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Abstract

The automatic identification of burned areas is an important task that was
mainly managed manually or semi-automatically in the past. In the last years,
thanks to the availability of novel deep neural network architectures, automatic
semantic segmentation solutions have been proposed also in the emergency man-
agement domain. The most recent works in burned area delineation make use
of Convolutional Neural Networks (CNNs) to automatically identify regions that
were previously affected by forest wildfires. A largely adopted segmentation model,
U-Net, demonstrated good performances for the task under analysis, but in some
cases a high overestimation of burned areas is given, leading to low precision scores.
Given the recent advances in the field of NLP and the first successes also in the
vision domain, in this thesis, we investigate the adoption of vision transformers for
semantic segmentation to address the burned area identification task. In particu-
lar, we explore the SegFormer architecture with two of its variants: the smallest
SegFormer-B0 and the intermediate one, SegFormer-B3. We exploited different loss
functions to deal with the complex structures that can be found in satellite imagery.
The experimental results show that SegFormer provides better predictions, with
higher precision and F1 score, but also better performance in terms of the number
of parameters with respect to CNNs.
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Chapter 1

Introduction

In this chapter we are giving a context to our problem trying to describe why it is
important, how the problem is currently addressed and how we tried to solve it.

1.1 Wildfires and their impact

Climate change is increasing the frequency of severe fire weather (conditions that
favour the ignition of wildfires) and fire seasons around the globe are becoming
longer and are spreading in larger areas [1]. According to the predictions of domain
experts, the actual trend will intensify these environmental states [2]. Extreme
weather conditions (strong wind, abnormal heat etc.) that increase aridity [3] or
leave for example high fine fuel loadings [4] are not the only cause of wildfires, but
human has a great role directly (smoking, playing with fires, using vehicles and
equipment [5]) and also indirectly (through infrastructure failures such as electrical
transmission lines and railways [6, 7]). We can easily understand in the near future
we will have to deal with more wildfires.

The effects of wildfire can be seen in the short term, but also in the long
term and they impact health, economies, livelihoods, infrastructure, and societies.
Wildfires cause a release of high quantities of carbon [1] and reach long distances
affecting the air quality for a long time [8]. Damages to the economy are of great
importance: only in December 2020 in California 9600 wildfires were registered
and they damaged around 10500 structures [9] and for the period 2019-2021 their
damages are estimated at 25 billion dollars [10]. The human communities are not
the only ones damaged by wildfires: ecological systems also feel the effects on many
of their components such as birds [11], amphibians [12] and mammals [13], but for
many of them we do not have any clear information on their reactions.
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Introduction

1.2 Burned area detection with satellite imagery

The availability of sensors with high resolution, in conjunction with the usage of
aircraft and satellites, enables the acquisition of national and global-scale infor-
mation in a short amount of time. Moreover, thanks to the recent advances in
computer vision and the high availability of data in the remote sensing domain,
Earth Observation represents an active field of research with strong community in-
volvement. The Earth Observation domain involves several different tasks, ranging
from land monitoring and land cover change characterization [14], change detection
[15], damage estimation [16] and many others. Deep learning-based methodolo-
gies demonstrated state-of-the-art performances over a multitude of these tasks.
Among the Earth Observation domain, the field of emergency management plays
an important role for public authorities as well as governments in handling natural
hazards, trying to limit societal and environmental damages as much as possible
with timely intervention and proper restoration. Handling natural hazards also
involves precise identification of affected areas, damage estimation and restoration
process planning. Such mentioned operations are often performed reaching the area
of interest, requiring human operators to spend time and risk their health in an
unsafe environment. The availability of remote sensing data and satellite imagery
enables the development of automatic recognition systems to delimit affected areas
and provide initial damage assessments for operators and authorities. In this con-
text, we concentrate our analyses on forest fires. More specifically, we propose our
work in the field of semantic segmentation and automatic burned area identification
from Copernicus Sentinel-2 L2A acquisitions, a European multi-spectral imaging
mission with a resolution up to 10m (depending on the spectral band). Given a
post-fire multispectral acquisition from Sentinel-2, the goal is to precisely identify
the region affected by the already-extinguished forest fire. This thesis explores
the application of one of the most recent advances in deep learning and computer
vision: transformer-based architectures for semantic segmentation. In particular,
we assess the performances of the SegFormer [17] architecture on an open dataset
in comparison with a CNN-based state-of-the-art architecture, namely U-Net [18].
The considered model proved superior performance compared to both methods. The
source code is available at https://github.com/DarthReca/fire-detection.

1.3 Thesis outline

The thesis is organized into chapters, each dealing with a specific topic:

o Chapter 2 summarizes previous works in the computer vision and burned area
detection fields;


https://github.com/DarthReca/fire-detection

Introduction

o Chapter 3 formalizes the problem and presents the various methodologies
applied to tackle the problem;

o Chapter 4 presents the results obtained using the previously explained method-
ologies and it tries to explain them:;

o Chapter 5 summarizes the works done in the thesis and deals with possible
future works.



Chapter 2

Related works

The burned area identification problem, also named as burned area delineation
problem, is a well-known and tackled challenge in remote sensing literature. The
aforementioned issue consists in identifying, given a multispectral input acquisition,
the areas previously affected by forest wildfire and currently damaged as in Fig-
ure 2.1. Such information is useful to (i) quantify damages, both environmental and
economical, for public authorities and (ii) plan the restoration process. The field of
this work is computer vision, in particular, we are doing semantic segmentation
of images. The data are provided by Sentinel-2 satellites and they permit a good
understanding of the vegetation status, which is of great importance to work on
identifying areas burned by wildfires. Our solution uses the latest development in
the deep learning field: Vision Transformers.

Satellite image with burned area Mask of burned area (red)

Figure 2.1: Example of an image from Sentinel-2 and highlight of burned area
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2.1 Computer vision

Computer vision is a subfield of artificial intelligence where computers derive useful
information from visual inputs (images, videos, etc) and they make decisions based
on them. The basic idea is to help computers to see and interpret the world around
them through some sensing devices. In this context, some of the most common
tasks are (Figure 2.2):

(a) Classification of images or 3D objects. The task consists in assigning to each
image (2D or 3D) a class label, based on its content. [19]

(b) Object detection. The main focus is to detect and localize objects using
bounding boxes, which are contour boxes containing the searched object. [20]

(c) Pose estimation. The objective is to estimate the position and the orientation
of the human body. It founds applications in augmented and virtual reality,
gaming and sports. [21]

(d) Image and video generation. This task involves the creation of new media
from an existing pool of data that can seem real. The main application is in
art and animation. [22]

(e) De-noising. This task consists in removing noise from a media and predicting
the original one without noise. This task is useful for the restoration process
and other computer vision tasks that require high-quality media. [23]

(f) Activity recognition. This task regards the prediction of the movement in a
video. [24]

(g) Semantic segmentation. The objective is to assign a class label to each pixel:
it can be thought of as image classification at the pixel level. [17]

(h) Instance segmentation. The output is the contour (or mask) of a searched
object: this is similar to object detection, but in this case, we are not looking at
bounding boxes. Differently from semantic segmentation, we are not labelling
each pixel, because we are searching for specific objects. [25]

