
POLiTECNiCO Di TORiNO
Master of Science in

Mechatronic Engineering

— Master Thesis —

Learning Model Predictive
Control for Optimal Path
Planning of Quadrotors in
Multi-Scenario Applications

Student
Lorenzo Calogero

Supervisors
Fabrizio Dabbene

Martina Mammarella

A.Y. 2021-2022

Abstract

The aim of this thesis is to develop a Learning Model Predictive Control (LMPC)
framework for quadrotors; this thesis results to be one of the first comprehensive

studies on LMPC applied to quadrotors in real-case scenarios.
LMPC is a novel control technique that autonomously learns to improve its perfor-
mances, by collecting data coming from past executions of the control task. Given a
certain task, the control algorithm makes the quadrotor to perform it repetitively; infor-
mation coming from these repetitive iterations is progressively collected and employed by
the controller to obtain better performances for the required task. This control method
is especially versatile and useful for time-sensitive operations, in which the drone has to
make fast and dexterous maneuvers in constrained and cluttered environments.
In this scenario, our specific goal is to implement a LMPC algorithm that pilots the
quadrotor within a closed 3D race track, in which multiple types of obstacles can be
inserted. The task of the controller is to autonomously find the trajectory achieving the
minimum lap time, after multiple flights of the drone within the track.
The control algorithm is fully developed in MATLAB and is tested via several software-
in-the-loop simulations, employing a complete dynamic model of the quadrotor.
The conducted simulations show that the LMPC algorithm successfully achieves the
task of finding the optimal path for lap time minimization and also the additional task
of avoiding the obstacles placed within the track: the control algorithm has learned
to fly the quadrotor aggressively, adopting a flight style that exploits multiple driving
tricks to optimize both the travelled distance and the time needed to complete a lap.
The simulations not only demonstrate the correct functionality of the algorithm, but
also empirically verify all the fundamental theorems of LMPC.

c This work is licensed under a Creative Commons “Attribution-NonCommercial-NoDerivatives
4.0 International” license.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Table of contents

Table of contents iii

List of figures vii

List of symbols and abbreviations ix

1. Introduction 1

2. Quadrotor modelling in Frenet coordinates 5

2.1. Introduction to systems modelling . 5

2.2. Notions on quadrotors flight . 7

2.3. Modelling problem setup . 10
2.3.1. Quadrotor pose in the space . 10
2.3.2. Generalized coordinates . 11
2.3.3. Kinematic quantities . 13

2.4. Quadrotor kinematic model . 15

2.5. Quadrotor dynamic model . 16
2.5.1. Lagrange formulation . 16
2.5.2. Aerodynamic effects . 23

2.6. Choosing the coordinate system . 24

2.7. Frenet coordinate system . 25

2.8. Cartesian to Frenet conversion . 26

Page iii

Table of contents

2.8.1. Model conversion . 30
2.8.2. Alternative derivation . 31

2.9. Quadrotor dynamic model in Frenet coordinates 32
2.9.1. Model discretization . 34
2.9.2. Observations . 35

3. Model Predictive Control for quadrotor trajectory tracking 37

3.1. Introduction to MPC and NMPC . 37

3.2. NMPC theoretical formulation . 38
3.2.1. Optimization variables . 39
3.2.2. Cost function . 40
3.2.3. Constraints . 42

3.3. NMPC optimization problem . 43

3.4. NMPC properties . 45
3.4.1. Recursive feasibility . 45
3.4.2. Asymptotic stability . 47

3.5. NMPC algorithm . 51

3.6. NMPC relaxation . 52
3.6.1. Slack variables . 53
3.6.2. Nonlinear to affine time-variant system equations 54

3.7. NMPC for quadrotors . 55
3.7.1. Track definition . 56
3.7.2. Curvature propagation and relaxation 57
3.7.3. Cost function . 59
3.7.4. Constraints . 61
3.7.5. Optimization problem . 63
3.7.6. Algorithm . 64

4. Learning Model Predictive Control for quadrotor autonomous and
optimal path planning 67

4.1. Introduction to LMPC . 67

Page iv

Table of contents

4.2. LMPC theoretical formulation . 68
4.2.1. Sampled safe set . 70
4.2.2. Iteration cost and terminal cost function 71

4.3. LMPC optimization problem . 73

4.4. LMPC properties . 75
4.4.1. Recursive feasibility . 75
4.4.2. Asymptotic stability . 77
4.4.3. Non-increasing iteration cost . 78
4.4.4. Convergence to the solution of the infinite-horizon optimal

control problem . 80

4.5. LMPC algorithm . 80

4.6. Sampled safe set and terminal cost relaxation 84
4.6.1. Convex safe set . 85
4.6.2. Terminal cost barycentric function 86
4.6.3. Relaxed LMPC optimization problem (first version) 87
4.6.4. Convex safe set linear constraints 88
4.6.5. Convex piecewise-linear fitting of the terminal cost function . . . 89
4.6.6. Relaxed LMPC optimization problem (second version) 98

4.7. Repetitive LMPC . 99

4.8. LMPC for quadrotors . 100
4.8.1. Safe set . 100
4.8.2. Cost function . 102
4.8.3. Constraints . 105
4.8.4. Optimization problem . 107
4.8.5. Algorithm . 108

4.9. LMPC with obstacle avoidance . 110
4.9.1. Obstacles definition . 110
4.9.2. Obstacles implementation . 113
4.9.3. Safe set . 115
4.9.4. Cost function . 115
4.9.5. Constraints . 117

Page v

Table of contents

4.9.6. Optimization problem . 118
4.9.7. Algorithm . 119

5. Simulations and results 123

5.1. Introduction . 123
5.1.1. Software implementation . 123
5.1.2. Quadrotor model . 124
5.1.3. Race tracks . 125

5.2. MPC simulations . 126
5.2.1. Algorithm setup . 127
5.2.2. Simulation 1: track 1, constant lateral distance 129
5.2.3. Simulation 2: track 2, constant lateral distance 130
5.2.4. Simulation 3: track 3, constant lateral distance 131
5.2.5. Simulation 4: track 1, oscillating lateral distance 132
5.2.6. Simulation 5: track 2, oscillating lateral distance 133
5.2.7. Simulation 6: track 3, oscillating lateral distance 134

5.3. LMPC simulations . 135
5.3.1. Algorithm setup . 136
5.3.2. Simulation 1: track 1, non-repetitive LMPC 139
5.3.3. Simulation 2: track 1, repetitive LMPC (1) 140
5.3.4. Simulation 3: track 1, repetitive LMPC (2) 141
5.3.5. Simulation 4: track 2, repetitive LMPC 142
5.3.6. Simulation 5: track 3, repetitive LMPC 143

5.4. LMPC with obstacle avoidance simulations 144
5.4.1. Algorithm setup . 144
5.4.2. Simulation 1: track 1, repetitive LMPC with obstacle avoidance,

3 obstacles . 147

5.5. Additional results . 148

6. Conclusions 151

6.1. Future developments . 154

Bibliography 157

Page vi

List of figures

2.1. Quadrotor lift forces and reaction torques generated by the motors . . . 7

2.2. Quadrotor motions . 9

2.3. Quadrotor reference frames and generalized coordinates 10

2.4. Quadrotor thrust force and torques . 18

2.5. Cartesian, body, and Frenet frames . 26

3.1. Tracks with constant piecewise curvature 57

3.2. Track 2 with relaxed curvature . 59

4.1. Cost-to-go and iteration cost . 72

4.2. LMPC algorithm representation . 84

4.3. Sampled safe set and convex safe set . 86

4.4. Convex piecewise-linear fit of a 1D convex function 96

4.5. Convex piecewise-linear fit of a 2D convex function 97

4.6. Voronoi sets of the initial partitions . 98

4.7. Horizontal narrowing obstacle . 111

4.8. Vertical narrowing obstacle . 111

4.9. Square ring obstacle . 112

4.10. Track with obstacles and related obstacle functions 115

5.1. Tracks used in the simulations . 125

Page vii

List of figures

5.2. Simulation 1: track 1, traj. tracking with const. lateral distance 129

5.3. Simulation 2: track 2, traj. tracking with const. lateral distance 130

5.4. Simulation 3: track 3, traj. tracking with const. lateral distance 131

5.5. Simulation 4: track 1, traj. tracking with oscill. lateral distance 132

5.6. Simulation 5: track 2, traj. tracking with oscill. lateral distance 133

5.7. Simulation 6: track 3, traj. tracking with oscill. lateral distance 134

5.8. Simulation 1: track 1, non-repetitive LMPC 139

5.9. Simulation 2: track 1, repetitive LMPC (1) 140

5.10. Simulation 3: track 1, repetitive LMPC (2) 141

5.11. Simulation 4: track 2, repetitive LMPC 142

5.12. Simulation 5: track 3, repetitive LMPC 143

5.13. Simulation 1: track 1, rep. LMPC with obst. avoidance, 3 obstacles . . 147

5.14. LMPC algorithm: trajectories with coloured velocity profile 148

5.15. LMPC algorithm with obstacle avoidance: trajectories with coloured
velocity profile . 148

6.1. Alternative track . 155

Page viii

List of symbols and abbreviations

List of symbols

Symbol Meaning
Chapter 2 (Quadrotor modelling)

𝒙 State variable
𝒖 Input variable
𝐹0 Base frame (fixed)
𝐹1 Body frame (moving)
𝒒 Generalized coordinates

𝒓 Position vector (𝑥, 𝑦, 𝑧)𝑇 of the CM of the quadrotor / position
generalized coordinates

𝑹0
1 Rotation matrix from frame 𝐹0 to 𝐹1

𝑹𝑎(𝛼) Elementary rotation matrix around axis 𝑎 (𝑎 = 𝑥, 𝑦, 𝑧) by an angle
𝛼

𝑹𝑅𝑃𝑌 RPY rotation matrix

𝜶 RPY orientation angles (𝜙, 𝜃, 𝜓)𝑇 of the quadrotor / orientation
generalized coordinates

𝝎 Angular velocity vector of the quadrotor

𝑻𝑅𝑃𝑌 , 𝑻 Transformation matrix from RPY angular rates 𝜶̇ to angular ve-
locity 𝝎

ℒ(𝒒, ̇𝒒) Lagrangian function
𝒦(𝒒, ̇𝒒) Kinetic energy of the system

𝒫(𝒒) Potential energy of the system
𝓕 Vector of generalized forces and torques

Page ix

List of symbols and abbreviations

𝒇𝑖
Lift force generated by the 𝑖-th rotor of the quadrotor (𝑖 =
1, 2, 3, 4)

𝝉𝑖
Reaction torque applied on the quadrotor body by its 𝑖-th rotor
(𝑖 = 1, 2, 3, 4)

𝒇 Cumulative thrust force

𝝉 Cumulative torque (𝜏𝜙, 𝜏𝜃, 𝜏𝜓)𝑇 , decomposed on the directions of
RPY angles

𝑰1
𝑂1

Inertia matrix of the quadrotor, computed wrt its CM (𝑂1) and
expressed in the 𝐹1 base

𝑪(𝜶, 𝜶̇) Coriolis matrix
Chapter 2 (Frenet coordinates)

𝜸 Frenet reference curve
𝑠 Signed curvilinear abscissa of 𝜸
𝑑 Signed lateral distance from 𝜸
𝐹2 Frenet frame (moving)
𝜓1 Planar rotation angle between 𝐹0 and 𝐹1
𝜓2 Planar rotation angle between 𝐹0 and 𝐹2
𝜓𝑒 Planar rotation angle between 𝐹2 and 𝐹1 (i.e. 𝜓𝑒 = 𝜓1 − 𝜓2)
𝒓𝑏

𝑎 Position of 𝑃 wrt 𝐹𝑎, expressed in the base of 𝐹𝑏 (𝑎, 𝑏 = 0, 1, 2)
𝒗𝑏

𝑎 Time derivative of 𝒓𝑏
𝑎

𝒓𝑐
𝑂𝑎,𝑂𝑏

Position of 𝑂𝑎 wrt 𝐹𝑏, expressed in the base of 𝐹𝑐 (𝑎, 𝑏, 𝑐 = 0, 1, 2)
𝒗𝑐

𝑂𝑎,𝑂𝑏
Time derivative of 𝒓𝑐

𝑂𝑎,𝑂𝑏

𝝎𝑏
𝑎

Angular velocity of 𝐹𝑎 wrt fixed frame 𝐹0, expressed in the base
of 𝐹𝑏 (𝑎, 𝑏 = 0, 1, 2)

𝑹𝑎
𝑏 Rotation matrix from 𝐹𝑎 to 𝐹𝑏

𝐾(𝑠) Curvature function of 𝜸
𝑺(𝒗) Skew-symmetric matrix of vector 𝒗

𝒇𝑄
Discrete-time dynamic model of the quadrotor in Frenet coordi-
nates

𝐿𝑡𝑟𝑎𝑐𝑘 Length of the track (from start to finish line)
𝑊𝑡𝑟𝑎𝑐𝑘 Width of the track (from inner to outer border)
𝑑𝑙𝑖𝑚 Width of the track (from centerline to border)

Chapter 3 (NMPC)

𝑿𝑘, 𝑿[0,𝑁]|𝑘
State optimization variables (𝒙0|𝑘, 𝒙1|𝑘, ..., 𝒙𝑁|𝑘) for the NMPC
control problem

𝑼𝑘, 𝑼[0,𝑁−1]|𝑘
Input optimization variables (𝒖0|𝑘, 𝒖1|𝑘, ..., 𝒖𝑁−1|𝑘) for the NMPC
control problem

Page x

List of symbols and abbreviations

𝐽𝑁𝑀𝑃𝐶 NMPC cost function
ℎ Stage cost function

𝐽[0,𝑁−1]
Cost function without terminal cost, evaluated over 𝑘 =
0, 1, ..., 𝑁 − 1

𝑉 Terminal cost function
𝒙𝑟 Reference state
𝒖𝑟 Reference input associated to the reference state
𝒳𝐹 Terminal set

𝑿∗
𝑘

Optimal predicted state trajectory (𝒙∗
0|𝑘, 𝒙∗

1|𝑘, ..., 𝒙∗
𝑁|𝑘) of the

NMPC control problem

𝑼 ∗
𝑘

Optimal predicted input sequence (𝒖∗
0|𝑘, 𝒖∗

1|𝑘, ..., 𝒖∗
𝑁−1|𝑘) for the

NMPC control problem
𝐽 ∗

𝑁𝑀𝑃𝐶 Optimal cost

𝑿 State trajectory (𝒙0, 𝒙1, ..., 𝒙𝑘, ...) generated by the NMPC algo-
rithm

𝑼 State trajectory (𝒖0, 𝒖1, ..., 𝒖𝑘, ...) generated by the NMPC algo-
rithm

𝑱𝒇,𝒙, 𝜕𝒇
𝜕𝒙

Jacobian matrix of 𝒇 with respect to the state variables 𝒙

𝑱𝒇,𝒖, 𝜕𝒇
𝜕𝒖

Jacobian matrix of 𝒇 with respect to the input variables 𝒖

̂𝒇𝑄
Discrete-time dynamic model of the quadrotor in Frenet coordi-
nates for curvature propagation

𝐾̃(𝑠) Relaxed curvature function of the Frenet curve 𝜸
𝐾𝑟𝑒𝑙 Curvature relaxation coefficient

Chapter 4 (LMPC)

𝑿𝑗 State trajectory (𝒙𝑗
0, 𝒙𝑗

1, ..., 𝒙𝑗
𝑘, ...) generated at iteration 𝑗

𝑼 𝑗 Input sequence (𝒖𝑗
0, 𝒖𝑗

1, ..., 𝒖𝑗
𝑘, ...) generated at iteration 𝑗

𝑿 State optimization variables (𝒙0, 𝒙1, ..., 𝒙𝑘, ...) for the infinite-
horizon control problem

𝑼 Input optimization variables (𝒖0, 𝒖1, ..., 𝒖𝑘, ...) for the infinite-
horizon control problem

𝒙𝑆 Initial state of every trajectory (non-repetitive LMPC)
𝒙𝐹 Goal state of the control action
ℎ Stage cost function

𝐽[0,𝑇] Cost function without terminal cost, evaluated over 𝑘 = 0, 1, ..., 𝑇
𝑿∗ Optimal state trajectory of the infinite-horizon control problem
𝑼 ∗ Optimal input sequence of the infinite-horizon control problem
𝑆𝑆𝑗 Sampled safe set at iteration 𝑗

Page xi

List of symbols and abbreviations

𝐽 𝑗
[𝑘,∞](𝒙

𝑗
𝑘), 𝐽 𝑗

𝑘
Cost-to-go of the trajectory 𝑗 at time 𝑘 (i.e. starting from the
state 𝒙𝑗

𝑘)
𝐽 𝑗

[0,∞](𝒙
𝑗
0), 𝐽 𝑗

0 Iteration cost of iteration 𝑗
𝑄𝑗 Terminal cost function at iteration 𝑗
𝑁 LMPC prediction horizon

𝐽𝐿𝑀𝑃𝐶 LMPC cost function

𝑿𝑘, 𝑿[0,𝑁]|𝑘
State optimization variables (𝒙0|𝑘, 𝒙1|𝑘, ..., 𝒙𝑁|𝑘) for the LMPC
control problem

𝑼𝑘, 𝑼[0,𝑁−1]|𝑘
Input optimization variables (𝒖0|𝑘, 𝒖1|𝑘, ..., 𝒖𝑁−1|𝑘) for the LMPC
control problem

𝑿𝑗∗
𝑘

Optimal predicted state trajectory (𝒙𝑗∗
0|𝑘, 𝒙𝑗∗

1|𝑘, ..., 𝒙𝑗∗
𝑁|𝑘) of the

LMPC control problem

𝑼 𝑗∗
𝑘

Optimal predicted input sequence (𝒖𝑗∗
0|𝑘, 𝒖𝑗∗

1|𝑘, ..., 𝒖𝑗∗
𝑁−1|𝑘) for the

LMPC control problem
𝐽 𝑗∗

𝐿𝑀𝑃𝐶 Optimal cost
𝐶𝑆𝑗 Convex safe set at iteration 𝑗

𝝀 Convex combination weighting scalars
𝜶 Parameters vector of the max-affine interpolating function
𝑃 𝑗 Terminal cost barycentric function at iteration 𝑗

𝑃 (𝑙)
𝑗

𝑗-th partition of data indices at the 𝑙-th iteration of the convex
piecewise-linear fitting algorithm

𝒑𝑗
𝑗-th seed point for the generation of the initial partitions for the
fitting algorithm

𝝁𝑥 Sample mean of the data points to interpolate
𝜮𝑥 Sample covariance of the data points to interpolate

𝑑𝑜,𝑙(𝑠), 𝑑𝑜,𝑢(𝑠) Obstacle functions for the lower and upper bounds on the lateral
distance 𝑑

𝑧𝑜,𝑙(𝑠), 𝑧𝑜,𝑢(𝑠) Obstacle functions for the lower and upper bounds on the altitude
𝑧

̃𝑑𝑜,𝑙(𝑠), ̃𝑑𝑜,𝑢(𝑠) Relaxed obstacle functions for the lower and upper bounds on the
lateral distance 𝑑

̃𝑧𝑜,𝑙(𝑠), ̃𝑧𝑜,𝑢(𝑠) Relaxed obstacle functions for the lower and upper bounds on the
altitude 𝑧

𝑑𝑜,𝑟𝑒𝑙, 𝑧𝑜,𝑟𝑒𝑙 Obstacles relaxation coefficients

Page xii

List of symbols and abbreviations

List of abbreviations

Abbreviation Meaning
CM Center of mass
DoF Degrees of freedom
ILC Iterative Learning Control
LMPC Learning Model Predictive Control
MINLP Mixed-Integer Non-Linear Program/Programming
MPC Model Predictive Control
NLP Non-Linear Program/Programming
NMPC Nonlinear Model Predictive Control
ODE Ordinary Differential Equation
OP Optimization Problem
QP Quadratic Program/Programming
RPY Roll-Pitch-Yaw
UAV Unmanned Aerial Vehicle
wrt With respect to

YALMIP Yet Another Linear Matrix Inequalities Parser

Page xiii

1
Introduction

Unmanned Aerial Vehicles (UAVs), such as quadrotors, are aircrafts becoming nowa-
days increasingly more employed to assist humans in performing a wide range of

time-sensitive tasks, typically in constrained outdoor and indoor environments; such
tasks include logistics, transport, search, rescue, and monitoring. These time-sensitive
operations require UAVs to make fast decisions and agile maneuvers in uncertain, clut-
tered, and dynamic environments, by intelligently exploiting environmental information
to improve their performances over time.

In this scenario, the aim of this thesis is to investigate the use of Learning Model
Predictive Control (LMPC) for quadrotors, which is a novel control technique that
exploits past information, coming from previous iterations of the given control task, to
autonomously improve its performance over time, while respecting system dynamics,
environmental and actuation constraints.

It is worth remarking that, so far, very few studies have been developed on the appli-
cation of LMPC to quadrotors; specifically, such studies are either limited only to 2D
motion control [1] or employ just a simple kinematic model of the quadrotor as system
to be controlled in software-in-the-loop simulations [8].
In this thesis, instead, we use LMPC to control the quadrotor motion within a closed 3D
environment, having a limited height, horizontally delimited by a planar race track, and
with the possibility of adding different kinds of obstacles therein; moreover, in the simu-

Page 1 of 158

1. Introduction

lations, we employ a complete dynamic model of the quadrotor (including aerodynamic
effects) as system to be controlled.

The majority of the studies that combine quadrotors control with past data collection are
actually based only on classic MPC, instead of LMPC. In these works, MPC is integrated
with additional features, such as perception capabilities, data-driven refinement of the
system dynamics, or neural networks based identification of the system model. However,
such control methods are limited to reference tracking applications and, in general,
exploit past information only to refine the quadrotor model, and not to improve the
control performances.

The most relevant studies on LMPC apply this control method to ground vehicles [17]
[3]. In these works, the vehicle task is to travel repetitively within a planar race track.
During each lap, the LMPC algorithm collects the states of the generated trajectories
and their corresponding costs. The vehicle learns from this “past” data to explore new
ways to decrease the cost of its current trajectory, as long as it maintains the ability to
reach one of the states collected during previous iterations.
This approach has the advantage of not requiring a reference trajectory; thus, it is
especially versatile and useful during tasks where the desired trajectory is not known
or is difficult to compute due to the system complexity. A clear example of such tasks
is drone racing competitions, in which the UAV is required to autonomously perform
agile and dexterous maneuvers to achieve a superior performance compared to human
controlled aircrafts. Specifically, the control algorithm needs to find the trajectory
achieving the minimum lap time after multiple flights of the drone within the race
track.

In this thesis, we develop a LMPC framework for quadrotors control, that finds a good
application in the context of drone racing and, in general, to any other scenario of con-
strained indoor activity.
Specifically, we implement a LMPC algorithm that controls the quadrotor motion within
a closed 3D environment. This region of space, in which the quadrotor can move, has
a limited vertical height and is delimited horizontally by a closed race track, having a
predefined shape and a limited width. Moreover, within this space, multiple kinds of
obstacles can be inserted at any point of the track, thus including the additional task,
for the quadrotor, of avoiding such obstacles during its motion.
The quadrotor should move from the start to the finish line of the track, performing
repetitive laps, staying within the bounds defined by the vertical and horizontal borders,

Page 2 of 158

1. Introduction

and avoiding the obstacles therein.
The states of the generated trajectories and the related costs are stored at every com-
pleted lap. With this data, collected across multiple successful iterations of the same
task, the algorithm learns to explore new paths within the track to improve, at every
iteration, the cost of the current trajectory followed by the quadrotor.
For our purposes, the cost of each trajectory will be quantified as the time needed by it
to complete a lap; thus, the goal of the control algorithm is to obtain the optimal path
that minimizes the lap time of the quadrotor.

The LMPC algorithm is developed starting from the construction of all the mathemati-
cal objects and tools required by LMPC theory. Through them, we formulate the LMPC
optimization problem, which is the key element of the prediction phase of the algorithm;
such optimization problem is then relaxed, to reduce its computational complexity and
making it suitable for real-time applications. Finally, we formulate the complete LMPC
algorithm. The functionality of the algorithm is tested by means of software-in-the-loop
simulations, that use, as system to be controlled, a complete dynamic model of the
quadrotor.

This thesis is organized as follows:

• In Chapter 2, the dynamic model of the quadrotor is derived. Staring from some
fundamental notions on quadrotors flight, the modelling phase makes use of the
Lagrangian approach to mechanics to derive the model of the quadrotor. Therefore,
generalized coordinates for the quadrotor are defined, along with the computation of
its kinetic and potential energy, to finally derive the system of Lagrange equations
constituting the final model of the quadrotor.
In this chapter, it is also taken into account the choice of a suitable coordinate system
that allows to describe, in the most convenient way, the motion of the quadrotor
within the track. For this purpose, the Frenet coordinate system is used.

• In Chapter 3, a first control approach based on classic MPC is formulated. This
intermediate step is necessary, since, as explained in the next chapter, the LMPC
algorithm needs to be initialized with a first feasible trajectory that allows the quadro-
tor to complete its first lap, before starting to be controlled by the proper LMPC.
Such trajectory is generated by means of a basic reference tracking control method,
which is chosen to be indeed MPC.

Page 3 of 158

1. Introduction

Therefore, a MPC algorithm for quadrotor trajectory tracking is developed. Starting
from the general theory of Nonlinear MPC (NMPC), the MPC optimization problem
and algorithm for the quadrotor are formulated, along with some relaxation tech-
niques, that allow to reduce the computational complexity and provide robustness
to infeasibility.

• In Chapter 4, the proper LMPC control algorithm for quadrotor autonomous and
optimal path planning is formulated. Starting from general theoretical considera-
tions on LMPC, all the LMPC mathematical objects and tools are constructed. The
general LMPC optimization problem and algorithm are then formulated; to make
such algorithm more suitable for real-time applications, relaxation procedures for
the optimization problem are described and employed in the actual algorithm for
quadrotors control.
The general algorithm is then reformulated for the application to quadrotors; specif-
ically, all the elements of the LMPC problem are readapted for the purpose of au-
tonomously finding the path corresponding to the minimum lap time.
The LMPC algorithm is then improved by adding the capability of avoiding obsta-
cles within the track. This improved algorithm is meant to achieve both the task of
finding the optimal path minimizing the lap time and the task of avoiding possible
obstacles in the flight area.

• In Chapter 5, finally, we report all the results obtained through simulations of the
MPC algorithm for quadrotor trajectory tracking and of the LMPC algorithms for
quadrotor optimal path planning and obstacle avoidance. These algorithms are em-
ployed in software-in-the-loop simulations, in which they control the same quadrotor
dynamic model on a certain number of different race tracks and in various conditions
(including the addition of obstacles within the track).

Page 4 of 158

2
Quadrotor modelling in

Frenet coordinates

2.1. Introduction to systems modelling

The mathematical model of a real-world dynamical system is, in general, a system
of ordinary differential equations (ODEs) that manages to fully describe the time

evolution of the system, using a limited number of variables.
The mathematical modelling of dynamical systems is a branch of mathematical physics
that plays a crucial role in automatic control: indeed, modelling is a mandatory step
in control systems design, since every control method requires some knowledge of the
mathematical equations governing the behaviour of the system to be controlled.

In a mathematical model (hereafter called just “model”), we identify two types of vari-
ables: state variables and input variables.

• State variables (denoted as 𝒙 ∈ R𝑛) are the unknowns of the ODEs constituting the
model; in general, they are internal quantities of the system that are able to fully
describe its actual state.
By solving the system of ODEs, we obtain the values 𝒙(𝑡) of the state variables over
time, which indeed represent the time evolution of the system.

Page 5 of 158

2. Quadrotor modelling in Frenet coordinates

For example, considering a rigid body that is free to move in the 3D space, the
state variables of its model can be the position coordinates 𝑥, 𝑦, 𝑧 (with respect to
a fixed Cartesian frame), and a triplet of orientation angles 𝜙, 𝜃, 𝜓. Assuming that
also the mass 𝑚 of the body can change over time (like, for example, in a rocket,
due to propellant consumption over time), 𝑚 is another state variable of the system.
The model will then be a system of seven ODEs in seven unknowns (i.e. the state
variables).

Instead, considering an electrical circuit, the state variables are, in the general case,
the voltage and the current of each circuit element. Therefore, if the circuit is
composed by 𝑛 nodes and 𝑏 branches (𝑏 is also equal to the number of circuit elements,
assuming to have only bipoles), its model will be a system of 2𝑏 differential-algebraic
equations (DAEs) in 2𝑏 unknowns, where 𝑛 − 1 equations are given by the Kirchhoff
current law, 𝑏 − 𝑛 + 1 come from the Kirchhoff voltage law, and the last 𝑏 are the
constitutive equations of each component.

• Input variables (denoted as 𝒖 ∈ R𝑚) represent external actions on the system that
can influence its “free” evolution over time (i.e. when no inputs are present).
Input variables can either be adjustable from the external (and so can be exploited
as control inputs for the system), or cannot be controlled (in this case, they are called
disturbance inputs).

For the 3D rigid body, the input variables are all the external forces and torques
applied on it.

In the electrical circuit, instead, the input variables are the voltage/current of inde-
pendent voltage/current sources.

For what concerns mechanical systems, models are typically subdivided in two categories:
kinematic models and dynamic models.

• Kinematic models consider as input variables the relevant velocities of the system;
therefore, the model contains only first-order ODEs.

These models are well suited for simulation purposes and typically apply well to
wheeled vehicles subject to non-holonomic constraints. However, they are non ade-
quate for control purposes, since their inputs (i.e. the system velocities) are quantities
that cannot be directly controlled from the external.

• Dynamic models, instead, consider as input variables the forces and torques applied

Page 6 of 158

2.2. Notions on quadrotors flight

on the system (which, from Newton’s second law, are related to the system accelera-
tions); thus, the model contains second-order ODEs.

Dynamic models can be systematically derived using the Newtonian or the La-
grangian approach to mechanics. Moreover, these models, considering the “real”
inputs of the systems, are well suited for control purposes, with the price of being
much more complicated than kinematic ones.

As a consequence, for mechanical systems, in the following we will mainly focus our
attention on dynamic models.

2.2. Notions on quadrotors flight

A quadrotor (or quadcopter) is a multi-rotor helicopter that is lifted and propelled by
four rotors (i.e. electric motors + blades) in a cross configuration.

The propellers (i.e. the rotors) of a quadrotor are mounted such that the front and rear
ones (1 and 3) rotate in the counter-clockwise direction, while the right and left ones (2
and 4) rotate clockwise, as shown in Figure 2.1.
As we will see in the next paragraphs, alternating the directions of rotation of the rotors
is needed to nullify the yaw moment, that is generated by the reaction torques exerted
by the motors on the quadrotor body.

Figure 2.1. Quadrotor lift forces and reaction torques generated by the motors; the propellers rotating
clockwise are depicted in blue, while those rotating counter-clockwise are depicted in red.

Page 7 of 158

2. Quadrotor modelling in Frenet coordinates

The position and orientation of a quadrotor can be controlled by adjusting the rotation
speeds of the four motors. Specifically, each motor applies:

• a torque 𝝉 on the rotor blades. This torque puts in rotation the blades in the same
direction of it. The blades, hitting the air, have to overcome the drag force due to
air friction. The air is also deflected by each blade towards the ground, generating a
lift force 𝒇 directed upwards; this force, if greater that the weight of the quadrotor,
allows to lift it up from the ground;

• a reaction torque −𝝉 on the quadrotor body, as a consequence of Newton’s third law,
acting in the opposite direction with respect to the rotation of the blades. Since each
motor applies an independent torque 𝝉𝑖, with 𝑖 = 1, ..., 4, if the sum ∑4

𝑖=1 𝝉𝑖 ≠ 𝟎,
the quadrotor will start rotating around its 𝑧1 axis (see Figure 2.1), generating a
so-called yaw motion, which is something unwanted unless required by the pilot.
By mounting the rotors such that they alternatively rotate in opposite directions, we
obtain (when their rotation speeds are the same) that 𝝉1 = 𝝉3 = −𝝉2 = −𝝉4, making
∑4

𝑖=1 𝝉𝑖 = 𝟎, and so nullifying the yaw motion.

The lift forces and reaction torques of each rotor are depicted in Figure 2.1.

The motion of the quadrotor, as for any rigid body moving in the 3D space, can be seen
as the combination of two contributions: the linear motion of its center of mass (CM)
and the rotational motion of the quadrotor around its CM.
The quadrotor has thus six degrees of freedom (DoF), three related to the linear motion
(longitudinal, lateral, and vertical motions) and three related to the rotational motion
(typically, roll, pitch, and yaw motions).

The control of these motions can be performed by adjusting the rotation speeds of the
different motors of the quadrotor. Specifically:

• The yaw motion is the rotation of the quadrotor around its 𝑧1 axis. As already
explained, it is generated by the reaction torques of each motor: when the four
rotor speeds are the same, the total reaction torque is null, and so no yaw motion is
generated; if instead the four rotor speeds are not equal, the quadrotor will start to
rotate (Figure 2.2a).

• The roll motion is the rotation of the quadrotor around its 𝑥1 axis. It is generated
by the difference of speed between the right and left rotors: if the left one (4) rotates

Page 8 of 158

2.2. Notions on quadrotors flight

faster that the right one (2), then a positive roll motion is generated, since 𝑓4 > 𝑓2,
and viceversa (Figure 2.2b).

• The pitch motion is the rotation of the quadrotor around its 𝑦1 axis. It is generated
by the difference of speed between the front and back rotors: if the back one (3)
rotates faster that the front one (1), then a positive pitch motion is generated, since
𝑓3 > 𝑓1, and viceversa (Figure 2.2c).

• The vertical motion is the translation of the quadrotor along its 𝑧1 axis. It is obtained
by regulating the speed of all the rotors, which contribute to the total lift force that
generates the vertical movement (Figure 2.2d).

• The longitudinal motion is the translation of the quadrotor along its 𝑥1 axis, while
the lateral motion is the translation along its 𝑦1 axis. They are obtained by means
of a combination of vertical motion and roll-pitch motions (Figure 2.2b-c).

Figure 2.2. Quadrotor motions: (a) yaw motion, (b) roll and lateral motions, (c) pitch and longitudinal
motions, (d) vertical motion.

Page 9 of 158

2. Quadrotor modelling in Frenet coordinates

2.3. Modelling problem setup

2.3.1. Quadrotor pose in the space

To derive the mathematical model of the quadrotor, we need at first to define the
reference systems and the variables through which we will describe the pose (i.e. position
and orientation) of the quadrotor in the space at any time instant.

Reference frames

We start considering the reference frames. As it is commonly done for any problem
concerning the pose of a rigid body in the 3D space, we define two right-handed Cartesian
frames:

• the base frame 𝐹0 (𝑂𝑥𝑦𝑧), which is the frame representing the stationary space
around the body; this frame is therefore a fixed one;

• the body frame 𝐹1 (𝑂1𝑥1𝑦1𝑧1), which is a frame attached to our body, which moves
together with it and is centered in the CM of the body; this frame is therefore a
moving one.

The frames are depicted in Figure 2.3.

Figure 2.3. Quadrotor reference frames and generalized coordinates

Page 10 of 158

2.3. Modelling problem setup

2.3.2. Generalized coordinates

Now we need to define a set of variables 𝒒, called generalized coordinates, allowing us
to univocally describe any pose of the body.

Specifically:

• The position of the body is univocally defined by the vector 𝒓 = # „𝑂𝑂1, which is the
position vector of the CM of the body with respect to (wrt) the base frame.

• The orientation of the body frame (and, thus, of the body itself) is univocally defined
by a rotation matrix 𝑹 wrt the fixed base frame.

Position

The vector 𝒓 can be expressed in the base of 𝐹0: 𝒓 = (𝑥, 𝑦, 𝑧)𝑇 . (1)

The components 𝑥, 𝑦, 𝑧 of 𝒓 are the first three generalized coordinates for the quadrotor.

Orientation

The rotation matrix 𝑹 ≡ 𝑹0→1 ≡ 𝑹0
1 is defined as follows:

𝑹0
1 = (𝒙̂1 ̂𝒚1 ̂𝒛1) (2.1)

where 𝒙̂1, ̂𝒚1, ̂𝒛1 are the versors of 𝐹1 expressed in the base of 𝐹0.

A rotation matrix can be always decomposed in a product of three matrices, each of
them associated to an elementary rotation around one of the frame axes. These angles
are called Euler angles. In particular, the following decomposition:

𝑹0
1 = 𝑹𝑧(𝜓)𝑹𝑦(𝜃)𝑹𝑥(𝜙) ≡ 𝑹𝑅𝑃𝑌 (𝜙, 𝜃, 𝜓) (2.2)

defines the triplet of angles (𝜙, 𝜃, 𝜓)𝑇 ≡ 𝜶𝑅𝑃𝑌 ≡ 𝜶 called RPY (roll-pitch-yaw) angles.

The RPY angles describe an orientation that, from the pre-multiplication rule, can be
constructed by:

1For notation clarity, in this chapter the superscript “0”, indicating the 𝐹0 base, will be omitted for
vectors.

Page 11 of 158

2. Quadrotor modelling in Frenet coordinates

1) rotating the body frame around the 𝑥 axis of the base frame by an angle 𝜙 (roll);

2) rotating the body frame around the 𝑦 axis of the base frame by an angle 𝜃 (pitch);

3) rotating the body frame around the 𝑧 axis of the base frame by an angle 𝜓 (yaw).

Equivalently, the orientation, from the post-multiplication rule, can be constructed by:

1) rotating the body frame around its 𝑧1 axis by an angle 𝜓 (yaw);

2) rotating the body frame around its 𝑦1 axis by an angle 𝜃 (pitch);

3) rotating the body frame around its 𝑥1 axis by an angle 𝜙 (roll).

To ensure that it exists a biunivocal correspondence between RPY angles and rotation
matrix, each angle is bounded in the following intervals:

𝜙 ∈ [−180°, 180°], 𝜃 ∈ [−90°, 90°], 𝜓 ∈ [−90°, 90°]

These bounds remove the ambiguity given by the 360°-periodicity of rotations.

The rotation matrix 𝑹𝑅𝑃𝑌 (𝜙, 𝜃, 𝜓) has the following expression [20]:

𝑹𝑅𝑃𝑌 (𝜙, 𝜃, 𝜓) =
⎛⎜⎜⎜⎜
⎝

𝑐𝜃𝑐𝜓 𝑠𝜙𝑠𝜃𝑐𝜓 − 𝑐𝜙𝑠𝜓 𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓
𝑐𝜃𝑠𝜓 𝑠𝜙𝑠𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓
−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

⎞⎟⎟⎟⎟
⎠

(2.3)

where 𝑠𝑥 ≡ sin(𝑥) and 𝑐𝑥 ≡ cos(𝑥).

From the rotation matrix, the RPY angles can be obtained as follows:

𝜙 = atan2(𝑟32, 𝑟33), 𝜃 = atan(− 𝑟31
√1 − 𝑟2

31
) , 𝜓 = atan2(𝑟21, 𝑟11) (2.4)

For 𝜃 = ±90°, 𝑹𝑅𝑃𝑌 is singular and the expressions for 𝜙 and 𝜓 become undefined.
This phenomenon is called singularity or gimbal lock of RPY angles. It means that
when 𝜃 = ±90°, only the value of 𝜙 ∓ 𝜓 can be known exactly; therefore, in this
case, multiple sequences of rotations (with different values of 𝜙 and 𝜓) give the same
orientation/rotation matrix.

The RPY angles 𝜙, 𝜃, 𝜓, which are the components of 𝜶, are the final three generalized
coordinates for the quadrotor.

Page 12 of 158

2.3. Modelling problem setup

In conclusion, we have that the generalized coordinates vector 𝒒 is the following:

𝒒 = (𝒓
𝜶

) , 𝒓 =
⎛⎜⎜⎜⎜
⎝

𝑥
𝑦
𝑧

⎞⎟⎟⎟⎟
⎠

, 𝜶 =
⎛⎜⎜⎜⎜
⎝

𝜙
𝜃
𝜓

⎞⎟⎟⎟⎟
⎠

(2.5)

The generalized coordinates of the quadrotor are depicted in Figure 2.3.

2.3.3. Kinematic quantities

Linear velocity

The linear velocity of the quadrotor wrt the base frame is equal to the derivative wrt
time of the vector 𝒓:

𝑑
𝑑𝑡𝒓 = ̇𝒓 ≡ 𝒗 = (̇𝑥 ̇𝑦 ̇𝑧)

𝑇
(2.6)

We can express ̇𝒓 in the 𝐹1 base, obtaining the vector:

𝒗1 ≡ (𝑢 𝑣 𝑤)
𝑇

, ̇𝒓 = 𝑹0
1𝒗1 (2.7)

Angular velocity

Considering the RPY angles as function of time, we obtain a time-varying rotation
matrix describing the sequence of orientations assumed by the body in time.

Knowing the angular rates (̇𝜙, ̇𝜃, ̇𝜓)𝑇 = 𝑑
𝑑𝑡(𝜙, 𝜃, 𝜓)𝑇 = 𝜶̇, it is possible to derive the

value of the angular velocity vector 𝝎 of the body (wrt the base frame) through the
following expression [21]:

𝝎 = 𝑻𝑅𝑃𝑌 (𝜶)𝜶̇ ≡ 𝑻 (𝜶)𝜶̇ (2.8)

where:

𝑻𝑅𝑃𝑌 =
⎛⎜⎜⎜⎜
⎝

𝑐𝜃𝑐𝜓 −𝑠𝜓 0
𝑐𝜃𝑠𝜓 𝑐𝜓 0
−𝑠𝜃 0 1

⎞⎟⎟⎟⎟
⎠

, 𝑻 −1
𝑅𝑃𝑌 =

⎛⎜⎜⎜⎜
⎝

𝑐𝜓/𝑐𝜃 𝑠𝜓/𝑐𝜃 0
−𝑠𝜓 𝑐𝜓 0
𝑡𝜃𝑐𝜓 𝑡𝜃𝑠𝜓 1

⎞⎟⎟⎟⎟
⎠

(2.9)

with 𝑡𝑥 ≡ tan(𝑥).

We can express 𝝎 in the 𝐹1 base, obtaining the vector:

𝝎1 ≡ (𝑝 𝑞 𝑟)
𝑇

, 𝝎 = 𝑹0
1𝝎1 ⇒ 𝝎1 = 𝑹1

0𝑻 𝜶̇ ≡ 𝑾 𝜶̇ (2.10)

Page 13 of 158

2. Quadrotor modelling in Frenet coordinates

where:

𝑾 =
⎛⎜⎜⎜⎜
⎝

1 0 −𝑠𝜃
0 𝑐𝜙 𝑠𝜙𝑐𝜃
0 −𝑠𝜙 𝑐𝜙𝑐𝜃

⎞⎟⎟⎟⎟
⎠

, 𝑾 −1 =
⎛⎜⎜⎜⎜
⎝

1 𝑠𝜙𝑡𝜃 𝑐𝜙𝑡𝜃
0 𝑐𝜙 −𝑠𝜙
0 𝑠𝜙/𝑐𝜃 𝑐𝜙/𝑐𝜃

⎞⎟⎟⎟⎟
⎠

(2.11)

𝑻 and 𝑾 are singular for 𝜃 = ±90° (gimbal lock).

