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Abstract

T he reproductive number R of an epidemic is defined as the expected num-
ber of secondary cases produced by a typical infected individual over its
entire period of infectiousness. An accurate and timely estimate of the

reproductive number is crucial to make projections on the near-future evolution of
the epidemic, and to set up the appropriate public health response. Estimates of
R often come from surveillance data, as it has been in the case of the SARS-CoV-2
pandemic. This means statistically inferring R from time series of daily reported
cases, hospitalizations or deaths. In this study, however, we argue that surveillance-
based measures of the reproductive number may not always be accurate measures
of the true reproductive number. We focus on structured populations, made up of
spatially distinct communities, for which it is known that R corresponds to the
dominant eigenvalue of a positive linear operator. We show that the reproductive
number measured by surveillance approaches R only after a period of transient
behaviour, during which we tipically underestimate R. In some cases, convergence
is not ensured at all. Similarly, local (i.e., community-level) estimates of the
reproductive number are inaccurate in describing the global epidemic dynamics,
reaching R only asymptotically. However, we show that combining surveillance
data and mobility data we are able to give reliable estimates of the reproductive
number even at the early stages of an epidemic.
Precisely, we consider the SARS-CoV-2 epidemic in France and in Italy. We study
the transient period analytically, through SARS-CoV-2 cases data and building a
spatial stochastic model with interactions reconstructed from Meta Colocation
Maps. We analyse the dependence of the dynamical process leading statistical
estimates to the true R on the initial distribution of cases and on the network
topology. We study the impact of restrictions to mobility on the accuracy of R
estimates. Finally, we propose a new method for the estimate of the reproductive
number and test its reliability through simulations of the mentioned stochastic
model.
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Chapter 1

Introduction

Quantifying the conditions that discriminate between large-scale outbreak and
quick disease extinction is at the core of mathematical modeling of epidemic
diseases and of public health policy making in response to epidemics [1, 2]. The
parameter that is the most used to this aim is the reproduction (or reproductive)
number R, representing the average number of secondary cases caused by an
infected individual over their entire period of infectiousness. We call basic repro-
duction number R0 the reproduction number at the early stages of an epidemic,
when the population is completely susceptible [3, 4]. A threshold criterion exists
involving R0: a disease can invade a population when R0 > 1, it cannot when
R0 < 1 [5]. Similarly, at later stages, an outbreak occurs if R > 1, it doesn’t
otherwise. It is therefore crucial to evaluate these parameters to make projections
on the near-future evolution of the epidemic and control its spreading.

We will now introduce a well known mathematical model for epidemic spread-
ing and discuss how to analytically obtain the basic reproduction number. We will
then consider the case of heterogeneously structured populations, and define the
basic reproduction number for such systems.

1.1 Mathematical modeling of epidemic diseases

We now introduce a simple mathematical model for epidemic spreading, the
susceptible-infected-recovered (SIR) model [6], and we obtain the basic reproduc-
tion number R0 [7]. The model considers a system with fixed total population
N , thus ignoring phenomena such as migrations, births and deaths. Individuals
may be in one of three compartments [5, 6, 8, 1] S, I or R. We denote by italic
letters S, I, R the number of individuals in each compartment. The transition S
→ I occurs when a susceptible individual interacts with an infectious individual
and becomes infected, while the transition I → R spontaneously occurs when an
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individual recovers after some time fighting the disease. In a continuous-time
formulation, it is common to assume a Poisson process [9] with rate µ estimated
from epidemiological or clinical data, implying that the probability that an indi-
vidual remains infected for a time τ follows P (τ) = µe−µτ , with average infectious
time ⟨τ⟩ = µ−1. The S → I transition depends on the interaction pattern between
individuals in the population instead. However, the most basic approach consists
in assuming homogeneous mixing [5], meaning that people randomly interact
with each other. This is equivalent to a statistical physics mean field assumption.
In this case, we can define the force of infection α, representing the rate for one
individual to get infected, simply as:

α = βI/N, (1.1)

with β = β′k, β′ being the rate of infection per effective contact, depending on
the specific disease, and k the number of contacts. If we assume the infection
process to be a Poisson process as well, with rate α, what we obtain is a Markovian
description of the epidemic process [10].

To sum up, epidemics can be represented as stochastic reaction-diffusion
processes [11], with continuous-time limit equations describing the evolution of
the average number of individuals in each compartment. Moreover, it is common
to neglect stochastic fluctuations around these mean numbers, according to the
assumption that populations are large. In this limit and assuming homogeneous
mixing, the system’s time evolution can be described by deterministic differential
equations obtained applying the law of mass action, with reactions (transitions)
determined by specific reaction rates. This law states that the average change in
the population density of each compartment due to interactions is given by the
product of the force of infection times the average population density [12]. The
deterministic differential equations for the SIR model read:

dS

dt
= −βIS/N

dI

dt
= βIS/N − µI

dR

dt
= µI. (1.2)

Taking the limit I/N ≃ 0, which is typically true at the early stages of an epidemic,
we can linearize to obtain:

dI

dt
= (β − µ)I, (1.3)

from which:
I(t) = I(0)e(β−µ)t. (1.4)
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The number of infected individuals grows exponentially if R0 = β/µ > 1. R0

is here the basic reproduction number, the average number of secondary cases
caused by a primary case in a fully susceptible population, and we have recovered
the mentioned threshold criterion.

1.2 Epidemics in heterogeneous populations

We should now consider the more complex case of a non homogeneously struc-
tured population. Diekmann, Heesterbeek and Metz [13] elaborated a versatile
analytical framework to define the basic reproduction number R0 in a generation
process, in the case of a generically heterogeneous population and under linear
approximation, i.e., ignoring the fact that the density of susceptibles in the pop-
ulation decreases due to the infection process. Let each individual belong to a
heterogeneity state (h-state) ξ in the set Ω. This may be the set of age classes,
gender, of geographic location and others depending on the epidemic under study
and its characteristics. This setting allows us to define A(τ, ξ, η), the specific ex-
pected infectivity of an individual which was infected τ time units ago and is in
the h-state ξ, towards one in the h-state η. Let then x be the initial distribution
of infectious individuals over the defined h-states and S(ξ) the non-normalized
density function of susceptibles over classes (its integral gives the total population
size). The next-generation operator Q(S) is defined by:

(Q(S)x)(ξ) = S(ξ)

∫
Ω

∫ ∞

0

A(τ, ξ, η)x(η)dτdη (1.5)

and tells howmany cases are generated from the initial distribution x and how they
are distributed over the h-states. In the linear approximation, after m generations
of the epidemic process, the infected population size over h-states is given by
Q(S)mx. Under minor conditions on A and S [14] we have:

Q(S)mx ∼ c(x)ρmd xd, (1.6)

with c(x) a scalar depending on the initial distribution x, ρd the dominant eigen-
value of Q(S) and xd the corresponding eigenvector. Also, in the long time limit
m → ∞, the growth factor per generation is given by the spectral radius of Q(S):

r(Q(S)) = inf
m

∥Q(S)m∥1/m = lim
m→∞

∥Q(S)m∥1/m. (1.7)

Being Q(S) a positive operator, one can specify conditions under which r(Q(S)) =
ρd [15]. The per-generation growth factor in the susceptible-only population
assumption is exactly what we define as the basic reproduction number. In conclu-
sion, what Diekmann, Heesterbeek and Metz found is that after a certain period
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of transient behaviour each generation is (in an approximation which improves as
time proceeds) R0 = ρd times as big as the preceding one and distributed over h-state
space as described by xd.

We will consider the case where Ω is the set of geographic sub-populations
of a country, focusing in particular on French departments and Italian provinces.
We will reconstruct the expected between-departments (or provinces) infectivity
from Meta Colocation Maps describing citizens mobility from the start of the
COVID-19 pandemic [16]. We will study how the mobility network of the two
chosen countries determines the equilibrium growth factor in France and Italy as
well as the equilibrium h-state space distribution. Most importantly, we will focus
on the time and spatial scales of the convergence process. We will provide an
analytical, simulations based and data based description of the out-of-equilibrium
phase, in order to get some insight on this complex dynamics and determine
the error we commit when estimating R out of equilibrium. Eventually, we will
propose a new non biased method for the estimate of the reproductive number
and compare its performance to the one of canonical estimates.
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Chapter 2

Analytical treatment

Our aim is to expand Diekmann et al. work with an analytical treatment of the
transient phase of an epidemic, as well as to include different space scales of
observation in our analysis. We want to describe how the measured reproduction
number -both at a local and a global scale, as we will later see- behaves out-of-
equilibrium. With this purpose, we will set our analytical framework and describe
the dynamics for the involved quantities. We will be able to determine the laws
for the time evolution of the defined reproduction numbers, and to identify the
variables that are relevant in this process.

