (SVEA)
that consists in expressing it as the product between a rapidly varying term and a
slowly varying term. The formula of this field is the following:

E⃗ = êϕ(x, y)
è
E+(z, t)e−jk0z + E−(z, t)e+jk0z

é
e+jω0t (3.1)

where ϕ(x, y) is the transverse mode profile, ω0 is the reference frequency, k0 is the
wave number related to the reference frequency (k0 = ω0/vg, where vg = c/neff

is the group velocity in the dielectric medium) and E± are the slowly varying
envelopes for the forward and backward travelling waves. The SVEA can be
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considered valid if one assumes to have negligible second order time and space
derivatives with respect to the first order ones, namely if:-----∂2E±

∂t2

----- ≪
-----ω0

∂E±

∂t

----- (3.2a)-----∂2E±

∂z2

----- ≪
-----k0

∂E±

∂z

----- (3.2b)

Within the assumption of the validity of the SVEA, the evolution of E± in space
and time will be described by the two following wave equations [17]:

1
vg

∂E±

∂t
± ∂E±

∂z
= −1

2(α±
i + αp)E±(z, t) − j

ω0Γxy

2cneffϵ0
P ±(z, t) + S±

sp(z, t) (3.3)

where α±
i are the forward and backward components of the intrinsic waveguide

losses, αp are the plasma losses, ϵ0 is the dielectric permittivity in vacuum, Γxy is
the field confinement factor in the active layers, P ±(z, t) are the slowly varying
envelopes of the macroscopic polarization describing the stimulated response of the
active layers and S±

sp(z, t) describes the spontaneous emission as a random noise
source.
Similarly to any other partial differential equation, the travelling wave equation
(3.3) requires boundary conditions as well. In this case, according to [6], we only
have spurious residual reflectivities at the facets of the device and an efficiency
term for the external optical source. In the double pass configuration, we have also
to take into account a term for the external cavity mirror.

E+(0, t) = r0E
−(0, t) +

ñ
1 − r2

0Einj(t) (3.4)
E−(L, t) = rLE+(L, t) + (1 − r2

L)rextE
+(L, t − τext) (3.5)

where r0 and rL are the previously-mentioned spurious reflectivities of the SOA,
Einj(t) is the externally injected optical field, rext is the reflectivity of the external
mirror for the double pass configuration and τext is the external cavity propagation
delay. The same model for boundary conditions can be employed to study edge-
emitting QD lasers, using larger values for the facet reflectivities r0 and rL.

3.2 Optical response of the active medium
While in the previous section we expressed the travelling wave equations and the
associated boundary conditions, in this one we will develop the model further by
taking into account the optical response of the QD active medium, consisting in
the macroscopic polarization P ±(z, t), linked to the stimulated response, and in
the spontaneous emission S±

sp(z, t), both appearing in (3.3).
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Starting from the first one, we can say that the macroscopic polarization is the
sum of the microscopic intraband polarization terms associated to the levels of
inhomogeneously broadened QD groups. Indeed, in this case, we consider the
inhomogeneous broadening of the QDs, which have a probability Gi (Equation
(2.10)) of belonging to the i-th QD group (with i = 1...N). The dynamics of the
microscopic polarization of the m-th level of the i-th QD group can be expressed
as:

∂p±
im

∂t
= [j(ωim − ω0) − Γ]p±

im(z, t) + j
di

m

ℏ
(2ρim(z, t) − 1)E±(z, t) (3.6)

where m = GS, ES1, ES2 and i = 1, ..., N , ℏωim are the interband transition
energies for the m-th level of the i-th group, 1/Γ is the so-called characteristic
dephasing time of the interband transitions that leads to the homogeneous broad-
ening, ρim(z, t) are the occupation probabilities for the various states, linked to the
gain 2ρim(z, t) − 1 (assuming to have the excitonic approximation, that allows us
to consider electrons and holes dynamics as equal to each other) and, finally, di

m is
the dipole matrix element that can be written as [16]:

di
m = eℏ2

m0(Em − Em′)

Ú
φ∗

m′φm dxdydz × 1
ΩL

Ú
ΩL

u∗
m′∇um dxdydz (3.7)

where Em and Em′ are the energy eigenvalues of the states that are involved in the
intraband transition (denoted as m and m′), φm, φm′ , um and um′ are exactly the
slowly varying envelope functions and the Bloch functions of Equation (2.2) and
ΩL is the volume of the semiconductor unit cell. This dipole matrix element is
basically telling whether the transition between the states m and m′ can occur or
not: if it is different from zero, it can take place, if it is zero (or close to zero) it
cannot. In the case of a QD system, it turns out that the dipole matrix element is
not zero only if the quantum numbers of the two interacting states are the same
(m′ = m), but from valence band to conduction band or vice versa.
In any case, with the microscopic polarization of Equation (3.6), we are now able
to express the macroscopic one:

P ±(z, t) = ND

hW

NØ
i=1

Ø
m=GS,

ES1,ES2

Giµmdi ∗
m p±

im(z, t), (3.8)

In order to express this equation more easily, it is necessary to compute the Fourier
transform of Equation (3.6).

jΩp±
im(z, Ω) = [j(ωim − ω0) − Γ]p±

im(z, Ω) + j
di

m

ℏ
(2ρim(z, Ω) − 1) ∗ E±(z, Ω)
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=⇒ p±
im(z, Ω) = j

1
j(Ω − ωim + ω0) + Γ

di
m

ℏ
(2ρim(z, Ω) − 1) ∗ E±(z, Ω) (3.9)

where the symbol ∗ represents a convolution operation.
Now, we have to compute Fourier transform of the macroscopic polarization of
(3.8) and then substitute (3.9) in it.

P ±
im(z, Ω) = ND

hW

NØ
i=1

Ø
m

j
Giµm

ℏ
di∗

mdi
m

j(Ω − ∆ωim) + Γ(2ρim(z, Ω) − 1) ∗ E±(z, Ω)

= j
ND

hW

NØ
i=1

Ø
m

Giµm|di
m|2

ℏΓ

I
1

1 + j Ω−∆ωim

Γ

J
(2ρim(z, Ω) − 1) ∗ E±(z, Ω)

(3.10)

The term between curly brackets in (3.10) is basically the Fourier transform
of a complex Lorentzian function centered in ∆ωim, whose anti-transform is
an exponential Lim(t) = Γ exp (j∆ωimt) exp (−Γt). This means that the factor
(2ρim(z, Ω) − 1) ∗ E±(z, Ω) is filtered by this complex Lorentzian function. Back to
the time domain, this concept can be expressed as a convolution product between
the Lorentzian function and the term (2ρim(z, t) − 1)E±(z, t):

Lim(t) ∗ {(2ρim − 1)E±} =
tÚ

−∞

Γej∆ωim(t−τ)e−Γ(t−τ)(2ρim(z, τ) − 1)E±(z, τ)dτ

(3.11)
This term of course will appear in the macroscopic polarization P ±(z, t).
As pointed out by [17], it is possible to say that the system has a memory limited
to a past interval of time of few hundreds of femtoseconds, because the macroscopic
polarization is depending only on the past evolution of ρim and E± on a limited span
of time of duration corresponding to the characteristic dephasing time 1/Γ ∼ 100 fs.
This basically leads to the so-called adiabatic approximation, that assumes that
the occupation probability of the QD states ρim is much slower than 1/Γ, allowing
us to take it out from the integral of (3.11). Therefore,

Lim(t) ∗ {(2ρim − 1)E±} = (2ρim(z, t) − 1)
tÚ

−∞

Γej∆ωim(t−τ)e−Γ(t−τ)E±(z, τ)dτ

(3.12)
where the remaining integral can be interpreted as the forward and backward field
components filtered by a Lorentzian function. Let’s denote this convolution integral
as I±

im(z, t):
I±

im(z, t) = Lim(t) ∗ E±(z, t) (3.13)
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All things considered, the macroscopic polarization term of (3.3) results to be:

−j
ω0Γxy

2cneffϵ0
P ±(z, t) =

NØ
i=1

Ø
m

g0
im(2ρim(z, t) − 1)I±

im(z, t) (3.14)

where g0
im contains the various constants:

g0
im = ΓxyGiµm|di

m|2ω0ND

2cneffϵ0ℏΓhW

= ΓxyGiND

2πℏΓhW

Am (3.15)

Now that the polarization response of the system is fully characterised, it is also
necessary to model the spontaneous emission random noise source. Assuming that
the spontaneous emission rate (per unit volume) Rsp

im from the QD confined states
is in a form similar to that presented in [5],

Rsp
im(z, t) = NDG1µm

hW

ρim(z, t)
τ sp

m
(3.16)

where τ sp
m is the spontaneous emission characteristic time from the m-th state, we

are able to write the spontaneously emitted power (per unit volume) as [17]:

|S±
sp(z, Ω)|2 =

NØ
i=1

Ø
m

|S±
im,sp(z, Ω)|2 =

= βsp

2 NlWhW

NØ
i=1

Ø
m

Rsp
im(z, t)ℏωim

πΓ |Lim(Ω)|2 =

= βsp

2 NDNlW
NØ

i=1

Ø
m

Giµm
ρim(z, t)

τ sp
m

Γ
π

ℏωim

Γ2 + (Ω − ∆ωim)2

(3.17)

where Nl is the number of QD layers, βsp is the coupling factor between the
spontaneously emitted noise and the transverse mode profile of the waveguide and
W is the ridge waveguide width. The time domain contribution to (3.3) results to
be in the form:

S±
sp(z, t)dz =

NØ
i=1

Ø
m

ó
ℏωimβsp

2πΓ B
Nim(z, t)

τ sp
m

I±
im,sp(z, t) (3.18)

where Nim(z, t) = WNDNlGiµmρim(z, t)dz is the total number of carriers occupying
the m-th state belonging to the i-th population, B is the bandwidth of the random
process and I±

im,sp(z, t) is a convolution product between the Lorentzian function
and a random phase noise ejϕ±

im(z,t):

I±
im,sp(z, t) = Lim(t) ∗ ejϕ±

im(z,t) (3.19)

Now, everything is in place for the time and space discretization of (3.3) that will
be used in the MATLAB program.
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3.3 Time discretization of the problem
The goal of this Section consists in the formulation of a proper finite difference
scheme for the travelling wave equation (3.3), that can subsequently be implemented
in MATLAB for the simulations.
First and foremost, it is necessary to substitute Equations (3.13) and (3.14) in
(3.3). Let α±

w = α±
i + αp. In this way, we obtain:

1
vg

∂E±

∂t
± ∂E±

∂z
= − α±

w

2 E±(z, t) + S±
sp(z, t)−

−
NØ

i=1

Ø
m

g0
im(2ρim(z, t) − 1)[Lim(t) ∗ E±(z, t)]

(3.20)

In order to solve this equation more comfortably, it is of course convenient to move
to the frequency domain by taking its Fourier transform, thus obtaining:

±∂E±

∂z
(z, Ω) =

I
−j

Ω
vg

− α±
w

2 −
NØ

i=1

Ø
m

g0
im(2ρim(z, Ω) − 1) ∗ Lim(Ω)

J
·

· E±(z, Ω) + S±
sp(z, Ω) = β(z, Ω)E±(z, Ω) + S±

sp(z, Ω)
(3.21)

In the frequency domain, Equation (3.20) became a first-order non-homogeneous
differential equation, whose general solution can be written by summing its par-
ticular solution and the general solution of the associated homogeneous equation.

E±(z, Ω) = exp
;

±
Ú z

z0
dz′β(z′, Ω)

< è
E±(z0, Ω)+

+
Ú z

z0
dz′S±

sp(z′, Ω) exp
I

∓
Ú z′

z0
dz′′β(z′′, Ω)

JD (3.22)

It is now time to introduce a spatial discretization of the active material with unit
step ∆z, that must be small enough to allow the approximation of the integrals and
the exponentials with first order expansions. This means that (3.22) approximately
becomes:

E±(z0 ± ∆z, Ω) ≃ E±(z0, Ω) exp {β(z0, Ω)∆z} + S±
sp(z0, Ω)∆z =

= S±
sp(z0, Ω)∆z + E±(z0, Ω) exp

I
−j

Ω
vg

J
exp

I
−α±

w∆z

2 +

+ ∆z
Ø
m

g0
im(2ρim(z0, Ω) − 1) ∗ Lim(Ω)

J
≃

≃ S±
sp(z0, Ω)∆z + E±(z0, Ω) exp

I
−j

Ω
vg

JI
1 − α±

w∆z

2 +

+ ∆z
Ø
m

g0
im(2ρim(z0, Ω) − 1) ∗ Lim(Ω)

J
(3.23)



Chapter 3: TDTW model theory 17

For the goal of simulating devices, we ought to introduce a time discretization as
well. In this case, we use ∆t = ∆z/vg. With this, coming back to the time domain,
we get the final time-stepped solution of the travelling wave equation, where the
field depends on its value in the previous time step:

E±(z0 ± ∆z, t) = + S±
sp(z0, t) + E±(z0, t − ∆t) − α±

w

2 E±(z0, t − ∆t)∆z+

+ ∆z
Ø
m

g0
im(2ρim(zo, t − ∆t) − 1)I±

im(z0, t − ∆t)
(3.24)

We still have to solve the convolution integral of I±
im(z, t) and that of I±

im,sp(z, t),
contained in S±

sp(z, t). Starting from the first one, the approximate result that we
obtain is [17]:

I±
im(z, t) = + ej∆ωim∆te−Γ∆tI±

im(z, t − ∆t)+

+ Γ∆t

2 ej∆ωim∆te−Γ∆tE±(z, t − ∆t) + Γ∆t

2 E±(z, t)
(3.25)

This is an important result because it means that the filtered field at the current
time step depends on its value at the previous time step: this can be used in
a recursive numerical implementation. With similar computations, we obtain
basically the same result for I±

im,sp(z, t) as well:

I±
im,sp(z, t) = + ej∆ωim∆te−Γ∆tI±

im,sp(z, t − ∆t)+

+ Γ∆t

2 ej∆ωim∆te−Γ∆tejϕ±
im(z,t−∆t) + Γ∆t

2 ejϕ±
im(z,t)

(3.26)

These equations give us a complete finite difference scheme for the numerical
computation of the propagating field in the device. This has to be coupled to some
rate equations for the description of carriers dynamics.
One last thing that has to be discussed concerning the propagating field is the
reference frequency ω0.

3.3.1 Reference frequency choice
The reference frequency, which appears in many of the previous formulae and
equations, can be chosen to be one of the following:

• ω0 = ω(N+1)/2,GS, central GS frequency;

• ω0 =½(ω(N+1)/2,GS +ω(N+1)/2,ES1), average between the central GS and central
ES1 frequencies;

• ω0 =½(ω(N+1)/2,GS +ω(N+1)/2,ES2), average between the central GS and central
ES2 frequencies.
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In SOAs models, the choice is dictated by which frequencies contribute to the
stimulated emission, making also sure that the SVEA is still applicable (small
frequency detuning). For instance, the central GS frequency could be a good choice
in order to avoid the aliasing due to the Lorentzian filter tails beyond the Nyquist
frequency, but it completely fails when describing the gain spectrum or emission
from the excited states.
Another idea could be to use the average between the GS and ES1 central frequencies,
but in this case we have to carefully choose the simulation time step in order to
avoid the aliasing and we still have the problem of the description of the stimulated
emission from ES2.
For this reason, if we assume to have stimulated emission from ES2 as well (as we
do), it could be convenient to work with reference frequency given by the average
between the GS and ES2 central frequencies, but, in this case, the validity of
the SVEA must be verified. If we consider the central energies of the various
QD layers in Table 4.1 and we consider their mean for the various states, we
obtain EGS = 0.9955 eV, EES1 = 1.0242 eV and EES2 = 1.0510 eV. If we choose
the average between GS and ES2 energies as reference, we get E0 = 1.0233 eV.
Then, we know that the energy in eV and the wavelength in µm are related by the
following formula [11]:

E = 1.24
λ|µm

eV (3.27)

With this equation, we obtain that the wavelengths associated to the energies
reported above are λGS = 1.2456 µm, λES1 = 1.2107 µm, λES2 = 1.1798 µm and
λ0 = 1.2118 µm. Finally, using λf = c, we get that fGS = 241 THz, fES1 = 248 THz,
fES2 = 254 THz and f0 = 247 THz. This means that the relative difference between
the frequencies and the reference are ≃ 2.4% for GS, ≃ 0.4% for ES1 and ≃ 2.8%
for ES2.
Due to the fact that in all three cases the relative difference is very small (< 5%),
we can safely say that the SVEA is still valid with this choice of reference frequency.
Therefore, since we are assuming that ES2 as well contributes to the emission, this
reference frequency will be also implemented in the numerical simulation.

3.4 Rate equation model for carriers dynamics
Besides the evolution of the forward and backward propagating field components,
we also need some rate equations for the carriers dynamics, so to have a complete
description of the system.
In this Section, actually, two different rate equation models will be presented: one,
more general, where electrons and holes dynamics are independent from each other
(as they are in real systems) [12], one where they are considered to be equivalent
(excitonic approximation) [13], [17].
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Let’s start from a general description of the model. Basically, it consists in a
set of equations describing the variation of the number of carriers in a given QD
confined state, taking into account all the possible mechanisms that could add or
subtract carriers from this state. In particular, in this model, the following ones are
taken into account, each one characterised by its own characteristic time constant
describing the strength of the interaction:

• capture from another energy level, with characteristic time τc,m;

• escape towards another energy level, with characteristic time τe,m;

• non-radiative recombination, with characteristic time τnr,m;

• spontaneous radiative recombination, with characteristic time τsp,m;

• stimulated radiative recombination, with characteristic time τst,m;

• Auger recombination, with characteristic time τAug,m.

