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Summary

In the modern era, cryptography is essential for online communication security.
It plays a crucial role for information reliability, and it is based on encryption
and authentication algorithms that are constructed using hard mathematical and
computationally infeasible problem.
However, once quantum computers become widespread, many of the regularly used
cryptosystems will be completely useless, as they can be easily attacked and broken.
Their growth represents a concrete threat to classical public-key protocols.
This is why researchers and scientists are developing post-quantum cryptography
(PQC) algorithms, exploiting problems that can be invulnerable to quantum
computer attacks.
Unlike quantum cryptography, which rely on quantum computing and quantum
communication environments, PQC based cryptosystems run on classical computer,
providing sufficient security.
In 2015, NIST -National Institute of Standards and Technology- launched a public
evaluation process to standardize quantum-resistant public key algorithms.
After three round of solicitations, among the different finalists, there were four
similar KEM algorithms. Here, cost and performance becomes the most crucial
selection criteria. In NIST’s current view, lattice-based algorithms are the most
promising families, achieving a good balance in security.
In fact, in 2022, CRYSTALS-Kyber algorithm has been selected among the four
KEM finalists to be finalized in about two years. It is characterized by comparatively
small encryption keys (that two parties can exchange easily), as well as a good
speed of operation.
One of the fundamental building blocks of CRYSTALS-Kyber, and more generally
of any PQC algorithm, is the one relating to PQC primitives. PQC primitives
guarantee the security of the algorithm, performing a specialized task with incredible
accuracy and precision. Two types of primitives can be distinguished: security
primitives (AES, SHA3 and Keccak) and computation primitives (Barrett reduction,
Montgomery reduction and NTT).
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Designing a dedicated architecture that can realize these primitives can signifi-
cantly reduce hardware resource occupation, obtaining a component with higher
performances and improving algorithm’s performances.
The aim of this study is to provide a dedicated hardware-based implementation of
the most consuming part of NIST-PQC-finalists Crystals-KYBER.
The architecture has been implemented for Kyber-768 (III-security level) and realize
all the SHA-3 primitives used in the algorithm.

Keywords: Post-Quantum Cryptography, PQC Primitives, CRYSTALS-Kyber,
Kyber hardware Design, SHA-3, Keccak
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Chapter 1

Introduction

In the last years, there has been progress in building quantum computers.
Quantum computers are machines that use quantum physics properties to store
data and perform computations. In fact, while classical computers encode informa-
tion in binary bits that can either be 0s or 1s, in a quantum computer the basic
unit of memory is a quantum bit (qubit). Its main properties is known as quantum
superposition: a series of qubits can represent different things simultaneously.
For instance, sixteen bits are enough for a classical computer to represent any num-
ber between 0 and 65535. But sixteen qubits are enough for a quantum computer
to represent every number between 0 and 65535 at the same time.
This is an extremely advantageous result. It is as a incredibly powerful calculator
programmed with deep domain expertise. Quantum computers will be fast and
effective, performing calculations in just a few seconds for which today’s computers
would requires instead decades.
However, like any incredible innovation, there are also dreadful consequences.
It is fair to assume that with the amount of research going on in the area of
quantum computers, there are high chances they become a reality within a few
decades. If large-scale quantum computers are realized, they would threaten the
security of most commonly-used public-key cryptosystems. For external hackers, it
could becomes simpler to access to sensitive information.
For decades, our data have been protected using the same cryptographic systems,
as RSA or AES (Advanced Encryption Standard). These are hard mathematical
problems that would keep a classical computer busy for thousands of years. No
matter how powerful they are, they are not able to crack these problems and
decrypt protected data.
In classical cryptography, both in the case of symmetric and asymmetric encryption,
the security of communication depends on the secrecy of the of the key. Keeping
keys save, it’s almost impossible for data to be compromised, unless hackers get
somehow their hands on the encryption keys.
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Introduction

Data are safe, or at least they are until powerful quantum computers arrive.
This bring us into the next cryptographic chapter: post-quantum cryptography.
PQC is an evolution of classical cryptography. It is based on math problems too,
but they are much more difficult and complex, in order to be more robust to quan-
tum computer attacks. To prevent a global collapse of infrastructure, designing
quantum-safe cryptosystems has become crucial.
In response to this threat, the National Institute of Standards and Technology
(NIST) started a competition in 2015 to encourage researchers to propose asym-
metric cryptographic schemes that would be resistant to quantum computers.
The major classes of post quantum cryptography algorithm are:

• Lattice-based cryptography algorithms offer the best performances and
are built on the hardness of SVP (Short Vector Problem). By definition, it
asks to find a nonzero vector in a lattice;

• Code-based cryptography offers a more conservative approach using large
keys. Researchers are trying to find a way to reduce the key size without
compromising the security of these kinds of algorithm;

• Multivariate polynomial cryptography is based on multivariate polyno-
mial (MVP) algorithms over finite fields. MVPs are preferred as signature
schemes as they offer the shortest signatures;

• Isogeny-based: uses isogenies between elliptic curves over finite fields.

• Hash-based digital signature relies on cryptographic hash functions;

• others.

Each candidate in NIST competition belongs to one of these two functions:

1. digital signature: is based on the principle that the sender signs the message
with a private key, and the receiver verifies this signature using the sender’s
public key.

2. key encapsulation mechanism (KEM): is one of the most common algo-
rithms that can be used for key exchange. Traditional encryption-decryption
protocols are used to encrypt a message using the sender’s public key, which
is then decrypted by the receiver using his private key.

2
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In Table 1.1 is reported a summary of digital signature (Sign) and key encapsu-
lation (KEM) submissions for Round 1 and Round 2 (within braces), summarizing
their mathematical complexity. [1].

PQC The hard problem KEM Sign Total

Lattice Find shortest vector,
closest vector 5 (3) 23 (9) 28 (12)

Code Decode random linear code 3 (0) 17 (7) 20 (7)

Multivariate Solve multivariate
quadratic equations 8 (4) 2 (0) 10 (4)

Hash Second pre-image resistance of
hash function 3 (2) 0 (0) 3 (2)

Isogeny Find isogeny map between elliptic
curves with same number of points 0 (0) 1 (1) 1 (1)

Other - 2 (0) 5 (0) 7 (0)
Total - 21 (9) 48 (17) 69 (26)

Table 1.1: NIST candidates

Figure 1.1 shows the evolution of the NIST competition in recent years.

Figure 1.1: NIST announcements
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Initially, 82 submissions were received. Between them, only 69 candidates were
qualified enough for NIST competition’s round 1. In 2018, there was the first NIST
PQC standardization conference. Then, since January 2019, 26 candidates are
competing in round 2.
In 2020, for the third round, 7 candidates were chosen as finalists and 8 candidates
were considered as alternates.
In 2022, the U.S. department of commerce’s NIST has chosen the first group
of encryption tools: the four selected encryption algorithms will become part of
NIST’s post-quantum cryptographic standard, expected to be finalized in
about two years. For general encryption, used when we access secure websites, NIST
has selected the CRYSTALS-Kyber algorithm, which will be the algorithm
analyzed in this thesis work.

4
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1.1 Thesis objectives and structure
This thesis has been developed with the aim of exploring a dedicated digital
hardware architecture to implement SHA3-algorithm for CRYSTALS-Kyber.
Using VHDL hardware description language, it has been designed one of the most
computational-costly part of algorithm.
After this first introductory chapter 1, the thesis is structured as follow:

• chapter 2 presents an introduction about cryptography. We discuss briefly
symmetric key cryptography in subsection 2.1.2 and asymmetric key cryptog-
raphy in subsection 2.1.3. In section 2.2, new cryptographic algorithm are
discussed.

• chapter 3 is dedicated to main modules of CRYSTAL-Kyber algorithm. In
section 3.1 we give preliminaries, in section 3.2 we give a general description
of Kyber.CPAPKE and Kyber.CPAKEM, and in section 3.3 we report a detailed
profiling of the most expensive functions used (also see Appendix A).

• chapter 4 is about SHA-3 algorithm. After an introduction about SHA3, in
section 4.1 sponge functions are discussed, focusing on padding methodology
and Keccak algorithm.

• chapter 5 presents first the hardware implementation of the SHA3 core,
and then is focused on the hardware implementation of the control unit,
concentrating our attention on the specific primitives required by CRYSTALS-
Kyber. In particular, the implemented dedicated hardware has been designed
specifically for the third level of security (Kyber768).

• chapter 6 implementation results are reported and compared to the counter-
parts, focusing on results reported in papers dealing with hardware implemen-
tations of the SHA3 core for PQC applications.

• chapter 7 collects the conclusion about this thesis, with a brief summary of
the different research activity possible.

5





Chapter 2

From Cryptography to PQC

The term cryptography derived its name from the Greek word kryptos, which means
hidden. This is the practise and study of secure communications techniques that
allow only the sender and intended receiver of a message to view its contents.
It is closely associated to encryption and decryption. In particular:

• encryption is the process of converting plain text into an unintelligible format
(cipher text);

• decryption is the process of converting the cipher text into a plain text back
again upon arrival.

An encryption process almost always involves both an algorithm and a key.
The key is another piece of information that defines how the plain text will be
modified by the algorithm in order to be encrypted.
Any malicious third-parties, known as adversaries, should not be able to determine
anything about a key given a large number of plain text/ciphertext combinations
which used the key.
To achieve a secure protocol, there is a number of requirements that must be met
and guaranteed. In particular:

• authentication, therefore proving one’s identity and authenticate users across
services and systems.

• integrity, ensure that the received message has not been intercepted and
modified in any way with respect to the original message sent by the sender.
This measure determines accuracy and completeness of data and must control
whenever the information has been accessed. In the case system users alter
information, it must be also ensure dare that they are legitimately authorized
to do it.

6
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• privacy/confidentiality, ensuring that no one can read the message except
the desired receiver, protecting information from unauthorized access.

• non-repudiation, which is a mechanism to prove that the sender really sent
this message. It must provide a proof of the integrity and origin of data,
authenticating the genuineness of the message with high confidence.

Cryptography can protect communications that traverse untrusted networks.
There are two main types of attacks that an adversary may attempt to carry out
on a network: passive attacks and active attacks.
The firsts involve an attacker simply listening on a network segment and waiting
to read sensitive information. It may be online or offline, in the case some time is
needed to decrypt data. The later, involve an attacker impersonating a client-server,
intercepting communications in transit, and modifying the contents before passing
them on to their intended destination.

Before we move on to modern cryptography remember, as we said, that any
cryptographic system involves both an algorithm and a key.
Kerckhoffs, a Dutch cryptographer of the 19th century, believed that:

A cryptographic system should be secure even if everything about the
system, except the key, is public knowledge.

The point is that while it would be nice to keep our cryptographic system a
secret, our adversaries will eventually figure it out. What we do need to keep secret
is the cryptographic key. Its length is normally expressed in bits. Obviously,
have a longer key makes the encrypted data more difficult to be cracked, but also
implies longer time periods to perform encryption and decryption processes.

Figure 2.1: Generic Encryption

7
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2.1 Cryptography
There are several ways of classifying cryptographic algorithms.
The most common one is to categorized them considering the number of keys that
are employed for encryption and decryption.
The three types of algorithms that will be discussed are:

• Hash Functions: exploits mathematical transformation to irreversibly en-
crypt information, used for message integrity.

• Symmetric Key Cryptography: defined also as secret key cryptography,
uses a single key for both encryption and decryption. It is primarily used for
privacy and confidentiality. The most popular symmetric key methods are
AES and ChaCha20.

• Asymmetric Key Cryptography: defined also as public key cryptography,
uses one key for encryption and another for decryption. It is primarily used
for authentication, non-repudiation, and key exchange.

2.1.1 Hash Function
Hashing methods take data and convert to a hash value, simply as reported in
Figure 2.2. The most popular cryptographic hashing methods are: MD5, SHA-1,
SHA-2 and SHA-3.
Also Blake 3 is becoming popular, since it is one of the fastest hashing methods
around. SHA-3 is based on Keccak, and it has been standardized by NIST. This is
the hash module used in CRYSTALS-Kyber algorithm.
There are also non-cryptographic hashes, and which do not have the same security
levels as the cryptographic hashes, but are often much faster in their operation. [2]

Figure 2.2: Hash Function

8
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2.1.2 Symmetric Key Cryptography
The simplest method of encryption/decryption is to use the symmetric or "secret
key" system. As shown in Figure 2.3, data is encrypted using a secret key, and then
both the encoded message and secret key are sent to the recipient for decryption.
Therefore, the same key is used for both parties.

Figure 2.3: Secret-key encryption

This is simpler, faster and is widely used to keep data confidential.
It can be very useful for keeping a local hard drive private, where the secret key
sharing is not a problem. In fact, the key cannot be send along with the message.
Otherwise, if it is intercepted, a third party can decrypt and read it.
Symmetric-key encryption can use either stream ciphers or block ciphers.
Stream ciphers encrypt digits (usually bytes) or letters of a message one at a time.
An example is given by substitution ciphers, which are well-known ciphers where
the plain text is replaced with ciphertext, according to a fixed system. Here, the
“units” may be single letters (the most common), pairs of letters, triplets of letters,
etc., and being a fixed system, it can be easily decrypted using a frequency table.
On the contrary, block ciphers take a number of bits and encrypt them as a single
unit, padding the plain text so that it is a multiple of the block size.
Firstly, the most popular symmetric–key system was the Data Encryption Standard
(DES). It was developed in the early 70’s by IBM and used a 56 bit encryption
key which can give around 256 256 combination to encrypt the plain text.[3]
In the last decades, it has been substitute by the Advanced Encryption Standard
(AES) algorithm, approved by NIST in December 2001, which uses 128-bit blocks
and a key size of 128, 192 or 256 bits. [4]
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2.1.3 Asymmetric Key Cryptography
In order to increase the level of security, we need a way for communicating parties
to establish a secure communications channel while only talking to each other
across an inherently insecure network. To address this issue, cryptologists devised
the asymmetric or "public key" system.
In this case, every user has two keys: one public and one private.
The public one is used to encrypt the message and it is sent to anyone the sender
wishes to communicate with. Instead, the private key is shared with nobody, and
it’s necessary to decrypt those messages when they arrive.
Public key algorithms ensure confidentiality and authenticity in modern cryptosys-
tems.

