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Abstract

Understanding how past environmental changes have influenced the diversification
of species is key for predicting the impact of current and future environmental
changes on biodiversity, and the associated human, social and economic impact.
Various environment-dependent phylogenetic comparative methods, that allow test-
ing whether and how past. These methods build upon classical birth-death models
of cladogenesis used to study speciation and extinction dynamics from phylogenies of
extant species, where the evolutionary rates correspond to speciation and extinction
rates. Even though several recent studies have fitted these models to comparative
phylogenetic data, providing estimates of the association between evolutionary rates
and environmental variables, the phylogenetic methods already developed have sev-
eral limitations. The most limiting factor is that they were implemented in a maxi-
mum likelihood rather than a bayesian framework, which precludes the development
of more complex models. In particular, the maximum likelihood approach allows
to test only the effect of one environmental variable at a time, due to the problem
of overparametrization. environmental changes influenced evolutionary rates have
recently been developed. We propose to overcome this problem using a Bayesian
implementation, and we will show how this approach actually outperform the Maxi-
mum likelihood implementation even when using a single environmental dependency.
Implementing these models in a Bayesian framework allow to use Bayesian Variable
selection techniques, which overcome the problem of overparametrization through
the use of informative priors. We will present in details the method, and we will
propose a simple implementation through Monte Carlo Markov Chain sampling.
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Chapter 1

Introduction

1.1 What is macroevolution?

The theory of evolution, which is the study of changes in the heritable characteristics
of biological populations over successive generations, has interested scientists and
philosophers well before Darwin, even though the idea of evolution through natural
selection was firstly proposed by the latter together with Wallace [1]. After their
groundbreaking work,the so-called modern synthesis reconciled natural selection and
Mendelian inheritance theories into a unified framework |2, 3].

Later on the evolutionary theory further developed, and scientists started to dis-
tinguish between macroevolution and microevolution. The two terms were first in-
troduced by Philiptschenko [4], who defined macroevolution as evolution above the
species level in the Linnaean hierarchy [5, 6, 7| and microevolution as evolution be-
neath the species level. The modern definition of macroevolution, firstly proposed
by Stanley [8], is instead evolution that is guided by sorting of interspecific varia-
tion, as opposed to sorting of intraspecific variation in microevolution [3, 9]. As a
consequence of these definitions macroevolution can be safely thought as evolution
on a grand scale.

1.2 Phylogenetic approaches for studying diversifi-
cation

Among all the macroevolutionary processes, diversification is key to understanding
how biodiversity changed over time, and what are the drivers of these changes. The
term describes the balance between speciation and extinction, where the former is
a fundamental evolutionary process by which populations evolve to become distinct
species.

Even though diversification is fundamental in studying biodiversity, it turned out
to be difficult to explain. Indeed, the speciation and extinction processes occur on
extremely large timescales, and inferring their variations can be hard. This is mostly
because our knowledge of past biodiversity is limited. Several models were developed
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for that purpose, in order to estimate diversification rates from available data. While
this can be done using fossil data for some groups such as planktonic foraminifers,
planktonic diatoms, bivalves, gastropods and mammals, for which fossil availability
is sufficient to apply statistical methods [10, 11, 12, 13], it is not feasible for most of
the other groups. The lack of fossil records for most of the groups pushed scientists
to develop alternative approaches to analyze diversification. The pioneering papers
of Hey, Nee, May and Harvey [14, 15, 16, 17| paved the way for the development of
new methods based on the study of reconstructed phylogenies, which are branching
trees describing the evolutionary relationships among extant species. Reconstructed
phylogenies can be inferred from molecular DNA sequences of extant species, thus
being collected more easily than fossil occurrences. Phylogenetic methods have
therefore become predominant to study biodiversity [18, 19, 20, 21, 22, 23|.

1.3 Environmental changes and diversification

The links between environmental changes and diversification dynamics was appar-
ent since the 19th century [24, 25]. Over the 20th century a variety of hypothesis
regarding the drivers of diversification were proposed. Among them, the two most
important are the Red Queen hypothesis and the Court Jester hypothesis. The
former, firstly proposed by Van Valen [26], assumes that the major drivers of biodi-
versity changes interspecific interaction (e.g. antagonistic such as competition and
parasitism or mutulalistic such as plant/pollinisators etc.), called biotic interactions,
while the latter, firstly proposed by Barnosky [27] in contrast with the Red Queen,
assumes that the major driving forces of diversification are environmental changes,
also called abiotic forces.

In order to test these hypotheses various observations were made, finding support
for both the Red Queen [28] and the Court Jester |29, 30, 31, 32|. However testing
the relative importance of the two hypotheses is not trivial, and requires to develop
models which include an explicit dependency of the diversification processes from
the biotic and abiotic forces.

This project will focus on the environment-dependent birth-death model, devel-
oped firstly by Condamine, Rolland and Morlon [33|. This model builds on the
time-dependent birth-death model developed by Morlon, Parsons and Plotkin [34],
assuming the diversification dynamics to be governed by a time-continuous birth-
death process, in which the speciation rate corresponds to the birth rate of the
process and the extinction rate to the death rate. The model can accommodate any
dependency of the diversification rates from the environmental curves, as well as any
curve describing biotic interactions. In particular, the model computes the likeli-
hood of observing a reconstructed phylogeny assuming a particular functional form
of the diversification rates. The computation of the likelihood and of the Mazimum
Likelihood (ML) estimates of the rates was implemented in the R package RPANDA
[35], allowing to test whether environmental changes had a significant influence on
the diversification dynamics, as well as to quantify the direction and magnitude of
this potential influence.
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1.4 Project objectives and outline

The environment-dependent birth-death model can in principle accommodate any
dependency of the diversification rates from the environmental and biotic variables,
including even a multivariate dependency. Nevertheless, the Maximum Likelihood
implementation does not allow to test more than one dependency at the time, since
it is subject to the risk of overparametrization when including many dependencies
with a small signal.

Until now the influence of different environmental variables on the speciation and
extinction rates was tested only with likelihood-based approaches using one depen-
dency at a time [36]. This method limits the possible dependencies which can be
tested, while it is likely that the diversification dynamics was altered by a combi-
nation of environmental factors. This project will focus on developing new meth-
ods which can test multiple environmental dependencies while avoiding the prob-
lem of overparametrization. This can be done by implementing the environment-
dependent birth-death model within a Bayesian framework, in order to employ so-
called Bayesian variable selection techniques [37]. These methods assign specific
priors to the parameters of the model which allows to correctly identify signal over-
coming the risk of overparametrization. In particular we used the horseshoe prior,
which belongs to the family of adaptive shrinkage methods. The technique consists
in placing hierarchical priors on the parameters to be estimated, which have tall
spikes at zero, yielding the shrinkage of noise parameters (i.e. negligible dependen-
cies), and heavy tails, allowing signals (i.e. significant dependencies) of potentially
strong positive or negative intensity.