Note 2.1 The fact that 𝑻𝑅𝑃𝑌 is singular for 𝜃 = ±90° is the biggest issue caused
by the gimbal lock of RPY angles.
When dealing only with orientations, gimbal lock is not a severe issue, since the
ambiguity on the values of 𝜙 and 𝜓 is limited to a single time instant and specific
formulae exist to evaluate 𝜙 ∓ 𝜓.
However, gimbal lock also causes the singularity of the transformation matrix 𝑻𝑅𝑃𝑌

from angular rates to angular velocity. Specifically, the inverse matrix 𝑻 −1
𝑅𝑃𝑌 will be

implicitly embedded in the model equations, since it allows to compute the angular
rates from the angular velocity vector:

𝜶̇ = 𝑻 −1
𝑅𝑃𝑌 (𝜶)𝝎 (2.12)

During the simulation, such angular rates will be numerically integrated to obtain
the RPY angles values in time 𝜶(𝑡).
If during the simulation the system goes in the singular configuration 𝜃 = ±90°,
some elements of 𝑻 −1

𝑅𝑃𝑌 will diverge, making diverge also the angular rates and, in
turn, leading to the computation of erroneous RPY angles; this error is irremediable
and will affect the angles in all the next time instants.

Therefore, when using a model based on Euler angles, we have to ensure that the
system does not go in the singular configuration.

Alternative models exploit quaternions instead of Euler angles to avoid the singular-
ity, since the transformation matrix from quaternion rate to angular velocity does
not become singular in the gimbal lock configuration.

Page 14 of 158

2.4. Quadrotor kinematic model

2.4. Quadrotor kinematic model

The kinematic model of the quadrotor can be obtained in a simple way, by considering
as system inputs the linear and angular velocities 𝒗1 and 𝝎1, expressed in the 𝐹1 base,
and the relations (2.7), (2.10):

⎧{
⎨{⎩

̇𝒓 = 𝑹0
1(𝜶)𝒗1

𝜶̇ = 𝑾 (𝜶)−1𝝎1
⇒

⎧{{{{{{{
⎨{{{{{{{⎩

̇𝑥 = 𝑐𝜃𝑐𝜓𝑢 − (𝑐𝜙𝑠𝜓 + 𝑠𝜙𝑠𝜃𝑐𝜓)𝑣 + (𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑠𝜃𝑐𝜓)𝑤
̇𝑦 = 𝑐𝜃𝑠𝜓𝑢 + (𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜃𝑠𝜓)𝑣 − (𝑠𝜙𝑐𝜓 + 𝑐𝜙𝑠𝜃𝑠𝜓)𝑤
̇𝑧 = −𝑠𝜃𝑢 + 𝑠𝜙𝑐𝜃𝑣 + 𝑐𝜙𝑐𝜃𝑤
̇𝜙 = 𝑝 + 𝑠𝜙𝑡𝜃𝑞 + 𝑐𝜙𝑡𝜃𝑟
̇𝜃 = 𝑐𝜙𝑞 − 𝑠𝜙𝑟

̇𝜓 = 1
𝑐𝜃

(𝑠𝜙𝑞 + 𝑐𝜙𝑟)

(2.13)

Defining the input vector 𝒖:

𝒖 = (𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑢5, 𝑢6)𝑇 ≡ (𝒗1

𝝎1) = (𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟)𝑇 (2.14)

we can rewrite:

Quadrotor kinematic model

⎧{{{{{{{
⎨{{{{{{{⎩

̇𝑥 = 𝑐𝜃𝑐𝜓𝑢1 − (𝑐𝜙𝑠𝜓 + 𝑠𝜙𝑠𝜃𝑐𝜓)𝑢2 + (𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑠𝜃𝑐𝜓)𝑢3

̇𝑦 = 𝑐𝜃𝑠𝜓𝑢1 + (𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜃𝑠𝜓)𝑢2 − (𝑠𝜙𝑐𝜓 + 𝑐𝜙𝑠𝜃𝑠𝜓)𝑢3

̇𝑧 = −𝑠𝜃𝑢1 + 𝑠𝜙𝑐𝜃𝑢2 + 𝑐𝜙𝑐𝜃𝑢3

̇𝜙 = 𝑢4 + 𝑠𝜙𝑡𝜃𝑢5 + 𝑐𝜙𝑡𝜃𝑢6

̇𝜃 = 𝑐𝜙𝑢5 − 𝑠𝜙𝑢6

̇𝜓 = 1
𝑐𝜃

(𝑠𝜙𝑢5 + 𝑐𝜙𝑢6)

(2.15)

Page 15 of 158

2. Quadrotor modelling in Frenet coordinates

2.5. Quadrotor dynamic model

2.5.1. Lagrange formulation

The dynamic model of a mechanical system, described by means of generalized coor-
dinates, allows to relate the causes of motion (i.e. forces and torques applied on the
system) to the time evolution of each generalized coordinate.

This model can be derived in a systematic way by means of the Lagrangian approach to
mechanics.

In the Lagrange formulation of classical mechanics, given a system with 𝑛 generalized
coordinates 𝒒 = (𝑞𝑖)𝑛

𝑖=1, we introduce the Lagrangian function:

ℒ(𝒒, ̇𝒒) = 𝒦(𝒒, ̇𝒒) − 𝒫(𝒒) (2.16)

where 𝒦 and 𝒫 respectively denote the total kinetic energy and potential energy of the
system, as function of the generalized coordinates 𝒒 and their derivatives wrt time ̇𝒒.

The dynamic model is a system of 𝑛 second-order ODEs, called Lagrange equations,
with the generalized coordinates 𝒒 as unknowns, which are obtained by computing:

𝑑
𝑑𝑡

𝜕ℒ
𝜕 ̇𝑞𝑖

− 𝜕ℒ
𝜕𝑞𝑖

= ℱ𝑖, 𝑖 = 1, ..., 𝑛 (2.17)

where 𝓕 = (ℱ𝑖)𝑛
𝑖=1 is the vector of generalized forces and torques applied on the system.

In general, 𝓕 = 𝑭 + 𝑻 , where 𝑭 is the vector of generalized forces and 𝑻 is the vector
of generalized torques.

The system of ODEs (2.17) can be rewritten in compact form as:

𝑑
𝑑𝑡 (𝜕ℒ

𝜕 ̇𝑞1
⋯ 𝜕ℒ

𝜕 ̇𝑞𝑛
)

𝑇
− (𝜕ℒ

𝜕𝑞1
⋯ 𝜕ℒ

𝜕𝑞𝑛
)

𝑇
=

⎛⎜⎜⎜⎜
⎝

ℱ1
⋮

ℱ𝑛

⎞⎟⎟⎟⎟
⎠

⇒ 𝑑
𝑑𝑡

𝜕ℒ
𝜕 ̇𝒒 − 𝜕ℒ

𝜕𝒒 = 𝓕 (2.18)

We will now use the Lagrangian approach to obtain the dynamic model equations of
the quadrotor, given the setup defined in § 2.3.

Generalized forces and torques

We start computing the generalized forces and torques acting on the quadrotor.

Page 16 of 158

2.5. Quadrotor dynamic model

As reported in § 2.2, the angular velocity 𝜔𝑖 of each rotor 𝑖 = 1, ..., 4 creates a force 𝒇𝑖
in the direction of the rotor axis.
Moreover, the rotation of each motor applies a torque 𝝉𝑖 on the quadrotor in the opposite
sense wrt 𝜔𝑖:

𝑓𝑖 = 𝑘𝜔2
𝑖 , 𝜏𝑖 = ±(𝑏𝜔2

𝑖 + 𝐼𝑅𝜔̇𝑖) (2.19)

where 𝑘 is the lift coefficient, 𝑏 is the drag coefficient (i.e. the air friction coefficient)
and 𝐼𝑅 is the moment of inertia of the rotor; in the rotor torque expression, we choose
the + if the blades rotate clockwise and the − if the blades rotate counter-clockwise.

Typically, the latter contribution on 𝝉𝑖 is neglected; in this way, we can relate rotor
force and torque as follows:

𝜏𝑖 = ±𝑐𝑓𝑖, 𝑐 = 𝑏/𝑘 (2.20)

All rotor forces generate a cumulative thrust force 𝒇 in the direction of the 𝑧1 axis and
applied in the CM of the quadrotor; the cumulative torque 𝝉 on the body is reformulated
as three torques 𝝉𝜙, 𝝉𝜃 and 𝝉𝜓 acting in the direction of the corresponding RPY angles
(Figure 2.4):

𝒇1 =
⎛⎜⎜⎜⎜
⎝

0
0
𝑓

⎞⎟⎟⎟⎟
⎠

, 𝑓 = 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 (2.21)

𝝉 ≡
⎛⎜⎜⎜⎜
⎝

𝜏𝜙
𝜏𝜃
𝜏𝜓

⎞⎟⎟⎟⎟
⎠

, 𝜏𝜙 = 𝑙(𝑓4 − 𝑓2), 𝜏𝜃 = 𝑙(𝑓3 − 𝑓1)

𝜏𝜓 = 𝜏1 + 𝜏2 + 𝜏3 + 𝜏4 = 𝑐(−𝑓1 + 𝑓2 − 𝑓3 + 𝑓4) (2.22)

where 𝑙 is the length of the arms of the quadrotor. The expressions of 𝜏𝜙, 𝜏𝜃 and 𝜏𝜓 are
derived by means of the considerations done in § 2.2.

Thus, the control distribution from the four rotors of the quadrotor is given by:

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑓
𝜏𝜙
𝜏𝜃
𝜏𝜓

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 1 1
0 −𝑙 0 𝑙

−𝑙 0 𝑙 0
−𝑐 𝑐 −𝑐 𝑐

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑓1
𝑓2
𝑓3
𝑓4

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

(2.23)

So, if a required thrust and torque vector is given, one may solve for the rotor force
vector using (2.23) [4].

Page 17 of 158

2. Quadrotor modelling in Frenet coordinates

Figure 2.4. Quadrotor thrust force and torques

The generalized forces and torques 𝓕 = (ℱ𝑖)𝑛
𝑖=1 (𝑛 = dim(𝒒) = 6) in Lagrangian

mechanics are computed as follows:

𝑭 = ∑
𝑘

𝜕𝒓𝑘
𝜕𝒒 𝒇𝑘, 𝑻 = ∑

𝑘

𝜕𝛼𝑘
𝜕𝒒 𝜏𝑘, 𝓕 = 𝑭 + 𝑻 (2.24)

where {𝒇𝑘}𝑘 and {𝝉𝑘}𝑘 are all the forces and torques applied on the body, 𝒓𝑘 is the
position of the point of action of 𝒇𝑘 on the body, and 𝛼𝑘 is angle on which 𝝉𝑘 acts.

Performing the calculations, we obtain:

𝑭 = 𝜕𝒓
𝜕𝒒𝒇 = 𝜕𝒓

𝜕𝒒𝑹0
1𝒇1 = (𝑰3

𝑶3
) 𝑹0

1𝒇1 = (𝑹0
1𝒇1

𝟎3
) (2.25)

𝑻 = ∑
𝑘

𝜕𝛼𝑘
𝜕𝒒 𝜏𝑘 = 𝜕𝜙

𝜕𝒒 𝜏𝜙 + 𝜕𝜃
𝜕𝒒𝜏𝜃 + 𝜕𝜓

𝜕𝒒 𝜏𝜓 = (𝟎3
𝝉

) (2.26)

In conclusion:

𝓕 = (𝑹0
1𝒇1

𝝉
) (2.27)

Lagrangian function

We now compute the Lagrangian function (2.16).

The kinetic energy of the body is the sum of its two main components, translational
and rotational energy:

𝒦(𝒒, ̇𝒒) = 1
2𝑚 ̇𝒓𝑇 ̇𝒓 + 1

2𝝎1𝑇 𝑰1
𝑂1

𝝎1 (2.28)

Page 18 of 158

2.5. Quadrotor dynamic model

where 𝑰1
𝑂1
is the inertia matrix of the quadrotor, computed wrt its CM (𝑂1) and ex-

pressed in the 𝐹1 base.

The inertia matrix can be computed as:

𝑰1
𝑂1

=
⎛⎜⎜⎜⎜
⎝

𝐼𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
𝐼𝑥𝑦 𝐼𝑦 𝐼𝑦𝑧
𝐼𝑥𝑧 𝐼𝑦𝑧 𝐼𝑧

⎞⎟⎟⎟⎟
⎠

= ∫
𝑉

⎛⎜⎜⎜⎜
⎝

𝑦2 + 𝑧2 −𝑥𝑦 −𝑥𝑧
−𝑥𝑦 𝑥2 + 𝑧2 −𝑦𝑧
−𝑥𝑧 −𝑦𝑧 𝑥2 + 𝑦2

⎞⎟⎟⎟⎟
⎠

𝜌(𝑥, 𝑦, 𝑧)𝑑𝑉 (2.29)

where 𝑉 is the spatial volume of the quadrotor and 𝜌 its volume density.

Having the quadrotor a symmetric structure, with its four arms aligned along the 𝑥1
and 𝑦1 axes of the body frame, and assuming its volume density as uniform, the inertia
matrix will be diagonal, with all the extra-diagonal terms equal to 0 and 𝐼𝑥 = 𝐼𝑦:

𝑰1
𝑂1

=
⎛⎜⎜⎜⎜
⎝

𝐼𝑥 0 0
0 𝐼𝑦 0
0 0 𝐼𝑧

⎞⎟⎟⎟⎟
⎠

(2.30)

If we model the shape of the quadrotor as a union of several simple bodies with geometric
symmetry, we can derive closed-form expressions for the moments of inertia 𝐼𝑥, 𝐼𝑦 and
𝐼𝑧. For example, we can model the quadrotor central body as a cube (mass 𝑀𝑏, side
length 𝑏), the quadrotor arms as thin rods (mass 𝑀𝑎, length 𝑙), and the rotors as point
masses (mass 𝑚𝑟); the four arms are attached one to the center of each lateral face
of the cubic central body; the rotors are attached at the end of each arm. Then, the
moments of inertia are equal to:

𝐼𝑧 = 1
6𝑀𝑏𝑏2 + 4

3𝑀𝑎𝑙2 + 𝑀𝑎𝑏2 + 4𝑚𝑟 (𝑏
2 + 𝑙) (2.31a)

𝐼𝑥 = 𝐼𝑦 = 1
6𝑀𝑏𝑏2 + 2

3𝑀𝑎𝑙2 + 1
2𝑀𝑎𝑏2 + 2𝑚𝑟 (𝑏

2 + 𝑙) (2.31b)

The potential energy has only one component related to gravity:

𝒫(𝒒) = 𝑚𝑔𝑧 (2.32)

Therefore, the Lagrangian is equal to:

ℒ(𝒒, ̇𝒒) = 1
2𝑚 ̇𝒓𝑇 ̇𝒓 + 1

2𝝎1𝑇 𝑰1
𝑂1

𝝎1 − 𝑚𝑔𝑧 (2.33)

We want to express ℒ as function only of the generalized coordinates 𝒒 = (𝒓, 𝜶) and
their derivatives wrt time ̇𝒒:

ℒ(𝒒, ̇𝒒) = 1
2𝑚 ̇𝒓𝑇 ̇𝒓 + 1

2𝝎1𝑇 𝑰1
𝑂1

𝝎1 − 𝑚𝑔𝑧 =

Page 19 of 158

2. Quadrotor modelling in Frenet coordinates

= 1
2𝑚 ̇𝒓𝑇 ̇𝒓 + 1

2(𝑾 𝜶̇)𝑇 𝑰1
𝑂1

(𝑾 𝜶̇) − 𝑚𝑔𝑧

= 1
2𝑚 ̇𝒓𝑇 ̇𝒓 + 1

2𝜶̇𝑇 𝑾 𝑇 𝑰1
𝑂1

𝑾⏟⏟⏟⏟⏟ 𝜶̇
≡𝑱

− 𝑚𝑔𝑧 =

= 1
2𝑚 ̇𝒓𝑇 ̇𝒓 + 1

2𝜶̇𝑇 𝑱𝜶̇ − 𝑚𝑔𝑧 (2.34)

where 𝑱 has the following expression [9]:

𝑱 =
⎛⎜⎜⎜⎜
⎝

𝐼𝑥 0 −𝐼𝑥𝑠𝜃
0 𝐼𝑦𝑐2

𝜙 + 𝐼𝑧𝑠2
𝜙 (𝐼𝑦 − 𝐼𝑧)𝑐𝜙𝑠𝜙𝑐𝜃

−𝐼𝑥𝑠𝜃 (𝐼𝑦 − 𝐼𝑧)𝑐𝜙𝑠𝜙𝑐𝜃 𝐼𝑥𝑠2
𝜃 + 𝐼𝑦𝑠2

𝜙𝑐2
𝜃 + 𝐼𝑧𝑐2

𝜙𝑐2
𝜃

⎞⎟⎟⎟⎟
⎠

(2.35)

Computing the derivatives

We compute now all the derivatives required by (2.18) [6]:

𝜕ℒ
𝜕 ̇𝒒 = (𝜕ℒ

𝜕 ̇𝒓 , 𝜕ℒ
𝜕𝜶̇)

𝑇
⇒ 𝜕ℒ

𝜕 ̇𝒓 = 𝑚 ̇𝒓, 𝜕ℒ
𝜕𝜶̇ = 1

2 (𝑱 + 𝑱𝑇) 𝜶̇ = 𝑱𝜶̇ (2.36)

𝑑
𝑑𝑡

𝜕ℒ
𝜕 ̇𝒒 = (𝑑

𝑑𝑡
𝜕ℒ
𝜕 ̇𝒓 , 𝑑

𝑑𝑡
𝜕ℒ
𝜕𝜶̇)

𝑇
⇒ 𝑑

𝑑𝑡
𝜕ℒ
𝜕 ̇𝒓 = 𝑚 ̈𝒓, 𝑑

𝑑𝑡
𝜕ℒ
𝜕𝜶̇ = 𝑱𝜶̈ + ̇𝑱𝜶̇ (2.37)

𝜕ℒ
𝜕𝒒 = (𝜕ℒ

𝜕𝒓 , 𝜕ℒ
𝜕𝜶)

𝑇
⇒

𝜕ℒ
𝜕𝒓 =

⎛⎜⎜⎜⎜
⎝

0
0

−𝑚𝑔

⎞⎟⎟⎟⎟
⎠

= −𝑚𝑔 ̂𝒛,

𝜕ℒ
𝜕𝜶 = 𝜕

𝜕𝜶 (1
2𝜶̇𝑇 𝑱𝜶̇) = 1

2
𝜕

𝜕𝜶 (𝜶̇𝑇 𝑱) 𝜶̇

(2.38)

Analytical computation of the angular terms yields [14]:

𝜕ℒ(𝒒, ̇𝒒)
𝜕𝜙 = 𝐼𝑦 (− ̇𝜓 ̇𝜃𝑐𝜃𝑠2

𝜙 + ̇𝜓 ̇𝜃𝑐𝜃𝑐2
𝜙 + ̇𝜓2𝑠𝜙𝑐𝜙𝑐2

𝜃 − ̇𝜃2𝑠𝜙𝑐𝜙) +

+𝐼𝑧 (− ̇𝜓2𝑠𝜙𝑐𝜙𝑐2
𝜃 + ̇𝜓 ̇𝜃𝑐𝜃𝑠2

𝜙 − ̇𝜓 ̇𝜃𝑐𝜃𝑐2
𝜙 + ̇𝜃2𝑠𝜙𝑐𝜙) (2.39)

𝜕ℒ(𝒒, ̇𝒒)
𝜕𝜃 = 𝐼𝑥 (− ̇𝜓 ̇𝜙𝑐𝜃 + ̇𝜓2𝑐𝜃𝑠𝜃) + 𝐼𝑦 (− ̇𝜃 ̇𝜓𝑠𝜙𝑐𝜙𝑠𝜃 − ̇𝜓2𝑠2

𝜙𝑐𝜃𝑠𝜃) +

+𝐼𝑧 (− ̇𝜓2𝑠𝜃𝑐𝜃𝑐2
𝜙 + ̇𝜓 ̇𝜃𝑠𝜃𝑠𝜙𝑐𝜙) (2.40)

𝜕ℒ(𝒒, ̇𝒒)
𝜕𝜓 = 0 (2.41)

𝜕ℒ(𝒒, ̇𝒒)
𝜕 ̇𝜙

= 𝐼𝑥(̇𝜙 − ̇𝜓𝑠𝜃) (2.42)

Page 20 of 158

2.5. Quadrotor dynamic model

𝜕ℒ(𝒒, ̇𝒒)
𝜕 ̇𝜃

= ̇𝜃 (𝐼𝑦𝑐2
𝜙 + 𝐼𝑧𝑠2

𝜙) + ̇𝜓 (𝐼𝑦𝑐𝜙𝑠𝜙𝑐𝜃 − 𝐼𝑧𝑐𝜙𝑠𝜙𝑐𝜃) (2.43)

𝜕ℒ(𝒒, ̇𝒒)
𝜕 ̇𝜓

= − ̇𝜙𝐼𝑥𝑠2
𝜃 + ̇𝜃 ((𝐼𝑦 − 𝐼𝑧) 𝑐𝜙𝑠𝜙𝑐𝜃) +

+ ̇𝜓𝐼𝑥𝑠2
𝜃 + ̇𝜓𝐼𝑦𝑠2

𝜙𝑐2𝜃 + ̇𝜓𝐼𝑧𝑐2
𝜙𝑐2

𝜃 (2.44)

𝑑
𝑑𝑡 (𝜕ℒ(𝒒, ̇𝒒)

𝜕 ̇𝜙
) = 𝐼𝑥(̈𝜙 − ̈𝜓𝑠𝜃 − ̇𝜙 ̇𝜓𝑐𝜃) (2.45)

𝑑
𝑑𝑡 (𝜕ℒ(𝒒, ̇𝒒)

𝜕 ̇𝜃
) = 𝐼𝑦 (̈𝜃𝑐2

𝜙 − 2 ̇𝜃 ̇𝜙𝑐𝜙𝑠𝜙 + ̈𝜓𝑐𝜙𝑠𝜙𝑐𝜃 − ̇𝜓 ̇𝜙𝑠2
𝜙𝑐𝜃 +

+ ̇𝜓 ̇𝜙𝑐2
𝜙𝑐𝜃 − ̇𝜓 ̇𝜃𝑐𝜙𝑠𝜙𝑠𝜃) +

+𝐼𝑧 (̈𝜃𝑠2
𝜙 + 2 ̇𝜃 ̇𝜙𝑐𝜙𝑠𝜙 − ̈𝜓𝑐𝜙𝑠𝜙𝑐𝜃 + ̇𝜓 ̇𝜙𝑠2

𝜙𝑐𝜃 −
− ̇𝜓 ̇𝜙𝑐2

𝜙𝑐𝜃 + ̇𝜓 ̇𝜃𝑐𝜙𝑠𝜙𝑠𝜃) (2.46)
𝑑
𝑑𝑡 (𝜕ℒ(𝒒, ̇𝒒)

𝜕 ̇𝜓
) = 𝐼𝑥 (− ̈𝜙𝑠𝜃 − ̇𝜙 ̇𝜃𝑐𝜃 + ̈𝜓𝑠2

𝜃 + 2 ̇𝜓 ̇𝜃𝑠𝜃𝑐2
𝜃) +

+𝐼𝑦 (̈𝜃𝑐𝜙𝑠𝜙𝑐𝜃 − ̇𝜃 ̇𝜙𝑠2
𝜙𝑐𝜃 + ̇𝜃 ̇𝜙𝑐2

𝜙𝑐𝜃 − ̇𝜃2𝑐𝜙𝑠𝜙𝑠𝜃 +
+ ̈𝜓𝑠2

𝜙𝑐2𝜃 + 2 ̇𝜓 ̇𝜙𝑠𝜙𝑐2
𝜙𝑐2𝜃 − 2 ̇𝜓 ̇𝜃𝑠2

𝜙𝑐𝜃𝑠𝜃) +
+𝐼𝑧 (− ̈𝜃𝑐𝜙𝑠𝜙𝑐𝜃 + ̇𝜃 ̇𝜙𝑠2

𝜙𝑐𝜃 − ̇𝜃 ̇𝜙𝑐2
𝜙𝑐𝜃 + ̇𝜃2𝑐𝜙𝑠𝜙𝑠𝜃 +

+ ̈𝜓𝑐2
𝜙𝑐2𝜃 − 2 ̇𝜓 ̇𝜙𝑐𝜙𝑠2

𝜙𝑐2𝜃 − 2 ̇𝜓 ̇𝜃𝑐2
𝜃𝑠𝜃𝑐2𝜙) (2.47)

Lagrange equations

Finally, we can write the final Lagrange equations of the quadrotor:

⎧{{
⎨{{⎩

𝑚 ̈𝒓 + 𝑚𝑔 ̂𝒛 = 𝑹0
1𝒇1

𝑱𝜶̈ + ̇𝑱𝜶̇ − 1
2

𝜕
𝜕𝜶 (𝜶̇𝑇 𝑱) 𝜶̇ = 𝝉

⇒

⎧{{{
⎨{{{⎩

𝑚 ̈𝒓 + 𝑚𝑔 ̂𝒛 = 𝑹0
1𝒇1

𝑱𝜶̈ + [̇𝑱 − 1
2

𝜕
𝜕𝜶 (𝜶̇𝑇 𝑱)]⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝑪(𝜶,𝜶̇)

𝜶̇ = 𝝉 (2.48)

The matrix 𝑪(𝜶, 𝜶̇) is called Coriolis matrix and has the following expression [9]:

𝑪(𝜶, 𝜶̇) =
⎛⎜⎜⎜⎜
⎝

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

⎞⎟⎟⎟⎟
⎠

Page 21 of 158

2. Quadrotor modelling in Frenet coordinates

𝑐11 = 0
𝑐12 = (𝐼𝑦 − 𝐼𝑧)(̇𝜃𝑐𝜙𝑠𝜙 + ̇𝜓𝑠2

𝜙𝑐𝜃) + (𝐼𝑧 − 𝐼𝑦) ̇𝜓𝑐2
𝜙𝑐𝜃 − 𝐼𝑥 ̇𝜓𝑐𝜃

𝑐13 = (𝐼𝑧 − 𝐼𝑦) ̇𝜓𝑐𝜙𝑠𝜙𝑐2
𝜃

𝑐21 = (𝐼𝑧 − 𝐼𝑦)(̇𝜃𝑐𝜙𝑠𝜙 + ̇𝜓𝑠𝜙𝑐𝜃) + (𝐼𝑦 − 𝐼𝑧) ̇𝜓𝑐2
𝜙𝑐𝜃 − 𝐼𝑥 ̇𝜓𝑐𝜃

𝑐22 = (𝐼𝑧 − 𝐼𝑦) ̇𝜙𝑐𝜙𝑐𝜙

𝑐23 = −𝐼𝑥 ̇𝜓𝑠𝜃𝑐𝜃 + 𝐼𝑦 ̇𝜓𝑠2
𝜙𝑠𝜃𝑐𝜃 + 𝐼𝑧 ̇𝜓𝑐2

𝜙𝑠𝜃𝑐𝜃

𝑐31 = (𝐼𝑦 − 𝐼𝑧) ̇𝜓𝑐2
𝜃𝑠𝜙𝑐𝜙 − 𝐼𝑥 ̇𝜃𝑐𝜃

𝑐32 = (𝐼𝑧 − 𝐼𝑦)(̇𝜃𝑐𝜙𝑠𝜙𝑠𝜃 + ̇𝜙𝑠2
𝜙𝑐𝜃) + (𝐼𝑦 − 𝐼𝑧) ̇𝜙𝑐2

𝜙𝑐𝜃+
+𝐼𝑥 ̇𝜓𝑠𝜃𝑐𝜃 − 𝐼𝑦 ̇𝜓𝑠2

𝜙𝑐𝜃 − 𝐼𝑧 ̇𝜓𝑐2
𝜙𝑠𝜃𝑐𝜃

𝑐33 = (𝐼𝑦 − 𝐼𝑧) ̇𝜙𝑐𝜙𝑠𝜙𝑐2
𝜃 − 𝐼𝑦 ̇𝜃𝑠2

𝜙𝑐𝜃𝑠𝜃 − 𝐼𝑧 ̇𝜃𝑐2
𝜙𝑐𝜃𝑠𝜃 + 𝐼𝑥 ̇𝜃𝑐𝜃𝑠𝜃 (2.49)

In conclusion, the Lagrange equations of the quadrotor are the following:

⎧{
⎨{⎩

̈𝒓 = −𝑔 ̂𝒛 + 1
𝑚𝑹0

1(𝜶)𝒇1

𝜶̈ = 𝑱(𝜶)−1 (𝝉 − 𝑪(𝜶, 𝜶̇)𝜶̇)
(2.50)

We would like now to expand these equations, to obtain the six second-order ODEs
representing the dynamic model of the quadrotor.
To do so, in order to simplify the model equations (specifically those regarding 𝜶), we
perform the following approximation [1] [18]: we assume that the angles 𝜙 and 𝜃 are
sufficiently small to let:

cos(𝜙) ≈ cos(𝜃) ≈ 1, sin(𝜙) ≈ sin(𝜃) ≈ 0

This assumption holds if the quadrotor tends to stay close to the hovering configuration
(i.e. 𝜙 = 𝜃 = 0) during its motion, i.e. it is not required to perform very fast turns
during its motion.

Page 22 of 158

2.5. Quadrotor dynamic model

With this approximation, (2.50) are expanded, obtaining:

⎧{{{{{{{{{{
⎨{{{{{{{{{{⎩

̈𝑥 = 1
𝑚(𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓)𝑓

̈𝑦 = 1
𝑚(𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓)𝑓

̈𝑧 = −𝑔 + 1
𝑚𝑐𝜙𝑐𝜃𝑓

̈𝜙 = 𝐼𝑦 − 𝐼𝑧
𝐼𝑥

̇𝜃 ̇𝜓 + 1
𝐼𝑥

𝜏𝜙

̈𝜃 = 𝐼𝑧 − 𝐼𝑥
𝐼𝑦

̇𝜙 ̇𝜓 + 1
𝐼𝑦

𝜏𝜃

̈𝜓 = 𝐼𝑥 − 𝐼𝑦
𝐼𝑧

̇𝜙 ̇𝜃 + 1
𝐼𝑧

𝜏𝜓

(2.51)

Defining the input vector 𝒖 as:

𝒖 = (𝑢1, 𝑢2, 𝑢3, 𝑢4)𝑇 ≡ (𝒇1

𝝉
) = (𝑓, 𝜏𝜙, 𝜏𝜃, 𝜏𝜓)𝑇 (2.52)

we can rewrite:

Quadrotor dynamic model

⎧{{{{{{{{{{
⎨{{{{{{{{{{⎩

̈𝑥 = 1
𝑚(𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓)𝑢1

̈𝑦 = 1
𝑚(𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓)𝑢1

̈𝑧 = −𝑔 + 1
𝑚𝑐𝜙𝑐𝜃𝑢1

̈𝜙 = 𝐼𝑦 − 𝐼𝑧
𝐼𝑥

̇𝜃 ̇𝜓 + 1
𝐼𝑥

𝑢2

̈𝜃 = 𝐼𝑧 − 𝐼𝑥
𝐼𝑦

̇𝜙 ̇𝜓 + 1
𝐼𝑦

𝑢3

̈𝜓 = 𝐼𝑥 − 𝐼𝑦
𝐼𝑧

̇𝜙 ̇𝜃 + 1
𝐼𝑧

𝑢4

(2.53)

2.5.2. Aerodynamic effects

To enforce a more realistic behaviour of the quadrotor, we can include in the model
some aerodynamic effects that act on the quadrotor during its motion. As pointed out

Page 23 of 158

2. Quadrotor modelling in Frenet coordinates

in [9], several aerodynamic effects have been studied, such as the dependance of the
thrust force on the angle of attack, blade flipping and airflow disruptions.

The influence of aerodynamic effects is typically complicated and difficult to model;
moreover, some of these effects have significant influence only for high velocities. There-
fore, in our model, we will only include the effect due to the air drag force (i.e. the air
resistance) on the quadrotor:

Quadrotor dynamic model (with aerodynamic effects)

⎧{{{{{{{{{{
⎨{{{{{{{{{{⎩

̈𝑥 = 1
𝑚(𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓)𝑢1 − 𝛽𝑥

𝑚 ̇𝑥

̈𝑦 = 1
𝑚(𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓)𝑢1 − 𝛽𝑦

𝑚 ̇𝑦

̈𝑧 = −𝑔 + 1
𝑚𝑐𝜙𝑐𝜃𝑢1 − 𝛽𝑧

𝑚 ̇𝑧

̈𝜙 = 𝐼𝑦 − 𝐼𝑧
𝐼𝑥

̇𝜃 ̇𝜓 + 1
𝐼𝑥

𝑢2

̈𝜃 = 𝐼𝑧 − 𝐼𝑥
𝐼𝑦

̇𝜙 ̇𝜓 + 1
𝐼𝑦

𝑢3

̈𝜓 = 𝐼𝑥 − 𝐼𝑦
𝐼𝑧

̇𝜙 ̇𝜃 + 1
𝐼𝑧

𝑢4

(2.54)

where 𝛽𝑥, 𝛽𝑦 and 𝛽𝑧 are the drag force coefficients (i.e. the air friction coefficients) in
the corresponding directions of the base frame.

2.6. Choosing the coordinate system

So far we have derived a dynamic model of the quadrotor where its position in the 3D
space is described by classic Cartesian coordinates. Now, we have to consider whether
this coordinate system is adequate for our needs or if we need to rewrite the model with
another coordinate system.
This is specifically related to the task that we want to achieve. As described in the In-
troduction, we want the quadrotor to move on a bounded 3D space, limited horizontally
by a closed planar race track, having a predefined shape and a limited width; it should
move on the track departing from the start line and arriving to the finish one (being the
track closed, the two lines coincide); also, during the motion, the quadrotor must not

Page 24 of 158

2.7. Frenet coordinate system

exit from the track boundaries. Moreover, the quadrotor will be controlled by means of
Model Predictive Control (MPC) algorithms.

This context poses two severe issues when using a Cartesian coordinate system to de-
scribe the position of the body:

• To describe the shape and the width of the track, a set of state constraints on the
planar position (𝑥, 𝑦) of the quadrotor has to be included in the MPC optimization
problem. These constraints may be very difficult to write in a closed form using
Cartesian coordinates and, in general, would be non-convex and nonlinear

• Being the track closed, in Cartesian coordinates the initial position and the goal end
point of the motion can be coincident or very close to each other, causing the control
system to not produce any motion or to generate an unwanted trajectory that does
not travel along the whole track.

Both of these issues can be solved by transforming the quadrotor model from Cartesian
coordinates to different ones, called Frenet coordinates.

2.7. Frenet coordinate system

The Frenet coordinate system is a reference system which univocally defines the position
of a point 𝑃 on the plane with respect to a predefined reference curve 𝜸 and by means
of two coordinates.

Firstly, we define the reference curve 𝜸(𝑠) ∶ R → R2 on the 𝑥𝑦 plane, where 𝑠 is the
curvilinear abscissa of the curve. The position of 𝑃 is then defined with respect to this
curve through:

• the signed curvilinear abscissa 𝑠, which is the length of the curve 𝜸 from its origin
to the orthogonal projection of 𝑃 on 𝜸;

• the signed distance 𝑑 from 𝜸, which is the lateral distance between 𝑃 and its orthog-
onal projection on 𝜸.

On the reference curve 𝜸, we can construct a moving reference frame 𝐹2 (𝑂2𝑥2𝑦2), called
Frenet frame, centered in the orthogonal projection of 𝑃 on 𝜸 (𝑂2) and with axes the
tangent versor ̂𝒕𝜸 ≡ 𝒙̂2 and the normal versor 𝒏̂𝜸 ≡ ̂𝒚2 of 𝜸 in 𝑂2.

Page 25 of 158

2. Quadrotor modelling in Frenet coordinates

Figure 2.5. Cartesian (𝐹0), body (𝐹1), and Frenet (𝐹2) frames

Hereafter, we will consider the following frames (Figure 2.5):

• the fixed Cartesian frame 𝐹0 (𝑂𝑥𝑦);

• the moving body frame 𝐹1 (𝑂1𝑥1𝑦1), which is the frame attached to our body, moving
together with it and centered in the point 𝑂1 (which is the body CM);

• the moving Frenet frame 𝐹2 (𝑂2𝑥2𝑦2).

We denote as 𝜓1 the signed angle between the versors 𝒙̂ and 𝒙̂1 and 𝜓2 the signed angle
between the versors 𝒙̂ and 𝒙̂2 (also called Frenet angle).

2.8. Cartesian to Frenet conversion

Our objective is to derive a set of conversion equations that allow to transform a generic
system model from Cartesian to Frenet coordinates. This means that, in our scenario,
the planar position of the quadrotor will be expressed with the variables (𝑠, 𝑑) instead
of (𝑥, 𝑦).

Page 26 of 158

2.8. Cartesian to Frenet conversion

In particular, we start from the general case in which the model equations are referred
to a generic point 𝑃 attached to the quadrotor (which may not coincide with its CM).

Hereafter, the following notations will be used:

• The position of 𝑃 wrt frame 𝐹𝑎, expressed in the base of frame 𝐹𝑏 (𝑎, 𝑏 = 0, 1, 2, as
stated previously), is denoted as:

𝒓𝑏
𝑎 ≡ # „𝑂𝑎𝑃 𝑏 (2.55)

The derivative wrt time of this vector is denotes as:

𝒗𝑏
𝑎 ≡ 𝑑

𝑑𝑡𝒓𝑏
𝑎 (2.56)

• The position of 𝑂𝑎 (i.e origin of frame 𝐹𝑎) wrt frame 𝐹𝑏, expressed in the base of
frame 𝐹𝑐, is denoted as:

𝒓𝑐
𝑂𝑎,𝑂𝑏

≡ # „𝑂𝑎𝑂𝑏
𝑐 (2.57)

The derivative wrt time of this vector is denotes as:

𝒗𝑐
𝑂𝑎,𝑂𝑏

≡ 𝑑
𝑑𝑡𝒓𝑐

𝑂𝑎,𝑂𝑏
(2.58)

• The angular velocity of frame 𝐹𝑎 wrt the fixed frame 𝐹0, expressed in the base of
frame 𝐹𝑏, is denoted as:

𝝎𝑏
𝑎 (2.59)

• The rotation matrix from 𝐹𝑎 to frame 𝐹𝑏 is denoted as:

𝑹𝑎
𝑏 = 𝑹𝑏

𝑎
𝑇 (2.60)

Specifically:

𝑹1
0 =

⎛⎜⎜⎜⎜
⎝

𝑐1 𝑠1 0
−𝑠1 𝑐1 0

0 0 1

⎞⎟⎟⎟⎟
⎠

, 𝑹2
0 =

⎛⎜⎜⎜⎜
⎝

𝑐2 𝑠2 0
−𝑠2 𝑐2 0

0 0 1

⎞⎟⎟⎟⎟
⎠

, 𝑹2
1 =

⎛⎜⎜⎜⎜
⎝

𝑐𝑒 −𝑠𝑒 0
𝑠𝑒 𝑐𝑒 0
0 0 1

⎞⎟⎟⎟⎟
⎠

(2.61)

where:
sin(𝜓𝑥) ≡ 𝑠𝑥, cos(𝜓𝑥) ≡ 𝑐𝑥, 𝑥 = 1, 2, 𝑒 (2.62)

𝜓𝑒 ≡ 𝜓1 − 𝜓2 (2.63)

Page 27 of 158

2. Quadrotor modelling in Frenet coordinates

Therefore, we have that:

𝒓0
0 =

⎛⎜⎜⎜⎜
⎝

𝑥𝑃
𝑦𝑃
0

⎞⎟⎟⎟⎟
⎠

, 𝒓1
1 =

⎛⎜⎜⎜⎜
⎝

𝑙1
𝑙2
0

⎞⎟⎟⎟⎟
⎠

, 𝒓2
2 =

⎛⎜⎜⎜⎜
⎝

0
𝑑
0

⎞⎟⎟⎟⎟
⎠

, 𝒓0
𝑂1,𝑂 =

⎛⎜⎜⎜⎜
⎝

𝑥
𝑦
0

⎞⎟⎟⎟⎟
⎠

(2.64)

Being 𝐹1, 𝐹2 moving frames and 𝐹0 a fixed frame, we can apply the fundamental law
of kinematics on 𝑃 between the couples of frames 𝐹0, 𝐹1 and 𝐹0, 𝐹2:

⎧{
⎨{⎩

𝒗0 = 𝒗𝑂1,𝑂 + 𝝎1 × 𝒓1 + 𝒗1 (𝑎)
𝒗0 = 𝒗𝑂2,𝑂 + 𝝎2 × 𝒓2 + 𝒗2 (𝑏)

(2.65)

Subtracting (𝑏) from (𝑎), we obtain the fundamental law of kinematics between the two
moving frames 𝐹1 and 𝐹2:

𝒗2 = 𝒗𝑂1,𝑂 − 𝒗𝑂2,𝑂 + 𝝎1 × 𝒓1 − 𝝎2 × 𝒓2 + 𝒗1 (2.66)

We express (2.66) in the 𝐹2 base:

𝒗2
2 = 𝒗2

𝑂1,𝑂 − 𝒗2
𝑂2,𝑂 + 𝝎2

1 × 𝒓2
1 − 𝝎2

2 × 𝒓2
2 + 𝒗2

1

= 𝑹2
0𝒗0

𝑂1,𝑂 − 𝒗2
𝑂2,𝑂 + 𝝎0

1 × 𝑹2
1𝒓1

1 − 𝝎0
2 × 𝒓2

2 + 𝑹2
1𝒗1

1 (2.67)

The expressions of each term of (2.67) are the following:

𝒗2
2 =

⎛⎜⎜⎜⎜
⎝

0
̇𝑑

0

⎞⎟⎟⎟⎟
⎠

(2.68)

𝒗2
𝑂1,𝑂 = 𝑹2

0𝒗0
𝑂1,𝑂 =

⎛⎜⎜⎜⎜
⎝

𝑐1 𝑠1 0
−𝑠1 𝑐1 0

0 0 1

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

̇𝑥
̇𝑦

0

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

̇𝑥𝑐2 + ̇𝑦𝑠2
− ̇𝑥𝑠2 + ̇𝑦𝑐2

0

⎞⎟⎟⎟⎟
⎠

(2.69)

𝒗2
𝑂2,𝑂 =

⎛⎜⎜⎜⎜
⎝

̇𝑠
0
0

⎞⎟⎟⎟⎟
⎠

(2.70)

𝝎0
1 =

⎛⎜⎜⎜⎜
⎝

0
0
̇𝜓1

⎞⎟⎟⎟⎟
⎠

, 𝝎0
2 =

⎛⎜⎜⎜⎜
⎝

0
0
̇𝜓2

⎞⎟⎟⎟⎟
⎠

(2.71)

Page 28 of 158

2.8. Cartesian to Frenet conversion

𝒓2
1 = 𝑹2

1𝒓1
1 =

⎛⎜⎜⎜⎜
⎝

𝑐𝑒 −𝑠𝑒 0
𝑠𝑒 𝑐𝑒 0
0 0 1

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑙1
𝑙2
0

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑙1𝑐𝑒 − 𝑙2𝑠𝑒
𝑙1𝑠𝑒 + 𝑙2𝑐𝑒

0

⎞⎟⎟⎟⎟
⎠

(2.72)

𝒓2
2 =

⎛⎜⎜⎜⎜
⎝

0
𝑑
0

⎞⎟⎟⎟⎟
⎠

(2.73)

𝒗2
1 = 𝑹2

1𝒗1
1 = 𝑹2

1 𝟎 = 𝟎 (2.74)

In the end, by plugging all the previous expressions into (2.67), we obtain:

⎛⎜⎜⎜⎜
⎝

0
̇𝑑

0

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

̇𝑥𝑐2 + ̇𝑦𝑠2
− ̇𝑥𝑠2 + ̇𝑦𝑐2

0

⎞⎟⎟⎟⎟
⎠

−
⎛⎜⎜⎜⎜
⎝

̇𝑠
0
0

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

0
0
̇𝜓1

⎞⎟⎟⎟⎟
⎠

×
⎛⎜⎜⎜⎜
⎝

𝑙1𝑐𝑒 − 𝑙2𝑠𝑒
𝑙1𝑠𝑒 + 𝑙2𝑐𝑒

0

⎞⎟⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜
⎝

0
0
̇𝜓2

⎞⎟⎟⎟⎟
⎠

×
⎛⎜⎜⎜⎜
⎝

0
𝑑
0

⎞⎟⎟⎟⎟
⎠

(2.75)

Performing the calculations, we obtain:

⎧{{
⎨{{⎩

̇𝑠 = ̇𝑥𝑐2 + ̇𝑦𝑠2 + ̇𝜓1(−𝑙1𝑠𝑒 − 𝑙2𝑐𝑒) + ̇𝜓2⏟
=𝐾(𝑠) ̇𝑠

𝑑

̇𝑑 = − ̇𝑥𝑠2 + ̇𝑦𝑐2 + ̇𝜓1(𝑙1𝑐𝑒 − 𝑙2𝑠𝑒)

⇒
⎧{
⎨{⎩

̇𝑠 = 1
1 − 𝐾(𝑠)𝑑 (̇𝑥𝑐2 + ̇𝑦𝑠2 − ̇𝜓1(𝑙1𝑠𝑒 + 𝑙2𝑐𝑒))

̇𝑑 = − ̇𝑥𝑠2 + ̇𝑦𝑐2 + ̇𝜓1(𝑙1𝑐𝑒 − 𝑙2𝑠𝑒)
(2.76)

Including in (2.76) also the expression:

̇𝜓2 = 𝐾(𝑠) ̇𝑠 (2.77)

where 𝐾(𝑠) is the curvature function of 𝜸, and replacing ̇𝑠 with its whole expression, we
finally obtain:

Cartesian to Frenet conversion equations (general form)

⎧{{{
⎨{{{⎩

̇𝑠 = 1
1 − 𝐾(𝑠)𝑑 (̇𝑥𝑐2 + ̇𝑦𝑠2 − ̇𝜓1(𝑙1𝑠𝑒 + 𝑙2𝑐𝑒))

̇𝑑 = − ̇𝑥𝑠2 + ̇𝑦𝑐2 + ̇𝜓1(𝑙1𝑐𝑒 − 𝑙2𝑠𝑒)

̇𝜓2 = 𝐾(𝑠)
1 − 𝐾(𝑠)𝑑 (̇𝑥𝑐2 + ̇𝑦𝑠2 − ̇𝜓1(𝑙1𝑠𝑒 + 𝑙2𝑐𝑒))

(2.78)

(2.78) is the set of conversion equations for a system model expressed in Cartesian
coordinates to the equivalent one in Frenet coordinates.