Figure 2.4: Public-key encryption

Public key encryption can be applied to encryption/decryption, digital signature
and key exchange. The technique described in Figure 2.4 is the public key encryp-
tion/decryption, in which a message is encrypted with the intended recipient’s
public key, and decrypted with the private key.
This is one of the best-known applications of public key cryptography.
The other one is digital signatures. Here, a message is signed exploiting the
sender’s private key and can be verified by anyone who has access to the sender’s
public key. It is used to verify the authenticity of data.
The most widely used public-key cryptosystem is RSA, named for the three MIT
mathematicians who developed it (Rivest–Shamir–Adleman). RSA uses a variable
size encryption block and a variable size key. Its backbone is the difficulty of finding
the prime factors of a composite number.
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2.1.4 Asymmetric and symmetric cryptography differences
The main difference between asymmetric and symmetric cryptography is the number
of keys used. In particular, as explained in subsection 2.1.3, asymmetric encryption
algorithms use two different but related keys. Instead, symmetric encryption uses
the same key to perform both functions.
Another difference between the two is the length of the keys: asymmetric keys need
to be longer to offer the same level of security. In fact, in asymmetric encryption
there is a mathematical link between the two keys. Since adversaries can potentially
exploit this relation to crack the encryption, the keys involved must be consequently
larger. As an example, a 2048-bit asymmetric key and a 128-bit symmetric key
provide about an equivalent level of security.
In Table 2.1 is reported a small comparison between the two encryption techniques.

Symmetric Key Encryption Asymmetric Key Encryption

Cipher text size is the same or
smaller than the original plain text

Cipher text size is the same or
larger than the original plain text

The encryption process
is very fast

The encryption process
is slow

Used to transport
large amount of data

Used to transfer
small amounts of data

Provides only confidentiality Provides confidentiality,
authenticity, and non-repudiation

Low resource utilization High resource utilization

Security is less as only one key is used for
both encryption and decryption purpose

It is more secure as two keys
are used: one for encryption and

the other for decryption

Table 2.1: Symmetric and asymmetric key encryption comparison
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2.2 Post Quantum Cryptography
Post quantum cryptography indicates a class of cryptographic algorithms (generally
public-key algorithms) that are thought enough to be secure against an attack by
a quantum computer. Despite it is still early for quantum computing, migrating
our extensive infrastructure from today’s widely deployed algorithms to PQC
alternatives is a complicated process, which can requires many years because of
backward compatibility. [5]
Classic public-key cryptography algorithms are based on problems like factoring
large integers (RSA) or discrete logarithm (ECC). However, these algorithms have
been shown to be vulnerable to quantum attacks, since these problems would be
extremely easy to be solved for a quantum computer.
We need to introduce advanced and secured cryptosystem.
Cryptographic algorithms are based on hard mathematical and computationally
infeasible problems that are believed to be resistant to both conventional and
quantum crypto-analysis. The most important quantum-safe approaches are the
ones already discussed in Table 1.1. Some examples are:

• hash-based: Merkle signatures, Sphincs, Picnic;

• code-based: McEliece, Niederreiter;

• lattice-based: NTRU, learning with errors, ring-LWE, LWrounding;

• multivariate cryptography: multivariate quadratic;

• isogeny-based cryptography: super-singular elliptic curve isogenies.
A brief scheme of their main properties is reported in Figure 2.5. [6].

Figure 2.5: Most important quantum-safe approaches
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These are some of the different families of math problems currently being inves-
tigated with each taken from a different branch of mathematics.
Over the last decade, cryptographers and mathematicians have been working over
these problems and turning them into useful cryptographic schemes.
Considering NIST third round, between the seven finalists KEM primitives, two
were code-based and the remaining five were lattice-based.
The latter is the most promising class of algorithms between the options considered.
Therefore, we will focus our attention on lattice-based cryptography, being CRYSTALS-
Kyber algorithm based on the hardness of solving the learning with-errors
(LWE) problem over module lattices.
In subsection 2.2.1 and in subsection 2.2.2, lattice-based cryptography and learning
with-errors problems are briefly described, to better understand CRYSTALS-Kyber
main characteristics.

2.2.1 Lattice-based cryptography
Lattices were first introduced in the 19th century as regular arrangements of
points in n-dimensional space. For example, in Figure 2.6 there are 2 different
2-dimensional lattices.

Figure 2.6: Lattice examples

Since the appearance of the lattice basis reduction algorithm, more than twenty
years ago, lattices have had surprising applications in cryptography.
In the last decade their applications were only negative, since they were used
to break various cryptographic schemes. Paradoxically, recently they have been
selected to be one of the most promising solution in modern cryptography [7].
It is believed that lattice-based cryptography has potential to resist the
attacks from quantum computers.
Obviously, lattice-based cryptography derived its name from the fact that algo-
rithm’s security is related to hard math problems around lattices.

13
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A lattice can basically be thought of as any regularly spaced grid of points
stretching out to infinity. An integral lattice L can be defined as the Z-linear
combination of n independent vectors bi ∈ Zn.

L = {
Ø

aibi : ai ∈ Z}

Any linear combination of b1 and b2 , will be a point in the lattice. As an example,
Zn is a lattice, generated by the standard basis for Rn.
In general, lattices would be infinitely large. However, computers does not have
infinite memory to work with, and therefore we need a compact way to represent
them when we use them in cryptography.
For this reason, we use what is called a basis of a lattice. A basis is a small
collection of vectors that can be used to represent any point in the grid that forms
the lattice. Crucially, the basis for a lattice is not unique. For instance, the
vectors (8,8,8), (6,5,4) and (1,2,3) form an alternative basis for R3, since these
points do not happen to lie on a single line going through the origin.
The idea is that by choosing a basis we have actually chosen an entire lattice and in
this way, in contrast to an infinite grid of points, a basis is a simple finite element
which we can represent in a memory.
Lattice-based cryptography includes the class of cryptosystems whose security is
based on hard lattice problems such as Shortest Vector Problem (SVP), Shortest
Independent Vectors Problem (SIVP), and the Closest Vector Problem (CVP).
The most important one is the Shortest Vector Problem, which asks us to
approximate the minimal Euclidean length of a non-zero lattice vector. In particular,
given a linearly independent basis B = {−→b1 ,

−→
b2 , ...,

−→
bn} ∈ Zm×n, find a non-zero

vector −→v such that:
∥−→v ∥ = min−→z ∈B

∥−→z ∥

The researches on solving the SVP play an important role in cryptography.
For instance, when a lattice-based cryptosystem is built, one of the most appropriate
security parameters that can be derived is related to the time/space complexity of
the best algorithm in solving the SVP. [8]
This problem is thought to be hard to solve efficiently, also with a quantum
computer. At first glance, it might seem a relatively easy problem, but we need to
remember that the basis we are given are made of long vectors. When it comes
to cryptography, we are dealing with much higher dimension with respect to the
example shown in Figure 2.6. Therefore, finding a combination of the basis vectors
that simultaneously makes all coordinates small turns out to be quite hard, even
with a quantum computer.
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2.2.2 Learning with error problem
Learning with error problem (LWE) is a lattice-based problem that offer the
better efficiency in terms of speed and key and ciphertext sizes. Its main claim to
fame is being as hard as worst-case lattice problems, rendering all cryptographic
constructions based on it secure under the assumption that worst-case lattice
problems are hard. [9]
Learning with errors is a method defined by Oded Regev in 2005. It involves the
difficulty of finding the values which solve:

A · s + e = B

If not for the error e, finding s would be easy: after approximately n equations, s
can be recovered in polynomial time using Gaussian elimination. Introducing the
error makes the problem significantly more difficult. For instance, the Gaussian
elimination algorithm takes linear combinations of n equations, thereby amplifying
the error to unmanageable levels, leaving essentially no information in the resulting
equations. The problem is described more precisely in [9].
Generally speaking, cryptosystem is parameterized by integers n (the security
parameter), m (number of equations), q (modulus), and a real α > 0 (noise
parameter).
Now, let’s see an example.
Imagine Alice and Bob want to communicate: they need to generate a secret key
between them. Alice first compute A · s + e. A will be random (A ∈ Zm×n

q ), and s
and e will have small coefficients, between [-1,0,1] (s ∈ Zn×1

q and e ∈ Zn×1
q ).

Figure 2.7: Public-key encryption scheme: key generation
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(A, B) will be the public key for Alice, publishing it for other parties. s will be
her own secret key, know only by her.
Then, Bob will ask for Alice public key. Imagine he has a single bit message M.
He will compute:

u =
Ø

Asamples

v =
Ø

Bsamples −
q

2M

u and v are the encrypted values and the message M will becomes their shared
secret key. Alice, to decrypt (u, v), must calculate:

Dec = v − su(mod q)

If Dec is less than q
2 , the message is 0, while if is greater than q

2 , the message is 1.
If Alice used the cyphertext of u and v, and compute v − su, since s is her own
secret key, she can decrypt the message M . This approach can be used to send the
message from Bob to Alice, and once they have the same message, they can create
the common secret key and communicate one with each other. [10]

Cryptographic schemes based on the LWE problems generally require large key
sizes, of the order of n2. Reducing this to almost linear size is highly desirable.
One natural way to achieve this goal is to assume that there is some structure in
the LWE samples. [9] This is defined as Ring-Learning with Errors problem
(RLWE). More specifically, replacing the group Zn

q with the ring:

Zq[x]/⟨xn + 1⟩

It has been demonstrated that RLWE is also at least as hard as worst-case lattice
problems over special classes of ideal lattices and cryptographic applications of
RLWE generally enjoy an increase in efficiency compared with those of LWE. [11]
LWE is at least as hard as standard worst-case problems on Euclidean lattices,
while RLWE is as hard as their restrictions to special classes of ideal lattices.

Finally, Module Learning with Errors problem (MLWE) has been proposed to
address shortcomings in both plain LWE and RLWE by interpolating between the
two, obtaining more complicated algebraic structures than ideal lattices. MLWE
might be able to offer a better level of security than RLWE and still have per-
formance advantages over plain LWE. It represents a trade-off between the two
extremes. In the specific case of the Module-LWE parameters used in CRYSTALS-
Kyber, there is a reduced structure compared to Ring-LWE, getting a much better
scalability, and - when encrypting messages of a fixed size of 256 bits - performance
very similar to Ring-LWE-based schemes.
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Chapter 3

CRYSTALS-Kyber

In this chapter, we will provide a description of the main modules of CRYSTALS-
Kyber algorithm. Before that, a general background on the object considered in
the NIST competition is needed, focusing on the difference between KEX, PKE
and KEMs.
As discussed in previous sections, NIST competition was initiated to find replace-
ments for the public key primitives that are not quantum-resistant.
In the case of primitives that provide authenticity, this means digital signature
schemes. But in the case of primitives that provide secrecy, the solution is not that
clear. The discussed options were:

• Key exchange (KEX): is a protocol that runs between two parties. At the
end of an execution, a key exchange protocol outputs the same session key at
both parties.

• Public Key Encryption (PKE): it consists of three algorithms:

– The key generation algorithm generates a key pair consisting of a
public and a private key (pk, sk);

– The encryption algorithm takes a message and a public key to compute
a ciphertext;

– The decryption algorithm takes a ciphertext and a private key to
compute a plain-text.

It is required that the decryption of an encryption returns the original message
if the correct private key is used.
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• Key Encapsulation Mechanism (KEM): it consists of three algorithms,
similar to PKE.

– the key generation algorithm generates a key pair consisting of a
public and a private key (pk, sk);

– the encapsulation algorithm, in contrast to PKE, takes a public key
to compute a session key and a ciphertext;

– the decapsulation algorithm takes a ciphertext and a private key to
compute a session key.

It is required that the decapsulation of a ciphertext returns the same session
key as the encapsulation that generated it if the correct private key is used.

After long discussion processes, NIST decided that they will standardize KEMs.
KEX has been discarded, since all the KEX candidates required interaction and
thereby are less general than PKE and KEMs. [12]
A KEM is similar to a Public Key Encryption (PKE) scheme, since both of them
exploit a combination of public and private keys. The main purpose of PKE is
to encrypt session keys. A KEM does essentially the same thing, but with the
difference that the scheme has control over choosing the session key. The public
key is used to create an encapsulation, giving a randomly chosen shared key, and
then using the private key this encapsulation is decrypted.
This small difference makes it easier to construct secure schemes.

CRYSTALS-Kyber is a KEM (or Key Encapsulation Mechanism). It is a proba-
bilistic algorithm that produces a random symmetric key and an encryption of that
key. Instead of processing the message directly using the public and the private
keys, it adds a shared secret to the process, encapsulating and decapsulating it
using the public and the secret keys.
Key Derivation Function, as hash function, is used, and it is composed by the
three main algorithms described above.
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3.1 Description
CRYSTALS-Kyber is a IND-CCA2-secure KEM, based on the hardness of
solving the learning with-errors (LWE) problem over module lattices.
The construction of Kyber follows a two-stage approach: first, an INDCPA-secure
public-key encryption scheme encrypting messages of a fixed length of 32 bytes is
introduced, which is defined as Kyber.CPAPKE (Chosen-Cyphertext Attack Public
Key Encryption). Then, a slightly tweaked Fujisaki–Okamoto (FO) transform
is used to construct the IND-CCA2-secure KEM (Chosen-Cyphertext Attack Key
Encapsulation Mechanism). [13]
CRYSTALS-Kyber includes three parameter sets, as reported in 3.1, correspond-
ing to three security levels of NIST.