In chapter 2 we present in details the methods used in the project. In particular, in
chapter 2.1 we discuss the environment-dependent birth death model, and in chap-
ter 2.2 we show how to implement this model in a bayesian framework, discussing
how the Markov Chain Monte Carlo sampling technique can be implemented in or-
der to sample the posterior distribution of the model. In chapters 2.3, 2.4 and 2.5
we present the Bayesian Variable Selection technique, which employs the bayesian
framework to fit the model with multiple environmental dependencies. In particular
we consider the use of the so-called horseshoe prior, and we propose a reparametriza-
tion to enhance the efficiency of the Monte Carlo sampling. In chapter 3 we presents
the numerical results obtained from the implementation of the aforementioned meth-
ods. In particular, in chapter 3.1 we show how the likelihood computation was
drastically reduced optimizing the code available in the R package RPANDA, while
in chapter 3.2 we illustrate the Bayesian implementation of the model. The new
method can recover on average the correct parameters from simulated phylogenies,
and is more precise than the Maximum Likelihood implementation.
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Methods

2.1 The environment-dependent birth-death model

The environment-dependent birth-death [33] model was built upon the time-
dependent birth death model [34] simply assuming any non-negative dependency
of the speciation and extinction rates from the environmental curves. The model
does not care about the mechanisms producing speciation and extinction events,
but only about the diversification dynamics.

Missing taxa —

\
I

— Speciation

« Extinction

20 15 10 5 0 20 15 10 5 0
Time (Myrs) Time (Myrs)

(a) Complete phylogeny (b) Reconstructed phylogeny

Figure 2.1: Examples of (a) a complete phylogeny and (b) the corresponding recon-
structed phylogeny of a clade. The extinction events, as well as the missing extant
taxa which are not sampled, are not present in the reconstructed phylogeny, which
is inferred from molecular data of extant species.

One can assume that a clade, a monophyletic group of species, of which the re-
constructed phylogeny is analysed evolved according to a continuous birth-death
process, in which the birth process corresponds to speciation and the death pro-
cess to extinction of a species. The process generates a complete phylogeny with
speciation and extinction events, as shown in figure 2.1a. Nonetheless the recon-
structed phylogeny, as shown in figure 2.1b, does not include extinction events since
it is inferred from molecular data of extant species, without including fossil oc-
currences. The model should therefore take this into account. In addition, when
examining r;constructed phylogenies it is not always possible to sample all of the



CHAPTER 2. METHODS

extant species. The model considers that only a fraction f <1 of them is sampled.

Given k environmental curves Ej(t), ..., Ex(T'), the speciation rate A(t) and the ex-
tinction rate u(t) can take any non-negative functional form which links them to
the environmental variables

A(t) = A (8 Br (1), ... Ex(t)) (2.1)
u(t) = f(t, Ex(t), ..., Ei(t)) (2.2)

where A(z) > 0 Vz and fi(x) > 0 Vz. In order to easily define a reference frame, time
is measured from the present to the past, where ¢ = 0 corresponds to the present
and t increases into the past. If the reconstructed phylogeny has n sampled extant
species, it will be characterized by n branching times t1, ..., ¢, at which speciation
occurred, such that ¢t > ¢t > ... > ¢, > 0. t; is called stem age and corresponds
to the time of origination of the ancestral species, while ¢, is called crown age and
corresponds to the time of origination of the most recent common ancestor of the
clade (figure 2.2 shows a schematic illustration of the notations used).

4
t
3
F;—l
[ ]
1 2 3 4

Figure 2.2: Schematic view of the notation used by the environment-dependent
birth-death model. The phylogeny is characterized by the stem age ¢; and the
branching times t5,%3,t4. t; is the origination time of the ancestral species, while
to is the time of origination of the most recent common ancestor of extant species,
therefore corresponding to the time at which the ancestral species split into two new
species. Adapted from [34].

Under these assumptions, the probability of observing such a reconstructed phy-
logeny conditioned on the stem age (presence of at least one descendant in the
sample) is given by

_ M) [T, AM(t) ¥ (t)
- o)

L(t1, ..., ta| A(E), 1(t)) (2.3)

where W(t) is the probability that a species alive at time ¢t > 0 leaves exactly one
descendant species at the present in the reconstructed phylogeny

—2

t
0

5
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and ®(t) is the probability that a species alive at time ¢t > 0 has no descendant in

the sample
oo ds(A(s)—p(s))

B 1 JE dsA(s)elo duA—u(w)

O(t) =1 (2.5)

If the stem age t; of the reconstructed phylogeny is not known, one can condition
on the crown age (presence of at least two descendant in the sample originated by
a speciation event at time t,)

_ M) [T At) Y (%)
A(t2) (1 — @(t1))?

Lty oy ] A(L), (1)) (2.6)

As already stressed out the model is very flexible and can include any dependency
of the diversification rates from the environmental variables.

The most straightforward way to study the influence of environmental changes to the
diversification dynamics of a clade of which the reconstructed phylogeny is known
would be to use a Maximum Likelihood based approach, as done by Lewitus and
Morlon in [36]. They tested one environmental dependency at a time using both a
linear functional form

A(t) = max (0, \g + 0E(1)) (2.7)
pi(t) = max (0, po + vE(t)) (2.8)
and an exponential form
A(t) = Noe?EW) (2.9)
plt) = poe” ™ (2.10)

The parameters \g, 0, jo and v are then inferred as the Maximum Likelihood point
estimates. Even though they were able to determine which environmental variable
most influenced the diversification of Cetaceans and Ruminants the method is lim-
ited by the use of a single environmental dependency at a time. This requires to
have a certain degree of prior knowledge about the potential factors which influenced
speciation and extinction events. If one has little knowledge about that trying to
fit a multivariate dependency including as many environmental variables as possi-
ble can lead to overparametrization. In addition, it is likely that a combination of
environmental factors (and biotic factors) rather than a single factor played a role
in shaping biodiversity.

2.2 Bayesian implementation of the model

The problem of determining the influence of environmental variables on the diver-
sification of a clade can be assessed using a Bayesian implementation. Bayes’ theo-
rem states that given a model with unknown parameters 6 the posterior probability
p(0]X) of the parameters 6 after having observed an outcome X is

p(01X) oc L(X|0)p(6) (2.11)

6
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where £(X0) is the likelihood probability of observing an outcome X assuming it
to be generated by the parameters 6, and p(0) is the prior probability encoding our a
priori believes about the parameters. Bayesian theory suggests to use the posterior
distribution rather than the Maximum Likelihood point estimate to do inferences.
Once the posterior distribution of the parameters space is known, one can infer any
feature such as means, variances and marginal distributions. Using a distribution
over the whole parameter space has the advantage of offering a simple interpretation
of the error associated to a point estimate of the parameters.