(i) Panoptic segmentation. We combine instance and semantic segmentation to
label every pixel of the image. The main difference is that if there are multiple
instances of a class, we know which pixel belongs to which instance. [26]

In this thesis, the main topic is semantic segmentation. An input image is given
to the network, which generates an output with each pixel assigned to a class. This
is compared to the expectation to update the network weights.
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(a) classification [19] (b) object detection [20] (¢) pose estimation [21]

goldfish

(d) image generation [22]

(g) semantic segmentation [17] (h) instance segmentation [25] (i) panoptic segmentation [26]

Figure 2.2: Different computer vision tasks

2.2 Deep learning in computer vision

Computer vision only exploded recently, but it is not a young scientific field.
During 1960s some influential papers were published giving the ideas for deep
learning birth [27] and there was a first unsuccessful attempt of creating a vision
system [28]. Studies of 1970s formed the early foundations for many of the computer
vision algorithms that exist today [29] and the first robust Optical Character
Recognition (OCR) system was developed [30]. In 1980s it was established vision
works hierarchically [31] and Neocognitron was developed, which is a network of
cells with convolution operations that can recognize patterns [32]. At the end of the
decade, the first modern convolutional neural network was developed and it was

6
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called LeNet [33]. In 1990s the improvement in the progress of the cameras helps to
feed the field. After 2000, the focus of computer vision was object recognition and
the first recognition system was created without the help of convolutional layers [34].
The advancements in computer vision led to the necessity of standard datasets with
many images as benchmarks and in 2010 ImageNet Large Scale Visual Recognition
Competition (ILSVRC) was created [19]. Until 2012 the error rates in the image
classification competition were around 26%, but AlexNet, a convolutional neural
network inspired by LeNet, changed everything reaching 16%. From that moment
the winners of the ILSVCR were convolutional neural networks. The nourishment
was favoured by the higher computational availability and better access to large
datasets of images for many different tasks.

2.2.1 Loss functions for semantic segmentation

Loss functions represent the cost (or risk) associated with a prediction. This means
the objective is intuitively to minimize it to have a low prediction cost (i.e., accurate
predictions). They generally take the form of expected risk:

L= B(G,S) (2.1)

where L is the loss, G is the ground truth (the expected result), S is the prediction
and FE is the function that computes the expected risk. They are also called
objective functions because they lead the system towards a goal. In Figure 2.3 it is
possible to see some common functions for image segmentation, but many others
can be found. They can be grouped in clusters based on their optimization goal:
distribution-based, region-based, boundary-based and compound [35].

o Distribution-based losses aim to minimize the differences between two distri-
butions.

» Region-based losses maximize the overlap regions between prediction and
ground truth.

» Boundary-based losses minimize the distance between ground truth and pre-
dictions.

o Compound losses combine in a single equation more losses, creating a multi-
objective function.

In this thesis, we tested cross entropy, dice, focal, DiceFocal and unified focal
losses.

o Binary cross entropy loss is distribution-based and its objective is to minimize
the difference between two distributions (in this case prediction and target)

7
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Figure 2.3: Common loss functions for segmentation [35]

giving a penalty to wrong predictions. The following is the equation for mean

BCE:

nN:O —Yn - logz, — (1 — y,) - log(1 — z,)
N

where N is the sample count, x,, is the prediction and y,, the ground truth for

nt" sample

Lpcp = (2.2)

Generalized dice loss [36] is region-based and its objective is to make two areas
perfectly overlapping. The function is:

1 N
2 1—0 Wi D p—o YinTin
T N
D=0 Wi D p—o Yin + Tin

Lijee =1—2 (2.3)

where NV is the sample count, [ is the class label, w; is the weight to provide
label invariance to the different label set properties and x;, is the prediction
and 1, is the ground truth for n** sample for class [.

Focal loss [37] is distribution-based and it has the same objective of binary
cross entropy, but with some differences as can be seen in the equation for

mean focal loss:
7];[:0 —O./(l - wn)’y IOg Tp

N

where N is the sample count, « is the weight for positive vs negative samples,
v is giving more importance to hard sample with high loss and z,, is the
prediction and vy, the ground truth for n** sample

8
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 DiceFocal loss [38] is compound and it combines in a more robust function
the objective of focal loss and dice loss in this way:

LDiceFocal - aLfocal + (]- - a)Ldice (25)
where « is the weight given to focal loss.

« Unified Focal loss [39] is compound and it combines focal and focal twersky
loss with some modifications in this way:

LAsymmetricUnifiedFocal == ALmaFocal + (1 - )\)LmaFocalTwersky (26)

where Liqpoca is the Modified Asymmetric Focal loss [39], Larocairwersky
is the Modified Asymmetric Focal Twersky loss [39] and A is the weight of
modified focal. The modifications allow to use less hyper-parameters.

2.2.2 CNN for semantic segmentation

For years convolutional neural networks helped solve semantic segmentation in
various applications: facial recognition [40], autonomous vehicles [41], medical
imaging [18] and diagnostic [42] and many others [43]. The main problem the
first models faced was that using the input image size throughout the network is
computationally expensive and the solution was found using an encoder/decoder
structure as in Figure 2.4. In this way, the encoder makes a concise and meaningful
representation of the input, especially if they are large, while the decoder elaborates
this information to create a human understandable output. The evolution of
this idea is U-Net, which is one of the most popular architectures in semantic
segmentation for its simplicity combined with improved results and many variations
were created afterwards [44]. The encoder-decoder architecture was kept with some
important changes: a contracting encoding path, a symmetric expanding path and
the encoded feature concatenation with decoded one (Figure 2.5). These approaches
lack global contextual information and different techniques were adopted to do
better scene parsing as in ParseNet[45], with the addition of global features, and
PSP-Net [46], where a pyramid module harvests different sub-region representations.
The last model we have to mention is surely DeepLab [47], because of three main
contributions in the work: (1) they reduced the feature resolution without losing
information with atrous convolution (Figure 2.9), (2) the proposed autrous spatial
pyramid pooling permit to segment objects at multiple scales (Figure 2.7) and (3)
they improve localization accuracy by adding a fully connected conditional random
field (CRF) to capture fine details (Figure 2.8).