Kyber Length [bytes]
Kyber model SECRET-KEY PUBLIC-KEY CIPHERTEXT
Kyber512 1632 800 768
Kyber768 2400 1184 1088
Kyber1024 3168 1568 1568

Table 3.1: Kyber Crypto Length

Kyber.CPAPKE is similar to the LPR encryption scheme introduced at Eurocrypt
2010 in the paper of Lyubashevsky, Palacio and Segev. [14]
The roots of this scheme go back to the first LWE-based encryption scheme presented
by Regev in [15], but here, the underlying ring is not Zq and both the secret and
the error vectors have small coefficients.
The idea of using a polynomial ring goes back to the NTRU cryptosystem presented
by Hoffstein, Pipher, and Silverman in [16].
The main difference is to use Module-LWE instead of Ring-LWE.

3.1.1 Parameters
Kyber.CPAPKE is parameterized by integers n, k, q, η1, η2, du and dv.
n and q characterized the ring R and the ring Rq, respectively indicated as:

Z[X]/(Xn + 1) Zq[X]/(Xn + 1)

where n = 2n′−1 such that Xn + 1 is the 2n′-th cyclotomic polynomial. [13]
These parameters are fixed. In particular, polynomials are of the same degree
n = 256, and the polynomial coefficients are members of the prime field Zq, where
q = 3329 for all security levels. In particular, n is set to 256 because the goal is
to encapsulate keys with 256 bits of entropy: smaller values of n would require to
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encode multiple key bits into one polynomial coefficient, which requires lower noise
levels and therefore lower security. Larger values of n would reduce the capability
to easily scale security via parameter k.
q is chosen as a small prime to satisfy n|(q − 1). This is a requirement for the fast
NTT-based multiplication. There are two smaller primes for which this property
holds, namely 257 and 769. However, 3329 has been selected since the lower prime
numbers that satisfy the equation cannot assure the negligible failure probability
necessary for CCA security.
Despite the fact that q and n are fixed, for each security level, different
numbers of polynomials are required.
These polynomials are considered as a vector whose size is specified by a parameter
k. k represents the dimension of the matrix of polynomials in Rq, and fixes the
lattice dimensions as a multiple of n. The values of k are 2, 3, and 4, corresponding
to the security levels 1, 3, and 5, respectively. The remaining parameters η1, η2,
d1, and d2 are chosen to balance between security, ciphertext size, and failure
probability. [17]

Algorithm NIST-Level k (η1, η2) (du, dv)
Kyber512 1 (AES-128) 2 (3,2) (10,3)
Kyber768 3 (AES-192) 3 (2,2) (10,4)
Kyber1024 5 (AES-256) 4 (2,2) (11,5)

Table 3.2: Kyber Parameters

The parameter η1 defines the noise of s and e in key generation algorithm and
of r in encryption algorithm. The parameter η2 defines the noise of e1 and e2 in
encryption algorithm.

3.1.2 Symmetric Functions
Kyber makes a use of a pseudo-random function (PRF), an extendable output
function (XOF), two hash functions H, and G, and a key-derivation function
(KDF). All these primitives are instantiated with function from the FIPS-202
standard, as specified in Table 3.3.

Symmetric Primitives Kyber
XOF SHAKE-128
H and G SHA3-256 and SHA3-512
PRF(s,b) SHAKE-256(s||b)
KDF SHAKE-256

Table 3.3: Symmetric Primitives in Kyber
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3.2 Kyber-PKE and Kyber-KEM
Kyber-PKE is an IND-CPA-secure public-key encryption scheme. It encrypts mes-
sages of a fixed length of 32 bytes. It contains three algorithms: Key Generation,
Encryption, and Decryption.
In Kyber-PKE Key Generation, the polynomial matrix A is randomly generated,
and the polynomial vectors s and e are sampled according to Bη1 . Then, normally,
the secret key is s and the public key is As+e. However, for efficient implementa-
tion purposes, the multiplication As is performed in NTT domain by generating
A in NTT domain (i.e. Â) and transforming s to ŝ = NTT(s). To avoid NTT−1

operation, e is also transformed to ê and added to Â o ŝ.
Therefore, the values of secret and public keys are left in NTT domain and encoded
to sk and pk, respectively. In addition, the seed for randomness is appended to the
public key for letting the recipient generate the matrix A.

Algorithm 1 KYBER.CPAPKE.KeyGen(): key generation
Output: Secret Key sk ∈ B12·k·n/8

Output: Public Key pk ∈ B12·k·n/8+32

d ← B32

(ρ, σ) := G(d)
3: N:=0

for i from 0 to k-1 do ▷ Generated matrix Â ∈ Rk×k
q in NTT domain

for j from 0 to k-1 do
6: Â[i][j]:=Parse(XOF(ρ, j, i)

end for
end for

9: for i from 0 to k-1 do ▷ Samples s ∈ Rk
q from Bη1

s[i] := CBDη1(PRF(σ,N))
N:= N+1

12: end for
for i from 0 to k-1 do ▷ Samples e ∈ Rk

q from Bη1

e[i] := CBDη1(PRF(σ,N))
15: N:= N+1

end for
ŝ := NTT(s)

18: ê := NTT(e)
t̂ := Â o ŝ + ê
pk := (Encode12(̂t mod+ q)||ρ) ▷ pk:= As + e

21: sk := Encode12(̂s mod+ q) ▷ sk:= s
return (pk,sk)
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Further details about the different functions used in Algorithm 1 are reported
in CRYSTALS-Kyber specifications. [13]
In Kyber-PKE Encryption, the message m is encrypted to the ciphertext c = (c1, c2)
by using the public key pk and random coins r. The polynomial vector t and the
matrix A are obtained using the public key. The polynomial vector r is sampled
according to Bη1 using r. The polynomial vector e1 and the polynomial e2 are
sampled according to Bη2 using r. Then, normally, the ciphertext c = (c1, c2) is
(ATr + e1, tTr + e2 + m). However, multiplications are performed in NTT domain
and then transformed to the normal domain by using NTT−1. Moreover, the
ciphertext is compressed and encoded.

Algorithm 2 KYBER.CPAPKE.Enc(pk,m,r): encryption
Input: Public Key pk ∈ B12·k·n/8+32, Message m ∈ B32, Random coins r ∈ B32

Output: Cipher-text c ∈ Bdu·k·n/8+dv ·n/8

N:=0
t̂ := Decode12 (pk)

3: ρ := pk + 12 ·k · n/8
for i from 0 to k-1 do ▷ Generated matrix Â ∈ Rk×k

q in NTT domain
for j from 0 to k-1 do

6: ÂT [i][j]:=Parse(XOF(ρ, i, j)
end for

end for
9: for i from 0 to k-1 do ▷ Samples r ∈ Rk

q from Bη1

r[i] := CBDη1(PRF(r,N))
N:= N+1

12: end for
for i from 0 to k-1 do ▷ Samples e1 ∈ Rk

q from Bη2

e1[i] := CBDη2(PRF(r,N))
15: N:= N+1

end for
e2 := CBDη2(PRF(r,N)) ▷ Samples e2 ∈ Rk

q from Bη2

18: r̂ := NTT(r)
u := NTT−1 (ÂT o r̂) + e1 ▷ u := ÂT r + e1
v := NTT−1 (̂tT o r̂) + e2 + Decompressq(Decode1(m),1)

21: c1 := Encodedu(Compressq(u,du))
c2 := Encodedv(Compressq(v,dv))
return c= c1||c2

Further details about the different functions used in Algorithm 2 are reported
in CRYSTALS-Kyber specifications. [13]
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In Kyber-PKE Decryption, the polynomial vector u and the polynomial v are
obtained from the ciphertext by decoding and decompressing.
The vector s is obtained from the secret key. Then, the message m is v − sTu.
Again, the multiplications are performed in NTT domain and then transformed to
the normal domain by using NTT−1.

Algorithm 3 KYBER.CPAPKE.Dec(sk,c): decryption
Input: Secret Key sk ∈ B12·k·n/8, Cipher-text c ∈ Bdu·k·n/8+dv ·n/8

Output: Message m ∈ B32

u := Decompressq(Decodedu(c),du)
v := Decompressq(Decodedv(c + du · k · n/8),dv)

3: ŝ := Decode12(sk)
m := Encode1(Compressq(v - NTT−1(̂sT o NTT(u)),1))
return m

Further details about the different functions used in Algorithm 3 are reported
in CRYSTALS-Kyber specifications. [13]

On the other hand, Kyber.CCAKEM is an IND-CCA2-secure KEM and it is built
from the IND-CPA secure public-key encryption scheme, called Kyber.CPAPKE, by
applying the Fujisaki-Okamoto transform.
It contains three steps: Key Generation, Encapsulation, and Decapsulation.
In the first step, Alice generates the public and secret keys by using Kyber-PKE
Key Generation algorithm, and shares her public key with Bob. In the second
step, Bob encrypts the message to the ciphertext by using Kyber-PKE Encryption
algorithm, and sends the ciphertext to Alice. He also computes the shared secret
by using the message, Alice’s public key, and the ciphertext. In the last step, Alice
decrypts the ciphertext to the message by using Kyber-PKE Decryption algorithm,
and then verifies whether it can be encrypted to the same ciphertext (sent by Bob)
by following similar steps as Bob did by using Kyber-PKE Encryption algorithm.
If ciphertexts match, Alice computes the shared secret by using the message, her
public key, and the ciphertext. Otherwise, she computes the shared secret by using
a random value and the ciphertext. [18].
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A scheme of Kyber-CCA KEM is reported in Figure 3.1.

Figure 3.1: Kyber-CCA KEM
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3.3 KYBER C-code Analysis
To understand which are the most expensive parts of the algorithm from the
computational point of view, the C-code provided by CRYSTALS has been analyzed
1. Compiling the test program on Linux, the executable files test_kyber$ALG,
test_kex$ALG and test_vectors$ALG were obtained.
$ALG ranges over the parameter sets 512, 768, and 1024. The "90s" variant has
not been considered, which is a version of CRYSTALS-Kyber where XOF and PRF
functions are defined with AES-256 instead of SHAKE.
The attention is focused only to test_kyber$ALG test. Accordingly to the official
CRYSTAL-KYBER repository, test_kyber$ALG tests 1000 times to generate keys,
encapsulate a random key and correctly decapsulate it again. Also, the program
tests that the keys cannot correctly be decapsulated using a random secret key
or a ciphertext where a single random byte was randomly distorted in order to
test for trivial failures of the CCA security. The program will abort with an error
message and return 1 if there was an error. Otherwise it will output the key and
ciphertext sizes and return 0.
The implementation in ref/ has been considered, remembering that this is not
optimized for any platform. Therefore, since it prioritises clean code, is significantly
slower than a trivially optimized but still platform-independent implementation.
All the results obtained are reported in Appendix A.

Profiling Test_Kyber

Detailed results are reported in Appendix A.
Focusing on test_kyber$ALG, the algorithm has been analyzed more in details.
Regardless of the level of security which is analyzed, the code is not changing. The
only difference in the definition of the parameter involved, in the param.h file.
Obviously, the higher is the level of security considered, the higher are the dimension
of the secret key, the private key and the ciphertext, as reported in Table 3.1.
Therefore, the higher is the level of security, the higher is the number of calls that
is done for the different main functions. This was surely predictable.
In Figure 3.2 are reported the percentages of the total running time of the program
used by the main functions. The main difference that can be noticed between the
three level of security, is the percentage of the total running of the program used by
the different function. However, it can be clearly seen that the function computing
Keccak permutation is one of the most expensive in terms of running time, despite
the fact it is not the most frequently called.

1https://pq-crystals.org/kyber/index.shtml
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Figure 3.2: Percentage of the total running time of the program used

In particular:

• for Kyber512 and Kyber1024, KeccakF1600_StatePermute is the function
which occupied the most of the running time. This is the core of Keccak
algorithm, a family of sponge functions that has been standardized in the form
of SHAKE128 and SHAKE256 extendable output functions and of SHA3-256
to SHA3-512 hash functions in FIPS-202.

• for Kyber768 the function which occupied the test most of the time is
Montgomery_reduction. However, as for Kyber512 and Kyber1024,
KeccakF1600_StatePermute is called a number of times which is two order
of magnitude less with respect to Montgomery_reduction.

For all the three levels of security, Keccak, NTT and INVNTT are the
most consuming functions. They are between the first position in terms of
occupied time, but there are the ones that are called the lowest amount of time.
This means the execution of these function is quite expensive.
In this thesis work, a dedicated hardware of SHA3 has been implementing, including
a control part managing all the different primitives, and the Keccak core.
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Chapter 4

SHA-3 Algorithm

The Secure Hash Algorithms (SHA) are a family of cryptographic hash functions
published by the NIST as a U.S. Federal Information Processing Standard (FIPS).
SHA-3 is the latest member of the Secure Hash Algorithm family of standards,
released by NIST on August 5, 2015. SHA-3 is a subset of the broader cryptographic
primitive family Keccak, designed by Guido Bertoni, Joan Daemen, Michaël
Peeters, and Gilles Van Assche.
The SHA3-algorithm does not use the Merkle-Damgard construction, as in the case
of MD5, SHA-1 or SHA-2, but rather uses the so-called sponge function. [17]
A sponge function is a simple iterated construction for building a function F
with variable length input and arbitrary output length based on a fixed-length
permutation f operating on a fixed number b of bits. SHA-3 is a family of sponge
functions with members Keccak[r,c], characterized by two parameters, bit-rate r
and capacity c. Their sum determine the width of the Keccak-f permutation used
in the sponge construction.

r c Output length
(bits)

Security level
(bits) Mbits d

SHA3-224 1152 448 112 224 01 0x06
SHA3-256 1088 512 256 128 01 0x06
SHA3-384 832 768 384 192 01 0x06
SHA3-512 576 1024 512 256 01 0x06
SHAKE128 1344 256 unlimited 128 1111 0x1F
SHAKE256 1088 512 unlimited 256 1111 0x1F

Table 4.1: FIPS 202 standards’ parameters
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SHA-3 family is constituted by four hash function (SHA3-224, SHA3-256,
SHA3-384 and SHA3-512) and two Extendable-Output Function (XOF) (SHAKE-
128 and SHAKE-256). Keccak team proposed the Keccak [1600] with different r
and c values for each desired length of hash output.