Concerning the scattering processes of capture and escape, it is possible to assert
that they are regulate by Pauli’s exclusion principle: in order to have the mechanism,
it is necessary to have an initial occupied state (probability ρim(z, t)) and a final
free state (probability 1 − ρim(z, t)). With this in mind, we can define the rates for
these phenomena using the probabilities of the two states involved in the process
and the characteristic time:

Rc,m(z, t) = 1
τc,m

ρim′(z, t)(1 − ρim(z, t)) (3.28)

Re,m(z, t) = 1
τe,m

ρim(z, t)(1 − ρim′(z, t)) (3.29)

Equation (3.28) represents the capture rate for a reference state m of a carrier
coming from a state m′; Equation (3.29) represents the escape rate for a reference
state m of a carrier escaping towards a state m′. Note that these two mechanisms
do not only involve the QD confined states but also SCH (escape towards WL,
capture from WL) and WL (escape towards SCH and ES2, capture from SCH and
ES2).
Concerning the non-radiative recombination processes, they are basically trap-
assisted recombination phenomena involving trap levels located in the semiconductor
bandgap, that can interact with the carriers in the QD states. They involve just a
single carrier, therefore they can be modelled with the following equation:

Rnr,m(z, t) = ρim(z, t)
τnr,m

(3.30)

Since only one carrier is involved, it is reasonable to expect a single probability
function in Equation (3.30).
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Spontaneous emission of course involves an electron and a hole that spontaneously
recombine, emitting a photon. This means that the spontaneous recombination
rate can be modelled simply with the existence probabilities of a hole and an
electron (in the independent model ρh

im(z, t) and ρe
im(z, t), respectively) and with a

proper phenomenological characteristic time. All in all, the radiative spontaneous
recombination rate can be written as:

Rsp,m(z, t) = 1
τsp,m

ρe
im(z, t)ρh

im(z, t) (3.31)

Finally, Auger recombination is another type of non-radiative recombination that
involves three different carriers. It consists in the recombination of an electron-hole
pair that transfer the transition energy to another carrier, either electron or hole. A
rigorous model for these processes can be found in [4]. In this case, we have a rate
equation containing a contribution due to the electron-hole-electron interaction,
but also another one due to the dual process electron-hole-hole:

Re
Aug,m(z, t) = 1

τ e
Aug,m

(ρe
im)2ρh

im + 1
2

1
τh

Aug,m

(ρh
im)2ρe

im (3.32a)

Rh
Aug,m(z, t) = 1

τh
Aug,m

(ρh
im)2ρe

im + 1
2

1
τ e

Aug,m

(ρe
im)2ρh

im (3.32b)

In the last term of both (3.32a) and (3.32b) a factor ½, due to the fact that the
last term is not related to the reference carrier (electrons for (3.32a), holes for
(3.32b)). In reality, the model can be simplified by neglecting the second term of
both equations:

Re
Aug,m(z, t) = 1

τ e
Aug,m

(ρe
im)2ρh

im (3.33a)

Rh
Aug,m(z, t) = 1

τh
Aug,m

(ρh
im)2ρe

im (3.33b)

Note also that these two equations will coincide in the excitonic model, since we
make the assumption that ρh

im = ρe
im.

At this point, we are ready to write the rate equation model. This will be done
both with a more general approach, considering independent holes and electrons
dynamics (ρh

im /= ρe
im), and with the excitonic approximation, in which instead we

assume to have the same dynamics for the two populations (ρh
im = ρe

im ≜ ρim).

3.4.1 Independent rate equation model
In this case, due to the fact that the electrons and holes dynamics are independent,
we have two separate sets of rate equations that have to be computed. Of course, we
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Figure 3.1. Schematic representation of all possible scattering and recombi-
nation phenomena between the various states of the conduction band of the
i-th QD.

have a pair of equations for each one of the considered energy levels (SCH, WL, ES2,
ES1, GS). In theory, we could have captures and escapes towards each state and
from each state, but, for the sake of simplicity, let’s assume that only levels that are
adjacent in energy can interact. Let’s also assume that the WL can interact with
all the QD layers and populations and that the external current is injected in the
system through the SCH (with a certain injection efficiency ηi). Furthermore, let’s
assume that all the levels provide a spontaneous emission contribution, however only
the confined QD states (ES2, ES1, GS) provide a stimulated emission contribution.
In this case we will also consider non-radiative recombination for all the states,
but Auger recombination (in the formulation of (3.32a) and (3.32b)) only for the
confined QD states and for the WL.
Within these assumptions, we can write five electron rate equations and five hole
rate equations (in this case written at the same time for the sake of brevity):

∂N
e/h
SCH

∂t
= +ηi

J

e
W − N

e/h
SCH

τ
e/h
c,W L

+ N
e/h
W L

τ
e/h
e,W L

−

− BSCH

WhSCH

N e
SCHNh

SCH − N
e/h
SCH

τ
e/h
nr,SCH

(3.34a)

∂N
e/h
W L

∂t
= +N

e/h
SCH

τ
e/h
c,W L

− N
e/h
W L

τ
e/h
e,W L

− BW L

WhW

N e
W LNh

W L−

− N
e/h
SCH

τ
e/h
nr,SCH

− N e
W LNh

W L

τAug,ES2

N
e/h
W L−

−
NØ

i=1

Gi

τ
e/h
c,ES2

N
e/h
W L(1 − ρ

e/h
iES2) +

NØ
i=1

N
e/h
iES2

τ
e/h
e,ES2

(3.34b)
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∂N
e/h
iES2

∂t
= + Gi

τ
e/h
c,ES2

N
e/h
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There are some quantities in Equations (3.34a)-(3.34e) that have yet to be expressed
explicitly. First of all, the quantities N

e/h
im , already appearing in (3.18), represent

the total number of carriers occupying the m-th QD state belonging to the i-th
population and they are in the form:

N
e/h
im (z, t) = WNDNlGiµmρ

e/h
im (z, t)dz (3.35)

Similarly, N
e/h
SCH and N

e/h
W L are the total number of carriers in the SCH and in

the WL. Then, we have also to express the stimulated emission rates Rst,im for
Equations (3.34c)-(3.34e). This can be done with [2]:

Rst,im = j
dz

ℏωim

[(E+p+
im

∗ − E+∗
p+

im) + (E−p−
im

∗ − E−∗
p−

im)] (3.36)

According to [17], there must be a specific relationship between the capture and
escape time of the various energy levels, in order to guarantee the recovery of a
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quasi-equilibrium energy distribution without any external perturbation:
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where the quantities ∆Em−m′ , m′ /= m, represent the energy difference between
two adjacent energy levels. The quantities DSCH and DW L in Equations (3.37a)
and (3.37b) are, respectively, the 3D bulk-like DOS associated to the SCH and the
2D quantum well-like DOS associated to the WL. They can be expressed as follows:

DSCH = 2
A

2
πm∗

e/h,SCHkBT

ℏ2

B 3
2

(3.38a)

DW L =
m∗

e/h,W LkBT

πℏ2 (3.38b)

where m∗
e/h,SCH and m∗

e/h,W L are the electron and hole effective masses in the SCH
and in the WL, respectively.

The equations that were presented here, coupled with the propagating field and
the polarization equations, represent a complete set for the accurate description
of the physics of this system. Albeit more accurate, the independent electron and
hole rate equation model requires the solution of two sets of equation, for electrons
and holes separately and this could be a disadvantage from the point of view of
the computational cost.

3.4.2 Excitonic rate equation model
The excitonic model, instead, is an approximation that allows for a reduced
computational cost. Basically, it relies upon the assumption that in the SCH, in
the WL and in each one of the QD confined levels charge neutrality is established.
This means that:

NSCH ≜ N e
SCH = Nh

SCH (3.39a)
NW L ≜ N e

W L = Nh
W L (3.39b)

ρim ≜ ρe
im = ρh

im (3.39c)



Chapter 3: TDTW model theory 24

These assumptions effectively enable us to cut in half the number of rate equations
to be solved. This is clearly reducing the computational cost, however the accuracy
of the model is reduced as well, since, in real systems, electrons and holes do not
have perfectly matching dynamics.
In any case, the assumptions regarding the scattering and recombination phenomena
are the same as before (refer to the schematic of Figure 3.1). The only difference is
that, now, the Auger recombination contributions are modelled using the simpler
Equations (3.33a) and (3.33b).
Within these hypothesis, the excitonic rate equations become:
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Then, we have also to consider the fact that we have different QD populations
associated to the chirped layer. This must be taken into account by means of a
summation on the index i for the three QD discrete states.
These are the equations that will be directly implemented in MATLAB for the
simulations of the device. The rate equations that have been presented here are
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just time-variations of the carriers populations in each one of the QD energy
levels: in a numerical implementation, therefore, we have to compute the variations
with respect to the total number of carriers in each energy level, in the previous
time instant of the simulation and, then, to sum these to the total populations
themselves.



Chapter 4

Device and Experimental setup

In the previous chapter, the foundations for the time-domain travelling-wave model
that will be implemented in MATLAB were laid down. In this new chapter, instead,
we will discuss more about the device of [7], fabricated by III-V Labs, and the
experimental setup employed by the Heriot-Watt University group in that article.

(a) (b)

Figure 4.1. (a) Structure of the device under test. (b) Composition of the
QD layers of the device. Both images taken from reference [7].

Figure 4.2. Picture of the real device. The red arrows indicate the position
of the insulation trench. Taken from reference [8].
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4.1 Optical amplifier
Figure 4.1a shows a schematic of the device. In total, it is 6 mm long and it has
three distinct sections: a 0.5 mm long straight ridge waveguide section (rear of
the device), a 5 mm long tapered section, with full taper angle of 3°, and, finally,
a 5 mm long tapered section, with full taper angle of 0.8° (front of the device).
Therefore, we have that the front facet of the device has width of 110 µm, whereas
the rear one has width of 14 µm. The tapered structure is important because it
allows us to modify how light is guided through the device and it results in an
enhanced output power. At 1.875 mm from the rear facet, a trench has been etched
in the waveguide in order to form two electrically insulated contacts that can be
biased independently for better versatility of the biasing conditions. Moreover, a
shallow ridge was also etched into the GaAs contact layer, in order to introduce a
slight index guiding and in order to achieve enhanced gain and better beam quality
from the front facet, as pointed out by [7].
From Figure 4.2, which represents a picture of the actual device, it is also possible
to appreciate the fact that the front and rear facets have a 7° angle with respect to
the SOA waveguide. The facets are coated by an anti-reflection coating, in order to
reduce as much as possible the reflectivity, thus suppressing lasing and optimizing
the output. The system is kept at a fixed temperature of 20 °C by means of Peltier
cells.
Concerning the composition of the active material, a summary is reported in Figure
4.1b. It is basically made up of ten chirped InAs QD layers. Each one of these
layers is capped by a layer of In0.15Ga0.75As and separated by a layer of GaAs.
Above the structure we have also an Al0.35Ga0.65As cladding and a p-doped GaAs
layer representing the p-type contact; below the structure, likewise, we have an
Al0.35Ga0.65As cladding and a n-doped GaAs layer representing the n-type contact.
The fact that the QD layers are chirped means that their GS emission wavelength
is not perfectly matched. In particular, they can be subdivided as follows:

• 3 layers with GS target emission wavelength of λGS = 1211 nm (closest to
p-contact);

• 3 layers with GS target emission wavelength of λGS = 1243 nm;

• 4 layers with GS target emission wavelength of λGS = 1285 nm (closest to
n-contact).

As explained by [7], this chirp of the active material was introduced in order to
broaden the gain spectrum bandwidth, exploiting their separate, detuned gain
spectra.
In Table 4.1, some other physical parameters of the device are reported. These are
the parameters that were employed in the models of [9]. For instance, note that
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Symbol Description Value
η Injection efficiency 0.65
Nl Number of QD layers 4 + 3 + 3
µm Degeneracy for GS, ES1, ES2 2 - 4 - 6

EiGS GS transition energies 1.0239-0.9976-0.9650 eV
EiES1 ES1 transition energies 1.0500-1.0265-0.9960 eV
EiES2 ES2 transition energies 1.0690-1.0508-1.0333 eV
EW L WL transition energy 1.1 eV
∆E FWHM homo. broad. 35 eV
ND QD surface density 400 µm2

gi GS, ES1, ES2 maximum gain 690 - 750 - 700 cm−1

α± Propagation losses 1.35 (+), 3.60 (-) cm−1

Kp Plasma losses coefficient 1 × 10−17 cm2

τc,m Capture times from GS, ES1, ES2, WL 1 - 5 - 5 - 12 ps
τnr,m Non-rad. times from GS, ES1, ES2, WL 10 ns

τAug,m Auger times from GS, ES1, ES2, WL 0.44 - 2.2 - 3.3 - 1050 ns
hQD QD height 5 nm
hW L WL height 8 nm
hSCH SCH height 647 nm

nr Effective index 3.3445

Table 4.1. Physical parameters of the SOA, also used in the numerical
simulations [9].

the propagation losses have two values, one for the forward propagation, one for
the backward propagation. This was backed by the experimental evidences of the
rear facet power being lower than the front facet one. The same is actually true for
the confinement factor in the y direction Γy. It is also interesting to note that Γy

changes in the propagation direction z, as it is possible to predict from the fact that
the waveguide is not perfectly straight. The weak guiding and the tapering of the
waveguide lead to an asymmetric confinement factor for the forward and backward
propagating fields, as determined with BPM simulations [9]. On the other hand,
the confinement factor in the x direction Γx is assumed to be constant (Γx = 0.127).
The dependency of Γy on z will be discussed further in the next chapter.

In reality, since the models employed in that article are slightly different from the
one that was employed in this work, some of the parameters had to be slightly
adjusted in order to get good accordance with experimental results. This shouldn’t
be a problem, because the parameters in Table 4.1 were mostly obtained by fitting
the sets of experimental data.
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4.2 Laser source
This optical amplifier is of course used in order to amplify optical signals. During
the experiments of [7], a multi-section mode-locked laser source (InAs QD active
region) was used in order to produce ultrashort pulses. It was operated with
constant biasing conditions in order to have pulses with 5 GHz emission rate and
with emission wavelength of 1258 nm, that should fall in the gain spectral bandwidth
of the amplifier. The pulses have duration of 2.3 ps and they are also assumed to
have sech2 shape. Lastly, the average optical power of the pulses emitted by this
external source is 2.5 mW.
Notice that, in the simulations, the external laser source will be considered when
reproducing the experimental results of [7], but it won’t be when reproducing those
of [9].

4.3 Single- and double-pass experimental setups

Figure 4.3. Experimental setup for the single- and double-pass configura-
tions. Taken from reference [7].

For the single-pass amplification (the top one in Figure 4.3), the setup follows a
typical master oscillator power amplifier configuration. The seed laser is coupled
into the rear facet by a set of angled mirrors, it is amplified over a single passage
through the device and the amplified signal is collected from the tapered front
facet. An optical insulator is placed in front of the tapered front facet with the
purpose of avoiding the output signal being coupled back into the light source.
For the double-pass amplification (the bottom one in Figure 4.3), instead, the
amplified signal is collected from the same facet in which the optical source is
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injected into. Indeed, the pulses from the seed laser are injected through the
tapered front facet, they are amplified, they exit the device from the narrow rear
facet and they are coupled back into the device into this same facet for the second
amplification by means of a mirror. The presence of this highly reflective mirror
creates an external cavity with the rear facet of the device. Since the input and
output signals enter and exit through the same facet, some kind of one-way optical
gate is needed to keep them separated. This component is created by means of a
traditional polarization dependent insulator (dashed green box in Figure 4.3). The
basic idea is to employ a Faraday rotator that rotates the polarization of the signals
in a different way depending on the direction of the propagation (left to right
or right to left). This allows the input and output signals to have perpendicular
polarization with respect to each other and to have a different behaviour when
reaching a polarising cube beam splitter (one is reflected, the other is transmitted).
Besides the implementation for the experiments of [7], in the context of commercial
production, the double-pass configuration could also be directly integrated in the
SOA by means of a highly reflective rear facet. This is of course convenient because
the double-pass amplifier would have the same area occupation of the standard
one, but it has also the advantage of requiring the alignment of the front facet
exclusively, thus reducing the risk of coupling issues.
Both configurations need lenses to couple and collect the input and output sig-
nals, respectively. This optical apparatus introduces for sure losses, but it is not
considered in the TDTW simulations.

Figure 4.4. Transmission spectrum of the ThorLabs FEL1250 long-pass
filter. Taken from reference [19].
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According to [7], in the double-pass configuration, it is also necessary to include
a long-pass filter in the external cavity in order to avoid an unwanted lasing at
λ = 1235 nm, detuned from the seed laser wavelength, that appears for high driving
currents and effectively reduces the maximum available output power for this
configuration. This lasing can be ascribed to the presence of some leftover spurious
reflectivity at the facets of the device and it limits the operating current range of
the device in double-pass configuration. For this reason, a long-pass filter with
cut-off wavelength at λ = 1250 nm (Figure 4.4) is required, so to block the lasing
frequency.
In reality, for the sake of simplicity, in the simulations the reflectivity of the facet
is set to be identically zero. This means that this lasing phenomenon will not be
observed and that the results of the TDTW simulations should correspond to the
experimental results with the long-pass filter, minus the losses introduced by this
component.
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Numerical implementation

In the previous chapter, we analysed the experimental setup that we aim to repro-
duce. In this new chapter, instead, the main points of the MATLAB implementation
of the TDTW model will be presented. This is constituting the simulator that will
be used in order to retrieve the numerical results that will be compared to the
experimental ones.
First, let’s briefly discuss the structure of the simulator. There are three main
MATLAB files that are working together in order to implement the theory from
the previous chapters:

• DeviceData_SOA: it contains the definitions of all the parameters of the
device, based on those reported in Table 1 of [9]. This function produces a
MATLAB structure called Data, containing all these parameters;

• MainSOA: it is the main function of the simulation. It calls the function
DeviceData_SOA for the generation of the device parameters and it also
generates a Sim structure, containing all the important simulation parameters
(e.g. TStart, TEnd, dt, ReferenceFrequency and multiple flags for the
simulation options). Of course, it is also calling the function for the physical
simulation itself;

• DDoSimulationOpt: it is the function that is actually performing the sim-
ulation and that contains the rate equations and the time-discrete field
propagation equations implementing the TDTW model.

In the next sections, we will highlight the prominent features of these three functions.
Besides these important functions, there are many others that are used, for instance,
for pre- or post-processing.
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5.1 DeviceData_SOA

Let’s start with the analysis of DeviceData_SOA. As mentioned before, it defines
the main parameters of the device under test and it stores them in the Data
structure to be used in the actual simulation.
First of all, let’s analyse how the experimental data were modified in order to
accommodate the fact that the model employed in the simulations for this thesis
is not exactly the same as the one used in [9]. Table 5.1 shows the comparison
between the parameters of the paper and the new parameters that were employed
in order to have the best possible reproduction of the experimental results with
the simulations. In particular, these values have been found with a trial-and-error
approach, studying the logarithmic light-current characteristic of the device, in
constant current density conditions.