Page 29 of 158

2. Quadrotor modelling in Frenet coordinates

We can simplify (2.78) by making 𝑃 to coincide with the point 𝑂1 (quadrotor CM):

Cartesian to Frenet conversion equations (simplified form)

⎧{{{
⎨{{{⎩

̇𝑠 = 1
1 − 𝐾(𝑠)𝑑 (̇𝑥 cos𝜓2 + ̇𝑦 sin𝜓2)

̇𝑑 = − ̇𝑥 sin𝜓2 + ̇𝑦 cos𝜓2

̇𝜓2 = 𝐾(𝑠)
1 − 𝐾(𝑠)𝑑 (̇𝑥 cos𝜓2 + ̇𝑦 sin𝜓2)

(2.79)

The obtained (2.78) and (2.79) coincide with the results reported in [12] and [3].

2.8.1. Model conversion

The actual coordinate conversion for the system model is performed by adding (2.79)
to the model equations, thus adding three new system states: 𝑠, 𝑑, and 𝜓2.

After the conversion to Frenet coordinates, the planar position of the body is determined
by the states 𝑠 and 𝑑, making 𝑥 and 𝑦 redundant. Therefore, if 𝑥 and 𝑦 do not appear
in any other model equation, we can safely remove the equations for ̇𝑥 and ̇𝑦 (reducing
the number of system states by two).

Note 2.2 A specific observation has to be made for the models of wheeled
vehicles (e.g. unicycle, bicycle, car, etc.). For this kind of bodies, when we require
them to track a reference trajectory (which is typically the Frenet curve 𝜸), one of
the tracking requirements has also to be imposed also on the heading angle 𝜓1.
In fact, for the quadrotor the heading/yaw angle 𝜓1 is not relevant for tracking
purposes, since the quadrotor is free of non-holonomic constraints on the direction
of its velocity vector.
Instead, any wheeled vehicle is subject to non-holonomic constraints, which have the
purpose of modelling the absence of lateral slippage of the wheels, meaning that the
velocity vector at the wheels cannot have a component parallel to the wheel axle.

As a consequence, to accomplish trajectory tracking of wheeled vehicles, we must
ensure that 𝜓1(𝑡) → 𝜓2(𝑡) for 𝑡 → ∞. For the sake of simplicity, we can rewrite the
requirement as 𝜓1(𝑡) − 𝜓2(𝑡) = 𝜓𝑒(𝑡) → 0 for 𝑡 → ∞.
Therefore, it is convenient to replace, in the system model, the state 𝜓2 with 𝜓𝑒 =

Page 30 of 158

2.8. Cartesian to Frenet conversion

𝜓1 − 𝜓2. In this case, the equations (2.79) are reformulated as follows:

̇𝜓2 = ̇𝜓1 − ̇𝜓𝑒 = 𝐾(𝑠) ̇𝑠 ⇒ ̇𝜓𝑒 = ̇𝜓1 − 𝐾(𝑠) ̇𝑠 (2.80)

⇒

⎧{{{
⎨{{{⎩

̇𝑠 = 1
1 − 𝐾(𝑠)𝑑 (̇𝑥 cos(𝜓1 + 𝜓𝑒) + ̇𝑦 sin(𝜓1 + 𝜓𝑒))

̇𝑑 = − ̇𝑥 sin(𝜓1 + 𝜓𝑒) + ̇𝑦 cos(𝜓1 + 𝜓𝑒)

̇𝜓𝑒 = ̇𝜓1 − 𝐾(𝑠)
1 − 𝐾(𝑠)𝑑 (̇𝑥 cos(𝜓1 + 𝜓𝑒) + ̇𝑦 sin(𝜓1 + 𝜓𝑒))

(2.81)

Including (2.81) in the model equations adds the new states 𝑠, 𝑑, and 𝜓𝑒.

2.8.2. Alternative derivation

Instead of directly applying the fundamental law of kinematics (2.65), we can obtain
the same results by differentiating the relations involving position vectors.

By looking at Figure 2.5, it holds:

𝒓2 = 𝒓𝑂1,𝑂 − 𝒓𝑂2,𝑂 + 𝒓1 (2.82)

Expressing it in the 𝐹0 base:

𝒓0
2 = 𝒓0

𝑂1,𝑂 − 𝒓0
𝑂2,𝑂 + 𝒓0

1

𝑹0
2𝒓2

2 = 𝒓0
𝑂1,𝑂 − 𝒓0

𝑂2,𝑂 + 𝑹0
1𝒓1

1 (2.83)

We now differentiate both sides of the equation:
𝑑
𝑑𝑡 (𝑹0

2𝒓2
2) = 𝑑

𝑑𝑡 (𝒓0
𝑂1,𝑂 − 𝒓0

𝑂2,𝑂 + 𝑹0
1𝒓1

1)

𝑹0
2𝒗2

2 + 𝑹̇0
2𝒓2

2 = 𝒗0
𝑂1,𝑂 − 𝒗0

𝑂2,𝑂 + 𝑹0
1𝒗1

1 + 𝑹̇0
1𝒓1

1 (2.84)

We recall that:
𝑺(𝝎0

𝑎) = 𝑹̇0
𝑎𝑹𝑎

0 ⇒ 𝑹̇0
𝑎 = 𝑺(𝝎0

𝑎)𝑹0
𝑎 (2.85)

where 𝝎0
𝑎 is the angular velocity of frame 𝐹𝑎 wrt the fixed frame 𝐹0 and 𝑺 denotes the

skew-symmetric matrix:

𝑺(𝝎) =
⎛⎜⎜⎜⎜
⎝

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0

⎞⎟⎟⎟⎟
⎠

(2.86)

Page 31 of 158

2. Quadrotor modelling in Frenet coordinates

In particular, the matrix multiplication (𝑺(𝝎) (⋅)) is equivalent to the cross product
(𝝎 × ⋅); therefore, (2.84) becomes:

𝑹0
2𝒗2

2 + 𝝎0
2 × 𝑹0

2𝒓2
2 = 𝒗0

𝑂1,𝑂 − 𝒗0
𝑂2,𝑂 + 𝑹0

1𝒗1
1 + 𝝎0

1 × 𝑹0
1𝒓1

1

𝒗0
2 = 𝒗0

𝑂1,𝑂 − 𝒗0
𝑂2,𝑂 + 𝝎0

1 × 𝒗0
1 − 𝝎0

2 × 𝒗0
2 + 𝒗0

1

⇒ 𝒗2 = 𝒗𝑂1,𝑂 − 𝒗𝑂2,𝑂 + 𝝎1 × 𝒓1 − 𝝎2 × 𝒓2 + 𝒗1 (2.87)

which is exactly the (2.66).

From this point, calculations are identical to those in the previous section.

2.9. Quadrotor dynamic model in Frenet coordinates

Recalling the dynamic model of the quadrotor in (2.54), we have that:

⎧{{{{{{{{
⎨{{{{{{{{⎩

̈𝑥 = 1
𝑚(𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓)𝑢1 − 𝛽𝑥

𝑚 ̇𝑥

̈𝑦 = 1
𝑚(𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓)𝑢1 − 𝛽𝑦

𝑚 ̇𝑦

̈𝑧 = −𝑔 + 1
𝑚𝑐𝜙𝑐𝜃𝑢1 − 𝛽𝑧

𝑚 ̇𝑧

̈𝜙 = 𝐼𝑦 − 𝐼𝑧
𝐼𝑥

̇𝜃 ̇𝜓 + 1
𝐼𝑥

𝑢2

̈𝜃 = 𝐼𝑧 − 𝐼𝑥
𝐼𝑦

̇𝜙 ̇𝜓 + 1
𝐼𝑦

𝑢3

̈𝜓 = 𝐼𝑥 − 𝐼𝑦
𝐼𝑧

̇𝜙 ̇𝜃 + 1
𝐼𝑧

𝑢4

(2.88)

Page 32 of 158

2.9. Quadrotor dynamic model in Frenet coordinates

By expressing it in state-space form, we obtain:

⎧{{{{{{{{{{{{{{{{{
⎨{{{{{{{{{{{{{{{{{⎩

̇𝑥 = 𝑣𝑥

̇𝑦 = 𝑣𝑦

̇𝑧 = 𝑣𝑧

̇𝜙 = 𝑣𝜙

̇𝜃 = 𝑣𝜃

̇𝜓 = 𝑣𝜓

̇𝑣𝑥 = 1
𝑚(𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓)𝑢1 − 𝛽𝑥

𝑚 𝑣𝑥

̇𝑣𝑦 = 1
𝑚(𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓)𝑢1 − 𝛽𝑦

𝑚 𝑣𝑦

̇𝑣𝑧 = −𝑔 + 1
𝑚𝑐𝜙𝑐𝜃𝑢1 − 𝛽𝑧

𝑚 𝑣𝑧

̇𝑣𝜙 = 𝐼𝑦 − 𝐼𝑧
𝐼𝑥

𝑣𝜃𝑣𝜓 + 1
𝐼𝑥

𝑢2

̇𝑣𝜃 = 𝐼𝑧 − 𝐼𝑥
𝐼𝑦

𝑣𝜙𝑣𝜓 + 1
𝐼𝑦

𝑢3

̇𝑣𝜓 = 𝐼𝑥 − 𝐼𝑦
𝐼𝑧

𝑣𝜙𝑣𝜃 + 1
𝐼𝑧

𝑢4

(2.89)

The states are 𝒙 = (𝑥, 𝑦, 𝑧, 𝜙, 𝜃, 𝜓, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝑣𝜙, 𝑣𝜃, 𝑣𝜓)𝑇 ∈ R12 ⇒ 𝑛 = 12, while the
inputs are 𝒖 = (𝑢1, 𝑢2, 𝑢3, 𝑢4)𝑇 ∈ R4 ⇒ 𝑚 = 4.

To convert this model from Cartesian to Frenet coordinates, we recall equation (2.79):

⎧{{{
⎨{{{⎩

̇𝑠 = 1
1 − 𝐾(𝑠)𝑑 (̇𝑥 𝑐𝜓2

+ ̇𝑦 𝑠𝜓2
)

̇𝑑 = − ̇𝑥 𝑠𝜓2
+ ̇𝑦 𝑐𝜓2

̇𝜓2 = 𝐾(𝑠)
1 − 𝐾(𝑠)𝑑 (̇𝑥 𝑐𝜓2

+ ̇𝑦 𝑠𝜓2
)

(2.90)

where, calling 𝜸 the Frenet reference curve: 𝑠 is the signed curvilinear abscissa of 𝜸,
which is the curve length from its origin to the orthogonal projection of the quadrotor
CM on 𝜸; 𝑑 the signed distance between the quadrotor CM and its orthogonal projection
on 𝜸; 𝜓2 is the Frenet angle between the 𝒙̂2 versor of the Frenet frame (𝐹2) and the 𝒙̂
versor of the base frame (𝐹0) (see Figure 2.5); 𝐾(𝑠) is the curvature function of 𝜸.

The conversion is performed embedding the equations (2.79) into the model (2.89),
obtaining:

Page 33 of 158

2. Quadrotor modelling in Frenet coordinates

State-space quadrotor dynamic model in Frenet coordinates

⎧{{{{{{{{{{{{{{{{{{{
⎨{{{{{{{{{{{{{{{{{{{⎩

̇𝑧 = 𝑣𝑧

̇𝜙 = 𝑣𝜙

̇𝜃 = 𝑣𝜃

̇𝜓 = 𝑣𝜓

̇𝑣𝑥 = 1
𝑚(𝑐𝜙𝑠𝜃𝑐𝜓 + 𝑠𝜙𝑠𝜓)𝑢1 − 𝛽𝑥

𝑚 𝑣𝑥

̇𝑣𝑦 = 1
𝑚(𝑐𝜙𝑠𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓)𝑢1 − 𝛽𝑦

𝑚 𝑣𝑦

̇𝑣𝑧 = −𝑔 + 1
𝑚𝑐𝜙𝑐𝜃𝑢1 − 𝛽𝑧

𝑚 𝑣𝑧

̇𝑣𝜙 = 𝐼𝑦 − 𝐼𝑧
𝐼𝑥

𝑣𝜃𝑣𝜓 + 1
𝐼𝑥

𝑢2

̇𝑣𝜃 = 𝐼𝑧 − 𝐼𝑥
𝐼𝑦

𝑣𝜙𝑣𝜓 + 1
𝐼𝑦

𝑢3

̇𝑣𝜓 = 𝐼𝑥 − 𝐼𝑦
𝐼𝑧

𝑣𝜙𝑣𝜃 + 1
𝐼𝑧

𝑢4

̇𝑠 = 1
1 − 𝐾(𝑠)𝑑 (𝑣𝑥𝑐𝜓2

+ 𝑣𝑦𝑠𝜓2
)

̇𝑑 = −𝑣𝑥𝑠𝜓2
+ 𝑣𝑦𝑐𝜓2

̇𝜓2 = 𝐾(𝑠)
1 − 𝐾(𝑠)𝑑 (𝑣𝑥𝑐𝜓2

+ 𝑣𝑦𝑠𝜓2
)

(2.91)

The states are 𝒙 = (𝑧, 𝜙, 𝜃, 𝜓, 𝑣𝑥, 𝑣𝑦, 𝑣𝑧, 𝑣𝜙, 𝑣𝜃, 𝑣𝜓, 𝑠, 𝑑, 𝜓2)𝑇 ∈ R13 ⇒ 𝑛 = 13, while the
inputs are 𝒖 = (𝑢1, 𝑢2, 𝑢3, 𝑢4)𝑇 ∈ R4 ⇒ 𝑚 = 4.

We can notice that the states 𝑥 and 𝑦 have been removed, since now (as already pointed
out in section 2.8.1), being in Frenet coordinates, the position on the 𝑥𝑦 plane is deter-
mined by means of the states 𝑠 and 𝑑, making 𝑥 and 𝑦 redundant.
For instance, the state 𝑧 has not been removed, since the Frenet coordinates, in this
formulation, represent only the planar motion, so the state 𝑧 is necessary to describe
the full 3D motion of the quadrotor.

2.9.1. Model discretization

To control the quadrotor via MPC algorithms, the system model must be discretized (i.e.
transformed from continuous-time to discrete-time). Several discretization methods can

Page 34 of 158

2.9. Quadrotor dynamic model in Frenet coordinates

be used; for the sake of simplicity, the Forward Euler method will be used.
Denoting the continuous-time Frenet model of the quadrotor (2.91) as:

𝒙̇ = 𝒇 (𝐶𝑇)
𝑄 (𝒙, 𝒖) (2.92)

discretizing we obtain:

𝒙̇ ≈ 𝒙(𝑘 + 1) − 𝒙(𝑘)
𝑇 = 𝒇 (𝐶𝑇)

𝑄 (𝒙(𝑘), 𝒖(𝑘))

⇒ 𝒙(𝑘 + 1) = 𝒙(𝑘) + 𝒇 (𝐶𝑇)
𝑄 (𝒙(𝑘), 𝒖(𝑘))𝑇 ≡ 𝒇 (𝐷𝑇)

𝑄 (𝒙(𝑘), 𝒖(𝑘)) ≡ 𝒇𝑄(𝒙(𝑘), 𝒖(𝑘)) (2.93)

where 𝑘 is the discrete time, with time step 𝑇 .

For compactness, the discrete time can be also written as a subscript:

𝒙𝑘+1 = 𝒇𝑄(𝒙𝑘, 𝒖𝑘) (2.94)

(2.94) denotes the discrete-time dynamic model of the quadrotor, expressed in Frenet
coordinates.

2.9.2. Observations

We have introduced Frenet coordinates to make it simple to describe the track shape
and width as state constraints in the MPC optimization problem.
Specifically, in the context of our problem, it is reasonable to choose 𝜸 as the centerline
of the track. In this way, the shape of the track is described by its curvature 𝐾(𝑠),
which is embedded in the system model, while the width of the track is defined by
simple bound constraints on the state 𝑑 (i.e. −𝑑𝑙𝑖𝑚 ≤ 𝑑 ≤ 𝑑𝑙𝑖𝑚, where 𝑑𝑙𝑖𝑚 is the track
width from centerline to border and 𝑊𝑡𝑟𝑎𝑐𝑘 = 2 ⋅ 𝑑𝑙𝑖𝑚 is the track width from inner to
outer border).

Frenet coordinates makes simpler also the formulation of tracking MPC problems, which
are aimed at tracking a specific trajectory inside the track.
In particular, if we want the quadrotor to track the centerline, the MPC problem can
be formulated as a tracking MPC with constant reference, where the reference state
(limited to Frenet coordinates) is (𝑠𝑟, 𝑑𝑟) = (𝐿𝑡𝑟𝑎𝑐𝑘, 0), where 𝐿𝑡𝑟𝑎𝑐𝑘 is the total length
of the track, from start to finish line (see Chapter 3 for more details).

The price of using the Frenet coordinate system is that any linear Cartesian model
becomes nonlinear in Frenet coordinates. Therefore, in principle, in order to control the

Page 35 of 158

2. Quadrotor modelling in Frenet coordinates

quadrotor, a Nonlinear Model Predictive Control (NMPC) algorithm has to be used.
However, as we will see in Chapter 3, we can control the quadrotor also through Linear
MPC, by employing, in the MPC optimization problem, an affine time-variant (ATV)
version of the nonlinear quadrotor model (see § 3.6.2 for more details).

Nonetheless, the real value of Frenet coordinates is the possibility to convert the non-
convex and nonlinear Cartesian constraints on the track shape and width in simple
bound constraints, which are convex and very well handled by all solvers.

Page 36 of 158

3
Model Predictive Control for
quadrotor trajectory tracking

3.1. Introduction to MPC and NMPC

Model predictive control (MPC) is an advanced and flexible control method that
founds application in a wide range of fields, from industrial processes to power

electronics devices. MPC relies on the knowledge of the dynamic model of the system to
be controlled and provides numerous advantages with respect to other control techniques:
it can be easily formulated for general MIMO systems, it allows to manage systematically
states and inputs saturations, and, under certain conditions, it ensures the asymptotic
stability of the closed-loop system.

MPC, differently from many other control methods, does not rely on a static control
law (for example, in the form of a transfer function 𝐶(𝑠)), but follows algorithmically
some defined steps to generate the control inputs; for this reason, typically we denote
MPC as a control algorithm rather than a control law.

At each time step 𝑘 (in which the system will be at state 𝒙𝑘), the MPC control algorithm,
knowing the system model, simulates (i.e. predicts) how the system states would change
by applying any possible input sequence over the next 𝑁 time steps (where 𝑁 is called
prediction horizon). Among all the trajectories generated by these input sequences, it

Page 37 of 158

3. Model Predictive Control for quadrotor trajectory tracking

chooses the “best” one according to some optimization criterion; typically, the optimal
predicted state trajectory and input sequence are chosen as those minimizing a certain
cost function.

The control algorithm, then, applies to the system only the first input of the predicted
sequence, making the system evolve to the next state 𝒙𝑘+1; this strategy is called receding
horizon control.

We see that, at each time step, the MPC control algorithm follows two steps:

• prediction, in which it solves an online optimization problem (which is also called
control problem), knowing the current state of the system, obtaining an optimal
predicted state trajectory and input sequence;

• control, in which it applies to the system the first of the optimal predicted inputs,
obtaining the next state.

Then, the algorithm is iterated until the full closed-loop state trajectory is generated.

Since the MPC prediction step relies on solving an optimization problem, we can include
in it some constraints on the states and inputs values; in this way, through MPC, we
can systematically manage the trade-off between performance and control effort.

MPC denotes a whole class of different algorithms, based on the same principle of
prediction and control, but applied to different types of systems and with peculiar
properties.
The most general MPC algorithm is Nonlinear Model Predictive Control (NMPC), which,
as the name suggests, can be used to control generic nonlinear MIMO systems, and
allows to specify nonlinear constraints in the optimization problem.

In the following sections, we will focus our attention on the most general NMPC frame-
work.

3.2. NMPC theoretical formulation

In this section, we provide all the fundamental concepts that are required to formulate
the NMPC control problem.

Page 38 of 158

3.2. NMPC theoretical formulation

Consider the nonlinear discrete-time system:

𝒙𝑘+1 = 𝒇(𝒙𝑘, 𝒖𝑘) (3.1)

where 𝒙 ∈ R𝑛 are the system states and 𝒖 ∈ R𝑚 are the system inputs; the generic
nonlinear function 𝒇(𝒙, 𝒖) is assumed to be continuous.

To formulate the NMPC optimization problem (OP), we need to define the following
entities:

• the optimization variables;

• the cost function (i.e. the function to be optimized);

• the constraints on the optimization variables.

3.2.1. Optimization variables

Since in the prediction phase the NMPC algorithm needs to simulate the system states
evolution over all the possible input sequences, the system equations (3.1) have to be
embedded inside the optimization problem for each time instant of the prediction hori-
zon.

To include these equations, we can formulate the NMPC problem in 2 forms: explicit
prediction form and implicit prediction form [10].

• The explicit prediction form expresses the predicted states as function of the given
initial state and the predicted inputs. The expressions of the predicted states are
therefore expanded using the system equations, making appear (in the cost function
and in the constraints) only the initial state and the predicted inputs.
Therefore, the optimization variables for this problem are only the predicted inputs.

• The implicit prediction form, instead, considers as optimization variables both the
predicted states and the predicted inputs, inserting the system equations as equality
constraints of the optimization problem for each time instant of the prediction hori-
zon.
Although this formulation yields to a larger number of optimization variables, the
optimization problem has a better structure and a lot of sparsity, which are two
properties that are well exploited by solvers.

Page 39 of 158

3. Model Predictive Control for quadrotor trajectory tracking

For our needs, we will use the implicit prediction form, meaning that the system equa-
tions will be inserted as equality constraints for the predicted states and predicted inputs
optimization variables.

The optimization variables will then be the predicted states and predicted inputs over
the prediction horizon. For a generic time instant 𝑘, they are denoted as follows:

{𝒙𝑡|𝑘}𝑁
𝑡=0, {𝒖𝑡|𝑘}𝑁−1

𝑡=0 (3.2)

where 𝑁 is the prediction horizon.

The notation “𝑡|𝑘” has the following meaning: 𝑡 is the time instant of the optimization
variable over the prediction horizon 𝑡 ∈ [0, 1, ..., 𝑁]; 𝑘, instead, denotes the global time
instant in which the system is (meaning that the current state of the system is 𝒙𝑘).

Note 3.1 This implies that 𝒙𝑘 = 𝒙0|𝑘, since the current state of the system is
used as initial state to simulate all the possible state trajectories over the prediction
horizon.

We denote the predicted state trajectory and the predicted input sequence as:

𝑿[0,𝑁]|𝑘 ≡ 𝑿𝑘 = (𝒙𝑡|𝑘)𝑁
𝑡=0 = (𝒙0|𝑘, 𝒙1|𝑘, ..., 𝒙𝑁|𝑘) (3.3a)

𝑼[0,𝑁−1]|𝑘 ≡ 𝑼𝑘 = (𝒖𝑡|𝑘)𝑁−1
𝑡=0 = (𝒖0|𝑘, 𝒖1|𝑘, ..., 𝒖𝑁−1|𝑘) (3.3b)

3.2.2. Cost function

The general expression of the cost function is the following:

𝐽𝑁𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘) = 𝐽[0,𝑁−1](𝑿𝑘, 𝑼𝑘) + 𝑉 (𝒙𝑁|𝑘) ≡
𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) + 𝑉 (𝒙𝑁|𝑘) (3.4)

𝐽𝑁𝑀𝑃𝐶 is the cost function, ℎ is the stage cost function, and 𝑉 is the terminal cost
function. 𝑉 is not mandatory in the definition of the cost function, but it required
when we want to ensure the asymptotic stability of the NMPC algorithm (see § 3.4);
𝐽[0,𝑁−1] represents the NMPC cost function without terminal cost.

We see that the function 𝐽𝑁𝑀𝑃𝐶 to be optimized depends on all the predicted states and
predicted inputs over the prediction horizon (𝑿𝑘, 𝑼𝑘).

The cost function is constructed with the purpose of formulating a tracking NMPC
problem. This means that the solution of the optimization problem leads to a predicted

Page 40 of 158

3.2. NMPC theoretical formulation

input sequence that makes the state trajectory to pursue a reference state 𝒙𝑟, that will
be eventually reached for 𝑘 → ∞.

To ensure that the NMPC problem accomplishes the reference tracking, we must satisfy
the following requisites [5]:

1) It must exist an input 𝒖𝑟 such that the couple (𝒙𝑟, 𝒖𝑟) is an equilibrium point of
the open-loop system (3.1):

𝒙𝑟 = 𝒇(𝒙𝑟, 𝒖𝑟) (3.5)

2) The stage cost function ℎ(𝒙, 𝒖) should penalize the distance of an arbitrary state 𝒙
to 𝒙𝑟.
In addition, it is often desired to penalize also the input 𝒖. This can be useful for
computational reasons, since optimization problems may be easier to solve if the
input variable is also penalized; moreover, penalizing 𝒖 allows to tune the control
signal effort, thus avoiding the generation of input signals requiring a high expense
of energy to be applied.

To ensure that ℎ penalizes the distance from 𝒙𝑟 for all 𝒙 ∈ R, we require ℎ to be
positive definite in (𝒙𝑟, 𝒖𝑟):

ℎ(𝒙𝑟, 𝒖𝑟) = 0, ℎ(𝒙, 𝒖) > 0, ∀(𝒙, 𝒖) ∈ R𝑛 × R𝑚 ∖ {(𝒙𝑟, 𝒖𝑟)} (3.6)

Sometimes, the input 𝒖𝑟 cannot be easily determined; in these cases, the function
ℎ is defined as positive definite in (𝒙𝑟, 𝟎). In this way, the input 𝒖 is penalized
considering its distance from 𝟎 (and not from 𝒖𝑟).
Since the penalization of 𝒖 is not a mandatory condition for the tracking NMPC
to work, the algorithm will still accomplish the tracking of 𝒙𝑟 also with this cost
function.

Without loss of generality, all the previous considerations can be extended to a time-
variant state 𝒙𝑟(𝑘), which is commonly denoted as reference trajectory.

A typical choice for the cost function is the following:

𝐽𝑁𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘) =
𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) =
𝑁−1
∑
𝑡=0

(𝒙𝑡|𝑘 − 𝒙𝑟)𝑇 𝑸(𝒙𝑡|𝑘 − 𝒙𝑟) + 𝒖𝑇
𝑡|𝑘𝑹𝒖𝑡|𝑘 (3.7)

where 𝑸 and 𝑹 are diagonal matrices.

Page 41 of 158

3. Model Predictive Control for quadrotor trajectory tracking

The cost function is quadratic and satisfies (3.6) to ensure reference tracking. By tuning
the weight matrices𝑸 and𝑹, it is possible to regulate the trade-off between the speed of
convergence of the system to the reference state 𝒙𝑟 and the amplitude of the input signal
(i.e. the control effort). Specifically, the higher is ‖𝑸‖ (where ‖ ⋅ ‖ denotes an induced
matrix norm), the faster the system will converge to the reference state (typically causing
an increase in amplitude of the input signal); instead, the higher is ‖𝑹‖, the lower will
be the amplitude of the input signal (typically causing a reduction of the convergence
speed).

3.2.3. Constraints

As already mentioned in § 3.1, since NMPC relies on solving an optimization problem,
this one can be formulated as a constrained optimization problem, meaning that we can
impose to find the optimal predicted states and inputs within specific subsets of R𝑛 and
R𝑚.

This means that, in the formulation of the NMPC problem, we can include constraints
in the following form:

𝒙𝑡|𝑘 ∈ 𝒳, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.8a)

𝒖𝑡|𝑘 ∈ 𝒰, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.8b)

𝒙𝑁|𝑘 ∈ 𝒳𝐹 (3.8c)

where 𝒳 ⊂ R𝑛, 𝒰 ⊂ R𝑚, and 𝒳𝐹 ⊂ R𝑛 are closed sets.

Typically, constraints (3.8a) and (3.8b) are expressed in the form of nonlinear inequality
constraints:

𝒄𝑥(𝒙𝑡|𝑘) ≤ 𝟎, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.9a)

𝒄𝑢(𝒖𝑡|𝑘) ≤ 𝟎, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.9b)

We see that the constraint (3.8c) regarding the terminal state 𝒙𝑁|𝑘 is defined sepa-
rately. This constraint, called terminal constraint, is not mandatory in the formulation
of the NMPC problem, but is required when we want to ensure asymptotic stability and
recursive feasibility of the NMPC algorithm (see § 3.4).

Page 42 of 158

3.3. NMPC optimization problem

3.3. NMPC optimization problem

In this section, by using all the concepts that have been described above, we provide
the formulation of the NMPC control problem, which, as already mentioned, takes the
form of an optimization problem (more specifically, a finite-horizon constrained optimal
control problem):

NMPC optimization problem

(𝑿∗
𝑘, 𝑼 ∗

𝑘) = argmin
𝑿𝑘,𝑼𝑘

𝐽𝑁𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘)

𝐽𝑁𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘) = 𝐽[0,𝑁−1](𝑿𝑘, 𝑼𝑘) + 𝑉 (𝒙𝑁|𝑘) =

=
𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) + 𝑉 (𝒙𝑁|𝑘) (3.10a)

subject to:

𝒙𝑡+1|𝑘 = 𝒇(𝒙𝑡|𝑘, 𝒖𝑡|𝑘), 𝑡 = 0, 1, ..., 𝑁 − 1 (3.10b)

𝒙0|𝑘 = 𝒙𝑘 (3.10c)

𝒙𝑡|𝑘 ∈ 𝒳, 𝒖𝑡|𝑘 ∈ 𝒰, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.10d)

𝒙𝑁|𝑘 ∈ 𝒳𝐹 (3.10e)

The problem optimization variables are:

𝑿𝑘 = (𝒙0|𝑘, 𝒙1|𝑘, ..., 𝒙𝑁|𝑘)
𝑼𝑘 = (𝒖0|𝑘, 𝒖1|𝑘, ..., 𝒖𝑁−1|𝑘) (3.11)

representing the predicted state trajectory and the predicted input sequence, as in (3.3).

(3.10b) and (3.10c) represent respectively the system equations and the initial condition;
(3.10d) are the states and inputs constraints; (3.10e) is the terminal constraint.

The most basic version of the problem does not include the terminal cost function 𝑉
and the terminal constraint (3.10e):

(𝑿∗
𝑘, 𝑼 ∗

𝑘) = argmin
𝑿𝑘,𝑼𝑘

𝐽𝑁𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘)

𝐽𝑁𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘) = 𝐽[0,𝑁−1](𝑿𝑘, 𝑼𝑘) =
𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) (3.12a)

subject to:

Page 43 of 158

3. Model Predictive Control for quadrotor trajectory tracking

𝒙𝑡+1|𝑘 = 𝒇(𝒙𝑡|𝑘, 𝒖𝑡|𝑘), 𝑡 = 0, 1, ..., 𝑁 − 1 (3.12b)

𝒙0|𝑘 = 𝒙𝑘 (3.12c)

𝒙𝑡|𝑘 ∈ 𝒳, 𝒖𝑡|𝑘 ∈ 𝒰, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.12d)

The optimal predicted state trajectory and the optimal predicted input sequence, which
are indeed the solutions of the optimization problem (3.10), are denoted as:

𝑿∗
𝑘 = (𝒙∗

0|𝑘, 𝒙∗
1|𝑘, ..., 𝒙∗

𝑁|𝑘)
𝑼∗

𝑘 = (𝒖∗
0|𝑘, 𝒖∗

1|𝑘, ..., 𝒖∗
𝑁−1|𝑘) (3.13)

while the optimal value of the cost function is denoted as 𝐽 ∗
𝑁𝑀𝑃𝐶|𝑘; this optimal cost can

be also expressed specifying the initial state 𝒙𝑘: 𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙𝑘).

The control algorithm consists in computing, at time 𝑘, the input sequence 𝑼∗
𝑘 and

applying to system (3.1) only the first element of it:

𝒖𝑘 ≐ 𝒖∗
0|𝑘 (3.14)

Then, the next state 𝒙𝑘+1 is computed and is used to initialize the new optimization
problem at time 𝑘 + 1: 𝒙0|𝑘+1 ≐ 𝒙𝑘+1.

The control strategy, as already mentioned in § 3.1, is called receding horizon control.

At the end of the algorithm, the obtained closed-loop trajectory and input sequence are
denoted as:

𝑿 = (𝒙0, 𝒙1, ..., 𝒙𝑘, ...)
𝑼 = (𝒖0, 𝒖1, ..., 𝒖𝑘, ...) (3.15)

Note 3.2 In practical applications, as we will see in the following, the closed-
loop trajectory has a finite time duration 𝑇 , which is the time instant at which
the NMPC algorithm is terminated (the algorithm is terminated when the state 𝒙𝑇
satisfies a certain exit condition, that will be formulated in § 3.5):

𝑿 = (𝒙0, 𝒙1, ..., 𝒙,
𝑘..., 𝒙𝑇)

𝑼 = (𝒖0, 𝒖1, ..., 𝒖𝑘, ..., 𝒖𝑇 −1) (3.16)

We can state that (3.10) and (3.14) fully describe the NMPC control algorithm; together
with (3.1), they fully describe also the closed-loop system (i.e. the system controlled by
the NMPC algorithm).

Page 44 of 158

3.4. NMPC properties

3.4. NMPC properties

After having shown the formulation of the NMPC optimization problem, we now provide
some fundamental theorems associated to NMPC.
Specifically, we will prove, as briefly mentioned in the previos sections, how to ensure
asymptotic stability and recursive feasibility of the NMPC algorithm, by including in
the control problem a suitable terminal constraint and terminal cost function.

3.4.1. Recursive feasibility

The NMPC problem is recursively feasible if, for all the feasible initial states 𝒙0, the
NMPC problem is also feasible for any other state 𝒙𝑘, 𝑘 ≥ 1, of the closed-loop trajec-
tory.

Typically, NMPC problems, even if they are feasible at 𝑘 = 0, may become infeasible at
one of the next time instants, since the set of initial states leading to a feasible closed-
loop trajectory (i.e. recursive feasibility) is in general a subset of the one containing the
feasible initial states for open-loop prediction [7].

Assumption 3.1 The terminal set 𝒳𝐹 of (3.10e) is a control invariant set for
the system (3.1). Specifically, 𝒳𝐹 is a control invariant set for (3.1) if, for 𝒙𝑘 ∈ 𝒳𝐹 ,
it always exists an input 𝒖′ such that:

𝒙𝑘+1 = 𝒇(𝒙𝑘, 𝒖′) ∈ 𝒳𝐹 (3.17)

Since, for (3.5), we have imposed that 𝒙𝑟 is an equilibrium point of (3.1), then the
smallest control invariant set containing 𝒙𝑟 is:

𝒳𝐹 = {𝒙𝑟} (3.18)

since, with 𝒖′ = 𝒖𝑟, 𝒇(𝒙𝑟, 𝒖′) = 𝒙𝑟 ∈ 𝒳𝐹 .

Note 3.3 Granting recursive feasibility means that the set of feasible initial
states becomes a control invariant set for system (3.1) [7]; this set will also coincide
with the one containing the initial states leading to a feasible closed-loop trajectory.

Page 45 of 158

3. Model Predictive Control for quadrotor trajectory tracking

Theorem 3.1 NMPC recursive feasibility

Consider the following NMPC problem:

(𝑿∗
𝑘, 𝑼 ∗

𝑘) = argmin
𝑿𝑘,𝑼𝑘

𝐽𝑁𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘)

𝐽𝑁𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘) =
𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) (3.19a)

subject to:

𝒙𝑡+1|𝑘 = 𝒇(𝒙𝑡|𝑘, 𝒖𝑡|𝑘), 𝑡 = 0, 1, ..., 𝑁 − 1 (3.19b)

𝒙0|𝑘 = 𝒙𝑘 (3.19c)

𝒙𝑡|𝑘 ∈ 𝒳, 𝒖𝑡|𝑘 ∈ 𝒰, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.19d)

𝒙𝑁|𝑘 ∈ 𝒳𝐹 (3.19e)

where the terminal constraint (3.19e) has been inserted.
The system (3.1) is controlled by the NMPC algorithm (3.19) and (3.14).

If Assumption 3.1 holds, then the NMPC is recursively feasible for all 𝑘 ≥ 0 [7]
[5].

Proof By definition of recursive feasibility, we assume that the initial state 𝒙0 is
feasible, i.e. it exists a feasible optimal predicted state trajectory and input sequence:

𝑿∗
0 = (𝒙∗

0|0, 𝒙∗
1|0, ..., 𝒙∗

𝑁|0)
𝑼∗

0 = (𝒖∗
0|0, 𝒖∗

1|0, ..., 𝒖∗
𝑁−1|0) (3.20)

Assume now that at time 𝑘 the NMPC (3.19) and (3.14) is feasible; this means that it
exists a feasible optimal predicted state trajectory and input sequence:

𝑿∗
𝑘 = (𝒙∗

0|𝑘, 𝒙∗
1|𝑘, ..., 𝒙∗

𝑁|𝑘)
𝑼∗

𝑘 = (𝒖∗
0|𝑘, 𝒖∗

1|𝑘, ..., 𝒖∗
𝑁−1|𝑘) (3.21)

Since the terminal constraint (3.19e) is present in the NMPC problem (3.19), the termi-
nal state 𝒙∗

𝑁|𝑘 will be inside 𝒳𝐹 .

For Assumption 3.1, 𝒳𝐹 is a control invariant set for system (3.1); therefore, it exists
an input 𝒖′ such that:

𝒙′ = 𝒇(𝒙∗
𝑁|𝑘, 𝒖′) ∈ 𝒳𝐹 (3.22)

Page 46 of 158

3.4. NMPC properties

For the receding horizon control (3.14), we have that:

𝒖𝑘 ≐ 𝒖∗
0|𝑘 (3.23)

Therefore, for Note 3.1, at time 𝑘 + 1:

𝒙𝑘+1 = 𝒇(𝒙𝑘, 𝒖𝑘) = 𝒇(𝒙∗
0|𝑘, 𝒖∗

0|𝑘) = 𝒙∗
1|𝑘 (3.24)

At time 𝑘 + 1, the input sequence:

(𝒖∗
1|𝑘, 𝒖∗

2|𝑘, ..., 𝒖∗
𝑁−1|𝑘, 𝒖′) (3.25)

and the related state trajectory:

(𝒙∗
1|𝑘, 𝒙∗

2|𝑘, ..., 𝒙∗
𝑁−1|𝑘, 𝒙∗

𝑁|𝑘, 𝒙′) (3.26)

satisfy input and state constrains (3.19b)-(3.19e). Therefore, (3.25)-(3.26) is a feasible
solution for the NMPC (3.19) and (3.14) at time 𝑘 + 1.

We showed that:

• with 𝒙0 belonging to the feasible initial states, the NMPC is feasible at time 𝑘 = 0;

• if the NMPC is feasible at time 𝑘, then the NMPC is feasible at time 𝑘 + 1.

Thus, we conclude by induction that the NMPC in (3.19) and (3.14) is feasible ∀𝑘 ≥ 0
[7]. ■

3.4.2. Asymptotic stability

Theorem 3.2 NMPC asymptotic stability

Consider the following NMPC problem:

(𝑿∗
𝑘, 𝑼 ∗

𝑘) = argmin
𝑿𝑘,𝑼𝑘

𝐽𝑁𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘)

𝐽𝑁𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘) =
𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) + 𝑉 (𝒙𝑁|𝑘) (3.27a)

subject to:

𝒙𝑡+1|𝑘 = 𝒇(𝒙𝑡|𝑘, 𝒖𝑡|𝑘), 𝑡 = 0, 1, ..., 𝑁 − 1 (3.27b)

Page 47 of 158

3. Model Predictive Control for quadrotor trajectory tracking

𝒙0|𝑘 = 𝒙𝑘 (3.27c)

𝒙𝑡|𝑘 ∈ 𝒳, 𝒖𝑡|𝑘 ∈ 𝒰, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.27d)

𝒙𝑁|𝑘 ∈ 𝒳𝐹 (3.27e)

where both the terminal cost function 𝑉 and the terminal constraint (3.27e) have
been inserted.
The system (3.1) is controlled by the NMPC algorithm (3.27) and (3.14).

If:

• the stage cost function ℎ is positive definite in (𝒙𝑟, 𝒖𝑟),

• the terminal set 𝒳𝐹 is a control invariant set for system (3.1) and contains 𝒙𝑟,

• the terminal cost function 𝑉 is a Lyapunov function in 𝒙𝑟, defined on the
terminal set 𝒳𝐹 , and such that, for 𝒙𝑘, 𝒙𝑘+1 ∈ 𝒳𝐹 :

𝑉 (𝒙𝑘+1) − 𝑉 (𝒙𝑘) ≤ −ℎ(𝒙𝑘, 𝒖𝑘) (3.28)

then 𝒙𝑟 is an asymptotically stable equilibrium point of the closed-loop system
(3.1), (3.27) and (3.14) [7] [5].