4.1 The sponge construction
First, all the bits of the state are initialized to zero. The input message is padded
and cut into blocks of r bits. Then, sponge construction proceeds in two steps: the
absorbing phase and the squeezing phase.

• In the absorbing phase, the r-bit input message blocks are XOR-ed into the
first r bits of the state, interleaved with applications of the function f. When
all message blocks are processed, the sponge construction switches to the
squeezing phase.

• In the squeezing phase, the first r bits of the state are returned as output
blocks, interleaved with applications of the function f. The number of output
blocks is chosen at will by the user. The last c bits of the state are never
directly affected by the input blocks and are never output during the squeezing
phase

Figure 4.1: Sponge Function
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In Algorithm 4 is presented the pseudo-code for the Keccak[r,c] sponge func-
tion, with parameters capacity c and bit-rate r. We assume for simplicity that r is
a multiple of the lane size.
The description below assumes that the input M is represented as a string of bytes
Mbytes followed by a number (possibly zero, at most 7) of trailing bits Mbits. The
standard instances typically add a few trailing bits for domain separation. When
made of bytes, the input of these functions then becomes Mbytes, while Mbits is
solely determined by the instance used, see Table 4.1 [ 1].

Algorithm 4 Pseudo-code description of the sponge functions
procedure Keccak[r,c](M)

▷ Padding
3: d = 2̂|Mbits| + sum for i=0..|Mbits|-1 of 2îMbits[i]

P = Mbytes || d || 0x00 || . . . || 0x00
P = P ⊕ ( 0x00 || . . . || 0x00 || 0x80)

6: ▷ Initialization
S[x,y] = 0 ▷ ∀ (x,y) in (0...4, 0...4)
▷ Absorbing phase

9: for each block Pi in P do
S[x,y] = S[x,y] xor Pi[x+5*y] ▷ ∀ (x,y) such that x+5*y < r/w
S = Keccak-f[r+c](S)

12: end for
▷ Squeezing phase
Z = empty string

15: while output is requested
Z = Z || S[x,y] ▷ ∀ (x,y) such that x+5*y < r/w
S = Keccak-f[r+c](S)

18: return Z
end procedure

In the pseudo-code above, d is the delimited suffix, which encodes the trailing
bits Mbits and its length. The padded message P is organised as an array of blocks
Pi, themselves organized as arrays of lanes. The variable S denotes the state as an
array of lanes. The || operator denotes the usual string concatenation.

1https://keccak.team/keccak_specs_summary.html
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4.1.1 Padding
For this application, the message is byte-aligned, i.e. len(M) = 8m.
The total number of zero bytes that must be inserted, denoted by q, is determined
as follow by m and the rate r:

q = r

8 −
3

m mod
r

8

4
The padded messages that results are summarized in Table 4.2, where the notation
0x00... indicates the string that consists of q − 2 "zero" bytes.
These padding techniques are true only if q > 2. For each case in which a primitive
is called in CRYSTALS-Kyber algorithm, this is always true.

Type of SHA-3 Function Padded Message
Hash M || 0x06 || 0x00 ... || 0x80
XOF M || 0x1F || 0x00 ... || 0x80

Table 4.2: Hexadecimal form of SHA-3 padding for byte-aligned messages

4.1.2 Keccak-permutation
The 1600-bit state of Keccak [1600] consists of 5x5 matrix of 64-bit words, as
shown in Figure 4.2 ([17]). This is the width of the permutation.

Figure 4.2: Keccak State Array

The number of round nr depends on the permutation width, and is given by
nr = 12 + 2l, where 2l = b/25. This gives 24 rounds for each compression step of
the Keccak-f[1600].
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Algorithm 5 Keccak-f[1600] (A)
1: procedure Keccak-f[1600](A)
2: ▷ A is the state matrix
3: for i in 0 ... nr − 1 do
4: A=Round[1600] (A, RC [i])
5: end for
6: return A
7: end procedure

Each compression round consists of five different steps. These steps are
denoted as θ, ρ, π, χ and ι. [19]. Each step of the algorithm takes a state array,
denoted as A, and it returns an updated state array, denoted by A*. The different
five steps can be briefly described as follow:

• θ computes the parity of each of the 5x64=320 colums, and XORs the result
with two neighboring columns chosen in a regular pattern;

• ρ rotates the bits of each lane by a length, called the offset, which depends on
the fixed x and y coordinates of the lane.
Equivalently, for each bit in the lane, the z coordinate is modified by adding
the offset, modulo the lane size (Table 4.3);

X=3 X=4 X=0 X=1 X=0
Y=2 25 39 3 10 43
Y=1 55 20 36 44 6
Y=0 28 27 0 1 62
Y=4 56 14 18 2 61
Y=4 21 8 41 45 15

Table 4.3: Values r[i] constants

• π permutes the 5x5=25 64-bit words using a fixed pattern. It rearranges the
positions of the lanes;

• χ combines along rows using bitwise XOR, NOT and AND operations;

• ι XORs a round constant (from Table 4.4) into one of 64-bit word of the state,
in order to break the symmetry preserved by the previous steps.
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RC[0] 0x0000000000000001 RC[12] 0x000000008000808b
RC[1] 0x0000000000008082 RC[13] 0x800000000000008b
RC[2] 0x800000000000808a RC[14] 0x8000000000008089
RC[3] 0x8000000080008000 RC[15] 0x8000000000008003
RC[4] 0x000000000000808b RC[16] 0x8000000000008002
RC[5] 0x0000000080000001 RC[17] 0x8000000000000080
RC[6] 0x8000000080008081 RC[18] 0x000000000000800a
RC[7] 0x8000000000008009 RC[19] 0x800000008000000a
RC[8] 0x000000000000008a RC[20] 0x8000000080008081
RC[9] 0x0000000000000088 RC[21] 0x8000000000008080
RC[10] 0x0000000080008009 RC[22] 0x0000000080000001
RC[11] 0x000000008000000a RC[23] 0x8000000080008008

Table 4.4: Values RC[i] constants

As explained in [20], in all the listed equations, all operations within indices
are done modulo 5. A denotes the complete permutation state array and A[x,y]
particular 64-bit word in that state.
B[x,y], C[x] and D[x] are intermediate variables. The symbol ⊕ denotes the
bitwise XOR, NOT the bitwise complement and AND the bitwise AND operation.
Finally, ROT(W,r) the bitwise cyclic shift operation, moving the bit at position i
into position i+r (modulo 64).

Algorithm 6 Round[b]
procedure Round[b]((A,RC))

2: ▷ θ step
C[x]= A[x,0] ⊕ A[x,1] ⊕ A[x,2] ⊕ A[x,3] ⊕ A[x,4] ⊕, ▷ ∀x in 0...4

4: D[x]= C[x-1] ⊕ ROT(C[X+1],1), ▷ ∀x in 0...4
A[x,y]=A[x,y]⊕ D[x] ▷ ∀ (x,y) in (0...4, 0...4)

6: ▷ ρ and π steps
B[y,2x+3y]=ROT(A[x,y], r[x,y]) ▷ ∀ (x,y) in (0...4, 0...4)

8: ▷ χ step
A[x,y]=B[x,y] ⊕ ((NOT B[x+1,y]) AND B[x+2,y]) ▷ ∀ (x,y) in (0...4, 0...4)

10: ▷ ι step
A[0,0]=A[0,0] ⊕ RC

12: return A
end procedure

The constants RC[i] and r[x,y] are cyclic shift offset and round constant
respectively (Table 4.4 and Table 4.3):
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Hardware Implementation

This chapter presents the characteristics and architecture of SHA3 core and its
control unit. It is an hardware accelerator designed for the implementation of hash
and XOF functions compliant with SHA3-algorithm, but specifically dedicated to
CRYSTALS-Kyber application.
With respect to Table 4.1, the primitives required by the algorithm are:

• SHA3-256;

• SHA3-512;

• SHAKE128;

• SHAKE256.

Originally, all symmetric primitives were done with only one function from the
FIPS-202 standard. The authors decided to change this to different functions from
the FIPS-202 family to avoid any domain-separation discussion. This modification
increases code-size at most marginally, since all four functions can be obtained by
a call to the same Keccak-core, with appropriate arguments and control signals.
Independenlty on the primitives selected, employing a dedicated hardware accel-
erators is the most efficient solution to the need for integration of cryptographic
algorithm in common applications, and ensures the best performance.
SHA-3 module architecture aims to achieve the best trade-off between throughput
and complexity. It has been optimized for a single user at a time: therefore,
multiple requests are not possible, and they will be executed one by one.
Its architecture has been designed with a top-down approach: each block has
been divided into smaller and simpler ones and then, once all of them has been
tested and validated, they have been put together.
It was implemented in VHDL language, while testing procedure relies both on
VHDL and Python code.
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The architecture has been design considering parallelisms required for the 3rd
level of security of CRYSTALS-Kyber: Kyber 768.
Table 5.1 shows all the reference parallelism used for the architecture construction.

Primitive Function Input Parallelism [bits] Output Parallelism [bits]
SHA3-256 H(pk) 9472 256
SHA3-256 H(c) 8704 256
SHA3-256 H(m) 256 256
SHA3-512 G(d) 256 512
SHA3-512 G(m||H(pk)) 512 512
SHA3-512 G(m’||h) 9216 512
SHAKE-128 XOF(ρ, i,j) 272 768
SHAKE-128 XOF(ρ,j,i) 272 768
SHAKE-256 PRF(σ, N) 264 1024
SHAKE-256 PRF(r, N) 264 1024
SHAKE-256 KDF(K||H(c)) 512 256
SHAKE-256 KDF(z||H(c)) 512 256

Table 5.1: SHA3 Inputs parallelism

As reported in Table 5.1, in the case of SHA3-256, the output is always fixed
to 256, independently on the length of the input. The same is true for SHA3-512,
with an output parallelism of 512.
They are respectively instantiating H and G functions.

H : B∗ −→ B32 G : B∗ −→ B32 × B32

H inputs are taken from Table 3.1. m is defined as m← B32.
By definition, Bk is used to denote a set of byte array of length k: therefore m has
a parallelism of 256.
The same definition can be applied to d, one of the inputs of G functions.
m||H(pk) is the concatenation of m, previously commented, and H(pk), whose
length is fixed to 256: the final input parallelism is therefor 512.
m’||h is given by the concatenation of m’, which is the output message of
Kyber.CPAPKE.Dec (Table 3.1), and h, which is defined as: sk + 24 ∗ k ∗ n/8 + 32.
For the specific case of Kyber 768, this means starting from byte 2336 of 2400 of
sk, therefore the last 64 bytes. Thus, we have the 8704 bit of the cypertext, plus
516, obtaining an input parallelism of 9216.
SHAKE128 and SHAKE256 are extendable output function (XOF) and will gen-
erate as many bits from its sponge as requested. Furthermore, SHAKE is design
to work also as Pseudo Random Function (PRF) and Key Derivation Function
(KDF).
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In CRYSTALS-Kyber algorithm, SHAKE128 is used as XOF.
With B the set 0,...,255 and B∗ the set of byte arrays of arbitrary length,[13] a
XOF is defined as:

B∗ × B × B −→ B∗

XOF is always with three inputs: the seed ρ and the two indexes of the matrix, i
and j. This function is called for the first time during the key generation process:
here, being the seed half of the output of G, the input parallelism is 272 (being i
and j both on one byte).
The time XOF is re-called, in the encryption step, ρ is defined instead as: pk +
12 ∗ k ∗ n/8. For the specific case of Kyber 768, this means starting from byte 1152
of 1184 of pk, thus the last 32 bytes. Therefore, we have the 256 bit of the public
key, plus 16 of i and j, obtaining an input parallelism of 272.
On the other hand, SHAKE256 is used both for PRF and KDF.

PRF : B32 × B −→ B∗ KDF : B∗ −→ B∗

As described in the NIST glossary, a PRF is a function that can be used to
generate output from a random seed and a data variable, such that the output is
computationally indistinguishable from truly random output. [21]
PRF is called first in key generation process, taking as inputs σ, which is half of G
output (256 bit), and N. N is a variable used in the algorithm which is incremented
from 0 a maximum amount of time equal to k-1. So, independently on the level of
security of Kyber, N needs just an additional byte, and the overall input parallelism
is 264. The output of PRF(σ,N) is the input of CBDη1 function, which must be,
by definition, B64∗η1 . Being η1 = 2, we obtain an output parallelism of 1024 bit.
The same holds true when PRF function is re-called in encryption process. Input r
belongs by definition to B32, and N is the same described before. The output is
again on 1024 bit, but this is due to the level of security chosen. In fact, in this
case, the output of PRF(r,N) is the input of CBDη2 function, which must be, by
definition, B64∗η2 . Being η1 = η2, the output parallelism is the same, but this is
valid only for Kyber 768 and Kyber 1024.
KDF is called only when constructing KYBER.CCAKEM.
Twice taking in input 512 bit, given by the concatenation between the output of
an H function (256 bit) and the output of a G function halved (256 bit).
The third times is re-called, in the decryption process, it takes in input the output
of an H function (256 bit) and z. The latter one is defined as: sk + 12∗k ∗n/8 + 64.
For the specific case of Kyber 768, this means starting from byte 2368 of 2400 of
sk, therefore the last 32 bytes. Thus, we have the 256 bit of the secret key, plus
256, obtaining an input parallelism of 516.
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5.1 SHA3 core
SHA3 core is the key element of our device.
This core can operate on both one-block and multi-block messages. A multi-block
message is an input whose length is higher with respect to the maximum bit rate
that can be processed by the specific primitive (Table 4.1).
The architecture consists mainly of:

• Zero State;

• Version Selection and XORing (VSX) Module;

• Keccak core;

• Counter and comparators;

• Truncation unit;

• Output management and output divider unit;

• Control unit.