Parameter Article value New value
η 0.65 0.55
gi 690 - 750 - 700 cm−1 (max) 46 - 50 - 46.6 cm−1

α± 1.35 (+) - 3.60 (-) 1.35 (+) - 4.60(-)
τAug,m 0.44 - 2.2 - 3.3 - 1050 ns 4.4 - 22 - 33 - 1050 ns

Table 5.1. List of the parameters that were modified in order to match the
experimental results.

These parameters are used because:

1. the gain causes a rigid shift of the characteristic upwards or downwards at
higher or lower powers;

2. the Auger characteristic time causes a modification of the shape of the char-
acteristic, in particular, influencing at which current densities the saturation
of the power starts to happen. This also causes an upward/downward shift,
so we have to carefully pair the modification of the Auger time with the
modification of the peak gain;

3. the forward and backward propagation losses set the relative distance between
the curves associated to the front and rear facets, therefore causing the
presence of the spectral asymmetry observed experimentally in [9];

4. the injection efficiency, in practice, causes a "rescaling" of the current density
axis of the light-current characteristic. If we reduce the η, the light current
characteristic results to be "stretched" because the same values of power will
be reached at higher values of current density; if we increase the η, the light
current characteristic results to be "compressed" because the same values of
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power will be reached at lower values of current density. This can be used in
order to finely tune the position of the power saturation.

The light-current characteristic will be presented in Chapter 6, as the other results.

5.1.1 Geometry of the device
Let’s start with the modeling of the physical structure of the device. Taking Figure
4.1a as a reference, we have basically to model the SOA with its tapered sections.
We already know that it has a 0.5 mm long straight ridge waveguide section, a
5 mm long tapered section, with full taper angle of 3°, and, finally, a 5 mm long
tapered section, with full taper angle of 0.8°. This can be easily modelled using
the following piece-wise function, exploiting simple geometrical rules:

W (z) =



Wrear, z < z1

Wrear + 2(z − z1) tan
A

θ1

2

B
, z1 ≤ z < z2

Wrear + 2(z2 − z1) tan
A

θ1

2

B
+ 2(z − z2) tan

A
θ2

2

B
, z2 ≤ z < L

(5.1)
where Wrear = 14 µm is the width of the constant-width rear section, z1 = 500 µm,
z2 = 1000 µm and L = 600 µm are the first section length, second section length
and device length respectively and θ1 = 3° and θ2 = 0.8° are the full taper angles
of first and second tapered sections.
This is then modelled in MATLAB as follows:

1 function w=Width(z, IncludeExtFeedback)
2 %Waveguide width as a function of the longitudinal position
3 %Input:
4 % z: [1,NumSlices] slices positions [um]
5 %Output:
6 % w: [1,NumSlices] waveguide widths [um]
7

8 %[1,1] Rear section width [um]
9 RearW = 14;

10 %[1, NumSlices] Width of the structure [um]
11 w = RearW * ones(size(z));
12 %[1,1] Half flare angle of the first tapered section [degree->radian]
13 Theta1Halved = 1.5 * pi / 180;
14 %[1,1] Half flare angle of the second tapered section [degree->radian]
15 Theta2Halved = 0.4 * pi / 180;
16 %[1,1] Position of the beginning of the first tapered section [um]
17 Z1 = 500;
18 %[1,1] Position of the beginning of the first tapered section [um]
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19 Z2 = 1000;
20

21 w(z>=Z1 & z<Z2) = RearW + 2 * (z(z>=Z1 & z<Z2) - Z1) *
tan(Theta1Halved);

22 w(z>=Z2) = RearW + 2*(Z2-Z1)*tan(Theta1Halved) +
2*(z(z>=Z2)-Z2)*tan(Theta2Halved);

23

24 if IncludeExtFeedback == 1 %Double Pass
25 %[1,NumSlices] Width of the structure [um]
26 w = flip(w);
27 end
28 end

Basically, this is simply the direct implementation of Equation 5.1. This is defined as
a function because it will be called in DDoSimulationOpt after the definition of the
discrete spatial step. The only point to be discussed is the last if statement: the flag
IncludeExtFeedback is true whenever we work in the double-pass configuration.
In that case, we flip the entire structure, since we want the optical excitation to
be always fed in the first slice of the device. This is basically reproducing the
experimental setup shown in Figure 4.3.
The width of the device computed and output by this function Width is represented
in Figure 5.1, where the three sections are clearly visible.

Figure 5.1. Width of the device under test.
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5.1.2 QD chirp and broadening

Another fundamental feature of the DeviceData_SOA function consists in the
definition of the chirp of the quantum dots. From the energy point of view, the
system is described by means of the energy gaps, corresponding to the interband
transition energies that also set the emission wavelength. In this case we have:

1 %[1, NumLayers] Multiplicity of layers belonging to the same kind of QD
[]

2 MultQDLayers = [4, 3, 3];
3 %[1,1] Energy gap between CB and VB band edges in the SCH [eV]
4 EnergyGapSCH = 1.2797;
5 %[1,1] Energy gap between CB and VB band edges in the WL [eV]
6 EnergyGapWL = 1.100;
7 %[NumStates,NumLayers] Characteristic interband transition energies for

the QD central (most likely) QD population (ES2, ES1, GS) [eV]
8 EnergyGapQDCentralPop = [1.0690, 1.0508, 1.0333 ; ...
9 1.0500, 1.0265, 0.9960 ; ...

10 1.0239, 0.9976, 0.9650];

These central energies, expressed in electronvolt, are directly taken from Table 4.1.
Since we have multiple populations with different characteristics, the QD energies
are defined by means of a matrix, where, on each row, we have the ES2, ES1 and
GS central energies for a given QD population. The parameter MultQDLayers
represents the number of QD layers that are characterised by the same transition
energies (the total number is 10).
In the case of a non-chirped device, in order to model real behaviour, we would
have to consider the so-called inhomogeneous broadening. Basically, since the
production processes of real QDs are not that precise, in our devices, the QDs
do not have exactly the same behaviour, due to the fact that their size and
transition energies will be statistically distributed (more or less, with a Gaussian
distribution). Therefore, the energy gap values of the confined states of the system
will be broadened and, in order to model this, we consider a set subpopulations,
with Gaussian existence probability described by Equation (2.10). Within these
subpopulations, the QDs are considered to be characterised by the same properties,
but differing from population to population.
In the case of a chirped device, the strategy is slightly different. We do not consider
these gaussian subpopulations, but we assume that, within the same layer, the
QDs have the same features. For this reason, the energy for each population is
simply the central energy from before (EnergyGapQDCentralPop) and the existence
probabilities are given by the inverse of the layer multiplicity (properly normalized
so that their sum amounts to 1 as any other probability).
Inside the code, both strategies are implemented, so that the simulator can be
adapted both for chirped and non-chirped simulations. Which one of the two is
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employed is decided based on the dimensions of EnergyGapQDCentralPop (if it is
a matrix, we are in the chirped case). This is done by means of the following code:

1 %[1,1] Number of QD layers []
2 NumDiffDotLayers = size(EnergyGapQDCentralPop,2);
3 %[NumStates,1] FWHM->sigma of inhomogeneous broadening of the QD

ensemble (ES2, ES1, GS) [eV]
4 InhomDeltaE = [0.0350; 0.0350; 0.0350]/sqrt(8*log(2));
5

6 if NumDiffDotLayers == 1
7 if NumQDPopulations==1
8 EnergyGapQD=EnergyGapQDCentralPop;
9 else

10 %[NumStates,NumPops] Characteristic interband transition energies
for the QD populations (ES2; ES1; GS) [eV]

11 EnergyGapQD = [...
12 linspace(EnergyGapQDCentralPop(1)+3*InhomDeltaE(1),
13 EnergyGapQDCentralPop(1)-3*InhomDeltaE(1),NumQDPopulations);
14 linspace(EnergyGapQDCentralPop(2)+3*InhomDeltaE(2),
15 EnergyGapQDCentralPop(2)-3*InhomDeltaE(2),NumQDPopulations);
16 linspace(EnergyGapQDCentralPop(3)+3*InhomDeltaE(3),
17 EnergyGapQDCentralPop(3)-3*InhomDeltaE(3),NumQDPopulations);
18 ];
19 end
20 %[NumStates,NumPops] Gaussian distribution of the existence prob. of

each QD population [>=0]
21 Inhomog_distribution= ...
22 exp(-(EnergyGapQD-repmat(EnergyGapQDCentralPop,1,NumQDPopulations
23 )).^2./(2*repmat(InhomDeltaE,1,NumQDPopulations).^2));
24 elseif NumDiffDotLayers > 1
25 %[NumStates,NumPops] Characteristic interband transition energies

for the QD populations (ES2; ES1; GS) [eV]
26 EnergyGapQD = EnergyGapQDCentralPop;
27 %[NumStates,NumPops] Gaussian distribution of the existence prob. of

each QD population [>=0]
28 Inhomog_distribution= repmat(MultQDLayers, NumDiffDotLayers, 1);
29 NumQDPopulations=NumDiffDotLayers;
30 else
31 error ([mfilename ’:InvalidEnergyMatrixSize’], ...
32 ’The size of the central energy gap matrix is not valid.’);
33 end
34

35 %[NumStates,NumPops] Normalized distribution of the existence prob. of
each QD population. The sum (per rows) is 1 [>=0]

36 Inhomog_distribution = ...
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37 Inhomog_distribution./repmat(sum(Inhomog_distribution,2),
38 1,NumDiffDotLayers);

In addition to the inhomogeneous broadening, we have also to consider the ho-
mogeneous broadening. This is basically taking into account the fact that the
interband transition energy is homogeneously broadened according to a Lorentzian
distribution. This can be simply modelled with two functions:

1 function H=Func_HomoBroadeningES(Ntoth)
2 %Homogeneous broadening of the ES as a function of the total carrier

number per slice
3 %Input:
4 % Ntoth: [1,NumSlices] total carrier number in each slice [>=0]
5 %Output:
6 % H: vector of homogeneous broadening values [rad/ns]
7

8 H=26600*ones(size(Ntoth));
9 end

10

11 function H=Func_HomoBroadeningGS(Ntoth)
12 %Homogeneous broadening of the GS as a function of the total carrier

number per slice
13 %Input:
14 % Ntoth: [1,NumSlices] total carrier number in each slice [>=0]
15 %Output:
16 % H: vector of homogeneous broadening values [rad/ns]
17

18 H=26600*ones(size(Ntoth));
19 end

The value 26 600 rad ns−1 corresponds to the value ∆E = 35 eV of Table 4.1 in this
new unit of measure, which is the one used in the program. This value is obtained
with a conversion factor 1520 rad eV−1 ns−1. The input parameter Ntoth is the total
number of carriers per slice. This can be used in order to have a carrier-dependent
homogeneous broadening, which although will not be used in the analysis of this
particular device.
A final point to be discussed about the energies of the system is related to the
energy differences between the various confined states on the same band. While
the energy gap of the states is fixed by the wavelength of emission and the energy
difference between these states is fixed by their gaps, the proportion of how much of
this difference is related to the conduction or valence bands is not set a priori. This,
although, is very important since it is related to the escape rates from the energy
states that regulate the behaviour of the device. We do not have experimental
information related to this, but we can set them so that we get reasonable escape
times. In this case, the following energy differences were set:
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1 %[NumStates,NumPops] Energy difference between CB states
(SCH-WL;WL-ES2;ES2-ES1;ES1-GS) [eV]

2 ’DeltaEnergycb’,...
3 [(EnergyGapSCH-EnergyGapWL)*ones(1,NumQDPopulations)*0.4*3;
4 (EnergyGapWL-EnergyGapQD(1,:))*0.77/1.4/2*2*2;
5 (EnergyGapQD(1,:)-EnergyGapQD(2,:))*0.35;
6 (EnergyGapQD(2,:)-EnergyGapQD(3,:))*0.62*1.3], ...

Note that DeltaEnergycb is a parameter contained in the Data structure.

5.1.3 Losses
According to the experimental data from [9], we have that the waveguide losses are
characterised by different coefficients depending on the direction of propagation.
This is obtained experimentally by observing an asymmetry of the output power in
single-pass amplification depending on the considered output facet.
This can be modelled in the simulator with the following functions, contained in
DeviceData_SOA:

1 function alpha_i=Alfa_i_prog(z, IncludeExtFeedback)
2 %Waveguide power losses as a function of the longitudinal position
3 %Input:
4 % z: [1,NumSlices] slices positions [um]
5 %Output:
6 % alpha_i: row vector of waveguide power losses [cm^-1]
7

8 if IncludeExtFeedback == 1 %Double pass
9 alpha_i=ones(size(z))*3.60;

10 elseif IncludeExtFeedback == 0 %Single pass
11 alpha_i=ones(size(z))*1.35;
12 else %Error
13 error(’IncludeExtFeedback can only be a boolean.’)
14 end
15 end
16

17 function alpha_i=Alfa_i_regr(z, IncludeExtFeedback)
18 %Waveguide power losses as a function of the longitudinal position
19 %Input:
20 % z: [1,NumSlices] slices positions [um]
21 %Output:
22 % alpha_i: row vector of waveguide power losses [cm^-1]
23

24 if IncludeExtFeedback == 1 %Double pass
25 alpha_i=ones(size(z))*1.35;
26 elseif IncludeExtFeedback == 0 %Single pass
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27 alpha_i=ones(size(z))*3.60;
28 else %Error
29 error(’IncludeExtFeedback can only be a boolean.’)
30 end
31 end

Similarly to the Width function, in this case as well we have to modify the α
coefficients depending on the IncludeExtFeedback flag, due to the fact that the
progressive and regressive directions will change whether the device is working in
double or single-pass configuration. These two functions as well will be called in
DDoSimulationOpt, receiving the z vector and the IncludeExtFeedback flag.
In addition to the forward and backward propagating waveguide losses, also plasma
losses are considered, using the same coefficient as Table 4.1. Instead, higher order
effects like the Kerr effect losses are neglected.

5.1.4 Confinement factors
Another important aspect to be considered is the field confinement factors in the y
direction. While in the x direction (growth direction), the confinement factor is
assumed to be constant, we can easily understand that the Γy factor will change
with the z position, due to the fact that the structure is tapered, which implies a
variation of how the field is confined along the propagation direction. In order to
model this feature, some experimental datasets are employed.

1 function Gy=GammaY(z,IncludeExtFeedback)
2 %Confinement factor in the y direction as a function of the total

carrier number per slice
3 %Input:
4 % z: [1,NumSlices] slices positions [um]
5 %Output:
6 % w: vector of confinement factor values [>0]
7

8 GammaPlus = GetLateralConfinementFactorPlus(z);
9 GammaMinus = GetLateralConfinementFactorMinus(z);

10

11 Gy=(GammaPlus+GammaMinus)/2;
12

13 if IncludeExtFeedback == 1 %Double Pass
14 Gy = flip(Gy);
15 end
16 end

Once again, we have to flip the vector if we are in the double-pass configuration.
GetLateralConfinementFactorPlus and GetLateralConfinementFactorMinus
are two additional utility functions that are storing the Γ+

y and Γ−
y datasets
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obtained from BPM simulations and that fit them on vectors with size given by
the number of z slices. Note that, in theory, we should consider two separate
confinement factors and use them in the forward and backward field equations, but,
for simplicity’s sake, it was decided to use their average value.
In reality, as we can see from Figure 5.2, the forward and backward confinement
factors are not so dissimilar from their average value, for what concerns both values
and profile, so we can use the average Γy without losing too much precision.

Figure 5.2. Γy confinement factor profiles with respect to the propagation
direction.

5.1.5 Polarization of the device
Finally, the biasing of the device is the last important point to be discussed about
DeviceData_SOA. We know from [9] that the device under test is built in such a
way that its rear and front sections can be independently biased. This can be done
thanks to an insulating trench placed at 1.875 mm from the rear facet. In order to
specify the bias of the device, the following function is implemented:

1 function E=Electrode(z, IncludeExtFeedback)
2 %Function returning the index of the electrode
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3 %In a multielectrode device, to any electrode with current injection a
4 %positive integer number is assigned, while a negative integer number is
5 %used to identify reversely polarized regions. The assigned indices can

be
6 %used to define the current/voltage specified in the Sim.Pilot

parameter.
7 %Input:
8 % z: [1,NumSlices] slices positions [um]
9 %Output:

10 % E: vector of electrodes numbers [integer <0 or >0]
11

12 E = zeros(size(z));
13

14 if IncludeExtFeedback == 0 %Single Pass
15 %[1, 1] Position of the insulating trench (from rear facet) [um]
16 zTrench = 1875;
17 E = @(Z) 1 + 1 * (Z>zTrench);
18 E = E(z);
19 elseif IncludeExtFeedback == 1 %Double Pass
20 %[1, 1] Position of the insulating trench (from rear facet) [um]
21 zTrench = 6000 - 1875;
22 E = @(Z) 1 + 1 * (Z<zTrench);
23 E = E(z);
24 else
25 error(’IncludeExtFeedback can only be a boolean.’)
26 end
27 end

This is basically stating that we have two electrodes with current injection and
they are identified with the labels 1 and 2. The two of them are separated in
correspondence of z = 1875 µm, which is the location of the insulating trench on
the real device. Of course, we have to take into account the fact that, depending on
the configuration, the device might have to be flipped (double-pass configuration).

5.1.6 External cavity feedback

We already know that, if using a double-pass configuration, many of the quantities
described before have to be modified in order to accommodate the analysis of the
different experimental setup. It has to be said that, in this configuration, we need
an external mirror outside the output facet of the SOA, in order to reflect the light
back inside the device for the second pass amplification. This is effectively creating
an external cavity, with the following parameters:
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Symbol Description Value
Lext Length of the external cavity 1000 µm
rext Reflectivity of the mirror 1
next Refractive index of the caviy 1 (air)

Table 5.2. Parameters of the external cavity used during the simulation.

Note: The Data structure also contains the field ’Excitonic’. This is basically
a Boolean flag that allows us to choose whether we want to use the
excitonic rate equation model (’Excitonic’ = true) or the independent
rate equation model (’Excitonic’ = false). For this reason, since we
are considering the excitonic model for our simulations, this variable is set
to true.

5.2 MainSOA

The MainSOA function, of course, is the one that has to be run to launch the
simulation, by calling the other notable functions. Indeed, first it calls the func-
tion DeviceData_SOA for the generation of the Data structure and then it calls
DDoSimulationOpt for the solution of the differential equations at each time step,
for each spatial slice. Let’s analyse in detail what does MainSOA have to accomplish.