9
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The rate controls the spacing between kernel points (in this case 1 space between
two points).
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2.2.3 Transformer and Vision Transformer

When transformer architecture was proposed [49], CNNs were modified to exploit
attention [50, 51]. With attention, the network self-learns to give different weights to
various parts of the input, highlighting the most important ones. Soon, transformer-
based architectures became the most used and successful ones [52] in the natural
language processing (NLP) field and models such as BERT [53] and GPT-3 [54]
became state-of-art. This success pushed the researcher in trying to apply attention
to computer vision and many successful applications with CNNs were developed.
The creation of vision transformer (ViT) [55], a pure transformer-based architecture
(Figure 2.10), demonstrated convolutions are not necessary to achieve good results.
It requires fewer computational resources than CNNs, too. Next to it, many
approaches came out and proved their effectiveness in many different tasks: image
classification [56], object detection [57], colorization [58], super-resolution for images
[59] and videos [60], panoptic segmentation [26] and also semantic segmentation
[17]. The various architectures focused not only on improving the results but also
on solving the bottlenecks of ViT (efficiency and the need for a large amount of data
[55]). Swin Transformer [57] and Twins [61] focus on improving the results, DeiT
[62] tried to reduce the needed amount of data with token distillation, SegFormer
[17] and LeViT [63] tried to reduce the computational cost. In this thesis, we choose
SegFormer because it was designed to have a variable number of parameters based
on the desired computational cost and to be more noise resistant than other vision
transformer architectures [17]. Looking at Figure 2.11, it is possible to understand
the architecture is different from other vision transformers such as Swin (Figure
2.12) because of (1) the hierarchical encoder which outputs multiscale features and
(2) the absence of positional encoding. It was designed specifically for semantic
segmentation, optimizing the computationally expensive parts: the self-attention
module was optimized according to [64] and the MLP decoder does not contain
any convolution, greatly reducing their costs. The network accepts an image of
size W x H with C channels reducing the resolution while going deeper creating
more abstract representations of the input. Each temporary result is kept because
they are concatenated in the decoder to make the final prediction.

12
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2.3 Burned area identification with Sentinel-2

Sentinel-2 mission monitors the green areas of the planet and give support in natural
disaster management exploiting not only visible spectral band, but also infrared.
The satellites provide 13 spectral bands, with most of them that are in SWIR
(ShortWave InfraRed) and VNIR (Visible and Near InfraRed), because they proved
to be effective in evaluating water properties, moisture content and plants health [65].
Before the advent of modern computer vision methodologies, researchers tackled
the problem with the analysis of burned area indexes. Specifically, by gathering and
combining information from several spectral bands which are sensitive to humidity
and vegetation, it is possible to highlight regions affected by the hazardous event.
Some examples and their equations are:

o Normalized Burn Ratio (NBR) [66]

B08 — B12
NBR = ——— 2.
R B08 + B12 27)

« Normalized Burn Ratio 2 (NBR2) [67]

B11 — B12
NBR2 = ——— 2.
R B11 + B12 (28)

o Burned Area Index for Sentinel-2 (BAIS2) [68§]

B06 * BO7 * BRa B12 — B&a
BAIS2=1|1— 1 2.9
( \/ B4 ) (\/BSCL 4+ B12 * ) (2.9)

o relative delta Normalized Burn Ratio 2 (ANBR2) [69]

NBR,,. — NBR,y
VINBR,,/1000]

RANBR = (2.10)

where NBR,,. and NBR,,s are respectively the N BR before and after the
wildfire.

where Bz is a spectral band of Table 2.1. Some of them, such as the latter, perform
the comparison of the burned area index before and after the wildfire to improve
performances and detect drastic changes in vegetation but are heavily sensible
to the presence of agricultural areas and crops. Index-based methodologies for
burned area delineation are often coupled with automatic or semi-automatic [70,
71] thresholding algorithms, such as the Otsu method [72]. One of the main
complications of threshold-based techniques is the choice of the most adequate
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threshold, varying the vegetation type, environmental and lighting condition,
making it difficult to determine a unique, universal value [73] for every region
worldwide.

The latest deep learning solutions for burned area delineation focused on CNN
architectures in particular on U-Net [74, 75, 76] and Siamese networks [77, 78].
Only a few attempts tried to exploit the power of the new vision transformers [79],
so, in this thesis, we explore the adoption of SegFormer architecture and some
variations for burned area delineation, comparing the achieved performances with
U-Net and threshold-based techniques.

Band | Resolution | Central wavelength Description
B1 60 m 443 nm Ultra Blue (Coastal and Aerosol)
B2 10 m 490 nm Blue
B3 10 m 560 nm Green
B4 10 m 665 nm Red
B5 20 m 705 nm Visible and Near Infrared (VNIR)
B6 20 m 740 nm Visible and Near Infrared (VNIR)
B7 20 m 783 nm Visible and Near Infrared (VNIR)
B8 10 m 842 nm Visible and Near Infrared (VNIR)
B8a 20 m 865 nm Visible and Near Infrared (VNIR)
B9 60 m 940 nm Short Wave Infrared (SWIR)
B10 60 m 1375 nm Short Wave Infrared (SWIR)
B11 20 m 1610 nm Short Wave Infrared (SWIR)
B12 20 m 2190 nm Short Wave Infrared (SWIR)

Table 2.1: Sentinel-2 spectral bands [80]

15



Chapter 3

Methodology

In this chapter we are going to present the data used to train and test the model
and the details of the architectures and the losses we used to solve the task. Finally,
we provide the experimental results.

3.1 Problem statement

Given a set of labelled satellite images of size W x H, each one associated with a
binary mask representing the information about the burned/unburned pixels, the
goal consists in training a classification model that can then be used to predict the
class label (burned/unburned) for all pixels of new images, i.e., we are interested
in training a model that solves the semantic segmentation task.

Satellite image with burned area Mask with per pixel class label

Figure 3.1: Example of an image from Sentinel-2 and mask with a label for each
pixel. Red pixels are assigned to the burned class and green ones to the unburned
class.

16



Methodology

3.2 Dataset

The dataset is composed of images taken from Copernicus Sentinel-2 in combination
with data provided by Copernicus Emergency Management Service (EMS), which
contains manually generated damage severity maps of burned regions hit by past
wildfires. The EMS damage severity maps were used as ground truth, but because
the quality of the information can vary a lot, some constraints were applied to
select the images: (i) the satellite acquisition date must be equal to the date of the
severity map, (ii) data must be available for at least the 90% of the Aol (Area of
Interest), and (iii) cloud coverage must not exceed the 10% of the Aol [76]. The
dataset contains images pre and post fire of 73 different Aol around Europe and they
were aggregated in folds according to their geographical position [75] (see Figure
3.1). We used these folds to generalize the model using cross-validation. Data have
variable resolution, up to 5000x5000 pixels. The dataset indicates burned areas with
a discrete severity level, ranging from 0 (undamaged) to 4 (completely destroyed).
In this thesis, we explored the burned area delineation problem and consequently,
we binarize the target labels into unburned/burned classes, accordingly to our
problem statement. As such, all values in range [1, 4] were encoded into the burned
class. We set the reference image resolution of 512 x 512 (W x H) pixels, cropping
bigger acquisitions into several images due to hardware limitations. Sentinel-2 data
have 13 channels as shown in Table 2.1, but Level-2A products do not contain
band 10 so we used only 12 of them. Some corrections were already applied to
avoid noise related to (i) natural conditions(air turbulence, fog etc) and (ii) the
influence of aerosols [76].

Original size images contain some burned areas, but after the cropping, some
patches do not contain any burned pixels. Figure 3.2 shows the highly imbalanced
distribution of target labels. Many images contain few pixels assigned to the burned
class. Looking at the box plot we can see folds suffering from high imbalance.
Thus, we exclude the cropped images without any burned pixels from the dataset,
mitigating the class asymmetry. In the ablated dataset the coral fold is the most
complete one with percentages from 0 to 1, while the others have the majority
of the samples below 0.6 and lime even below 0.2. The assumption is reasonable
because we expect our system will be applied to areas we know there have been
wildfires (several public services usually provide this information).