Figure 5.1: SHA3 core

The proposed architecture is gradually presented in the following subsections.
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5.1.1 Zero State
The first iteration of the algorithm - independently on the primitives required -
need the initial zero state, which is maintained in the component 0-reg.
It is a 1600-bit-register and one of the input of mux01. This 2to1 multiplexer is
used for feedback in the case a multi-block message is present. Its control signal,
SHA3_ROUND is provided by the control unit of the top-level component.
This is equal to 0 in the case of single-block message and for the first iteration of
the algorithm for multi-message block, otherwise is 1.

5.1.2 VSX Module
This is the Version Selection and XORing Module [22].
It is made up of 1344-bit XOR for the initial storing and four concatenation
blocks (SHA3 256, SHA3 512, SHAKE128 and SHAKE 256) which are in charge of
constructing the proper state per primitive.

Figure 5.2: VSX Module
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XOR inputs are:

• SHA3_MESSAGE: the message given in input to the SHA3-core. This is collected
and re-organized properly by the control unit described in section 5.2. The
number of XOR-operation that are actually needed depends on the primitive
required: 1088 for SHA3 256 and SHAKE256, 576 for SHA3 512 and 1344 for
SHAKE128;

• FEEDBACK_STATE_DELAYED: this is equal to the zero-state for the first iteration,
and to the feedback-state delayed of one clock cycle and derived by Keccak-core
in the case of multi-block messages.

Version selection is performed only after the XORing operation. Independently
on the primitive required, 1344 evaluation will be processed, but this allow to
instantiate a lower number of XOR-gate with respect to the case in which the
selection is performed first.
The four different blocks shown in Figure 5.2 have been added just to simplify
the comprehension of VSX module. Despite they are represented as different units,
they all have the same task. There are no hardware resources that can be shared
between them, because actually none of them is performing any operation at all.
These block are simply taking some of the bits at the output of the XOR gate
and concatenating them with some bits from the other input, FEEDBACK STATE
DELAYED. How the state is combined depends on the primitive required, as shown
in table Table 5.2. First, r-bit from XOR-gate output are taken, and then c-bit
from FEEDBACK STATE DELAYED are concatenated.

Primitive rate capacity
SHA3-256 1088 512
SHA3-512 576 1024
SHAKE128 1344 256
SHAKE256 1088 512

Table 5.2: Keccak-input state construction

Then, to pass the right state to the Keccak core, a cascade of multiplexer is used.
VSX_sel is the selector of the three multiplexers and it is equal to SHA3_MODE, as
reported later in Table 5.7.
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5.1.3 Keccak Core
To design a high-performance core, the core of Keccak provided by Keccak team
has been used. [23]. As the algorithm imposes, there are five modules realizing
the five algorithm’s functions, i.e. Theta (θ), Rho (ρ), Pi (π), Chi (χ) and Iota
(ι). The transformation rounds to be performed have been described in detail in
subsection 4.1.2.

Figure 5.3: Keccak Core

The input of this unit is the output of the VSX_Module.
mux02 is the input multiplexer. In the first permutation round, its selector is set to
zero, so that new input state is selected. In the following rounds, it is instead set to
1. This control signal is handled by the control unit of the SHA3-core, and received
by Keccak-core as input signal. The same holds true for N_ROUNDS signals, which
is given by a 5-bit counter outside Keccak core, described in subsection 5.1.4.

Pipelined-Keccak core

To reduce the critical path, a register (regA in Figure 5.3) is added.
Subpipeling has been exploited in many of the recent works about SHA-3 hash.
In [24], pipeline registers are inserted after θ-operation. In this way, the longest
delay in the first half of transformation rounds is made of 5 XORs, while the second
part includes 2 XORs, 1 AND and 1 XOR.
In [22], to apply pipeline technique, two registers have been inserted: one between
π and χ blocks, and the second at the end of the branch. By doing so, both the
critical path of transformation rounds and feedback path are cut in almost half.
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In our design, all the different possibilities have been analysed with Xilinx
Vivado 2022.1, synthesizing the architecture Xilinx Artix XC7A75-3.
Results have been investigated in terms achievable frequency, in order to understand
where is more convenient to insert the sub-pipeline register.

Placement f [MHz]
Before θ 350
After θ 344
After ρ 328
After ρ 322
After χ 302

Table 5.3: Frequency results changing sub-pipeline register placement

The pipeline registers are inserted before θ operation.
As it can be clearly seen from the results in Table 5.3, the higher is the distance
between the input of Keccak core and the sub-pipeline register, the greater the
critical path and consequently the lower the maximum achievable frequency are.
The critical path has been found to be the one connecting the output of the counter
shown in Figure 5.1 and the input of the inserted register, regA. Therefore, the
nearest is the sub-pipeline register to the input, the better it is.
The reason why it has not been place in the middle of the transformation rounds
is that we wanted to split the critical path not only of the Keccak core, but of the
overall SHA3 core.
The results reported in Table 5.3 are related to simulations performed with the
complete SHA3 structure described in Figure 5.1.
Placing the register where it is, having regB in the feedback and regC at the
output, reduce the delay between the output of the feedback register and the input
of Keccak core, avoiding VSX module from being an obstacle.
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Simplified RC generator

RC generator is used to provide the right round constant.
As stated in subsection 4.1.2, ι-round XORs a round constant (from Table 4.4) into
one of 64-bit word of the state.

Algorithm 7 ι-round
▷ ι step
A[0,0]=A[0,0] ⊕ RC

The mapping ι adds round constants in the process, with the aim of disrupting
symmetry. Without this addition, round function may be subject to attacks
exploiting symmetry as slide attacks, because no translation in z-direction will be
made. The bits of RC are different from one round to another and are only added
in a single lane of state A, as shown in Algorithm 7.
After a single round, disruption diffuses to all the other lanes through θ and χ.
There are different plausible implementations.
One possible implementation is having all the 24 pre-calculated round constants
of 64-bits stored in a memory and transfer them to ι-module exploiting N_ROUND
signal as multiplexers’ selector. Another one is constructing a circuit using LFSR,
as in [25], to perform on-the-fly generation of the RC values.
In this work, the size of the round constant generator has been reduced from being
64-bit to one byte size, simplifying the memory structure.
The simplified bits round constant values are tabulated in Table 5.4.

RC[0] 0x01 RC[12] 0x7b
RC[1] 0x32 RC[13] 0x9b
RC[2] 0xba RC[14] 0xb9
RC[3] 0xe0 RC[15] 0xa3
RC[4] 0x3b RC[16] 0xa2
RC[5] 0x41 RC[17] 0x90
RC[6] 0xf1 RC[18] 0x2a
RC[7] 0xa9 RC[19] 0xca
RC[8] 0x1a RC[20] 0xf1
RC[9] 0x18 RC[21] 0x90
RC[10] 0x69 RC[22] 0xf1
RC[11] 0x4a RC[23] 0e8

Table 5.4: Simplified round constants

41



Hardware Implementation

This is obtained by storing only the non-zero bits in each of the round constant
value. Based on the SHA-3 specification, there are only maximum number of 8
non-zero bits. This also simplifies the computation in ι, where number of logical
XOR needed is reduced from 64 to 8. The bitwise XOR operation will be performed
on bit 0,1,3,7,15,31 and 63 of s(0,0) respectively. [26].
With this simplification, the round constant generator requires less memory storage
and less operations. The comparison between the two design has been made,
synthesizing them with Xilinx Vivado 2022.1-Xilinx Artix XC7A75-3.

Model LUTs Bounded IOB Cells
RC memory 4 69 76
Simplified RC memory 4 13 26

Table 5.5: RC[i] memory area occupation

As shown in Table 5.5, with the simplified version a lower number of IOB
(Input/Output Buffer) and cells is used.

5.1.4 Counter and comparators
Counter is an 5-bit counter instantiated in SHA3-core. It is a synchronous counter,
which counts sequentially on every clock pulse.
This counter has three different purposes:

• distinguish the different rounds of Keccak permutations. It must count from 0
to 24 to determine the flow of the different permutation stages. In the case of
multi-block messages, each time a cycle ends, the counter must reset to zero
and start again.

• address to the RC constant generator.

• manage the output divider unit, so that no other signal must be added to
the architecture.

The two comparators have been implemented making N-xors between the
two inputs that must be compared. COMPARATOR_EQ_OUT goes to 1 if all bits of
DIFF_BITS are 0: therefore, if all input bits are equal.
The first comparator is used in order to compare counter-output with 24, to
determine when one cycle of Keccak-algorithm is terminated.
The second comparator is used instead together with the output of the output
management unit, described in subsection 5.1.6.
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5.1.5 Truncation Module
The truncation module is used to re-organized properly the hash value at the
output of Keccak core. This unit receives as input a 3 dimensional matrix of size
5× 5× 64. Independently on the required output length, in order to obtain the
proper result, this matrix is first reorganized, and then send to the output as a
unique stream of bit. Since the maximum output length required is 1024 bit for
SHAKE256 primitive (Table 5.1), only 1024 out of 1600 are sent to regC.
In this way, 576 registers are saved, since there is no need of saving that values.
Moreover, in order to save power, this last register is enabled only at the end of all
the permutations required by the specific primitive called.
To do that, its enable signal is given by AND-ing permutation_computed (which is
high each time a permutation cycle is concluded) and SHA3_last_block. The latest
signal is received as input by SHA3-core from the stream control unit described
in section 5.2, and is high only when the last stream bit has been transformed by
Keccak core.

5.1.6 Output management and output divider unit
The output management and output divider units are the last block used by
SHA3 core and are used to unpack the result into stream of 64-bit.
In fact, as happens for the input values, output parallelism would be unbearable
for the synthesis on a FPGA without the proper unpacking.
For each of the primitive required we need some extra clock cycles to prepare the
output. Dividing the different output parallelism reported in Table 5.1 by the
output bus width (64-bit), we obtain the results shown in Table 5.6.
Since the counter starts from zero, the value that are saved in the four registers in
the output management unit are the ones shown in Table 5.6, minus one.

Primitive Function Extra Clock Cycles
SHA3-256 H(pk) - H(c) - H(m) 4
SHA3-512 G(d) - G(m||H(pk)) - G(m’||h) 8
SHAKE-128 XOF(ρ, i,j) - XOF(ρ,j,i) 12
SHAKE-256 PRF 16
SHAKE-256 KDF 4

Table 5.6: Extra Clock Cycles for output buffer

In order to properly manage this unit, optimizing area resources, we have
exploited components already present in the architecture.
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Thus, we are able to save some area, improving the efficiency of SHA3 core.
As introduced in subsection 5.1.4, the 5-bit counter used to keep track of Keccak
permutations is also used to scan the clock cycles needed for buffering the result.
To determine when the entire hash value has been transmitted, a comparator
is used. As shown in Table 5.6, we have four different possibilities. Thus, four
registers are used to save these values, while a set of multiplexers is implemented
to properly choose between them.
Multiplexers’ selectors are found starting from OP and MODE signals (Table 5.7),
exploiting Karnaugh maps. The three selectors of ?? are obtained as:

a = (not OP(1) and not M(1) and M(0)) or (not OP(0) and not M(1) and M(0))

b = not OP(1)) and (not OP(0)) and MOD(0) and MOD(1)

x = not MOD(1)) or OP(1) or OP(0)

When stream_out_end is high, all the 64-bit stream of the result have been send
correctly to the output. Therefore, SHA3-core has terminated its work.

Figure 5.4: Output Management Unit
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5.1.7 SHA3-core Control Unit
SHA3 core is controlled by its own control unit, realized using a Finite State
Machine (FSM).

Figure 5.5: SHA3 FSM

45



Hardware Implementation

The FSM includes 7 states, namely:
IDLE, PRE_PROC, PREPARE, KECCAK, KECCAK_READY,
POST_PROCESS, PROCESSING and DONE.
IDLE is the starting point of the machine. Nothing happens in this state, it is just
the condition in which the FSM is stalled until the start signal rises.
PRE_PROC and PREPARE states are used for version selection and initial XOR-
ing. Two states are necessary to properly synchronize the core with data coming
from components of the control unit (defined in section 5.2).
Moreover, when multi-block message are required, a register has been added in the
feedback path in order to decrease the critical path. An additional state before
starting Keccak permutation is therefore needed to be sure the input state is the
one coming from the feedback.
KECCAK state perform the main computations. It last 23 clock cycles, increment-
ing each time counter output.
KECCAK_READY performs the last permutation required by Keccak algorithm
is performed. Here, the first hash value is finally ready.
POST_PROCESS state is an intermediate state, needed in the case a multi-block
message is required. If so, the start signals will be high, and the FSM will start
again a new permutation cycle. If not, or if we have processed all the stream of
the multi-block message, the machine will going in PROCESSING state.
This state has been inserted to handle unpacking procedure.
Finally, once all the final hash result stream are sent to the output, DONE state is
reached, and the machine stops working. SHA3_DONE signals goes high.

In Figure 5.6 timing diagram of the architecture is shown. In the example shown,
SHA3-256 primitive is executed, with an input on 9472 bits. This implies 9 streams
to be analyzed, and therefore 9 permutations to be executed. The acquisition unit
takes less than 20 clock cycles to acquire one stream, while SHA3-core takes 27
clock cycles to process the message in input. However, SHA3-core aim is only to
perform Keccak algorithm. The CU described in section 5.2 will provide at the
input of the core the proper stream of bit each time one permutation cycle is over
(in the case of multi-block message).
For this example, being the hash output value on 256-bit, four cycles are needed in
order to unpack it.
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5.2 Control Unit
The control unit is developed to synchronize the flow of data in the architecture
and data communication between input and output.
In addition to the SHA3 core described in section 5.1, there are:

• Acquisition Unit: the first unit, whose aim is to properly handle the data
in input.

• Stream Control Unit: used to store data until the core is ready to process
a new message again. Therefore, it synchronizes the different streams of bit
when there is a multi-message input to SHA3-core.