5.2.1 Sim structure
After calling DeviceData_SOA and saving the device data, MainSOA has to generate
its own structure, called Sim. As the name suggests, it contains some significant
parameters that will be important for the simulation in DDoSimulationOpt. This
is implemented as follows:

1 % Numerical simulation parameters.
2 %Remark that the Pilot parameter will be replaced before the simulation
3 %is started using the values from a vector of currents
4 Sim= struct(...
5 %[string] Reference Frequency []
6 ’ReferenceFrequency’,’GS-ES2’...
7 %[1,1] Time interval between simulation state printings [ns]
8 ,’PrintSimulationState’,0.1 ...
9 %[1,1] Simulation time step [ns]

10 ,’dt’,15e-6 ...
11 %[1,1] Simulation start time. This is the origin for the time

vector. [ns]
12 ,’TStart’,0 ...
13 %[1,1] Simulation end time; it must be > TStart. [ns]
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14 ,’TEnd’,10 ...
15 %[1,1] or [f(e,t)->[NumSlices,1]] Injected current [mA]
16 ,’Pilot’,0 ...
17 %[1,1] Flag indicating the level of displayed messages. []
18 ,’Verbose’,1 ...
19 %[1,1] Time starting from which the sponateneous emission is set to

0 [ns]
20 ,’TimeStopEsp’,10000 ...
21 %[1,1] Flag; 1: the simulation must also solve for photon/field; 0:

the simulation calculates carrier distribution without photons []
22 ,’considerphotons’,1 ...
23 %[string or f(Data, Sim, FinalCurrent)->string]. Name of the file

from which to load the simulation state.
24 ,’LoadState’, [] ...
25 %[string or f(Data, Sim, FinalCurrent)->string]. Name of the file to

save the simulation state to.
26 ,’StateFilename’, [] ...
27 %[string or f(Data, Sim, FinalCurrent)->string]. Name of the file to

save the simulation results to.
28 ,’ResFilename’, [] ...
29 %[complex] Optical excitation [sqrt(mW)]
30 ,’OpticalExcitation’, []...
31 %[1,1] Flag; 1: the optical excitation is included; 0: the optical

excitation is not included []
32 ,’IncludeOpticalExcitation’, false ...
33 %[1,1] Flag; 1: the external mirror is included; 0: the external

mirror is not included []
34 ,’IncludeExtFeedback’, false...
35 %[1,1] Flag; 1: filter included; 0: filter not included []
36 ,’FilterA’, 0 ...
37 );

Let’s analyse in detail the various variables contained in this structure:
• ReferenceFrequency: it is a string that can assume values ’GS’, ’GS-ES1’

and ’GS-ES2’, thus setting the choice of the reference frequency for the
simulation. In the case of this simulator, where we do not only consider the
emission from GS and ES1, but also from ES2, the average frequency between
GS and ES2 is taken as reference;

• PrintSimulationState: it sets the time in nanoseconds that has to elapse
before the simulator can print the simulation state. This includes the current
time step, the power from rear and front facets, the elapsed time and the
remaining time;

• dt: it is the simulation time step in nanoseconds, namely the minimum time
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interval. It has to be set in order to have the best trade-off between simulation
duration and precision of the results;

• TStart: it is the starting time of the simulation in nanoseconds;

• TEnd: it is the end time of the simulation in nanoseconds;

• Pilot: it is the parameter defining the injected current in mA in the device.
It can be either a constant or a function, in the case of a multi-electrode
device like this one. Here it is set to 0 because it will be defined later;

• Verbose: it is a Boolean flag that can be set to 1 in order to display
the messages from the simulator (for instance, the simulation state every
PrintSimulationState ns) or to 0 in order not to show any of them;

• TimeStopEsp: it is a parameter that allows us to set the time in nanoseconds
after which the spontaneous emission is turned off. This could be useful in
particular kinds of simulations, but this is not the case. That’s why it is set
to 10 µs, whereas the simulations are in the order of tens of nanoseconds;

• considerphotons: it is Boolean flag that can be set to 1 in order to run
the simulation considering the effect of photons in the simulations or to 0 in
order to solve the equations for the carriers distribution without considering
photons;

• LoadState: it is a string that can contain the name of a file to be loaded.
This can be used in order to continue the simulation starting from a previously
saved simulation state;

• StateFilename: it is a string that contains the name to be used for the
simulation state file. This is later set by the MainSOA to be in the format
State_DoublePass_FrontCurr%gmA_RearCurr%gmA_%gns.mat or in the for-
mat State_SinglePass_FrontCurr%gmA_RearCurr%gmA_%gns.mat.

• ResFilename: it is a string that contains the name to be used for the file stor-
ing the simulation results. This is later set by the MainSOA to be in the format
Res_DoublePass_FrontCurr%gmA_RearCurr%gmA_From%gnsTo%gns.mat or
Res_SinglePass_FrontCurr%gmA_RearCurr%gmA_From%gnsTo%gns.mat.

• OpticalExcitation: it can be either a constant value or a function in square
root of milliwatt that contains the definition of the external optical source to
be amplified by the SOA. It can also be set to be empty if the simulation
does not require an external excitation.
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• IncludeOpticalExcitation: it is a Boolean flag that is responsible of includ-
ing or not the optical excitation. It has to be set to false in order not to in-
clude the optical source, to true in order to include it. If OpticalExcitation
is not defined, it will be automatically set to false.

• IncludeExtFeedback: it is a Boolean flag that is responsible of including
or not the external cavity feedback. This means that it is basically setting
the double-pass configuration when it is set to true (feedback mirror in-
cluded) or the single-pass one when it is set to false (feedback mirror not
included). For this reason, it is also the flag that is checked by the functions in
DeviceData_SOA to establish whether we are running a single- or double-pass
simulation.

• FilterA: it is a Boolean flag for the inclusion of the external cavity filter,
used in the experiments of [7], as mentioned in Chapter 4. If it is 1, the filter
will be included, if it is 0, it will not.

5.2.2 Optical source
The optical source can be defined and modelled as a function of time to be then
used in DDoSimulationOpt for simulations including the external optical excitation.
In particular, it will be important when reproducing the results of [7], where a
pulsed laser source is employed. Indeed, it is a train of squared hyperbolic secant
pulses with 5 GHz emission rate. As stated before in Chapter 4, the pulses have
2.3 ps duration and the source has 2.5 mW output power on the average.
In order to model this train of pulses, the pulstran function from the Signal
Processing Toolbox is employed. The optical source is therefore modelled with the
following lines of code:

1 if Sim.IncludeOpticalExcitation == 1
2 %[1,1] Wavelength of emission of the seed laser [m]
3 Lambda = 1258e-9;
4 %[1,1] Frequency of emission of the seed laser [Hz->GHz]
5 fLaser = 3e8/Lambda* (1e-9);
6 %[1,1] Simulation reference frequency [Hz->GHz]
7 ReferenceFrequency = ...
8 ComputeReferenceFrequency(Data,Sim)* (1e-9);
9 %[1,1] Pulse height [sqrt(W)]

10 PulseHeight = sqrt(191.6);
11 %[1,1] Pulse FWHM [ns]
12 FWHM = 2.3e-3;
13 %[1,1] Pulse Amplitude [ns]
14 PulseAmplitude = FWHM/1.76;
15 %[f(z)] Pulse shape []
16 PulseShape = @(x) PulseHeight*sech(PulseAmplitude^-1*x);
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17 %[1,1] Pulse Frequency [Hz]
18 f0 = 5e9;
19 %[1,1] Pulse Period [s->ns]
20 t0 = 1/f0 * (1/1e-9);
21 %[1,NumSamples] Time at which a pulse is centered [ns]
22 d = Sim.TStart+0.1:t0:Sim.TEnd+0.1;
23

24 %[complex] Optical excitation (sech pulses for the field)[sqrt(mW)]
25 Sim.OpticalExcitation = ...
26 @(t) pulstran(t’,d’,PulseShape).* ...
27 exp(1i*2*pi*(ReferenceFrequency-fLaser)*t)’.*(t>=10)’;
28

29 elseif Sim.IncludeOpticalExcitation == 0
30 Sim.OpticalExcitation = [];
31

32 else
33 error(’IncludeOpticalExcitation can only be a boolean.’);
34 end

Basically, these lines of code define the Sim.OpticalExcitation as a function of
time t, a vector of time instants that will be later defined in DDoSimulationOpt.
The train of squared hyperbolic secant pulses is defined with frep = 5 GHz, λlaser =
1258 nm and A =

√
191.6

√
mW. The latter is employed because 191.6 mW is the

peak power needed to reach an average power of 2.5 mW for a train of pulses with
the specifics reported in [7], according to the formulae expressed in [20], which
are relating the average power to the peak power through the pulse energy. Note
that the pulse amplitude is expressed in square root of milliwatt, because this
is the unit of measure required by the program. Moreover, in order to achieve
a FWHM of 2.3 ps, according to [24], the hyperbolic secant function has to be
defined as sech(t/X), where X is what is called PulseAmplitude in the reported
code. Then, the actual signal is defined by means of the function pulstran. Not
only this, we also use a complex exponential in order to translate the spectrum
around the λlaser from the reference frequency of the simulation, hence the quantity
(ReferenceFrequency-fLaser) in the exponential. There is also a logic operation
(t>10): this is basically making the source wait 10 ns before turning on, because
in the real experiments the pulses were launched after the device reached a steady
state. Another important point is the vector d that basically contains the set of
time instants at which the pulses will be centered. Note that the pulses are skewed
of 100 ps in order to avoid having the first and last ones halved.
Figure 5.3a shows an example of train of pulses generated with the function
Sim.OpticalExcitation (in modulus square to have dimensionally a power),
given a vector of time instants. Figure 5.3b, instead, shows the detail of one of the
squared hyperbolic pulses creating the train.
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(a) (b)

Figure 5.3. (a) Pulse of squared hyperbolic secant pulses between 10 ns
and 11 ns. (b) Detail of one of the squared hyperbolic secant pulses making
up the train.

5.2.3 Driving currents and call to DDoSimulationOpt

Another important point is the definition of the Sim.Pilot variable, which is the
one that sets the driving current in the two sections of the device. For this purpose,
we use the following piece of code:

1 %[N,1] Vector of rear section currents [mA]
2 IRear = [0.1, 0.1]*1e3;
3 %[N,1] Vector of front section currents [mA]
4 IFront = [1, 3.5]*1e3;
5

6 Simv = repmat(Sim, 1, length(IFront));
7 for kInd = 1:length(IFront)
8 DrivingCurr = @(e,t) IRear(kInd)*(e==1)+IFront(kInd)*(e==2);
9 Simv(kInd).Pilot = DrivingCurr;

10 end

Basically, we define the vectors of front and rear section currents to be simulated.
These can of course be made up of single elements if we want to simulate only a
pair of front/rear currents. The Simv variable is simply an array of Sim structures,
to be used if we are simulating multiple current pairs. By means of the for loop,
we build the Pilot function and, if we have multiple elements inside the current
vectors, we store them inside Simv.
Finally, we have to call the DDoSimulationOpt function in order to launch the
actual simulation. This can be done with this line:
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1 DoSimsParallelMPRE(Simv,Data,’’,8);

DoSimsParallelMPRE is basically a function that calls DDoSimulationOpt by
launching a parfor loop, if Simv has more than one element. This parallel for
loop allows us to run multiple simulations in parallel, thus reducing the overall
computational time.

5.3 DDoSimulationOpt

Finally, we can analyse DDoSimulationOpt, which constitutes the main part of
the simulator. As already said, this function contains the implementation of the
TDTW model that has been studied in Chapter 3. It receives the Data and Sim
structures as inputs and, based on their content, it computes the evolution of the
field in each slice for each time step, solving the propagation equations for that
particular device. Of course, this can be done only if we also compute the evolution
of the carrier populations inside the QD energy states.
Let’s highlight some noteworthy portions of the code.

5.3.1 Energy reference choice
As mentioned in the theoretical section of this work, the choice of a proper reference
frequency is fundamental in order to retrieve the best possible results for our system,
since, if the distance between the frequency associated to the QD states and the
reference is too large, the slowly varying envelope approximation on which we built
our model might not be valid. The choice of the reference frequency is implemented
in DDoSimulationOpt as follows:

1 if Data.NumDiffDotLayers == 1 % not chirped
2 %[1,1] Transition energy for the ES2 of the central population [eV]
3 PeakEnergyES2 = Data.EnergyGapQDCentralPop(end-2);
4 %[1,1] Transition energy for the ES1 of the central population [eV]
5 PeakEnergyES1 = Data.EnergyGapQDCentralPop(end-1);
6 %[1,1] Transition energy for the GS of the central population [eV]
7 PeakEnergyGS = Data.EnergyGapQDCentralPop(end);
8 elseif Data.NumDiffDotLayers > 1 % chirped
9 %[1,1] Transition energy for the ES2 of the central population [eV]

10 PeakEnergyES2
=sum(Data.EnergyGapQDCentralPop(1,:))/Data.NumDiffDotLayers;

11 %[1,1] Transition energy for the ES1 of the central population [eV]
12 PeakEnergyES1

=sum(Data.EnergyGapQDCentralPop(2,:))/Data.NumDiffDotLayers;
13 %[1,1] Transition energy for the GS of the central population [eV]
14 PeakEnergyGS

=sum(Data.EnergyGapQDCentralPop(3,:))/Data.NumDiffDotLayers;
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15 else
16 error(’The number of different layers can only be 1 or more.’)
17 end
18

19

20 %% Choice of the SVEA reference frequency
21 if strcmp(Sim.ReferenceFrequency,’GS’)
22 %[1,1] Flag indicating the reference energy [bool]
23 %Reference frequency @ GS characteristic interband transition
24 %energy of the central (most probable) QD population
25 ReferenceFreq=0;
26 %[1,1] Reference energy [eV]
27 ReferenceEnergy=PeakEnergyGS;
28

29 elseif strcmp(Sim.ReferenceFrequency,’GS-ES1’)
30 %[1,1] Flag indicating the reference energy [bool]
31 % Reference energy as average between GS and ES1 characteristic
32 %interband transition energy of the central (most probable) QD

population
33 ReferenceFreq=1;
34 %[1,1] Reference energy [eV]
35 ReferenceEnergy=(PeakEnergyES1+PeakEnergyGS)/2;
36

37 elseif strcmp(Sim.ReferenceFrequency,’GS-ES2’)
38 %[1,1] Flag indicating the reference energy [bool]
39 % Reference energy as average between GS and ES2 characteristic
40 %interband transition energy of the central (most probable) QD

population
41 ReferenceFreq=2;
42 %[1,1] Reference energy [eV]
43 ReferenceEnergy=(PeakEnergyES2+PeakEnergyGS)/2;
44

45 else
46 error(’An invalid reference frequency label was passed.’)
47 end
48

49 %[1,1] Simulation reference wavelength [um]
50 ReferenceWavelength=Constants.h*Constants.c/ReferenceEnergy;

First, we have to compute the energies associated to GS, ES1 and ES2. This has to
be done differently for the non-chirped and chirped cases. In the first instance, we
set the central population energy gap as peak energy, since we are considering N
populations of QD with gap distributed around this value. Instead, in the second,
we compute the peak energy as the arithmetic average value between the energy
gaps of the three kinds of QD.
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Then, instead of computing the frequency, we compute the reference energy. Of
course, the reference energy changes depending on our choice. We use:

E
(GS)
ref = EGS

peak (5.2)

E
(GS−ES1)
ref =

EGS
peak + EES1

peak

2 (5.3)

E
(GS−ES2)
ref =

EGS
peak + EES2

peak

2 (5.4)

Just like it was discussed before, since in this model we are considering also the
emission from the second excited state, the most reasonable reference choice is
represented by E

(GS−ES2)
ref , otherwise ES2 would be too far away from the reference.

Finally, we also compute the wavelength associated to this reference energy, by
using the equivalences E = h · f and c = λ · f . In Table 5.3, the resulting reference
energies and wavelengths for all the possible reference choices are reported, together
with the percentage error with respect to ES2.

Reference Energy [eV] Wavelength [nm] Distance from ES2
’GS’ 0.9955 1245.5 5.6%

’GS-ES1’ 1.0098 1227.8 4.1%
’GS-ES2’ 1.0233 1211.7 2.8%

Table 5.3. Reference energies, wavelengths and errors with respect to the
ES2 peak energy for all the possible reference choices.

It turns out that the only viable choice is to use ’GS-ES2’ as reference, in order to
avoid aliasing problems related to the presence of the second excited state in the
model. This is reasonable, since ’GS-ES2’ is the reference giving the lowest errors
with respect to the peak energies of the three confined states, since E

(GS−ES2)
ref is

located quite close to EES1
peak = 1.0242 eV.

In the code, the possibility of choosing the other references is maintained anyway,
in order to have the best possible flexibility for our simulator, so that it could be
used to simulate also devices where the ES2 contribution is less relevant.