For each series of experiments, we are exploiting cross-validation and so we
report for each test set, the corresponding validation and training set in Table 3.1.
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Figure 3.2: Left: distribution of the percentage of burned pixels per image. Right:

distribution of the percentage of burned pixels per image for each fold.

Test set | Validation set Training set

purple coral pink, grey, cyan, lime, magenta
coral cyan pink, grey, purple, lime, magenta
pink coral purple, grey, cyan, lime, magenta
grey coral pink, purple, cyan, lime, magenta
cyan coral pink, grey, purple, lime, magenta
lime coral pink, grey, cyan, purple, magenta

magenta coral pink, grey, cyan, lime, purple

Table 3.1: Sets table
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3.3 Model

In this section we explain all the solution adopted to tackle the presented problem.
We decided to use SegFormer [17] because it can have fewer parameters, be
computationally lighter and more noise resistant than U-Net [18] and other vision
transformer architectures [17]. U-Net divides perfectly the most complex models of
SegFormer from the simplest ones considering the number of parameters (Table
3.2).

SegFormer-B0 | SegFormer-B1 | SegFormer-B2 | U-Net | SegFormer-B3 | SegFormer-B4 | SegFormer-B5
# parameters 3.8M 15.9M 27.5M 31.0M 47.3M 64.1M 81.4M

Table 3.2: U-Net and SegFormer versions by number of parameters

3.3.1 SegFormer

The first approach we used to address the burned area identification problem
consists in finetuning a pre-trained SegFormer on our task providing as input
W x H labelled images of burned/unburned areas. Then, we apply the trained
model to new images to perform predictions. Since the output size is not equal
to the input size, it is necessary to upsample the output image. We choose to use
bilinear interpolation according to the original implementation. The chosen model
is SegFormer-B3 because it has a similar but higher number of parameters than
U-Net and it is the simplest of the complex versions.

3.3.2 Crop&Recompose

Furthermore, we explored a second approach which we called Cropé Recompose,
in which the training phase was done on images of size N x N, being N smaller
than the reference size W x H,i.e., N < W and N < H (to be more comfortable
with calculations we choose N submultiple of W and H). In this case, we used
SegFormer-B3, too. The second solution was proposed to verify the positive or
negative impact of smaller patches during the training phase of SegFormer model in
terms of precision of the predictions. We have smaller crops, and hence less context,
but more images (in terms of images analyzed by the network at training time).
However, the final goal consists in segmenting the original images of size W x H,
thus requiring recomposing the output to match the original input. The model
is trained on smaller images of size N x N using the same architecture discussed
before. Then, we apply the following approach to segment the new images (Figure
3.3), which are of size W x H:

1. The original image of size W x H is cropped into M patches of size N x N,
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2. The M new images are passed through the model to perform the predictions;

3. The output composed of the predictions for the M images is recomposed into
a single prediction/image of size W x H.
Training

NxN image Neural network »  NxN prediction

Testing
o NxN images»|  Neural network  —NxN predictions

Figure 3.3: Cropé/Recompose training and testing phases

Y

WxH prediction

3.3.3 Cloud coverage channel

In the third approach we added a 13th channel which indicates the cloud presence
according to the formula [81]:

B03 — B04

CHaoua = (B03 > 0175 A 20— 27 5
toud = ( B03 + B04

0) vV (B03 > 0.39) (3.1)
where C'H 4 is the value in the cloud channel and Bx refers to a band of Table
2.1. The motivation for this expedient can be seen in Figure 3.4, where there are
some examples of images with clouds and their effects on the prediction heatmap.
The cloudy areas have generally less certain predictions and in some cases, the
burned area is not detected at all. The addition of this aggregation channel could
help the network to focus on the cloud noise problem, although it is a redundant
channel. The chosen version is SegFormer-B3.

3.3.4 Magnifier Net

The fourth approach we adopted consists of a network with two backbones working
at different resolutions (Figure 3.5) as suggested in other papers [82] exploiting a
well-known technique called "early fusion"' [83]:

1. The original image of size W x H is cropped into N patches of size W' x H’
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RGB image

Prediction heatmap

Ground truth

d
o

Figure 3.4: RGB images with cloud presence, heatmap of SegFormer-B3 in viridis
colormap and related ground truth masks

2. The original image is passed through an encoder (called big encoder for
simplicity)

3. The crops are passed through another encoder (called small encoder for
simplicity)

4. The encoding of the crops is recomposed to have the same size as the original
image encoding

5. The two encodings of size 3% X 3% x C' (as shown in Figure 2.11) are concatenated

to have a single encoding of size 55 x g5 x 2C

6. The fused encoding is passed through the decoder

3.3.5 Losses and Metrics

Different loss functions were evaluated each one with a certain objective. To address
the unbalanced problem of burned area delineation, we initially considered the dice
loss and then we explored the possibility to use compound losses to reach a better
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> Big encoder e Decoder
o Small encoder

Figure 3.5: Magnifier net

=S

stability point. In particular, we have evaluated binary cross entropy (2.2), dice
(2.3), focal (2.4), dice focal (2.5) and asymmetric unified focal (2.6) losses.

To evaluate the goodness of our model we used three known metrics: precision,
recall and F1 score. The choice was necessary because of the strong imbalance of the
problem as shown in Section 3.2. Precision is the fraction of relevant information
among all retrieved instances, while recall is the fraction of retrieved information
among all relevant ones. F1 score is simply the harmonic mean of precision and
recall. Following the formulas:

TP

Precision = ————— 2
recision = s (3.2)
TP
= ——F— .
Reca TP LN (3.3)
P =2 Precision - Recall (3.4)

Precision + Recall

where TP is true positive count (number of relevant information the model recog-
nized as relevant), FP is false positive count (number of non-relevant information
the model classified as relevant) and FN is false negative count (number of relevant
information the model not recognized as relevant).
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Chapter 4
Experiments

In this section we are presenting the results of the experiments done using the
previously presented methodologies with different losses.