Nevertheless, using a Bayesian implementation does not come without any challenge.
Computing the posterior distribution is way more complex than simply computing
the likelihood due to the presence of the prior. Even when the posterior is com-
putable, if the parameters space is too large it would be impossible to compute
averages, variances and marginal distributions. In most of the cases one have to
resort to numerical approximations to compute them. Markov Chain Monte Carlo
(MCMC) simulations are by far the most used tool. MCMC is a technique designed
to sample draws from a general distribution. In particular, samples are drawn se-
quentially from a random walk (also called Markov Chain, hence the name of the
sampling method) which has the desired distribution as its stationary distribution.
A Markov chain is a sequence of random variables {6y, ...,6,} in which the proba-
bility distribution of any random variable 6;, denoted as p;(0;|01, ..., 6;_1), depends
only on the value of the previous random variable 6;_;

where T;(6;|0;—1) is called transition distribution. If the transition probability distri-
bution is suitably constructed the Markov Chain will converge to a unique stationary
distribution which is the desired one [38, 39|.

MCMC can therefore be used to sample any posterior distribution p(6|X). Among
the various methods used to construct a Markov chain which converges to p(6|X)
the Metropolis-Hastings (MH) algorithm [40, 41] is the most general to implement.
It employs a proposal step followed by an acceptance-rejection procedure which
ensures the convergence of the chain to the desired distribution. The two steps for
drawing the new parameter 6; given the already sampled parameters {6, ..., 6; 1},
where 6, is an appropriately chosen starting point (such that p(6y|X) > 0), are the
following:

1. Sample a proposal 6* from a proposal distribution J;(6%|6;_1)
2. Compute the acceptance probability

S0 ) = min (1. POIX)/Ji(0710i1)
oA bn) = (1’p<9i_1|x>/<fi<ei_1|e*>) (2.13)

and set

6, — {6 with probability «(6*,6;_ (2.14)

1)
0;_1 with probability 1 — a/(6*,0;_1)
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Among the different proposal functions, the most simple is the sliding window pro-
posal. It consists in proposing a new parameter 6* drawn from a symmetric distri-
bution J;(0*|0;_1) centered in #; 1, such that

0" = 0,1 +060°  where  p(30%) = p(—60") = J(567) (2.15)

Various symmetric distributions can be used, such as a uniform distribution, a Gaus-
sian distribution, a Laplace distribution and many others. Each of them will be char-
acterized by a scale hyperparameter ~ defining how broad they are (e.g. U(—~,7)
for a uniform distribution, N'(0,~v?) for a normal distribution, Laplace(0,~) for a
Laplace distribution'). The larger v is, the more distant from 6;_; the proposed
value 6* will be on average.

Once the Markov Chain {6y, ...,0,} has been simulated one can infer the expected
value of any quantity f(6|X) approximating it as

BI(010)] = [ d9 F61X0p(0le) ~ > £8) (2.16)

In this way one can compute any quantity of interest. The posterior probability
distribution and the marginal posterior probability distributions can also be ap-
proximated taking histograms of the sample.

Using the Markov Chain to perform inference needs however some precautions. First
of all, when initializing the chain in a starting point , one has to wait some iterations
for the chain to reach stationarity. The first first part of the chain, called burn-in
needs thus to be discarded. In order to check whether the chain has converged one
needs to compute k independent Markov Chains and remove the burn-in from each of
them. Convergence is reached when each chain has reached stationarity converging
to a common distribution(see figure 2.3 for an example). A quantitative convergence
analysis can be done computing the Gelman-Rubin convergence diagnostic [42, 43,
38| for any scalar quantity of interest ¢, which is computed as follows. Each chain
is split into two halves, therefore obtaining m = 2k chains. Let n be the length of
cach chain after splitting. The values of the scalar are labeled v; ; where i = 1,...,n

and 7 = 1,...,m. The single-chain averages @_j and variances 3? and the all-chains

!Given a random variable X, we will use the following notation. X ~ U(a,b) for a uniform
random variable in the interval [a,b], X ~ N (u,0?) for a normal random variable with mean p
and variance 02 and X ~ Laplace(u,r) for a Laplace random variable with location parameter
and scale parameter r. In the case of the sliding window proposal function we can therefore use
the notation 06* ~ S(v) where S(7y) is a generic symmetric distribution centered in zero and with
scale parameter ~.
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Figure 2.3: Examples of two challenges when assessing convergence. (a) In the left
figure, the two chains are stationary. However they have reached different stationary
distributions, meaning that none of them have converged. (b) In the right figure,
the two chains seem to cover a common distribution. However none of them has
reached a stationary state, meaning that they have not converged. When assessing
convergence one has to pay attention to both of the two aspects. Adapted from [38].

average 1 are defined as

1 n
-~ S (2.17)
=1

9 1

S > (Wi =) (2.18)

n X
=1

. % ZZI/}Z,] = %Z (2.19)

7j=1 =1

The mean within chain empirical variance W and the between chains empirical
variance B are computed as

%Zm: s5 (2.20)

(2.21)

m — 14
Jj=1

The marginal posterior variance can therefore be estimated from all the chains com-
bined as a weighted average of W and B

11
t +-B (2.22)
n

Var (] X) =

If the chains have converged, then both estimates are unbiased. Otherwise the
first method will underestimate the variance, since the individual chains have not
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had time to range all over the stationary distribution, and the second method will
overestimate the variance assuming the starting points to be overdispersed. In the

—+
limit n — oo, when the chains have converged, Var (¢|X) — W and this converges
to the exact marginal posterior variance. The Gelman-Rubin convergence diagnostic
of the scalar quantity v is defined as

—+
R(y) = \/ W (2.23)

and it is expected to converge to one when the chains have converged. The diagnostic
is also called potential scale reduction factor, since it is an estimate of the factor by
which the scale of the current distribution for 1) might be reduced if the simulations
were continued in the limit n — oo.