5.3.2 Carrier rate equations
After many lines of code doing input checks and variable definition, we finally start
with the main loop over the time vector. The first important point of this loop is
the computation of the variation of the carriers in each slice at each time step of
the loop itself. This of course is done by means of the rate equations presented in
Chapter 3.
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Let’s now analyse of Equations (3.40a)-(3.40e) are implemented. Starting from the
Separate Confined Heterostructure (SCH) rate equation, we know that it contains
all the contribution adding or subtracting carrier from the SCH:

∂NSCH

∂t
= +ηi

J

e
W − NSCH

τc,W L

+ NW L

τe,W L

−

− BSCH

WhSCH

N2
SCH − NSCH

τnr,SCH

Here we can recognise the current injection, the capture from the WL, the escape
towards the WL, the spontaneous emission and the non-radiative components.
This equation, describing the variation of the SCH population, is implemented in
MATLAB as follows:

1 %%%%% Variation of SCH carriers in each slice in dt %%%%%
2

3 %[1,NumSlices] Net Current in cb including drift sweep out [ns^-1]
4 NetCurrentCB=I.*NetCurrentCoeff+NcbSCH.*NetCurrentCBCoeff2;
5 %[1,NumSlices] Net Current in vb including drift sweep out [ns^-1]
6 NetCurrentVB=I.*NetCurrentCoeff+NvbSCH.*NetCurrentVBCoeff2;
7 %[1,NumSlices] Product of carrier in cb and vb in SCH [ns^-1]
8 NcbvbSCH=NcbSCH.*NvbSCH;
9 %[1,NumSlices] Non radiative recombination in SCH [ns^-1]

10 NonRadiativeRecombinationSCH=sqrt(NcbvbSCH).*OneOverTauNRcbSCH;
11 %[1,NumSlices] Capture from SCH to WL [ns^-1]
12 CaptureFromSCH2WL=...
13 NcbSCH.*(1-NcbWL.*Number2ProbWLcb).*OneOverTauCapcbSCH2WL;
14 %[1,NumSlices] Escape from WL to SCH [ns^-1]
15 EscapeFromWL2SCH=...
16 NcbWL.*OneOverTauEsccbSCH2WL.*ThermEsc_Barrier_reductionSCH;
17 %[1,NumSlices] Tunneling processes from WL to SCH in reversely biased

slices [ns^-1]
18 TunnelingFromWL2SCH=Tunneling_esc_rateWELL_cb.*NcbWL;
19 %[NumPops,NumSlices] Tunneling processes from ES2 to WL in reversely

biased slices [ns^-1]
20 TunnelingFromES22SCH=TunnelingEscapeRatecbES2.*NcbES2;
21 %[NumPops,NumSlices] Tunneling processes from ES1 to ES2 in reversely

biased slices [ns^-1]
22 TunnelingFromES12SCH=TunnelingEscapeRatecbES1.*NcbES1;
23 %[NumPops,NumSlices] Tunneling processes from GS to ES1 in reversely

biased slices [ns^-1]
24 TunnelingFromGS2SCH=TunnelingEscapeRatecbGS.*NcbGS;
25

26 %[1,NumSlices] Variation of carriers in the cb SCH [ns^-1]
27 dNcbSCH= ...
28 %[1,NumSlices] Net Current in cb including drift sweep out [ns^-1]
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29 NetCurrentCB ...
30 %[1,NumSlices] Non radiative recombination [ns^-1]
31 -NonRadiativeRecombinationSCH ...
32 %[1,NumSlices] Capture from SCH to WL [ns^-1]
33 -CaptureFromSCH2WL ...
34 %[1,NumSlices] Escape from WL [ns^-1]
35 +EscapeFromWL2SCH ...
36 %[1,NumSlices] Tunneling processes from WL to SCH [ns^-1]
37 +TunnelingFromWL2SCH...
38 +sum(...
39 %[NumPops,NumSlices] tunneling process from GS states [ns^-1]
40 TunnelingFromGS2SCH...
41 %[NumPops,NumSlices] tunneling process from ES1 states [ns^-1]
42 +TunnelingFromES12SCH...
43 %[NumPops,NumSlices] tunneling process from ES2 states [ns^-1]
44 +TunnelingFromES22SCH);

In dNcbSCH, we can recognize the various components of the theoretical equation.
We can also see that there are some tunneling components, that are not present
in the theoretical formula. These represent the carriers that are able to tunnel
from the SCH directly to all the other states of the QD. These contributions are
introduced even though they are not that significant with respect to the others.

Let’s continue with the rate equation for the Wetting Layer (WL). From the
theoretical analysis of Chapter 3, we know that the equation reads:

∂NW L

∂t
= +NSCH

τc,W L

− NW L

τe,W L

− BW L

WhW

N2
W L − NSCH

τnr,SCH

−

− N3
W L

τAug,ES2

−
NØ

i=1

Gi

τc,ES2

NW L(1 − ρiES2) +
NØ

i=1

NiES2

τe,ES2

Here we have the capture from and escape to the SCH, the spontaneous emission,
the non-radiative and the Auger contributions. Moreover, the two summations
represent the capture and escape contributions from and to the QD confined energy
states, considering the chirp and the inhomogeneous distribution. This equation is
implemented in the program as follows:

1 %%%%% Variation of WL carriers %%%%%
2

3 %[1,NumSlices] Product of carrier in cb and vb in SCH [ns^-1]
4 NcbvbWL=NcbWL.*NvbWL;
5 %[1,NumSlices] rate of non radiative recomb. in WL [ns^-1]
6 NonRadiativeRecombinationWL=sqrt(NcbvbWL).*OneOverTauNRcbWL;
7 %[1,NumSlices] rate of spontaneous emission in WL [ns^-1]
8 SpontaneousEmissionWL=Bsp.*NcbvbWL;
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9 %[1,NumSlices] rate of Auger recomb. in WL [ns^-1]
10 AugerRecombinationWL=NcbWL.^3.*OneOverTauAugerWL;
11 %[NumPops,NumSlices] rate of capture from ES2 to WL [ns^-1]
12 CaptureFromES22WL=...
13 ((1-RhocbES2).*OneOverTauCapcbWL2ES2).*(InhomDensityES2*NcbWL);
14 %[NumPops,NumSlices] rate of escape from ES2 to WL [ns^-1]
15 EscapeFromES22WL=...
16 NcbES2.*OneOverTauEsccbES22WL.*ThermEsc_Barrier_reductionWL;
17 %[1,NumSlices] rate of recombinations in the WL [ns^-1]
18 RecombinationWL=...
19 %[1,NumSlices] rate of non radiative recomb. in WL [ns^-1]
20 NonRadiativeRecombinationWL+...
21 %[1,NumSlices] rate of spontaneous emission in WL [ns^-1]
22 SpontaneousEmissionWL+...
23 %[1,NumSlices] rate of Auger recomb. in WL [ns^-1]
24 AugerRecombinationWL;
25

26 %[1,NumSlices] Variation of carriers in the cb WL [ns^-1]
27 dNcbWL=...
28 %[1,NumSlices] rate of capture from SCH to WL [ns^-1]
29 CaptureFromSCH2WL ...
30 %[1,NumSlices] rate of escape from SCH to WL [ns^-1]
31 -EscapeFromWL2SCH ...
32 %[1,NumSlices] rate of recombinations in the WL [ns^-1]
33 -RecombinationWL ...
34 +sum(...
35 %[NumPops,NumSlices] rate of escape from ES2 to WL [ns^-1]
36 EscapeFromES22WL ...
37 %[NumPops,NumSlices] rate of capture from ES2 to WL [ns^-1]
38 -CaptureFromES22WL) ...
39 %[1,NumSlices] Tunneling processes from WL to SCH [ns^-1]
40 -TunnelingFromWL2SCH;

In dNcbWL, we can recognise all the contributions present in the equation. We
have indeed the term CaptureFromSCH2WL representing the capture rate from the
SCH, EscapeFromWL2SCH representing the escape rate from the WL to the SCH,
RecombinationWL containing the spontaneous, non-radiative and Auger contribu-
tions and, finally, sum(EscapeFromES22WL-CaptureFromES22WL) corresponding to
the two summations in the theoretical equation, which represent the capture and
escape rates from and to the QD confined states. In additions to these, we have also
TunnelingFromWL2SCH that is linked to tunneling processes between WL and SCH,
which is not reported in the theoretical equation and which describes tunneling
processes that may be relevant when simulating reversely biased sections.

Continuing on with the rate equations, let’s concentrate on the one for the second
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excited state (ES2), the considered QD confined state with the highest energy.
From the theoretical model, we know that:

∂NiES2

∂t
= + Gi

τc,ES2

NW L(1 − ρiES2) − NiES2

τe,ES2

−

− NiES2

τc,ES1

(1 − ρiES1) + NiES1

τe,ES1

(1 − ρiES2)−

− NiES2ρiES2

τsp,ES2

−
ρ2

iES2

τAug,ES2

NiES2 − NiES2

τnr,ES2

− Rst,iES2

Here we can see the capture and escape rates between WL and ES2 and between
ES1 and ES2. There are also the spontaneous emission, Auger, non-radiative and
stimulated emission contributions.
This is implemented in DDoSimulationOpt with these lines of code:

1 %%%%% Variation ES2 carriers %%%%%
2 %%%%% I assume no stimulated emission/absorption processes %%%%%
3

4 %[1,1] false: solve CB and VB separately, true: use eccitonic model
[bool]

5 if Data.Excitonic==0
6 %[NumPops,NumSlices] rate of Auger recombination in ES2 [ns^-1]
7 AugerRecombES2=...

RhovbES2.*RhocbES2.*RhocbES2.* ...
8 (DotNumberTimesDegOverTauAugercbES2);
9 %[NumPops,NumSlices] rate of spontaneous emission in ES2 [ns^-1]

10 SpontaneousEmissionES2=NcbES2.*RhovbES2*OneOverTauSpontES2;
11 else
12 %[NumPops,NumSlices] rate of Auger recombination in ES2 [ns^-1]
13 AugerRecombES2=...
14 (RhocbES2.*RhocbES2.*RhocbES2).* ...
15 (DotNumberTimesDegOverTauAugercbES2);
16 %[NumPops,NumSlices] rate of spontaneous emission in ES2 [ns^-1]
17 SpontaneousEmissionES2=NcbES2.*RhocbES2*OneOverTauSpontES2;
18 end
19

20 %[NumPops,NumSlices] Non radiative recomb. from ES2 [ns^-1]
21 NonRadiativeRecombES2=NcbES2.*OneOverTauNRcbES2;
22 %[NumPops,NumSlices] rate of escape from ES1 to ES2 [ns^-1]
23 EscapeFromES12ES2=NcbES1.*(1-RhocbES2).*OneOverTauEsccbES12ES2;
24 %[NumPops,NumSlices] capture rate from ES2 to ES1 [ns^-1]
25 CaptureFromES22ES1=NcbES2.*(1-RhocbES1).*OneOverTauCapcbES22ES1;
26 %[NumPops,NumSlices] Stimulated emission from ES2 [ns^-1]
27 StimulatedEmissionES2=...
28 StimulatedEmissionCoeffES2XY.*GainES2(:,:,cc).*DeltaEnergyES2;



Chapter 5: Numerical implementation 56

29 %[NumPops,NumSlices] rate of recombinations in the ES2 [ns^-1]
30 RecombinationsES2=...
31 %[NumPops,NumSlices] Non radiative recomb. from ES2 [ns^-1]
32 NonRadiativeRecombES2+ ...
33 %[NumPops,NumSlices] rate of spontaneous emission in ES2 [ns^-1]
34 SpontaneousEmissionES2+ ...
35 %[NumPops,NumSlices] rate of Auger recombination in ES2 [ns^-1]
36 AugerRecombES2+ ...
37 %[NumPops,NumSlices] Stimulated emission from ES2 [ns^-1]
38 StimulatedEmissionES2;
39

40 %[NumPops, NumSlices] Variation of carriers in the cb ES2 [ns^-1]
41 dNcbES2= ...
42 %[NumPops,NumSlices] rate of capture from ES2 to WL [ns^-1]
43 CaptureFromES22WL ...
44 %[NumPops,NumSlices] rate of recombinations in the ES2 [ns^-1]
45 -RecombinationsES2...
46 %[NumPops,NumSlices] rate of escape from ES2 to WL [ns^-1]
47 -EscapeFromES22WL ...
48 %[NumPops,NumSlices] rate of escape from ES1 to ES2 [ns^-1]
49 +EscapeFromES12ES2...
50 %[NumPops,NumSlices] capture rate from ES2 to ES1 [ns^-1]
51 -CaptureFromES22ES1...
52 %[NumPops,NumSlices] tunneling process from ES2 states [ns^-1]
53 -TunnelingFromES22SCH;

In this portion of code, we can see that, first of all, depending on the value of
Data.Excitonic, we can either adopt the independent rate equation model or the
excitonic one for the computation of the Auger and spontaneous emission rates.
The choice is still maintained, even though the simulations will be carried out only
considering the excitonic model with Data.Excitonic = 1. After the computation
of the various terms, we compute the variation of the carriers in the conduc-
tion band ES2 (dNcbES2). In dNcbES2, we can recognize CaptureFromES22WL
and EscapeFromES22WL representing respectively the capture rate from WL and
the escape rate from ES2 to WL. Then there are CaptureFromES22ES1 and
EscapeFromES22ES1, that represent the capture and escape rates between ES2
and ES1. Moreover, we have once again the variable RecombinationsES2, that
contains the rates for all the recombination phenomena affecting ES2, namely the
spontaneous and stimulated emission and the non-radiative and Auger recombi-
nation rates. In particular, if we concentrate on the stimulated emission term
(StimulatedEmissionES2), it is in a slightly different form with respect to the one
employed in Chapter 4 in Equation (3.36). Indeed, it is closer to the expression
presented in [9], where we have the gain, the confinement factor and a factor Am
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containing some important constants:

Rst,im = vgµmND
Γ+ + Γ−

2 Am
VQD

hQD

(2ρim − 1)dz (5.5)

Note that a tunneling contribution (TunnelingFromES22SCH) is present. This
represents the possible carriers escaping ES2 towards the SCH by means of tunneling
phenomena.

For the first excited state ES1, we will have similar contributions, taking into
account its interactions with ES2 and GS. The theoretical model, as we know from
Chapter 3, tells us that the variation of the carriers in ES1 is regulated by the
following equation:

∂NiES1
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= +NiES2
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In this equation we can recognize the escape and capture rates between ES1 and ES2,
the escape and capture rates between GS and ES1 and the various recombination
phenomena (spontaneous, Auger, non-radiative and stimulated). This is then
implemented in the simulator as follows:

1 %%%%% Variation ES1 carriers %%%%%
2

3 %[1,1] false: solve CB and VB separately, true: use eccitonic model
[bool]

4 if Data.Eccitonic==0
5 %[NumPops,NumSlices] rate of Auger recombination in ES1 [ns^-1]
6 AugerRecombES1=...
7 RhovbES1.*RhocbES1.*RhocbES1.* ...
8 DotNumberTimesDegOverTauAugercbES1;
9 %[NumPops,NumSlices] rate of spontaneous emission in ES1 [ns^-1]

10 SpontaneousEmissionES1=NcbES1.*RhovbES1*OneOverTauSpontES1;
11 else
12 %[NumPops,NumSlices] rate of Auger recombination in ES1 [ns^-1]
13 AugerRecombES1=...
14 (RhocbES1.*RhocbES1.*RhocbES1).* ...
15 DotNumberTimesDegOverTauAugercbES1;
16 %[NumPops,NumSlices] rate of spontaneous emission in ES1 [ns^-1]
17 SpontaneousEmissionES1=NcbES1.*RhocbES1*OneOverTauSpontES1;
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18 end
19

20 %[NumPops,NumSlices] rate of escape from GS to ES1 [ns^-1]
21 EscapeFromGS2ES1=NcbGS.*(1-RhocbES1).*OneOverTauEsccbGS2ES1;
22 %[NumPops,NumSlices] capture rate from ES1 to GS [ns^-1]
23 CaptureFromES12GS=NcbES1.*(1-RhocbGS).*OneOverTauCapcbES12GS;
24 %[NumPops,NumSlices] Non radiative recomb. from ES1 [ns^-1]
25 NonRadiativeRecombES1=NcbES1*OneOverTauNRcbES1;
26 %[NumPops,NumSlices] Stimulated emission from ES1 [ns^-1]
27 StimulatedEmissionES1=...
28 StimulatedEmissionCoeffES1XY.*GainES1(:,:,cc).*DeltaEnergyES1;
29 %%[1,NumSlices] rate of recombinations in the ES1 [ns^-1]
30 RecombinationsES1=...
31 %[NumPops,NumSlices] Non radiative recomb. from ES1 [ns^-1]
32 NonRadiativeRecombES1+ ...
33 %[NumPops,NumSlices] rate of Auger recombination in ES1 [ns^-1]
34 AugerRecombES1+ ...
35 %[NumPops,NumSlices] rate of spontaneous emission in ES1 [ns^-1]
36 SpontaneousEmissionES1+ ...
37 %[NumPops,NumSlices] Stimulated emission from ES1 [ns^-1]
38 StimulatedEmissionES1;
39

40 %[NumPops, NumSlices] Variation of carriers in the cb ES1 [ns^-1]
41 dNcbES1= ...
42 %[NumPops,NumSlices] capture rate from ES2 to ES1 [ns^-1]
43 CaptureFromES22ES1 ...
44 %[NumPops,NumSlices] rate of recombinations in the ES1 [ns^-1]
45 -RecombinationsES1 ...
46 %[NumPops,NumSlices] rate of escape from ES1 to ES2 [ns^-1]
47 -EscapeFromES12ES2 ...
48 %[NumPops,NumSlices] rate of escape from GS to ES1 [ns^-1]
49 +EscapeFromGS2ES1 ...
50 %[NumPops,NumSlices] capture rate from ES1 to GS [ns^-1]
51 -CaptureFromES12GS...
52 %[NumPops,NumSlices] tunneling process from ES1 states [ns^-1]
53 -TunnelingFromES12SCH;

Once again, we can see that the various contributions are computed (the Auger
and spontaneous emission ones change whether we are considering the excitonic
approximation or not). Then, in dNcbES1, representing the variation of the carrier
in the conduction band ES1 state at the current time step, we can recognize
the various terms that were present in the theoretical equation. Indeed, we
can recognize CaptureFromES22ES1 and EscapeFromES12ES2 representing respec-
tively the capture rate from ES2 and the escape rate from ES1 to ES2, that
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were already present, with opposite sign, in the ES2 rate equation. Then there
are CaptureFromES12GS and EscapeFromGS2ES1, that represent the capture and
escape rates between ES1 and GS. Moreover, we have once again the variable
RecombinationsES1, that contains the rates for all the recombination phenomena
affecting ES1, namely the spontaneous and stimulated emission and the non-
radiative and Auger recombination rates. In this case as well, we have a tunneling
contribution TunnelingFromES12SCH, representing the carriers that escape ES1
toward the SCH by means of tunneling phenomena. Note that the stimulated
emission rate is in the form of Equation (5.5).