2.1 The analytical framework

We here expand Diekmann et al. work with an analytical treatment of the transient
phase of an epidemic in a generic discrete Ω case and, consequently, a discrete
between classes expected infectivity operator. Consider M nodes, possibly repre-
senting spatial patches in a geographic territory. Let Aij be the expected infectivity
of an individual of the h-class j towards one in the h-class i, and S the susceptible
population vector, with Si the number of susceptibles in h-class i. x is now the
distribution vector of infected individuals over the M states. Take a discrete Ω,
time integrated version of Eq. (1.5):

(Q(S)x)i = Si

∑
j

Aijxj, (2.1)

from which
Qij(S) = SiAij. (2.2)

The element Qij(S) of this discrete, time independent next-generation operator
Q(S) ∈ RM,M , which we will call reproduction operator, gives the expected number
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of infectious cases that a single case in j generates in i, given S [19]. We use
the notation Q for Q(S), dropping the S dependence, and the notation Q0 in
the case the whole population is susceptible. According to Diekmann and more
recent studies [17, 18], the basic reproduction number is R0 = r(Q0) and the
reproduction number is R = R(S) = r(Q).
Some further definitions are needed for later use. We define the vector I as Ii
being the number of actively infectious in i, with Itot =

∑
i Ii, I = xItot. We will

refer to the potential vector qT as the vector such that qi =
∑

j Qji. qi is hence
the number of secondary cases that a case in i generates, regardless of where it
generates them. A key quantity in our analysis is the observed reproductive number
S, describing how many secondary cases currently derive from a primary one. It
is given by the product between the potential vector and the actively infectious
distribution vector:

S = qTx =
∑
ij

Qijxj. (2.3)

Finally, the observed local reproductive number is:

si =
(QI)i
Ii

=
(Qx)i
xi

, (2.4)

measuring the number of cases that are currently produced in i due to interactions
with the whole system, per each infected in i.

When investigating an epidemic spread, the role of all the introduced numbers
should be clear. The true reproduction number R is the one that determines the
dynamics of the system, as we will see in Eq. (2.5), and it identifies whether there
is a mode - associated to the dominant eigenvalue of the reproduction operator -
that grows exponentially and ultimately leads to an epidemic wave. The observed
reproductive number is instead what can be measured from surveillance data.
People typically infer it from time lines of cases, hospitalisations or deaths using
statistical models (e.g., EpiEstim [20]). In our framework, S is simply the average
number of cases generated in generation t+ 1, by a case in generation t. It can be
computed on the whole system (S), on patches (si) or even on subsets of patches.

2.2 Dynamics in time

Let’s now derive the dynamical equations for I and x. Here one time step is one
generation of the epidemic process. We denote It the vector of cases in the t-th
generation. These will generate new cases in the next generation, and recover. We
will now assume constant Q. This means keeping Diekmann assumption that the
susceptible fraction is constant and considering A to be non varying with time.
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The I-dynamics is then linear:

It+1 = QIt, (2.5)

which means
It = QtI0. (2.6)

The above equation gives the expected number of cases in each patch, in each
generation.

The dynamics of the distribution vector is nonlinear. Eq. (2.5) can be rewritten
as:

xt+1It+1,tot = QxtIt,tot (2.7)

from which
xt+1 =

Qxt

qTxt

, (2.8)

xt =
Qtx0

qTQt−1x0

. (2.9)

There is one case when the x-dynamics is linear, precisely if Q is proportional to
a left-stochastic matrix, i.e., Q = q0C, with q0 scalar, C ∈ RM,M , and

∑
j Cji = 1.

Physically, this means that each case, independently of its h-class, generates always
the same number of secondary cases (q0), and C just tells where they generate
them. In this case:

xt+1 = Cxt. (2.10)

The dynamics is at equilibrium when xt+1 = xt. This means that Itot may still
change (increase or decrease), but the shape of the distribution is no longer
changing, so that the dynamics is effectively scalar: Itot,t+1 = RItot,t. This happens
when x is proportional to the dominant (Perron) eigenvector of the positively
definite operator Q. We call this eigenvector v, and normalize it so that

∑
i vi = 1.

The equilibrium is then x = v. Note that v is the only non-negative eigenvector
due to Perron Frobenius theorem [21], so it must be the only physical equilibrium,
since each entry of x needs to be between zero and one.

2.3 R and S evolution

We define∆ = S−R as the difference between the reproductive number measured
from surveillance (S), and the true one (R). This quantity is representative of the
error we commit when inferring the reproduction number from recorded cases,
which is the main focus of this work.
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We use the following set of right eigenvectors for Q: v is the principal one,
with eigenvalue R, then I have wµ with eigenvalues Λµ, µ ∈ [1,M − 1]. These
eigenvalues may be repeated. Impose

∑
i vi = 1, and∑

i

wµ,i =

{
1 if possible
0 if it is the case.

(2.11)

Define then
∑′

µ as the sum on those µ for which
∑

i wµ,i ̸= 0. We can decompose
x = gv +

∑
µ hµwµ. From the normalization of x, I have g = 1−

∑′
µ hµ. We get:

∆ = S −R

=
∑
ij

Qijxj −R

=
∑
ij

Qij[(1−
∑
µ

′hµ)vj +
∑
µ

hµwµ,j]−R

= R(1−
∑
µ

′hµ) +
∑
µ

′hµΛµ −R

= −
∑
µ

′ (R− Λµ)hµ. (2.12)

There are two cases in which it is clear that ∆ = 0 identically. This happens when
the dynamics is at equilibrium (x = v) or when Q is proportional to a stochastic
matrix (Q = q0C).

Let’s define the auxiliary variable λµ = Λµ/R. Due to the Perron-Frobenius
theorem |λµ| < 1. We can derive the evolution in time of g, hµ from Eq. (2.9):

gtv +
∑
µ

ht,µwµ =
Qt(g0v +

∑
µ h0,µwµ)

qTQt−1(g0v +
∑

µ h0,µwµ)

=
Rtg0v +

∑
µ Λ

t
µh0,µwµ

qT (Rt−1g0v +
∑

µ Λ
t−1
µ h0,µwµ)

=
Rtg0v +

∑
µ Λ

t
µh0,µwµ

Rtg0 +
∑

µ
′Λt

µh0,µ

=
g0v +

∑
µ λ

t
µh0,µwµ

g0 +
∑

µ
′λt

µh0,µ

. (2.13)

Then:

gt =
g0

g0 +
∑

ν
′λt

νh0,ν

, (2.14)

ht,µ =
λt
µh0,µ

1−
∑

ν
′(1− λt

ν)h0,ν

. (2.15)
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We stress that the denominators in Eq. (2.14) and Eq. (2.15) are the same, they
are different ways of writing the same thing, using g = 1 −

∑′
µ hµ. Also, this

denominator is positive, since it is the observed growth ratio after t generations.
As known, since −1 < λµ < 1 the dynamics always brings towards x = v:∣∣∣∣ht,µ

gt

∣∣∣∣ = ∣∣∣∣h0,µ

g0

∣∣∣∣ |λµ|t . (2.16)

The equation for the evolution in time of ∆ can be obtained inserting Eq. (2.15)
in Eq. (2.12):

∆t = −R
∑

µ
′λt

µ(1− λµ)h0,µ

1−
∑

ν
′(1− λt

ν)h0,ν

. (2.17)

We observe that the higher are the Λµ, the longer the time needed for |ht,µ/gt| to
converge to zero. In particular, the second largest eigenvalue of Q, let it be Λ1, is
the one that is the most influential in determining the process convergence time.
Also notice that convergence of S to R may present oscillations. If λµ < 0, ht,µ

can be alternating. Then, if negative eigenvalues exist, the measurement error can
oscillate between positive and negative values while damping towards zero. Roughly
speaking, if Q is weakly coupled (almost diagonal), probably all eigenvalues are
strictly positive, because they are close to the diagonal entries, which are of course
positive. As a consequence, the error has always the same sign. If the system is
strongly coupled, meaning that Q is highly non-diagonal, negative eigenvalues
emerge and can lead to oscillations.