Another aspect one needs to pay attention to when using Markov Chains generated
through a Metropolis-Hastings algorithm is mizing. Due to the acceptance-rejection
procedure an average acceptance rate & can be defined as

o= Naccepted (224)
Ntot

where naccepted and nor are respectively the number of accepted proposals and the
total number of proposals. The average acceptance rate should lay in the range
[0.1,0.6]. Having a bigger acceptance means that the proposals are accepted almost
every time, thus the chain makes each time only small steps and converges slowly to
the stationary distribution. If instead the acceptance is too small the chains is stuck
and it takes many iterations to jump in another state. Bad acceptance rates can be
fixed performing some preliminary iterations, called warm-up or adaptation phase, in
which the proposal function is tuned in order to reach an optimal acceptance. This
can be done, for example, modifying the hyperparameter v of the sliding window
proposal in order to reach an optima average jump distance. Yang and Rodriguez
[44] studied the efficiency of different proposal distributions and proposed a method
to tune the scale hyperparameter 7. Let @ be the average acceptance rate of a chain
using a scale hyperparameter . The optimal scale vop is
tan (ga)

N2 7T 2.25
tan (37m) 22

Yopt = Y

where @, is the optimal average acceptance rate for the particular proposal distri-
bution (i.e. @opt ~ 0.44 for the uniform, normal and Laplace distributions).

Finally, after the proposal function has been tuned and the burn-in period has been
discarded, one has to check that a sufficient number of independent samples has been
drawn. In general, a Markov Chain sample of a scalar quantity v is autocorrelated,
since the value drawn at step t depends on the value drawn at step ¢ — 1, which in
turn depends on the value drawn at step ¢ — 2, and so on. It is possible to define an
Effective Sample Size for the quantity 1, denoted as ESS(¢)), which estimates the
number of independent draws of 1. As explained in [38] and [45], for m chains each
of length n, it can be defined as the ratio between the total number of steps mn and

10
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the sum of all the autocorrelations

mn mn

ESS(v) = 2.26
WS E ) T s ) 220
where py(1)) is the autocorrelation of ¥ at lag ¢, defined as
1
) = [ dv (i) (227)

with p(¢|X) being the marginal posterior distribution of 1 and ai its variance.
As explained in [38] a good estimator for ESS(¢)) is constructed as follows. The
autocorrelation is estimated as

Vi(¥)

() =1—- ————
2Var (¢|X)

(2.28)

where \//a\r+(1/J|X ) is obtained from equation (2.22) and V,(v)) is the variogram at
each lag t

Vi) = oo LS Y v (2:29)

=1 i=t+1
For large values of t the estimate of the correlation is too noisy. An estimator of
ESS(¢) can therefore be constructed truncating the sum in the denominator at the
first positive odd integer T for which pr(¢) + pri2(v) <0

mn

S s 20

Convergence and Effective Sample Size should be assessed for any scalar quantity
of interest. A good practice rule to stop the simulation is therefore to monitor both
the Gelman-Rubin diagnostic R(1)) and the Effective Sample Size ESS(w) for any
quantity ¢ of interest, and terminate the MCMC chain only when the diagnostics
have reached a desirable value for all the quantities. As mentioned in [38] one should

be satisfied when ﬁ(w) < 1.1 and E{S\S(@D) > Hm.

The environment-dependent birth-death model can be easily implemented in a
Bayesian framework, using a MCMC sampling to infer the speciation and extintion
rates from phylogenetic data. We tested the efficiency of the Bayesian implementa-
tion and we compared it to the Maximum Likelihood approach, which was already
implemented in the R package RPANDA [35].

In particular, we have tested the model using a single environmental dependency
with an exponential functional form for the speciation rate

A(t) = Nefr T®) (2.31)
and either a constant extinction rate
p(t) = po (2.32)

11



CHAPTER 2. METHODS

or a costant turnover?, which is the ratio between the extinction and the speciation
rates

p(t) = po, At) (2.33)

The environmental curve used is the average global change in surface air tempera-
ture T'(t), inferred from deep-sea benthic foraminifer oxygen isotope §'%0 by [46].
The posterior distribution of the parameter space { Ao, io, 07}, having observed a
phylogenetic tree with branching times {¢1,...,t,}, is therefore

P(Xo, o, Oplty, ... tn) o< L(t1, ..., tn|Xos fro, O7) (o) P(120) p(O7) (2.34)

where L(t1, ..., t| Ao, po, O7) is the likelihood of observing such a phylogeny assuming
that it was generated by the parameters Ao, po and fr, given by equation (2.3) or
(2.6), while p(Xo), p(uo) and p(fr) are respectively the priors of Ao, 1o and 67. We
used three weakly informative prior classes to compare the Bayesian implementation
with the Maximum Likelihood implementation:

e Uniform prior class: )¢ and po have a uniform prior in the range [0, al,
while 67 has a uniform prior in the range [—b, b]

Ao ~U(0, a) (2.35)
o ~ U(0,a) (2.36)
Or ~ U(—b,b) (2.37)

e Normal prior class: )y and py have an half-normal prior with variance a?,

while 67 has a normal prior with mean 0 and variance b

Ao ~ HN (a?) (2.38)
po ~ HN (a?) (2.39)
01 ~ N(0,5%) (2.40)

e Exponential prior class: )\g and o have an exponential prior with rate a,
while 67 has a Laplace prior with location parameter 0 and scale parameter b

Ao ~ Exp(a) (2.41)
po ~ Exp(a) (2.42)
Or ~ Laplace(0, b) (2.43)

2.3 Bayesian Variable Selection

The use of weakly-informative priors such as the ones described in the previous
section still suffers of overparametrization. If one wants to include multiple envi-
ronmental dependencies, the model should use informative priors which control for

2Usually the turnover is denoted . Nevertheless, we decided to adopt the notation pg for
simplicity, so that the same symbol can be used for the constant extinction rate of the turnover.

12
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overparametrization, reducing the number of possible parameters that can explain
the model and correctly identifying signal out of noise.

The problem of fitting the environment-dependent birth-death model with multiple
environmental dependencies, of which only a small subset has played an influential
role in shaping biodiversity of the observed clade, can be reconducted to the prob-
lem of Variable Selection, which is determining the subset of variables that played
an influential role in the model. Several methods have been developed to perform
Variable Selection. For example, some of them test one variable at a time using
stepwise selection methods based on information criteria such as Akaike informa-
tion criterion (AIC), Bayesian information criterion (BIC), or deviance information
criterion (DIC). These methods have however some limitations, such as their poor
performance in terms of ability to selecting the correct variables with finite sam-
ples[47]. Other approaches which can potentially test multiple variables at a time
are the penalised likelihood methods, such as LASSO and Ridge penalties. However
these methods do not allow for quantifying the uncertainty of the selected variables,
and can fail when highly correlated variables are considered [48].