Proof To prove the asymptotic stability of 𝒙𝑟, we can show, according to Lyapunov’s
direct method, that the optimal cost 𝐽 ∗

𝑁𝑀𝑃𝐶(𝒙) is a Lyapunov function for the equilibrium
point 𝒙𝑟 of the closed-loop system (3.1), (3.27) and (3.14).
Specifically, we have to show that:

• 𝒙𝑟 is an equilibrium point of the closed-loop system;

• 𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙) is positive definite in 𝒙𝑟;

• 𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙𝑘+1) − 𝐽 ∗

𝑁𝑀𝑃𝐶(𝒙𝑘) < 0, where 𝑿 = (𝒙0, ..., 𝒙𝑘, 𝒙𝑘+1, ...) is the closed-loop
trajectory obtained via the LMPC control algorithm (3.27) and (3.14); equivalently,
𝐽 ∗

𝑁𝑀𝑃𝐶(𝒙) decreases along the closed-loop trajectory 𝑿.

To prove that 𝒙𝑟 is an equilibrium point of the closed-loop system, we have to show
that, if 𝒙𝑘 = 𝒙𝑟, the NMPC algorithm generates the optimal input 𝒖∗

0|𝑘 = 𝒖𝑟 and so
𝒙𝑘+1 = 𝒇(𝒙𝑟, 𝒖𝑟) = 𝒙𝑟.

Page 48 of 158

3.4. NMPC properties

By observing the problem (3.27), we see that, if 𝒙𝑘 = 𝒙0|𝑘 = 𝒙𝑟, the input sequence
𝑼𝑘 = (𝒖𝑟, ..., 𝒖𝑟) and the related state trajectory 𝑼𝑘 = (𝒙𝑟, ..., 𝒙𝑟) give a cost function
value 𝐽𝑁𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘) = 0. This holds since:

• 𝑿𝑘 and 𝑼𝑘 satisfy all the system equations (3.27b);

• from (3.6), ℎ is positive definite in (𝒙𝑟, 𝒖𝑟) ⇒ ℎ(𝒙𝑟, 𝒖𝑟) = 0;

• for hypothesis, 𝑉 is a Lyapunov function in 𝒙𝑟, which means that it is positive
definite in 𝒙𝑟 ⇒ 𝑉 (𝒙𝑟) = 0.

Being 0 the lowest value that can be reached by 𝐽𝑁𝑀𝑃𝐶, we conclude that, if 𝒙𝑘 = 𝒙0|𝑘 =
𝒙𝑟, then 𝒖∗

0|𝑘 = 𝒖𝑟.
Therefore, 𝒙𝑟 is an equilibrium point of the closed-loop system.

For the positive definiteness of ℎ and 𝑉 , 𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙) > 0, ∀𝒙 ∈ R𝑛 ∖ {𝒙𝑟}, and, for

what we have shown in the previous paragraph, 𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙𝑟) = 0, so 𝐽 ∗

𝐿𝑀𝑃𝐶(𝒙) is positive
definite in 𝒙𝑟.

Now, we need to show that 𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙) is decreasing along the closed-loop trajectory 𝑿.

For (3.14) and (3.27c), we have that 𝒙𝑘+1 = 𝒙∗
1|𝑘.

Given the optimal predicted input sequence and the related state trajectory in (3.13),
the optimal cost is given by:

𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙𝑘) = min

𝑿𝑘,𝑼𝑘

𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) + 𝑉 (𝒙𝑁|𝑘)

=
𝑁−1
∑
𝑡=0

ℎ(𝒙∗
𝑡|𝑘, 𝒖∗

𝑡|𝑘) + 𝑉 (𝒙∗
𝑁|𝑘) =

= ℎ(𝒙∗
0|𝑘, 𝒖∗

0|𝑘) +
𝑁−1
∑
𝑡=1

ℎ(𝒙∗
𝑡|𝑘, 𝒖∗

𝑡|𝑘) + 𝑉 (𝒙∗
𝑁|𝑘) (3.29)

Recalling the feasible trajectory (3.26) and input sequence (3.25), used to prove Theorem
3.1, we can compute the suboptimal cost 𝐽 ′

𝑁𝑀𝑃𝐶(𝒙∗
1|𝑘) associated to this trajectory:

𝐽 ′
𝑁𝑀𝑃𝐶(𝒙∗

1|𝑘) =
𝑁−1
∑
𝑡=1

ℎ(𝒙∗
𝑡|𝑘, 𝒖∗

𝑡|𝑘) + ℎ(𝒙∗
𝑁|𝑘, 𝒖′) + 𝑉 (𝒙′) (3.30)

Page 49 of 158

3. Model Predictive Control for quadrotor trajectory tracking

Being this cost suboptimal, it is for sure higher than the optimal cost 𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙∗

1|𝑘),
associated to the optimal predicted state trajectory at time 𝑘 + 1:

𝐽 ′
𝑁𝑀𝑃𝐶(𝒙∗

1|𝑘) ≥ 𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙∗

1|𝑘) (3.31)

Then, by substituting (3.30) and (3.31) in (3.29), we obtain:

𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙𝑘) = ℎ(𝒙∗

0|𝑘, 𝒖∗
0|𝑘) +

𝑁−1
∑
𝑡=1

ℎ(𝒙∗
𝑡|𝑘, 𝒖∗

𝑡|𝑘) + 𝑉 (𝒙∗
𝑁|𝑘) ≥

≥ ℎ(𝒙∗
0|𝑘, 𝒖∗

0|𝑘) + 𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙∗

1|𝑘) − ℎ(𝒙∗
𝑁|𝑘, 𝒖′) − 𝑉 (𝒙′) + 𝑉 (𝒙∗

𝑁|𝑘)

⇒ 𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙∗

1|𝑘) − 𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙𝑘) ≤ ℎ(𝒙∗

𝑁|𝑘, 𝒖′) − ℎ(𝒙∗
0|𝑘, 𝒖∗

0|𝑘) + 𝑉 (𝒙′) − 𝑉 (𝒙∗
𝑁|𝑘) (3.32)

Since 𝒙′ = 𝒇(𝒙∗
𝑁|𝑘, 𝒖′), 𝒙′, 𝒙∗

𝑁|𝑘 ∈ 𝒳𝐹 and for the hypothesis on 𝑉 , we have that:

𝑉 (𝒙′) − 𝑉 (𝒙∗
𝑁|𝑘) ≤ −ℎ(𝒙∗

𝑁|𝑘, 𝒖′) (3.33)

Therefore:

𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙∗

1|𝑘) − 𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙𝑘) ≤

≤ ℎ(𝒙∗
𝑁|𝑘, 𝒖∗

𝑁|𝑘) − ℎ(𝒙∗
0|𝑘, 𝒖∗

0|𝑘) + 𝑉 (𝒙′) − 𝑉 (𝒙∗
𝑁|𝑘) ≤

≤ −ℎ(𝒙∗
0|𝑘, 𝒖∗

0|𝑘) (3.34)

Finally, we conclude that the optimal cost is a decreasing Lyapunov function along the
closed-loop trajectory:

𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙𝑘+1) − 𝐽 ∗

𝑁𝑀𝑃𝐶(𝒙𝑘) ≤ −ℎ(𝒙𝑘, 𝒖𝑘) < 0 (3.35)

Therefore, we conclude that 𝒙𝑟 is asymptotically stable [7] [13]. ■

Note 3.4 From Theorem 3.2, we can derive an useful corollary, that still ensures
asymptotic stability while not requiring the inclusion of the terminal cost function
𝑉
Specifically, given the NMPC problem (3.27), if:

• the stage cost function ℎ is positive definite in (𝒙𝑟, 𝒖𝑟),

• the terminal set 𝒳𝐹 = {𝒙𝑟},

Page 50 of 158

3.5. NMPC algorithm

then 𝒙𝑟 is an asymptotically stable equilibrium point of the closed-loop system (3.1),
(3.27) and (3.14).

Since the terminal cost function is not present, it is equivalent to say that 𝑉 (𝒙) = 0.
Moreover, given (3.32) and noticing that, being 𝒳𝐹 = {𝒙𝑟} and 𝒙∗

𝑁|𝑘, 𝒙′ ∈ 𝒳𝐹
⇒ 𝒙∗

𝑁|𝑘 = 𝒙′ = 𝒙𝑟, we have that:

𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙∗

1|𝑘) − 𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙𝑘) ≤

≤ ℎ(𝒙∗
𝑁|𝑘, 𝒖∗

𝑁|𝑘) − ℎ(𝒙∗
0|𝑘, 𝒖∗

0|𝑘) + 𝑉 (𝒙′) − 𝑉 (𝒙∗
𝑁|𝑘) =

= ℎ(𝒙𝑟, 𝒖𝑟) − ℎ(𝒙∗
0|𝑘, 𝒖∗

0|𝑘) =
= ℎ(𝒙∗

0|𝑘, 𝒖∗
0|𝑘) < 0

⇒ 𝐽 ∗
𝑁𝑀𝑃𝐶(𝒙𝑘+1) − 𝐽 ∗

𝑁𝑀𝑃𝐶(𝒙𝑘) < 0 (3.36)

from which we conclude that 𝒙𝑟 is asymptotically stable.

The reduction of the terminal set 𝒳𝐹 to the single state 𝒙𝑟 has the consequence,
however, to reduce as well the set of initial feasible states 𝒙0 [7]. Therefore, it is
necessary to increase the prediction horizon 𝑁 to enlarge the feasible set.

Note 3.5 Theorem 3.1 provides a sufficient condition to ensure the recursive
feasibility of the NMPC problem. The inclusion of the terminal constraint, however,
can be avoided when a sufficiently large prediction horizon 𝑁 is chosen. Indeed, it
can be proved that if 𝑁 ≥ 𝑁 , the optimization problem is recursively feasible [2]. 𝑁
is called determinedness index and is difficult to compute, so typically its value is
guessed by trial and error.

3.5. NMPC algorithm

Finally, we can write the proper LMPC algorithm as follows:

Algorithm 3.1 Nonlinear Model Predictive Control

Inputs: 𝒙0; 𝑁 (prediction horizon)
Outputs: 𝑿; 𝑼

(1) Store the initial state 𝒙0 in 𝑿

Page 51 of 158

3. Model Predictive Control for quadrotor trajectory tracking

(2) For 𝑘 = 0, 1, ...:

(2.1) • If the exit condition on 𝒙𝑘 is satisfied, break the cycle (at 𝑘 = 𝑇);
• otherwise, continue

(2.2) Initialize the NMPC optimization problem (3.10) with 𝒙𝑘

(2.3) Solve the NMPC optimization problem, obtaining the optimal pre-
dicted state trajectory 𝑿∗

𝑘 = (𝒙∗
0|𝑘, 𝒙∗

1|𝑘, ..., 𝒙∗
𝑁|𝑘) and optimal pre-

dicted input sequence 𝑼∗
𝑘 = (𝒖∗

0|𝑘, 𝒖∗
1|𝑘, ..., 𝒖∗

𝑁−1|𝑘)

(2.4) Apply the input 𝒖𝑘 ≐ 𝒖∗
0|𝑘 to the system (3.1), as in (3.14), obtaining

the next state 𝒙𝑘+1

(2.5) Store 𝒙𝑘+1 and 𝒖𝑘 in 𝑿 and 𝑼

(3) Return the closed-loop state trajectory and input sequence:

𝑿 = (𝒙0, 𝒙1, ..., 𝒙𝑇)
𝑼 = (𝒖0, 𝒖1, ..., 𝒖𝑇 −1)

Note 3.6 As already mentioned in Note 3.2, the algorithm requires an exit
condition to obtain a finite-time trajectory. The exit condition at point (2.1) of the
algorithm can be chosen to determine whether the state 𝒙𝑘 is sufficiently close to
the reference state 𝒙𝑟. Therefore, it can be expressed as follows:

|𝒙𝑘 − 𝒙𝑟|
?
≤ 𝛿 (3.37)

where 𝛿 is set by the user.

3.6. NMPC relaxation

In this section, we show some useful methods to relax the NMPC constraints. These
relaxations make the problem more resistant to infeasibility and easier to solve, reducing
in this way the online computation time.

Page 52 of 158

3.6. NMPC relaxation

3.6.1. Slack variables

When implementing a NMPC algorithm that uses the base version of the optimization
problem (3.12) (i.e. no terminal constraint and terminal cost), as explained in Note
3.5 the only way to ensure recursive feasibility is to set a sufficiently high prediction
horizon 𝑁 . However, since high prediction horizons increase the number of optimization
variables and, in turn, the online computation time, we would like to find an alternative
way to prevent infeasibility while keeping 𝑁 low.

The major cause of infeasibility of the optimization problem (3.12) is the impossibility to
satisfy together the system equations constraints (3.12b) and the hard state constraints
(3.8a)/(3.9a).
In this cases, it is often introduced a new optimization variable 𝒆 ∈ R𝑛, called slack
variable, in order to soften the state constraints (3.9a) and prevent the infeasibility of
the optimization problem:

𝒄𝑥(𝒙𝑡|𝑘) ≤ 𝒆, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.38)

If the state constraint is a linear inequality, then it can be rewritten as:

𝑨𝑥𝒙𝑡|𝑘 ≤ 𝒃𝑥 + 𝒆
𝑨𝑥(𝒙𝑡|𝑘 − 𝑨−1

𝑥 𝒆) ≤ 𝒃𝑥

𝒙𝑡|𝑘 ∈ 𝒳 ⊕ 𝑨−1
𝑥 𝒆, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.39)

Adding the slack variable, the constraint is softened, permitting the system states to
go slightly outside the set 𝒳, preventing the infeasibility of the current optimization
problem and allowing the algorithm to continue with the next iterations.

Being the slack variable an additional optimization variable of the problem, it must be
inserted in the cost function, with a reference value 𝒆𝑟 = 𝟎 and in general, for simplicity,
with a quadratic term:

𝐽(𝑿𝑘, 𝑼𝑘, 𝒆) =
𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) + 𝒆𝑇 𝑲𝒆 (3.40)

In this case, the higher is ‖𝑲‖, the lower will be the softening of the constraints (i.e.
the higher is ‖𝑲‖, the higher 𝒆 will tend to be very close to 𝟎, meaning that the system
will be allowed to exit from the state constraint by very little).

Page 53 of 158

3. Model Predictive Control for quadrotor trajectory tracking

3.6.2. Nonlinear to affine time-variant system equations

Since we have formulated our NMPC problem in implicit prediction form, the system
equations (3.1) are inserted in the optimization problem as equality constraints (3.10b).

Being such constraints nonlinear, the whole problem will be a NLP (Non-Linear Pro-
gram), thus requiring a NLP solver. These solvers are typically very slow (since they
have to deal with a huge range of possible OPs) and their performance is strongly de-
pendent on the problem type, formulation, and complexity.
For our specific case, increasing the prediction horizon 𝑁 will slow down the solver,
since the number of optimization variables will be higher; moreover, this will slow it
down even more since, the higher is 𝑁 , the higher is the number of nonlinear equality
constraints associated to the system equations.

To deal with this issue, a possible approach is to linearize, at each time instant 𝑘, the
system equations around the current operating point of the system (i.e. the current
state 𝒙𝑘 and the previous input 𝒖𝑘−1). In this way, the NMPC problem is solved using
the linearized system equations at time 𝑘; such equations will be then updated at time
𝑘 + 1 with the new state 𝒙𝑘+1 and the input 𝒖𝑘.
The state update will be still computed using the nonlinear system equations, i.e. 𝒙𝑘+1 =
𝒇(𝒙𝑘, 𝒖𝑘).

For the linearization at time 𝑘 we use the previous input 𝒖𝑘−1, since the input 𝒖𝑘 is
still to be computed by the NMPC optimization problem at time 𝑘 (i.e. 𝒖𝑘 = 𝒖∗

0|𝑘).

Being the operating point (𝒙𝑘, 𝒖𝑘−1) not necessarily an equilibrium point of the system,
the linearization provides a set of Affine Time-Variant (ATV) equations, as shown in
the following.

Denoting as (𝒙𝑘, 𝒖𝑘−1) the operating point, the linearization (neglecting higher order
terms to achieve linearity) is done as follows:

𝒇(𝒙𝑘, 𝒖𝑘) ≈ 𝒇(𝒙𝑘, 𝒖𝑘−1) + 𝜕𝒇
𝜕𝒙(𝒙𝑘, 𝒖𝑘−1) (𝒙𝑘 − 𝒙𝑘) + 𝜕𝒇

𝜕𝒖(𝒙𝑘, 𝒖𝑘−1) (𝒖𝑘 − 𝒖𝑘−1) ≡

≡ 𝒇(𝒙𝑘, 𝒖𝑘−1) + 𝑨𝑘(𝒙𝑘 − 𝒙𝑘) + 𝑩𝑘(𝒖𝑘 − 𝒖𝑘−1) (3.41)

where:

𝜕𝒇
𝜕𝒙 ≡ 𝑱𝒇,𝒙 =

⎛⎜⎜⎜⎜
⎝

𝜕𝑓1
𝜕𝑥1

⋯ 𝜕𝑓1
𝜕𝑥𝑛

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑥1

⋯ 𝜕𝑓𝑛
𝜕𝑥𝑛

⎞⎟⎟⎟⎟
⎠

≡ 𝑨 (3.42a)

Page 54 of 158

3.7. NMPC for quadrotors

𝜕𝒇
𝜕𝒖 ≡ 𝑱𝒇,𝒖 =

⎛⎜⎜⎜⎜
⎝

𝜕𝑓1
𝜕𝑢1

⋯ 𝜕𝑓1
𝜕𝑢𝑚

⋮ ⋱ ⋮
𝜕𝑓𝑛
𝜕𝑢1

⋯ 𝜕𝑓𝑛
𝜕𝑢𝑚

⎞⎟⎟⎟⎟
⎠

≡ 𝑩 (3.42b)

are the Jacobian matrices of 𝒇 wrt 𝒙 and 𝒖.

The ATV model can be then written as:

𝒙𝑘+1 = 𝒇(𝒙𝑘, 𝒖𝑘−1) + 𝑨𝑘(𝒙𝑘 − 𝒙𝑘) + 𝑩𝑘(𝒖𝑘 − 𝒖𝑘−1) =
= 𝑨𝑘𝒙𝑘 + 𝑩𝑘𝒖𝑘 + 𝒇(𝒙𝑘, 𝒖𝑘−1) − 𝑨𝑘𝒙𝑘 − 𝑩𝑘𝒖𝑘−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝒄𝑘

=

= 𝑨𝑘𝒙𝑘 + 𝑩𝑘𝒖𝑘 + 𝒄𝑘 (3.43)

We see that this model is time-variant, since its matrices 𝑨𝑘 and 𝑩𝑘 depend on the
discrete time 𝑘 (specifically, they depend on the current state and previous input of the
system), and affine, since the extra term 𝒄𝑘 is present (𝒄𝑘 would be equal to 𝟎 if the
operating point (𝒙𝑘, 𝒖𝑘−1) is also an equilibrium point of the system).

With this approximation, the nonlinear equality constraints (3.10b) become linear:

𝒙𝑡+1|𝑘 = 𝑨𝑘𝒙𝑡|𝑘 + 𝑩𝑘𝒖𝑡|𝑘 + 𝒄𝑘, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.44)

This means that, if the cost function (3.10a) is quadratic as in (3.7), the NMPC problem
becomes a QP (Quadratic Program), meaning that now it requires just a QP solver.
These solvers are much quicker that NP solvers and their performance is reliable and
not significantly altered by the problem complexity [1].

3.7. NMPC for quadrotors

We now apply all the NMPC concepts that have been described until now for the purpose
of controlling the quadrotor described in Chapter 2.

Let’s consider the nonlinear discrete-time dynamic model of the quadrotor in Frenet
coordinates (2.94):

𝒙𝑘+1 = 𝒇𝑄(𝒙𝑘, 𝒖𝑘, 𝐾(𝑠𝑘)) (3.45)

in which we make explicit the dependence on the curvature function 𝐾(𝑠) for a reason
that will be explained in § 3.7.2.

Page 55 of 158

3. Model Predictive Control for quadrotor trajectory tracking

The goal is to formulate a basic NMPC algorithm (3.12) and (3.14) (i.e. with no terminal
constraint and terminal cost) that makes the quadrotor to track a predefined trajectory
within the race track.
For the observations made in § 2.9.2, this task can be achieved by formulating a tracking
NMPC problem with constant reference if we want, for example, to track the center-
line or, in general, any other trajectory that keeps a constant lateral distance 𝑑 from
the centerline. We may want also, for a reason that will be explained in Note 4.8 of
Chapter 4, to generate a trajectory whose lateral distance 𝑑 oscillates within the range
[−𝑑𝑙𝑖𝑚, 𝑑𝑙𝑖𝑚], where 𝑑𝑙𝑖𝑚 is the track width from centerline to border.
The NMPC problem can be then relaxed as shown in § 3.6, to obtain a Linear MPC
version of it, so to make it faster to be solved and resistant to infeasibility.

In the following, we construct every element of the NMPC problem, to eventually derive
the final control problem and algorithm.

3.7.1. Track definition

As already mentioned in § 2.9.2, the race track is defined by means of three elements:

• the Frenet curve 𝜸, which is set to be the centerline of the track;

• the curvature function of 𝜸, 𝐾(𝑠), which is embedded in the quadrotor model (2.94);

• an upper-lower bound constraint on the state variable 𝑑, defining the width of the
track, and, so, its lateral boundaries.

For what concerns the choice of 𝐾(𝑠), which defines the shape of the track, we consider
it as belonging to the set of constant piecewise functions: this means that the track will
be composed by a sequence of straight lines and circular curves, of any length and angle.

In Figure 3.1 are depicted three possible tracks having a constant piecewise curvature
𝐾(𝑠); specifically, these three tracks will be used in the simulations to test the algorithm
(see Chapter 5).

Page 56 of 158

3.7. NMPC for quadrotors

(a) Track 1

(b) Track 2

(c) Track 3

Figure 3.1. Examples of tracks with a constant piecewise curvature function. These three tracks will
be used in the simulations to test the algorithm.

3.7.2. Curvature propagation and relaxation

In the equations (2.91), we see that it appears the analytical curvature function 𝐾(𝑠)
of the Frenet curve 𝜸. The expression of this function cannot be easily inserted in the
system equations constraints (3.12b) of the NMPC problem, since:

• as previously said, 𝐾(𝑠) is typically a constant piecewise function;

Page 57 of 158

3. Model Predictive Control for quadrotor trajectory tracking

• functions with complicated expressions inside the NMPC constraints are not sup-
ported by many solvers;

• if we want to use the ATV model, the nonlinear model equations need to be differ-
entiated, therefore 𝐾(𝑠) should be at least differentiable once, which is not the case
of constant piecewise functions.

Therefore, as suggested also in [3], we need to deal with 𝐾(𝑠) in a different way, as
explained in the following.

The curvature 𝐾(𝑠) in the model equations will be considered as a constant parameter
𝐾, transforming (2.94) as follows:

𝒙𝑘+1 = 𝒇𝑄(𝒙𝑘, 𝒖𝑘, 𝐾(𝑠𝑘)) → 𝒙𝑘+1 = ̂𝒇𝑄(𝒙𝑘, 𝒖𝑘, 𝐾) (3.46)

At each time instant 𝑘, the value of the current curvature 𝐾(𝑠𝑘) will be passed to the
NMPC optimization problem, which will set it as the constant value for 𝐾 in the model
equations constraints.
This means that the NMPC problem will compute the optimal predicted states and
inputs assuming that, over its prediction horizon, the curvature is constant to its initial
value at 𝑠𝑘 = 𝑠0|𝑘. This action is denoted as curvature propagation.

This approach surely solves the issue of embedding the analytical 𝐾(𝑠) in the NMPC
constraints. However, now a new problem arises. Let’s assume that the curvature
abruptly changes at a certain point of the track, for example during the transition from
a straight line to a curve: the NMPC will “notice” the presence of the curve only at the
end of the straight line, since we have imposed the curvature as constant in each NMPC
optimization problem.
This issue eliminates all the advantages of having a predictive control strategy, since
the prediction is falsified by imposing the constant curvature.

A possible solution to this problem (which leads to good results, as shown in Chapter
5), is denoted as curvature relaxation and consists in evaluating the current curvature
𝐾 = 𝐾(𝑠𝑘) using a relaxed curvature function 𝐾̃(𝑠).

This relaxed function 𝐾̃ connects the constant piecewise segments of the original func-
tion 𝐾 with third-order polynomials, ensuring the continuity of the derivatives in the
junction points (Figure 3.2).

Page 58 of 158

3.7. NMPC for quadrotors

Figure 3.2. Track 2 with relaxed curvature function (𝐾𝑟𝑒𝑙 = 30%)

This connection using polynomials is particularly useful to reduce the steepness of verti-
cal edges of stepwise curvatures: the gradual change of curvature in the relaxed function
allows the NMPC to better predict the future change of curvature, even if the curvature
is still considered constant in each optimization problem.

To quantify how much the curvature is relaxed, we define a parameter 𝐾𝑟𝑒𝑙, called
curvature relaxation coefficient, that is equal to the percentage of each step that has
been “replaced” by the junction polynomial; in Figure 3.2, 𝐾𝑟𝑒𝑙 = 30%, since, after the
relaxation, the length of each step is reduced by 30%.

3.7.3. Cost function

For our NMPC problem, we use a quadratic cost function as the one shown in (3.7).
However, to ensure a better behaviour of the quadrotor under control, an additional
quadratic term is added to it:

𝐽𝑁𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘, 𝑒1, 𝑒2) =
𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) +
𝑁−1
∑
𝑡=1

ℎ′(𝒙𝑡|𝑘, 𝒖𝑡|𝑘, 𝒙𝑡−1|𝑘, 𝒖𝑡−1|𝑘)+

+ 𝐾1𝑒2
1 + 𝐾2𝑒2

2 =

=
𝑁−1
∑
𝑡=0

(𝒙𝑡|𝑘 − 𝒙𝑟)𝑇 𝑸(𝒙𝑡|𝑘 − 𝒙𝑟) + 𝒖𝑇
𝑡|𝑘𝑹𝒖𝑡|𝑘+ (3.47a)

+
𝑁−1
∑
𝑡=1

(𝒙𝑡|𝑘 − 𝒙𝑡−1|𝑘)𝑇 𝑸Δ(𝒙𝑡|𝑘 − 𝒙𝑡−1|𝑘) + (𝒖𝑡|𝑘 − 𝒖𝑡−1|𝑘)𝑇 𝑹Δ(𝒖𝑡|𝑘 − 𝒖𝑡−1|𝑘)+

(3.47b)

+ 𝐾1𝑒2
1 + 𝐾2𝑒2

2 (3.47c)

As already explained in § 3.2.2, the term (3.47a) of the cost function satisfies (3.6) to

Page 59 of 158

3. Model Predictive Control for quadrotor trajectory tracking

ensure that the quadrotor tracks the reference state.

The term (3.47b) is very helpful to adjust the behaviour of the quadrotor, since it
penalizes the variation (i.e. the discrete-time derivative) of the system states and inputs.
By tuning the weight matrices 𝑸Δ and 𝑹Δ, it is possible to force the quadrotor to
follow a smoother trajectory, without abrupt changes in its velocity and accelerations.
Specifically, the higher is ‖𝑸Δ‖, the lower will be the difference between consecutive
states (leading to smoother but slower trajectories); the higher is ‖𝑹Δ‖, the lower will be
the difference between consecutive inputs (preventing abrupt changes in the trajectories
at the price of reducing speed and maneuverability).

The term (3.47c), finally, is related to two slack variables 𝑒1, 𝑒2 ∈ R that will be inserted
in the problem constraints (see next section).

Reference state

For the purpose of trajectory tracking, the reference state 𝒙𝑟 will be the following:

𝒙𝑟 = (𝑧𝑟 0 0 45° 0 0 0 0 0 0 𝐿𝑡𝑟𝑎𝑐𝑘 𝑑𝑟 ⋆) (3.48)

In 𝒙𝑟, the states denoted with “⋆” are associated to a weight equal to 0 in the matrix
𝑸, so their value is not needed to be specified. Such states are then not penalized by
the cost function.

We see that the reference values 𝑧𝑟 and 𝐿𝑡𝑟𝑎𝑐𝑘 define a trajectory with constant altitude
and directed towards the finish line of the track.
Regarding the reference value for 𝑑𝑟, it can be either chosen constant, if we want to
track the centerline or any other curve that keeps a constant lateral distance from it,
or variable, if we want the trajectory to oscillate; specifically, in the latter case, 𝑑𝑟 is
defined as:

𝑑𝑟(𝑠𝑘) = 𝑐𝑜 ⋅ 𝑑𝑢 − 𝑑𝑙
2 ⋅ sin(𝑛𝑜 ⋅ 2𝜋 𝑠𝑘

𝐿𝑡𝑟𝑎𝑐𝑘
) + 𝑑𝑢 + 𝑑𝑙

2 (3.49)

where 𝑠𝑘 is the current position of the quadrotor, 𝑑𝑙 and 𝑑𝑢 are respectively the lower
and upper bounds of the oscillation, 𝑛𝑜 is the number of oscillations over the track
length, and 𝑐𝑜 ∈ [−1, 1] is a coefficient for tuning the amplitude and direction of the
oscillations.

The value 𝜓𝑟 = 45° ensures that the quadrotor will move in cross configuration; the
values 𝜙𝑟 = 𝜃𝑟 = 0° ensure that the quadrotor will not have high tilt angles, that, if too

Page 60 of 158

3.7. NMPC for quadrotors

large, may enter in the gimbal lock configuration (see Note 3.8).
The other values (related to Cartesian velocities and angular rates) are set to 0 to ensure
that 𝒙𝑟 is an equilibrium point of the open-loop system as in (3.5).

3.7.4. Constraints

The following constraints will be added to the NMPC problem:

• ATV model equations constraints (implicit prediction form);

• track boundaries, i.e. bounds on the lateral distance 𝑑;

• bounds on the altitude 𝑧;

• bounds on other state variables, in order to force the desired quadrotor behaviour
during its motion.

The constraints will be expressed as follows:

𝒙𝑡+1|𝑘 = 𝑨𝑘𝒙𝑡|𝑘 + 𝑩𝑘𝒖𝑡|𝑘 + 𝒄𝑘, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.50a)

𝒙0|𝑘 = 𝒙𝑘 (3.50b)

− 𝑑𝑙𝑖𝑚 − 𝑒1 ≤ 𝑑𝑡|𝑘 ≤ 𝑑𝑙𝑖𝑚 + 𝑒1, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.50c)

𝑧(𝑚) − 𝑒2 ≤ 𝑑𝑡|𝑘 ≤ 𝑧(𝑀) + 𝑒2, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.50d)

𝑣(𝑚)
𝑥 ≤ 𝑣𝑥,𝑡|𝑘 ≤ 𝑣(𝑀)

𝑥 , 𝑡 = 0, 1, ..., 𝑁 − 1 (3.50e)

𝑣(𝑚)
𝑦 ≤ 𝑣𝑦,𝑡|𝑘 ≤ 𝑣(𝑀)

𝑦 , 𝑡 = 0, 1, ..., 𝑁 − 1 (3.50f)

𝑣(𝑚)
𝑧 ≤ 𝑣𝑧,𝑡|𝑘 ≤ 𝑣(𝑀)

𝑧 , 𝑡 = 0, 1, ..., 𝑁 − 1 (3.50g)

𝑒1 ≥ 0 (3.50h)

𝑒2 ≥ 0 (3.50i)

where (𝑚) stands for minimum value and (𝑀) stands for maximum value.

Note 3.7 The ATV model for the quadrotor is computed using the new model
(3.46), 𝒙𝑘+1 = ̂𝒇𝑄(𝒙𝑘, 𝒖𝑘, 𝐾), having the curvature expressed as a constant param-
eter 𝐾, independent from 𝑠. Therefore:

𝑨𝑘 = 𝜕 ̂𝒇𝑄
𝜕𝒙 (𝒙𝑘, 𝒖𝑘−1, 𝐾) (3.51)

𝑩𝑘 = 𝜕 ̂𝒇𝑄
𝜕𝒖 (𝒙𝑘, 𝒖𝑘−1, 𝐾) (3.52)

Page 61 of 158

3. Model Predictive Control for quadrotor trajectory tracking

𝒄𝑘 = ̂𝒇𝑄(𝒙𝑘, 𝒖𝑘−1, 𝐾) − 𝑨𝑘𝒙𝑘 − 𝑩𝑘𝒖𝑘−1 (3.53)

Constraints (3.50a)-(3.50b) are those associated to the ATV model equations.

Constraint (3.50c) is associated to the track boundaries/width (𝑊𝑡𝑟𝑎𝑐𝑘 = 2 ⋅ 𝑑𝑙𝑖𝑚); thus,
it sets lower and upper bounds on the lateral distance 𝑑 of the quadrotor. Together
with the function 𝐾(𝑠), already embedded in the model, the race track is now fully
described.
We see that the slack variable 𝑒1, introduced in the cost function (3.47c), is used here
to soften the constraint. This allows the quadrotor to slightly go outside the bounds,
preventing possible infeasibility when the quadrotor approaches too closely the track
borders.

Constraint (3.50d) sets lower and upper bounds on the altitude 𝑧 of the quadrotor. The
slack variable 𝑒2 softens the constraint; this allows the quadrotor to slightly go outside
the bounds, preventing possible infeasibility when the quadrotor approaches too closely
the vertical borders.

Constraints (3.50e)-(3.50g) set lower and upper bounds on the Cartesian velocities of
the quadrotor (wrt the base frame). These allow to both regulate the quadrotor average
speed and to avoid that it gains too much speed, possibly making infeasible the next
iterations of the NMPC.

Constraints (3.50h)-(3.50i), finally, set the slack variables 𝑒1 and 𝑒2 as non-negative,
which is necessary to soften correctly constraints (3.50c)-(3.50d).

Note 3.8 Additional constraints may be added to set lower and upper bounds on
the roll and pitch angles 𝜙 and 𝜃 (also called “tilt” angles) assumed by the quadrotor
during its motion.

These constraints are particularly important if we want to nullify the risk of gimbal
lock: as explained in Note 2.1, the dynamic model of the quadrotor suffers from
gimbal lock/singularity when the pitch angle 𝜃 approaches ±90°; specifically, the
transformation matrix 𝑻𝑅𝑃𝑌 becomes singular, meaning that the numerical integra-
tion of the model equations will give erroneous RPY angles, since some elements of
𝑻 −1

𝑅𝑃𝑌 will diverge.
For this reason, commercial quadrotors are typically equipped with a security system

Page 62 of 158

3.7. NMPC for quadrotors

that turns off the quadrotor when the tilt angles exceed a threshold value. Additional
constraints on 𝜙 and 𝜃, therefore, take into account these threshold values.

In our MPC algorithm, we will not include such constraints, since it has been ob-
served that, in all simulations (see Chapter 5), the quadrotor always stays far away
from the gimbal lock configuration.

Note 3.9 It is important to notice that, now, being all the constraints linear
equalities or inequalities and being the cost function quadratic, the optimization
problem is a QP, meaning that it is now a Linear MPC problem. Therefore, from
now on, we will use the term MPC instead of NMPC.

3.7.5. Optimization problem

We can now write the MPC optimization problem for quadrotor trajectory tracking:

MPC optimization problem for quadrotor trajectory tracking

(𝑿∗
𝑘, 𝑼 ∗

𝑘, 𝑒∗
1, 𝑒∗

2) = argmin
𝑿𝑘,𝑼𝑘,𝑒1,𝑒2

𝐽𝑁𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘, 𝑒1, 𝑒2)

𝐽𝑁𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘, 𝑒1, 𝑒2) =
𝑁−1
∑
𝑡=0

(𝒙𝑡|𝑘 − 𝒙𝑟)𝑇 𝑸(𝒙𝑡|𝑘 − 𝒙𝑟) + 𝒖𝑇
𝑡|𝑘𝑹𝒖𝑡|𝑘+

+
𝑁−1
∑
𝑡=1

(𝒙𝑡|𝑘 − 𝒙𝑡−1|𝑘)𝑇 𝑸Δ(𝒙𝑡|𝑘 − 𝒙𝑡−1|𝑘) + (𝒖𝑡|𝑘 − 𝒖𝑡−1|𝑘)𝑇 𝑹Δ(𝒖𝑡|𝑘 − 𝒖𝑡−1|𝑘)+

+ 𝐾1𝑒2
1 + 𝐾2𝑒2

2 (3.54a)

subject to:

𝒙𝑡+1|𝑘 = 𝑨𝑘𝒙𝑡|𝑘 + 𝑩𝑘𝒖𝑡|𝑘 + 𝒄𝑘, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.54b)

𝒙0|𝑘 = 𝒙𝑘 (3.54c)

− 𝑑𝑙𝑖𝑚 − 𝑒1 ≤ 𝑑𝑡|𝑘 ≤ 𝑑𝑙𝑖𝑚 + 𝑒1, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.54d)

𝑧(𝑚) − 𝑒2 ≤ 𝑧𝑡|𝑘 ≤ 𝑧(𝑀) + 𝑒2, 𝑡 = 0, 1, ..., 𝑁 − 1 (3.54e)

𝑣(𝑚)
𝑥 ≤ 𝑣𝑥,𝑡|𝑘 ≤ 𝑣(𝑀)

𝑥 , 𝑡 = 0, 1, ..., 𝑁 − 1 (3.54f)

𝑣(𝑚)
𝑦 ≤ 𝑣𝑦,𝑡|𝑘 ≤ 𝑣(𝑀)

𝑦 , 𝑡 = 0, 1, ..., 𝑁 − 1 (3.54g)

𝑣(𝑚)
𝑧 ≤ 𝑣𝑧,𝑡|𝑘 ≤ 𝑣(𝑀)

𝑧 , 𝑡 = 0, 1, ..., 𝑁 − 1 (3.54h)

𝑒1 ≥ 0 (3.54i)

Page 63 of 158

3. Model Predictive Control for quadrotor trajectory tracking

𝑒2 ≥ 0 (3.54j)

with:

𝑨𝑘 = 𝜕 ̂𝒇𝑄
𝜕𝒙 (𝒙𝑘, 𝒖𝑘−1, 𝐾̃(𝑠𝑘)) (3.54k)

𝑩𝑘 = 𝜕 ̂𝒇𝑄
𝜕𝒖 (𝒙𝑘, 𝒖𝑘−1, 𝐾̃(𝑠𝑘)) (3.54l)

𝒄𝑘 = ̂𝒇𝑄(𝒙𝑘, 𝒖𝑘−1, 𝐾̃(𝑠𝑘)) − 𝑨𝑘𝒙𝑘 − 𝑩𝑘𝒖𝑘−1 (3.54m)

3.7.6. Algorithm

The complete MPC algorithm for the quadrotor is composed by the MPC problem (3.54)
and the receding horizon control law (3.14).

Note 3.10 It is worth noticing that, even though we have used in the MPC
problem (3.54) the ATV model of the quadrotor, the next state 𝒙𝑘+1 is obtained
applying the optimal control input 𝒖𝑘 = 𝒖∗

0|𝑘 to the complete nonlinear model of the
quadrotor (2.94):

𝒙𝑘+1 = 𝒇(𝒙𝑘, 𝒖𝑘, 𝐾(𝑠𝑘)) (3.55)

Algorithm 3.2 MPC for quadrotor trajectory tracking

Inputs: 𝒙0; 𝑁 (prediction horizon)
Outputs: 𝑿; 𝑼

(1) Store the initial state 𝒙0 in 𝑿

(2) For 𝑘 = 0, 1, ...:

(2.1) • If the exit condition on 𝒙𝑘 is satisfied, break the cycle (at 𝑘 = 𝑇);
• otherwise, continue

(2.2) Initialize the MPC optimization problem (3.54) with 𝒙𝑘 and 𝒖𝑘−1 (if
𝑘 = 0, set 𝒖𝑘−1 ≐ 𝟎)

(2.3) Solve the MPC optimization problem, obtaining the optimal predicted
state trajectory𝑿∗

𝑘 = (𝒙∗
0|𝑘, 𝒙∗

1|𝑘, ..., 𝒙∗
𝑁|𝑘) and optimal predicted input

Page 64 of 158

3.7. NMPC for quadrotors

sequence 𝑼∗
𝑘 = (𝒖∗

0|𝑘, 𝒖∗
1|𝑘, ..., 𝒖∗

𝑁−1|𝑘)

(2.4) Apply the input 𝒖𝑘 ≐ 𝒖∗
0|𝑘 to the system (2.94), as in (3.14), obtaining

the next state 𝒙𝑘+1

(2.5) Store 𝒙𝑘+1 and 𝒖𝑘 in 𝑿 and 𝑼

(3) Return the closed-loop state trajectory and input sequence:

𝑿 = (𝒙0, 𝒙1, ..., 𝒙𝑇)
𝑼 = (𝒖0, 𝒖1, ..., 𝒖𝑇 −1)

As done in Note 3.6, we need to define the exit condition that stops the algorithm
as soon as the current state 𝒙𝑘 is sufficiently close to the reference state 𝒙𝑟. For our
needs, the exit condition is when the quadrotor has crossed the finish line; therefore,
the algorithm should stop as soon as the value of the curvilinear abscissa 𝑠𝑘 is greater
or equal to the track length 𝐿𝑡𝑟𝑎𝑐𝑘:

𝑠𝑘
?
≥ 𝐿𝑡𝑟𝑎𝑐𝑘 (3.56)

Page 65 of 158

4
Learning Model Predictive Control for

quadrotor autonomous and
optimal path planning

4.1. Introduction to LMPC

Learning Model Predictive Control (LMPC) was conceived to combine the features of
classical Model Predictive Control to other control strategies that are able to learn

from previous iterations of the control algorithm, improving in this way their closed-loop
performance. One of these control methods is called Iterative Learning Control (ILC),
in which the system to control always starts from the same initial condition and the
controller objective is to track a given reference. The key aspect of ILC is that the
control algorithm is run multiple times and, at each iteration, information from past
iterations is used by the controller to learn from its previous results, improving in this
way its current performance [15] [3]. Such control strategies are very well suited for
systems performing iterative tasks.

However, the main limitation of ILC and other analogous control methods, as also
mentioned in the Introduction, is that they are limited to reference tracking applications,
where, in general, the main goal is to minimize the difference between the reference and

Page 67 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

the output signal (i.e. the tracking error); moreover, the reference signal is known in
advance and does not change at each iteration.
These limitations are overcome by LMPC, which is indeed configured as a reference-
free iterative control algorithm, which learns from previous iterations to improve its
performance over time. Specifically, the LMPC algorithm ensures that:

• defining as 𝑗-th iteration cost the objective function evaluated for the 𝑗-th closed-loop
system trajectory, the 𝑗-th iteration cost does not increase compared to the (𝑗−1)-th
iteration cost;

• state and input constraints are satisfied at iteration 𝑗 if they were satisfied at iteration
𝑗 − 1 (recursive feasibility);

• the final goal state is an asymptotically stable equilibrium point for the closed-loop
system;

• as the number of iterations goes to infinity, the system converges to a steady-state
trajectory that is the optimal solution of the corresponding infinite-horizon control
problem.

4.2. LMPC theoretical formulation

In this section, we provide all the fundamental concepts that are required to formulate
the LMPC control problem [15].