The concept of weak or strong coupling can be formalized as follows. The
system is weakly coupled if Q is strictly column diagonally dominant, meaning
Qii >

∑
j ̸=iQji, ∀i [22]. Basically Q is weakly coupled if, for each h-class i, most

of the secondary cases are generated locally (Qii is large), than in other h-classes
(
∑

j ̸=i Qji). The system is strongly coupled otherwise.
We can prove that oscillations can occur only if Q is strongly coupled. By Gersh-
gorin’s circle theorem [23],

λµ ≥ min
i

{
Qii −

∑
j ̸=i

Qji

}
. (2.18)

If Q is weakly coupled then, by definition,

λµ ≥ min
i

{
Qii −

∑
j ̸=i

Qji

}
> 0. (2.19)

This proves that weak coupling is a necessary (possibly not sufficient) condition
for oscillations of S around R to occur.
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Some interesting properties can be observed concerning local observed repro-
ductive numbers too. At equilibrium,

si =
(Qgv)i
gvi

= R = S ∀i. (2.20)

Every patch measures the same reproductive number, which is also the global
reproductive number of the system (both the true R and the observed S, which
are the same at equilibrium). Note that the patch is not measuring its own true
reproductive number qi, representing secondary cases generated anywhere. It is
measuring the global reproductive number of the system. In general, however, qi
is observable only if the system is fully decoupled, meaning Q is diagonal.

The equation for the evolution in time of the si can be obtained as well. Let’s
first expand x:

si =
(Q(gv +

∑
µ hµwµ))i

gvi +
∑

µ hµwµ,i

=
(1−

∑
µ
′hµ)Rvi +

∑
µ hµΛµwµ,i

(1−
∑

µ
′hµ)vi +

∑
µ hµwµ,i

. (2.21)

Inserting Eq. (2.15):

st,i = R
(1−

∑
µ
′h0,µ)vi +

∑
µ λ

t+1
µ h0,µwµ,i

(1−
∑

µ
′h0,µ)vi +

∑
µ λ

t
µh0,µwµ,i

= R
g0vi +

∑
µ λ

t+1
µ h0,µwµ,i

g0vi +
∑

µ λ
t
µh0,µwµ,i

. (2.22)

We now see that:

st,i > R ⇐⇒
∑
µ

λt+1
µ h0,µwµ,i >

∑
µ

λt
µh0,µwµ,i.

This condition may be verified depending on the λµ, h1,µ and wµ,i which can all in
principle assume negative values. Note in particular that we know all wµ have at
least one negative component due to Perron Frobenius theorem. Interestingly, we
see that even in the weakly coupled case, where we showed that S cannot oscillate
around R, oscillations of the si around R can occur due to the negative signs of
some of the h0,µ and wµ,i.
Lastly, we point out that S can be written as a linear combination of the si:

S =
∑
i

sixi. (2.23)
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This is relevant in terms of the threshold criterion. Since xi < 1 ∀i, in order to
observe a reproductive number that is larger than one we need at least one of the
si to be larger than one.

2.4 Notes on Perron-Frobenius

Some notes can be made regarding the reproduction operator Q’s properties. If
we assume that Qii > 0, because each h-class always generates a nonzero amount
of cases in itself, then Q has maximal rank, because it is the sum of a diagonal
matrix with maximal rank, and a perturbation with some rank. This assumption
is clearly true when h-classes are spatial patches.

As a second comment, Perron-Frobenius theorem requires that either Q is
strictly positive or Q is non negative and irreducible. Q is irreducible if the asso-
ciated directed graph is strongly connected. Under this conditions R is strictly
positive and non degenerate and v has strictly positive components. Typically this
is true, particularly if we think of h-classes as spatial patches. However, Perron-
Frobenius theorem can be recovered even in the case requirements are not satisfied.
Consider:

Q =

 Tu 0 0
B1 Qscc 0
B2 B3 Td

 . (2.24)

where Tu, Td are lower diagonal and Qscc is the strongly connected component
(SCC). The spectrum of Q is the union of the diagonal entries of Tu, Td and the
spectrum of Qscc. If R is one diagonal element of Tu, Td this is trivial: it means
that some peripheral communities have the largest reproductive number. Assume
instead that R belongs to the spectrum of Qscc. Then we can write the Perron
eigenvector as follows:

v =

 vu
vscc
vd

 . (2.25)

If we write by blocks the eigenvector equation Qv = Rv, on the top block we
have Tuvu = Rvu, whose only solution is vu = 0 as R is not an eigenvalue of Tu.
This means Qsccvscc = Rvscc, and vd = (R− Td)

−1B3vscc. The dynamics is thus
completely determined by the SCC, and we can study the SCC isolated, recovering
the full force of the Perron-Frobenius theorem.
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2.5 Summary of analytical results

The analytical analysis carried out expands Diekmann results with a description
of the out-of-equilibrium phase and of locally observed reproductive numbers
behaviour. Out-of-equilibrium the measured reproductive number (S) is different
from the true reproductive number (R) and each patch may measure a different
reproductive number (si ̸= S ̸= R). It was found that during the convergence
process oscillations of S around R may occur if Q is strongly coupled, meaning
that S −R may change sign. The exact formulas for the time evolution of weights
g and hµ in the linear approximation were found, see Eq. (2.14) and Eq. (2.15).
The expression for the time evolution of ∆ was given, see Eq. (2.12), as well as
the one for the time evolution of the si, see Eq. (2.22). The role of the second
largest eigenvalue Λ1 in determining the convergence time was highlighted.

At equilibrium, instead, every h-class measures the same reproductive number,
which also coincides with the true dynamical one.

19



Chapter 3

Data reconstruction of Q

We proceed reconstructing the reproduction operator Q as in Eq. (2.2), in the case
where h-classes are spatial patches. In particular, we choose to focus on France
and Italy, and we take departments and provinces respectively as spatial patches.
We choose Colocation Maps [16], which are spatial network datasets that have
been developed within Facebook’s Data For Good program, as the main data to
obtain the expected infectivity Ars of an infected in patch s towards one in patch
r. We then correct these data using Movement Range Maps [32] and discuss the
obtained reproduction operators in France and in Italy.

3.1 Meta colocation Maps

Colocation Maps are available as weekly data starting from March 2020 for several
countries in the world. Hence, information concerning the major changes that took
place in mobility patterns during the last two years due to COVID-19 response
measures can be obtained from these data. The weekly resolution was chosen by
developers because it is believed that such a time period is well representative of
current time human mobility. Colocation Maps are elaborated from localization
data of people who use Facebook on a mobile device and who opt in to Location
History (LH) and Background Location collection (BC). As a consequence, the
tracked population does not correspond with the actual one. In some cases, we
can imagine that this reduced population could be not representative of the actual
one. The most influential source of bias could be spatial heterogeneity in income
in developing countries, where mobile phones are not yet spread in the whole
population and the fraction of Facebook users in the population is small. On
the other hand, we believe this is not the case for France and Italy. Also note
that Colocation Maps have already been used for epidemiological studies in these
countries [28].
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These Maps estimate how often people from different regions are colocated, i.e.,
simultaneously located in the same place. These data were appositely designed
for epidemiological metapopulation models, which are models in which groups
of spatially separated individuals interact with each other [24]. The level of
coupling between these sub-populations clearly depends on how much they come
into contact that is sufficient to transmit the considered disease. Epidemiologists
have been parametrizing these couplings indirectly, using for example counts of
individuals moving from one region to another [25, 26, 27]. Colocation Maps are
instead non-localized data (we do not know where people from two regions meet)
that exactly express the contact probabilities determining the couplings.