Bayesian Variable Selection methods employ instead a fully Bayesian approach spec-
ifying informative priors which limits the number of influential variables. The prob-
lem can be simplified as trying to explain an observed variable X with a large number
p of explanatory variables { £, ..., E,}. The goal is to correctly select a small subset
of the explanatory variables { £;,, ..., E;, } whilst controlling for overparametrization.
We can formalize the problem as follows. The outcome X is randomly generated
according to the likelihood

L(X|61Ey + ... +6,E,) (2.44)

where {6, ...,0,} are correlation parameters, accounting for the strength of the in-
fluence of the explanatory variables. The Variable Selection problem consists in
determining which of the ;s are equal to zero. This can be done in a fully Bayesian
framework assigning special priors to them.

Several Bayesian Variable Selection techniques were developed, as reviewed in [37].
Among the various methods, one of the first is the indicator model selection. It uses
an auxiliary indicator variable I; which can only take values I; = 0 when F; does
not explain the model and I; = 1 when F; explains the model. Several variants of
the method were developed, differing in the way they model the relation between 6;
and I; and how they assign priors to them. Some examples are the method of Kuo
and Mallick [49], which considers the indicators and the correlation factors to be in-
dependent and place independent priors on them, or the discrete mizture approach,
also called Stochastic Search Variable Selection (SSVS) [50, 51, 52|, which employs
a discrete mixture prior for 6;, where the first one (for I; = 0) is a spike centered
in zero and with small variance, while the second one (for I; = 1) is a broad distri-
bution centered in zero and with large variance. An alternative approach, which is
the one we used in this project, is to directly assign a prior on #; which can control
for overparametrization. The method is called adaptive shrinkage since it employs
shrinkage priors |53, 54| which shrink toward zero the 6;s for which no evidence of
non-zero values is present in the data, while they have almost no shrinkage effect
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on data-supported non-zero correlation parameters. The method is adaptive since
the level of sparsness (the number of non-zero correlation parameters) is directly
estimated from the data. In contrast with the other method, adaptive shrinkage
does not employ indicator variables I; to determine whether an explanatory variable
should be included in the model. A user-defined threshold ¢ should be set, so that
E; is included if and only if |6;| > c.

2.4 The horseshoe hyperprior

Even though discrete mixtures are the correct representation of variable selection
problems, since they assign a positive prior probability to #; = 0, they have several
computational difficulties which limit their use in practice. Adaptive shrinkage pri-
ors, on the other hand, are more easily implemented. These methods assign normal
scale mixture priors to the correlation coefficients

0| ~ N(0,77) (2.45)

where, depending on the method, different hyperpriors are assigned to the hyper-
parameters ;5. For example, the exponential mixing of the LASSO model [53]
2|7 ~ Exp(r) implies independent Laplacian priors for 6;, while the inverse-
gamma mixing of the Relevance Vector Machine model |54] 72 |a,b ~ 1G(a,b) im-
plies Student-t priors. The hyperparameters 7, a and b can either be estimated from
the data or within a fully Bayesian framework, assigning to them appropriate hy-
perpriors (for example as in the Bayesian LASSO model [55]). One can therefore
define the shrinkage coefficient

1

— gt 0<k <1 (2.46)
T

R

which measures the amount of shrinkage of correlation parameter 6;. A value of x;
close to zero means that 6; has not been shrunk, while a value close to one means
that 6; has been shrunk almost completely. Using tranformation (2.46) together with
the specific hyperprior for 7;, one can find the hyperprior of k;. A good shrinkage
prior would be concentrated around the two extreme values k; = 0 and x; = 1, in
order to correctly distinguish noise from signal and identify the relevant variables.
Nevertheless, the Laplacian and Student-t priors do not have these features, as
shown in figure 2.4. Being peaked between zero and one, the Laplacian prior tends
to over-shrink the large signal parameters and yet under-shrink noise. The Student-t
prior, on the other hand, tends to over-shrink the signal parameters. An elegant
solution was proposed by Carvalho, Polson and Scott [56, 57|. They considered an
half-Cauchy scale mixing with both a global shrinkage hyperparameter T and local
shrinkage hyperparameters ¢;

0; | i, ~ N(0,67 7°) (2.47)
g ~ CT(0,1) (2.48)
7~ C*(0,1) (2.49)
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Laplacian Student-t Horseshoe
0 0.5 1.0 0 0.5 1.0 0 0.5 1.0
K K K

Figure 2.4: Examples of three hyperpriors for the shrinkage coefficient x;. (a) The
Laplacian hyperprior is concentrated in between zero and one rather than at the
extremes. The shrinkage of noise, as well as the detection of signal, will be thus
inefficient. (b) The Student-t hyperprior, in the central figure, is concentrated in
zero but has a vanishing probability at one. The shrinkage of noise would be efficient,
however the correct detection of signal would be inefficient. (c¢) The Horseshoe
hyperprior has both the desired features. It is concentrated in zero and one, while
it has a low probability in the middle, yielding to an efficient shrinkage of the noise
and an efficient detection of the signal. Adapted from [56].

where C*(a, b) is the half-Cauchy distribution with location parameter a and scale
parameter b. The resulting prior is called Horseshoe prior, and does not have a
closed-form expression, even though tight bounds are obtained in [57].

The name of the distribution comes from the shape of the hyperprior of the shrinkage
coefficients k;, which are now defined as

1

Ty (2:50)

Ky
Figure 2.4 compares the Horseshoe hyperprior with the Laplacian and the Student-t
hyperpriors. We can see that the Horseshoe possesses all the features which define
a well behaving shrinkage prior, since it diverges in the boundaries zero and one
and has a low probability density in the middle. Figure 2.5 compares the Horseshoe
with the Laplacian and the Student-t distributions. The Horseshoe prior behaves
essentially as log(1 + 2/6?). Tt possesses two interesting features, which makes it
an interesting alternative to perform Bayesian Variable Selection. Its infinitely tall
spike at zero yields noise parameters to be shrunk toward zero. Yet, its flat, Cauchy-
like tails allow signals of potentially strong positive or negative intensity to remain
un-shrunk. This interesting features are a result of the clear separation between
the global and local shrinkage effects. The global shrinkage parameter tries to es-
timate the overall sparsity level, while the local shrinkage parameters are able to
distinguish the non-zero signal correlation parameters from the zero noise correlation
parameters. Heavy tails for the local shrinkage hyperparameters are fundamental
in this process, allowing the estimates of signal parameters 6; to escape the strong
“gravitational pull” towards zero exercised by 7. Put another way, the horseshoe
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Figure 2.5: Comparison of the Horseshoe prior distribution (black solid line) for the
correlation parameters ; with the Laplacian (red dashed line) and the Student-t
(blue dashed line) priors. The Horseshoe infinitely tall spike at zero shrunk the
noise parameters toward zero, while its Cauchy-like tails allow signal to remain un-
shrunk. The Laplacian and Student-t, on the other hand, have a finite shrinkage
effect due to their bounded distributions. Adapted from [56].

has the freedom to shrink globally (via 7) and yet act locally (via ¢;). This is not
possible under the Laplacian and Student-t priors, whose shrinkage profiles force a
compromise between shrinking noise and determining signals.