Consider the discrete-time system:

𝒙𝑘+1 = 𝒇(𝒙𝑘, 𝒖𝑘) (4.1)

where 𝒙 ∈ R𝑛 are the system states and 𝒖 ∈ R𝑚 are the system inputs.
We assume that the generic nonlinear function 𝒇(𝒙, 𝒖) is continuous and that the states
and inputs of the system are subject to the constraints:

𝒙𝑘 ∈ 𝒳, 𝒖𝑘 ∈ 𝒰, ∀𝑘 ≥ 0 (4.2)

where 𝒳 ⊂ R𝑛 and 𝒰 ⊂ R𝑚 are closed sets.

At each iteration of the LMPC algorithm, a new state trajectory is generated; for the
𝑗-th iteration, we denote the vectors containing the inputs applied to the system (4.1)

Page 68 of 158

4.2. LMPC theoretical formulation

and the corresponding states evolution (i.e. the state trajectory) as:

𝑿𝑗 = (𝒙𝑗
0, 𝒙𝑗

1, ..., 𝒙𝑗
𝑘, ...) (4.3a)

𝑼 𝑗 = (𝒖𝑗
0, 𝒖𝑗

1, ..., 𝒖𝑗
𝑘, ...) (4.3b)

In (4.3), 𝒙𝑗
𝑘 and 𝒖𝑗

𝑘 denote the system states and the control inputs at time 𝑘 of the
𝑗-th iteration.

We initially assume that, at every iteration, the closed-loop trajectories start from the
same initial state:

𝒙𝑗
0 = 𝒙𝑆, ∀𝑗 ≥ 0 (4.4)

The goal is to design a control algorithm which solves the following infinite-horizon
optimal control problem at each iteration:

(𝑿∗, 𝑼 ∗) = argmin
𝑿,𝑼

𝐽[0,∞](𝑿, 𝑼)

𝐽[0,∞](𝑿, 𝑼) =
∞

∑
𝑘=0

ℎ(𝒙𝑘, 𝒖𝑘) (4.5a)

subject to:

𝒙𝑘+1 = 𝒇(𝒙𝑘, 𝒖𝑘), ∀𝑘 ≥ 0 (4.5b)

𝒙0 = 𝒙𝑆 (4.5c)

𝒙𝑘 ∈ 𝒳, 𝒖𝑘 ∈ 𝒰, ∀𝑘 ≥ 0 (4.5d)

where:

𝑿 = (𝒙0, 𝒙1, ..., 𝒙𝑘, ...)
𝑼 = (𝒖0, 𝒖1, ..., 𝒖𝑘, ...) (4.6)

are the optimization variables, (4.5b) and (4.5c) represent the system equations and the
initial condition, and (4.5d) are the states and inputs constraints.
We assume that the function ℎ(𝒙, 𝒖) in (4.5a), called stage cost function, is continuous
and it satisfies:

ℎ(𝒙𝐹 , 𝟎) = 0, ℎ(𝒙, 𝒖) > 0, ∀(𝒙, 𝒖) ∈ R𝑛 × R𝑚 ∖ {(𝒙𝐹 , 𝟎)} (4.7)

meaning that ℎ is positive definite with center in (𝒙𝐹 , 𝟎).
𝒙𝐹 is the goal state towards which the control algorithm should drive the system, i.e.
lim𝑘→∞ 𝒙𝑘 = 𝒙𝐹 .

Page 69 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

Moreover, the goal state 𝒙𝐹 is assumed to be an equilibrium point of system (4.1):

𝒙𝐹 = 𝒇(𝒙𝐹 , 𝟎) (4.8)

We also assume that a local optimal solution to problem (4.5) exists and it is denoted
as:

𝑿∗ = (𝒙∗
0, 𝒙∗

1, ..., 𝒙∗
𝑘, ...)

𝑼∗ = (𝒖∗
0, 𝒖∗

1, ..., 𝒖∗
𝑘, ...) (4.9)

Note 4.1 By assumption, the stage cost function ℎ in (4.7) is continuous, strictly
positive and zero in 𝒙𝐹 . Thus, an optimal solution to (4.5) will converge to the goal
state 𝒙𝐹 , i.e. lim𝑘→∞ 𝒙∗

𝑘 = 𝒙𝐹 .

Note 4.2 In practical applications, as we will see in the following, each iteration
has a finite time duration 𝑇𝑗:

𝑿𝑗 = (𝒙𝑗
0, 𝒙𝑗

1, ..., 𝒙𝑗
𝑘, ..., 𝒙𝑗

𝑇𝑗
)

𝑼 𝑗 = (𝒖𝑗
0, 𝒖𝑗

1, ..., 𝒖𝑗
𝑘, ..., 𝒖𝑗

𝑇𝑗−1) (4.10)

Nonetheless, in literature it is typically adopted, for the sake of simplicity, an infi-
nite time formulation at each iteration, that is what we have used in the previous
equations.

In the next sections, we provide the definitions of sampled safe set, iteration cost and
terminal cost function. All of these concepts will be used in the following to formulate
the LMPC algorithm, granting its stability and recursive feasibility [15].

4.2.1. Sampled safe set

We define the sampled safe set 𝑆𝑆𝑗 at iteration 𝑗 as:

𝑆𝑆𝑗 = { ⋃
𝑖∈𝐺𝑗

∞
⋃
𝑘=0

𝒙𝑖
𝑘} (4.11)

where
𝐺𝑗 = {𝑖 ∈ [0, 𝑗] ∶ lim

𝑘→∞
𝒙𝑖

𝑘 = 𝒙𝐹 } (4.12)

Page 70 of 158

4.2. LMPC theoretical formulation

𝑆𝑆𝑗 is, therefore, a set containing all the state trajectories at iteration 𝑖, with 𝑖 ∈ 𝐺𝑗.
Specifically, 𝐺𝑗 in (4.12) is the set of indices 𝑖 associated to successful iterations of the
algorithm (i.e. iterations for which the related trajectory converged to 𝒙𝐹 for 𝑘 → ∞).

In conclusion, 𝑆𝑆𝑗 stores all the states 𝒙𝑘, with 𝑘 ∈ [0, ∞], composing the state trajec-
tories generated by successful iterations of the LMPC algorithm.

From (4.12) we see that 𝐺𝑖 ⊆ 𝐺𝑗 for 𝑖 ≤ 𝑗, which implies that:

𝑆𝑆𝑖 ⊆ 𝑆𝑆𝑗, ∀𝑖 ≤ 𝑗 (4.13)

4.2.2. Iteration cost and terminal cost function

Let’s consider the closed-loop state trajectory (4.3a) and input sequence (4.3b) associ-
ated to the 𝑗-th iteration of the algorithm. Considering a time instant 𝑘 ∈ [0, ∞], we
define the cost-to-go of the trajectory 𝑗 at time 𝑘 as:

𝐽 𝑗
[𝑘,∞](𝒙

𝑗
𝑘) =

∞
∑
𝑡=𝑘

ℎ(𝒙𝑗
𝑡, 𝒖𝑗

𝑡) (4.14)

where ℎ is the stage cost function of (4.5). The cost-to-go can be equivalently denoted
also as 𝐽 𝑗

𝑘 and 𝐽 𝑗(𝒙𝑗
𝑘).

The cost-to-go of the trajectory at time 𝑘 is therefore the sum of all the stage costs asso-
ciated to the part of the trajectory on [𝑘, ∞], so starting from the state 𝒙𝑗

𝑘 (associated
to the time 𝑘).

We then define the iteration cost as:

𝐽 𝑗
[0,∞](𝒙

𝑗
0) ≡ 𝐽 𝑗

0 ≡ 𝐽 𝑗(𝒙𝑗
0) =

∞
∑
𝑘=0

ℎ(𝒙𝑗
𝑘, 𝒖𝑗

𝑘) (4.15)

The iteration cost is nothing but the cost-to-go of the related trajectory at the initial
time 𝑘 = 0.

𝐽 𝑗
0 quantifies the control algorithm performance at each 𝑗-th iteration.

Note 4.3 In (4.14) and (4.15), 𝒙𝑗
𝑘 and 𝒖𝑗

𝑘 are the realized states and inputs of
the trajectory at the 𝑗-th iteration, as defined in (4.3).

The computation and a graphical representation of the cost-to-go and iteration cost
are depicted in Figure 4.1. Specifically, considering for simplicity the finite-time states

Page 71 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

Figure 4.1. Computation and graphical representation of the cost-to-go function 𝐽𝑗
[𝑘,𝑇𝑗](𝑥

𝑗
𝑘) and the

iteration cost 𝐽𝑗
0

trajectory and inputs sequence in (4.10), with 𝑥 ∈ R and 𝑢 ∈ R, we can compute each
cost-to-go 𝐽 𝑗

𝑘 in an iterative way by noticing that:

• By definition of cost-to-go (4.14), 𝐽 𝑗
𝑇𝑗

= 𝐽 𝑗
[𝑇𝑗,𝑇𝑗](𝑥

𝑗
𝑇𝑗

) = ℎ(𝑥𝑗
𝑇𝑗

, 𝑢𝑗
𝑇𝑗

) = ℎ(𝑥𝐹 , 0); from
(4.7), ℎ(𝑥𝐹 , 0) = 0 = 𝐽 𝑗

𝑇𝑗
;

• From (4.14), 𝐽 𝑗
𝑘 = 𝐽 𝑗

𝑘+1 + ℎ(𝑥𝑗
𝑘, 𝑢𝑗

𝑘); for (4.7), being ℎ positive definite with center
in (𝑥𝐹 , 0), 𝐽 𝑗

𝑘 > 𝐽 𝑗
𝑘+1, ∀𝑘 ∈ [0, 𝑇𝑗 − 1], meaning that also 𝐽 𝑗

[𝑘,𝑇𝑗](𝑥
𝑗
𝑘) is a (discrete)

positive definite function, with center in 𝑥𝐹 .

This means that the iteration cost 𝐽 𝑗
0 can be computed summing the stage costs “back-

wards”, starting from 𝑥𝐹 = 𝑥𝑗
𝑇𝑗
(for which 𝐽 𝑗

𝑇𝑗
= 0) till reaching 𝑥𝑆 = 𝑥𝑗

0 (which is
associated 𝐽 𝑗

0).

Finally, we define the terminal cost function 𝑄𝑗(𝒙), defined over the 𝑆𝑆𝑗, as:

𝑄𝑗(𝒙) =
⎧{
⎨{⎩

min
(𝑖,𝑘)∈𝐹 𝑗(𝒙)

𝐽 𝑖
[𝑘,∞](𝒙) if 𝒙 ∈ 𝑆𝑆𝑗

+∞ if 𝒙 ∉ 𝑆𝑆𝑗
(4.16)

where
𝐹 𝑗(𝒙) = {(𝑖, 𝑘) ∈ [0, 𝑗] × [0, ∞] ∶ 𝒙 = 𝒙𝑖

𝑘 for 𝒙𝑖
𝑘 ∈ 𝑆𝑆𝑗} (4.17)

The terminal cost function assigns, to every point in the sampled safe set 𝑆𝑆𝑗, the
minimum cost-to-go along the trajectories in 𝑆𝑆𝑗. Specifically, give the state 𝒙, the set

Page 72 of 158

4.3. LMPC optimization problem

𝐹 𝑗(𝒙) selects all the states belonging to a certain trajectory (from iteration 0 up to 𝑗)
that are equal to 𝒙. Then, the function 𝑄𝑗(𝒙) returns the minimum cost-to-go of the
trajectories selected by 𝐹 𝑗(𝒙), starting from 𝒙.

We can equivalently write that:

∀𝒙 ∈ 𝑆𝑆𝑗, 𝑄𝑗(𝒙) = 𝐽 𝑖∗
[𝑘∗,∞](𝒙) =

∞
∑
𝑡=𝑘∗

ℎ(𝒙𝑖∗
𝑡 , 𝒖𝑖∗

𝑡) (4.18)

where (𝑖∗, 𝑘∗) are the iteration number and time instant associated to the trajectory
giving the minimum cost-to-go, i.e.:

(𝑖∗, 𝑘∗) = argmin
(𝑖,𝑘)∈𝐹 𝑗(𝒙)

𝐽 𝑖
[𝑘,∞](𝒙) (4.19)

Note 4.4 It is worth noticing that, in (4.18), 𝒙𝑖∗
𝑘∗ = 𝒙.

Note 4.5 If it exists only one trajectory 𝑖 for which, at time 𝑘, 𝒙𝑖
𝑘 = 𝒙 (i.e.

𝐹 𝑗(𝒙) = {(𝑖, 𝑘)}), then 𝑄𝑗(𝒙) simply becomes 𝑄𝑗(𝒙) = 𝐽 𝑖
[𝑘,∞](𝒙𝑖

𝑘), which is the
cost-to-go of the 𝑖-th trajectory at time 𝑘 (so starting from 𝒙𝑖

𝑘).

4.3. LMPC optimization problem

In this section, by using all the concepts that have been described above, we provide
the formulation of the LMPC control problem, which, being in the class of MPC control
methods, takes the form of an optimization problem (OP).

Specifically, the LMPC tries to compute a solution to the infinite-horizon optimal control
problem (4.5) by solving, at time 𝑘 of iteration 𝑗, the following finite-horizon constrained
optimal control problem:

LMPC optimization problem

(𝑿𝑗∗
𝑘 , 𝑼 𝑗∗

𝑘) = argmin
𝑿𝑘,𝑼𝑘

𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘)

𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘) = 𝐽[0,𝑁−1](𝑿𝑘, 𝑼𝑘) + 𝑄𝑗−1(𝒙𝑁|𝑘) =

=
𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) + 𝑄𝑗−1(𝒙𝑁|𝑘) (4.20a)

subject to:

Page 73 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

𝒙𝑡+1|𝑘 = 𝒇(𝒙𝑡|𝑘, 𝒖𝑡|𝑘), 𝑡 = 0, 1, ..., 𝑁 − 1 (4.20b)

𝒙0|𝑘 = 𝒙𝑗
𝑘 (4.20c)

𝒙𝑡|𝑘 ∈ 𝒳, 𝒖𝑡|𝑘 ∈ 𝒰, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.20d)

𝒙𝑁|𝑘 ∈ 𝑆𝑆𝑗−1 (4.20e)

The problem optimization variables are:

𝑿𝑘 ≡ 𝑿[0,𝑁]|𝑘 = (𝒙0|𝑘, 𝒙1|𝑘, ..., 𝒙𝑁|𝑘)
𝑼𝑘 ≡ 𝑼[0,𝑁−1]|𝑘 = (𝒖0|𝑘, 𝒖1|𝑘, ..., 𝒖𝑁−1|𝑘) (4.21)

representing the predicted state trajectory and the predicted input sequence.

(4.20b) and (4.20c) represent respectively the system equations and the initial condition;
(4.20d) are the states and inputs constraints; (4.20e) is a terminal constraint that forces
the terminal state 𝒙𝑁|𝑘 into the sampled safe set 𝑆𝑆𝑗−1 at the previous iteration, as
defined in (4.11).

We also see that the function 𝑄𝑗−1(𝒙) is indeed used as terminal cost function for the
problem (4.20).

The optimal predicted state trajectory of (4.20) and the related optimal predicted input
sequence are denoted as:

𝑿𝑗∗
𝑘 = (𝒙𝑗∗

0|𝑘, 𝒙𝑗∗
1|𝑘, ..., 𝒙𝑗∗

𝑁|𝑘)
𝑼 𝑗∗

𝑘 = (𝒖𝑗∗
0|𝑘, 𝒖𝑗∗

1|𝑘, ..., 𝒖𝑗∗
𝑁−1|𝑘) (4.22)

while the optimal value of the cost function is denoted as 𝐽 𝑗∗
𝐿𝑀𝑃𝐶|𝑘; this optimal cost can

be also expressed specifying the initial state 𝒙𝑗
𝑘: 𝐽 𝑗∗

𝐿𝑀𝑃𝐶(𝒙𝑗
𝑘).

The control algorithm consists in computing, at time 𝑘 and iteration 𝑗, the input se-
quence 𝑼 𝑗∗

𝑘 and applying to system (4.1) only the 1st element of it:

𝒖𝑗
𝑘 ≐ 𝒖𝑗∗

0|𝑘 (4.23)

Then, the next state 𝒙𝑗
𝑘+1 is computed and is used to initialize the new optimization

problem at time 𝑘 + 1 of iteration 𝑗: 𝒙0|𝑘+1 ≐ 𝒙𝑗
𝑘+1.

We see that the LMPC features a receding horizon control strategy.

Page 74 of 158

4.4. LMPC properties

4.4. LMPC properties

After having shown the formulation of the LMPC optimization problem, we now provide
four fundamental theorems associated to LMPC [15].
Specifically, we will prove, as briefly mentioned in § 4.1, that the LMPC algorithm is
guaranteed to be recursively feasible, asymptotically stable, and such that the iteration
cost is non-increasing between two successive iterations; moreover, we will also show
that, if the LMPC algorithm converges to a steady-state trajectory at iteration 𝑗 → ∞,
then this state trajectory is the solution of the infinite-horizon optimal control problem
(4.5).

4.4.1. Recursive feasibility

Assumption 4.1 At iteration 𝑗 = 1 we assume that 𝑆𝑆𝑗−1 = 𝑆𝑆0 is a non-
empty set, containing a trajectory 𝑿0 that is feasible and convergent to 𝒙𝐹 .

Typically, this first trajectory is obtained through a basic reference tracking control
method (e.g. classic MPC, PID control, etc.).

Theorem 4.1 LMPC recursive feasibility

Consider the system (4.1) controlled by the LMPC control algorithm (4.20) and
(4.23). Let 𝑆𝑆𝑗 be the sampled safe set at iteration 𝑗 as defined in (4.11); let
Assumption 4.1 hold.

Then, the LMPC is feasible for all 𝑘 ≥ 0 and at every iteration 𝑗 ≥ 1 [15].

Proof The proof follows from standard MPC arguments. By assumption, 𝑆𝑆0 is
non-empty. From (4.13) we have that 𝑆𝑆0 ⊆ 𝑆𝑆𝑗−1, ∀𝑗 ≥ 1, and consequently 𝑆𝑆𝑗−1

is a non-empty set. In particular, there exists a feasible trajectory 𝑿0 ∈ 𝑆𝑆0 ⊆ 𝑆𝑆𝑗−1.
From (4.4) we know that 𝒙𝑗

0 = 𝒙𝑆, ∀𝑗 ≥ 0. At time 𝑘 = 0 of the 𝑗-th iteration the
𝑁 -steps trajectory:

𝑿0
[0,𝑁] = (𝒙0

0, 𝒙0
1, ..., 𝒙0

𝑁) ∈ 𝑆𝑆𝑗−1 (4.24)

and the related input sequence:

(𝒖0
0, 𝒖0

1, ..., 𝒖0
𝑁−1) (4.25)

Page 75 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

satisfy input and state constrains (4.20d). Therefore (4.24)-(4.25) is a feasible solution
to the LMPC (4.20) and (4.23) at 𝑘 = 0 of the 𝑗-th iteration.

Assume that at time 𝑘 of the 𝑗-th iteration the LMPC (4.20) and (4.23) is feasible and
let 𝑿𝑗∗

𝑘 and 𝑼 𝑗∗
𝑘 be the optimal trajectory and input sequence, as defined in (4.22).

From (4.20c) and (4.23), the realized state and input at time 𝑘 of the 𝑗-th iteration are
given by:

𝒙𝑗∗
0|𝑘 = 𝒙𝑗

𝑘

𝒖𝑗
𝑘 = 𝒖𝑗∗

0|𝑘 (4.26)

The terminal constraint (4.20e) enforces 𝒙𝑗∗
𝑁|𝑘 ∈ 𝑆𝑆𝑗−1 and, from (4.18):

𝑄𝑗−1(𝒙𝑗∗
𝑁|𝑘) = 𝐽 𝑖∗

[𝑘∗,∞](𝒙
𝑗∗
𝑁|𝑘) =

∞
∑
𝑡=𝑘∗

ℎ(𝒙𝑖∗
𝑡 , 𝒖𝑖∗

𝑡) (4.27)

Note that 𝒙𝑖∗
𝑘∗+1 = 𝒇 (𝒙𝑖∗

𝑘∗, 𝒖𝑖∗
𝑘∗) and, by the definition of 𝑄𝑗(𝒙) and 𝐹 𝑗(𝒙) in (4.16)-(4.17),

𝒙𝑖∗
𝑘∗ = 𝒙𝑗∗

𝑁|𝑘. Since the state update in (4.1) and (4.20a) are assumed identical, we have
that:

𝒙𝑗
𝑘+1 = 𝒙𝑗∗

1|𝑘 (4.28)

At time 𝑘 + 1 of the 𝑗-th iteration, the input sequence:

(𝒖𝑗∗
1|𝑘, 𝒖𝑗∗

2|𝑘, ..., 𝒖𝑗∗
𝑁−1|𝑘, 𝒖𝑖∗

𝑘∗) (4.29)

and the related state trajectory:

(𝒙𝑗∗
1|𝑘, 𝒙𝑗∗

2|𝑘, ..., 𝒙𝑗∗
𝑁−1|𝑘, 𝒙𝑖∗

𝑘∗, 𝒙𝑖∗
𝑘∗+1) (4.30)

satisfy input and state constrains (4.20b)-(4.20e). Therefore, (4.29)-(4.30) is a feasible
solution for the LMPC (4.20) and (4.23) at time 𝑘 + 1.

We showed that at the 𝑗-th iteration, ∀𝑗 ≥ 1:

• the LMPC is feasible at time 𝑘 = 0;

• if the LMPC is feasible at time 𝑘, then the LMPC is feasible at time 𝑘 + 1.

Thus, we conclude by induction that the LMPC in (4.20) and (4.23) is feasible ∀𝑗 ≥ 1
and 𝑘 ≥ 0 [15]. ■

Page 76 of 158

4.4. LMPC properties

4.4.2. Asymptotic stability

Theorem 4.2 LMPC asymptotic stability

Consider the system (4.1) controlled by the LMPC control algorithm (4.20) and
(4.23). Let 𝑆𝑆𝑗 be the sampled safe set at iteration 𝑗 as defined in (4.11); let
Assumption 4.1 hold.

Then, the equilibrium point 𝒙𝐹 is asymptotically stable for the closed-loop system
(4.1), (4.20) and (4.23) at every iteration 𝑗 ≥ 1 [15].

Proof To prove the asymptotic stability of 𝒙𝐹 , we can show, according to Lyapunov’s
direct method, that the optimal cost 𝐽 𝑗∗

𝐿𝑀𝑃𝐶(𝒙) is a Lyapunov function for the equilibrium
point 𝒙𝐹 of the closed-loop system (4.20) and (4.23).
Specifically, we have to show that:

• 𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙) is positive definite with center in 𝒙𝐹 ;

• 𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗

𝑘+1) − 𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗

𝑘) < 0, where 𝑿𝑗 = (𝒙𝑗
0, ..., 𝒙𝑗

𝑘, 𝒙𝑗
𝑘+1, ...) is the 𝑗-th closed-

loop trajectory obtained via the LMPC control algorithm (4.20) and (4.23); equiva-
lently, 𝐽 𝑗∗

𝐿𝑀𝑃𝐶(𝒙) decreases along the closed-loop trajectory 𝑿𝑗.

From (4.7), 𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙) > 0, ∀𝒙 ∈ R𝑛 ∖{𝒙𝐹 } and 𝐽 𝑗∗

𝐿𝑀𝑃𝐶(𝒙𝐹) = 0, so 𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙) is positive

definite with center in 𝒙𝐹 .

Now, we need to show that 𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙) is decreasing along the closed-loop trajectory.

From (4.28) we have 𝒙𝑗
𝑘+1 = 𝒙𝑗∗

1|𝑘, which implies that:

𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗

𝑘+1) = 𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗∗

1|𝑘) (4.31)

Given the optimal predicted input sequence and the related state trajectory in (4.22)
and exploiting (4.31) and (4.20c), the optimal cost is given by:

𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗

𝑘) = min
𝑿𝑘,𝑼𝑘

[
𝑁−1
∑
𝑡=0

ℎ (𝒙𝑡|𝑘, 𝒖𝑡|𝑘) + 𝑄𝑗−1 (𝒙𝑁|𝑘)] =

= ℎ (𝒙𝑗∗
0|𝑘, 𝒖𝑗∗

0|𝑘) +
𝑁−1
∑
𝑡=1

ℎ (𝒙𝑗∗
𝑡|𝑘, 𝒖𝑗∗

𝑡|𝑘) + 𝑄𝑗−1 (𝒙𝑗∗
𝑁|𝑘) =

Page 77 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

= ℎ (𝒙𝑗∗
0|𝑘, 𝒖𝑗∗

0|𝑘) +
𝑁−1
∑
𝑡=1

ℎ (𝒙𝑗∗
𝑡|𝑘, 𝒖𝑗∗

𝑡|𝑘) + 𝐽 𝑖∗
[𝑘∗,∞] (𝒙𝑗∗

𝑁|𝑘) =

= ℎ (𝒙𝑗∗
0|𝑘, 𝒖𝑗∗

0|𝑘) +
𝑁−1
∑
𝑡=1

ℎ (𝒙𝑗∗
𝑡|𝑘, 𝒖𝑗∗

𝑡|𝑘) +
∞

∑
𝑡=𝑘∗

ℎ (𝒙𝑖∗
𝑡 , 𝒖𝑖∗

𝑡) =

= ℎ (𝒙𝑗∗
0|𝑘, 𝒖𝑗∗

0|𝑘) +
𝑁−1
∑
𝑡=1

ℎ (𝒙𝑗∗
𝑡|𝑘, 𝒖𝑗∗

𝑡|𝑘) + ℎ (𝒙𝑖∗
𝑘∗, 𝒖𝑖∗

𝑘∗) + 𝑄𝑗−1 (𝒙𝑖∗
𝑘∗+1) ≥

≥ ℎ (𝒙𝑗∗
0|𝑘, 𝒖𝑗∗

0|𝑘) + 𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗∗

1|𝑘) =

= ℎ (𝒙𝑗
𝑘, 𝒖𝑗

𝑘) + 𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗

𝑘+1) (4.32)

where (𝑖∗, 𝑡∗) is defined in (4.19).

Finally, we conclude that the optimal cost is a decreasing Lyapunov function along the
closed-loop trajectory:

𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗

𝑘+1) − 𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗

𝑘) ≤ −ℎ (𝒙𝑗
𝑘, 𝒖𝑗

𝑘) < 0
∀𝒙𝑗

𝑘 ∈ R𝑛 ∖ {𝒙𝐹 }, ∀𝒖𝑗
𝑘 ∈ R𝑚 ∖ {𝟎} (4.33)

Therefore, we conclude that 𝒙𝐹 is asymptotically stable [15]. ■

4.4.3. Non-increasing iteration cost

Theorem 4.3 LMPC non-increasing iteration cost

Consider the system (4.1) controlled by the LMPC control algorithm (4.20) and
(4.23). Let 𝑆𝑆𝑗 be the sampled safe set at iteration 𝑗 as defined in (4.11); let
Assumption 4.1 hold.

Then, the iteration cost 𝐽 𝑗
0 does not increase with the iteration 𝑗 [15].

Proof First, we find a lower bound on the 𝑗-th iteration cost 𝐽 𝑗
0, ∀𝑗 > 0. Consider

the realized state and input sequences (4.3) at the 𝑗-th iteration, which, at time 𝑘,
∀𝑘 ≥ 0, collects the first elements of the optimal state and of the optimal input sequences
generated by the LMPC algorithm (4.20) and (4.23). By the definition of the iteration
cost in (4.15), we have:

𝐽 𝑗−1
[0,∞] (𝒙𝑆) =

∞
∑
𝑘=0

ℎ (𝒙𝑗−1
𝑘 , 𝒖𝑗−1

𝑘) =

Page 78 of 158

4.4. LMPC properties

=
𝑁−1
∑
𝑘=0

ℎ (𝒙𝑗−1
𝑘 , 𝒖𝑗−1

𝑘) +
∞

∑
𝑘=𝑁

ℎ (𝒙𝑗−1
𝑘 , 𝒖𝑗−1

𝑘) ≥

≥
𝑁−1
∑
𝑘=0

ℎ (𝒙𝑗−1
𝑘 , 𝒖𝑗−1

𝑘) + 𝑄𝑗−1 (𝒙𝑗−1
𝑁) ≥

≥ min
𝑿[0,𝑁],𝑼[0,𝑁]

[
𝑁−1
∑
𝑘=0

ℎ (𝒙𝑘, 𝒖𝑘) + 𝑄𝑗−1 (𝒙𝑁)] =

= 𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗

0) (4.34)

Then we notice that, at the 𝑗-th iteration, the optimal cost of the LMPC (4.20) and
(4.23) at 𝑘 = 0, 𝐽 𝑗∗

𝐿𝑀𝑃𝐶(𝒙𝑗
0), can be upper bounded along the realized trajectory (4.3a)

using (4.33):

𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗

0) ≥ ℎ (𝒙𝑗
0, 𝒖𝑗

0) + 𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗

1) ≥
≥ ℎ (𝒙𝑗

0, 𝒖𝑗
0) + ℎ (𝒙𝑗

1, 𝒖𝑗
1) + 𝐽 𝑗∗

𝐿𝑀𝑃𝐶(𝒙𝑗
2) ≥ ... ≥

≥ lim
𝑘→∞

[
𝑘−1
∑
𝑡=0

ℎ (𝒙𝑗
𝑡, 𝒖𝑗

𝑡) + 𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗

𝑘)] (4.35)

From Theorem 1.2, 𝒙𝐹 is asymptotically stable for the closed loop system (4.20) and
(4.23) (i.e. lim𝑘→∞ 𝒙𝑗

𝑘 = 𝒙𝐹), thus by continuity of ℎ(𝒙, 𝒖):

lim
𝑘→∞

𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗

𝑘) = 𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝐹) = 0 (4.36)

From the previous equations:

𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗

0) ≥
∞

∑
𝑘=0

ℎ (𝒙𝑗
𝑘, 𝒖𝑗

𝑘) = 𝐽 𝑗
[0,∞](𝒙𝑆) (4.37)

and, finally:
𝐽 𝑗−1

[0,∞](𝒙𝑆) ≥ 𝐽 𝑗∗
𝐿𝑀𝑃𝐶(𝒙𝑗

0) ≥ 𝐽 𝑗
[0,∞](𝒙𝑆) (4.38)

Therefore, we conclude that the iteration cost is non-increasing [15]. ■

Page 79 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

4.4.4. Convergence to the solution of the infinite-horizon opti-
mal control problem

Assumption 4.2 The problem (4.5) is strictly convex.

Theorem 4.4 LMPC convergence to the solution of the infinite-horizon optimal
control problem

Consider the system (4.1) controlled by the LMPC control algorithm (4.20) and
(4.23). Let 𝑆𝑆𝑗 be the sampled safe set at iteration 𝑗 as defined in (4.11); let
Assumption 4.1 and Assumption 4.2 hold; assume also that the LMPC algorithm
converges to the steady-state input sequence 𝑼∞ = lim𝑗→∞ 𝑼 𝑗 and state trajec-
tory 𝑿∞ = lim𝑗→∞ 𝑿𝑗 for iteration 𝑗 → ∞.

Then, 𝑼∞ (and so 𝑿∞) is the solution of the infinite-horizon optimal control
problem (4.5) [15].

Proof We refer the reader to [15]. ■

4.5. LMPC algorithm

Finally, we can write the proper LMPC algorithm as follows:

Algorithm 4.1 Learning Model Predictive Control

Inputs: 𝒙𝑆; 𝑁𝑖𝑡𝑒𝑟 (number of LMPC iterations); 𝑁 (LMPC prediction horizon)
Outputs: 𝑿0, 𝑿1, ..., 𝑿𝑁𝑖𝑡𝑒𝑟 ; 𝑼0, 𝑼1, ..., 𝑼𝑁𝑖𝑡𝑒𝑟

(1) Generate the first feasible trajectory 𝑿0 = (𝒙0
0, 𝒙0

1, ..., 𝒙0
𝑇0

) using a basic
reference tracking control method, with initial state 𝒙0

0 = 𝒙𝑆

(2) Construct the initial sampled safe set 𝑆𝑆0 = {𝑿0}

(3) For 𝑗 = 1, 2, ..., 𝑁𝑖𝑡𝑒𝑟:

(2.1) Set the initial state 𝒙𝑗
0 = 𝒙𝑆 and store it in 𝑿𝑗

(2.2) For 𝑘 = 0, 1, ...:

Page 80 of 158

4.5. LMPC algorithm

(3.1) • If the exit condition on 𝒙𝑗
𝑘 is satisfied, break the cycle (at

𝑘 = 𝑇𝑗);
• otherwise, continue

(3.2) Initialize the LMPC optimization problem (4.20) with 𝒙𝑗
𝑘

(3.3) Solve the LMPC optimization problem, obtaining the optimal
predicted state trajectory 𝑿𝑗∗

𝑘 = (𝒙𝑗∗
0|𝑘, 𝒙𝑗∗

1|𝑘, ..., 𝒙𝑗∗
𝑁|𝑘) and opti-

mal predicted input sequence 𝑼 𝑗∗
𝑘 = (𝒖𝑗∗

0|𝑘, 𝒖𝑗∗
1|𝑘, ..., 𝒖𝑗∗

𝑁−1|𝑘)
(3.4) Apply the input 𝒖𝑗

𝑘 ≐ 𝒖𝑗∗
0|𝑘 to the system (4.1), as in (4.23),

obtaining the next state 𝒙𝑗
𝑘+1

(3.5) Store 𝒙𝑗
𝑘+1 and 𝒖𝑗

𝑘 in 𝑿𝑗 and 𝑼 𝑗

(2.3) Augment the sampled safe set with the new trajectory 𝑿𝑗 =
(𝒙𝑗

0, 𝒙𝑗
1, ..., 𝒙𝑗

𝑇𝑗
):

𝑆𝑆𝑗 = 𝑆𝑆𝑗−1 ∪ {𝑿𝑗}

(4) Return all the generated trajectories and input sequences:

𝑿0, 𝑿1, ..., 𝑿𝑁𝑖𝑡𝑒𝑟

𝑼0, 𝑼1, ..., 𝑼𝑁𝑖𝑡𝑒𝑟

Note 4.6 As for the NMPC of Chapter 3, the exit condition at point (3.1) of
the algorithm can be chosen to determine whether the state 𝒙𝑗

𝑘 is sufficiently close
to the goal state 𝒙𝐹 . Therefore, it can be expressed as follows:

|𝒙𝑗
𝑘 − 𝒙𝐹 |

?
≤ 𝛿 (4.39)

where 𝛿 is set by the user.

In the following, it is reported a sequence of figures (Figures 4.2a-e) that depict a generic
execution of the LMPC algorithm with 𝑁 = 2. Specifically:

• In Figure 4.2a, the first feasible trajectory 𝑿0 has been generated and, from it, it
has been constructed the initial sampled safe set 𝑆𝑆0, as in Assumption 4.1.

Page 81 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

(a) First feasible trajectory 𝑿0 and initial sampled safe set 𝑆𝑆0

• In Figure 4.2b, the iteration 𝑗 = 1 of the LMPC algorithm is initiated.
The first state of the generated trajectory is 𝒙1

0 = 𝒙𝑆, as in (4.4), and it is used to
initialize the LMPC optimization problem at time 𝑘 = 0.
The optimization problem is solved, obtaining the optimal predicted state trajec-
tory 𝑿1∗

0 = (𝒙1∗
0|0, 𝒙1∗

1|0, 𝒙1∗
𝑁|0) = (𝒙1

0, 𝒙1∗
1|0, 𝒙1∗

𝑁|0), which is composed by 3 states, since
𝑁 = 2.
It is worth noticing that the terminal state 𝒙1∗

𝑁|0 coincides with one of the states in
𝑆𝑆0, satisfying the terminal constraint (4.20e).
For the receding horizon control law in (4.23), the next state of the generated trajec-
tory will be 𝒙1

1 = 𝒙1∗
1|0.

(b) Iteration 1, 𝑘 = 0: optimal predicted state trajectory (in orange), generated state trajectory (in
green)

• In Figure 4.2c, the state 𝒙1
1 of the generated trajectory is used to initialize the LMPC

Page 82 of 158

4.5. LMPC algorithm

optimization problem at time 𝑘 = 1.
The optimization problem is solved, obtaining the optimal predicted state trajectory
𝑿1∗

1 = (𝒙1
1, 𝒙1∗

1|1, 𝒙1∗
𝑁|1).

The next state of the generated trajectory will be 𝒙1
2 = 𝒙1∗

1|1.

(c) Iteration 1, 𝑘 = 1: optimal predicted state trajectory (in orange), generated state trajectory (in
green)

• In Figure 4.2d, at time 𝑘 = 𝑇1 of the iteration 𝑗 = 1, the state 𝒙1
𝑇1
of the generated

trajectory satisfies the exit condition of the algorithm (i.e. it is sufficiently close to
the goal state 𝒙𝐹 , as reported in Note 4.6); therefore, the current iteration is ended,
returning the generated trajectory 𝑿1 = (𝒙1

0, 𝒙1
1, ..., 𝒙1

𝑇1
).

(d) Iteration 1, 𝑘 = 𝑇1: generated state trajectory (in green); end of the iteration

• In Figure 4.2e, before staring the next iteration, the sampled safe set is augmented
by including in it the states of the new trajectory 𝑿1, obtaining 𝑆𝑆1 = 𝑆𝑆0 ∪ {𝑿1}.

Page 83 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

(e) Augmented sampled safe set 𝑆𝑆1

Figure 4.2. LMPC algorithm representation, with 𝑁 = 2

• The algorithm continues initiating the iteration 𝑗 = 2 and repeating the above oper-
ations, until 𝑗 > 𝑁𝑖𝑡𝑒𝑟.

4.6. Sampled safe set and terminal cost relaxation

In this section, we provide two possible ways to relax the terminal constraint and ter-
minal cost function of (4.20), so to make the LMPC control problem easier to solve; in
this way, we can reduce the computation time needed to solve the optimization problem,
making it more suitable for real-time applications.

The first approach consists in:

• relaxing the discrete sampled safe set 𝑆𝑆𝑗 to its convex hull, obtaining a continuous
convex set 𝐶𝑆𝑗;

• approximating the discrete terminal cost function 𝑄𝑗(𝒙) with a continuous convex
function 𝑃 𝑗(𝒙), defined on the convex safe set 𝐶𝑆𝑗.

These relaxations are computed exploiting convex combinations and barycentric approx-
imations.

Page 84 of 158

4.6. Sampled safe set and terminal cost relaxation

4.6.1. Convex safe set

From its definition (4.11), the sampled safe set 𝑆𝑆𝑗 is a collection of discrete states,
making it a discrete set. Therefore, the LMPC optimization problem (4.20) ends up
being a Mixed-Integer Non-Linear Program (MINLP), which is hard to solve and may
not be suitable for real-time applications (since there is no guarantee that it will be
solved in real-time).

Therefore, we need to find a way to relax the terminal constraint (4.20e), that is trans-
forming the 𝑆𝑆𝑗 from a discrete to a continuous set, so to make (4.20) a Non-Linear
Program (NLP), which is easier to solve.

The most convenient approach is to relax the sampled safe set to its convex hull [16] [3].
The convex hull of 𝑆𝑆𝑗 is called convex safe set 𝐶𝑆𝑗 (Figure 4.3).

The convex hull of a discrete set of points can be obtained by computing the convex
combination of all its elements:

𝐶𝑆𝑗 = conv(𝑆𝑆𝑗) = conv({ ⋃
𝑖∈𝐺𝑗

∞
⋃
𝑘=0

𝒙𝑖
𝑘}) =

=
⎧{
⎨{⎩

|𝑆𝑆𝑗|
∑
𝑖=1

𝜆𝑖𝒙𝑖 ∶ 𝜆𝑖 ≥ 0,
|𝑆𝑆𝑗|
∑
𝑖=1

𝜆𝑖 = 1, 𝒙 ∈ 𝑆𝑆𝑗
⎫}
⎬}⎭

(4.40)

where | ⋅ | denotes the set cardinality operator.

More concisely:
𝐶𝑆𝑗 = conv(𝑆𝑆𝑗) = (𝑿0, ..., 𝑿𝑗)𝝀𝑇 (4.41)

where
𝝀 = (𝜆0

0, 𝜆0
1, ..., 𝜆0

𝑇0
, ..., 𝜆𝑗

0, 𝜆𝑗
1, ..., 𝜆𝑗

𝑇𝑗
), 𝝀 ≥ 0, ||𝝀||1 = 1 (4.42)

Equations (4.40), (4.41) and (4.42) represent the barycentric approximation of 𝑆𝑆𝑗: any
state in the convex safe set can be written as a convex combination of the points in the
sampled safe set; each component of 𝝀 is a positive weighting scalar for each element of
𝑆𝑆𝑗 [8].

Page 85 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

Figure 4.3. Sampled safe set 𝑆𝑆𝑗 (a) and convex safe set 𝐶𝑆𝑗 (b), with 𝑗 = 1

4.6.2. Terminal cost barycentric function

Relaxing the sampled safe set to its convex hull requires also to adapt the terminal cost
function 𝑄𝑗(𝒙) accordingly. Therefore, we introduce a barycentric approximation also
for 𝑄𝑗:

𝑃 𝑗(𝒙) =
⎧{
⎨{⎩

𝑝𝑗∗(𝒙) if 𝒙 ∈ 𝐶𝑆𝑗

+∞ if 𝒙 ∉ 𝐶𝑆𝑗
(4.43)

where

𝑝𝑗∗(𝒙) = min
𝜆𝑘≥0,𝑘∈[0,∞]

𝑗
∑
𝑖=0

∞
∑
𝑘=0

𝜆𝑖
𝑘𝐽 𝑗

[𝑘,∞](𝒙𝑖
𝑘) (4.44a)

subject to:
𝑗

∑
𝑖=0

∞
∑
𝑘=0

𝜆𝑖
𝑘 = 1 (4.44b)

𝑗
∑
𝑖=0

∞
∑
𝑘=0

𝜆𝑖
𝑘𝒙𝑖

𝑘 = 𝒙 (4.44c)

𝑃 𝑗(𝒙) is called terminal cost barycentric function; as defined in (4.43) and (4.44), it
represents a convex approximation of 𝑄𝑗(𝒙), which assigns to every point in 𝐶𝑆𝑗 the
minimum cost-to-go along all the possible trajectories in 𝐶𝑆𝑗.