Finally, let’s analyse how the ground state GS rate equation is implemented in
the DDoSimulationOpt simulator. From theory, we know that the variation of the
number of carriers in GS is described by:

∂NiGS
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− ρ2
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τAug,GS

NiGS − NiGS

τnr,GS

− Rst,iGS

Here, the escape and capture rates between ES1 and GS and the various recombi-
nation phenomena (spontaneous, Auger, non-radiative and stimulated) are present,
similarly to what we had before for the other QD confined states. This is then
implemented in the MATLAB program as follows:

1 %%%%% Variation of the GS carriers %%%%%
2

3 %[1,1] false: solve CB and VB separately, true: use eccitonic model
[bool]

4 if Data.Eccitonic==0
5 %[NumPops,NumSlices] rate of Auger recombination in GS [ns^-1]
6 AugerRecombGS=...
7 RhovbGS.*RhocbGS.*RhocbGS.* ...
8 DotNumberTimesDegOverTauAugercbGS;
9 %[NumPops,NumSlices] rate of spontaneous emission in GS [ns^-1]

10 SpontaneousEmissionGS=NcbGS.*RhovbGS*OneOverTauSpontGS;
11 else
12 %[NumPops,NumSlices] rate of Auger recombination in ES2 [ns^-1]
13 AugerRecombGS=...
14 (RhocbGS.*RhocbGS.*RhocbGS).* ...
15 DotNumberTimesDegOverTauAugercbGS;
16 %[NumPops,NumSlices] rate of spontaneous emission in WL [ns^-1]
17 SpontaneousEmissionGS=NcbGS.*RhocbGS*OneOverTauSpontGS;
18 end
19

20 %[NumPops,NumSlices] Stimulated emission from GS [ns^-1]
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21 StimulatedEmissionGS=...
22 StimulatedEmissionCoeffGSXY.*GainGS(:,:,cc).*DeltaEnergyGS;
23 %[NumPops,NumSlices] Non radiative recomb. from GS [ns^-1]
24 NonRadiativeRecombGS1=NcbGS*OneOverTauNRcbGS;
25 %[NumPops,NumSlices] rate of recombinations in the GS [ns^-1]
26 RecombinationsGS=...
27 %[NumPops,NumSlices] Non radiative recomb. from GS [ns^-1]
28 NonRadiativeRecombGS1+ ...
29 %[NumPops,NumSlices] rate of spontaneous emission in GS [ns^-1]
30 SpontaneousEmissionGS+ ...
31 %[NumPops,NumSlices] Stimulated emission from GS [ns^-1]
32 StimulatedEmissionGS+ ...
33 %[NumPops,NumSlices] rate of Auger recombination in GS [ns^-1]
34 AugerRecombGS;
35

36 %[NumPops, NumSlices] variation of GS carriers [ns^-1]
37 dNcbGS=...
38 %[NumPops,NumSlices] capture rate from ES1 to GS [ns^-1]
39 CaptureFromES12GS...
40 %[NumPops,NumSlices] rate of recombinations in the GS [ns^-1]
41 -RecombinationsGS ...
42 %[NumPops,NumSlices] rate of escape from GS to ES1 [ns^-1]
43 -EscapeFromGS2ES1...
44 %[NumPops,NumSlices] Tunneling processes from GS to ES1 in reversely

biased slices [ns^-1]
45 -TunnelingFromGS2SCH;

Unsurprisingly, we have here as well the computation of the various terms and,
finally, in dNcbGS, we can find the terms that are making up the theoretical formula.
There are of course CaptureFromES12GS and EscapeFromGS2ES1, that represent
the capture and escape rates between ES1 and GS. They were already present
in dNcbES1, but with opposite sign. Moreover, we have once again a variable
RecombinationsGS, that contains the rates for all the recombination phenomena
affecting GS, namely, just like for the other confined QD states, the spontaneous
and stimulated emission and the non-radiative and Auger recombination rates.
Finally, we have also the tunneling term TunnelingFromGS2SCH, with the same
meaning as that of its ES1 and ES2 counterparts.

Up to now, we computed only the variation of the carriers in each considered energy
state. These variation terms are then used in order to compute the total number
of carriers in each slice, at the current time step, for all the considered QD states.
This is simply done by summing the computed variation terms to the total number
of carriers at the previous time step.

1 % I compute the new values for carriers in each slice at time t
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2 %[1,NumSlices] Number of carriers for SCH in cb [-]
3 NcbSCH=NcbSCH+Sim.subsampleRE*Sim.dt*dNcbSCH;
4 %[1,NumSlices] Number of carriers for WL in cb [-]
5 NcbWL=NcbWL+Sim.subsampleRE*Sim.dt*dNcbWL; NcbWL(NcbWL<0)=0;
6 %[NumPops,NumSlices] Number of carriers for ES2 in cb [-]
7 NcbES2=NcbES2+Sim.subsampleRE*Sim.dt*dNcbES2;
8 %[NumPops,NumSlices] Number of carriers for ES1 in cb [-]
9 NcbES1=NcbES1+Sim.subsampleRE*Sim.dt*dNcbES1;

10 %[NumPops,NumSlices] Number of carriers for GS in cb [-]
11 NcbGS=NcbGS+Sim.subsampleRE*Sim.dt*dNcbGS;
12

13 % I calculate the occupation probabilities in the QD states
14 %[NumPops,NumSlices] Occupation probability for ES2 in cb [-]
15 RhocbES2=NcbES2./DotNumberByDegeneracyES2;
16 %[NumPops,NumSlices] Occupation probability for ES1 in cb [-]
17 RhocbES1=NcbES1./DotNumberByDegeneracyES1;
18 %[NumPops,NumSlices] Occupation probability for GS in cb [-]
19 RhocbGS=NcbGS./DotNumberByDegeneracyGS;
20

21 [...]
22

23 %[1,1] false: solve CB and VB separately, true: use eccitonic model
[bool]

24 if Data.Excitonic % EXCITONIC MODEL
25 %[1,NumSlices] Number of carriers for SCH [-]
26 NvbSCH=NcbSCH;
27 %[1,NumSlices] Number of carriers for WL in cb [-]
28 NvbWL=NcbWL;
29 %[NumPops,NumSlices] Number of carriers for ES2 in cb [-]
30 NvbES2=NcbES2;
31 %[NumPops,NumSlices] Number of carriers for ES1 in vb [-]
32 NvbES1=NcbES1;
33 %[NumPops,NumSlices] Number of carriers for GS in vb [-]
34 NvbGS=NcbGS;
35 %[NumPops,NumSlices] Occupation probability for ES2 in vb [-]
36 RhovbES2=RhocbES2;
37 %[NumPops,NumSlices] Occupation probability for ES1 in vb [-]
38 RhovbES1=RhocbES1;
39 %[NumPops,NumSlices] Occupation probability for GS in vb [-]
40 RhovbGS=RhocbGS;
41 %[1,NumSlices] Net Current in vb [ns^-1]
42 NetCurrentVB=NetCurrentCB;
43 else % INDEPENDENT MODEL
44

45 [...]
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46

47 end

Note that, in this code, we use directly the number of carriers (adimensional
quantity) instead of the density of carriers, which is perhaps of more common
use in the theoretical treatment. For this reason, since the variation terms that
we computed before are expressed in ns−1, we multiply those by the time step of
the simulation dt, before adding them to the number of carriers computed in the
previous step. We also compute the occupation probability ρ in conduction band,
by normalizing the number of carriers in each confined state by the total number
of available states (number of QDs times the degeneracy for that particular energy
state).
Then, of course, since we are employing the excitonic approximation, both the
number of carriers and the occupation probabilities in valence band are set to be
equal to those in conduction band. Inside the else statement, the computations
for the independent rate equation model are contained. This is not reported for
the sake of brevity, but, for instance, in that case, the probability distributions are
expressed by means of the Fermi-Dirac probability distribution.
This is the last step of the computation of the number of carriers following the
rate equation model, except for the models of the phase noise of the field and the
spontaneous emission noise, both modelled as random noise sources. Therefore, in
order to conclude the numerical implementation of the model, given the number of
carriers in each QD state at the current time step, of course we have to implement
the solution of the field propagation equations in order to compute the values of
the forward and backward components of the field inside the device, at the current
time step.

5.3.3 Field propagation equations
As anticipated, the rate equations only describe the carrier dynamics, but we have
also to include the implementation of the equations modelling the propagation
of the progressive and regressive components of the field, according to what has
been obtained in Chapter 3. In particular, we want to implement the time stepped
solution of the travelling wave equation, that is represented by Equation (3.24) and
that is reported here for the sake of clarity:

E±(z0 ± ∆z, t) = + S±
sp(z0, t) + E±(z0, t − ∆t) − α±

w

2 E±(z0, t − ∆t)∆z+

+ ∆z
Ø
m

g0
im(2ρim(zo, t − ∆t) − 1)I±

im(z0, t − ∆t)

This equation was implemented by means of a set of coefficients, using a similar
approach to the one of the appendix of [1]. This set includes A (progressive
and regressive), B (progressive and regressive, in micrometer times square root of
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electronvolt), Tmp (progressive and regressive, in micrometers time square root of
electronvolt) and sumEsp (progressive and regressive, in square root of electronvolt),
which is related to the spontaneous emission. These coefficients include the field
filtered by a Lorentzian filter, the gain and the field at the previous temporal
step, which are, of course, also the building blocks of Equation (3.24). The
final implementation for the field at the current time step (Sprog and Sregr,
in square root of electronvolt) also include a variable taking into account losses
(ComplexLossesProg and ComplexLossesRegr, in one over micrometer).
All of this is implemented in MATLAB as follows:

1 %[NumPops,NumSlices COMPLEX] Expanded forward field [sqrt(eV)]
2 SProgccExpanded=onesNumQDPopulations*Sprog(cc,:);
3 %[NumPops,NumSlices COMPLEX] Expanded backward field [sqrt(eV)]
4 SRegrccExpanded=onesNumQDPopulations*Sregr(cc,:);
5

6 %[1,1] Include the Kerr effect? [bool]
7 if KerrCoefficient==0
8 %[1,NumSlices] Forward field material losses [um^-1]
9 MaterialKerrLossesProg=MaterialLossesHalfedProg;

10 %[1,NumSlices] Backward field material losses [um^-1]
11 MaterialKerrLossesRegr=MaterialLossesHalfedRegr;
12 else
13 %[1,NumSlices COMPLEX] Forward field material losses [um^-1]
14 MaterialKerrLossesProg=...
15 complex(MaterialLossesHalfedProg, ...
16 -KerrCoefficient*(PowerRegr+PowerRegr));
17 %[1,NumSlices COMPLEX] Backward field material losses [um^-1]
18 MaterialKerrLossesRegr=...
19 complex(MaterialLossesHalfedRegr, ...
20 -KerrCoefficient*(PowerRegr+PowerRegr));
21 end
22 %[1, NumSlices COMPLEX] Forward complex losses [um^-1]
23 ComplexLossesProg=...
24 -(MaterialKerrLossesProg+LossesPlasmaEffect(pp,:)+ ...
25 1i*dn_plasma(pp,:));
26 %[1, NumSlices COMPLEX] Backward complex losses [um^-1]
27 ComplexLossesRegr=...
28 -(MaterialKerrLossesRegr+LossesPlasmaEffect(pp,:)+ ...
29 1i*dn_plasma(pp,:));
30

31 if ReferenceFreq == 0 % GS reference
32

33 [...]
34

35 elseif ReferenceFreq == 1 % reference between ES1 and GS
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36

37 [...]
38

39 elseif ReferenceFreq == 2 % reference between ES2 and GS
40 %[1,NumSlices COMPLEX] A coefficient for the forward field [-]
41 Aprog=(...
42 sum(...
43 ModalGainGSpp.*RatioExpGS...
44 +ModalGainES1pp.*RatioExpES1...
45 +ModalGainES2pp.*RatioExpES2 ...
46 )...
47 +ComplexLossesProg...
48 )*Halfdz;
49

50 %[1,NumSlices COMPLEX] A coefficient for the backward field [-]
51 Aregr=(...
52 sum(...
53 ModalGainGSpp.*RatioExpGS...
54 +ModalGainES1pp.*RatioExpES1...
55 +ModalGainES2pp.*RatioExpES2 ...
56 )...
57 +ComplexLossesRegr...
58 )*Halfdz;
59

60 %[1,NumSlices COMPLEX] B coeff for the forward field [um^-1 sqrt(eV)]
61 Bprog=sum(...
62 ModalGainGSpp.*(FilterCoeffGS.*IfieldGSprog(:,:,cc)+...
63 RatioExpGS.*FilterCoeffGS.*SProgccExpanded)...
64 +ModalGainES1pp.*(FilterCoeffES1.*IfieldES1prog(:,:,cc)+...
65 RatioExpES1.*FilterCoeffES1.*SProgccExpanded)...
66 +ModalGainES2pp.*(FilterCoeffES2.*IfieldES2prog(:,:,cc)+...
67 RatioExpES2.*FilterCoeffES2.*SProgccExpanded)...
68 );
69

70 %[1,NumSlices COMPLEX] B coeff for the backward field[um^-1 sqrt(eV)]
71 Bregr=sum(...
72 ModalGainGSpp.*(FilterCoeffGS.*IfieldGSregr(:,:,cc)+...
73 RatioExpGS.*FilterCoeffGS.*SRegrccExpanded)...
74 +ModalGainES1pp.*(FilterCoeffES1.*IfieldES1regr(:,:,cc)+...
75 RatioExpES1.*FilterCoeffES1.*SRegrccExpanded)...
76 +ModalGainES2pp.*(FilterCoeffES2.*IfieldES2regr(:,:,cc)+...
77 RatioExpES2.*FilterCoeffES2.*SRegrccExpanded)...
78 );
79 end
80
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81 if sum(Aprog>1)>0
82 disp(’Warning: too large time step’)
83 end
84 if sum(Aregr>1)>0
85 disp(’Warning: too large time step’)
86 end
87

88 %[1,NumSlices] Field material losses [um^-1]
89 ComplexLossesProg=...
90 4/dz/2-(MaterialKerrLossesProg+

LossesPlasmaEffect(pp2,:)+1i*dn_plasma(pp2,:));
91 %[1,NumSlices] Field material losses [um^-1]
92 ComplexLossesRegr=...
93 4/dz/2-(MaterialKerrLossesRegr+

LossesPlasmaEffect(pp2,:)+1i*dn_plasma(pp2,:));
94

95 %[1,NumSlices COMPLEX] Tmp coeff for the forward field [um^-1 sqrt(eV)]
96 TmpProg=(...
97 ComplexLossesProg.*Sprog(pp2,:)...
98 +ComplexLEFGS*sum(ModalGainGS(:,:,pp2).*IfieldGSprog(:,:, pp2)) ...
99 +ComplexLEFES1*sum(ModalGainES1(:,:,pp2).*IfieldES1prog(:,:,pp2))...

100 +ComplexLEFES2*sum(ModalGainES2(:,:,pp2).*IfieldES2prog(:,:,pp2))...
101 );
102 %[1,NumSlices COMPLEX] Tmp coeff for the backward field [um^-1 sqrt(eV)]
103 TmpRegr=(...
104 ComplexLossesRegr.*Sregr(pp2,:)...
105 +ComplexLEFGS*sum( ModalGainGS(:,:,pp2).*IfieldGSregr(:,:, pp2))...
106 +ComplexLEFES1*sum(ModalGainES1(:,:,pp2).*IfieldES1regr(:,:,pp2))...
107 +ComplexLEFES2*sum(ModalGainES2(:,:,pp2).*IfieldES2regr(:,:,pp2))...
108 );
109

110 %[NumSavedStates,NumSlices COMPLEX] New forward field [sqrt(ev)]
111 Sprog(pp,2:end)=...
112 Halfdz./(1-Aprog(2:end)).* ...
113 (TmpProg(1:end-1)+Bprog(2:end))+sumEspProg(1:end-1);
114 %[NumSavedStates,NumSlices COMPLEX] New backward field [sqrt(ev)]
115 Sregr(pp,1:end-1)=...
116 Halfdz./(1-Aregr(1:end-1)).* ...
117 (TmpRegr(2:end)+Bregr(1:end-1))+sumEspRegr(2:end);

Note that here only the implementation of the solution for the ES2 reference is
reported for the sake of brevity, but the code still offers the possibility of choosing
the other two frequency references, each with their slightly different solution for the
time-stepped travelling wave equation. If all the coefficients in Sprog and Sregr
and all the terms in the coefficients themselves are expanded, we get two equations
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that are indeed very similar to Equation (3.24), despite some small differences due
to the fact that the implemented model is less approximated with respect to that
of the theory.
Another aspect that is missing is the enforcement of the boundary conditions given
by the residual reflectivity of the facets, according to Equations (3.4) and (3.5),
that couple the forward and backward components in z = 0 and z = L through r0
and rL. In reality, in the code, contrary to these equations, the boundary conditions
and the optical excitation are included separately.

1 %[NumSavedStates,NumSlices COMPLEX] Forward field BC [sqrt(eV)]
2 Sprog(pp,1)=Halfdz./(1-Aprog(1)/2).*...
3 (...
4 Bprog(1) ...
5 +r0.*(TmpRegr(1)+Sregr(pp2,1)/Halfdz))/2;
6

7 %[NumSavedStates,NumSlices COMPLEX] Backward field BC [sqrt(eV)]
8 Sregr(pp,end)=Halfdz./(1-Aregr(end)/2).*...
9 (...

10 Bregr(end) ...
11 +rL.*(TmpProg(end)+Sprog(pp2,end)/Halfdz))/2;

Indeed, Sregr(pp2,1) in Sprog(pp,1) represents the regressive component in
the first slice, at the previous time instant; Sprog(pp2,end) in Sregr(pp,end)
represents the regressive component in the last slice, at the previous time instant.

5.3.4 Optical excitation and external feedback
Finally, even though the external optical source and the external feedback have
been introduced in the previous sections about DeviceData_SOA and MainSOA, it
is still necessary to model them in DDoSimulationOpt, by implementing how they
change the propagation of the progressive and regressive components of the field.
Starting from the optical excitation, first it is important to define the signal coming
out of the source. This is done simply by using the handle function defined in
MainSOA, passing the vector t containing the discrete time instants the simulation
runs upon. Since this function is defined in square root of milliwatt as unit of
measure, but the simulator mostly employs the electronvolt, it is mandatory to use
a properly-defined conversion factor between them. After its definition earlier in
the code, after the computation of the solution of the progressive and regressive
components of the field in the device, we have to include the optical excitation
in Sprog. This is simply done by summing the value of the optical excitation at
the current time instant to the modulus of the progressive field in first slice of
the device, at the current time instant. Incidentally, this is also why we have to
flip the structure in the double-pass configuration: we employ the experimental
configuration and the optical excitation has to be fed to the first slice of the device.
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1 if Sim.IncludeOpticalExcitation %External excitation
2 %[1,NumSlices] update first slice forward propagating field with

external excitation [eV^0.5]
3 Sprog(pp,1) = Sprog(pp,1)+OpticalExcitation(it);
4 end

This is indeed just the sum of OpticalExcitation(it) to the progressive compo-
nent of the field in the first slice.

Concerning the external feedback, it is what allows us to use the double-pass
configuration. This is pretty much just a mirror placed outside the device output
facet. Therefore, from the standpoint of the field, we have to consider the forward
propagating field exiting the device and we have to compute the field that is then
coupled back in the device after a reflection on the external mirror. Of course, this
field in the external cavity has to be summed to the regressive component of the
field in the device. The implementation of these concepts is reported here:

1 if IncludeExtFeedback %External feedback injected in the cavity
2 if isnumeric(rF)
3 %field just after the feedback external facet
4 EFilteredFeedback(kFeedback)=...
5 EFeedback(kFeedback)*rF;
6 Res.Field.Ext(nextindextosavefield)=...
7 EFeedback(kFeedback)*tF;
8 else
9 EFilteredFeedback(kFeedback)=...