In order to define a threshold rule to discriminate between signal and noise, we used
the shrinkage weights w; proposed by Carvalho, Polson and Scott [57]

1

e (2:51)

wlzl—mzl

and we inferred its value w; from the posterior, for example using the Maximum
A Posteriori (MAP) value, the mean or the median. An estimator w; lower than
0.5 means that the variable F; should not be included in the model, while a value
greater than 0.5 means that the variable F; should be included in the sample.

{@i < 0.5 E; noise (2.52)

w; > 0.5 FE; signal

We used the Horseshoe prior to fit the environment-dependent birth-death model
with multiple dependencies avoiding the risk of overparametrization. Let’s consider
a set of p environmental curves {E;(t), ..., E,(t)}. We considered, for simplicity, an
exponential speciation rate with multiple environmental dependencies

A(t) = Xoexp (01 Ev(t) + ... + 6, E,(1)) (2.53)

and a constant extinction rate

p(t) = po (2.54)
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where {6y, ...,0,} are the correlation parameters of the environmental variables and
the speciation rate. We place the Horseshoe prior only on these correlation param-
eters. The Bayesian model is therefore

thyeertn ~ L(t1, oyt | Ao, 10, 01, .., ) (2.55)
0; |ei, 7 ~ N(0,277) (2.56)
g ~ CT(0,1) (2.57)
7~ C*(0,1) (2.58)

while we can assign uninformative priors to \g and i, such as uniform, exponential
or half-normal. The influence of each environmental variable F;(t), as well as the
magnitude and the direction of this influence, can thus be tested by sampling the
posterior distribution and inferring the posterior estimates for the shrinkage weights
w; and the correlation factors 0;.

2.5 Model reparametrization and MCMC imple-
mentation

In order to compute the posterior estimates of the shrinkage weights and the corre-
lation factors we need to perform a MCMC sampling of the posterior distribution.
Nevertheless, the complex hierarchical structure of the Horseshoe prior makes the
sampling almost impossible. At each MCMC step the acceptance probability of the
correlation parameters #; strongly depends on the current value of the local shrink-
age hyperparameters ¢; and of the global shrinkage hyperparameter 7. The bigger
the product &7 72 is, the broader the normal distribution A(0,&? 72) and, in turn,
the greater is the probability of accepting a proposal 8} for the correlation param-
eter. The issue hides in the strong correlation between the correlation parameters
and the shrinkage hyperparameters.

In order to obtain a more efficient sampler for the Horseshoe, we reparametrized
the model in such a way that the sampling is performed on independent random
variables. In order to do so, we can use a well known property of normal random
variables. Given a normal random variable X with mean p and variance o2, it can
always be obtained from a unit normal random variable Y through the transforma-
tion

X ~N(p,0?)

X =0Y + here 2.59
oeh v {YNN@m (2.59)

Then the Horseshoe model can be reparametrized as
tl, ceey tn ~ E(tl, ceey tn | )\0, Mo, 91, ceey gp) (260)
0; ~ N(0,1) (2.61)
g ~ CT(0,1) (2.62)
7~ C*(0,1) (2.63)

where . 3

91' |0i75i77— = é‘iT@i (264)
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In addition, in order to efficiently sample the shrinkage hyperparameters, which
have heavy-tailed half-Cauchy hyperpriors, we can use another reparametrization
called inverse transform sampling, which allows to sample random variables with
invertible Cumulative Distribution Function (CDF) from uniform random variables.
The half-Cauchy distribution with location parameter a = 0 and scale parameter b

2 1
S — 2.
Px(2) b1+ 22/b? v>0 (2.65)
has CDF N 5
Fy(z)= [ d = Ztan~! (= 2.66
x(@) = [ depx(o) =t () (2.66)

The probability integral transform (see [58|, Theorem 2.1.10 p.54) states that the
random variable u = Fx(X) has a uniform distribution

u=Fx(X)= ztam_1 (%) ~U(0,1) (2.67)

/e

Then, inverting equation (2.67) we can sample an half-Cauchy random variable
directly from a uniform random variable

X ~ C*(0,0)
X = F*(u) = btan (Su) h ’ 2.68
v (u) an ( Su where w~ U0, 1) (2.68)
Inserting the reparametrization into the model we obtain
tl, ceey tn ~ £(t1, ceey tn | )\0, Mo, (91, ceey Qp) (269)
0; ~ N(0,1) (2.70)
u~U0,1) (2.72)
where
9i|é’i7€ia7— :EiTéZ‘ (273)
T
g; | u; = tan <§uz> (2.74)
T
7 |u = tan <§u> (2.75)

With this reparametrization we implemented a simple Metropolis-Hastings sampler
with pre-adaptation to tune the proposal function. We used a simple exponential
prior for the parameters A\g and p.
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Results

3.1 Likelihood speed up

In order to implement the environment-dependent birth-death model in a Bayesian
framework we need to perform a MCMC sampling of the posterior. This requires
to compute the likelihood several times, which will take too much time due to the
computational burden of the integrals in equation (2.4) and (2.5). The computa-
tional time can be reduced using a sufficiently large approximation interval dt for
the calculation of the integrals by piece-wise approximation. This has already been
implemented in the package RPANDA [35], where a value dt = 10~ was suggested
as a safe approximation. However the execution time is still too big to efficiently im-
plement the model within a Bayesian framework. In order to decrease it we avoided
some unnecessary calculations, dramatically reducing the computation of the likeli-
hood. In this chapter we will refer to the implementation of the package RPANDA
as "old likelihood" and to the new implementation as "new likelihood".