More concisely, assuming (as in Note 4.5) that in 𝑆𝑆𝑗 there are no states in common to
multiple trajectories (except for 𝒙𝑆):

𝑃 𝑗(𝒙) = conv(𝑄𝑗(𝒙)) = min
𝝀≥0

(𝐽0
[0,𝑇0](𝒙0

0), 𝐽0
[1,𝑇0](𝒙0

1), ..., 𝐽 𝑗
[0,𝑇𝑗](𝒙

𝑗
0), ...) 𝝀𝑇 (4.45)

Page 86 of 158

4.6. Sampled safe set and terminal cost relaxation

where

𝝀 = (𝜆0
0, 𝜆0

1, ..., 𝜆0
𝑇0

, ..., 𝜆𝑗
0, 𝜆𝑗

1, ..., 𝜆𝑗
𝑇𝑗

), 𝝀 ≥ 0, ||𝝀||1 = 1, (𝑿0, ..., 𝑿𝑗)𝝀𝑇 = 𝒙
(4.46)

4.6.3. Relaxed LMPC optimization problem (first version)

From the relaxations shown in § 4.6.1 and § 4.6.2, we can formulate a first version of
the relaxed LMPC optimization problem:

(𝑿𝑗∗
𝑘 , 𝑼 𝑗∗

𝑘 , 𝝀∗) = argmin
𝑿𝑘,𝑼𝑘,𝝀

𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘, 𝝀)

𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘, 𝝀) =
𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) + 𝑃 𝑗−1(𝒙𝑁|𝑘) (4.47a)

subject to:

𝒙𝑡+1|𝑘 = 𝒇(𝒙𝑡|𝑘, 𝒖𝑡|𝑘), 𝑡 = 0, 1, ..., 𝑁 − 1 (4.47b)

𝒙0|𝑘 = 𝒙𝑗
𝑘 (4.47c)

𝒙𝑡|𝑘 ∈ 𝒳, 𝒖𝑡|𝑘 ∈ 𝒰, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.47d)

𝒙𝑁|𝑘 ∈ 𝐶𝑆𝑗−1 (4.47e)

𝝀 ≥ 0, ||𝝀||1 = 1 (4.47f)

Equivalently:

(𝑿𝑗∗
𝑘 , 𝑼 𝑗∗

𝑘 , 𝝀∗) = argmin
𝑿𝑘,𝑼𝑘,𝝀

𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘, 𝝀)

𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘, 𝝀) =
𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘)+

+ (𝐽0
[0,𝑇0](𝒙0

0), 𝐽0
[1,𝑇0](𝒙0

1), ..., 𝐽 𝑗−1
[0,𝑇𝑗−1](𝒙

𝑗−1
0), ...) 𝝀𝑇 (4.48a)

subject to:

𝒙𝑡+1|𝑘 = 𝒇(𝒙𝑡|𝑘, 𝒖𝑡|𝑘), 𝑡 = 0, 1, ..., 𝑁 − 1 (4.48b)

𝒙0|𝑘 = 𝒙𝑗
𝑘 (4.48c)

𝒙𝑡|𝑘 ∈ 𝒳, 𝒖𝑡|𝑘 ∈ 𝒰, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.48d)

𝒙𝑁|𝑘 = (𝑿0, ..., 𝑿𝑗−1)𝝀𝑇 (4.48e)

𝝀 ≥ 0, ||𝝀||1 = 1 (4.48f)

With respect to (4.20), the relaxations have introduced the following changes:

Page 87 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

• The coefficients 𝝀 of the convex combination become additional optimization vari-
ables;

• Constraint (4.20e) becomes an equality constraint (4.48e) that, according to (4.41),
forces the terminal state into the convex safe set 𝐶𝑆𝑗−1;

• The terminal cost function becomes the argument of the optimization problem in
(4.45).

We now describe the second relaxation approach, which in part uses the results of the
first approach, yielding in the end to a simpler optimization problem, involving a lower
number of optimization variables.

This second approach consists in:

• expressing the terminal constraint through the set of linear inequalities defining the
convex safe set 𝐶𝑆𝑗;

• approximating the discrete terminal cost function 𝑄𝑗(𝒙) with a convex piecewise-
linear interpolating function ̃𝑃 𝑗(𝒙), over the convex safe set 𝐶𝑆𝑗.

4.6.4. Convex safe set linear constraints

The convex safe set 𝐶𝑆𝑗, being the convex hull of discrete states in 𝑆𝑆𝑗 ⊂ R𝑛, is a
convex polytope. Specifically, a polytope is the generalization in 𝑛 dimensions of the
three-dimensional polyhedron.

𝐶𝑆𝑗 can be defined through the convex combination of the discrete states as in (4.40);
such a definition is called vertex representation (or V-representation).

For the sake of LMPC relaxation, however, 𝐶𝑆𝑗 can be also defined in alternative way,
that proves to be more useful. It is called half-space representation (or H-representation).
In H-representation, the convex polytope is seen as the intersection of a finite number
of subspaces. Therefore, it can be described via a set of linear inequalities:

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 ≤ 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 ≤ 𝑏2

⋮ ⋮ ⋮ ⋮

Page 88 of 158

4.6. Sampled safe set and terminal cost relaxation

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚 (4.49)

which can be written in a compact matrix form:

𝑨𝐶𝑆𝒙 ≤ 𝒃𝐶𝑆, 𝑨𝐶𝑆 =
⎛⎜⎜⎜⎜
⎝

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑛

⎞⎟⎟⎟⎟
⎠

, 𝒃𝐶𝑆 =
⎛⎜⎜⎜⎜
⎝

𝑏1
⋮

𝑏𝑚

⎞⎟⎟⎟⎟
⎠

(4.50)

(4.50) is a linear inequality constraint, which can be easily inserted in the relaxed LMPC
optimization problem as terminal constraint.

4.6.5. Convex piecewise-linear fitting of the terminal cost func-
tion

At iteration 𝑗, the sampled safe set 𝑆𝑆𝑗 contains the following states:

𝑆𝑆𝑗 = {𝑿0, ..., 𝑿𝑗} = {𝒙0
0, 𝒙0

1, ..., 𝒙𝑗
𝑇𝑗

} (4.51)

The terminal cost function 𝑄𝑖(𝒙), if (as in Note 4.5) there are no states in common to
multiple trajectories (except for 𝒙𝑆), when applied to every state in 𝑆𝑆𝑗 gives:

𝑄𝑗(𝑆𝑆𝑗) = {𝑄𝑗(𝒙0
0), 𝑄𝑗(𝒙0

1), ..., 𝑄𝑗(𝒙𝑗
𝑇𝑗

)} =

= {𝐽0
[0,𝑇0](𝒙0

0), 𝐽0
[1,𝑇0](𝒙0

1), ..., 𝐽 𝑗
[𝑇𝑗,𝑇𝑗](𝒙

𝑗
𝑇𝑗

)} ≡

≡ {𝐽0
0 , 𝐽0

1 , ..., 𝐽 𝑗
𝑇𝑗

} ≡

≡ {𝑄0
0, 𝑄1

0, ..., 𝑄𝑗
𝑇𝑗

} (4.52)

We then consider the problem of fitting the obtained data:

(𝒙0
0, 𝑄0

0), ..., (𝒙𝑗
𝑇𝑗

, 𝑄𝑗
𝑇𝑗

) ≡ (𝒙1, 𝑄1), ..., (𝒙𝑚, 𝑄𝑚) ∈ R𝑛 × R, 𝑚 = |𝑆𝑆𝑗| (4.53)

with a convex piecewise-linear function 𝑓 ∶ R𝑛 → R from some set ℱ of candidate
functions. With a least-squares fitting criterion, we obtain the problem:

min
𝑓∈ℱ

√𝐽(𝑓)
𝑚 , 𝐽(𝑓) =

𝑚
∑
𝑖=1

(𝑓(𝒙𝑖) − 𝑄𝑖)
2 (4.54)

We call √𝐽(𝑓)
𝑚 the RMSE index (root-mean-square error) of the function 𝑓 fitting the

data. The convex piecewise-linear fitting problem (4.54) is to find the function 𝑓 , from

Page 89 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

the given family ℱ of convex piecewise-linear functions, that gives the best (smallest)
RMSE value with the given data.

Our main interest is in the case when 𝑛 (i.e. the state dimension) is relatively small,
while 𝑚 (i.e. the number of data points) can be relatively large (e.g. 104 or more). The
methods that will be described in the following, however, work for any values of 𝑛 and
𝑚.

Several special cases of the convex piecewise-linear fitting problems (4.54) can be solved
exactly.

When ℱ is the set of affine functions, i.e. 𝑓(𝒙) = 𝒂𝑇 𝒙+𝑏, the problem (4.54) reduces to
an ordinary linear least-squares problem in the function parameters 𝒂 ∈ R𝑛 and 𝑏 ∈ R
and can be analytically solved. This approach is called parametric convex piecewise-
linear fitting.

A less trivial case is, by converse, the non-parametric convex piecewise-linear fitting,
in which ℱ is the set of all piecewise-linear functions from R𝑛 to R, with no other
constraint on the form of 𝑓 .

Of course, not all data can be fit well (i.e. with small RMSE) with a convex piecewise-
linear function. For example, if the data are samples from a function that has a strong
concave curvature, then no convex function can fit it well.

Max-affine functions

For our purposes, we will consider a parametric fitting problem, in which the candidate
functions are parametrized by a finite-dimensional vector of coefficients 𝜶.
We choose as ℱ the set of functions on R𝑛 with the form:

𝑓(𝒙) = max (𝒂𝑇
1 𝒙 + 𝑏1, ..., 𝒂𝑇

𝑘 𝒙 + 𝑏𝑘) (4.55)

We refer to a function of this form as a max-affine function with 𝑘 terms. Such functions
are parameterized by the coefficients vector:

𝜶 = (𝒂1, ..., 𝒂𝑘, 𝑏1, ..., 𝑏𝑘) ∈ R𝑘(𝑛+1) (4.56)

Max-affine functions can be visualized as an intersection of 𝑘 planes in the R𝑛 ×R space,
of which we take the envelope (which corresponds to the max operation).

Page 90 of 158

4.6. Sampled safe set and terminal cost relaxation

Indeed, any convex piecewise-linear function on R𝑛 can be expressed as a max-affine
function, for some 𝑘, so this form is in a sense universal.
Our interest, however, is in the case when the number of terms 𝑘 is relatively small, In
this case the max-affine representation (4.55) is compact, in the sense that the number of
parameters needed to describe 𝑓 is much smaller than the number of parameters in the
original data set (i.e. 𝑚(𝑛 + 1)). The methods that will be described in the following,
however, do not require 𝑘 to be small.

With max-affine functions, the fitting problem (4.54) reduces to the nonlinear least-
squares problem:

min
𝜶

√𝐽(𝜶)
𝑚 , 𝐽(𝜶) =

𝑚
∑
𝑖=1

(max
𝑗=1,...,𝑘

(𝒂𝑇
𝑗 𝒙𝑖 + 𝑏𝑗) − 𝑄𝑖)

2
(4.57)

Fitting procedure

In this section, we present an algorithm that solves approximately the 𝑘-term max-affine
fitting problem (4.57) [11].

The heuristic idea behind this algorithm is the following:

• create 𝑘 partitions of the data points {(𝒙1, 𝑄1), ..., (𝒙𝑚, 𝑄𝑚)};

• on each partition 𝑗 = 1, ..., 𝑘, solve analytically the linear least-square fitting problem
associated to the 𝑗-th affine functions composing 𝑓 , obtaining a first estimate of the
coefficients 𝒂𝑗 and 𝑏𝑗;

• update each partition on the base of the current coefficients value;

• iterate the algorithm until the coefficients converge to a certain value.

The algorithm, therefore, alternates between partitioning the data and carrying out
least-squares fits to update the coefficients.

Let 𝑃 (𝑙)
𝑗 for 𝑗 = 1, ..., 𝑘, be a partition of the data indices {1, ..., 𝑚} at the 𝑙-th iteration

of the algorithm:

𝑃 (𝑙)
𝑗 ⊆ {1, ..., 𝑚}

⋃
𝑗

𝑃 (𝑙)
𝑗 = {1, ..., 𝑚}, 𝑃 (𝑙)

𝑖 ∩ 𝑃 (𝑙)
𝑗 = ∅ for 𝑖 ≠ 𝑗 (4.58)

Page 91 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

The generation of the initial partitions 𝑃 (0)
𝑗 will be analyzed in the next section.

Denoting with 𝒂(𝑙)
𝑗 and 𝑏(𝑙)

𝑗 the values of the parameters at the 𝑙-th iteration of the
algorithm, we generate the next values, 𝒂(𝑙+1)

𝑗 and 𝑏(𝑙+1)
𝑗 , from the current partition 𝑃 (𝑙)

𝑗 ,
as explained in the following paragraphs.

For each 𝑗 = 1, ..., 𝑘, we carry out a least-squares fit of 𝒂𝑇
𝑗 𝒙𝑖 + 𝑏𝑗 to 𝑄𝑖, using only the

data points with 𝑖 ∈ 𝑃 (𝑙)
𝑗 . In other words, we take 𝒂(𝑙+1)

𝑗 and 𝑏(𝑙+1)
𝑗 as values of 𝒂 and 𝑏

that minimize
∑

𝑖∈𝑃 (𝑙)
𝑗

(𝒂𝑇 𝒙𝑖 + 𝑏 − 𝑄𝑖)
2 (4.59)

which is indeed the linear least-square problem associated to the 𝑗-th affine function
composing 𝑓 , restricted to only the data in the 𝑗-th partition.

Such problem can be solved analytically, and the pair (𝒂, 𝑏) that minimizes (4.59) is
given by:

(𝒂(𝑙+1)
𝑗

𝑏(𝑙+1)
𝑗

) = (∑ 𝒙𝑖𝒙𝑇
𝑖 ∑ 𝒙𝑖

∑ 𝒙𝑇
𝑖 ∣𝑃 (𝑙)

𝑗 ∣
)

−1

(∑ 𝑄𝑖𝒙𝑖
∑ 𝑄𝑖

) (4.60)

where the sums are over 𝑖 ∈ 𝑃 (𝑙)
𝑗 .

Using the new values of the coefficients, we update the partition to obtain 𝑃 (𝑙+1)
𝑗 , by

assigning 𝑖 to 𝑃 (𝑙+1)
𝑗 if:

𝑓 (𝑙+1) (𝒙𝑖) = max
𝑠=1,...,𝑘

(𝒂(𝑙+1)𝑇
𝑠 𝒙𝑖 + 𝑏(𝑙+1)

𝑠) = 𝒂(𝑙+1)𝑇
𝑗 𝒙𝑖 + 𝑏(𝑙+1)

𝑗 (4.61)

This means that 𝑃 (𝑙+1)
𝑗 is the set of indices 𝑖 for which the affine function 𝒂(𝑙+1)𝑇

𝑗 𝒙𝑖+𝑏(𝑙+1)
𝑗

is the maximum for the data point 𝒙𝑖.

During this step of the algorithm, one or more of the sets 𝑃 (𝑙+1)
𝑗 may become empty.

The simplest approach is to drop these empty sets from the partitions, and continue
with a smaller value of 𝑘.

This algorithm is iterated until one of the following conditions is met:

• Convergence has been reached, which equivalently occurs when:

∘ the coefficients vector 𝜶(𝑙) has converged to a steady-state value: 𝜶(𝑙+1) = 𝜶(𝑙),
∀𝑙 ≥ 𝑙′;

Page 92 of 158

4.6. Sampled safe set and terminal cost relaxation

∘ the partitions 𝑃 (𝑙)
𝑗 do not change anymore after a certain iteration: 𝑃 (𝑙+1)

𝑗 = 𝑃 (𝑙)
𝑗 ,

∀𝑙 ≥ 𝑙′, ∀𝑗 ∈ {1, ..., 𝑘}.

• The maximum number of iterations has been reached: 𝑙 > 𝑁𝑖𝑡𝑒𝑟.

Generation of the initial partitions

The choice of the initial partitions 𝑃 (0)
𝑗 is a crucial step, since it directly affects the

quality of the fitting given by the max-affine interpolating function generated by the
algorithm. A bad selection of the initial partitions may lead the algorithm to not
converge, or to converge to a piecewise-linear approximation that poorly fits the data
(even when the data shows a good convex curvature).

We provide in the following a general approach to generate initial partitions that ensure,
in most cases, a good interpolation of the data points [11].

Each partition 𝑃 (0)
𝑗 , with 𝑗 = 1, ..., 𝑘, is generated starting from 𝑘 randomly chosen

points 𝒑1, ..., 𝒑𝑘 ∈ R𝑛, which are called seed points.
Then, 𝑃 (0)

𝑗 is defined as the set of indices 𝑖 associated to the data points 𝒙𝑖 that are
closest to 𝒑𝑗:

𝑃 0
𝑗 = {𝑖 ∶ |𝒙𝑖 − 𝒑𝑗| < |𝒙𝑖 − 𝒑𝑠|, ∀𝑠 ≠ 𝑗}, 𝑗 = 1, ..., 𝑘 (4.62)

Specifically, the indices in the partitions 𝑃 (0)
𝑗 define the Voronoi sets of data points 𝒙𝑖

associated to the seed points 𝒑𝑗.

With this method, we generate initial partitions that tessellate the whole subset of R𝑛

containing the data points {𝒙𝑖}𝑚
𝑖=1. Such partitions are very well suited for max-affine

interpolation, since max-affine functions are the envelope of 𝑘 intersecting planes in R𝑛

and the fitting procedure locally interpolates the data in each partition with one of the
planes composing the function.

The Voronoi sets associated to the initial partitions, which tessellate the set of data
points, are depicted in Figure 4.6, showing the case of 20 randomly generated partitions.

The seed points 𝒑𝑗 should be randomly generated according to some probability distri-
bution that matches the shape of the data points 𝒙𝑖. A possible choice is to generate
them from a normal distribution with the sample mean 𝝁𝑥 and the sample covariance

Page 93 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

𝜮𝑥 of the data points:

𝝁𝑥 = 1
𝑚

𝑚
∑
𝑖=1

𝒙𝑖, 𝜮𝑥 = 1
𝑚

𝑚
∑
𝑖=1

𝒙𝑖𝒙𝑇
𝑖 (4.63)

Note 4.7 Since the seed points are generated from a normal distribution, it
may happen that some of them are chosen outside the set of data points and enough
far from it such that the related partition is empty. As done in the fitting algorithm,
the simplest approach is to drop these empty partitions and continue with a smaller
value of 𝑘.

This method for generating initial partitions can be reformulated to more specific pro-
cedure that applies only to 1D data (i.e. 𝑛 = 1) and provides in most cases better
results.

Instead of generating randomly the initial partitions 𝑃 (0)
𝑗 from seed points, the partitions

are chosen as equally spaced intervals on the ordered set (i.e. from lowest to highest
value) of data points {𝑥1, ..., 𝑥𝑚} ⊂ R:

𝑃 (0)
𝑗 = {1 + (𝑗 − 1) ⌊𝑚

𝑘 ⌋ , ..., 𝑗 ⌊𝑚
𝑘 ⌋} , for 𝑗 = 1, ..., 𝑘 − 1

𝑃 (0)
𝑘 = {1 + 𝑘 ⌊𝑚

𝑘 ⌋ , ..., 𝑚} (4.64)

With this approach, we generate, as well as in the general method, initial partitions that
cover the whole subset of R containing the data points {𝑥𝑖}𝑚

𝑖=1. This method applies well
only to 1D data for the trivial reason that R is much easier to subdivide in bounded and
connected subsets rather than R𝑛, for which instead generating the partitions randomly
in more convenient.

Fitting algorithm

The full algorithm for convex piecewise-linear fitting can be written as follows:

Algorithm 4.2 Convex piecewise-linear fitting

Inputs: {(𝒙1, 𝑄1), ..., (𝒙𝑚, 𝑄𝑚)}; 𝑘; 𝑁𝑖𝑡𝑒𝑟 (max n. of iterations)
Outputs: 𝜶

(1) Compute the sample mean 𝝁𝑥 and sample covariance 𝜮𝑥 of the data points

Page 94 of 158

4.6. Sampled safe set and terminal cost relaxation

{𝒙𝑖}𝑚
𝑖=1 as in (4.63)

(2) Generate the seed points 𝒑𝑗, 𝑗 = 1, ..., 𝑘, from the distribution 𝒩(𝝁𝑥, 𝜮𝑥)

(3) Compute the initial partitions 𝑃 (0)
𝑗 , 𝑗 = 1, ..., 𝑘, as in (4.62)

(4) Remove empty partitions from 𝑃 (0)
𝑗 , 𝑗 = 1, ..., 𝑘, and update the value of 𝑘

(5) For 𝑙 = 0, ..., 𝑁𝑖𝑡𝑒𝑟 − 1:

(2.1) Compute 𝒂(𝑙+1)
𝑗 and 𝑏(𝑙+1)

𝑗 , 𝑗 = 1, ..., 𝑘, as in (4.60)

(2.2) Update the partitions to 𝑃 (𝑙+1)
𝑗 , 𝑗 = 1, ..., 𝑘, as in (4.61)

(2.3) Remove empty partitions from 𝑃 (𝑙+1)
𝑗 , 𝑗 = 1, ..., 𝑘, and update the

value of 𝑘

(2.4) • If 𝑃 (𝑙+1)
𝑗 = 𝑃 (𝑙)

𝑗 , return:

𝜶 = (𝒂(𝑙)
1 , ..., 𝒂(𝑙)

𝑘 , 𝑏(𝑙)
1 , ..., 𝑏(𝑙)

𝑘)

• otherwise, continue

(6) Return:
𝜶 = (𝒂(𝑁𝑖𝑡𝑒𝑟)

1 , ..., 𝒂(𝑁𝑖𝑡𝑒𝑟)
𝑘 , 𝑏(𝑁𝑖𝑡𝑒𝑟)

1 , ..., 𝑏(𝑁𝑖𝑡𝑒𝑟)
𝑘)

Examples

In this section, we will show two examples of application of the convex piecewise-linear
fitting algorithm.
We will use it to fit a set of 1D and 2D data points, obtained from 2 convex functions,
specifically:

𝑓1 ∶ R → R, 𝑓1(𝑥) = 𝑦 = 0.1𝑥2 (4.65a)

𝑓2 ∶ R2 → R, 𝑓2(𝒙) = 𝑦 = 0.1(𝑥2
1 + 𝑥2

2) (4.65b)

For function 1, data points are {(𝑥𝑖, 𝑦𝑖)}𝑖 = {(𝑥𝑖, 𝑓1(𝑥𝑖))}𝑖, {𝑥𝑖}𝑖 = [−5 ∶ 0.5 ∶ 5].
The algorithm is set up with 𝑘 = 10, 𝑁𝑖𝑡𝑒𝑟 = 10; the initial partitions are generated by
setting up the MATLAB random number generator with the 'default' seed.
The algorithm returns 𝜶 after only 1 iteration:

𝜶 = ((𝑎𝑗)𝑗, (𝑏𝑗)𝑗)

Page 95 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

(𝑎𝑗)𝑇
𝑗 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.35
0.95
0.65
0.1

−0.8
−0.3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (𝑏𝑗)𝑇
𝑗 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−0.3
−2.25
−1.02

−0.00833
−1.55
−0.175

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(𝑎𝑗)𝑗 and (𝑏𝑗)𝑗 have 6 < 𝑘 elements, so 4 empty partitions have been generated and
removed.

Figure 4.4 depicts the max-affine interpolating function with respect to data points:

Figure 4.4. Convex piecewise-linear fit of a 1D convex function. Data points are depicted in red, while
the max-affine interpolating function is depicted in cyan.

We see that the interpolating function is the envelope of 6 lines, having angular coeffi-
cient 𝑎𝑗 and intercept 𝑏𝑗, for 𝑗 = 1, ..., 6.

For function 2, data points are {(𝒙𝑖, 𝑦𝑖)}𝑖 = {(𝒙𝑖, 𝑓2(𝒙𝑖))}𝑖, {𝒙𝑖}𝑖 = [−5 ∶ 0.5 ∶ 5]×[−5 ∶
0.5 ∶ 5].
The algorithm is set up with 𝑘 = 20, 𝑁𝑖𝑡𝑒𝑟 = 50; the initial partitions are generated by
setting up the MATLAB random number generator with the 'default' seed.
The algorithm returns 𝜶 after 16 iterations:

𝜶 = ((𝒂𝑗)𝑗, (𝑏𝑗)𝑗)

Page 96 of 158

4.6. Sampled safe set and terminal cost relaxation

(𝒂𝑗)𝑇
𝑗 =

⎛⎜⎜
⎝

0.688 0.246
0.75 −0.578

−0.702 −0.299
0.439 0.827
0.196 0.342

−0.757 0.79
−0.351 0.354

0.31 −0.246
−0.863 0.208
0.0964 −0.777
−0.65 −0.8
−0.147 0.829
−0.161 −0.18
0.837 −0.159
0.908 0.724
0.75 −0.9

⎞⎟⎟
⎠

, (𝑏𝑗)𝑇
𝑗 =

⎛⎜⎜
⎝

−1.21
−2.15
−1.31
−2.08
−0.29
−2.87
−0.506
−0.295
−1.86
−1.37
−2.47
−1.66

−0.0165
−1.72
−3.27
−3.34

⎞⎟⎟
⎠

(𝒂𝑗)𝑗 and (𝑏𝑗)𝑗 have 16 < 𝑘 elements, so 4 empty partitions have been generated and
removed.

We see that the interpolating function is the envelope of 16 planes, having coefficients
(𝒂𝑇

𝑗 , 𝑏𝑗), for 𝑗 = 1, ..., 16.

Figure 4.5 depicts the interpolating max-affine function with respect to data points:

Figure 4.5. Convex piecewise-linear fit of a 2D convex function. Data points are depicted in red, while
the max-affine interpolating function is depicted in cyan.

Page 97 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

Figure 4.6 depicts instead the Voronoi sets associated to the initial partitions:

Figure 4.6. Voronoi sets of the initial partitions. Seed points are depicted in red, while the boundaries
of each set are marked with black lines.

As pointed out in Note 4.7, in Figure 4.6 we see only 16 out of 20 generated partitions;
this means that 4 partitions have been generated outside the subset of data points in R2

(i.e. [−5, 5] × [−5, 5]). Indeed, we have seen that (𝒂𝑗)𝑗 and (𝑏𝑗)𝑗 have only 16 elements,
meaning that the 4 empty partitions have been removed from 𝑃 (0)

𝑗 , 𝑗 = 1, ..., 20.

4.6.6. Relaxed LMPC optimization problem (second version)

From the relaxations shown in § 4.6.4 and § 4.6.5, we can formulate a second version of
the relaxed LMPC optimization problem:

(𝑿𝑗∗
𝑘 , 𝑼 𝑗∗

𝑘) = argmin
𝑿𝑘,𝑼𝑘

𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘)

𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘) =
𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) + ̃𝑃 𝑗−1(𝒙𝑁|𝑘) (4.66a)

̃𝑃 𝑗−1(𝒙) = max(𝒂𝑗−1𝑇
1 𝒙 + 𝑏𝑗−1

1 , ..., 𝒂𝑗−1𝑇
𝐾 𝒙 + 𝑏𝑗−1

𝐾) (4.66b)

subject to:

𝒙𝑡+1|𝑘 = 𝒇(𝒙𝑡|𝑘, 𝒖𝑡|𝑘), 𝑡 = 0, 1, ..., 𝑁 − 1 (4.66c)

𝒙0|𝑘 = 𝒙𝑗
𝑘 (4.66d)

𝒙𝑡|𝑘 ∈ 𝒳, 𝒖𝑡|𝑘 ∈ 𝒰, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.66e)

Page 98 of 158

4.7. Repetitive LMPC

𝒙𝑁|𝑘 ∈ 𝐶𝑆𝑗−1 (4.66f)

Equivalently, as noted in [11], by recalling that (4.66b) is equivalent to:

̃𝑃 𝑗−1(𝒙) = min
𝑐

𝑐

subject to:

𝑐 ≥ 𝒂𝑗−1𝑇
𝑠 𝒙 + 𝑏𝑗−1

𝑠 , 𝑠 = 1, ..., 𝐾 (4.67)

the relaxed optimization problem can be rewritten as:

(𝑿𝑗∗
𝑘 , 𝑼 𝑗∗

𝑘 , 𝑐∗) = argmin
𝑿𝑘,𝑼𝑘,𝑐

𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘, 𝑐)

𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘, 𝑐) =
𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) + 𝑐 (4.68a)

subject to:

𝒙𝑡+1|𝑘 = 𝒇(𝒙𝑡|𝑘, 𝒖𝑡|𝑘), 𝑡 = 0, 1, ..., 𝑁 − 1 (4.68b)

𝒙0|𝑘 = 𝒙𝑗
𝑘 (4.68c)

𝒙𝑡|𝑘 ∈ 𝒳, 𝒖𝑡|𝑘 ∈ 𝒰, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.68d)

𝑨𝑗−1
𝐶𝑆 𝒙𝑁|𝑘 ≤ 𝒃𝑗−1

𝐶𝑆 (4.68e)

𝑐 ≥ 𝒂𝑗−1𝑇
𝑠 𝒙𝑁|𝑘 + 𝑏𝑗−1

𝑠 , 𝑠 = 1, ..., 𝐾 (4.68f)

With respect to (4.20), the relaxations have introduced the following changes:

• Constraint (4.20e) becomes a linear inequality constraint (4.68e) as in (4.50), that
forces the terminal state into the convex safe set 𝐶𝑆𝑗−1;

• The terminal cost function becomes the argument 𝑐 of the optimization problem
in (4.67); 𝑐 then becomes an additional optimization variable. Therefore, also the
constraints (4.68f) are added to the problem.

4.7. Repetitive LMPC

In (4.4), we assumed that, at each iteration of the LMPC algorithm, the initial conditions
of the system are unchanged (i.e. 𝒙𝑆 = 𝒙𝑗

0, ∀𝑗 ≥ 0).

LMPC, however, is specifically suited for systems performing repetitive tasks.
In a repetitive framework, the initial conditions at the 𝑗-th iteration are, in general,

Page 99 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

function of the final state of the previous iteration 𝑗 − 1; in the most simple case, it
holds:

𝒙𝑗+1
0 = 𝒙𝑗

𝑇𝑗
, ∀𝑗 ≥ 0 (4.69)

(4.69) replaces (4.4) when implementing a repetitive LMPC algorithm.

4.8. LMPC for quadrotors

We now apply all the LMPC concepts that have been described until now for the purpose
of controlling the quadrotor described in Chapter 2.

As already done in Chapter 3, we consider, as system to be controlled, the nonlinear
discrete-time dynamic model of the quadrotor in Frenet coordinates (2.94):

𝒙𝑘+1 = 𝒇𝑄(𝒙𝑘, 𝒖𝑘, 𝐾(𝑠𝑘)) (4.70)

When we have used MPC, our objective was to make the quadrotor to track a specific
trajectory within the race track.
Now, using LMPC, the goal is to formulate a relaxed LMPC algorithm (second version)
(4.68) and (4.23) that pilots the quadrotor around the track and that autonomously
learns which is the best path to follow to minimize the lap time.
This means that we want the algorithm to perform an autonomous and optimal path
planning.

In the following, we will construct every element of the LMPC problem, to eventually
derive the final control algorithm.

We start saying that all the considerations regarding track definition and curvature
propagation and relaxation hold also for the LMPC algorithm; therefore, we refer the
reader to § 3.7.1 and § 3.7.2.

4.8.1. Safe set

Initialization

As required by Assumption 4.1, the LMPC has to be initialized with a 𝑆𝑆0 containing
a first feasible trajectory 𝑿0 converging to the goal state 𝒙𝐹 .

Page 100 of 158

4.8. LMPC for quadrotors

We will generate this trajectory by means of theMPC algorithm for quadrotor trajectory
tracking that we have developed in Chapter 3. Specifically, the first trajectory 𝑿0 will
start from the initial state 𝒙𝑆 = 𝒙0

0 and will travel across the whole track until crossing
the finish line, corresponding to the goal curvilinear abscissa 𝑠𝐹 = 𝐿𝑡𝑟𝑎𝑐𝑘.

Since this trajectory has to be feasible wrt LMPC constraints, we must ensure that such
constraints are a subset of those in the MPC optimization problem.

Construction

In the theoretical formulation, the 𝑆𝑆𝑗 contains the whole state variables 𝒙𝑗
𝑘 constituting

the generated trajectories 𝑿𝟎, ..., 𝑿𝑗. However, when the number of states 𝑛 of the
system is large, this operation can become quite costly.
Specifically, when we compute the convex hull 𝐶𝑆𝑗 of 𝑆𝑆𝑗, to obtain the linear inequality
constraints𝑨𝑗

𝐶𝑆, 𝒃𝑗
𝐶𝑆 to relax the LMPC optimization problem, the larger is 𝑛, the higher

is the computational time needed to compute such constraints. Moreover, the higher is
𝑛, the higher will be the dimensions of 𝑨𝑗

𝐶𝑆 and 𝒃𝑗
𝐶𝑆, which, if too big, can slow down

too much the solver due to the high number of constraints to be satisfied.

Therefore, it is convenient to store in the 𝑆𝑆𝑗 only some of the states composing 𝒙𝑗
𝑘.

For our purposes, we will store only two states: the curvilinear abscissa 𝑠 and the lateral
distance 𝑑. Since the LMPC has the goal of optimizing the planar trajectory (i.e. the
one on the 𝑥𝑦 plane) to minimize the lap time, 𝑠 and 𝑑 are the only states needed by
the algorithm to find, trough autonomous learning, such optimal path on the track.

Note 4.8 The 𝑆𝑆𝑗 will contain the states (𝑠, 𝑑) composing each LMPC trajec-
tory up to iteration 𝑗; these points are used, in the relaxed framework, to construct
the max-affine interpolating function ̃𝑃 𝑗(𝒙), which approximates the terminal cost
barycentric function. This means that, to obtain a good first terminal cost function

̃𝑃 0(𝒙), which is used in the optimization problem at iteration 1, it is necessary that
the first trajectory 𝑿0 “explores” as many states (𝑠, 𝑑) as possible while travelling
on the track.

Therefore, the MPC is set up to generate a 𝑿0 that oscillates in [−𝑑𝑙𝑖𝑚, 𝑑𝑙𝑖𝑚] while
travelling from 𝑠 = 0 to 𝑠 = 𝐿𝑡𝑟𝑎𝑐𝑘. In this way, the first trajectory will sweep a
good amount of states within the set [0, 𝐿𝑡𝑟𝑎𝑐𝑘]×[−𝑑𝑙𝑖𝑚, 𝑑𝑙𝑖𝑚], providing a good first

Page 101 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

terminal cost function ̃𝑃 0(𝒙).

In general, if the choice of 𝑿0 is good, ̃𝑃 0(𝒙) may be used as terminal cost function
also for iterations 𝑗 ≥ 1, i.e.:

̃𝑃 𝑗(𝒙) ≐ ̃𝑃 0(𝒙), ∀𝑗 ≥ 1 (4.71)

Recomputing ̃𝑃 𝑗(𝒙) at every iteration, with the additional points in 𝑆𝑆𝑗, would
not give any improvement in the interpolating function; by contrary, too many over-
imposed data points (which come out when the trajectories tend to converge to the
optimal one) might provide a worst interpolation.

4.8.2. Cost function

For our LMPC optimization problem, the stage cost function ℎ will be the following:

ℎ(𝒙𝑘, 𝒖𝑘) = (𝒙𝑘 − 𝒙𝐹)𝑇 𝑷 (𝒙𝑘 − 𝒙𝐹) (4.72)

The goal state will be:

𝒙𝐹 = (⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 1.2 ⋅ 𝐿𝑡𝑟𝑎𝑐𝑘 ⋆ ⋆) (4.73)

in which we recall that the states denoted with “⋆” are associated to a weight equal to
0 in the matrix 𝑷 , so their value is not needed to be specified.
This means that only the state 𝑠 (i.e. the 11th state) is penalized.

This stage cost function satisfies (4.7), but most importantly it fits well with our task
of generating the path minimizing the lap time.
Indeed, this stage cost function penalizes only the distance from the finish line, without
any penalty on the other system states. This means that the LMPC control algorithm
will try to fly the quadrotor towards the finish line as quickly as possible and, being
no penalties on the other system states, it is free to make the quadrotor to follow any
possible path inside the race track, as long as it goes towards the finish line. This
possibility to move along any trajectory enables the learning capability of LMPC.

Note 4.9 We see that in 𝒙𝐹 the value of 𝐿𝑡𝑟𝑎𝑐𝑘 is multiplied by a coefficient
> 1. This is done to avoid that the quadrotor decelerates when approaching the

Page 102 of 158

4.8. LMPC for quadrotors

finish line. The coefficient moves virtually the finish line ahead of its real position,
meaning that the quadrotor will cross the true finish line without slowing down.

However, to ensure a better behaviour of the quadrotor under control, additional terms
are added to the complete LMPC cost function:

𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘, 𝑒1, 𝑒2, 𝑒3, 𝑐) =

=
𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) +
𝑁−1
∑
𝑡=0

ℎ′(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) +
𝑁−1
∑
𝑡=1

ℎ″(𝒙𝑡|𝑘, 𝒖𝑡|𝑘, 𝒙𝑡−1|𝑘, 𝒖𝑡−1|𝑘)+

+ 𝐾1𝑒2
1 + 𝐾2𝑒2

2 + 𝐾3𝑒2
3 + 𝑐 =

=
𝑁−1
∑
𝑡=0

(𝒙𝑡|𝑘 − 𝒙𝐹)𝑇 𝑷 (𝒙𝑡|𝑘 − 𝒙𝐹)+ (4.74a)

+
𝑁−1
∑
𝑡=0

(𝒙𝑡|𝑘 − 𝒙𝑟)𝑇 𝑸(𝒙𝑡|𝑘 − 𝒙𝑟) + 𝒖𝑇
𝑡|𝑘𝑹𝒖𝑡|𝑘+ (4.74b)

+
𝑁−1
∑
𝑡=1

(𝒙𝑡|𝑘 − 𝒙𝑡−1|𝑘)𝑇 𝑸Δ(𝒙𝑡|𝑘 − 𝒙𝑡−1|𝑘) + (𝒖𝑡|𝑘 − 𝒖𝑡−1|𝑘)𝑇 𝑹Δ(𝒖𝑡|𝑘 − 𝒖𝑡−1|𝑘)+

(4.74c)

+ 𝐾1𝑒2
1 + 𝐾2𝑒2

2 + 𝐾3𝑒2
3 + 𝑐 (4.74d)

The cost-to-go, iteration cost, and terminal cost function are computed using only the
stage cost function ℎ:

𝐽 𝑗
[𝑘,∞](𝒙

𝑗
𝑘) =

∞
∑
𝑡=𝑘

ℎ(𝒙𝑗
𝑡, 𝒖𝑗

𝑡) =
∞

∑
𝑡=𝑘

(𝒙𝑗
𝑡 − 𝒙𝐹)𝑇 𝑷 (𝒙𝑗

𝑡 − 𝒙𝐹)

𝐽 𝑗
[0,∞](𝒙

𝑗
0) = 𝐽 𝑗

0 =
∞

∑
𝑘=0

ℎ(𝒙𝑗
𝑘, 𝒖𝑗

𝑘) =
∞

∑
𝑘=0

(𝒙𝑗
𝑘 − 𝒙𝐹)𝑇 𝑷 (𝒙𝑗

𝑘 − 𝒙𝐹) (4.75)

The term (4.74a) is the usual one with the stage cost function ℎ.

The term (4.74b) is similar to the one used in the MPC for quadrotor trajectory tracking
and has the purpose to take into account all the other relevant states that are not present
in the stage cost function ℎ (such as the altitude 𝑧, the yaw angle 𝜓, and the lateral
distance 𝑑). Specifically, the additional stage cost function ℎ′ will partially shape the
final trajectory according to the reference state 𝒙𝑟, acting as a “guide” for the LMPC
algorithm; it also penalizes the amplitude of the input signal. In the following, we will
define the value for 𝒙𝑟.

The term (4.74c) was also used in the MPC for quadrotor trajectory tracking (§ 3.7.3)

Page 103 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

and has the purpose to penalize the variation of the system states and inputs, forcing
the quadrotor to follow a smoother trajectory, without abrupt changes in its velocity
and accelerations.

The term (4.74d), finally, contains the terms related to three slack variables 𝑒1, 𝑒2, 𝑒3 ∈ R,
that will be inserted in the problem constraints (see next section), and the additional
optimization variable 𝑐 that acts as terminal cost in the relaxed LMPC optimization
problem (4.68).

Reference state

We will use the following value for 𝒙𝑟:

𝒙𝑟 = (𝑧𝑟 ⋆ ⋆ 45° ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝑑𝑟(𝑠𝑘) ⋆) (4.76)

where the function 𝑑𝑟(𝑠𝑘) is:

𝑑𝑟(𝑠𝑘) =
⎧{
⎨{⎩

𝑐𝑑𝑟
⋅ 𝑑𝑙𝑖𝑚 if 𝐾(𝑠𝑘) = 0

sign(𝐾(𝑠𝑘)) ⋅ 𝑐𝑑𝑟
⋅ 𝑑𝑙𝑖𝑚 if 𝐾(𝑠𝑘) ≠ 0

(4.77)

where 𝑐𝑑𝑟
∈ [0, 1].

The reference values 𝑧𝑟 and 𝜓𝑟 = 45° suggest the quadrotor to keep an altitude near 𝑧𝑟
and to fly in a cross configuration.

The variable value of 𝑑𝑟, instead, is fundamental to help the LMPC algorithm to find
the optimal path minimizing the lap time.
The value of 𝑑𝑟 is set to 𝑐𝑑𝑟

⋅ 𝑑𝑙𝑖𝑚 when the curvature of the track, at the current
location 𝑠𝑘 of the quadrotor, is 𝐾(𝑠𝑘) ≥ 0; the value, instead, is set to −𝑐𝑑𝑟

⋅ 𝑑𝑙𝑖𝑚 when
the curvature is 𝐾(𝑠𝑘) < 0; the coefficient 𝑐𝑑𝑟

is used to tune the reference value.
This means that the quadrotor will tend to stay close to the inner border of the track
when it is on a straight line or on a left curve (wrt the Frenet frame); instead, it will tend
to stay close to the outer border of the track when it is on a right curve. Qualitatively,
this is how, in a closed track, a pilot would conduct a vehicle to efficiency “cut the
curves” to reach the finish line in the shortest amount of time.
Therefore, the value of 𝑑𝑟 = 𝑑𝑟(𝑠𝑘) suggests the LMPC to pilot in this way the quadrotor,
reaching more easily the optimal path minimizing the lap time.

Page 104 of 158

4.8. LMPC for quadrotors

Note 4.10 The terms (4.74a) and (4.74b) of the cost function can be combined
to a unique stage cost function as follows:

𝑁−1
∑
𝑡=0

(𝒙𝑡|𝑘 − (𝒙𝑟 + 𝒙𝐹))𝑇 (𝑸 + 𝑷)(𝒙𝑡|𝑘 − (𝒙𝑟 + 𝒙𝐹)) + 𝒖𝑇
𝑡|𝑘𝑹𝒖𝑡|𝑘 (4.78)

where:

𝒙𝑟 + 𝒙𝐹 = (𝑧𝑟 ⋆ ⋆ 45° ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 1.2 ⋅ 𝐿𝑡𝑟𝑎𝑐𝑘 𝑑𝑟(𝑠𝑘) ⋆) (4.79)

4.8.3. Constraints

The following constraints will be added to the LMPC optimization problem:

• ATV model equations constraints (implicit prediction form);

• track boundaries, i.e. bounds on the lateral distance 𝑑;

• bounds on the altitude 𝑧;

• the constraints required by the relaxed LMPC optimization problem (second version)
(4.68).

The constraints will be expressed as follows:

𝒙𝑡+1|𝑘 = 𝑨𝑗
𝑘𝒙𝑡|𝑘 + 𝑩𝑗

𝑘𝒖𝑡|𝑘 + 𝒄𝑗
𝑘, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.80a)

𝒙0|𝑘 = 𝒙𝑗
𝑘 (4.80b)

− 𝑑𝑙𝑖𝑚 − 𝑒1 ≤ 𝑑𝑡|𝑘 ≤ 𝑑𝑙𝑖𝑚 + 𝑒1, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.80c)

𝑧(𝑚) − 𝑒2 ≤ 𝑧𝑡|𝑘 ≤ 𝑧(𝑀) + 𝑒2, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.80d)

𝑨𝑗−1
𝐶𝑆 𝒙𝑁|𝑘 ≤ 𝒃𝑗−1

𝐶𝑆 + 𝑒3 (4.80e)

𝑐 ≥ 𝒂𝑗−1𝑇
𝑠 𝒙𝑁|𝑘 + 𝑏𝑗−1

𝑠 , 𝑠 = 1, ..., 𝐾 (4.80f)

𝑒1 ≥ 0 (4.80g)

𝑒2 ≥ 0 (4.80h)

where (𝑚) stands for minimum value and (𝑀) stands for maximum value.