4.1 Settings

The experiments were run on a single Tesla V100. We made use of PyTorch
Lightning framework [84] and the SegFormer implementation of HuggingFace [52]
with a pre-trained encoder on Imagenet-1K, but because the original model has
only 3 channels (RGB), we replicated the weights for all the 12 channels of the
satellite images 4 times cyclically. This allowed us to leverage the pre-trained model
even if the number of input channels is different. The applied mapping (satellite
image band, RGB channel) is as follows: (B01,R), (B02,R), (B03,G), (B04,B),
(B05,G), (B06,B), (BO7,R), (B08,G), (B09,B), (B10,R), (B11,G), and (B12,B).
Image resolution is set to 512 x 512 except for the CropéRecompose method, in
which a size of 64 x 64 was used. For Magnifier Net the Big encoder resolution is
512 x 512 and the Small encoder one is 64 x 64. These settings permit to use the
weights from the other experiments and freezing the two encoders, finetuning only
the decoder. We used the AdamW optimizer as in [17] and the starting learning
rate was set to 0.001. A decreasing scheduler was chosen to reduce the LR by a
factor of 10 every 15 epochs (instead of the polynomial learning rate scheduler
used in the original paper) in conjunction with an early stopping mechanism on
validation loss, with a tolerance of 10™* and patience of 50 epochs. The maximum
number of epochs is 200 and the batch size is 8. To provide better generalization
the dataset was augmented with some transformations (the same used in [76]):
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Transformation ‘ Probability ‘ Parameters
Random rotation 0.5 Angle: [-50°, 50°]
Random vertical flipping 0.5 -
Random horizontal flipping 0.5 -
Random shear 0.5 Angle: [-20°, 20°]

Table 4.1: Data augmentations and their parameters

4.2 Dice loss

In this series of experiments, we evaluated the effects of dice loss on SegFormer-
B3. Dice loss has some hyper-parameters inside the formulation, but they are
self-computed according to [36]. From Figure 4.1 we can see a fast convergence
of the model. After 20 epochs the model stabilizes the metrics, reaching nearly
the same value for the majority of the sets. Training without validating on coral
fold seems to affect the model learning: this is probably linked to the fact coral
fold is the most "complete" as shown in Figure 3.2. The comparison with the
same loss applied in U-Net in Table 4.2 shows how SegFormer performs slightly
better in terms of precision and consequently in F1l-score, while U-Net has higher
values of recall. This means U-Net is overestimating the burned areas. Taking into
consideration the standard deviation, SegFormer gets more stable results across
the different folds. Lime got the worst performances in terms of precision and F'1
score for both models, while grey, lime and cyan have low values of recall.

1.0
"
0.8
0.8
o
S 0.6 test set " test set
[&]
@ lime 8 lime
i coral 5 coral
IS 0.4 — magenta % —— magenta
= U °
g cyan = cyan
S pink > pink
JR— I _— |
0.2 purple purple
—— grey —— grey
0.0
0 20 40 60 80 0 20 40 60 80
epoch epoch
(a) Validation F1 score (b) Validation loss

Figure 4.1: Dice loss SegFormer-B3 training.
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‘coral cyan  grey lime magenta pink purple | mean  std

Dice MiT-B3 | 0.899 0.790 0.762 0.712  0.877  0.909 0.899 | 0.835 0.080
Dice U-Net | 0.895 0.797 0.817 0.506 0.883 0.907 0.894 | 0.814 0.142
Dice MiT-B3 | 0.898 0.828 0.859 0.655 0.866 0.898 0.897 | 0.843 0.087
Dice U-Net | 0.829 0.790 0.704 0.356 0.801 0.848 0.861 | 0.741 0.177
Dice MiT-B3 | 0.901 0.755 0.685 0.779 0.888 0.920 0902 | 0.833 0.092
Dice U-Net | 0.972 0.804 0.973 0.869 0.985 0.974 0.930 | 0.930 0.068

F1 score

Precision

Recall

Table 4.2: Test metrics comparison for Dice loss SegFormer-B3

4.3 Binary cross entropy loss

In this series of experiments, we evaluated application of binary cross entropy loss
(BCE) to SegFormer-B3. From Figure 4.2 we can see a fast convergence of the
model as before. The loss is lower than using dice loss, but the trend is the same
as before. As seen in Table 4.3, BCE does not seem capable to overtake dice loss
in terms of precision and F1 score, but it is still better than U-Net. The recall
is the only metric which is higher, but it can not reach the top value. The most
difficult fold for BCE is grey for all the three metrics, while the best performances
are obtained in pink and purple.

0.9

e

<3
N
¥

g test set - test set
3 lime 310 lime
i 07 coral 5 coral
S — grey T 08 grey
© —— magenta ~ g —— magenta
> . .
pink pink
—— purple — purple
05 purp! 0.4 purp
|
0.2 VA,:A_A
0 20 40 60 80 100 0 20 40 60 80 100
epoch epoch
(a) Validation F1 score (b) Validation loss

Figure 4.2: BCE loss SegFormer-B3 training.
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coral cyan grey lime magenta pink purple | mean = std

BCE MiT-B3 | 0.900 0.804 0.706 0.715 0.864 0.910 0.912 | 0.830 0.090

F1 score Dice MiT-B3 | 0.899 0.790 0.762 0.712 0.877 0.909 0.899 | 0.835 0.080
Dice U-Net | 0.895 0.797 0.817 0.506 0.883  0.907 0.894 | 0.814 0.142

BCE MiT-B3 | 0.902 0.836 0.652 0.654 0.871  0.866 0.929 | 0.816 0.115

Precision Dice MiT-B3 | 0.898 0.828 0.859 0.655 0.866  0.898 0.897 | 0.843 0.087
Dice U-Net | 0.829 0.790 0.704 0.356 0.801 0.848 0.861 | 0.741 0.177

BCE MiT-B3 | 0.897 0.774 0.768 0.787 0.857 0.958 0.896 | 0.848 0.073

Recall ~ Dice MiT-B3 | 0.901 0.755 0.685 0.779 0.888 0.920 0.902 | 0.833 0.092
Dice U-Net | 0.972 0.804 0.973 0.869 0.985 0.974 0.930 | 0.930 0.068

Table 4.3: Test metrics comparison for BCE loss SegFormer-B3

4.4 Focal loss

In this series of experiments, we are evaluating focal loss with SegFormer-B3. We
are expecting better results because it is designed for imbalanced datasets.

Focal loss has some hyper-parameters, so before doing complete cross-validation,
we invested some tries into their selection. At first, we focused on o parameter
(equation 2.4). Knowing the number of positives is about 4 times smaller than
negatives, we expect a good choice can be 0.2. Then we tried some values for v (1,
2, 5) as suggested by the original paper [37]. In Figure 4.3, it is possible to see high
values of a (near 1.0) affect negatively the training phase, so we suppose a lower
value such as 0.2 will be a better choice. It is also possible to see how 7 affects
the testing results, so we select v = 5 because the recall is slightly better than for
other values and the F1 score improved.

Looking at Figure 4.4, it is possible to see the training phase is not affected by
the absence of coral in the validation phase, reaching lower losses in every case
quicker (less than 20 epochs), but getting lower F1 scores, too.