In order to benchmark the new likelihood and quantitatively test its increase in per-
formances we considered the environment-dependent birth death-model with mul-
tiple environmental dependencies. In particular we considered five environmental
curves: the average global change in surface air temperature 7'(t), the average sea
level hge,(t), the benthic foraminifera isotopic signature §'3C(t) (all of them ob-
tained from [9]), the average carbon dioxide concentration CO2(¢) and the Silica
weathering ratio Si(t). We considered an exponential speciation rate and a constant
extinction rate

A(t) = Xoexp (0rT(t) 4 Ophsea(t) + 056 °C(t) + 0c02CO2(t) + 65Si(t))  (3.1)
p(t) = o (3:2)

We considered three integral approximation intervals dt = 1072, dt = 1072 and
dt = 107*. For each of them we computed, with both the old and the new
methods, the likelihood of the model for 1000 randomly generated parameter sets
{ o, o, 07, 01, 05,0c02,0si}. We then compared the execution time and the log-
likelihood of the two methods. The results are shown in figure 3.1. As we can see,
the computation time is drastically reduced with an approximation interval for the
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Figure 3.1: Comparison of the new implementation of the computation of the like-
lihood with the old implementation of the package RPANDA. (a) In the left panel,
the average computational time is compared. As we can see the new likelihood is
dramatically quicker than the old one for dt = 107*. (b) In the right panel is shown
the discrepancy between the log-likelihood computed by the new implementation
and the one computed by the old implementation. dt = 10~* has almost no dis-
crepancy, being therefore a safe choice. Red dot represent mean values, while the
bottom, middle and upper lines of the boxes represent respectively the lower quartile
(@Q1), the median and the upper quartile (Q3). Black points represent outliers which
fall outside the range [Q1 — 1.5(Q3 — Q1), Q3 + 1.5(Q3 — @Q1)], which is specified by
the vertical black line.
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I No
Run the pre-adaptation Run the sampler Run the sampler
phase (1e4 MCMC steps) Yes— (1e4 MCMC steps)

(1e4 MCMC steps) Use 3 independent Use 3 independent
Update every 1e2 steps chains chains

Discard 50%
—» of the chains
as burn-in

Figure 3.2: Flowchart of the feedback process implemented to automatically generate
converged MCMC chains. Three independent chains are generated in parallel. First
of all, the pre-adaptation phase is run for each chain using 10* MCMC steps. The
scale parameters 7; of the proposal functions for each parameter are updated every
10? steps using equation (2.25). Once the pre-adaptation phase is terminated, the
chains are sampled using a MH algorithm with the optimised proposal functions.
Convergence is checked every 10* MCMC steps, checking that R(y) < 1.05 and
ETS\S(l/J) > 200 for any quantity of interest 1. Once the chains have converged, 10*
more steps are computed, and finally 50% of the chains is discarded as burn-in.

integral dt = 10~*. If we then look at the discrepancy between the values of the
likelihood computed with the old and the new method, we can see that this approxi-
mation interval corresponds to almost no discrepancy. We have therefore decided to
use dt = 10~* as a safe approximation interval in the Bayesian implementation. The
new likelihood computation ensures a sufficiently small computation time, making
possible to perform the MCMC sampling.

3.2 Bayesian implementation

We implemented the model in a Bayesian framework using Metropolis-Hastings
MCMC sampling of the posterior distribution (2.34), adapted from the algorithm
developed by Maliet, Hartig and Morlon [59]. In order to be sure to always sample
converged chains we developed an automated flowchart which monitors convergence
during the simulation and stops it as soon as convergence is reached. Figure 3.2
shows a schematic representation of the procedure. Each run simulates three inde-
pendent chains in parallel, in order to apply equations (2.23) and (2.30) to assess
convergence. During each MCMC step we update all the parameters one at a time,
each time carrying out the procedure of proposing a new parameter and accepting
(or rejecting) the new proposal based on the acceptance rate. Then, if one has a
p-dimensional parameter space, this implies to compute the likelihood p times per
MCMC step. This procedure makes the convergence and the mixing of the chains
faster, at the price of increasing the computation time per MCMC step. Before sam-
pling the chains we apply a pre-adaptation phase using 10* MCMC steps, in which
the proposal functions for each parameter are tuned. In particular we update the
scale parameters v; of the proposal functions for parameters 6; every 102> MCMC
steps using the update rule (2.25). Once the adaptation phase is concluded, the
tuned proposal functions are used to sample the three chains. We assess conver-
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Figure 3.3: Traces (left panels) and marginal posterior densities (right panels) of the
three parameters Ay, o and 67. The trace plots clearly show the burn-in period at
the beginning of the chains. Th marginal posterior densities are computed discarding
the first half of the chains as burn-in.

Table 3.1: Settings of the different prior classes specified in equations (2.35)-(2.43).

Prior class a b
Uniform 5 5
Normal 2 2

Exponential 4 2

gence each 10* MCMC steps, checking that

{é(w) < 1.05 (33)

ESS(¥) > 200

for any quantity of interest ¥». Once convergence is reached for any v, 10* more
MCMC steps are simulated, and finally half of the chain is discarded as burn-in.
In order to quantitatively test the Bayesian implementation we confronted it with
the Maximum Likelihood implementation already implemented in the RPANDA
package. We used the simple model described in section 2.2 with an exponential
dependency of the speciation rate from the average temperature (2.31) and either
a constant extinction rate (2.32) or a constant turnover (2.33). We used the three
different prior classes described in the aforementioned section, setting a = b = 5
for the uniform class, a = b = 2 for the normal class and a = 4 and b = 2 for
the exponential class. The settings are schematized in table 3.1.  We randomly
simulated 100 phylogenetic trees for both the constant extinction rate model and the
constant turnover model using the function sim_env_bd of the RPANDA package,
using the same parameters for all of them. The setup of the simulations is resumed
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Table 3.2: Settings of the parameters used in the simulations of the phylogenetic
trees.

Constant extinction rate Constant turnover

o 0.10 0.08
o 0.06 0.06
Or 1.30 1.10

in table 3.2. For each simulated tree we sampled the posterior probability density
using the aforementioned Metropolis-Hastings MCMC sampling procedure and the
three different prior classes. We checked convergence of the three parameters Ay, po,
Or.

Figure 3.3 shows the traces and the marginal posterior densities of the three pa-
rameters \g, po and Or for a tree generated with a constant turnover, considering
exponential priors. Traces and marginal posterior densities are represented for each
of the three parallel independent chains. The marginal posterior distributions were
computer disregarding the first halves of the chains as burn-in. The burn-in period
at the beginning of the chains is well visible. All the three chains seem to have
converged to the same posterior distribution and are stationary.

We then compared the ability of the Bayesian implementation to correctly infer
the model parameters with the Maximum Likelihood implementation. We used the
posterior means A\g = E(\o|t1, ..., tn), fio = E(polt1, ..., tn) and 07 = E(O7|tq, ..., t,) as
estimators of our parameters, and we compared them to the Maximum Likelihood
estimators. In order to reduce the correlation between samples and reduce the
memory usage of the algorithm we saved the sampled parameters only every 102
MCMC steps. The procedure is called thinning. The results of the comparison are
shown in figure 3.4. As we can see, the Bayesian implementation correctly estimates
the parameters with less variance than the Maximum Likelihood method. However,
in the case of a constant turnover both the Bayesian and the Maximum Likelihood
implementation fail to correctly identify the extinction parameter pg. This can be
due to the well known difficulty of fitting the extinction process from reconstructed
phylogenies, which lack extinction events not including fossils.