More precisely, Meta Colocation Maps give the probability that a randomly
chosen person from region r and a randomly chosen person from region s are both
located in the same 600m ∗ 600m square during a randomly chosen five-minutes
time bin in a given week. This probability can be computed in few steps. Take
first Xijr the number of people from region r who are located in space tile i (a
600m ∗ 600m square) during time bin j. We can obtain the number of colocations
of people from regions r and s as:

mrs =
∑
ij

XijrXijs, (3.1)

with the sum over i iterating over the whole set of space tiles in the country and
the one over j scanning all the 2016 five-minutes time bins in a week. Note that
for r = s:

mrr =
∑
ij

Xijr(Xijr − 1) (3.2)

to avoid counting a user as colocated with themselves. The probability of a
colocation of people from regions r and s is given by the ratio between mrs and
the total number of possible colocations:

prs =
1

n. time bins

mrs

nrns

(3.3)

with nr and ns the total number of people tracked from regions r and s and n.
time bins = 2016 the number of time bins in a week. In the case r = s:

prr =
1

n. time bins

mrr

nr(nr − 1)
. (3.4)

We now make an additional approximation. Let mrs,k be the number of contacts
between people of patches r and s in the time bin k of duration∆t. We assume that
mrs,k ≃ mrs∆t/week duration, implyingmrs,k ≃ prsnrns(n. time bins)(∆t/week duration).
What this assumption basically implies is that prs is a time invariant and time-bin
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duration independent measure of the coupling between two sub-populations,
ranging from 0 to 1. It is, in other words, a correctly formulated measure of the
between-communities time integrated expected infectivity Ars, except for some
constants.

To give some intuition, the SIR set of dynamical equations describing the
evolution of subpopulation r can be written in terms of colocation data as:

Sr

dt
= −βSr

∑
s prsIs

Ir
dt

= −µIr + βSr

∑
s prsIs

Rr

dt
= µIr.

(3.5)

Here Xr is the expected number of individuals assigned to patch r that are in state
X. β is the constant rate at which infection is spread from an infected to susceptible
individual while two individuals are colocated, and µ is the constant rate at which
a person recovers. The - symmetrical - expected infectivity between two sub-
populations can be expressed in the above case of a SIR model as Ars = βprs/µ.
Then, the average number of cases generated in r by a case in s assuming a
completely susceptible population in patch r is given by:

Qrs = βprsnr/µ. (3.6)

Note that nr is here the actual population of patch r and not the tracked one. In
general, depending on the compartmental model we choose,

Qrs = Cprsnr, (3.7)

with C some constant. Until specified, not to introduce new notation, we will refer
to Q as the matrix with entries Qrs = prsnr, with C = 1.

3.2 Stay Put correction

The large spatial resolution of Colocation Maps was chosen in Facebook’s Data for
Good program due to privacy concerns. Colocation of two people in a 600m∗600m
tile shouldn’t be considered as sufficient to transmit COVID-19 disease. However,
similarly with what already done in the case of time bins, we can suppose that
colocation rates in smaller tiles would scale by a constant - the ratio between the
area of the small tile and the area of the large tile. prs are within this assumption
space invariant measures, which we can consider to be a proxy for detailed face-
to-face proximity rates, even though some features of face-to-face networks are
difficult to reproduce [29].
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Again due to privacy concerns, too small colocation probabilities were omitted
not to allow for people’s identification in less populated patches. Even in this case,
no major problems arise. The smallest colocation probabilities are not influential
in shaping a country’s mobility, so that we can safely ignore them when setting
couplings of a metapopulation model.

What should instead be a matter of concern is that colocation probability prr
between individuals belonging to the same sub-population may be overestimated
due to housing density. People staying at home cannot actually infect nor be
infected by people outside their place. We expect this to mainly affect diagonal
- within a single patch - colocations. We think in particular to the case of cities
with tall residential buildings and high population density in general, where all
residents of a neighbourhood of buildings contribute to the colocation probability.
We introduce for this reason a correction to diagonal colocation probabilities. We
use for this purpose Stay Put data [32], which are also part of Facebook’s Data
for Good program. Stay Put data or Movement Range Maps give the fraction of
inhabitants of a region that do not leave a given 600m ∗ 600m tile for the whole
day. To be precise, data points include observations from 8 pm to 7:59 pm of the
next day in local time, in order to include a full night and a full day. Regions do
not correspond with patches in Colocation Maps. Both for France and Italy, they
are the actual administrative regions.

In order to compute a correction to the reproduction operator based on Move-
ment Range Maps, we first average Stay Put values over one week periods, in
order to match Colocation Maps time resolution. We then assume Stay Put values
to be equal in all patches in a same region at the same date. The number of Stay
Put colocations in a given week between individuals of patch r is given by all the
allowed couples of people remaining home in each tile times the number of tiles
in that patch:

m(s)
rr = (sprdrA)(sprdrA− 1) ∗ n. of tiles in r, (3.8)

with spr the average Stay Put fraction in patch r in the considered week, dr the
population density in patch r (population divided by surface area of the entire
patch) and A = 0.36 km2 the area of a single tile. Then:

p(s)rr =
m

(s)
rr

nr(nr − 1)
, Q(s)

rr = p(s)rr nr =
m

(s)
rr

(nr − 1)
. (3.9)

In conclusion

Q(s)
rr =

(sprdrA)(sprdrA− 1) ∗ n. of tiles in r

nr − 1
(3.10)

is the value we subtract to the previously obtained Qrr entries to exclude home
staying colocations.
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3.3 COVID-19 reproduction operators in France and
Italy

We now discuss the obtained reproduction operators for COVID-19 spreading in
French departments and Italian provinces in 2020 and 2021 and their properties.
In Fig. 3.1 we give a graph representation of matrices Q (with C = 1) in French
and in Italy, with nodes representing patches and edges representing couplings.
Two distinct periods are compared. We take first the one ranging from 2020-07-21
to 2020-08-17, that we identify as a typical holidays period. In both countries, no
restrictions to mobility were applied at this time. The second time interval chosen
is the one ranging from 2020-11-20 to 2020-12-07, during which France was
under its second lockdown and Italy was applying regionally specific restrictions
to mobility based on evaluated risk in each of them (yellow, orange and red areas
existed as an index of increasing risk). In order to allow for a better understanding
of figures, an undirected graph was plotted even though the reproduction operator
is not a symmetric one. The plotted weight of the edge (i, j) corresponds to
max{Qij, Qji}, ∀ (i, j) belonging to the set of edges. In addition, only edges with
weight greater than an arbitrary threshold 0.25 were plotted. The radiuses of
nodes are proportional to the corresponding diagonal elements of Q.

Fig. 3.1 gives us a good qualitative understanding of the mobility network
structure in France and Italy as well as of the major and abrupt - only two months
separate the considered time ranges - mobility changes that took place in the last
years due to COVID-19 response measures. It is evident that French network struc-
ture is heavily centralized, presenting a star like structure with Paris department as
central node, together with the neighbouring ones in Ile de France. Observing the
second lockdown in France, Paris is the only department maintaining significant
connections even with non neighbouring departments. We thus expect Paris to be
both the department importing the most cases and the most important exporting
basin. If we also consider the very high value of the within-Paris reproduction
operator element due to the huge population density in the city, we can predict
that Paris will have a dominant role in the simulations we will develop starting
from the obtained operators.

The Italian mobility network is less centralized, with multiple cities playing an
important role. Palermo is typically the province having the highest within-patch
reproductive operator element while Milano and Rome are usually the ones that
imports the more cases (highest

∑
j ̸=i Rji).