• Padding Unit implements the padding operations.

Each main block of the structure adopts the classical Finite State Machine with
Data path (FSMD) model, with:

• a controller, which is in charge of organize the operations in each clock cycle.

• a data-path, which includes functional blocks and registers.

In Table 5.7 are reported the control signals used to select the primitive desired.
SHA3_MODE is used to distinguish between the different primitives, while SHA3_OP
characterize the distinct functions.

Primitive Function SHA3_MODE SHA3_OP
SHA3_256 H(pk) 00 00
SHA3_256 H(c) 00 01
SHA3_256 H(m) 00 10
SHA3_512 G(d) 01 00
SHA3_512 G(m||H(pk)) 01 01
SHA3_512 G(m’||h) 01 10
SHAKE_128 XOF(ρ, i,j) 10 00
SHAKE_128 XOF(ρ,j,i) 10 00
SHAKE_256 PRF(σ, N) 11 00
SHAKE_256 PRF(r, N) 11 00
SHAKE_256 KDF(K||H(c)) 11 01
SHAKE_256 KDF(z||H(c)) 11 01

Table 5.7: SHA3 Control Signals
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They are mainly used to address the different ROMs present in the architecture.
Their aim is to handle data acquisition and maintenance all over the structure,
determining when:

• the acquisition of single stream is over (Rate memory);

• the acquisition of the input data is over (Input buffer memory);

• all the stream has been collected by the stream control unit;

One of the memories is instead used to handle the asynchrony present between the
control and execution parts. This is the case of multiplexer selector memory
in the stream control unit.
In fact, SHA3 core takes more clock cycles to perform Keccak permutation than
the ones needed by the control unit to collect the different data streams. Therefore,
for multi-block message, a ROM is exploited to send the output of the correct
register to the padding unit only when SHA3 core is ready to operate again.
All the main architecture of SHA-3 are working one concurrently to the other.
There is only an initial latency due to the reading of the first message in r-bit blocks.
Then, for multi-message blocks, data is read in while the current data is being pro-
cessed by the hash function, so that input latency only affects the first message block

In the following sections, we describe the functioning of the architecture more in
details.
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5.2.1 Acquisition Unit
The acquisition unit is the first unit to elaborate the data in input.
Nowadays, 64 bits is the common word size of computer architecture, buses, memory,
and CPUs and, by extension, the software that runs on them. Taking this into
account, the acquisition unit has been designed to receive a 64-bit input.
However, as shown in Table 5.1, input parallelisms are many times higher (even
two order of magnitude more). The aim of this unit is to properly manage the
different streams of bit in input and correctly save them in a buffer.
Remembering Table 4.1, the maximum rate we need to handle for each Keccak
iteration is the one related to SHAKE128 primitive.
Consequently, the output buffer parallelism is set to be 1344 bit.

Figure 5.7: Acquisition Block

The acquisition unit has been design in order to work in parallel with the
other units. In fact, there is no need to wait for the whole input to be collected,
since accordingly to SHA3 permutation algorithm, we can process only r-bit at a
time. When the buffer has collected r-bit (where r depends on the primitive that
has been selected), AB_READY signal is set to 1, and the r-bit stream is send to the
following unit in order to be saved or processed.
When all the streams have been collected, also AB_DONE goes to 1.
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As well as all other major components, the acquisition unit exploits the FSMD
model. Its FSM is reported in Figure 5.8.
The main components that handle all the signals involved are the two counters:

• Counter A is never reset, and it handles the input in its entirety. Its enable
signal is turned off cyclically whenever counter B resets, giving time for the
machine to refresh the output buffer.

• Counter B resets whenever the number of acquired streams equals the max-
imum number of streams that can be processed for the specific primitive
requested. Its enable signal is never turned off; it is the reset signal that
manages the component. For the last bit stream, in the case of some primitives
(such as the one shown in Figure 5.9), the number of streams that must be
acquired is less than the maximum number of streams that can be acquired
by definition. Here, is counter A to manage the game, and it stops the
acquisition when the last stream has been collected.

Figure 5.8: Acquisition Block FSM

In Figure 5.9 the timing diagram of the architecture is shown.
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In the example shown, where the SHA3-256 primitive is executed, the length of
the analyzable stream is 1088 bits. In the last loop, however, since the input is on
9472 bits, only 768 bits remain to be acquired and grouped on the output buffer
(thus only 12 streams). In this case, counter B would still continue to count up to
17 (maximum number of streams that can be acquired by the SHA3-256 primitive)
but is interrupted by counter A, which signals the end of the acquisition. At this
point, the signal AB_done goes to one and the component has finished its task.
AB_ready and AB_done control signals are both connected to output pins of the
major component. Both are indispensable for managing the acquisition of in-
put data outside the architecture. In fact, AB_ready lets the user know when a
stream has been acquired, and allow him to momentarily interrupt sending of
data. AB_done clarifies when it is no longer necessary to send any bit-string, as the
number of streams required for the particular operation requested has been reached.

In the following subsections, a brief description of the main architecture’s compo-
nents is reported.

Buffer

A buffer is needed in order to properly acquire the input. We chose an input bus
width, w, 64-bit, as previously stated. This has been selected in order to model a
realistic communication system, showing the bandwidth limitations of any hash
function. Having a large message in input m, depending on which operation and
primitive are required, theoretically we would need at least m/w registers to acquire
properly the input message. However, while we are acquiring the input message,
we can process it in streams of r-bits (Table 4.1).
Therefore, with the proper control signals, in the buffer we can instantiate 21
64-bit registers, being the longest stream on 1344 bit (for SHAKE_128).

Counter

COUNT_A and COUNT_B are two counters: the first is on 8-bit, while the second on
5-bit. These are synchronous counters: they will count sequentially on every clock
pulse, and the resulting outputs count upwards from 0 to 2N − 1.
COUNT_A output is compared with IN_BUFF_MEM output to determine when the
input acquisition is terminated, while COUNT_B output is compared with r_MEM
output to understand whenever a r-bit stream is ready to be processed.
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Comparator

This component has been implemented making N-xors between the two inputs that
must be compared. COMPARATOR_EQ_OUT goes to 1 if all bits of DIFF_BITS are 0:
therefore, if all input bits are equal.

Rate Memory (R-Memory)

r_mem is a memory block which determines the number of clock cycles needed to
collect r-bit. r is the rate of the SHA3-primitive, as shown in Table 4.1.
This memory is only required for the operation which need multiple permutation
cycles. In all the other cases, AB_mem is enough, since it will stop the acquisition
process once all the streams have been collected.

Primitive Function SHA3_MODE SHA3_OP Value
SHA3_256 H(pk) 00 00 17
SHA3_256 H(c) 00 01 17
SHA3_512 G(m’||h) 01 10 9

Table 5.8: Rate Memory

Input Buffer Memory

IN_BUF_mem is a memory block which determines the number of clock cycles needed
to collect input data, accordingly to the SHA3-primitive and the corresponding
operation required.

Primitive Function SHA3_MODE SHA3_OP Value
SHA3_256 H(pk) 00 00 148
SHA3_256 H(c) 00 01 137
SHA3_256 H(m) 00 10 4
SHA3_512 G(d) 01 00 4
SHA3_512 G(m||H(pk)) 01 01 8
SHA3_512 G(m’||h) 01 10 145
SHAKE_128 XOF 10 00 5
SHAKE_256 PRF 11 00 5
SHAKE_256 KDF 11 01 8

Table 5.9: Acquisition Buffer Memory
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The different values to be stored in the memory are found as:

value = m/64

where m is the input message length.
Considering a specific primitive, in the case the input parallelism is an integer
multiple of the corresponding r, one clock cycle more must be considered.
In this case, accordingly to the algorithm definition, the last stream of bit to be
processed will not contain any bit from the input, but it will be relative to the
padding strings only. This happens for SHA3-256, when H(c) function is called,
and for SHA3-512 in the case of G(m’||h).
For all other cases, except for SHA3-256 H(pk), the number of streams to be
collected is less than the maximum number of streams that can be collected.
In these occurrences, counter B has no relevance, and the acquisition is entirely
managed by counter A. For these functions, as there is only one permutation cycle
to be handled, the unit of stream control is not necessary.
To distinguish these cases, a control signal, defined as one_stream_OP, is used.
This is evaluated in the top-entity and determine when there is a one block message
which can be passed directly to the padding unit.

Figure 5.10: one_stream_OP Karnaugh map

A Karnaugh map is used. The dark cells are the one representing one-stream
functions, while the striped boxes are not relevant. Different Boolean expressions
can be used. The most convenient one, in terms of resource occupation, is obtained
by covering all the cells (dark and striped-ones), getting a simplified expression for
one_stream_OP control signal equal to:

one stream op = C + AB + AD + AD

having: A=OP(1), B=OP(0), C=MODE(1) and D=MODE(0).
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5.2.2 Stream Control Unit
The stream control unit is used in order to store the data until the SHA3 core
is ready to process a new data again. Therefore, it is exploited only in the case of
a multi-block messages.
As described in subsection 5.2.1, when the number of streams to be collected is
less than the maximum number of stream that can be collected by definition, one
permutation cycle is enough. Thus, there is no need of storing anything, because
data can be send directly to the padding unit in order to be processed.
Under these circumstances, the output data from the acquisition unit does not
pass through any registers, but through one or more multiplexers (depending on
the primitive that has been requested) and then goes directly to the padding unit.
The selectors of the different multiplexers involved in the process are obtained from
sel_mum_MEM, described later in detail.

Figure 5.11: Stream Control block

The state machine that manages the component is activated at the command
of START, which is common to each of the architectures. The unit remains in the
WAITING state until the acquisition block has completed its first absorption.
When the AB_ready signal is active, then the first data stream can be saved within
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the unit, and consequently the enable signal of the various registers present is also ac-
tivated. When a function requires only one permutation cycle, (one_stream_OP=1),
then the unit will simply process the data through the various multiplexers present,
and conclude its work by moving into the DONE state.
On the other hand, when a function requires more than one permutation cycle, the
machine returns to the wait state and continues to absorb and save incoming data
streams from the acquisition unit. When the streams are finished, the acquisition
unit stops working, having completed its task, while the stream control unit must
remain active.
At this point of the simulation last_block is active, and we move into the second
procession state. Here, each time the SHA3-core finishes a processing, the machine
checks whether there are still streams to be sent, or whether all memorized streams
have already been examined. In the first case, it returns to the processing state,
sending the next stream to the following units. The selection of the correct stream
to be sent is done by using the memory mentioned above, the output of the counter
countC and the LSB of the signal MODE. If there are no more streams to be exam-
ined, the delayed version of last block signal (last_block_del) is active, and the
stream control unit can finally switch off.

Figure 5.12: Stream Control FSM
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In Figure 5.13 the timing diagram of the architecture is shown. In the example
reported, where the SHA3-256 primitive is executed, the input length is 9472.
This implies 9 streams to be analyzed: 8 of 1088 bits and the last one of 768 bits.
The acquisition unit takes less than 20 clock cycles to acquire one stream, while
SHA3-core takes 27 clock cycles to process the message in input.
When a function requires more than one permutation cycle, like in this case, the
unit continues to absorb and save incoming data streams from the acquisition unit.
When the streams are finished, all the stream of data that are needed are already
saved in some of the registers present. Therefore, there is no more need to shift
data from one register to the following one. The enable signal which manage all
the registers remains low for the rest of the simulation. What changes is the value
of the counter, count_C. Based on this value, each time the SHA3 core is again
available to perform a new operation, multiplexers’ selectors change, allowing the
right stream to reach the padding unit.

Multiplexer Selector Memory (sel_mux_MEM)

sel_mux_MEM is a read only memory block which determines which is the next
stream to be processed. The address is given by the concatenation of the LSB of
MODE control signal and the output of count_C.
As shown in Figure 5.11, the memory output is connected to the different multi-
plexers, and guide the right stream towards the output.

ADD Mux Sel #reg ADD Mux Sel #reg ADD Mux Sel #reg
0 0000 #0 10 0010 #2 49 1101 #10
1 0000 #0 11 0001 #1 50 1001 #9
2 0001 #1 32 0000 #0 51 0111 #8
3 0001 #1 35 0001 #2 52 0110 #7
4 0010 #2 37 0010 #3 53 0101 #6
5 0010 #2 39 0011 #4 54 0100 #5
6 0010 #2 41 0100 #5 55 0011 #4
7 0010 #2 42 0101 #6 56 0010 #3
8 0011 #3 44 0110 #7 57 1000 #1
9 0011 #3 46 0111 #8 58 0110 #6

Table 5.10: Multiplexer Selector Memory
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In Table 5.10 is shown the truth table which decide the content of each address
of the ROM. ADD is the address, expressed in decimal format, and mux_sel is the
output, which is then connected to the different multiplexers. #reg represents the
register whose output is selected.
When the LSB of MODE control signal is 0, we are executing either SHA3-256 or
SHAKE128 primitives. SHAKE128 in CRYSTALS-Kyber applications does not
require more than one permutation cycle, so in this case the data will not pass
through any register. In contrast, two out of three functions of the SHA3-256
primitives handle multi-block messages, and it is therefore necessary to store some
of the streams in the registers of the stream control unit. The registers used for
these functions must have a parallelism of 1088. Fortunately, only three registers
are needed. The outputs of the latter are collected in a 4to1 multiplexer, together
with the non-delayed input, and the right data is selected thanks to the multiplexer
selector memory output.
When the LSB of MODE control signal is 1, we are executing either SHA3-512 or
SHAKE256 primitive. For the same reason of SHAKE128 functions, also SHAKE256
will not pass through any register. On the contrary, for one of the functions of
SHA3-512, ten registers are needed. The registers used for this function must have
a parallelism of 576 (which is the value of r, as reported in Table 4.1).

Stream Memory (rcycle_MEM)

rcycle_MEM is a memory block which determines the number of stream that need
to be processed. Just as with r_mem (Table 5.8), this is also a small memory block,
since there are only three functions among those described that require more than
one permutation cycle.