Table 4.4 highlights the high precision of focal loss (+5% than dice loss), failing
in getting better recall (—20% than dice loss), affecting negatively the final F1
score. The stability of the performance is confirmed for all three metrics getting
better or similar standard deviations compared to dice loss. Lime and grey folds
are the most difficult folds for both losses applied to SegFormer, while pink and
purple show the best results.
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Figure 4.4: Focal loss SegFormer-B3 training
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‘coral cyan  grey  lime magenta pink purple‘ mean  std

Dice MiT-B3 | 0.899 0.790 0.762 0.712  0.877 0.909 0.899 | 0.835 0.080

F1 score  Dice U-Net 0.895 0.797 0.817 0.506 0.883 0907 0.894 | 0.814 0.142
Focal MiT-B3 | 0.694 0.732 0.661 0.650 0.830 0.716  0.859 | 0.734 0.081

Dice MiT-B3 | 0.898 0.828 0.859 0.655 0.866 0.898 0.897 | 0.843 0.087

Precision  Dice U-Net 0.829 0.790 0.704 0.356 0.801 0.848 0.861 | 0.741 0.177
Focal MiT-B3 | 0.931 0.880 0.877 0.753 0.910 0.990 0.948 | 0.898 0.075

Dice MiT-B3 | 0.901 0.755 0.685 0.779 0.888 0.920 0.902 | 0.833 0.092

Recall Dice U-Net | 0.972 0.804 0.973 0.869 0.985 0.974 0.930 | 0.930 0.068
Focal MiT-B3 | 0.553 0.626 0.531 0.572 0.762 0.561  0.785 | 0.627 0.104

Table 4.4: Test metrics comparison for Focal loss SegFormer-B3

4.5 DiceFocal loss

This series of experiments focus on DiceFocal loss applied to SegFormer-B3. The
combination of multiple losses is generally a good way to solve noise problems and
to take into account different objectives, so by combining the precision of focal loss
with the better recall of dice loss we could improve the final F1 score.

We kept the previously selected hyper-parameters for focal loss (o = 0.2,y = 5),
but we have to choose a good « for DiceFocal loss (equation 2.5), too. We tried
three different values (0.2, 0.5, 0.8) and in Figure 4.5 it is possible to see the effect
on the validation and testing phases. Giving too much weight to dice (o = 0.2) the
validation loss is worse, but it grants better recall at test phase. Giving more weight
to focal (o = 0.8) the loss and the precision are affected positively. We selected
a = 0.5 because seems to grant a higher F'1 score and precision, not decreasing too
much the recall.

After the hyperparameters selection, we did complete cross-validation. In Figure
4.6, it is possible to note the training phase does not show any substantial difference
with respect to previous training and excluding coral from the training-validation
phase affects the validation metrics as seen before.

From Table 4.5 we can see how DiceFocal got better recall than dice and focal
only, not reaching U-Net. It also got better precision than dice only, not reaching
focal only results. These settings reach the best F1 score in terms of the mean
value (+1% than dice loss), granting a general better stability over all three metrics.
The worst performances are confirmed over grey and lime folds, while pink and
purple get the best ones.
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Figure 4.5: DiceFocal loss parameter tuning on test set purple
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Figure 4.6: DiceFocal loss SegFormer-B3 training.
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coral cyan  grey lime magenta pink purple‘ mean  std

Dice U-Net 0.895 0.797 0.817 0.506 0.883 0.907 0.894 | 0.814 0.142

F1 score DiceFocal MiT-B3 | 0.891 0.805 0.788 0.721 0.883 0.923 0.907 | 0.845 0.075
Focal MiT-B3 0.694 0.732 0.661 0.650 0.830 0.716 0.859 | 0.734 0.081

Dice U-Net 0.829 0.790 0.704 0.356 0.801 0.848 0.861 | 0.741 0.177

Precision DiceFocal MiT-B3 | 0.901 0.823 0.876 0.693 0.871 0.893 0.922 | 0.854 0.078
Focal MiT-B3 0.931 0.880 0.877 0.753 0.910 0.990 0.948 | 0.898 0.075

Dice U-Net 0.972 0.804 0.973 0.869 0.985 0.974 0.930 | 0.930 0.068

Recall  DiceFocal MiT-B3 | 0.880 0.787 0.716 0.751 0.894 0.955 0.892 | 0.839 0.088
Focal MiT-B3 0.553 0.626 0.531 0.572 0.762 0.561 0.785 | 0.627 0.104

Table 4.5: Test metrics comparison for DiceFocal loss SegFormer-B3

4.6 Asymmetric Unified Focal loss

In this series of experiments, we trained SegFormer-B3 with Asymmetric Unified
Focal loss. Since the main problem of DiceFocal seems to favour too much high
precision, not considering the recall, this formulation can help solve the issue. In
this loss, we have to select 3 different hyperparameters: A (weight of focal loss),
v (weight to control rare class enhancement) and § (relative weight of positive
samples vs negatives).

In the original paper, they suggest using 6 = 0.6 to balance recall and precision.
Our experiments (Figure 4.7) also suggest using this value, although the F1 score
is higher with § = 0.2 there is more difference between precision and recall. With
~v = 0.1, as shown in Figure 4.7, we got not only the best precision, but also a good
recall. The experiments show the best value for A is 0.5, because it got not only
a recall similar to A = 0.8, but also the best precision with respect to other tries
(Figure 4.7).

The training phase seems to be more unstable in the initial steps (Figure 4.8),
but subsequently, they reach a stable point with losses comparable to DiceFocal
ones. The training without coral reached lower losses than in the case of DiceFocal.

Table 4.6 shows how we reached a better recall, although we lose some percentage
points in precision. The F1 score got a general improvement of +1% on DiceFocal
loss, decreasing the results on lime, but increasing the ones on grey.
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Figure 4.8: Asymmetric Unified Focal loss SegFormer-B3 training.

‘coral cyan  grey  lime magenta pink purple‘ mean  std

Dice U-Net 0.895 0.797 0.817 0.506 0.883 0.907 0.894 | 0.814 0.142

F1score  DiceFocal MiT-B3 | 0.891 0.805 0.788 0.721 0.883 0.923 0.907 | 0.845 0.075
UnifiedFocal MiT-B3 | 0.902 0.805 0.857 0.688 0.888 0.915 0.918 | 0.853 0.083

Dice U-Net 0.829 0.790 0.704 0.356 0.801 0.848 0.861 | 0.741 0.177

Precision  DiceFocal MiT-B3 | 0.901 0.823 0.876 0.693 0.871 0.893 0.922 | 0.854 0.078
UnifiedFocal MiT-B3 | 0.897 0.828 0.842 0.574 0.855 0.866 0.920 | 0.826 0.115

Dice U-Net 0.972 0.804 0.973 0.869 0.985 0.974 0.930 | 0.930 0.068

Recall DiceFocal MiT-B3 | 0.880 0.787 0.716 0.751 0.894 0.955 0.892 | 0.839 0.088
UnifiedFocal MiT-B3 | 0.908 0.783 0.872 0.857 0.925 0.970  0.915 | 0.890 0.060

Table 4.6: Test metrics comparison for Asymmetric Unified Focal loss SegFormer-
B3

31



Experiments

4.7 Crop & Recompose

In this series of experiments, we reduce the size of the images in training phase
to 64 x 64 and in test phase we crop images of size 512 x 512 into patches of size
64 x 64 and then we recompose them as explained in section 3.3.2. The model is
SegFormer-B3 using DiceFocal loss with the previously selected parameters.

Before starting complete cross-validation, we want to understand if the training
dataset can exclude images without any burned pixels or if it is better to keep them
because in bigger images there will be a lot of unburned areas. From Figure 4.9 it
is possible to see the validation loss is generally lower for the filtered dataset, but
the model trained on all possible images gets slighter better results for all metrics
in the testing phase.

In the training phase, the convergence is as fast as expected because of the
higher number of images. The model tends to over-fit early after about 20 epochs
4.10.