As expected, the reproduction operator Q is weakly coupled both in France and
Italy during the whole period of availability of data, according to the definition
in Eq. (2.19). In terms of the convergence process we want to observe, this
means we shouldn’t observe oscillations of S around R. As a second point, we
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Figure 3.1: Undirected graph representations of the average reproduction operator Q (with
C = 1, see Eq. (3.7)) in France (a and b) and Italy (c and d) during the periods from
2020-07-21 to 2020-08-17 (a and c) and from 2020-11-20 to 2020-12-07 (b and d).
The weight associated to the edge (i, j) is max{Qij , Qji}, ∀ (i, j) ∈ E, with E the set of
edges. The radius of node i is proportional to Qii ∀i. Only edges with weight greater than
an arbitrary threshold were plotted, and logarithmic values of the operators’ elements are
considered. The same color scale is kept for all plots. The major variations in mobility due
to COVID-19 response restrictions are evident, as well as the dissimilarities between the two
countries’ network structures.
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Figure 3.2: Spectra of reproduction operators Q (with C = 1, see Eq. (3.7)) in France
(e) and Italy (f) over time in the period ranging from 2020-03-03 to 2021-07-20. The
spectrum in Italy is typically more compact than in France, with in particular a higher ratio
Λ1/R. On the other hand, R is typically larger in France. These are consequences of the
network structures depicted in Fig. 3.1 and in particular of the network centrality of the node
associated to the department of Paris in France. Seasonal effects are visible for both countries,
even though they have a larger impact in Italy. The effect of the first lockdown, that lasted
from March 16 to May 11, is clearly visible in the case of France.

expect convergence times to be different in the two countries because of the major
dissimilarities between the spectra of the reproductive operators reported in Fig.
3.2. More precisely, the first eigenvalue R = r(Q) is typically almost two times
the second eigenvalue Λ1 in France during the observed period. As discussed, this
should imply a fast to equilibrium convergence time. In Italy, on the other hand,
the spectrum is more compact over the all observed period, with little difference
between the first and the second eigenvalue. A longer convergence time of S to
R is expected. On the other hand, a synthetic epidemic in France should have a
faster outbreak than in Italy given the same model parameters due to the generally
higher value of the Perron eigenvalue of Q.

Seasonal effects can be observed on the spectrum of the Q operator in Italy.
Starting fromMay, inter-provinces mobility increases, so that theQmatrix becomes
less and less diagonal. The matrix is the least diagonal in August. The spectrum
consequently becomes more compact, with in particular the highest eigenvalues
relevantly decreasing. In September, inter-provinces mobility decreases and the
highest eigenvalues grow. The same pattern was observed analysing the reproduc-
tion operators in Spain, Portugal and Sweden. For what concerns France instead,
the effect of the first lockdown, that lasted from March 16 to May 11, is clearly
visible, with the Perron eigenvalue almost halved.

As a last remark, we should discuss the properties of the Perron eigenvectors
associated to these operators. As already stressed, the obtainedmatrices are weakly
coupled, with within-patch entries typically 103 and up to 104 times larger than non
diagonal entries. It is actually reasonable that the couplings between inhabitants of
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a same patch are some orders of magnitude larger than those between inhabitants
of different patches. Consider now the case of a fully diagonal matrix D, call
Λµ its eigenvalues and wµ the corresponding eigenvectors, with normalisation∑

iwµ,i = 1 ∀µ. Λµ will correspond to some diagonal entry, say Λµ = Di,i and
wµ,i = 1, wµ,j = 0 ∀j ̸= i. This extreme case gives us an intuition about the entries
of the Perron eigenvectors associated to the reproduction operators of France and
Italy. For all the reconstructed reproduction operators, the Perron eigenvector has
one entry vk > 0.6 (typically vk > 0.9), while all other entries are of order ∼ 10−2

or ∼ 10−3. Thinking about the epidemic process, we can say that in the long term
and in the linear approximation (the fraction of susceptibles stays approximately
constant) the exponential growth of the disease will cause the majority of the cases
to be located in the patch at highest risk. In terms of the reproductive number, we
have R ≃ Qk,k = maxr,s Qr,s. This means that the within-patch highest entry of
the reproduction operator will cause the reproduction number in all other patches
to grow and eventually reach R in the long time limit. The specific characteristic
times of this process are the matter of study of this work.
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Chapter 4

Metapopulation model

In this chapter we test our analytical findings and expand our analysis through a
metapopulation model informed on census data in France and Italy, as well as on
the discussed reproduction operators. After defining the model and computing
some useful quantities, we conduct some experiments in order to analyse the
dependence of the dynamical processes of interest on initial conditions, on the
network topology and on the transmission rate. Lastly, we study the impact that
discontinuities in time of the mobility network have on the dynamical processes.

4.1 Model description

As mentioned, a metapopulation model is one where a population is considered
as divided in sub-groups of preferential interaction [24, 30, 31]. We build a
stochastic discrete time metapopulation model with a synthetic population based
on the National Institute of Statistics and Economic Studies (INSEE) censuses
for French departments and the Istituto Nazionale di Statistica (ISTAT) censuses
for Italian provinces. Colocation Maps [16], corrected with Movement Range
Maps [32], are taken as a measure of the coupling between sub-groups. We
choose a compartmental model of the Susceptible-Exposed-Infected-Recovered
(SEIR) kind [33]. In addition, we consider two different infectious compartments,
namely clinical and sub-clinical infectious. Sub-clinical infectious are less likely
to transmit the disease when in contact with another individual. This model is a
simple yet effective representation of COVID-19 infection [34]. A scheme of the
compartmental model is shown in Fig. 4.1.

The time T spent in each compartment is exponentially distributed according
to the rates reported in Fig. 4.1. Exploiting the exponential distribution memory-
lessness property Pr(T > s+ t|T > s) = Pr(T > t), at each time step of duration
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Figure 4.1: The chosen compartmental model. Five different compartments are present, with
transition times from one to another exponentially distributed according to the rates reported
on arrows.

∆t = 1day, the probability associated to a transition characterised by rate λ is:

pλ = Prλ(T < ∆t) = 1− e−λ∆t. (4.1)

In particular, ϵ = (3.7days)−1 is the rate of becoming infectious for exposed
individuals, µ = (9.1days)−1 is the recovery rate, psc = 0.32 is the probability of
being assigned to the sub-clinical compartment once exposed, β is the transmission
rate for infected individuals. The transmissibility of subclinical cases is rescaled by
a factor βI = 0.51 . Values of the parameters ϵ and βI are taken from Faucher et
al. [34], and the average recovery time µ−1 is obtained as the sum of the average
duration of the pre-symptomatic period (2.1days) [34] and the average recovery
time for infectious symptomatic individuals (7days) [34]. psc was computed as the
average over age classes of the probabilities reported by Davies [35]. Parameter β
is a free parameter, and will be explored.

We track the number of individuals in each compartment over time for all
spatial patches. At each time step, we extract from a binomial distribution the
number of individuals that transfer from a compartment to another. In particular,
let Xi be the number of individuals in compartment X, patch i at time t. The
number of new recover events at time t+ 1 in patch i from the infected classes is
extracted from:

Bin(n = Isc/c,i , p = pµ). (4.2)
The number of new infected individuals of the sc type is extracted from:

Bin(n = Ei , p = pϵpsc). (4.3)

For the clinical infected class:

Bin(n = Ei , p = pϵ(1− psc)). (4.4)
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Finally, the number of new exposed individuals in patch i is distributed according
to

Bin(n = Si , p = pβ
∑
j

pjiIc,j + pββI

∑
j

pjiIsc,j),

which can be rewritten as

Bin(n = Si , p = pβ
∑
j

pjinjIc,j/nj+

pββI

∑
j

pjinjIsc,j/nj), (4.5)

with sums running over all nodes of the graph, i.e., over all spatial patches. In
Eq. (4.5) we recognize the reproduction operator Q with C = 1. We now want to
recover the exact form of the operator, constants included, in order to obtain the
exact reproduction number for our metapopulation model. We adopt the method
presented by Diekmann, Heesterbeek and Roberts [36].

Let Xi be the number of infected individuals in the i-th infected compartment.
Let’s rewrite our epidemic model as:

dXi

dt
= Fi(X)− Vi(X) = Fi(X)− [V −

i (X)− V +
i (X)].

Fi(X) represents the rate of appearance of new infections in compartment i.
V +
i (X) represents the rate of transfer of individuals into compartment i by all

other means, and V −
i (X) represents the rate of transfer of individuals out of

compartment i. Let X0 be the disease free equilibrium, defined as the state
(S = n,E = 0, Isc = 0, Ic = 0, R = 0), with n the total population vector. We
define the square matrices F and V with elements:

Fij =
∂Fi

∂Xj

(X0)

Vij =
∂Vi

∂Xj

(X0). (4.6)

Now, the matrix FV −1 is the next-generation matrix. The largest eigenvalue in
modulus or spectral radius of FV −1 is the basic reproduction number of the model.