As already pointed out in Note 3.7, the ATV model for the quadrotor is computed
using the new model (3.46), 𝒙𝑘+1 = ̂𝒇𝑄(𝒙𝑘, 𝒖𝑘, 𝐾), having the curvature expressed as

Page 105 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

a constant parameter 𝐾, independent from 𝑠 (curvature propagation). Therefore:

𝑨𝑗
𝑘 = 𝜕 ̂𝒇𝑄

𝜕𝒙 (𝒙𝑗
𝑘, 𝒖𝑗

𝑘−1, 𝐾) (4.81)

𝑩𝑗
𝑘 = 𝜕 ̂𝒇𝑄

𝜕𝒖 (𝒙𝑗
𝑘, 𝒖𝑗

𝑘−1, 𝐾) (4.82)

𝒄𝑗
𝑘 = ̂𝒇𝑄(𝒙𝑗

𝑘, 𝒖𝑗
𝑘−1, 𝐾) − 𝑨𝑗

𝑘𝒙𝑗
𝑘 − 𝑩𝑗

𝑘𝒖𝑗
𝑘−1 (4.83)

Constraints (4.80a)-(4.80b) are associated to the ATV model equations.

Constraint (4.80c) is associated to the track boundaries/width; thus, it sets lower and
upper bounds on the lateral distance 𝑑 of the quadrotor. The slack variable 𝑒1 softens
the constraint; this allows the quadrotor to slightly go outside the bounds, preventing
possible infeasibility when the quadrotor approaches too closely the track borders.

Constraint (4.80d) sets lower and upper bounds on the altitude 𝑧 of the quadrotor, since
in LMPC there is not a reference altitude (expect for the indicative value 𝑧𝑟 in 𝒙𝑟). The
slack variable 𝑒2 softens the constraint; this allows the quadrotor to slightly go outside
the bounds, preventing possible infeasibility when the quadrotor approaches too closely
the vertical borders.

Constraint (4.80e) is the terminal constraint forcing the terminal state 𝒙𝑁|𝑘 in the
convex safe set 𝐶𝑆𝑗−1. The slack variable 𝑒3 softens the constraint.

Constraint (4.80f) is the one associated to the auxiliary optimization problem (4.67)
that defines the value of the barycentric terminal cost function ̃𝑃 (𝒙) (which is, as we
know, interpolated by a max-affine function) evaluated in the terminal state 𝒙𝑁|𝑘.

Constraints (4.80g)-(4.80h), finally, set the slack variables 𝑒1 and 𝑒2 as non-negative,
which is necessary to soften correctly constraints (4.80c)-(4.80d).

Note 4.11 We see that the LMPC constraints (4.80c)-(4.80d) are a subset of
MPC constraints (3.50c)-(3.50h) except if 𝑧(𝑚) > 0. In that case, the first points
of the first trajectory will be infeasible only for the altitude constraint (since the
quadrotor starts at 𝑧0 = 0); this, however, is not a problem, since typically, choosing
a value of 𝑁 not too small, such states of 𝑆𝑆𝑗 will unlikely be chosen as the terminal
state at the beginning of the next iteration.

Page 106 of 158

4.8. LMPC for quadrotors

Note 4.12 It is important to notice that, now, being all the constraints linear
equalities or inequalities and being the cost function quadratic, the optimization
problem is a QP, meaning that the LMPC is linear.

4.8.4. Optimization problem

We can now write the LMPC optimization problem for quadrotor optimal path planning:

LMPC optimization problem for quadrotor optimal path planning

(𝑿𝑗∗
𝑘 , 𝑼 𝑗∗

𝑘 , 𝑒𝑗∗
1 , 𝑒𝑗∗

2 , 𝑒𝑗∗
3 , 𝑐𝑗∗) = argmin

𝑿𝑘,𝑼𝑘,𝑒1,𝑒2,𝑒3,𝑐
𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘, 𝑒1, 𝑒2, 𝑒3, 𝑐)

𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘, 𝑒1, 𝑒2, 𝑒3, 𝑐) =

=
𝑁−1
∑
𝑡=0

(𝒙𝑡|𝑘 − 𝒙𝐹)𝑇 𝑷 (𝒙𝑡|𝑘 − 𝒙𝐹)+

+
𝑁−1
∑
𝑡=0

(𝒙𝑡|𝑘 − 𝒙𝑟)𝑇 𝑸(𝒙𝑡|𝑘 − 𝒙𝑟) + 𝒖𝑇
𝑡|𝑘𝑹𝒖𝑡|𝑘+

+
𝑁−1
∑
𝑡=1

(𝒙𝑡|𝑘 − 𝒙𝑡−1|𝑘)𝑇 𝑸Δ(𝒙𝑡|𝑘 − 𝒙𝑡−1|𝑘) + (𝒖𝑡|𝑘 − 𝒖𝑡−1|𝑘)𝑇 𝑹Δ(𝒖𝑡|𝑘 − 𝒖𝑡−1|𝑘)+

+ 𝐾1𝑒2
1 + 𝐾2𝑒2

2 + 𝐾3𝑒2
3 + 𝑐 (4.84a)

subject to:

𝒙𝑡+1|𝑘 = 𝑨𝑗
𝑘𝒙𝑡|𝑘 + 𝑩𝑗

𝑘𝒖𝑡|𝑘 + 𝒄𝑗
𝑘, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.84b)

𝒙0|𝑘 = 𝒙𝑗
𝑘 (4.84c)

− 𝑑𝑙𝑖𝑚 − 𝑒1 ≤ 𝑑𝑡|𝑘 ≤ 𝑑𝑙𝑖𝑚 + 𝑒1, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.84d)

𝑧(𝑚) − 𝑒2 ≤ 𝑧𝑡|𝑘 ≤ 𝑧(𝑀) + 𝑒2, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.84e)

𝑨𝑗−1
𝐶𝑆 𝒙𝑁|𝑘 ≤ 𝒃𝑗−1

𝐶𝑆 + 𝑒3 (4.84f)

𝑐 ≥ 𝒂𝑗−1𝑇
𝑠 𝒙𝑁|𝑘 + 𝑏𝑗−1

𝑠 , 𝑠 = 1, ..., 𝑘𝑓𝑖𝑡 (4.84g)

𝑒1 ≥ 0 (4.84h)

𝑒2 ≥ 0 (4.84i)

with:

𝑨𝑗
𝑘 = 𝜕 ̂𝒇𝑄

𝜕𝒙 (𝒙𝑗
𝑘, 𝒖𝑗

𝑘−1, 𝐾̃(𝑠𝑗
𝑘)) (4.84j)

Page 107 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

𝑩𝑗
𝑘 = 𝜕 ̂𝒇𝑄

𝜕𝒖 (𝒙𝑗
𝑘, 𝒖𝑗

𝑘−1, 𝐾̃(𝑠𝑗
𝑘)) (4.84k)

𝒄𝑗
𝑘 = ̂𝒇𝑄(𝒙𝑗

𝑘, 𝒖𝑗
𝑘−1, 𝐾̃(𝑠𝑗

𝑘)) − 𝑨𝑗
𝑘𝒙𝑗

𝑘 − 𝑩𝑗
𝑘𝒖𝑗

𝑘−1 (4.84l)

4.8.5. Algorithm

The complete LMPC algorithm for quadrotor optimal path planning is composed by
the optimization problem (4.84) and the receding horizon control law (4.23).

As already mentioned in Note 3.10, it is worth noticing that, even though we have used
in the LMPC optimization problem (4.84) the ATV model of the quadrotor, the next
state 𝒙𝑗

𝑘+1 is obtained applying the optimal control input 𝒖𝑗
𝑘 = 𝒖𝑗∗

0|𝑘 to the complete
nonlinear model of the quadrotor (2.94):

𝒙𝑗
𝑘+1 = 𝒇𝑄(𝒙𝑗

𝑘, 𝒖𝑗
𝑘, 𝐾(𝑠𝑗

𝑘)) (4.85)

Note 4.13 Being in Frenet coordinates, it is necessary to modify the expression
(4.69). In fact, when the quadrotor crosses the finish line (so at the end of each lap),
the state variables 𝑠 (curvilinear abscissa) and 𝜓2 (Frenet angle) have to be reset
from 𝑠 = 𝐿𝑡𝑟𝑎𝑐𝑘 to 0 and from 𝜓2 = 360° to 0. Therefore, (4.69) becomes:

𝒙𝑗+1
0 = 𝒙𝑗

𝑇𝑗
− 𝐿𝑡𝑟𝑎𝑐𝑘 𝒆11 − 360° 𝒆13, ∀𝑗 ≥ 0 (4.86)

where 𝒆𝑘 is the 𝑘-th vector of the canonical base of R𝑛 (with 𝑛 = 13, i.e. the number
of states of the quadrotor model):

𝒆𝑘 = (0, ..., 0, 1⏟
𝑘-th element

, 0, ..., 0)𝑇 ∈ R𝑛 (4.87)

Algorithm 4.3 LMPC for quadrotor optimal path planning

Inputs: 𝒙𝑆; 𝑁𝑖𝑡𝑒𝑟 (number of LMPC iterations); 𝑁 (LMPC prediction horizon)
Outputs: 𝑿0, 𝑿1, ..., 𝑿𝑁𝑖𝑡𝑒𝑟 ; 𝑼0, 𝑼1, ..., 𝑼𝑁𝑖𝑡𝑒𝑟

(1) Generate the first feasible trajectory 𝑿0 = (𝒙0
0, 𝒙0

1, ..., 𝒙0
𝑇0

) using the MPC
algorithm for quadrotor trajectory tracking (Algorithm 3.2), with initial state
𝒙0

0 = 𝒙𝑆

Page 108 of 158

4.8. LMPC for quadrotors

(2) Construct the initial sampled safe set 𝑆𝑆0 = {𝑿0}

(3) Using Algorithm 4.2, perform the convex piecewise-linear fitting of the data
points 𝑆𝑆0 = {𝒙0

0, ..., 𝒙0
𝑇0

} and 𝑄0(𝑆𝑆0) = {𝐽0
0 , ..., 𝐽0

𝑇0
}, obtaining the coeffi-

cients 𝜶0 = (𝒂0
𝑠, 𝑏0

𝑠)𝑘𝑓𝑖𝑡
𝑠=1 of the max-affine terminal cost barycentric function

̃𝑃 0(𝒙)

(4) For 𝑗 = 1, 2, ..., 𝑁𝑖𝑡𝑒𝑟:

(4.1) • If the LMPC is repetitive, set the initial state 𝒙𝑗
0 = 𝒙𝑗−1

𝑇𝑗−1
−

𝐿𝑡𝑟𝑎𝑐𝑘 𝒆11 − 2𝜋 𝒆13, as in (4.86), and store it in 𝑿𝑗;
• otherwise (the LMPC is non-repetitive), set the initial state 𝒙𝑗

0 =
𝒙𝑆, as in (4.4), and store it in 𝑿𝑗

(4.2) Compute, from 𝑆𝑆𝑗−1, the convex safe set 𝐶𝑆𝑗−1 and its related linear
constraints 𝑨𝑗−1

𝐶𝑆 , 𝒃𝑗−1
𝐶𝑆

(4.3) For 𝑘 = 0, 1, ...:

(4.3.1) • If the exit condition on 𝒙𝑗
𝑘 is satisfied, break the cycle (at

𝑘 = 𝑇𝑗);
• otherwise, continue

(4.3.2) Initialize the LMPC optimization problem (4.84) with 𝒙𝑗
𝑘,

𝒖𝑗
𝑘−1 (if 𝑘 = 0, set 𝒖𝑗

𝑘−1 ≐ 𝟎), 𝑨𝑗−1
𝐶𝑆 , 𝒃𝑗−1

𝐶𝑆 , and 𝜶0

(4.3.3) Solve the LMPC optimization problem, obtaining the optimal
predicted state trajectory 𝑿𝑗∗

𝑘 = (𝒙𝑗∗
0|𝑘, 𝒙𝑗∗

1|𝑘, ..., 𝒙𝑗∗
𝑁|𝑘) and op-

timal predicted input sequence 𝑼 𝑗∗
𝑘 = (𝒖𝑗∗

0|𝑘, 𝒖𝑗∗
1|𝑘, ..., 𝒖𝑗∗

𝑁−1|𝑘)
(4.3.4) Apply the input 𝒖𝑗

𝑘 ≐ 𝒖𝑗∗
0|𝑘 to the system (2.94), as in (4.23),

obtaining the next state 𝒙𝑗
𝑘+1

(4.3.5) Store 𝒙𝑗
𝑘+1 and 𝒖𝑗

𝑘 in 𝑿𝑗 and 𝑼 𝑗

(4.4) Augment the sampled safe set with the new trajectory 𝑿𝑗 =
(𝒙𝑗

0, 𝒙𝑗
1, ..., 𝒙𝑗

𝑇𝑗
):

𝑆𝑆𝑗 = 𝑆𝑆𝑗−1 ∪ {𝑿𝑗}

(5) Return all the generated trajectories and input sequences:

𝑿0, 𝑿1, ..., 𝑿𝑁𝑖𝑡𝑒𝑟

𝑼0, 𝑼1, ..., 𝑼𝑁𝑖𝑡𝑒𝑟

Page 109 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

As done in Note 4.6, we need to define the exit condition that stops the algorithm as
soon as the current state 𝒙𝑘 is sufficiently close to the goal state 𝒙𝐹 . For our needs, the
exit condition is when the quadrotor has crossed the finish line; therefore, the algorithm
should stop as soon as the value of the curvilinear abscissa 𝑠𝑘 is greater or equal to the
track length 𝐿𝑡𝑟𝑎𝑐𝑘:

𝑠𝑘
?
≥ 𝐿𝑡𝑟𝑎𝑐𝑘 (4.88)

4.9. LMPC with obstacle avoidance

In the previous sections, we have developed the complete LMPC algorithm for quadro-
tor optimal path planning, which is able to autonomously find the optimal trajectory
minimizing the lap time.

We now implement an additional feature for this algorithm, which is the possibility to
include, within the track, different kinds of obstacles. Therefore, the control algorithm,
along with finding the optimal path for lap time minimization, must also ensure that
the quadrotor avoids these obstacles while flying on the track.

4.9.1. Obstacles definition

Three types of obstacles can be included within the flight area:

• a horizontal narrowing of the track: over a certain interval 𝑠 = [𝑠𝑖, 𝑠𝑜], the value of
the bounds on the lateral distance 𝑑, defined by constraint (4.84d), are restricted to:

−𝑑𝑙𝑖𝑚 < 𝑑𝑜,𝑙 ≤ 𝑑𝑡|𝑘 ≤ 𝑑𝑜,𝑢 < 𝑑𝑙𝑖𝑚, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.89)

where 𝑑𝑜,𝑙 and 𝑑𝑜,𝑢 define respectively the new lower (i.e. outer) and upper (i.e.
inner) bounds on the lateral distance given by the obstacle.

The obstacle is depicted in Figure 4.7:

Page 110 of 158

4.9. LMPC with obstacle avoidance

Figure 4.7. Horizontal narrowing obstacle, placed within a generic part of the track

For this obstacle, we can define two function 𝑑𝑜,𝑙(𝑠) and 𝑑𝑜,𝑢(𝑠) which describe respec-
tively the value of the lower and upper bound on 𝑑 over the whole track; specifically,
they are equal to:

𝑑𝑜,𝑙(𝑠) =
⎧{
⎨{⎩

𝑑𝑜,𝑙 if 𝑠 ∈ [𝑠𝑖, 𝑠𝑜]
−𝑑𝑙𝑖𝑚 if 𝑠 ∉ [𝑠𝑖, 𝑠𝑜]

, 𝑑𝑜,𝑢(𝑠) =
⎧{
⎨{⎩

𝑑𝑜,𝑢 if 𝑠 ∈ [𝑠𝑖, 𝑠𝑜]
𝑑𝑙𝑖𝑚 if 𝑠 ∉ [𝑠𝑖, 𝑠𝑜]

(4.90)

If multiple obstacles of this kind are present, in (4.90) will be added multiple cases,
one for each obstacle;

• a vertical narrowing of the track: over a certain interval 𝑠 = [𝑠𝑖, 𝑠𝑜], the value of the
bounds on the altitude 𝑧, defined by constraint (4.84e), are restricted to:

𝑧(𝑚) < 𝑧𝑜,𝑙 ≤ 𝑧𝑡|𝑘 ≤ 𝑧𝑜,𝑢 < 𝑧(𝑀), 𝑡 = 0, 1, ..., 𝑁 − 1 (4.91)

where 𝑧𝑜,𝑙 and 𝑧𝑜,𝑢 define respectively the new lower and upper bounds on the altitude
given by the obstacle.

The obstacle is depicted in Figure 4.8:

Figure 4.8. Vertical narrowing obstacle, placed within a generic part of the track

Page 111 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

For this obstacle, we can define two function 𝑧𝑜,𝑙(𝑠) and 𝑧𝑜,𝑢(𝑠) which describe respec-
tively the value of the lower and upper bound on 𝑧 over the whole track; specifically,
they are equal to:

𝑧𝑜,𝑙(𝑠) =
⎧{
⎨{⎩

𝑧𝑜,𝑙 if 𝑠 ∈ [𝑠𝑖, 𝑠𝑜]
𝑧(𝑚) if 𝑠 ∉ [𝑠𝑖, 𝑠𝑜]

, 𝑧𝑜,𝑢(𝑠) =
⎧{
⎨{⎩

𝑧𝑜,𝑢 if 𝑠 ∈ [𝑠𝑖, 𝑠𝑜]
𝑧(𝑀) if 𝑠 ∉ [𝑠𝑖, 𝑠𝑜]

(4.92)

If multiple obstacles of this kind are present, in (4.92) will be added multiple cases,
one for each obstacle;

• a “square ring” obstacle, which is the result of the union of a horizontal and a vertical
narrowing of the track: over a certain interval 𝑠 = [𝑠𝑖, 𝑠𝑜], the values of the bounds
on both the lateral distance 𝑑 and the altitude 𝑧, defined by constraints (4.84d) and
(4.84e), are restricted to:

− 𝑑𝑙𝑖𝑚 < 𝑑𝑜,𝑙 ≤ 𝑑𝑡|𝑘 ≤ 𝑑𝑜,𝑢 < 𝑑𝑙𝑖𝑚, 𝑡 = 0, 1, ..., 𝑁 − 1
𝑧(𝑚) < 𝑧𝑜,𝑙 ≤ 𝑧𝑡|𝑘 ≤ 𝑧𝑜,𝑢 < 𝑧(𝑀), 𝑡 = 0, 1, ..., 𝑁 − 1 (4.93)

where 𝑑𝑜,𝑙 and 𝑑𝑜,𝑢 define respectively the new lower (i.e. outer) and upper (i.e.
inner) bounds on the lateral distance given by the obstacle, while 𝑧𝑜,𝑙 and 𝑧𝑜,𝑢 define
respectively the new lower and upper bounds on the altitude given by the obstacle.

The obstacle is depicted in Figure 4.9:

Figure 4.9. Square ring obstacle, placed within a generic part of the track

For this obstacle, we can define two couples of functions 𝑑𝑜,𝑙(𝑠), 𝑑𝑜,𝑢(𝑠) and 𝑧𝑜,𝑙(𝑠),
𝑧𝑜,𝑢(𝑠) which describe respectively the value of the lower and upper bounds on 𝑑 and
𝑧 over the whole track; specifically, they are equal to (4.90) and (4.92).
If multiple obstacles of this kind are present, in (4.90) and (4.92) will be added
multiple cases, one for each obstacle.

Page 112 of 158

4.9. LMPC with obstacle avoidance

In Figure 4.10a is depicted a track containing 3 obstacles: 1 vertical narrowing, 1 horizon-
tal narrowing, and 1 square ring. Specifically, this track will be used in the simulations
to test the algorithm (see Chapter 5).

4.9.2. Obstacles implementation

To make the LMPC optimization problem aware of a possible obstacle ahead, the first
idea would be to insert the functions 𝑑𝑜,𝑙(𝑠), 𝑑𝑜,𝑢(𝑠) and 𝑧𝑜,𝑙(𝑠), 𝑧𝑜,𝑢(𝑠) inside the con-
straints on 𝑑 (4.84d) and 𝑧 (4.84e); in this way, according to the current value of the
curvilinear abscissa 𝑠𝑘, the related constraints will force the quadrotor either within the
obstacle borders or within the track borders.
However, this approach leads to the same problems that we had when trying to directly
insert the curvature function 𝐾(𝑠) in the LMPC optimization problem.

Therefore, we deal with this problem in the same way as we did for the curvature in §
3.7.2:

• At each time instant 𝑘, the value of the current bounds on 𝑑 and 𝑧, given by 𝑑𝑜,𝑙(𝑠𝑘),
𝑑𝑜,𝑢(𝑠𝑘) and 𝑧𝑜,𝑙(𝑠𝑘), 𝑧𝑜,𝑢(𝑠𝑘), will be passed to the LMPC optimization problem,
which will set them as constant values 𝑑𝑜,𝑙, 𝑑𝑜,𝑢 and 𝑧𝑜,𝑙, 𝑧𝑜,𝑢 in constraints (4.84d)
and (4.84e).
This means that the LMPC optimization problem will compute the optimal predicted
states and inputs assuming that, over its prediction horizon, the bounds on 𝑑 and 𝑧
are constant to their initial values at 𝑠𝑘 = 𝑠0|𝑘.

• The approach at the previous point solves the issue of embedding the analytical
functions 𝑑𝑜,𝑙(𝑠), 𝑑𝑜,𝑢(𝑠) and 𝑧𝑜,𝑙(𝑠), 𝑧𝑜,𝑢(𝑠) in the LMPC constraints. However, we
now have the problem that an abrupt change in the bounds on 𝑑 and 𝑧 will be
noticed by LMPC only right at the beginning of the obstacle, since we have imposed
the bounds as constant in each LMPC optimization problem. This issue may cause
the quadrotor to “crash” on the obstacles, since, being these noticed only when the
quadrotor arrives near them, the control algorithm is not able to find a feasible
sequence of inputs that menages to successfully avoid such obstacles.

A possible solution to this problem consists in evaluating the bounds on 𝑑 and 𝑧
using relaxed functions ̃𝑑𝑜,𝑙(𝑠), ̃𝑑𝑜,𝑢(𝑠) and ̃𝑧𝑜,𝑙(𝑠), ̃𝑧𝑜,𝑢(𝑠). Such relaxed functions are
realized by connecting the constant piecewise segments with 3rd-order polynomials,

Page 113 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

ensuring the continuity of the derivatives in the junction points (Figures 4.10b-c).
This connection using polynomials allows to reduce the steepness of the rising vertical
edges of the stepwise bounds given by the obstacles: the gradual change of the bounds
in the relaxed functions allows the LMPC to start avoiding in advance the obstacles.

To quantify how much the bounds are relaxed, we define the parameters 𝑑𝑜,𝑟𝑒𝑙 and
𝑧𝑜,𝑟𝑒𝑙, called obstacles relaxation coefficients. To ensure the best obstacle avoidance
capability, such coefficients should be set very close to 100%; in Figures 4.10b-c, the
values of 𝑑𝑜,𝑟𝑒𝑙 and 𝑧𝑜,𝑟𝑒𝑙 are near 100%.

(a) Track with 3 obstacles: 1 vertical narrowing, 1 horizontal narrowing, and 1 square ring

(b) Real and relaxed horiz. obstacles functions 𝑑𝑜,𝑙(𝑠), 𝑑𝑜,𝑢(𝑠) and ̃𝑑𝑜,𝑙(𝑠), ̃𝑑𝑜,𝑢(𝑠) (𝑑𝑜,𝑟𝑒𝑙 = 99.9%)

Page 114 of 158

4.9. LMPC with obstacle avoidance

(c) Real and relaxed vertical obstacles functions 𝑧𝑜,𝑙(𝑠), 𝑧𝑜,𝑢(𝑠) and ̃𝑧𝑜,𝑙(𝑠), ̃𝑧𝑜,𝑢(𝑠) (𝑧𝑜,𝑟𝑒𝑙 = 99.9%)

Figure 4.10. Track with obstacles and related obstacle functions (real and relaxed)

4.9.3. Safe set

As for the standard LMPC algorithm, the sampled safe set is initialized to 𝑆𝑆0 by
means of the MPC algorithm for quadrotor trajectory tracking, which generates the
first feasible trajectory 𝑿0.

Moreover, in 𝑆𝑆𝑗 are stored only some of the states composing each point 𝒙𝑗
𝑘 of the tra-

jectories. Specifically, as for standard LMPC, only two states are stored: the curvilinear
abscissa 𝑠 and the lateral distance 𝑑.

The observations in Note 4.8 also apply for the LMPC with obstacle avoidance: the MPC
is set up to generate a𝑿0 that oscillates within the local bounds [𝑑𝑜,𝑙(𝑠𝑘), 𝑑𝑜,𝑢(𝑠𝑘)] while
travelling from 𝑠 = 0 to 𝑠 = 𝐿𝑡𝑟𝑎𝑐𝑘; in this way, the first trajectory will sweep a good
amount of states within the set [0, 𝐿𝑡𝑟𝑎𝑐𝑘]×[−𝑑𝑙𝑖𝑚, 𝑑𝑙𝑖𝑚], providing a good first terminal
cost function ̃𝑃 0(𝒙).
Also here, if the choice of 𝑿0 is good, ̃𝑃 0(𝒙) can be used as terminal cost function also
for iterations 𝑗 ≥ 1.

4.9.4. Cost function

For the LMPC optimization problem with obstacle avoidance, the cost function is very
similar to that of standard LMPC.

Page 115 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

The stage cost function ℎ is:

ℎ(𝒙𝑘, 𝒖𝑘) = (𝒙𝑘 − 𝒙𝐹)𝑇 𝑷 (𝒙𝑘 − 𝒙𝐹) (4.94)

with goal state:

𝒙𝐹 = (⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 1.2 ⋅ 𝐿𝑡𝑟𝑎𝑐𝑘 ⋆ ⋆) (4.95)

in which we recall that the states denoted with “⋆” are associated to a weight equal to
0 in the matrix 𝑷 , so their value is not needed to be specified.

To ensure a better behaviour of the quadrotor under control, the complete cost function
features the following additional terms:

𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘, 𝑒1, 𝑒2, 𝑒3, 𝑐) =

=
𝑁−1
∑
𝑡=0

ℎ(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) +
𝑁−1
∑
𝑡=0

ℎ′(𝒙𝑡|𝑘, 𝒖𝑡|𝑘) +
𝑁−1
∑
𝑡=1

ℎ″(𝒙𝑡|𝑘, 𝒖𝑡|𝑘, 𝒙𝑡−1|𝑘, 𝒖𝑡−1|𝑘)+

+ 𝐾1𝑒2
1 + 𝐾2𝑒2

2 + 𝐾3𝑒2
3 + 𝑐 =

=
𝑁−1
∑
𝑡=0

(𝒙𝑡|𝑘 − 𝒙𝐹)𝑇 𝑷 (𝒙𝑡|𝑘 − 𝒙𝐹)+ (4.96a)

+
𝑁−1
∑
𝑡=0

(𝒙𝑡|𝑘 − 𝒙𝑟)𝑇 𝑸(𝒙𝑡|𝑘 − 𝒙𝑟) + 𝒖𝑇
𝑡|𝑘𝑹𝒖𝑡|𝑘+ (4.96b)

+
𝑁−1
∑
𝑡=1

(𝒙𝑡|𝑘 − 𝒙𝑡−1|𝑘)𝑇 𝑸Δ(𝒙𝑡|𝑘 − 𝒙𝑡−1|𝑘) + (𝒖𝑡|𝑘 − 𝒖𝑡−1|𝑘)𝑇 𝑹Δ(𝒖𝑡|𝑘 − 𝒖𝑡−1|𝑘)+

(4.96c)

+ 𝐾1𝑒2
1 + 𝐾2𝑒2

2 + 𝐾3𝑒2
3 + 𝑐 (4.96d)

The cost-to-go, iteration cost, and terminal cost function are computed using only the
stage cost function ℎ:

𝐽 𝑗
[𝑘,∞](𝒙

𝑗
𝑘) =

∞
∑
𝑡=𝑘

ℎ(𝒙𝑗
𝑡, 𝒖𝑗

𝑡) =
∞

∑
𝑡=𝑘

(𝒙𝑗
𝑡 − 𝒙𝐹)𝑇 𝑷 (𝒙𝑗

𝑡 − 𝒙𝐹)

𝐽 𝑗
[0,∞](𝒙

𝑗
0) = 𝐽 𝑗

0 =
∞

∑
𝑘=0

ℎ(𝒙𝑗
𝑘, 𝒖𝑗

𝑘) =
∞

∑
𝑘=0

(𝒙𝑗
𝑘 − 𝒙𝐹)𝑇 𝑷 (𝒙𝑗

𝑘 − 𝒙𝐹) (4.97)

Reference state

We will use the following value for 𝒙𝑟:

𝒙𝑟 = (𝑧𝑟(𝑠𝑘) ⋆ ⋆ 45° ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝑑𝑟(𝑠𝑘) ⋆) (4.98)

Page 116 of 158

4.9. LMPC with obstacle avoidance

The function 𝑧𝑟(𝑠𝑘) is equal to:

𝑧𝑟(𝑠𝑘) = ̃𝑧𝑜,𝑢(𝑠𝑘) + ̃𝑧𝑜,𝑙(𝑠𝑘)
2 (4.99)

The function 𝑑𝑟(𝑠𝑘) is equal to:

𝑑𝑟(𝑠𝑘) =
⎧{
⎨{⎩

𝑐𝑑𝑟
⋅ ̃𝑑𝑜,𝑢(𝑠𝑘) if 𝐾(𝑠𝑘) ≥ 0

𝑐𝑑𝑟
⋅ ̃𝑑𝑜,𝑙(𝑠𝑘) if 𝐾(𝑠𝑘) < 0

(4.100)

where 𝑐𝑑𝑟
∈ (0, 1).

The variable value of 𝑧𝑟 suggests the quadrotor to attain, at each time instant 𝑘, an
altitude near the local mean value of the bounds on 𝑧, given by the relaxed functions

̃𝑧𝑜,𝑙(𝑠𝑘) and ̃𝑧𝑜,𝑢(𝑠𝑘). In this way, the quadrotor should avoid more easily the vertical
obstacles on its path.

The variable value of 𝑑𝑟, instead, helps the LMPC algorithm in finding the optimal path
minimizing the lap time: the quadrotor will tend to stay close to the inner border of
the track/obstacle (according to ̃𝑑𝑜,𝑢(𝑠𝑘)) when it is on a straight line or on a left curve;
instead, it will tend to stay close to the outer border of the track/obstacle (according
to ̃𝑑𝑜,𝑙(𝑠𝑘)) when it is on a right curve. Qualitatively, this is how, in a closed track, a
pilot would conduct a vehicle to efficiency “cut the curves” to reach the finish line in the
shortest amount of time.

4.9.5. Constraints

The following constraints are added to the LMPC optimization problem with obstacle
avoidance:

• ATV model equations constraints (implicit prediction form);

• track boundaries, i.e. bounds on the lateral distance 𝑑 (including obstacles);

• bounds on the altitude 𝑧 (including obstacles);

• the constraints required by the relaxed LMPC optimization problem (second version)
(4.68).

Page 117 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

The constraints will be expressed as follows:

𝒙𝑡+1|𝑘 = 𝑨𝑗
𝑘𝒙𝑡|𝑘 + 𝑩𝑗

𝑘𝒖𝑡|𝑘 + 𝒄𝑗
𝑘, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.101a)

𝒙0|𝑘 = 𝒙𝑗
𝑘 (4.101b)

̃𝑑𝑜,𝑙(𝑠𝑗
𝑘) − 𝑒1 ≤ 𝑑𝑡|𝑘 ≤ ̃𝑑𝑜,𝑢(𝑠𝑗

𝑘) + 𝑒1, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.101c)

̃𝑧𝑜,𝑙(𝑠𝑗
𝑘) − 𝑒2 ≤ 𝑧𝑡|𝑘 ≤ ̃𝑧𝑜,𝑢(𝑠𝑗

𝑘) + 𝑒2, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.101d)

𝑨𝑗−1
𝐶𝑆 𝒙𝑁|𝑘 ≤ 𝒃𝑗−1

𝐶𝑆 + 𝑒3 (4.101e)

𝑐 ≥ 𝒂𝑗−1𝑇
𝑠 𝒙𝑁|𝑘 + 𝑏𝑗−1

𝑠 , 𝑠 = 1, ..., 𝐾 (4.101f)

𝑒1 ≥ 0 (4.101g)

𝑒2 ≥ 0 (4.101h)

With respect to standard LMPC, only constraints 4.101c and 4.101d.

Constraint (4.101c) is associated to the track boundaries/width; thus, it sets lower
and upper bounds on the lateral distance 𝑑 of the quadrotor, also taking into account
the horizontal obstacles, through the relaxed functions ̃𝑑𝑜,𝑙(𝑠) and ̃𝑑𝑜,𝑢(𝑠). The slack
variable 𝑒1 softens the constraint; this allows the quadrotor to slightly go outside the
bounds, preventing possible infeasibility when the quadrotor approaches too closely the
track borders.

Constraint (4.101d) sets lower and upper bounds on the altitude 𝑧 of the quadrotor,
also taking into account the vertical obstacles, through the relaxed functions ̃𝑧𝑜,𝑙(𝑠) and

̃𝑧𝑜,𝑢(𝑠). The slack variable 𝑒2 softens the constraint; this allows the quadrotor to slightly
go outside the bounds, preventing possible infeasibility when the quadrotor approaches
too closely the vertical borders.

4.9.6. Optimization problem

We can now write the LMPC optimization problem for quadrotor optimal path planning
and obstacle avoidance:

LMPC optimization problem for quadrotor optimal path planning and
obstacle avoidance

(𝑿𝑗∗
𝑘 , 𝑼 𝑗∗

𝑘 , 𝑒𝑗∗
1 , 𝑒𝑗∗

2 , 𝑒𝑗∗
3 , 𝑐𝑗∗) = argmin

𝑿𝑘,𝑼𝑘,𝑒1,𝑒2,𝑒3,𝑐
𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘, 𝑒1, 𝑒2, 𝑒3, 𝑐)

Page 118 of 158

4.9. LMPC with obstacle avoidance

𝐽𝐿𝑀𝑃𝐶(𝑿𝑘, 𝑼𝑘, 𝑒1, 𝑒2, 𝑒3, 𝑐) =

=
𝑁−1
∑
𝑡=0

(𝒙𝑡|𝑘 − 𝒙𝐹)𝑇 𝑷 (𝒙𝑡|𝑘 − 𝒙𝐹)+

+
𝑁−1
∑
𝑡=0

(𝒙𝑡|𝑘 − 𝒙𝑟)𝑇 𝑸(𝒙𝑡|𝑘 − 𝒙𝑟) + 𝒖𝑇
𝑡|𝑘𝑹𝒖𝑡|𝑘+

+
𝑁−1
∑
𝑡=1

(𝒙𝑡|𝑘 − 𝒙𝑡−1|𝑘)𝑇 𝑸Δ(𝒙𝑡|𝑘 − 𝒙𝑡−1|𝑘) + (𝒖𝑡|𝑘 − 𝒖𝑡−1|𝑘)𝑇 𝑹Δ(𝒖𝑡|𝑘 − 𝒖𝑡−1|𝑘)+

+ 𝐾1𝑒2
1 + 𝐾2𝑒2

2 + 𝐾3𝑒2
3 + 𝑐 (4.102a)

subject to:

𝒙𝑡+1|𝑘 = 𝑨𝑗
𝑘𝒙𝑡|𝑘 + 𝑩𝑗

𝑘𝒖𝑡|𝑘 + 𝒄𝑗
𝑘, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.102b)

𝒙0|𝑘 = 𝒙𝑗
𝑘 (4.102c)

̃𝑑𝑜,𝑙(𝑠𝑗
𝑘) − 𝑒1 ≤ 𝑑𝑡|𝑘 ≤ ̃𝑑𝑜,𝑢(𝑠𝑗

𝑘) + 𝑒1, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.102d)

̃𝑧𝑜,𝑙(𝑠𝑗
𝑘) − 𝑒2 ≤ 𝑧𝑡|𝑘 ≤ ̃𝑧𝑜,𝑢(𝑠𝑗

𝑘) + 𝑒2, 𝑡 = 0, 1, ..., 𝑁 − 1 (4.102e)

𝑨𝑗−1
𝐶𝑆 𝒙𝑁|𝑘 ≤ 𝒃𝑗−1

𝐶𝑆 + 𝑒3 (4.102f)

𝑐 ≥ 𝒂𝑗−1𝑇
𝑠 𝒙𝑁|𝑘 + 𝑏𝑗−1

𝑠 , 𝑠 = 1, ..., 𝑘𝑓𝑖𝑡 (4.102g)

𝑒1 ≥ 0 (4.102h)

𝑒2 ≥ 0 (4.102i)

with:

𝑨𝑗
𝑘 = 𝜕 ̂𝒇𝑄

𝜕𝒙 (𝒙𝑗
𝑘, 𝒖𝑗

𝑘−1, 𝐾̃(𝑠𝑗
𝑘)) (4.102j)

𝑩𝑗
𝑘 = 𝜕 ̂𝒇𝑄

𝜕𝒖 (𝒙𝑗
𝑘, 𝒖𝑗

𝑘−1, 𝐾̃(𝑠𝑗
𝑘)) (4.102k)

𝒄𝑗
𝑘 = ̂𝒇𝑄(𝒙𝑗

𝑘, 𝒖𝑗
𝑘−1, 𝐾̃(𝑠𝑗

𝑘)) − 𝑨𝑗
𝑘𝒙𝑗

𝑘 − 𝑩𝑗
𝑘𝒖𝑗

𝑘−1 (4.102l)

4.9.7. Algorithm

The complete LMPC algorithm for quadrotor optimal path planning and obstacle avoid-
ance is composed by the optimization problem (4.102) and the receding horizon control
law (4.23).

Page 119 of 158

4. Learning Model Predictive Control for quadrotor autonomous and optimal path planning

Algorithm 4.4 LMPC for quadrotor optimal path planning and obstacle avoid-
ance

Inputs: 𝒙𝑆; 𝑁𝑖𝑡𝑒𝑟 (number of LMPC iterations); 𝑁 (LMPC prediction horizon)
Outputs: 𝑿0, 𝑿1, ..., 𝑿𝑁𝑖𝑡𝑒𝑟 , 𝑼0, 𝑼1, ..., 𝑼𝑁𝑖𝑡𝑒𝑟

(1) Generate the first feasible trajectory 𝑿0 = (𝒙0
0, 𝒙0

1, ..., 𝒙0
𝑇0

) using the MPC
algorithm for quadrotor trajectory tracking (Algorithm 3.2), with initial state
𝒙0

0 = 𝒙𝑆

(2) Construct the initial sampled safe set 𝑆𝑆0 = {𝑿0}

(3) Using Algorithm 4.2, perform the convex piecewise-linear fitting of the data
points 𝑆𝑆0 = {𝒙0

0, ..., 𝒙0
𝑇0

} and 𝑄0(𝑆𝑆0) = {𝐽0
0 , ..., 𝐽0

𝑇0
}, obtaining the coeffi-

cients 𝜶0 = (𝒂0
𝑠, 𝑏0

𝑠)𝑘𝑓𝑖𝑡
𝑠=1 of the max-affine terminal cost barycentric function

̃𝑃 0(𝒙)

(4) For 𝑗 = 1, 2, ..., 𝑁𝑖𝑡𝑒𝑟:

(4.1) Set the initial state 𝒙𝑗
0 = 𝒙𝑗−1

𝑇𝑗−1
− 𝐿𝑡𝑟𝑎𝑐𝑘 𝒆11 − 2𝜋 𝒆13, as in (4.86), and

store it in 𝑿𝑗 (repetitive LMPC)

(4.2) Compute, from 𝑆𝑆𝑗−1, the convex safe set 𝐶𝑆𝑗−1 and its related linear
constraints 𝑨𝑗−1

𝐶𝑆 , 𝒃𝑗−1
𝐶𝑆

(4.3) For 𝑘 = 0, 1, ...:
(4.3.1) • If the exit condition on 𝒙𝑗

𝑘 is satisfied, break the cycle (at
𝑘 = 𝑇𝑗);

• otherwise, continue
(4.3.2) Initialize the LMPC optimization problem (4.102) with 𝒙𝑗

𝑘,
𝒖𝑗

𝑘−1 (if 𝑘 = 0, set 𝒖𝑗
𝑘−1 ≐ 𝟎), 𝑨𝑗−1

𝐶𝑆 , 𝒃𝑗−1
𝐶𝑆 , and 𝜶0

(4.3.3) Solve the LMPC optimization problem, obtaining the optimal
predicted state trajectory 𝑿𝑗∗

𝑘 = (𝒙𝑗∗
0|𝑘, 𝒙𝑗∗

1|𝑘, ..., 𝒙𝑗∗
𝑁|𝑘) and op-

timal predicted input sequence 𝑼 𝑗∗
𝑘 = (𝒖𝑗∗

0|𝑘, 𝒖𝑗∗
1|𝑘, ..., 𝒖𝑗∗

𝑁−1|𝑘)
(4.3.4) Apply the input 𝒖𝑗

𝑘 ≐ 𝒖𝑗∗
0|𝑘 to the system (2.94), as in (4.23),

obtaining the next state 𝒙𝑗
𝑘+1

(4.3.5) Store 𝒙𝑗
𝑘+1 and 𝒖𝑗

𝑘 in 𝑿𝑗 and 𝑼 𝑗

(4.4) Augment the sampled safe set with the new trajectory 𝑿𝑗 =
(𝒙𝑗

0, 𝒙𝑗
1, ..., 𝒙𝑗

𝑇𝑗
):

𝑆𝑆𝑗 = 𝑆𝑆𝑗−1 ∪ {𝑿𝑗}

Page 120 of 158

4.9. LMPC with obstacle avoidance

(5) Return all the generated trajectories and input sequences:

𝑿0, 𝑿1, ..., 𝑿𝑁𝑖𝑡𝑒𝑟

𝑼0, 𝑼1, ..., 𝑼𝑁𝑖𝑡𝑒𝑟

The exit condition, as for standard LMPC, is:

𝑠𝑘
?
≥ 𝐿𝑡𝑟𝑎𝑐𝑘 (4.103)

Page 121 of 158

5
Simulations and results

5.1. Introduction

In this chapter, we report the results of the simulations that have been conducted totest the MPC algorithm for quadrotor trajectory tracking and the LMPC algorithms
for quadrotor optimal path planning and obstacle avoidance.
All of these algorithms are employed in software-in-the-loop simulations, in which they
are used to control the same quadrotor dynamic model, on a certain number of different
race tracks and in various conditions (including the addition of obstacles within the
track).

5.1.1. Software implementation

All the algorithms presented in Chapters 3 and 4 have been implemented in MATLAB®.

For what concerns the MATLAB implementation of the MPC and LMPC optimization
problems, it has been used YALMIP (which stands for “Yet Another Linear Matrix In-
equalities Parser”), which is a third-party MATLAB toolbox that provides custom syntax
and commands to formulate OPs in a very straightforward way: using YALMIP syntax,
the user can define symbolic optimization variables, to be used to write the mathe-

Page 123 of 158

5. Simulations and results

matical expressions of cost functions and constraints; YALMIP, then, uses an internal
parser to convert the optimization problem, formulated by the user in YALMIP syntax,
in low-level code to be provided to the chosen solver.