From Table 4.7 we can conclude using small patches with less context is affecting
negatively precision and F1 score, but not the recall. These values are generally
not too much different from the ones for greater patches, so we can assume the
context can be inferred from small images, too.

only burnt
0.25 — False

True only burnt
@ Bl False
2020 = True
il
©
20.15
[
>

F1 score Precision Recall
0 10 20 30 40 50 60 metric
epoch
(a) Validation loss (b) Test metrics

Figure 4.9: Metrics including vs excluding from training and validation datasets
images without any burned pixels. Test fold is purple.
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Figure 4.10: Crop&Recompose validation loss

‘ coral cyan grey lime magenta pink purple‘ mean  std

Crop&Recompose MiT-B3 | 0.909 0.791 0.778 0.694  0.897 0.917 0.895 | 0.840 0.086

F1 score Dice U-Net 0.895 0.797 0.817 0.506 0.883 0.907 0.894 | 0.814 0.142
DiceFocal MiT-B3 0.891 0.805 0.788 0.721  0.883  0.923 0.907 | 0.845 0.075
Crop&Recompose MiT-B3 | 0.881 0.806 0.852 0.657 0.854  0.903 0.948 | 0.843 0.094

Precision Dice U-Net 0.829 0.790 0.704 0.356 0.801 0.848 0.861 | 0.741 0.177
DiceFocal MiT-B3 0.901 0.823 0.876 0.693 0.871  0.893 0.922 | 0.854 0.078
Crop&Recompose MiT-B3 | 0.938 0.777 0.717  0.736 0.944 0.932  0.847 | 0.842 0.099

Recall Dice U-Net 0.972 0.804 0.973 0.869 0.985 0.974 0.930 | 0.930 0.068
DiceFocal MiT-B3 0.880 0.787 0.716 0.751 0.894 0.955 0.892 | 0.839 0.088

Table 4.7: Test metrics comparison for CropéRecompose

4.8 Cloud coverage channel

In this series of experiments, we train SegFormer-B3 using DiceFocal loss with the
previously selected parameters. In this case, we used 13 channels instead of 12 as
explained in section 3.3.3. Looking at Figure 4.11 there is nothing different to note,
everything appears coherent with the DiceFocal SegFormer-B3 with 12 channels.

From Table 4.8 we can see adding the cloud channel is providing better precision,
but the recall is negatively affected. The differences are not too evident, leaving the
F'1 score practically unaltered, so we can conclude introducing some redundancy will
not grant sufficient benefits to the model. The analysis of some images (Figure 4.12)
highlights how the model is forced to take clearer decisions with the introduction
of cloud coverage channel, but this does not always mean a better decision is taken.
The images suffering from missing parts due to cloud noise seem to be getting no
advantages using one more channel.
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Figure 4.11: Cloud channel SegFormer-B3 training
coral cyan  grey lime magenta pink purple ‘ mean  std
Cloud Channel MiT-B3 | 0.896 0.796 0.796 0.723 0.875 0.925 0.897 | 0.844 0.073
F1 score Dice MiT-B3 0.899 0.790 0.762 0.712 0.877 0.909 0.899 | 0.835 0.080
DiceFocal MiT-B3 0.891 0.805 0.788 0.721 0.883 0.923 0.907 | 0.845 0.075
Cloud Channel MiT-B3 | 0.896 0.828 0.862 0.683 0.869  0.917 0.940 | 0.856 0.085
Precision Dice MiT-B3 0.898 0.828 0.859 0.655 0.866 0.898  0.897 | 0.843 0.087
DiceFocal MiT-B3 0.901 0.823 0.876 0.693 0.871 0.893 0.922 | 0.854 0.078
Cloud Channel MiT-B3 | 0.896 0.767 0.740 0.768 0.883  0.934 0.857 | 0.835 0.076
Recall Dice MiT-B3 0.901 0.755 0.685 0.779  0.888 0.920 0.902 | 0.833 0.092
DiceFocal MiT-B3 0.880 0.787 0.716 0.751  0.894 0.955 0.892 | 0.839 0.088

Table 4.8: Test metrics comparison for Cloud channel SegFormer-B3
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Ground truth Prediction CC Prediction

Figure 4.12: Comparison of prediction with and without cloud channel. RGB is
the input image, Ground truth is the expected mask, Prediction is the prediction
heatmap in viridis colormap without cloud channel and C'C' Prediction is the
prediction heatmap with the cloud channel.

4.9 SegFormer-B0O

In this series of experiments, we train the lighter version of SegFormer, SegFormer-
B0 (Table 3.2), to see if there is a performance degrading or can achieve competitive
results due to the simplicity of the task. We keep DiceFocal loss with parameters
a = 0.2,7 = 5. In the training phase, the validation metrics are consistent with
the ones seen with SegFormer-B3 (Figure 4.13).

In the testing phase, we can see a downgrade in performance as expected (Table
4.9), but considering the low number of parameters (12 times less than MiT-B3 as
shown in Table 3.2) and the low computational cost (9 times lower than MiT-B3
[17]) it can be considered a good competitor.
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Figure 4.13: DiceFocal loss SegFormer-B0 training

‘coral cyan  grey lime magenta pink purple‘ mean  std

Dice MiT-B3 0.899 0.790 0.762 0.712 0.877 0.909 0.899 | 0.835 0.080

F1 score DiceFocal MiT-B0O | 0.898 0.787 0.755 0.671  0.884 0.927 0.908 | 0.833 0.096
DiceFocal MiT-B3 | 0.891 0.805 0.788 0.721  0.883 0.923 0.907 | 0.845 0.075

Dice MiT-B3 0.898 0.828 0.859 0.655 0.866 0.898  0.897 | 0.843 0.087

Precision DiceFocal MiT-B0 | 0.876 0.810 0.864 0.613 0.879 0.926 0.935 | 0.843 0.110
DiceFocal MiT-B3 | 0.901 0.823 0.876 0.693  0.871 0.893 0.922 | 0.854 0.078

Dice MiT-B3 0.901 0.755 0.685 0.779  0.888 0.920 0.902 | 0.833 0.092

Recall ~ DiceFocal MiT-BO | 0.920 0.766 0.670 0.742 0.888 0.929 0.882 | 0.828 0.101
DiceFocal MiT-B3 | 0.880 0.787 0.716 0.751 0.894 0.955 0.892 | 0.839 0.088

Table 4.9: Test metrics comparison for DiceFocal loss SegFormer-B0

4.10 Magnifier net

For this experiments, we used the architecture presented in section 3.3.4 composed
by two SegFormer-B3 with DiceFocal loss to exploit the weights obtained from
previous experiments. To decide a starting learning rate we tested some values: 1077
(the ones reached by the weights), 1072 (the default one used in other experiments)
and 107 (a mid value between the two). From Figure 4.14, it is possible to see the
validation loss is initially more unstable with higher learning rates, but the test F1
score is high because of the precision. For this reason, we choose to use 1072 as
starting learning rate.

During the training, the initial instability of the validation loss can be seen in
some of the folds, while some others as lime, grey and pink do not show this trend
(Figure 4.15).