In the present case, using a shortcut, we can write the dynamical differential
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equations describing the entire population as:

Ṡ = −β′SIc/N − β′βISIsc/N

Ė = −ϵE + β′SIc/N + β′βISIsc/N

˙Isc = ϵpscE − µIsc

İc = ϵ(1− psc)E − µIc

Ṙ = µ(Ic + Isc). (4.7)

In the above equations β′ = β r(K), with K such that Kij = pijni is the reproduc-
tion operator with constants set to one. Then:

R0 = r(FV −1) =
β′

µ
(1− psc + βIpsc)

= r(K)
β

µ
(1− psc + βIpsc). (4.8)

In other words,
Qji = pjinj

β

µ
(1− psc + βIpsc) (4.9)

is the exact reproduction operator in our model.

4.2 The R-package EpiEstim and the generation
interval for our model

The aim of the synthetic epidemic experiments we will design will be to show the
measurement error we commit when estimating the basic reproduction number
of an epidemic from surveillance data. In order to make our conclusions more
reliable, we will compute the observed reproduction number adopting two different
methods. First, wewill compute an analytical S according to the already introduced
formula S =

∑
ij Qijxj. Then, we will use the R-package EpiEstim [20], which is

a widely used tool to estimate R from surveillance data.
Some concepts now need to be introduced. Incidence is defined as the number

of new cases of a disease in a given time period over the total population [37]. It
should not be confused with prevalence, which is the proportion of active cases in
a population at a given time [37]. We also introduce the generation interval as the
time interval between a primary and a secondary infection, i.e., the time interval
between the infection event for a case and for their infector [38]. Equivalently,
the serial interval is defined as the time interval between the onset of symptoms
in a case and in their infector [38].
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EpiEstim estimates the time varying reproduction number R over time from
incidence time series and given the generation interval probability distribution.
Incidence over time will be obtained as an output of our simulations, but we should
derive the generation interval distribution for our model. Let’s first consider the
probability distribution for the time of transmission of the disease. The number of
susceptible individuals that a case infects is drawn from a binomial distribution
with patch dependent probability. Globally, the probability of transmission we
name γ is given by:

γ = R0µ = r(Q)µ. (4.10)

If γ is small, as in our case, this infection process can be approximated by a Poisson
process. Then, the number of new infected that a case produces given the duration
τ of their infectious period follows:

P (I = n|τ) ≃ Poisson(γτ) =
(γτ)ne−γτ

n!
, (4.11)

with τ in units of the model time step. The time distance between two consecutive
events of such a Poisson process is an exponential random variable X with param-
eter γ, hence the probability distribution for the time required for an infectious to
transmit the disease is:

p(x|τ, trans) = γe−γx, (4.12)

where the conditioning trans specifies that this is the probability distribution
assuming that transmission occurred (this may not be the case). Now:

p(x|trans) =
∫ ∞

0

dτ p(x|τ, trans)p(τ |trans)

=

∫ ∞

0

dτ p(x|τ, trans)p(τ)

=

∫ ∞

0

dτ γe−γxµe−µτ

= γe−γx. (4.13)

Let now Y ∼ ϵe−ϵy be the random variable for the time for an exposed individual
to become infected. The probability density function forZ = X+Y can be obtained
from a convolution:
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pZ(z|trans) =
∫ z

0

dx pX(x|trans)pY (z − x)

=

∫ z

0

dx γe−γxϵe−ϵ(z−x)

= γϵe−ϵz

∫ z

0

dx e(ϵ−γ)x

=
γϵ

ϵ− γ
(e−γz − e−ϵz), (4.14)

where we have introduced subscripts to the pdf for clarity. The obtained pZ(z|trans)
represents the generation interval distribution we were looking for. This distribu-
tion is null in zero, asymmetrically bell shaped and has average 1/ϵ+1/γ, i.e., the
sum of the average time for the two distinct processes.

We specify that a discrete distribution is required by the EpiEstim package. We
choose to compute it over 50 bins in the interval [0, 49]. The time window over
which to estimate R is set to be a week. In all plots, we assign the estimate for R
returned for the week interval [t, t + 6] to the day t + 3. Also, given the smaller
precision of early estimates, as reported in the documentation [20], we arbitrarily
choose not to plot EpiEstim points associated to the first two weeks from the start
of the synthetic epidemic.

As a last remark, note that our derivation of the generation interval is not
exact. Being our metapopulation model a discrete one, transition times between
compartments are not exactly exponentially distributed. As an example, consider
the case of an individual passing from compartment S to compartment E at time
step n, i.e., at some time t ∈ [(n − 1)∆t, n∆t]. The time required to transition
to compartment Ic or Isc is systematically shifted by n∆t − t. We hence expect
the EpiEstim estimate for R curve not to perfectly match our analytical observed
reproductive number.

4.3 Exp. I: dependence of the dynamical process
on initial conditions

As a first experiment, we want to study the dependence of the dynamical process of
convergence of S to R - and consequently of the measurement error for R - on the
initial conditions, precisely the initial distribution of cases amongst departments
or provinces. We know from Eq. (1.6) that neither the equilibrium distribution nor
the equilibrium reproduction number depend on initial conditions, even though
the expected number of cases at equilibrium does. On the other hand, from Eq.
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(2.14, 2.15, 2.16) we know that the equilibrium convergence time does depend on
initial conditions. In particular, the weight h1 associated to Λ1 when decomposing
the initial conditions vector on the basis of eigenvectors of Q is the most influential
one.

We first consider France and we select a reproductive operator Q we will keep
fixed. We consider the period ranging from 2021-26-01 to 2021-16-02 and take
an average of the available Q. Mobility didn’t undergo major changes during
this period so that Q is approximately constant. On the other hand, averaging
over one month reduces the effect of weekly fluctuations or anomalous entries.
We also fix the value of the transmission rate to β = 7.5 · 10−5. This value was
arbitrarily chosen as matching the simple needs to be above the threshold value for
the epidemic to spread (R0 > 1) and to reach the desired order of magnitude of
incidence (105 cases) at the peak in not too long a time. We stress that our model
is a simplified theoretical representation of the spread of a directly-transmitted,
airborne pathogen, similar to SARS-CoV-2, as a case study for the analysis of the
along time measurement error committed by estimates of R.

Initial cases are drawn from a multinomial distribution with probabilities
p = (p1, ..., pM), with M the number of nodes and

∑
i pi = 1. The p are chosen as

reported in Tab. 4.1.

Multinomial distribution p, Exp. I
I.C. 0
pParis = 1,
pi = 0 ∀i ̸= Paris
I.C. 1
pi ∝ ni ∀i
I.C. 2
pParis = 0,
pi ∝ ni ∀i ̸= Paris
I.C. 3
pj = 0 ∀j ∈ I,
pi ∝ ni ∀i /∈ I

Table 4.1: p vectors of the multinomial distributions from which initial conditions for Exp. I in
France are drawn. Note that I = {Paris, Hauts-de-Seine, Val-de-Marne, Seine-Saint-Denis,
Yvelines, Val d’Oise, Essonne, Seine et Marne} is the set of Île de France departments.

Initial conditions in Tab. 4.1 were chosen with the aim of varying the number
of initial cases in Paris and in Île de France. These departments actually have high
coupling with each other and form an enlarged single sub-population leading the
epidemic behaviour in France. Paris, in particular, has the highest reproduction
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operator within-patch entry. Formally, these initial conditions differ for the weight
g0 of the Perron eigenvector and h0,µ of the eigenvectors associated to the remaining
highest eigenvalues. In I.C. 0 initial cases are all in Paris. In I.C. 1 the initial
vector of infectious individuals is drawn from a multinomial distribution with p
proportional to departments populations. The same holds for I.C. 2 and I.C. 3, but
initial cases are set to zero in Paris and in all Île de France respectively. In all cases
the number of draws is equal to 500, so that the total number of initially infectious
individuals is Itot = 500. They are assigned to the sub-clinical or clinical class
with probability psc, 1− psc respectively. The same number of exposed individuals
Etot = 500 is set. Each simulation lasts 630 time steps and 100 runs were made
for each initial conditions. Medians and 95% confidence intervals were computed
for each observed quantity.