10 rF(EFeedback,EFilteredFeedback,kFeedback);
11 Res.Field.Ext(nextindextosavefield)=...
12 sqrt(abs(EFeedback(kFeedback)).^2 ...
13 -abs(EFilteredFeedback(kFeedback)).^2);
14 end
15 Res.Field.Ext(nextindextosavefield)= ...
16 sqrt(abs(EFeedback(kFeedback)).^2-...
17 abs(EFilteredFeedback(kFeedback)).^2);
18 Sregr(pp,end)= Sregr(pp,end)+ ...
19 EFilteredFeedback(kFeedback)*FeedbackPropagationSingle*tL;
20 EFeedback(kFeedback) = (Sprog(pp,end)*tL+...
21 EFilteredFeedback(kFeedback)*FeedbackPropagationSingle*...
22 (-rL))*FeedbackPropagationSingle;
23

24 if kFeedback==NumSlicesF
25 kFeedback=1;
26 else
27 %[1,1] Position in EFeedback for the next iteration [#]
28 kFeedback=kFeedback+1;
29 end
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30 end

This concludes the analysis of the MATLAB simulator: after this we only have the
set up of the variables for the next iteration of the loop and, once we are out of the
loop, we have the storing of the results in the Res.mat and State.mat files. At
this point we are ready to tackle the actual simulations of the device in the various
configurations and their results.



Chapter 6

Simulation results

In the previous chapter, we extensively examined the MATLAB implementation of
the theoretical model presented in Chapter 3. In this final chapter, we are ready to
dive into the results of the simulations, in order to assess how well the simulator is
reproducing the experimental results of the articles. In particular, three main sets
of experiments will be carried out:

• continuous wave (CW) experiments, where the device is simply biased
through the two-section electrodes by means of CW currents, without an
external optical excitation. The device is operated in single-pass configuration
and its behaviour corresponds to a superluminescent diode. This is used in
order to investigate the spectral asymmetry features of the device under test.
The obtained results are compared to the results of [9] and [8];

• single-pass experiments in presence of an optical excitation. This kind of
simulations can be for instance exploited in order to inspect the effects of
this device on the amplification of picosecond optical pulses. The obtained
results are compared to those of [7];

• double-pass experiments in presence of an optical excitation. This kind of
simulations can be used in order to compare the performances of the device
in this double-pass configuration, with respect to those of the same device in
a single-pass configuration. The obtained results are compared to those of
[7].

The data describing the device employed for these simulations are of course the
same that have been presented in Chapter 5, but, depending on the kind of
simulation (single- or double-pass configuration), longer-lasting simulations might
be mandatory to get stable results. For instance, for the simulations of the first
group, 10 ns of duration are sufficient, because it is enough for the device to get to
a steady average output power level. On the contrary, for the pulse analysis, this
duration is not sufficient because, before turning on the pulsed optical source, we
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Figure 6.1. Simulated time evolution of the output power at the front facet,
with IF ront = 1 A and IRear = 0.2 A, without optical excitation.

must make sure that the device in the steady state. The simulation time step, by
contrast, is kept fixed to 15 fs, because it is a good compromise between simulation
speed and simulation precision.

6.1 CW simulations

In this section, we concentrate on the CW experiments, where the device is operated
by applying a proper driving current to each of the two electrodes, without injecting
an external light source. In this case, it is basically working as a superluminescent
diode (SLED), which is emitting mostly through spontaneous emission like any
other LED, but reaching much higher values of output power, thanks to the length
of the structure. Indeed, thanks to the more sizeable dimensions with respect to
a canonical pn junction, the spontaneously-emitted light is also amplified, thus
allowing the emission of higher output powers. These simulations aim to reproduce
the experiments performed in [8] and [9].
For this first class of simulations, the TEnd is set to 10 ns, because it is sufficient
to obtain stable values of output power (on the average). This is simply proved
by comparing the results of simulations with variable duration and observing that
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they do not change that much if we consider longer-lasting ones. For instance, in
Figure 6.1, it is possible to see that, after 10 ns, the output power is already stable
on the average, despite some outliers caused by the spontaneous emission random
noise.
First, in order to understand if the behaviour of the simulated device is in accordance
with the experimental results, we analyse the light-current characteristic, namely
the evolution of the power at the facets of the device with respect to the current
density. In particular, for this first plot, let’s consider a situation in which the two
electrodes are driven in such a way that the current density is constant throughout
the device (uniform injection). According to [9], the front and rear sections have
a contact area of 3.3 × 10−3 cm2 and 6 × 10−4 cm2 respectively, meaning that the
rear section current has to be 5.5 times smaller than the front section one in order
to have a constant current density.

Note: This light-current characteristic has been employed in order to determine
the modified parameters of Table 5.1. As already mentioned, this was done
with a trial-and-error approach, modifying the parameters of interest and
looking at the light-current characteristic, until finding a set of parameters
giving good agreement with the experimental data.

(a) (b)

Figure 6.2. (a) Light-current characteristic with constant current density,
in linear scale. (b) Light-current characteristic with constant current density,
in logarithmic scale. Experimental data of [9] taken from [23].

Figures 6.2a and 6.2b represent the light-current characteristic with constant current
density in linear and logarithmic scales, respectively. In these graphs, the solid
lines represent the results of the performed simulations, while the dashed lines and
the dots are associated to the simulations and the experimental data of [9]. The red
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lines are linked to the rear facet power, while the blue ones to the front facet. If we
concentrate on Figure 6.2b, there is quite good agreement with the experimental
data. The characteristic, indeed, has almost linear behaviour for lower current
densities (exponential growth in linear scale), but then the growth is slower. It is
possible to take notice that, at lower current densities between 0.3 kA/cm2 and
0.8 kA/cm2, the agreement between the results of the simulations and those of [9]
is lower. This should not constitute that much of a problem since this kind of
devices is usually operated at higher current densities, since, there, we have higher
gain – and output power. This is supported by the fact that, in Figure 6.2a, in
that range of currents, the difference is not that substantial. In general, the profile
in the linear plot is reproducing quite well the one of the data.
In reality, it should be possible to achieve even better agreement by modifying
further the parameters of Table 5.1 with the usual trial-and-error approach that
was already employed to get to the results of Figure 6.2a and 6.2b.

It could be also interesting to investigate the evolution of the occupation probability
with respect to the current density. Of course, increasing the current, we expect to
have a higher occupation probability, since we have a higher number of available
carriers that can occupy the states. In particular, we expect to have a higher
probability for the lower energy states, both within the same layer (ground state
vs. excited states) and between the different layers (the lowest ground state vs. the
other two).
Figures 6.3a, 6.3b and 6.3c, represent the evolution of the occupation probabilities
with respect to the current density. Just like in the previous plots, the red and blue
lines are associated to the rear and front facets respectively. On these images we
also distinguish the behaviour of the three QD layers creating the active material
of the device (solid, dashed and dash-dotted lines). We can see that the behaviour
of the occupation probability follows the expectations: given a value of current
density, the ground state probability is higher with respect to the one of the first
excited state, which is higher than that of the second excited state in its turn.
Not only this, we can also see that, for a given energy state and a given current
density value, the probability is higher for the QD layer with lower central energy.
This doesn’t come as a surprise since the carrier should start to occupy the energy
states from the one at lowest energy. In general, the occupation probability tends
to increase quite rapidly at lower current densities and to subsequently saturate to
a constant value, however it is also possible to notice in all three images that the
red curves reach a maximum and decrease before saturating. This phenomenon is
linked to the fact that, at such high current densities, we have an output power
so high that the carriers populations are depleted faster than they are able to be
replenished. This is the reason why we obtain this decrease of the occupation
probability and it is also congruent with the saturation of the output power for
both facets.
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(a) (b)

(c)

Figure 6.3. (a) Evolution of the GS occupation probability with respect
to the current density. (b) Evolution of the ES1 occupation probability with
respect to the current density. (c) Evolution of the ES2 occupation probability
with respect to the current density.

We can now continue on with the analysis of the device under asymmetric biasing
conditions: in this case the two electrodes are not driven in order to have a constant
current density in the device, but with two different values of current in the two
sections. First, let’s study again the light-current characteristic in this configuration.
In this case, the idea is to choose some fixed values for the rear section current
and simulate multiple values of front section current for each one of them, thus
obtaining a light-current characteristic for each one of these fixed values of rear
section current.
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(a) (b)

(c) (d)

Figure 6.4. (a) Simulated light-current characteristic for the rear facet
power. (b) Light-current characteristic for the rear facet power from [9], data
taken from [23]. (c) Simulated light-current characteristic for the front facet
power. (d) Light-current characteristic for the front facet power from [8], data
taken from [22].

Figures 6.4 contain the light current characteristics for rear and output power
resulting from the performed simulations (left column) and from the experimental
measurements of [8] and [9] (right column). On these, the curves with different
colours represent the light-current characteristic for a specific value of rear section
current. By comparing the rear facet and front facet powers of Figures 6.4a and
6.4c, we can see that, of course, the latter is characterised by higher values, as we
already know from the constant density light-current characteristic of Figure 6.2b.
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Figure 6.5. Simulated current characteristic of the ratio between front and
rear facet output power. Data taken from [22] and [23].

Furthermore, if we compare the simulation results with the experimental data, we
can see that the profiles in the two cases are basically the same. However, it is easy
to observe that the results of the simulations are characterised in general by higher
values of output power (mostly within 3 dB). This could be due to the fact that
the experimental measurements are done with involved setups (Figure 4.3), made
of multiple non-ideal components that could easily introduce some degree of loss,
that of course is not present in the simulated device.
For this reason, the profile of the ratio between the two output powers could be
a more insightful indicator. In theory, if the simulated profiles of front and rear
facet output powers are reproducing well those of the experimental data, only with
higher values, the experimental ratio should be well reproduced. If we analyse
Figure 6.5, it is possible to state that this is true especially for low values of rear
section current (0.1-0.4 A). Then the accordance is slightly worsened, particularly
with high rear section current and low front section current. This is reflecting what
we already had in the constant current density analysis of Figure 6.2b. In this
particular case, we have that the ratio is higher for small front section currents
(especially 1 A) with respect to the experimental data. This means that, there, the
increase of front section power relative to its experimental counterpart is smaller
than the one of rear section power. This is in line with the results of the constant
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current density analysis.

After this extensive analysis of the output power characteristic, it is also important
to analyse the behaviour of the device in the frequency domain, namely its spectrum.
In order to study the power spectrum, the Discrete Fourier Transform is employed.
After the conversion to the frequency domain, a convolution operation is performed
between the power spectrum and a vector of constant values in order to smooth
out the otherwise noisy spectrum.
As discussed in [9], this device is characterised by a particular feature: a spectral
asymmetry is observed between the front and rear facet output and, by driving
the two electrodes separately, it is possible to tune this asymmetry, effectively
enhancing it. This feature introduces the possibility of an additional degree of
freedom for bandwidth engineering, multiplexing the output of the two facets in
the optical domain. Now, we can exploit the TDTW simulator and check whether
it can predict this wide tunable spectral asymmetry or not. The idea is basically
to keep the rear current fixed but varying the front section current and study the
spectrum.

Figure 6.6. Simulated front and rear output spectra with fixed IRear = 0.1 A,
varying the IF ront between 1 A and 5 A. The spectra have been normalized
and plotted one on top of the other for graphical clarity.

In particular, the rear section current is kept fixed at 0.1 A, while the front section
one is increased with steps of 1 A from 1 A to 5 A. These values should give us
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insight on the spectral asymmetry and the simulation results are already available
from the non-constant current density light-current characteristic analysis. The
results of the analysis are reported in Figure 6.6, where, as always, the red curves
are associated to the rear facet, while the blue ones to the front one. Note that
the plots in this picture are normalized (arbitrary units) and represented together
for a better comparison. From Figure 6.6, it is clear that the tunability effect is
present. Indeed, increasing the front section current, the spectrum seems to be
shifted toward lower wavelengths, because of the modification of which states are
occupied and contribute to the emission. The spectral asymmetry, namely the
different profile of the spectra associated to the front and rear facet, although
present, it doesn’t seem to be enhanced by the increased asymmetry between the
two driving currents, contrary to the experimental results. Concerning the spectral
components that are giving their contribution, it is possible to say that they are in
line with the experimental results: for IRear = 0.1 A and IF ront = 1 A, there are two
main peaks at ≃ 1245 nm and at ≃ 1280 nm. The latter loses weight increasing the
front section current. Another peak at ≃ 1210 nm appears, but it is not present in
the experimental results. These three components are corresponding basically to
the three GS central emission wavelengths of the three populations of QD layers,
therefore it is not surprising that they are the main contributors to the emission.
Since the peak close to 1210 nm is not present in the experimental results, the
cause for a reduced spectral asymmetry tunability in the TDTW simulations could
be how the QD energy levels are filled up for increasing values of driving current.
In reality, another spectrum that can be investigated is the gain one, which will
give us more information regarding which levels are absorbing (negative gain) and
which ones are emitting (positive gain).
Figures 6.7a and 6.7b contain the gain spectra for front and rear facets for two
different driving current configurations (IRear = 0.1 A and IF ront = 1 A in 6.7a,
IRear = 0.1 A and IF ront = 3.5 A in 6.7b). As always, the blue curves are associated
to the front facet, while the red ones to the rear facet. Starting from Figure 6.7a
(IF ront = 1 A), it is possible to state that the results are in qualitative agreement
with the ones of [9]. Indeed, the front facet gain has two maxima located in the
vicinity of 1250 nm (dashed green line) and of 1275 nm (dashed magenta line), which
are the components of the experimental power spectrum (also found in Figure 6.6).
The peak close to 1250 nm is most likely related to the second layer GS and the first
layer ES1, while the one close to 1275 nm is most likely related to the first layer GS.
For these wavelengths, the value of gain is ≃ 4 cm−1, which is in line with the results
of [9]. For wavelengths shorter than ≃ 1210 nm, this front facet gain is negative,
meaning that the QD states are absorbing. Concerning the rear facet gain, it is
mostly negative, except for the neighborhood of 1275 nm, where it becomes positive
and reaches a maximum for that wavelength, with a value of ≃ 1 cm−1. The only
discrepancy with respect to [9] is the range of wavelength between 1140 nm and
1210 nm, because in this case the device seems to be absorbing less (gain ≃ −5 cm−1
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(a) (b)

Figure 6.7. (a) Simulated gain spectrum for the front and rear facets, with
IRear = 0.1 A and IF ront = 1 A. (b) Simulated gain spectrum for the front
and rear facets, with IRear = 0.1 A and IF ront = 3.5 A.

instead of ≃ −10 cm−1).
Concerning Figure 6.7b (IF ront = 3.5 A), in this case as well, the agreement with
the results of [9] is good. Indeed, the front facet gain spectrum has two visible
local maxima. One is located in the proximity of 1210 nm (green dashed line) and
it is most likely related to the third layer GS, the second layer ES1 and first layer
ES2. This peak has a height of ≃ 17 cm−1, which is in line with the results from
the article. Then, the second local maximum is located in proximity of 1240 nm
(magenta dashed line), most likely related to the to the second layer GS and the
first layer ES1. This peak, instead, has a height of ≃ 14 cm−1, like its counterpart
in [9]. Just like in the experimental results, a lower peak located near 1280 nm
is visible, corresponding to a gain of ≃ 7 cm−1, which is most likely related first
layer GS. Concerning the rear facet gain spectrum, once again, it is possible to
safely state that there is good accordance with the results of the article. Indeed,
in this case the gain spectrum is negative (absorption) up until 1250 nm and it
increases until reaching a maximum located in 1280 nm, with gain ≃ 1 cm−1, once
again related to the first layer GS. In this case as well, the only discrepancy with
respect to [9] is the range of wavelength between 1140 nm and 1210 nm, where
the two curves resulting from the simulations are yielding higher values of gain.
For instance, the rear facet gain spectrum has a minimum in 1180 nm with value
≃ −7 cm−1, instead of ≃ −12 cm−1. This range of wavelengths is associated to the
second layer ES2 and third layer ES1 and ES2; the fact that the gain is too high in
Figures 6.7a and 6.7b and that we have a new peak in the high current spectra of
Figure 6.6, could be a problem of how these states are filled during the simulation.
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This could be easily solved with further tweaking of the simulation parameters of
Table 5.1.
Of course, the total amplifying capabilities of the SOA will be given by the evolution
of the gain across the whole structure, therefore it is important to study the position-
wavelength map of the total gain. Let’s first analyse the gain map for the same
configuration that was studied previously (IRear = 0.1 A and IF ront = 1 A).

Figure 6.8. Simulated gain map with respect to position and wavelength
for IRear = 0.1 A and IF ront = 1 A.

From Figure 6.8, we can see, first of all, a net separation located at z = 1.875 mm,
which corresponds to the position where the two electrodes are separated by means
of an insulation trench. Moreover, another clear spatial separation is located at
z = 0.5 mm, which is where the straight waveguide section ends and the first
tapering begins. In reality, there is also the transition between first to second
tapered section at z = 1 mm, but it is much less clearly visible. Concerning the
distribution of the gain, it is basically reproducing what we had in Figure 6.7a.
Indeed, at z = 0 mm (rear facet), we have strong absorption between 1140 nm and
1210 nm, but then the gain starts increasing until reaching a maximum of ≃ 1 cm−1,
located around 1275 nm. The profile is kept approximately constant up until the
insulation trench, with the only notable difference that we have stronger absorption
in the region between 1140 nm and 1210 nm. From the trench to the front facet,
we have a spatially-constant distribution of gain, that corresponds to the spectrum
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of front facet gain of Figure 6.7a. Indeed, we have a high gain region between
1210 nm and 1310 nm, with two maxima at 1250 nm and 1275 nm, where the gain
has value ≃ 4 cm−1. As already mentioned, the gain is constant up until the front
facet: this could be related to the fact that the driving current is not high enough
to saturate the gain itself.
Therefore, let’s analyse the simulation results with much higher driving currents
(IRear = 0.7 A and IF ront = 5 A).

(a) (b)

Figure 6.9. (a) Simulated gain map with respect to position and wavelength
for IRear = 0.7 A and IF ront = 5 A. (b) Simulated gain contour map with
respect to position and wavelength for IRear = 0.7 A and IF ront = 5 A.