Primitive Function SHA3_MODE SHA3_OP Value
SHA3_256 H(pk) 00 00 9
SHA3_256 H(c) 00 01 9
SHA3_512 G(m’||h) 01 10 17

Table 5.11: Stream Memory

Once the output of countC is equal to the output of rcycle_MEM, all the streams
have been properly saved. The output of the comparator is last_block signals,
previously mentioned.
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5.2.3 Padding Unit
The padding unit is the last unit needed to properly prepare the input message
for SHA3-core. First of all, independently on the fact of having single-block or
multi-block messages in input, the bits are re-mapped.
Then, we need to distinguish the two different cases.

• single-block message: padding is added to the first and only stream that
must be analyzed.

• multi-block message: all the streams before the last one are simply padded
with zeros to reach Keccak state parallelism (1600-bit) and are passed to
SHA3-core as they are. Then, padded is added to the last stream.

Figure 5.14: Padding Unit block

The architecture is composed by different sub-blocks. Each of these block is in
charge of computing the specific padding required by the function called.
Then, exploiting a series of multiplexers, the proper padded output is selected and
taken to SHA3 core.
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In Figure 5.15 is reported an example of how padding operation is performed.

Figure 5.15: Padding first example

Here, SHA3-256 primitive is executed, with an input length of 9472 bit.
This implies 9 streams to be analyzed: 8 of 1088 bits and the last one of 768 bits.
For the first 8 rounds, no padding is performed. The padding unit’s input is simply
re-mapped and pass to SHA3 core.
For the last round instead, padding is performed, as shown in Figure 5.15.
The red boxes represent the 768 bits remained. Each box represent a byte. There-
fore, since each lane is on 64-bit, one lane contains 16 boxes. The last stream of
the input message will occupy 768÷ 64 lanes, so from lane [0,0] to [2,1].
Then, accordingly to SHA3 specifications, 0×06 hexadecimal string must be in-
serted, being the function under examination an hash function. For XOFs, 0×1F
should be put, as explained in Table 4.2.
The light blue boxes represent the total number of zero bytes that must be inserted.
This is denoted by q and is determined as follow:

q = r

8 −
3

m mod
r

8

4
with m derived from len(M) = 8m, M the input length and r the bit rate.
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In this example, we obtain:

q = 1088
8 −

39472
8 mod

1088
8

4
= 40→ 38 zeros bytes

Once q− 2 zeros bytes has been added, padding procedure is terminated adding
0×08 hexadecimal string. In a more compact form, output will be:

M || 0× 06 || 0× 00... || 0× 80

where the notation 0× 00... indicates the string that consists of q − 2 "zero" bytes.
Another interesting example is the one reported in Figure 5.16.

Figure 5.16: Padding second example

Here, SHA3-256 primitive is executed, with an input length of 8704 bit.
This is one of the case in which the input parallelism is an integer multiple of r.
There should be 8 streams to be analyzed, but we must consider 9.
In fact, accordingly to the algorithm definition, the last stream of bit to be processed
will not contain any bit from the input, but it will be relative to the padding strings
only.
Therefore, for the first 8 rounds, no padding is performed.
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Then, 0×06 hexadecimal string must be inserted, followed by a number of zeros
bytes equal to:

q = 1088
8 −

38704
8 mod

1088
8

4
= 136→ 134 zeros bytes

0×08 hexadecimal string is then put. In this case, exploiting again a more
compact form, output will be:

0× 06 || 0× 00... || 0× 80

M is not present.

Accordingly to the rules explained in subsection 4.1.1, in Table 5.12 are reported
the compact form of all the different padding procedures.

Primitive Function Padded expression q − 2 values
SHA3-256 H(pk) M || 0× 06 || 0× 00... || 0× 80 38
SHA3-256 H(c) 0× 06 || 0× 00... || 0× 80 134
SHA3-256 H(m) M || 0× 06 || 0× 00... || 0× 80 102
SHA3-512 G(d) M || 0× 06 || 0× 00... || 0× 80 38
SHA3-512 G(m||H(pk)) M || 0× 06 || 0× 00... || 0× 80 8
SHA3-512 G(m’||h) 0× 06 || 0× 00... || 0× 80 70
SHAKE-128 XOF(ρ, i,j) M || 0× 1F || 0× 00... || 0× 80 132
SHAKE-128 XOF(ρ,j,i) M || 0× 1F || 0× 00... || 0× 80 132
SHAKE-256 PRF(σ, N) M || 0× 1F || 0× 00... || 0× 80 101
SHAKE-256 PRF(r, N) M || 0× 1F || 0× 00... || 0× 80 101
SHAKE-256 KDF(K||H(c)) M || 0× 1F || 0× 00... || 0× 80 70
SHAKE-256 KDF(z||H(c)) M || 0× 1F || 0× 00... || 0× 80 70

Table 5.12: Padding expressions
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Chapter 6

Results and analysis

In this chapter, we provide implementation results and compare them to the counter-
parts. In the last decade, several research studies about hardware implementation
of SHA3 hash functions have been presented in literature.
Nevertheless, we will focus on results reported in papers dealing with hardware
implementations of the SHA3 core for PQC applications. The purpose of this archi-
tecture would in fact be to be integrated into a larger unit for the implementation
of the PQC CRYSTALS-Kyber algorithm.
In most of the existing implementations of CRYSTALS-Kyber article, results focus
on the entire hardware architecture design. In the event that the results were
for the entire CRYSTALS-Kyber hardware unit, no speculation was made about
area occupancy percentage or latency of the Keccak core, and only the results
in terms of frequency were reported. Moreover, the frequency results with which
we compare the performance of our component are actually results related to
CRYSTALS-Kyber architectures. This does not imply that the frequency limit of
those architectures is relative to cryptographic primitives’ components. Nonetheless,
as there are no references dealing with this specific component in the PQC domain,
comparisons are made considering the broader view for which our component would
then be integrated into a complete architecture. Therefore, comparisons provided
in this chapter are still approximations. Moreover, the units that are compared do
not necessarily include the same components, and in most cases, the documents
provided for comparisons exclude the control unit explained in section 5.2 from
their results. Furthermore, in the cryptographic community, there are discussion
about the inclusion or not of the padding module in the hardware design of Keccak
core, or if it must be implemented externally and not considered when analysing
SHA-3 performance. In our design, the padding module is not included in the
SHA3 core, but in the external part of control. Most of the documents do not
specify it. Therefore, our results are here reported and compared with the others
only to provide a general overview.
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6.1 Simulation Results
Our proposed architecture has been simulated and verified for accuracy and func-
tionality with valid input samples provided in [27] using the ModelSim.
Testing procedure relies both on VHDL and Python code.
Synopsys has been exploited to perform a first approximate synthesis on 65-nm
technology.
Then, it is synthesized with Xilinx Vivado 2022.1 and implemented on Xilinx
Artix XC7A75-3.
Results are investigated in terms of area, achievable frequency, throughput and
efficiency. The throughput is defined as:

throughput = #block size× frequency

#clock cycles

6.1.1 Modelsim Simulation
The number of clock cycles needed to complete the different CRYSTALS-Kyber-768
cryptographic functions is obtained performing Modelsim simulations.
Results are shown in Table 6.1.

Primitive Function Input Parallelism [bits] Clock Cycles
SHA3-256 H(pk) 9472 268
SHA3-256 H(c) 8704 268
SHA3-256 H(m) 256 39
SHA3-512 G(d) 256 39
SHA3-512 G(m||H(pk)) 512 43
SHA3-512 G(m’||h) 9216 476
SHAKE-128 XOF 272 40
SHAKE-256 PRF 264 40
SHAKE-256 KDF 512 43

Table 6.1: Simulation results

From the total amount of clock cycles needed, the extra clock cycles required
in order to properly buffering the hash result over a 64-bit bus have not been
considered (results reported Table 5.6).
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The functions which requires less clock cycles is the one whose input and output
are the shortest. This for surely predictable.
On the contrary, the function which requires the higher number of clock cycles
is not the one whose input is the longest. As it can be seen from Table 6.1, the
highest latency is achieved by SHA3-512 G(m’||h) function, and not by SHA3-256
H(pk) (whose input is 256-bit longer).
This is related to the rate of absorption of the two primitives. In the case of
SHA3-256 function, by definition, we can acquire and process 1088 bit at time.
This leads to 9 Keccak permutation cycles. Instead, SHA3-512 has a rate of 576
bit. This implies an higher amount of permutation cycles (17) and consequently a
significant number of clock cycles more.

6.1.2 Synopsys 65nm Synthesis
The synthesis is carried out creating a clock signal with period greater than the
longest critical path of the entire structure. With the proposed architecture,
imposing to the clock signal a period of 3.2 ns, we obtain the following the result:

• frequency: 312.5 MHz.

• power: 29 mW, which accounts for dynamic power only.

• area: 340048 µm2.

A first area analysis is reported in Table 6.2.

Area Group Area(µm2)
Combinational 146466
Buf/Inv 17287
Non-combinational 193582

Table 6.2: Synopsys area analysis

A more detailed area analysis for the ASIC synthesis is reported in Table 6.3.
A fair comparison between resources utilization of ASIC and FPGA (reported in
Table 6.6) is not possible.
In fact, the two analysis are performed in a different enviroment and considering two
different measures. Just to obtain some similarity between one synthesis and the
other, the percentage of Keccak core occupation has been evaluated and reported
inside the parenthesis.
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Name Global cell area
[µm2]

Local cell area
Combinational

[µm2]

Local cell area
Non-combinational

[µm2]
SHA3 CORE 110608 (32.5%) 100.08 83.16
⋄ regB 17904.96 624.96 17280
⋄ Keccak core 41036.04 3.6 0
⋄ mux02 7911.4 7911.35 0
⋄ regC 11511.36 452.16 11059.2
⋄ mux01 5568.5 5568.48 0
⋄ output divider 3134.5 4.3 0
⋄ counter 75.96 21.96 54
ACQUISITION BLOCK 24904 72.72 64.08
PADDING 45353.88 5.76 0
STREAM CONTROL 132229 65.16 55.44
SHA3 340048 146466 193582

Table 6.3: Resources utilization after synthesis

A more detailed power analysis is reported in Table 6.4.

Power Group Switch power
(mW)

Int power
(mW)

Leak power
(pW)

Total power
(mW)

register 26.7341 0.0855 283 26.8481 (92.35%)
combinational 0.8566 1.3357 330 2.2254 (7.65%)

Table 6.4: Synopsys power analysis

The results shown in tables Table 6.2 and Table 6.4 demonstrate that the most
expensive hardware component of the architecture is the sequential part.
Registers occupy a good percentage of the total area (more than half), while in
terms of power they make up more than 90% of the total consumption.
This was quite deducible when observing the architecture.
In fact, the parallelisms involved within it are quite high: there are the 21 64-bit
registers of the acquisition block, the 3 1088-bit registers and the 10 256-bit registers
of the stream control block and all registers containing the Keccak state in the core.
This synthesis and analysis results do not take into account the interconnections
and the routing of the system.
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6.1.3 Vivado Synthesis and Implementation
The architecture is synthesized with Xilinx Vivado 2022.1 and implemented on
Xilinx Artix XC7A75-TCS-G324-3.
Artix-7 family has been chosen following NIST’s recommendations.
Table 6.5 reports obtained frequency results. The result obtained post-synthesis but
pre-implementation is in line with the one found with Synopsys in subsection 6.1.2.
In fact, both do not take into account complexity and connections involved in the
actual implementation of the architecture. When the design is actually implemented,
frequency diminishes of the 30%.

Frequency (MHz)
Post-synthesis & Pre-Implementation 357
Post-synthesis & Post-implementation 250

Table 6.5: Vivado frequency analysis

Table 6.6 reports the detailed area utilization of the main component of our
architecture. Most of the resources, in particular about the 55%, is occupied by
the core, and more than half of it is occupied by sequential components, as already
proved and discussed subsection 6.1.2.

Name Slice LUTs Slice
Registers Slice LUT

as Logic
SHA3 CORE 6841 4279 1873(54.8%) 6841
⋄ regB 1090 1600 901 1090
⋄ Keccak core 5451 1600 1596 5451
⋄ mux02 449 0 361 449
⋄ regC 0 1024 254 0
⋄ mux01 251 0 226 251
⋄ output divider 256 0 64 256
⋄ counter 21 9 13 21
ACQUISITION BLOCK 280 2198 826 280
PADDING 6 1089 654 6
STREAM CONTROL 39 24 21 39
SHA3 9651 8697 3413 9651

Table 6.6: Resources utilization after implementation

For Vivado implementation, the four memory blocks involved (described in
section 5.2.1 and in section 5.2.2) have been implemented exploiting four distributed
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memory generators from the IP catalog. In this way, we are sure memories design
will be compatible with the FPGA chosen.

In Figure 6.1 is reported a summary of the post-implementation utilization
percentage. As it can be observed, about the 70% of I/O pin is exploited. In the
other cases, the resources used are only a small percentage of the total ones.

Figure 6.1: Post-implementation utilization percentage

The power analysis reported in Table 6.7 has been performed from the imple-
mented netlist. The total on-chip power is:

P = 1.467 W

Power Value [W] Percentage [%]
Dynamic 1.371 93
⋄ Clocks 0.124 9
⋄ Signals 0.813 59
⋄ Logic 0.349 25
⋄ I/O 0.085 7
Device State 0.096 7

Table 6.7: Power distribution

Now that the all the interconnections and the I/O have been finally put, as
expected, the actual power of the architecture has increased with respect to the
values found in 6.4.
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6.2 Comparisons
In the following, we highlight the research that best connect with our.

Bisheh-Niasar et al. [28] propose an instruction set of components to perform
polynomial sampling, NTT and point-wise multiplication to speed up lattice-based
PQC. Keccak unit is configured to perform four functions: SHA3-256, SHA3-512,
SHAKE-128, and SHAKE-256. Bisheh-Niasar and his team develop a dedicated
buffer for interfacing with the Keccak core. As in our implementation, this has
been implemented with 64-bit width and its length has been adjusted to the most
extended required data, i.e. 1344-bit.