4.3.1 Exp. I results

Simulations’ results for Exp. I are plotted in Fig. 4.2. Looking first at Fig. 4.2, a, as
intuitively expected, we notice that the fewer initial cases are in the departments
at highest risk, the longer is the time before an outbreak occurs. Notably, with the
actual choice of parameter β, the epidemic only spreads in Ile de France. More
precisely, β is high enough to cause an outbreak in Paris only, due to the large
gap between the first and second eigenvalues of Q visible in Fig. 3.2, e. Due to
the strong coupling between Paris and the other departments in Ile de France,
the epidemic then diffuses in the whole region. Even though we could obtain a
non localized epidemic by simply raising β, this spectral gap seems unrealistic.
Most probably, some further corrections should be applied in order to reduce Q’s
entry in Paris. Due to its very high population density, we can imagine that many
individuals are counted as colocated even though they are not staying in the same
place, e.g., they are separated by a wall or they are on different floors of a same
building. With approximately 21000 inhabitants/km2, Paris is indeed the most
densely populated city in Europe according to Eurostat. On the other hand, this
particular case of a localized synthetic outbreak allows us to observe more clearly
some interesting properties of the dynamical process under study.

Consider the process of convergence of the infected fraction x to the Perron
eigenvalue v ofQ represented in Fig. 4.2, b. We choose one minus cosine similarity,
defined as 1− cs(A,B) = 1− cos(θ) = 1− A·B

∥A∥∥B∥ , A and B vectors, as a measure
of similarity between x and v. Note that since both x and v have non negative
entries only, cosine similarity is bounded in [0, 1], with 1− cs(x, v) = 0 if and only
if x = v.

For I.C. 0 cs(x0, v) ≪ 1 already initially, since the Perron eigenvector of the
reproduction operator has vParis ≫ vj ∀j ̸= Paris. Looking at Fig. 4.2, b, a
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Figure 4.2: Results of the simulations of Exp. I, with initial conditions in the same order as
in Tab 4.1, i.e., for each of a, b, c and d, I.C.s 0, 1, 2, 3 are respectively in the top, second
from top, third from top and bottom panels. a Number of infected individuals (prevalence)
in time in each department. Only labels for the main departments for number of cases are
shown in legend. b Convergence of x to v, with one minus cosine similarity as a metric. c Time
evolution of the observed global reproductive number S. The measurement error is evident for
both S and the EpiEstim estimate during the transient period. We remember that EpiEstim
estimates relative to the first two weeks since the start of simulations were discarded. d Time
evolution of the observed local reproductive numbers si, logarithmic scale. In all cases, the
chosen initial conditions lead to increasingly slower dynamical processes.
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few time steps before the cases derivative goes to zero the linear approximation
expires. Depletion of suceptibles in Île de France and particularly in Paris reduces
gradually the corresponding entries of Q(S), until a new eigenvector abruptely
establishes as the leading one. 1 − cs(x, v) consequently goes to one. In I.C.s 1,
2, 3 1− cs(x0, v) is gradually increasing. The convergence time is also increasing,
according to Eq. (2.14). Actually, what makes convergence slower is g0 decreasing
between I.C.s 1 and 2. What instead most relevantly differs from I.C.s 2 and 3
are the values of weights associated to the competing eigenvectors with largest
eigenvalues, which have high entries in the indices corresponding to departments
at highest risk out of Île de France. More results are shown in Fig. 4.3, where eight
different initial conditions are considered and the corresponding convergence
time (median and 95% C.I.) is plotted. Apart from the already discussed ones, we
consider the uniform case where pi = 1/M ∀i and the case where pj = 0 ∀j ∈ J ,
pi ∝ ni ∀i /∈ J , withJ = {Paris, Hauts−de−Seine, V al−de−Marne, Seine−
Saint−Denis} the set of departments in the inner ring in Île de France. We also
take the case where p for the multinomial distribution are drawn from a Dirichlet
distribution of the form:

p(x) =
1

B(α)

M∏
i=1

xαi−1
i , (4.15)

with α the vector parameter of the distribution, M the number of categories (here
the number of provinces) and B(α) the normalization constant. The support
for Dirichlet distribution is [0, 1] and

∑
i xi = 1, which allows us to correctly

pick a set of probabilities. We choose αi = ni ∀i (condition b in Fig. 4.3) and
αi = ni/N ∀i (condition h in Fig. 4.3). We get E[Xi] = ni/N ∀i for both I.C.s,
while V arh[Xi] ≃ N · V arb[Xi], with V arh/b[Xi] the variance in I.C. b/h. In Fig.
4.3, initial conditions are ordered by increasing convergence time, except for the
case of the high variance Dirichlet distribution, plotted as last point.

Fig. 4.2, c, shows the convergence of S to R. Most importantly, our prediction
is confirmed: for all initial conditions, both estimates - the analytical S and the
EpiEstim estimate - either underestimate or overestimate R during the transient
period leading to equilibrium. The duration of this measurement error depends on
initial conditions. Also, as expected, the observed reproductive numbers measured
analytically and with EpiEstim are almost equal, even though differences come up
in the long time due to the mentioned approximations concerning the epidemic’s
generation interval. We remember that EpiEstim estimates related to the first two
weeks since the start of the simulations are not plotted.

I.C. 0 represents the only case in which S > R initially. Then, S rapidly
converges to R. After ∼ 100 timesteps R starts decreasing due to depletion of
susceptibles and departs from R0, with S following. The epidemic is actually only
developing in Ile de France, causing the corresponding Q entries only to decrease
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Figure 4.3: Time steps required for the convergence of x to v with eight initial conditions.
Here: a) pParis = 1, pi = 0 ∀i ̸= Paris; b) p ∼ Dir(αi = ni ∀i); c) pi ∝ ni ∀i; d)
pi = 1/M ∀i; e) pParis = 1, pi = 0 ∀i ̸= Paris; f) pj = 0 ∀j ∈ J , pi ∝ ni ∀i /∈ J ,
with J = {Paris, Hauts− de−Seine, V al− de−Marne, Seine−Saint−Denis}; g)
pj = 0 ∀j ∈ J , pi ∝ ni ∀i /∈ I, with I corresponding to Île de France; h) p ∼ Dir(αi =
ni/N ∀i).

until a new Perron eigenvalue establishes. We will now have R = r(Q(S)) = Λ1.
We may say we have some sort of phase transition, with the first derivative of R
showing a discontinuity. At the discontinuity point both S departs from R and
the Perron eigenvector changes establishing a new equilibrium. We could now
assume to be in linear approximation again and on a depleted network, since the
epidemic has consumed the susceptibles in some of the network nodes, excluding
them from the next incoming virus diffusion. The dynamical process will repeat
itself, eventually departing from the new equilibrium and possibly setting another
one.

Concerning I.C. 1, 2 and 3, we see that the convergence time progressively
increases. Consequently, estimates ofR are not able to reproduce the correct value
for longer times. For these I.C.s, and in general for all initial conditions tested
apart from I.C. 0, S < R during the out-of-equilibrium period.

Consider now Fig. 4.2, d. As expected, the locally observed reproductive
numbers converge to R even though an exponential outbreak only took place in
Ile de France. Exportation of cases ensures that all the si reach the equilibrium
value. However, they all have different I.C.-sensitive convergence times, so that
there exist some I.C. such that some of the si do not reach R before the linear
approximation falls.

Exp. I helps us get an understanding of the dynamical process. The expected
behaviours are observed, as well as the expected dependence on I.C.s. As also
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clear from the obtained Eq. (2.14, 2.16, 2.22), the dynamics of x, S and si all
have different characteristic times.