In Figure 6.9a, the gain map for IRear = 0.7 A and IF ront = 5 A is reported. Figure
6.9b, represents the contours of this gain map, for a better understanding of the
distribution. In this case, we can see that the only net separation corresponds
to the transition between the straight and tapered sections at 0.5 mm, while the
insulation trench does not seem to have a visible effect on the gain distribution.
In this case, in accordance with the power spectra of Figure 6.6, there is positive
gain between 1250 nm and 1310 nm, but the main spectral component is located at
1210 nm, with a value of ≃ 16 cm−1. In the straight waveguide section, the gain is
characterised by much lower values (≃ 6 cm−1 utmost).
Concerning the profile of the gain, it is clear that it remains constant all throughout
the tapered sections, despite the fact that, in this case, we could expect to have
a reduction of the gain due to the strong increase of emitted photons, that is
concurrent to a depletion of the carriers populations. This means that the taper of
the device is designed in such a way that it is able to compensate the reduction of
the carriers with the increase of the surface, hence the constant gain distribution.
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6.2 Single- and double-pass simulations

In the previous section, we extensively discussed the results of the simulations of the
device under CW biasing conditions, where it behaves as a SLED. Let’s abandon
these conditions and let’s continue with the analysis of its behaviour under external
optical excitation. In this case, the device is actually operated as a SOA, exploiting
its amplifying capabilities in order to boost the power of a pulsed source as the
one reported in Figure 5.3a. In the simulations, both the single- and double-pass
configurations are employed and compared, reproducing the experiments of [7].
Therefore, it is reasonable to expect, as found experimentally, to have that the
double-pass configuration has higher gain with respect to the single-pass one, but
without significant pulse degradation.
The simulations are set to last 20 ns. This is done because the pulsed light source
is turned on after 10 ns, in order to let the SOA reach a steady ASE output power
first. As already discussed in Chapter 4, the external source is characterized by
a central emission wavelength of 1258 nm, pulse repetition rate of 50 GHz, pulse
duration of 2.3 ps and average pulse power of 2.5 mW. Since the pulse repetition
rate is 5 GHz and the source is left on for 10 ns, 50 pulses are amplified by the
device.
Let’s start by analysing in general the obtained results. First, it has to be noted
that, due to the employment of different configurations, in which the device is
flipped, the output power has to be taken from the front facet in the double-pass
case and from the rear facet in the single-pass one.

(a) (b)

Figure 6.10. (a) Simulated optical output spectrum in single-pass configu-
ration, with IRear = 0.3 A and IF ront = 3.5 A. (b) Simulated optical output
spectrum in double-pass configuration, with IRear = 0.3 A and IF ront = 3.5 A.
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Figures 6.10a and 6.10b represent the output power spectra in single- (red) and
double-pass (blue) configuration with IRear = 0.3 A and IF ront = 3.5 A, under
optical excitation. First of all, it has to be noted that there are the same prominent
optical components that we had in CW conditions in the previous section. Then
in both cases a very sharp peak emerges from this ASE baseline. It is located at
1258 nm and corresponds to the amplified light source through stimulated emission.
We are of course interested in the capability of the device of amplifying the external
optical signal, therefore we have to separate this contribution from the ASE. From
Figures 6.10a and 6.10b, it is also already possible to see qualitatively that the
double-pass configuration offers better amplification.

Figure 6.11. Power spectrum of the external optical source.

In the time domain, the concept is the same: the amplified pulses at the output
facet of the device will be superimposed to the ASE power. In order to assess the
properties of the amplified pulse train, of course, it is mandatory to separate the
signal of interest from the ASE background. For this purpose, it is convenient to
work in the frequency domain. We know the spectral occupation of the optical
source signal (Figure 6.11) and we also know that it will not be affected by the
amplification in the SOA. Therefore, we simply have to filter out everything outside
the band occupied by the pulsed laser spectrum. This should leave us with the
amplified optical excitation signal, superimposed to the remaining ASE falling in
that window.
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(a) (b)

(c) (d)

Figure 6.12. (a) Time evolution of the power at the output facet in single-
pass configuration. (b) Time evolution of the power at the output facet in
single-pass configuration without the ASE. (c) Time evolution of the power
at the output facet in double-pass configuration. (d) Time evolution of the
power at the output facet in double-pass configuration, without the ASE. All
images are obtained for simulations with IRear = 0.3 A and IF ront = 3.5 A.

Figures 6.12a and 6.12c represent the power with ASE at the output facet for
the single- and double-pass configurations, respectively. The images are taken
for a set of simulations with IRear = 0.3 A and IF ront = 3.5 A, chosen randomly.
After 10 ns, the pulses are already visible, but it is not possible to perform reliable
measurements on power and pulse duration due to the presence of the ASE power.
Therefore, employing the method explained before, Figures 6.12b and 6.12d are
obtained. They represent the power filtered from ASE at the output facet for the
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(a) (b)

(c)

Figure 6.13. (a) Detail of the time evolution of the power at the output facet
in single-pass configuration without the ASE. (b) Detail of the time evolution
of the power at the output facet in double-pass configuration without the
ASE. (c) Comparison of the first peak in single- and double-pass configuration.
Shifted time axis for better comparison. All images are obtained for simulations
with IRear = 0.3 A and IF ront = 3.5 A.

single- and double-pass configurations, respectively.
It can be seen immediately that: a) with the double-pass configuration, the output
power reaches higher values for the peaks; b) with the method employed, we are
indeed able to delete the ASE noise power. In this way, we are left with the
amplified train of pulses, that we can better analyse. Note that the pulse height is
still not uniform due to the presence of the remaining portion of ASE noise in the
band occupied by the external optical signal. In Figures 6.13a and 6.13b, details of
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the trains of pulses in single- and double-pass configuration are reported. These
images are detailing the time interval between 10 ns and 10.5 ns, thus containing the
first two pulses of the trains. From Figure 6.13c, we can see immediately that we
still have the square hyperbolic secant shape for the pulses in both configurations,
despite having a bit of distortion in the double-pass case. This is not surprising
because, with this configuration, the ASE noise is going to be amplified twice as
well, thus impacting more on the useful optical signal.
If we concentrate on the first pulse, we can see that it is not located at the same
time instant in the two configurations. In particular, we have that the first pulse is
registered at t = 10.1668 ns for the single-pass configuration and at t = 10.2561 ns
for the double-pass one. Of course, we have to consider that the light is travelling
through the device with finite speed. Indeed, the results are consistent with the time
that takes light to cross 6 mm of a device made out of a material with nr = 3.3445
(exactly 66.89 ps) and with the time that takes light to cross twice the 6 mm of the
device and twice the 1 mm of external cavity with nr = 1 (exactly 140.54 ps).

At this point, we are finally able to compare the performances of the two possible
configurations for what concerns output power and gain.

(a) (b)

Figure 6.14. (a) Plots of the average output power in single-pass con-
figuration with respect to the front section current, for different values of
rear section current. (b) Plots of the average output power in double-pass
configuration with respect to the front section current, for different values of
rear section current.

In Figures 6.14a and 6.14b, the power characteristics for single- (left plot) and
double-pass (right plot) configurations are reported. As before, the different curves
are characterised by different values of fixed rear section current and they are
plotted with respect to the front section current. Starting from the single-pass
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case, in Figure 6.14a, it is possible to appreciate a clear saturating behaviour
with respect to increasing values of front section current, but also with respect to
increasing values of rear section current, as it is clear that the curves associated
to higher values of rear section current are closer to each other. However, in
general, for a fixed value of front section current, simulations with higher rear
section current yield a higher average output power. Although both the profiles
and the values are consistent with the experimental results of [7], the results of
the simulations are higher with respect to the experimental measurements. This is
probably related, as before, to the fact that in the simulations the output power is
measured directly outside the output facet of the device, while experimentally a
lossy optical apparatus is needed in order to both couple the source to the SOA
and to perform the measurements.
Continuing with the double-pass results for the average power, represented in
Figure 6.14b, it can be seen right away that the profiles are slightly different and
that, in general, the curves reach higher powers with respect to their single-pass
counterparts. Anyway, the saturating behaviour is still present in the double-pass
case as well. However, there is a peculiar behaviour that was not present in the
single-pass results. If we consider the curve for IRear = 0.7 A (yellow) at high
values of front section current, we can see that its output power values are lower
with respect to the curves with smaller rear section current, even the one with
IRear = 0.4 A (magenta). Similarly, the curve for IRear = 0.6 A (cyan) at high
values of front section current results to be lower than the curve with IRear = 0.5 A
(black). This effect can be explained as follows: due to the high optical power levels
after the first passage through the device, the population of carriers in the QD
states will be strongly depleted but, due to the closeness of the feedback mirror
to the rear facet of the device and to the comparatively slow recovery time of
the carriers, they will not be able to reach a new steady state before the second
amplification of the external source signal. Therefore, it is reasonable to expect a
reduction of the average output power, since there is a reduction of the amplifying
capabilities of the device. In reality, these power levels are most likely too high to
actually operate the device safely in the problematic biasing current configuration.
Indeed, there are not experimental measures from [7] for the current configurations
of interest in order to confirm this simulation behaviour. In any case, like before,
the profiles of the curves are coherent and the simulated power values are slightly
larger than the experimental measurements.

In reality, the power gain is a better parameter to compare the simulation and
experimental results. In Figures 6.15, the simulation results are reported on the
left (top left single-pass, bottom left double pass), while the experimental results
are reported on the right (top left single-pass, bottom left double pass). Note that
the experimental double-pass results are the ones associated to the experiments
performed with the long-pass filter inserted inside the external cavity to avoid the
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(a) (b)

(c) (d)

Figure 6.15. (a) Gain vs. front facet current in single-pass configuration.
(b) Gain vs. front facet current in single-pass configuration from [7], data
taken from [21]. (c) Gain vs. front facet current in double-pass configuration.
(d) Gain vs. front facet current in double-pass configuration from [7], data
taken from [21].

spurious lasing.
First of all, as we can expect from the analysis of the average output power and from
the experimental evidences, the gain in double-pass is higher than in single-pass. If
we then compare the simulation results with the experimental measurements, we
can see that, in general, the simulations are characterised by the same profile with
respect to the front section current. Indeed, it is possible to state that both the
single- and double-pass gains present a saturating profile that reproduces quite well
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the experimental measurements. This of course is in line with the saturating profile
of the output power characteristic. If we compare the single-pass simulation (Figure
6.15a) with the results from [7] (Figure 6.15b), we can see that the simulated
gain appears to be higher than the experimental results, approximately by a
factor 2. If we consider then the double-pass simulation (Figure 6.15c) with the
results from [7] (Figure 6.15d), the obtained values follow the same trend as the
previous case. In [7], it was found that, without considering the long-pass filter,

Figure 6.16. Double-/single-pass simulated gain ratio with respect to the
front facet current, for different values of rear facet current.

in double-pass configuration, the improvement of the gain with respect to the
single-pass configuration was around 3 dB, due to the presence of the spurious
lasing that capped the amplifying capabilities of the SOA. With the insertion of
the long-pass filter to forbid the lasing, they were able to retrieve a maximum
improvement of 7 dB, with typical values of about 4 dB. The simulation results
are in between these two opposite situation: the maximum enhancement of the
double-pass gain with respect to the single-pass one is 4.1 dB (for the bias condition
with IRear = 0.1 A and IF ront = 5 A), but the typical values range between 2.5 dB
and 4 dB. A graphical representation of the ratio between double- and single-pass
gains is contained in Figure 6.16. From this picture, we can also see that, for low
values of front section current, the performances of the double-pass amplifier are
not much better than those of the single-pass one, becoming even worse (negative
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ratio in dB) for all curve at IF ront = 1 A. Moreover, we have also that, for high
values front section current, the double-pass configuration become progressively
less convenient performance-wise with respect to the single-pass as the rear section
current is increased. In reality this point can be easily predicted from the power
characteristic in Figure 6.14b. Unfortunately, it is not possible to verify these limit
behaviours since measurements for low front section currents and high front and
rear section currents were not performed experimentally for [7].

Therefore, thus far the simulation results seem to confirm the experimental evidence
that the double-pass configuration significantly improves the amplifying capabilities
of the SOA under test, more than the factor 2 that one could predict from a double
amplification of the source signal. At this point, we have to verify that this gain
and output power enhancement does not imply a toll on the quality of the amplified
pulses for what concerns the pulse duration. For this reason, a MATLAB function
was implemented in order to recognize the peaks from the filtered time evolution
of the output power and to measure the duration of each peak as its full width half
maximum. The durations for each detected peak are collected and then averaged.
In [7] it is stated that, for the single-pass configuration, the average duration of
the amplified pulses ranges from 2.4 ps to 2.7 ps. For the double-pass configuration,
instead, we have that the average duration of the amplified pulses ranges from
2.4 ps to 3.1 ps, meaning that the double amplification of the external optical signal
does not degrade the quality of the pulses.

(a) (b)

Figure 6.17. (a) Average pulse duration in single-pass configuration with
respect to the front section current, for different values of rear section current.
(b) Average pulse duration in double-pass configuration with respect to the
front section current, for different values of rear section current.

Figures 6.17 represent the trends of the average pulse durations with respect to the
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front section current, for different fixed values of rear section current. Graphically,
it is already clear that in the two cases we have similar values for the average
durations. In particular, in the single-pass configuration case of Figure 6.17a, we
have that the average duration is narrowly distributed between 2.4 ps to 2.45 ps,
but the maximum registered duration is around 2.65 ps. A peculiar aspect is that in
the single-pass case the simulations at lower rear section currents are characterised
by more broadened peaks.
In the double-pass case, instead, the average pulse duration ranges from 2.4 ps
to 2.65 ps, but there are values registered also over the 3.0 ps mark. In this case,
contrary to what we had for the single-pass case, the simulations with higher rear
section current have a longer average pulse duration, exception made for low values
of front section current.
Therefore, it can be stated that the simulated results are congruent with the
experimental measurements for what concerns the pulse duration of the amplified
signal. Indeed, the single-pass and double-pass configurations have quite similar
average pulse durations for the various combinations of rear and front section
currents, despite the latter being characterised in some cases by longer values. In
reality, there is not a perfect prediction of the experimental results, but this can
be ascribed to the measurement uncertainty that of course affects any pratical
measurement of any device.
These results, in conjunction with the average power results, therefore confirm
the experimental evidences that the double-pass configuration for the chirped and
tapered SOA seems to introduce a substantial enhancement of gain and output
power (more than a factor 2), but without degrading the quality of the original
signal: the maximum increase of the pulse duration is 2.65 ps and it is associated to
a bias condition in which we do not have high gain, so it will not be used in practice
anyway. This is a good outcome, especially considering that the maximum increase
in average pulse duration in single-pass configuration is merely 0.2 ps lower.
This means that the simulation results confirm the thesis of [7] that the double-
pass configuration for the SOA has very promising features that could make it
the new standard for the amplification of ultrashort pulsed light source such as
mode-locked lasers. For sure, SOAs cannot be employed effectively if the double-
pass configuration is implemented with the external feedback mirror that was
considered in the simulations, due to the increased area occupation and the stringent
requirements concerning the alignment of both facets of the device. However, it
has the advantage of potentially allowing the creation of an integrated double-pass
configuration by means of a highly reflective rear facet: in this way, the device
would bring all the positive features of the double-pass configuration, but with the
area occupation of a traditional SOA. It would also require the alignment of the
front facet only, thus simplifying the practical setup. The only real disadvantage
that can be foreseen consists in the mandatory use of some kind of one-way optical
gate to keep the input and output signals well separated, although introducing
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possibly additional losses and spurious reflections. Moreover, it would be necessary
to check which power levels this integrated implementation is able to withstand,
before experiencing the reduction of the amplifying capabilities that has been
obtained in Figure 6.14b for high driving currents.



Chapter 7

Conclusions and outlook

In this thesis work, a preexisting TDTW MATLAB simulator for QD-based lasers
was adapted in order to simulate chirped and tapered SOAs, by including the
chirped QD layers and the stimulated emission from the second QD excited state,
which is usually neglected in laser models since it has negligible effects, but it is
important in SOA models.
This TDTW simulator was then used in order to simulate the chirped, tapered
and double-section SOA studied by the Photonic group at Heriot-Watt University,
Edinburgh, thus trying to validate the simulated results with the experimental
ones. In particular, three kinds of simulations were performed: continuous wave
simulations without external optical excitation, in which the device works as a
superluminescent diode, single-pass simulations and, finally, double-pass simulation,
both under external optical pumping from a mode-locked laser.
The results were in general congruent with the experimental data. Indeed, for the
SLED simulations, the output power levels were larger with respect the measured
values, but within 3 dB; the power spectra were affected by a tunable spectral
asymmetry. For the single- and double-pass simulations with external optical
excitation, the latter was characterised by power levels larger of a factor 4.1 dB,
but with average pulse durations between 2.4 ps and 2.7 ps, with respect to the
duration of 2.3 ps of the pulses emitted by the optical source.
The simulated results are qualitatively reproducing the experimental data. For
instance, the spectral asymmetry is less tunable with respect to the actual device,
due to the presence of a spectral component at 1210 nm that is stronger than what
it should be. Moreover, we have that in the range of wavelengths between 1140 nm
and 1210 nm are less attenuated than how they should. This implies that the QD
levels are filled in a way that does not correspond perfectly to the reality and that
could be the reason behind the reduced spectral asymmetry.
Further improvements can be done by modifying the device parameters inside
DeviceData_SOA, especially the gain and the escape and capture characteristic
times related to the QD discrete confined states, using once again the SLED



Conclusions and outlook 93

simulation results as a reference, since they last less than those with external
optical excitation.

It could be interesting also to introduce in the simulation the leftover spurious
reflectivity of the facets (e.g. low values as r = 1 × 10−3), in order to verify whether
the simulator is able to predict the spurious lasing detuned from the wavelength
of the external source, that was detected in the double-pass measurements in [7]
and that reduced the amplifying capabilities of the SOA for high current bias. At
that point, it would be useful to model the long-pass filter that was used in order
to prevent the lasing, in order to estimate the advantages that it would produce.
It would be also interesting to implement the double pass configuration with the
highly reflective rear facet in order to asses the performances of the SOA in these
conditions and the possible issues that could arise.
Once the remaining minor issues are fixed, another possible further work could
consist in the iterative modification of the device parameters (i.e. maching learning-
assisted code) with the goal of finding possible device structures and/or active
material compositions able to provide even better performances in the double-pass
configuration with respect to the device that was analysed in this thesis.
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