In Figure 4.10 the comparison with the simple SegFormer-B3 with DiceFocal
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highlights better performance achieved by Magnifier. The improvement is too
low. It is probably not really worth doubling the number of parameters, but
more investigations are needed to understand if it is possible to achieve greater
improvement with other settings.
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Figure 4.14: Magnifier test metrics and validation loss grouped by learning rate
on test set purple.
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Figure 4.15: Magnifier net training
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‘ coral cyan grey lime magenta pink purple ‘ mean  std
Crop&Recompose MiT-B3 | 0.909 0.791 0.778 0.694 0.897  0.917 0.895 | 0.840 0.086
F1 score Dice MiT-B3 0.899 0.790 0.762 0.712 0.877 0.909 0.899 | 0.835 0.080
DiceFocal MiT-B3 0.891 0.805 0.788 0.721  0.883 0.923 0.907 | 0.845 0.075
Magnifier Net 0.905 0.804 0.801 0.717 0.883  0.926 0.909 | 0.849 0.077
Crop&Recompose MiT-B3 | 0.881 0.806 0.852  0.657 0.854 0.903 0.948 | 0.843 0.094
Precision Dice MiT-B3 0.898 0.828 0.859 0.655 0.866 0.898 0.897 | 0.843 0.087
DiceFocal MiT-B3 0.901 0.823 0.876 0.693 0.871 0.893 0.922 | 0.854 0.078

Magnifier Net 0.902 0.836 0.847 0.688 0.874 0.898 0.941 | 0.855 0.082
Crop&Recompose MiT-B3 | 0.938 0.777 0.717 0.736  0.944  0.932 0.847 | 0.842 0.099

Recall Dice MiT-B3 0.901 0.755 0.685 0.779  0.888 0.920 0.902 | 0.833 0.092
’ DiceFocal MiT-B3 0.880 0.787 0.716 0.751 0.894 0.955 0.892 | 0.839 0.088
Magnifier Net 0.908 0.775 0.760 0.749 0.892  0.956 0.879 | 0.845 0.083

Table 4.10: Test metrics

comparison for Magnifier Net

4.11 Experiments summary

Now we compare the most interesting results we got. From the metrics summary

in Table 4.11, we can see:

1. SegFormer grants a better F'1 score in every version with different losses (at
least +2% than U-Net), increasing the mean precision (at least +10% than
U-Net) and decreasing mean recall (at most —10% than U-Net);

2. The use of compound losses (DiceFocal and Asymmetric Unified Focal) grant
better and more stable results than using a single loss (Dice loss);

3. All models have difficulties in the same folds. This makes thinking there are
some intrinsic properties that are affecting the final results.

‘ coral cyan  grey  lime magenta pink purple | mean  std
Dice MiT-B3 0.899 0.790 0.762 0.712 0.877 0.909 0.899 | 0.835 0.080
F1 score DiceFocal MiT-B0 0.898 0.787 0.755 0.671 0.884  0.927 0.908 | 0.833 0.096
DiceFocal MiT-B3 0.891 0.805 0.788 0.721  0.883 0.923  0.907 | 0.845 0.075
UnifiedFocal MiT-B3 | 0.902 0.805 0.857 0.688 0.888 0.915 0.918 | 0.853 0.083
Dice MiT-B3 0.898 0.828 0.859 0.655 0.866 0.898  0.897 | 0.843 0.087
Precision DiceFocal MiT-B0 0.876 0.810 0.864 0.613 0.879 0.926 0.935 | 0.843 0.110
DiceFocal MiT-B3 | 0.901 0.823 0.876 0.693  0.871 0.893 0.922 | 0.854 0.078
UnifiedFocal MiT-B3 | 0.897 0.828 0.842 0.574 0.855 0.866 0.920 | 0.826 0.115
Dice MiT-B3 0.901 0.755 0.685 0.779 0.888 0.920 0.902 | 0.833 0.092

Recall DiceFocal MiT-BO | 0.920 0.766 0.670 0.742 0.888 0.929 0.882 | 0.828 0.101
DiceFocal MiT-B3 0.880 0.787 0.716 0.751 0.894 0.955 0.892 | 0.839 0.088
UnifiedFocal MiT-B3 | 0.908 0.783 0.872 0.857 0.925 0.970 0.915 | 0.890 0.060

Table 4.11: Test metrics summary of the most indicative models and losses
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Figure 4.16: Same image of grey fold with different models and losses

4.12 Interpretability

We used the captum library [85] to understand how each channel contributes to
the final prediction.

We applied the Integrated Gradients method [86], which consists in assigning an
importance score to each input feature by approximating the integral of gradients
of the model’s output with respect to the inputs along the path (straight line) from
given references to inputs. The approximation was made using the Gauss-Legendre
quadrature rule in 50 steps.

At first, we calculate the F1 scores of the test dataset using the pre-trained
model and then we split the dataset into three equal parts according to the score:
the ones with the best scores (we call it best set), the ones with the worst scores (we
call it worst set) and the remaining. We applied the algorithm to worst and best
sets, to understand which are the channels that affect negatively the predictions
and which are the ones that grant good results.

We tested the SegFormer-B0 and SegFormer-B3 with DiceFocal loss on a well-
performing dataset (purple) and on a bad performing one (grey). In Figures 4.17
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and 4.18 it is possible to see the importance score for each band of the two datasets.

In purple the most informative channels are 11 and 12 for both models, while for
grey this is true only in BO version. The channels 2, 3, 4 acquire more importance
in worst sets.

In B3 version it is possible to note the worst scores are obtained when each
band increase its contribution to the final result.

In BO version the band 12 increased importance and the decrease of band 11
seem a constant in getting bad results. In grey set, it is possible to see how bands
8, 8A and 9 greatly increase their impact in the worst set.

We can conclude some bands have more impact on the results as expected, in
particular the ones related to vegetation (8, 8A, 9, 11, 12), while RGB (2, 3, 4)
seems linked to providing misleading information.
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Figure 4.17: DiceFocal Mit-B3 mean importance scores for each band
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Figure 4.18: DiceFocal Mit-BO mean importance scores for each band
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Chapter 5

Conclusion

In this thesis we investigated how a novel vision transformer architecture, SegFormer,
can be a good substitute for known CNN-based architectures in the context of
remote sensing and burned area delineation, providing not only better results, but
also better performance in terms of computational cost and number of parameters.
Furthermore, we analyzed the effectiveness of several loss functions and different
versions of the SegFormer architecture, achieving superior results in terms of
precision and F1 score with respect to state-of-the-art models. We started a simple
investigation on the relation between the results and the input channels showing
how they affect the final predictions.

In future works, we plan to apply self-supervised learning and multi-modal
transformers to the combinations of different satellite acquisitions, such as Sentinel-
1 and Sentinel-2. It can be also of great interest to furtherly investigate the
regression problem by trying to predict the amount of damage for each pixel.
Concerning the performance gap observed through the various folds, we plan to do
a more accurate investigation of the motivations behind this. Magnifier Net seems
to grant better results, but more settings need to be tested to find out the best
one.
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