In [29] a lightweight Keccak core is presented, using 359 LUTs to perform a
round of Keccak-f [1600] in 1665 cycles. This core is not used in CRYSTALS-Kyber
applications, and in fact achieves one of the highest frequency. However, it has still
been reported for the comparison.

Utsav Banerjee et al. [30] presents Sapphire, a lattice cryptography processor with
configurable parameter. It is coupled with a low-power RISC-V micro-processor to
demonstrate NIST Round 2 lattice-based CCA-secure key encapsulation, includ-
ing CRYSTALS-Kyber, achieving up to an order of magnitude improvement in
performance and energy-efficiency compared to state-of-the-art hardware implemen-
tations. Here, a low-power SHA-3 core has been implemented. A Keccak-f[1600]
core inside Sapphire can be accessed standalone through RISC-V software, and is
used to accelerate SHA-3 hashing and extendable output functions according to
the requirements of the protocol.

In [31] a compact hardware implementation of CCA-Secure KEM CRYSTALS-
Kyber is presented. This architecture offers a reasonable area-time efficiency on
low hardware resources. Their design computes key-generation, encapsulation and
decapsulation. However, we are interested in SHA3 core results. Their Keccak core
completes one round of Keccak-f function per cycle, and one full 24-round Keccak-f
function consumes 79 cycles, of which 25 are consumed in calculating hash value,
the others mainly correspond to data input/output.
In our implementation, one full round Keccak-f consumes 27 cycles, 24 for the
algorithm and 3 for the obtain the proper synchronization.
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Guo and Li et al. [32] report an efficient hardware implementation of KYBER.
The proposed design consumes 2253 slices in its integrity, but it is said that HASH
module consumes 62% of the total resources. Therefore, approximately 1400 slices
are used for the core. Our design is worst in terms of area occupation, but more effi-
cient in terms of frequency achieved. There are no information about the amount of
clock cycles required by HASH operation, therefore A×T factor cannot be compared.

In [33] PQC primitives using High-Level synthesis have been implemented and opti-
mized. High-level synthesis produces area-optimized and speed-optimized solutions
for the primitives. This is not the same procedure applied as in our design, but
resource utilization for Keccak-f core are well reported and commented.

In Table 6.8 the different results related to the article just discussed are reported.

Parameter [28] [29] [30] [31]
Device Artix-7 Virtex-6 Artix-7 Artix-7
Method HW HW HW/SW HW
LUTs 4405 359 5784 4014
FFs 1629 107 1605 1980
Slices 1825 91 1716 -
Frequency (MHz) 115 311 25 161
Total time (µs) 0.208 5.35 0.96 -
Area × Time(LUTs×µs) 916 1920 5552 -
Parameter [32] [33] Our Work
Device Artix-7 Artix-7 Artix-7
Method HW SW/HW HW
LUTs 4026 6322 9651 (6841)
FFs 1625 6993 8697 (4279)
Slices 1056 - 3413 (1873)
Frequency (MHz) 159 229 250
Total time (µs) - 0.48 0.156/1.904
Area × Time(LUTs×µs) - 3034 1094/13271

Table 6.8: Comparison of Keccak-core hardware architecture in CRYSTALS-
Kyber implementation

In Table 6.8, in the column related to our implementation results, the values
between parenthesis represent the LUTs, FFs and slices of SHA3-core only (sec-
tion 5.1), while the others are related to the complete architecture. Instead, the
results on the left and right of the slash are respectively the best and worst results
obtained in terms of latency (depending on the primitives which is required).
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In Table 6.9 are reported the total times required by each primitive. The cases in
bold represent the primitives which need the minimum and the maximum amount
of time in order to properly compute the output, without considering the clock
cycles needed for the output buffering (as reported in Table 6.8).

Primitive Function Clock Cycles Total Time [µs]
SHA3-256 H(pk) 268 1.072
SHA3-256 H(c) 268 1.072
SHA3-256 H(m) 39 0.156
SHA3-512 G(d) 39 0.156
SHA3-512 G(m||H(pk)) 43 0.172
SHA3-512 G(m’||h) 476 1.904
SHAKE-128 XOF 40 0.160
SHAKE-256 PRF 40 0.160
SHAKE-256 KDF 43 0.172

Table 6.9: Total times per primitive

Our frequency achieves a 48.9% improvement compared to other average values.
It is lower with respect to [29], but a lower amount of clock cycles are needed in
the execution. Thus, when single-block messages are required, there is a latency
improvement (almost 19% less compared to the best time get in [28]).
On the contrary, when multi-block message are required, depending on the number
of streams to be managed, latency results are more similar to the ones of the other
designs. The highest delay achieved by our architecture is get in one of the case in
which SHA3-512 G-function is required (1.904 µs).
However, in the counterpart implementations it not specified the maximum input
length to be absorbed, and therefore the comparison it is not truly fair. The
same holds true for resource utilization results. Apart from [28], which has the
lowest area occupation factor but the worst performance, our best result is in
line with the trend. Considering a single-block message, A×T is even better with
respect to [29], [30] and [33]. Being all the other results mainly related to the
Keccak core only, with the exclusion of the control part, results inside of round
brackets have been considered (related to SHA3-core only, not to the whole SHA3
architecture).
In general, our implementation is characterized by an area×time average worsened
with respect to other, but the overhead is due the amount of clock cycles required
in the worst case condition mentioned above. Again, a fair comparison with the
other area×time factors is not completely possible.
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6.3 Potential Improvements
The architecture can be optimized in order to reduce the number of clock cycles
required to compute the different hash functions and to reduce resources occupation.
As noted in the previous sections, most of the area is occupied by sequential
components. The most straightforward way to decrease area occupation would
therefore be to eliminate, where possible, some of the inserted registers. However,
this would lead to an increase in the critical paths and a consequent decrease in
the maximum frequency.
Thus, it is necessary to find the right compromise to improve the architecture
from the area point of view, without, however, putting too much strain on its
performance.
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Conclusion

This thesis work presents an efficient hardware architecture for CRYSTALS-Kyber
cryptographic primitives. Designing a dedicated architecture that can realize all the
SHA-3 primitives used in the algorithm can significantly reduce hardware resource
occupation, obtaining a component with higher performances.
Our architecture has been implemented for Kyber-768 cryptographic primi-
tives. Future work can extend it to the other levels of security, modifying properly
memories discussed in section 5.2 and changing consequently some components of
the control unit.

These are exciting years for PQC.
There will be for sure an increase attention in post-quantum cryptography re-
searches, motivated by NIST’s standardization process.
In the future we would like to implement the entire CRYSTALS-Kyber architecture,
integrating the SHA3 component discussed in this study. A lot of work is needed in
order to achieve secure and invulnerable protocols and to be part of the evolution,
integration and migration of cryptography systems towards quantum-safe security
protocols.
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Kyber C-code analysis

The different elements represented in the following tables are:

• % time: the percentage of the total running time of the program used by this
function;

• cumulative seconds: a running sum of the number of seconds accounted for
by this function and those listed above it;

• self seconds: the number of seconds accounted for by this function alone.
This is the major sort for this listing;

• calls: the number of times this function was invoked, if this function is profiled,
else blank;

• self ms/call: the average number of milliseconds spent in this function per
call. If this function is profiled, else blank;

• total ms/call: the average number of milliseconds spent in this function and
its descendents per call. If this function is profiled, else blank;

• name: the name of the function. This is the minor sort for this listing. The
index shows the location of the function in the gprof listing. If the index is
in parenthesis it shows where it would appear in the gprof listing if it were
to be printed.

In Figure A.1, Figure A.2 and Figure A.3 are reported three pie graph repre-
senting the most consuming functions of CRYSTALS-Kyber, one for each of the
different security level.
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Figure A.1: Kyber-512 Analysis

Figure A.2: Kyber-768 Analysis

Figure A.3: Kyber-1024 Analysis

Table A.1, Table A.2 and Table A.3 present the same results in a more detailed
way.
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Kyber 512
Function %time cum. sec self sec calls self call tot. call

KeccakF1600
_StatePermute 18.85 0.26 0.26 264350 0.98 0.98

montgomery
_reduce 15.22 0.47 0.21 87168000 0.00 0.00

invntt 11.24 0.63 0.16 21000 7.38 13.38
fqmul 10.15 0.77 0.14 85632000 0.00 0.00

ntt 8.70 0.89 0.12 30000 4.00 7.63
basemul 5.44 0.96 0.08 6912000 0.01 0.03

barrett_reduce 4.35 1.02 0.06 40320000 0.00 0.00
poly_add 4.35 1.08 0.06 57000 1.05 1.05

cbd3 3.62 1.13 0.05 24000 2.08 2.08
rej_uniform 2.90 1.17 0.04 36350 1.10 1.10

cbd2 2.17 1.20 0.03 18000 1.67 2.22
pref_poly_sub 2.17 1.23 0.03 3000 10.00 10.00

keccak_absorb_once 1.45 1.25 0.02 108000 0.19 0.82
poly_basemul
_montgomery 1.45 1.27 0.02 54000 0.37 4.35

poly
_cbd_eta2 1.45 1.29 0.02 18000 1.11 3.33

load64 0.72 1.30 0.01 1020000 0.01 0.01
load32

_littleendian 0.72 1.31 0.01 576000 0.02 0.02

keccak
_squeezeblocks 0.72 1.32 0.01 84350 0.12 1.66

poly_reduce 0.72 1.33 0.01 84000 0.12 0.50
poly_compress 0.72 1.34 0.01 6000 1.67 1.67
poly_tomont 0.72 1.35 0.01 6000 1.67 2.28

polyvec_compress 0.72 1.36 0.01 6000 1.67 1.67
keypair 0.72 1.37 0.01 3000 3.33 104.32

poly_tomsg 0.72 1.38 0.01 3000 3.33 3.33

Table A.1: Profiling Kyber512
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Kyber 768
Function %time cum. sec self sec calls self call tot. call

montgomery
_reduce 24.17 0.50 0.50 142848000 0.00 0.00

KeccakF1600
_StatePermute 19.82 0.91 0.41 429727 0.95 0.95

basemul 8.70 1.09 0.18 13824000 0.01 0.04
ntt 8.22 1.26 0.17 45000 3.78 7.94

fqmul 7.73 1.42 0.16 140544000 0.00 0.00
barrett
_reduce 6.04 1.55 0.13 54144000 0.00 0.00

invntt 4.83 1.65 0.10 27000 3.71 11.12
rej_uniform 4.35 1.74 0.09 81727 1.10 1.10

keccak
_absorb_once 1.93 1.78 0.04 171000 0.23 0.83

polyvec
_compress 1.93 1.82 0.04 6000 6.67 6.67

cbd_eta2 1.69 1.85 0.04 24000 1.46 2.29
load32

_littleendian 1.45 1.88 0.03 1920000 0.02 0.02

poly_add 1.45 1.91 0.03 111000 0.27 0.27
poly_basemul
_montgomery 1.45 1.94 0.03 108000 0.28 4.92

poly_sub 1.45 1.97 0.03 3000 10.00 10.00
store64 0.97 1.99 0.02 5250267 0.00 0.00
cbd2 0.97 2.01 0.02 60000 0.33 0.83

load64 0.48 2.02 0.01 1632000 0.01 0.01
keccak

_squeezeblocks 0.48 2.03 0.01 147727 0.07 1.77

keccak_squeeze 0.48 2.04 0.01 66000 0.15 1.11
poly_frombytes 0.48 2.05 0.01 27000 0.37 0.37
poly_compress 0.48 2.06 0.01 6000 1.67 1.67

verify 0.48 2.07 0.01 3000 3.33 3.33

Table A.2: Profiling Kyber768
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Kyber 1024
Function %time cum. sec self sec calls self call tot. call

KeccakF1600
_StatePermute 20.99 0.73 0.73 673175 0.00 0.00

montgomery
_reduce 19.26 1.40 0.67 210048000 0.00 0.00

fqmul 8.77 1.71 0.31 206976000 0.00 0.00
invntt 7.76 1.98 0.27 33000 0.01 0.02

ntt 7.47 2.24 0.26 60000 0.00 0.01
basemul 6.90 2.48 0.24 23040000 0.00 0.00
barrett
_reduce 4.89 2.65 0.17 67968000 0.00 0.00

rej_uniform 4.31 2.80 0.15 145175 0.00 0.00
poly_basemul
_montgomery 3.45 2.92 0.12 180000 0.00 0.00

poly_add 2.87 3.02 0.10 183000 0.00 0.00
cbd2 2.59 3.11 0.09 78000 0.00 0.00

store64 2.01 3.18 0.07 9228675 0.00 0.00
load64 1.72 3.24 0.06 2244000 0.00 0.00
keccak

_absorb_once 1.72 3.30 0.06 252000 0.00 0.00

keccak
_squeezeblocks 1.15 3.34 0.04 229175 0.00 0.00

load32
_littleendian 0.57 3.36 0.02 2496000 0.00 0.00

keccak_squeeze 0.57 3.38 0.02 84000 0.00 0.00
poly_sub 0.43 3.39 0.02 3000 0.01 0.01

kyber
_shake128_absorb 0.29 3.40 0.01 144000 0.00 0.00

poly_frombytes 0.29 3.41 0.01 36000 0.00 0.00
poly_cbd_eta2 0.29 3.42 0.01 30000 0.00 0.00
poly_tobytes 0.29 3.43 0.01 24000 0.00 0.00
randombytes 0.29 3.44 0.01 12006 0.00 0.00
poly_tomont 0.29 3.45 0.01 12000 0.00 0.00
gen_matrix 0.29 3.46 0.01 9000 0.00 0.08

poly_compress 0.29 3.47 0.01 6000 0.00 0.00
polyvec_compress 0.29 3.48 0.01 6000 0.00 0.00

Table A.3: Profiling Kyber1024
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