We then analysed the dependencies of the accuracy in the estimates from the size of
the simulated trees, which is the number of tips (extant species). Figure 3.5 shows
the results. We can see that the accuracy strongly depends on the tree size, in
particular for the extinction parameter py. Using the Bayesian implementation can
then help in estimating the uncertainty of the inferred parameters even with small
phylogenetic trees, since it provides the full conditional posterior ditribution rather
than a simple point estimates as for the Maximum Likelihood implementation.

Finally, in order to assess the ability of the Bayesian implementation to correctly fit
the model with only two environmental variables, we randomly simulated 100 phy-
logenetic trees using an exponential speciation rate depending on the temperature
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Figure 3.4: Comparison of the efficiency of the Bayesian implementation (denoted
"Bayes" in the caption) and the Maximum Likelihood implementation ("ML" in the
caption). Upper panels correspond to a constant extinction rate, while lower panels
correspond to a constant turnover. Plots for py were bounded to g > 0 in order
to appreciate the difference between the two methods. Horizontal red dashed lines
correspond to the true value of the parameters used in the simulation setup.
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Figure 3.5: Upper panels correspond to a constant extinction rate, while lower panels
correspond to a constant turnover. Plots for py were bounded to g > 0 in order
to appreciate the difference between the two methods. Horizontal red dashed lines
correspond to the true value of the parameters used in the simulation setup.
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Figure 3.6: Comparison of the efficiency of the Bayesian implementation (denoted
"Bayes" in the caption) and the Maximum Likelihood implementation ("ML" in
the caption) using a constant extinction rate and an exponential extintion rate
depending from the temperature and the carbon dioxide. Densities and summary
statistics of the estimates of each parameter are shown, together with the true values
of the parameters used in the simulation setup (red dashed lines).

and the carbon dioxide
A(t) = Noexp(OrT(t) + 0co2CO2(1)) (3.4)

and a constant extinction rate

p(t) = po (3.5)
We considered a strong positive dependency from the temperature and a small
negative dependency from the carbon dioxide, setting the parameters as \g = 0.07,
o = 0.06, O = 2 and oo, = —0.3. This will avoid to confound the effect of the
two environmental variables and better infer their correlation parameters. We then
inferred the parameters using the procedure explained before, with an exponential
prior family

Ao ~ Exp(4) (3.6)
pio ~ Exp(4) (3.7)
O ~ Laplace(0, 2) (3.8)
fco2 ~ Laplace(0, 2) (3.9)

We checked convergence of the four parameters \g, 1, 07 and 6coz. The estimated
parameters are shown in figure 3.6 and are compared with the ones obtained from
a Maximum Likelihood approach. As we can see the Bayesian implementation is
slightly better than the Maximum Likelihood approach, since it has less variance in
the estimates of the correlation coefficients 6 and 6cos. The difference however is
not as sharp as in the single environmental dependency model. This is due to the use
of uninformative priors. The strength of a Bayesian approach is that it can employ
informative priors to better estimate multivariate models without encountering the
problem of overparametrization.

3.3 Bayesian Variable Selection

The Bayesian Variable Selection technique employing horseshoe priors, described in
sections 2.3 - 2.5, can be implemented within the automated flowchart described in
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section 3.2. Nonetheless, the number of parameters to be sampled is way larger than
the simple environment-dependent birth-death model with a single environmental
dependency. We cannot therefore update one parameter at a time for each MCMC
sample, since this would require to compute the likelihood too many times and
slowing down the sampler. A solution to the problem which still ensures fast enough
convergence and mixing of the chains is to group the parameters into a fixed number
of blocks and update one block at a time for each MCMC step. The blocking
procedure can either be defined a priori or randomly.

We implemented the Bayesian Variable Selection procedure using random block-
ing within the automated flowchart schematized in figure 3.2. In order to meet
a good compromise between mixing and computational time, we decided to take
four blocks. We considered for simplicity only five environmental variables, which
are again the average global change in surface air temperature T'(t), the average sea
level e (t), the benthic foraminifera isotopic signature 6'3C(¢) (all of them obtained
from [9]), the average carbon dioxide concentration CO2(¢) and the Silica weather-
ing ratio Si(f). In addition, we slightly modified the algorithm to sample from the
reparametrized model of equations (2.69) - (2.75). In particular, while the sampling
is done on the parameters {\, po, él, e ép, Uy, ..., Up, U}, at each updating step the
original parameters { o, tt0, 01, ..., 0p, €1, ..., €p, T}, are computed and the acceptance
probability is obtained from them.

Since the objective of the sampling is to infer the parameters of the model g, ug,
Or, On, 05, 0cos and Os; and the corresponding shrinkage weights, in order to deter-
mining the environmental variables which played a role in shaping biodiversity of
the observed clade, we monitored only the convergence of these quantities through
their Gelman-Rubin convergence diagnostic and their Effective Sample Size.

Unfortunately, due to the short length of the internship, we were not able to test
the implementation with simulated phylogenetic trees, in order to asses its ability
to correctly identifying the environmental dependency used to generate the trees.
The code is available at [60], and it will be tested in the future.
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Chapter 4

Discussion

The study of biodiversity and how it is shaped by abiotic and biotic factors, such as
human induced climate change, is key to understand how our actions will affect the
wellness of wildlife, and to create more efficient preservation policies. At present,
one of the most used tools in the study of biodiversity is inference models on recon-
structed phylogenetic trees, such as the environment-dependent birth-death model.
Yet, these methods are often implemented in a Maximum Likelihood framework, and
have some serious limitations in fitting multivariate environmental dependencies. In
this report we presented an efficient Bayesian implementation of the environment-
dependent birth death model, which can give a better interpretation of inference
estimates through the use of the full marginal posterior distributions instead of
simple point estimates, such as the one obtained in Maximum Likelihood based
approaches.

We tested the accuracy of the Bayesian implementation using both a single environ-
mental dependency and two environmental dependencies, of which one has a strong
effect while the other has a small effect. The Bayesian implementation has shown
to outperform the Maximum Likelihood implementation, being more accurate and
more precise. However, directly fitting the model with uninformative priors has sim-
ilar problems as a Maximum Likelihood implementation. If one wants to consider
multivariate environment-dependent models, it should include informative priors
such as the Horseshoe.

Even though we were not able to test the Bayesian Variable Selection implementa-
tion, the code has been made available on [60] for future work. Once the procedure
has been tested, improvements of the sampling algorithm can be made. For exam-
ple, instead of using the suggested reparametrization one can use a slice sampling
algorithm, as done by Silvestro et al. in [61].

In cocnlusion, being able to implement the model in a Bayesian framework can help
future researches to obtain better inferences from reconstructed phylogenies.
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