YALMIP has also the possibility to be integrated with many external solvers, the major-
ity of which can be installed and interfaced through another third-party toolbox, called
OPTI.

The YALMIP and OPTI toolboxes are free and available online, together with references
and tutorials:

• YALMIP: yalmip.github.io

• OPTI: github.com/jonathancurrie/OPTI

The full MATLAB code implementing all the algorithms (MPC, LMPC, and LMPC with
obstacle avoidance) is available in the following GitHub repository:

github.com/lorenzocalogero/LMPC_quadrotors

5.1.2. Quadrotor model

In all simulations, the MPC and LMPC algorithms are used to control the quadrotor
dynamic model (2.94); the parameters of this model are set to be always the same in
every simulation, so to make every algorithm to virtually control the same quadrotor.
For what concerns mass and dimensions, we set up the model parameters considering
the common specifications of a racing quadrotor; the moments of inertia 𝐼𝑥, 𝐼𝑦 and 𝐼𝑧
of the quadrotor have been estimated using (2.31):

Mass: 𝑚 = 0.5 kg
Dimensions: 20 cm× 20 cm× 6 cm
Moments of inertia: 𝐼𝑥 = 𝐼𝑦 = 6.3 ⋅ 10−3 kgm2, 𝐼𝑧 = 1.2 ⋅ 10−2 kgm2

Other model parameters are the following:

Discrete time interval: 𝑇 = 0.2 s
Drag force coefficients: 𝛽𝑥 = 𝛽𝑦 = 𝛽𝑧 = 0.25 kg s−1
Acceleration of gravity: 𝑔 = 9.81 ms−2

Page 124 of 158

5.1. Introduction

5.1.3. Race tracks

The race tracks that are used in the simulations are reported below (Figure 5.1).
In Table 5.1 are reported, for each track, the values of 𝐿𝑡𝑟𝑎𝑐𝑘 (track length from start
to finish line) and 𝑑𝑙𝑖𝑚 (track width from centerline to border).

Figure 5.1. Tracks used in the simulations

Table 5.1. Race tracks data

Track 𝐿𝑡𝑟𝑎𝑐𝑘 [m] 𝑑𝑙𝑖𝑚 [m]
1 10.2832 0.5
2 13.4248 0.5
3 33.1327 0.75

The curvature function 𝐾(𝑠) of each tracks is reported in Figure 3.1.

Page 125 of 158

5. Simulations and results

5.2. MPC simulations

In this section, we report the results of the simulations testing the MPC algorithm for
quadrotor trajectory tracking, developed in § 3.7.

Each simulation employs the MPC algorithm to pilot the quadrotor within the race
track, performing one of the following tasks:

1) Trajectory tracking with constant lateral distance 𝑑, meaning that the reference
trajectory has a constant reference value for 𝑑:

𝑑𝑟 = const. (5.1)

2) Trajectory tracking with oscillating lateral distance 𝑑, meaning that the reference
trajectory has the following variable reference value for 𝑑:

𝑑𝑟(𝑠𝑘) = 𝑐𝑜 ⋅ 𝑑𝑙𝑖𝑚 ⋅ sin(𝑛𝑜 ⋅ 2𝜋 𝑠𝑘
𝐿𝑡𝑟𝑎𝑐𝑘

) (5.2)

where 𝑛𝑜 is the number of oscillations over the track length and 𝑐𝑜 ∈ [−1, 1] is a
coefficient for tuning the amplitude and direction of the oscillations.

Six simulations have been carried out:

• Simulation 1: track 1, trajectory tracking with constant lateral distance;

• Simulation 2: track 2, trajectory tracking with constant lateral distance;

• Simulation 3: track 3, trajectory tracking with constant lateral distance;

• Simulation 4: track 1, trajectory tracking with oscillating lateral distance;

• Simulation 5: track 2, trajectory tracking with oscillating lateral distance;

• Simulation 6: track 3, trajectory tracking with oscillating lateral distance.

For each simulation, the following plots are reported:

• the trajectory on the 𝑥𝑦 plane (i.e. on the track);

• the track real and relaxed curvature functions 𝐾(𝑠) and 𝐾̃(𝑠);

Page 126 of 158

5.2. MPC simulations

• the altitude 𝑧(𝑡);

• the Frenet coordinates 𝑠(𝑡) and 𝑑(𝑡);

• the RPY angles 𝜙(𝑡), 𝜃(𝑡), and 𝜓(𝑡);

• the Cartesian velocities 𝑣𝑥(𝑡), 𝑣𝑦(𝑡), and 𝑣𝑧(𝑡).

5.2.1. Algorithm setup

In the following, we report the values of all the relevant parameters that have been used
to set up the MPC algorithm and its related optimization problem in each simulation.
If a parameter is reported symbolically, it means that its value depends on the simula-
tion; its numerical value for each simulation is reported in Table 5.2.

Initial state:

𝒙𝑆 = 𝒙0 = (0 0 0 45° 0 0 0 0 0 0 0 𝑑0 0)

Reference state:

𝒙𝑟 = (1 m 0 0 45° 0 0 0 0 0 0 𝐿𝑡𝑟𝑎𝑐𝑘 𝑑𝑟 ⋆)

Weight matrices:

𝑸 = diag(100 1 1 10 0.01 0.01 0.01 0.01 0.01 0.01 1 1 ⋅ 103 0)

𝑹 = diag(0.01 0.01 0.01 0.01)

𝑸Δ = 1
𝑇 2diag(0 0 0 0 100 100 10 0.01 0.01 100 0 0 0)

𝑹Δ = 1
𝑇 2diag(0.01 0.01 0.01 0.01)

𝐾1 = 1 ⋅ 103

𝐾2 = 1 ⋅ 103

Constraints:

𝑧(𝑚) = 0, 𝑧(𝑀) = 1.5 m
𝑣(𝑚)

𝑥 = −0.5/
√

2 ms−1, 𝑣(𝑀)
𝑥 = 0.5/

√
2 ms−1

𝑣(𝑚)
𝑦 = −0.5/

√
2 ms−1, 𝑣(𝑀)

𝑦 = 0.5/
√

2 ms−1

Page 127 of 158

5. Simulations and results

𝑣(𝑚)
𝑧 = −0.5 ms−1, 𝑣(𝑀)

𝑧 = 0.5 ms−1

Other parameters:

Prediction horizon: 𝑁𝑀𝑃𝐶 = 10
Curvature relaxation coefficient: 𝐾𝑟𝑒𝑙 = 0.1

Simulation-dependent parameters:

Table 5.2. Simulation-dependent parameters (MPC)

SimulationParameter
1 2 3 4 5 6

𝑑0 [m] 0 −0.25 0.375 0 0 0
𝑑𝑟 [m] 0 −0.25 0.375 Task 2 Task 2 Task 2
𝑛𝑜 / / / 1 4 4
𝑐𝑜 / / / 0.9 0.5 −0.5
𝐿𝑡𝑟𝑎𝑐𝑘 [m] Track 1 Track 2 Track 3 Track 1 Track 2 Track 3
𝑑𝑙𝑖𝑚 [m] Track 1 Track 2 Track 3 Track 1 Track 2 Track 3

Page 128 of 158

5.2. MPC simulations

5.2.2. Simulation 1: track 1, constant lateral distance

(a) Planar trajectory on the track (b) Real and relaxed curvature of the track

(c) Altitude 𝑧 and Frenet coordinates (curvilinear abscissa 𝑠, lateral distance 𝑑)

(d) RPY angles 𝜓, 𝜃, 𝜙 (first row) and Cartesian velocities 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 (second row)

Figure 5.2. Simulation 1: track 1, trajectory tracking with constant lateral distance (𝑑𝑟 = 0)

Page 129 of 158

5. Simulations and results

5.2.3. Simulation 2: track 2, constant lateral distance

(a) Planar trajectory on the track (b) Real and relaxed curvature of the track

(c) Altitude 𝑧 and Frenet coordinates (curvilinear abscissa 𝑠, lateral distance 𝑑)

(d) RPY angles 𝜓, 𝜃, 𝜙 (first row) and Cartesian velocities 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 (second row)

Figure 5.3. Simulation 2: track 2, trajectory tracking with constant lateral distance (𝑑𝑟 = −0.25 m)

Page 130 of 158

5.2. MPC simulations

5.2.4. Simulation 3: track 3, constant lateral distance

(a) Planar trajectory on the track (b) Real and relaxed curvature of the track

(c) Altitude 𝑧 and Frenet coordinates (curvilinear abscissa 𝑠, lateral distance 𝑑)

(d) RPY angles 𝜓, 𝜃, 𝜙 (first row) and Cartesian velocities 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 (second row)

Figure 5.4. Simulation 3: track 3, trajectory tracking with constant lateral distance (𝑑𝑟 = 0.375 m)

Page 131 of 158

5. Simulations and results

5.2.5. Simulation 4: track 1, oscillating lateral distance

(a) Planar trajectory on the track (b) Real and relaxed curvature of the track

(c) Altitude 𝑧 and Frenet coordinates (curvilinear abscissa 𝑠, lateral distance 𝑑)

(d) RPY angles 𝜓, 𝜃, 𝜙 (first row) and Cartesian velocities 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 (second row)

Figure 5.5. Simulation 4: track 1, trajectory tracking with oscillating lateral distance (𝑛𝑜 = 1, 𝑐𝑜 = 0.9)

Page 132 of 158

5.2. MPC simulations

5.2.6. Simulation 5: track 2, oscillating lateral distance

(a) Planar trajectory on the track (b) Real and relaxed curvature of the track

(c) Altitude 𝑧 and Frenet coordinates (curvilinear abscissa 𝑠, lateral distance 𝑑)

(d) RPY angles 𝜓, 𝜃, 𝜙 (first row) and Cartesian velocities 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 (second row)

Figure 5.6. Simulation 5: track 2, trajectory tracking with oscillating lateral distance (𝑛𝑜 = 4, 𝑐𝑜 = 0.5)

Page 133 of 158

5. Simulations and results

5.2.7. Simulation 6: track 3, oscillating lateral distance

(a) Planar trajectory on the track (b) Real and relaxed curvature of the track

(c) Altitude 𝑧 and Frenet coordinates (curvilinear abscissa 𝑠, lateral distance 𝑑)

(d) RPY angles 𝜓, 𝜃, 𝜙 (first row) and Cartesian velocities 𝑣𝑥, 𝑣𝑦, 𝑣𝑧 (second row)

Figure 5.7. Simulation 6: track 3, trajectory tracking with oscill. lateral distance (𝑛𝑜 = 4, 𝑐𝑜 = −0.5)

Page 134 of 158

5.3. LMPC simulations

5.3. LMPC simulations

In this section, we report the results of the simulations testing the standard LMPC algo-
rithm for quadrotor optimal path planning (i.e. without obstacle avoidance), developed
in § 4.8.

Each simulation employs the LMPC algorithm to pilot the quadrotor within the race
track, performing one of the following tasks:

1) Non-repetitive LMPC for optimal path generation;

2) Repetitive LMPC for optimal path generation.

Five simulations have been carried out:

• Simulation 1: track 1, non-repetitive LMPC;

• Simulation 2: track 1, repetitive LMPC;

• Simulation 3: track 1, repetitive LMPC, initialized using a different MPC trajectory
wrt simulation 2;

• Simulation 4: track 2, repetitive LMPC;

• Simulation 5: track 3, repetitive LMPC.

For each simulation, the following plots are reported:

• the MPC and LMPC trajectories on the 𝑥𝑦 plane (i.e. on the track);

• the altitude 𝑧 of each trajectory, plotted wrt 𝑠;

• the iteration cost 𝐽 𝑗
0 of each 𝑗-th trajectory;

• the time required by each trajectory to complete a lap (i.e. the lap time);

• the planar velocity profile of each trajectory, plotted wrt 𝑠.

Page 135 of 158

5. Simulations and results

5.3.1. Algorithm setup

In the following, we report the values of all the relevant parameters that have been used
to set up the LMPC algorithm and its related optimization problem in each simulation.
If a parameter is reported symbolically, it means that its value depends on the simula-
tion; its numerical value for each simulation is reported in Table 5.3.

Initial state:
𝒙𝑆 = (0 0 0 45° 0 0 0 0 0 0 0 0 0)

MPC reference state:

𝒙(𝑀𝑃𝐶)
𝑟 = (1 m 0 0 45° 0 0 0 0 0 0 𝐿𝑡𝑟𝑎𝑐𝑘 𝑑(𝑀𝑃𝐶)

𝑟 (𝑠𝑘) ⋆)

𝑑(𝑀𝑃𝐶)
𝑟 (𝑠𝑘) = 𝑐𝑜 ⋅ 𝑑𝑙𝑖𝑚 ⋅ sin(𝑛𝑜 ⋅ 2𝜋 𝑠𝑘

𝐿𝑡𝑟𝑎𝑐𝑘
)

LMPC goal state and auxiliary reference state:

𝒙𝐹 = (⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 1.2 ⋅ 𝐿𝑡𝑟𝑎𝑐𝑘 ⋆ ⋆)

𝒙𝑟 = (1 m ⋆ ⋆ 45° ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝑑𝑟(𝑠𝑘) ⋆)

𝑑𝑟(𝑠𝑘) =
⎧{
⎨{⎩

𝑐𝑑𝑟
⋅ 𝑑𝑙𝑖𝑚 if 𝐾(𝑠𝑘) = 0

sign(𝐾(𝑠𝑘)) ⋅ 𝑐𝑑𝑟
⋅ 𝑑𝑙𝑖𝑚 if 𝐾(𝑠𝑘) ≠ 0

MPC weight matrices:

𝑸 = diag(100 1 1 10 0.01 0.01 0.01 0.01 0.01 0.01 1 1 ⋅ 103 0)

𝑹 = diag(0.01 0.01 0.01 0.01)

𝑸Δ = 1
𝑇 2diag(0 0 0 0 100 100 10 0.01 0.01 100 0 0 0)

𝑹Δ = 1
𝑇 2diag(0.01 0.01 0.01 0.01)

𝐾1 = 1 ⋅ 103

𝐾2 = 1 ⋅ 103

LMPC weight matrices:

𝑷 = diag(0 0 0 0 0 0 0 0 0 0 𝑃𝑠 0 0)

Page 136 of 158

5.3. LMPC simulations

𝑸 = diag(1 ⋅ 105 0 0 1 0 0 0 0 0 0 0 1 ⋅ 105 0)

𝑹 = diag(0.01 0.01 0.01 0.01)

𝑸Δ = 1
𝑇 2diag(10 0.01 0.01 10 5 ⋅ 104 5 ⋅ 104 1 ⋅ 104 0.01 0.01 1 ⋅ 103 10 0.01 0)

𝑹Δ = 1
𝑇 2diag(0.01 0.01 0.01 0.01)

𝐾1 = 1 ⋅ 108

𝐾2 = 1 ⋅ 108

𝐾3 = 1 ⋅ 103

MPC constraints:

𝑧(𝑚) = 0, 𝑧(𝑀) = 1.5 m
𝑣(𝑚)

𝑥 = −0.5/
√

2 ms−1, 𝑣(𝑀)
𝑥 = 0.5/

√
2 ms−1

𝑣(𝑚)
𝑦 = −0.5/

√
2 ms−1, 𝑣(𝑀)

𝑦 = 0.5/
√

2 ms−1

𝑣(𝑚)
𝑧 = −0.5 ms−1, 𝑣(𝑀)

𝑧 = 0.5 ms−1

LMPC constraints:

𝑧(𝑚) =
⎧{
⎨{⎩

0 if non-repetitive LMPC

0.5 m if repetitive LMPC
, 𝑧(𝑀) = 1.5 m

Other parameters:

MPC prediction horizon: 𝑁𝑀𝑃𝐶 = 10
LMPC prediction horizon: 𝑁𝐿𝑀𝑃𝐶 = 10
Number of LMPC iterations: 𝑁𝑖𝑡𝑒𝑟
Curvature relaxation coefficient: 𝐾𝑟𝑒𝑙 = 0.1

Page 137 of 158

5. Simulations and results

Simulation-dependant parameters:

Table 5.3. Simulation-dependent parameters (LMPC)

SimulationParameter
1 2 3 4 5

𝑛𝑜 1 1 4 4 4
𝑐𝑜 0.9 0.9 0.5 0.5 0.5
𝑐𝑑𝑟

0.6 0.6 0.6 0.6 0.4
𝑃𝑠 15 15 15 10 1
𝑁𝑖𝑡𝑒𝑟 5 7 7 6 5
𝐿𝑡𝑟𝑎𝑐𝑘 [m] Track 1 Track 1 Track 1 Track 2 Track 3
𝑑𝑙𝑖𝑚 [m] Track 1 Track 1 Track 1 Track 2 Track 3
𝐾(𝑠) [m−1] Track 1 Track 1 Track 1 Track 2 Track 3

Page 138 of 158

5.3. LMPC simulations

5.3.2. Simulation 1: track 1, non-repetitive LMPC

(a) Planar trajectories on the track (b) Altitude 𝑧

(c) Iteration cost 𝐽𝑗
0 (d) Lap time

(e) Planar velocity profile 𝑣 = √𝑣2𝑥 + 𝑣2𝑦

Figure 5.8. Simulation 1: track 1, non-repetitive LMPC

Page 139 of 158

5. Simulations and results

5.3.3. Simulation 2: track 1, repetitive LMPC (1)

(a) Planar trajectories on the track (b) Altitude 𝑧

(c) Iteration cost 𝐽𝑗
0 (d) Lap time

(e) Planar velocity profile 𝑣 = √𝑣2𝑥 + 𝑣2𝑦

Figure 5.9. Simulation 2: track 1, repetitive LMPC

Page 140 of 158

5.3. LMPC simulations

5.3.4. Simulation 3: track 1, repetitive LMPC (2)

(a) Planar trajectories on the track (b) Altitude 𝑧

(c) Iteration cost 𝐽𝑗
0 (d) Lap time

(e) Planar velocity profile 𝑣 = √𝑣2𝑥 + 𝑣2𝑦

Figure 5.10. Simulation 3: track 1, repetitive LMPC, initialized using a different MPC trajectory wrt
simulation 2

Page 141 of 158

5. Simulations and results

5.3.5. Simulation 4: track 2, repetitive LMPC

(a) Planar trajectories on the track (b) Altitude 𝑧

(c) Iteration cost 𝐽𝑗
0 (d) Lap time

(e) Planar velocity profile 𝑣 = √𝑣2𝑥 + 𝑣2𝑦

Figure 5.11. Simulation 4: track 2, repetitive LMPC

Page 142 of 158

5.3. LMPC simulations

5.3.6. Simulation 5: track 3, repetitive LMPC

(a) Planar trajectories on the track (b) Altitude 𝑧

(c) Iteration cost 𝐽𝑗
0 (d) Lap time

(e) Planar velocity profile 𝑣 = √𝑣2𝑥 + 𝑣2𝑦

Figure 5.12. Simulation 5: track 3, repetitive LMPC

Page 143 of 158

5. Simulations and results

5.4. LMPC with obstacle avoidance simulations

In this section, we report the results of the simulations testing the LMPC algorithm for
quadrotor optimal path planning and obstacle avoidance, developed in § 4.9.

Each simulation employs the LMPC algorithm with obstacle avoidance to pilot the
quadrotor within the race track, performing the following task:

• Repetitive LMPC for optimal path generation and obstacle avoidance.

One simulation has been carried out:

• Simulation 1: track 1, repetitive LMPC with obstacle avoidance, 3 obstacles (1
vertical narrowing, 1 horizontal narrowing, 1 square ring).

For each simulation, the following plots are reported:

• the MPC and LMPC trajectories on the 𝑥𝑦 plane (i.e. on the track);

• the altitude 𝑧 of each trajectory, plotted wrt 𝑠;

• the iteration cost 𝐽 𝑗
0 of each 𝑗-th trajectory;

• the time required by each trajectory to complete a lap (i.e. the lap time);

• the planar velocity profile of each trajectory, plotted wrt 𝑠.

5.4.1. Algorithm setup

In the following, we report the values of all the relevant parameters that have been used
to set up the LMPC algorithm with obstacle avoidance and its related optimization
problem.

Initial state:
𝒙𝑆 = (0 0 0 45° 0 0 0 0 0 0 0 0 0)

MPC reference state:

𝒙(𝑀𝑃𝐶)
𝑟 = (𝑧(𝑀𝑃𝐶)

𝑟 (𝑠𝑘) 0 0 45° 0 0 0 0 0 0 𝐿𝑡𝑟𝑎𝑐𝑘 𝑑(𝑀𝑃𝐶)
𝑟 (𝑠𝑘) ⋆)

Page 144 of 158

5.4. LMPC with obstacle avoidance simulations

𝑧(𝑀𝑃𝐶)
𝑟 (𝑠𝑘) = ̃𝑧𝑜,𝑢(𝑠𝑘) + ̃𝑧𝑜,𝑙(𝑠𝑘)

2

𝑑(𝑀𝑃𝐶)
𝑟 (𝑠𝑘) = 0.5 ⋅

̃𝑑𝑜,𝑢(𝑠𝑘) − ̃𝑑𝑜,𝑙(𝑠𝑘)
2 ⋅ sin(4 ⋅ 2𝜋 𝑠𝑘

𝐿𝑡𝑟𝑎𝑐𝑘
) +

̃𝑑𝑜,𝑢(𝑠𝑘) + ̃𝑑𝑜,𝑙(𝑠𝑘)
2

LMPC goal state and auxiliary reference state:

𝒙𝐹 = (⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 1.2 ⋅ 𝐿𝑡𝑟𝑎𝑐𝑘 ⋆ ⋆)

𝒙𝑟 = (𝑧𝑟(𝑠𝑘) ⋆ ⋆ 45° ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ 𝑑𝑟(𝑠𝑘) ⋆)

𝑧𝑟(𝑠𝑘) = ̃𝑧𝑜,𝑢(𝑠𝑘) + ̃𝑧𝑜,𝑙(𝑠𝑘)
2

𝑑𝑟(𝑠𝑘) =
⎧{
⎨{⎩

0.6 ⋅ ̃𝑑𝑜,𝑢(𝑠𝑘) if 𝐾(𝑠𝑘) ≥ 0
0.6 ⋅ ̃𝑑𝑜,𝑙(𝑠𝑘) if 𝐾(𝑠𝑘) < 0

MPC weight matrices:

𝑸 = diag(100 1 1 10 0.01 0.01 0.01 0.01 0.01 0.01 1 1 ⋅ 103 0)

𝑹 = diag(0.01 0.01 0.01 0.01)

𝑸Δ = 1
𝑇 2diag(0 0 0 0 100 100 10 0.01 0.01 100 0 0 0)

𝑹Δ = 1
𝑇 2diag(0.01 0.01 0.01 0.01)

𝐾1 = 1 ⋅ 103

𝐾2 = 1 ⋅ 103

LMPC weight matrices:

𝑷 = diag(0 0 0 0 0 0 0 0 0 0 20 0 0)

𝑸 = diag(1 ⋅ 105 0 0 1 0 0 0 0 0 0 0 1 ⋅ 105 0)

𝑹 = diag(0.01 0.01 0.01 0.01)

𝑸Δ = 1
𝑇 2diag(10 0.01 0.01 10 5 ⋅ 104 5 ⋅ 104 1 ⋅ 103 0.01 0.01 1 ⋅ 103 10 0.01 0)

𝑹Δ = 1
𝑇 2diag(0.01 0.01 0.01 0.01)

𝐾1 = 1 ⋅ 108

𝐾2 = 1 ⋅ 108

𝐾3 = 1 ⋅ 103

Page 145 of 158

5. Simulations and results

MPC constraints:

𝑧(𝑚) = 0, 𝑧(𝑀) = 1.5 m
𝑣(𝑚)

𝑥 = −0.5/
√

2 ms−1, 𝑣(𝑀)
𝑥 = 0.5/

√
2 ms−1

𝑣(𝑚)
𝑦 = −0.5/

√
2 ms−1, 𝑣(𝑀)

𝑦 = 0.5/
√

2 ms−1

𝑣(𝑚)
𝑧 = −0.5 ms−1, 𝑣(𝑀)

𝑧 = 0.5 ms−1

LMPC constraints:

𝑧(𝑚) = 0.5 m, 𝑧(𝑀) = 1.5 m

Other parameters:

MPC prediction horizon: 𝑁𝑀𝑃𝐶 = 10
LMPC prediction horizon: 𝑁𝐿𝑀𝑃𝐶 = 10
Number of LMPC iterations: 𝑁𝑖𝑡𝑒𝑟 = 7
Curvature relaxation coefficient: 𝐾𝑟𝑒𝑙 = 0.1
Obstacle relaxation coefficients: 𝑑𝑜,𝑟𝑒𝑙 = 0.999, 𝑧𝑜,𝑟𝑒𝑙 = 0.999

Page 146 of 158

5.4. LMPC with obstacle avoidance simulations

5.4.2. Simulation 1: track 1, repetitive LMPC with obstacle
avoidance, 3 obstacles

(a) Planar trajectories on the track (b) Altitude 𝑧

(c) Iteration cost 𝐽𝑗
0 (d) Lap time

(e) Planar velocity profile 𝑣 = √𝑣2𝑥 + 𝑣2𝑦

Figure 5.13. Simulation 1: track 1, repetitive LMPC with obstacle avoidance, 3 obstacles (1 vertical
narrowing, 1 horizontal narrowing, 1 square ring)

Page 147 of 158

5. Simulations and results

5.5. Additional results

Velocity comparison (LMPC)

(a) Simulation 3

(b) Simulation 4 (c) Simulation 5

Figure 5.14. LMPC algorithm: trajectories overlaid by their coloured velocity profile

Velocity comparison (LMPC with obstacle avoidance)

Figure 5.15. LMPC algorithm with obstacle avoidance: trajectories overlaid by their coloured velocity
profile

Page 148 of 158

5.5. Additional results

Non-repetitive LMPC: iteration cost at each iteration

In Table 5.4, we report the iteration cost 𝐽 𝑗
0 at each iteration 𝑗 with reference to non-

repetitive LMPC in simulation 1 (§ 5.3.2).

Table 5.4. Non-repetitive LMPC: iteration cost 𝐽𝑗
0 at each iteration 𝑗

Iteration (𝑗) 𝐽 𝑗
0

0 1.4547994418 ⋅ 105

1 1.0635534475 ⋅ 105

2 1.0635388610 ⋅ 105

3 1.0635388432 ⋅ 105

4 1.0635388432 ⋅ 105

5 1.0635388432 ⋅ 105

Page 149 of 158

6
Conclusions

In this thesis, it has been developed a control framework for quadrotors based onLearning Model Predictive Control (LMPC).
The LMPC algorithm has been realized to control the quadrotor motion within a closed
3D environment, with a limited height and horizontally delimited by a closed race track.
The quadrotor performs repetitive laps of the track, staying within the bounds defined
by the vertical and horizontal borders. The states of the generated trajectories and the
related costs are stored at every completed lap; with this historical data, the algorithm
learns to explore new paths within the track to improve, at every iteration, the cost
of the trajectory followed by the quadrotor. Specifically, the cost of each trajectory is
quantified as the time needed by it to complete a lap; therefore, the goal of the control
algorithm is to obtain the optimal path that minimizes the lap time of the quadrotor.
In addition, the LMPC algorithm has been improved by adding to it the capability of
avoiding obstacles placed within the track. In this way, the algorithm achieves both
the task of finding the optimal path minimizing the lap time and the task of avoiding
possible obstacles within the flight area.

The conducted simulations, that have been reported in Chapter 5, show that the LMPC
algorithm successfully achieves the task of finding the optimal path for lap time mini-
mization.
From Figures 5.14a-c, we can see that the control algorithm has learned to fly the

Page 151 of 158

6. Conclusions

quadrotor aggressively, adopting a flight style that exploits several driving tricks to op-
timize both the travelled distance and the time needed to complete a lap. Specifically,
the quadrotor tends to stay close to the border of the track having locally the short-
est length, reducing in this way the local length of the trajectory; it travels diagonally
along straight paths to take more easily a possible curve ahead; it accelerates when on
a straight path and decelerates when on a curve.

From the simulations, we can also state that the LMPC algorithm successfully achieves
the additional task of avoiding possible obstacles within the track. Moreover, from
Figure 5.14d, we also see that, even when the quadrotor has to avoid multiple and
closely spaced obstacles, the task of finding the optimal path is still achieved: even in
presence of obstacles, the quadrotor still adopts an aggressive flight style that optimizes
both the travelled distance and the lap time.

For what concerns simulations involving the non-repetitive LMPC algorithm, very mean-
ingful results have been obtained, that not only demonstrate the correct functionality
of the algorithm, but also empirically verify the theoretical properties of LMPC, shown
in § 4.4:

• In every simulation, the LMPC algorithm is recursively feasible (as in Theorem 4.1)
and the goal state 𝒙𝐹 proves to be an asymptotically stable equilibrium point of
the closed-loop system, since all generated trajectories tend to converge to it (as in
Theorem 4.2).

• The iteration cost 𝐽 𝑗
0, associated to each generated trajectory, is monotonically non-

increasing with the iteration number 𝑗 (as in Theorem 4.3). This can be noticed
by observing Table 5.4, which reports the iteration cost at each iteration, for the
simulation involving non-repetitive LMPC (simulation 1, § 5.3.2).

Specifically, it is interesting to observe how the decrease rate of the iteration cost in
Table 5.4 is comparable with the one reported in Table 1 of [16]. Indeed, both in work
[16] and in this theses, the LMPC control problem is QP: in [16], the system equations
are linear, state and input constraints are linear inequalities, and the LMPC stage
cost function is quadratic; in this theses, the system equations are ATV (affine time-
variant), state and input constraints are linear inequalities, and the LMPC stage
cost function is quadratic. Thus, in both cases, the LMPC problem is QP, making
it reasonable to have very similar decrease rates of the iteration cost.

• As the iteration number 𝑗 increases, the generated trajectories tend to converge to

Page 152 of 158

6. Conclusions

a steady-state trajectory (as in Theorem 4.4). This steady-state trajectory is the
solution of the infinite-horizon optimal control problem associated to the LMPC
problem.

Very meaningful results have been obtained also in the simulations involving the repet-
itive LMPC algorithm (with and without obstacle avoidance):

• In every simulation, the LMPC algorithm is recursively feasible (as in Theorem 4.1)
and the goal state 𝒙𝐹 proves to be an asymptotically stable equilibrium point of
the closed-loop system, since all generated trajectories tend to converge to it (as in
Theorem 4.2).

• The iteration cost 𝐽 𝑗
0, associated to each generated trajectory, decreases during the

first iterations and then settles within a limited range of values.

The fact that the iteration cost is not perfectly monotonically non-increasing (as
stated in Theorem 4.3) can be explained by noticing that here the LMPC algorithm
is repetitive (while all the theorems of § 4.4 refer to the non-repetitive case) and it
is implemented in its relaxed version.

• As the iteration number 𝑗 increases, the generated trajectories tend to stay close to
a closed steady-state trajectory (as in Theorem 4.4).

• Changing the first feasible trajectory (as in simulations 2 and 3, § 5.3.3 and § 5.3.4),
generated through MPC, does not change the final shape of the best trajectory
generated by LMPC, which is coherent with Theorem 4.4.

It is interesting to observe how the best trajectories obtained with repetitive LMPC
have a lower cost than those obtained with non-repetitive LMPC.
This is reasonable, since, with repetitive LMPC, the final velocity of the quadrotor, when
it crosses the finish line, is conserved at the beginning of the next iteration; thus, the
initial acceleration phase, that is required in non-repetitive LMPC, here is not needed,
meaning that the initial states of the repetitive trajectory will have already a lower cost
with respect to those of the non-repetitive one.
Moreover, being the initial condition always different, the algorithm can explore more
easily new paths to improve the iteration cost; such paths are hardly attainable by the
non-repetitive LMPC, since the quadrotor always starts with null velocity and in the
same position.

Page 153 of 158

6. Conclusions

Finally, being the track a closed circuit, repetitive LMPC is best suited for generating
the optimal path, since, typically, the best trajectory is closed as well and features a
quasi-continuous transition between its initial and final state (i.e. when crossing the
finish line).

6.1. Future developments

To improve even further the performance of the LMPC algorithms and to add additional
features, here are listed some possible future works that can be carried out:

• Alternative relaxation of the LMPC optimization problem. The LMPC optimization
problem can be implemented using the first relaxation approach shown in § 4.6.3.
This method uses analytical convex combination to compute both the convex safe
set and the terminal cost barycentric function, by including, as additional optimiza-
tion variables, the vector 𝝀 of positive weighting scalars associated to the convex
combination.

This relaxation ensures to obtain the best possible continuous approximation 𝑃 𝑗(𝒙)
of the discrete terminal cost function 𝑄𝑗(𝒙). This method, in fact, does not rely
on an interpolation procedure (like the second relaxation approach), which is highly
dependent on the seed points used to initialize the fitting algorithm (which are chosen
randomly) and does not provide good results when the shape of the data points is
not sufficiently convex.

The price of using the first relaxation approach is that the number of involved opti-
mization variables steadily increases with the number of iterations; indeed, dim(𝝀) =
|𝑆𝑆𝑗|, where | ⋅ | denotes the set cardinality operator (i.e. the number of elements of
the set), meaning that the more trajectories are stored in 𝑆𝑆𝑗, the more 𝝀 optimiza-
tion variables will be present in the OP.
Such higher number of optimization variables may slow down the solver and cause
more problems of infeasibility, with the advantage, nonetheless, of obtaining signifi-
cantly better and reliable performances for the LMPC algorithm.

• Alternative definition of the track. We have defined the track as an arbitrary sequence
of straight lines and circular curves, of any length and angle, and having limited
width and height. Therefore, to describe the track boundaries within the LMPC
optimization problem, we have employed Frenet coordinates, which make possible to

Page 154 of 158

6.1. Future developments

define the track borders as simple bound constraints on the state variables 𝑑 and 𝑧,
at the price of including the Frenet conversion equations in the system model.

The adoption of Frenet coordinates requires to make a series of precautions and ap-
proximations to be able to implement them within the LMPC optimization problem;
specifically, these are curvature propagation and relaxation and, for LMPC with ob-
stacle avoidance, the propagation and relaxation of the obstacles functions (which
have been treated in § 3.7 and § 4.9).

To avoid using Frenet coordinates, the track can be described in an alternative way.
This alternative approach consists in defining several waypoints, within the 3D space,
and connecting them with segments; the union of these segments represents the
centerline of the track. Around each segment, a generalized cylinder defines the local
boundaries of the track; thus, the union of these cylinders represents the whole track
borders.
An example of this kind of track is depicted in Figure 6.1:

Figure 6.1. Alternative track

To represent the track within the LMPC optimization problem, a single linear in-
equality constraint is required for each segment.

Specifically, let’s denote as 𝒓𝑤 a generic waypoint of the track; successive waypoints
will be denoted as 𝒓𝑤+1, 𝒓𝑤+2, etc.
Denoting as 𝒓 the position of the quadrotor wrt the fixed Cartesian frame 𝑂𝑥𝑦𝑧, the
position of the quadrotor from waypoint 𝒓𝑤 is equal to 𝒓 − 𝒓𝑤.
The versor defining the direction from waypoint 𝒓𝑤 to 𝒓𝑤+1 is denoted as ̂𝒗𝑤 and is
equal to ̂𝒗𝑤 = 𝒓𝑤+1−𝒓𝑤

|𝒓𝑤+1−𝒓𝑤| .
We finally define the vector 𝒓𝑑, which is the difference between 𝒓 − 𝒓𝑤 and the pro-
jection of 𝒓 − 𝒓𝑤 onto ̂𝒗𝑤. Recalling that the orthogonal projection operator/matrix

Page 155 of 158

6. Conclusions

associated to a versor 𝒖 is 𝑷 = 𝒖𝒖𝑇 , we can write 𝒓𝑑 as:

𝒓𝑑 = (𝑰 − ̂𝒗𝑤 ̂𝒗𝑇
𝑤) (𝒓 − 𝒓𝑤) (6.1)

This means that each segment is associated to a bound constraint on 𝒓𝑑, which
defines the local cross section of the track. Specifically, we can set the constraint as:

−𝒓𝑙𝑖𝑚 ≤ 𝒓𝑑 ≤ 𝒓𝑙𝑖𝑚 (6.2)

obtaining a linear inequality constraint; in this case, the cross sections of the track
will be rectangles.

Page 156 of 158

Bibliography

[1] M. Abhishek, “Learning Model Predictive Control with Application to Quadcopter
Trajectory Tracking,” KTH Royal Institute of Technology, 2020.

[2] F. Borrelli, A. Bemporad, and M. Morari, Predictive Control for Linear and Hybrid
Systems. New York: Cambridge University Press, 2017.

[3] L. Brunke, R. Seifried, H. Werner, and F. Borrelli, “Learning Model Predictive
Control for Competitive Autonomous Racing,” Hamburg University of Technology,
2018.

[4] A. Das, F. Lewis, and K. Subbarao, “Dynamic Inversion with Zero-Dynamics Sta-
bilisation for Quadrotor Control,” IET Control Theory & Applications, vol. 3, no.
3, pp. 303–314, Mar. 2009.

[5] L. Grüne and J. Pannek, Nonlinear Model Predictive Control. Theory and Algo-
rithms, 2nd ed. Switzerland: Springer, 2017.

[6] K. C. Haiyun, “Matrix Calculus,” Simon Fraser University, 2014. [Online]. Available:
www.sfu.ca/~haiyunc/notes/matrix_calculus.pdf

[7] C. James and M. Zeilinger, “Theory in Model Predictive Control: Constraint Satis-
faction and Stability,” Automatic Control Laboratory, EPFL, 2011. [Online]. Avail-
able: uiam.sk/pc11/data/workshops/mpc/MPC_PC11_Lecture1.pdf

[8] G. Li, A. Tunchez, and G. Loianno, “Learning Model Predictive Control for Quadro-
tors,” Proceedings of the 2022 IEEE International Conference on Robotics and Au-
tomation, preprint, May 2022.

[9] T. Luukkonen, “Modelling and Control of Quadcopter,” Aalto University, 2011.

Page 157 of 158

Bibliography

[10] J. Löfberg, “Model Predictive Control - Basics,” YALMIP, Sep. 16, 2016. yalmip.
github.io/example/standardmpc

[11] A. Magnani and S. P. Boyd, “Convex Piecewise-Linear Fitting,” Optimization and
Engineering, vol. 10, no. 1, pp. 1–17, Mar. 2008.

[12] P. Morin and C. Samson, “Motion Control of Wheeled Mobile Robots,” in Springer
Handbook of Robotics, Springer, 2008, pp. 799–826.

[13] G. Pannocchia, “Model Predictive Control: Stability and Robustness,” University of
Pisa, 2012. [Online]. Available: centropiaggio.unipi.it/sites/default/files
/course/material/3_MPCcourse_stability-robustness.pdf

[14] G. V. Raffo, “Modelado y Control de un Helicóptero Quadrotor,” University of
Seville, 2007.

[15] U. Rosolia and F. Borrelli, “Learning Model Predictive Control for Iterative Tasks.
A Data-Driven Control Framework,” IEEE Transactions on Automatic Control, vol.
63, no. 7, pp. 1883–1896, Jul. 2018.

[16] U. Rosolia and F. Borrelli, “Learning Model Predictive Control for Iterative Tasks:
A Computationally Efficient Approach for Linear System,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 3142–3147, Jul. 2017.

[17] U. Rosolia and F. Borrelli, “Learning How to Autonomously Race a Car: a Pre-
dictive Control Approach,” IEEE Transactions on Control Systems Technology, vol.
28, no. 6, pp. 2713–2719, Nov. 2020.

[18] F. Sabatino, “Quadrotor Control: Modelling, Nonlinear Control Design, and Simu-
lation,” KTH Royal Institute of Technology, 2015.

[19] N. Satoshi, “Quadrotor Dynamical Model with Euler-Lagrange Approach,” Tokyo
Institute of Technology, 2013.

[20] “Euler Angles,” Wikipedia. en.wikipedia.org/wiki/Euler_angles

[21] “Kinematics,” in Robot Dynamics, ETH Zurich, 2016. [Online]. Available: ethz.ch/
content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/
rsl-dam/documents/RobotDynamics2016/KinematicsSingleBody.pdf

Page 158 of 158

	Table of contents
	List of figures
	List of symbols and abbreviations
	Introduction
	Quadrotor modelling in Frenet coordinates
	Introduction to systems modelling
	Notions on quadrotors flight
	Modelling problem setup
	Quadrotor pose in the space
	Generalized coordinates
	Kinematic quantities

	Quadrotor kinematic model
	Quadrotor dynamic model
	Lagrange formulation
	Aerodynamic effects

	Choosing the coordinate system
	Frenet coordinate system
	Cartesian to Frenet conversion
	Model conversion
	Alternative derivation

	Quadrotor dynamic model in Frenet coordinates
	Model discretization
	Observations

	Model Predictive Control for quadrotor trajectory tracking
	Introduction to MPC and NMPC
	NMPC theoretical formulation
	Optimization variables
	Cost function
	Constraints

	NMPC optimization problem
	NMPC properties
	Recursive feasibility
	Asymptotic stability

	NMPC algorithm
	NMPC relaxation
	Slack variables
	Nonlinear to affine time-variant system equations

	NMPC for quadrotors
	Track definition
	Curvature propagation and relaxation
	Cost function
	Constraints
	Optimization problem
	Algorithm

	Learning Model Predictive Control for quadrotor autonomous and optimal path planning
	Introduction to LMPC
	LMPC theoretical formulation
	Sampled safe set
	Iteration cost and terminal cost function

	LMPC optimization problem
	LMPC properties
	Recursive feasibility
	Asymptotic stability
	Non-increasing iteration cost
	Convergence to the solution of the infinite-horizon optimal control problem

	LMPC algorithm
	Sampled safe set and terminal cost relaxation
	Convex safe set
	Terminal cost barycentric function
	Relaxed LMPC optimization problem (first version)
	Convex safe set linear constraints
	Convex piecewise-linear fitting of the terminal cost function
	Relaxed LMPC optimization problem (second version)

	Repetitive LMPC
	LMPC for quadrotors
	Safe set
	Cost function
	Constraints
	Optimization problem
	Algorithm

	LMPC with obstacle avoidance
	Obstacles definition
	Obstacles implementation
	Safe set
	Cost function
	Constraints
	Optimization problem
	Algorithm

	Simulations and results
	Introduction
	Software implementation
	Quadrotor model
	Race tracks

	MPC simulations
	Algorithm setup
	Simulation 1: track 1, constant lateral distance
	Simulation 2: track 2, constant lateral distance
	Simulation 3: track 3, constant lateral distance
	Simulation 4: track 1, oscillating lateral distance
	Simulation 5: track 2, oscillating lateral distance
	Simulation 6: track 3, oscillating lateral distance

	LMPC simulations
	Algorithm setup
	Simulation 1: track 1, non-repetitive LMPC
	Simulation 2: track 1, repetitive LMPC (1)
	Simulation 3: track 1, repetitive LMPC (2)
	Simulation 4: track 2, repetitive LMPC
	Simulation 5: track 3, repetitive LMPC

	LMPC with obstacle avoidance simulations
	Algorithm setup
	Simulation 1: track 1, repetitive LMPC with obstacle avoidance, 3 obstacles

	Additional results

	Conclusions
	Future developments

	Bibliography