4.4 Exp. II: dependence on the network topology
and transmission rate

We have seen in Exp. I the simplified case of an epidemic spreading in a strongly
connected set of sub-populations of the entire network, as an effect of Q’s large
spectral gap. We replicate Exp. I in the case of the Italian population and repro-
ducing the Italian mobility network, in order to observe the impact of the network
topology on the dynamical process. The parameters of the model do not change
with respect to Exp. I. Again, 100 simulations are run for each I.C., each of them
lasting 630 timesteps. Medians and 95% confidence intervals are computed. For
brevity, we show in Fig. 4.4 the results obtained for two I.C.s only. Namely, we
draw the initial number of cases in each province from a multinomial distribu-
tion with parameter vector p. Components pi are in turn drawn from a Dirichlet
distribution with αi = ni ∀i for I.C. 0 and αi = ni/N ∀i for I.C. 1. Again, we get
E[Xi] = ni/N ∀i for both I.C.s, while V ar1[Xi] ≃ N · V ar0[Xi], with V ar0/1[Xi]
the variance in I.C. 0/1.

Figure 4.4: Results of the simulations of Exp. II, with both in a and b I.C. 0 in the top panel
and I.C. 1 in the bottom panel. a Convergence of x to v, with one minus cosine similarity as a
metric. b Time evolution of the observed systemic S. Convergence to the equilibrium quantities
is not observed in any case, with in particular S and EpiEstim always underestimating R.
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These two initial conditions alone give us the possibility to explore the basic
case of an initial infectious distribution almost exactly proportional to the provinces’
population, together with a wide range of variations of this basic case. Most of
the provinces involved in the metapopulation model observe an outbreak in this
experiment, due to the more compact Q spectrum. Notably, Fig. 4.4 shows that
equilibrium cannot be reached starting from a population-proportional initial
distribution, given the chosen β and the reconstructed mobility network for Italy.
For none of the runs in the 95% confidence interval we could observe x ≃ v, nor
S ≃ R. Rephrasing, in all the plotted runs the time for the linear approximation
to vanish was shorter than the convergence to equilibrium time of x or S. Most
interestingly, the same happens for I.C. 1. The confidence interval of 1− cs(x, v)
does not reach zero and the confidence interval of S does not reach R. This tells
us that whatever initial condition drawn, v should be considered as a fictitious
limit and R as an upper bound for the observed global reproductive number. Also,
the median of none or only few of the local si is able to reach R in the linear
approximation interval. One exception exists, even though not represented in the
95% confidence interval. Starting the epidemic with cases only in the province
with the highest within-patch Q entry brings to a situation similar to the one seen
for the first initial condition of Exp. I. However, no other exception was found,
meaning that in all other cases estimates of R never match the true value.

We should now discuss the dependence of the dynamical process on the trans-
mission rate β. From Eq. (2.16) we know that the convergence of S to R is faster
for higher β. Precisely, given the dependence of R0 on β (Eq. (4.8)), we have that
∆t grows linearly with β in the linear approximation regime. On the other hand,
we expect that the fraction of recovered individuals grows faster when β is higher
(assuming β > 1), so that the linear approximation validity time will be shorter.
In particular, the number of recoveries grows as ∼ βt with the transmission rate.
In conclusion, as β grows the linear approximation validity time decreases faster
than the convergence time of S to R.

We want to explore parameter β to detect for which values ∆t ≃ 0 for some t.
Following the above reasoning, we should consider values of β smaller than the
one so far used in Exp. II. We test values of β equal or greater than the threshold
value such that R0 = 1, i.e., 4.8 · 10−5, and spaced 0.1 · 10−5 with each other. We
see that for β ≥ 5.2 · 10−5 the observed reproductive number never reaches the
true one. However, below this value an outbreak only occurs in the province with
the highest within-patch entry (Palermo). We may conclude that given the Italian
network structure reconstructed from Meta Colocation Maps, R estimates can
never reach the true value in the linear approximation regime if the epidemic
spreads in a minimum of two provinces.
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4.5 Exp. III: impact of discontinuities in time of the
mobility network

In this third experiment we evaluate the effect of introducing a discontinuity in
the mobility pattern, i.e., in the coupling between subpopulations and in the
within-patch mixing. We design transitions that mimic the beginning or the
release of a national lockdown, with mobility abruptly significantly reduced or
incremented starting from timestep (day) t∗. We choose France as a case study
again, β = 7.5 · 10−5 as in Exp. I, and a single initial condition. We draw 500
initial cases from a multinomial distribution with pi ∝ ni ∀i. The reason for these
choices is the following: we found that equilibrium is reached within the linear
approximation regime simulating an epidemic in France with this β and starting
with a population-proportional initial condition. Hence, this setting enables us
to consider the interesting cases of t∗ being smaller and larger than the S to R
convergence time. The aim is to evaluate how the introduction or release of a
lockdown affects the dynamical process of convergence to equilibrium, and how
these measures perturb equilibrium once reached, if they can.

Specifically, we choose the two averaged reproduction operators of Fig. 3.1,
a and b. The first one is the average of the available Q in the period from 2020-
07-21 to 2020-08-17, that we take as an example of intensive mobility, with no
restrictions. The second time interval chosen is the one ranging from 2020-11-20
to 2020-12-07, during which France was under its second lockdown. We design,
using these two operators, four different transitions. Given that the time needed to
reach equilibrium is teq ∼ 80days, we refer to a as a transition from non restricted
to restricted mobility at time t∗ = 30 < teq; b is a transition from non restricted to
restricted mobility at time t∗ = 100 > teq; c is a transition from restricted to non
restricted mobility at time t∗ = 30 < teq; d is a transition from restricted to non
restricted mobility at time t∗ = 100 > teq. Results for a, b, c and d are reported in
Fig. 4.5 a, b, c and d respectively.

First, we see that as the reproduction operator Q shaping mobility changes,
R = r(Q) adjusts to a new value, lower than the initial one in the case a lockdown
is starting, higher than the initial one when a lockdown is released. We should
analyse case by case how does S behave in response.

In a restrictions end before equilibrium is reached. The analytical S sharply
decreases. If we were observing this reproductive number, we would be able to see
an immediate response to the introduction of mobility restrictions. Yet, S decreases
less than R does, and immediately starts growing again. The EpiEstim estimate,
which is computed over a weekly window, is more smooth. The corresponding
curve stays approximately constant just after the transition, then starts growing
again. In conclusion, looking at measures of R inferred from cases we would be
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Figure 4.5: Results of the simulations of Exp. III to evaluate the effect of reproduction
operators’ discontinuities in time. a From non restricted to restricted mobility at t∗ = 30. b
From non restricted to restricted mobility at t∗ = 100. a From restricted to non restricted
mobility at t∗ = 30. a From restricted to non restricted mobility at t∗ = 100.

barely able to detect some changes, and we would see the reproduction number
grow again in a few days. The lockdown measure would seem ineffective, even
though the true R of the system has lowered, as only visible after convergence to
equilibrium.

Consider now b, with the lockdown being introduced at t∗ > teq. We may say
the opposite effect is observed: the impact of the restrictions is initially overesti-
mated, with both S and the EpiEstim curve going below R, then growing up to
the equilibrium value. Also note that this discontinuity in the mobility pattern
temporarily drives the system out of equilibrium again.

The case of the release of a lockdown is interesting as well. In c the EpiEstim
curve is similar to the one we would obtain if no discontinuity was introduced,
but the target R is significantly different. In d the system is temporarily driven
out of equilibrium and observed reproduction numbers initially overestimate the
impact of the restrictions release.

To sum up, not only in none of the analysed cases the two estimates are a good
indicator of how changes in mobility patterns influence the reproduction number,
but also they may be misleading. The most remarkable case is a, where we see the
EpiEstim estimate grow even though R decreased. In b and d we overestimate the
discontinuity impact and in c we are not able to detect any changes.
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Chapter 5

COVID-19 data analysis

In this chapter wewant to check whether the convergence of the epidemic dynamics
to the equilibrium dynamics described analytically and in simulations is visible in
real surveillance data, using daily confirmed COVID-19 data. Clearly, identifying
in COVID-19 data the signal of the processes that we theoretically analyzed is
hard, because there are competing factors that influence incidence of reported
cases. Actually, multiple changes that took place in the reproductive operator are
not accounted for in our model (e.g.,social distancing, masks, behavioral factors
not detectable with colocation data and others [41]). Also, detection rate was
varying in space and time during the COVID-19 pandemic, and it is common to
reconstruct cases from, for instance, hospitalizations, as we will do. Nevertheless,
some interesting results may be obtained.

5.1 Data and methods

We consider the usual period from 2020-03-03 to 2021-07-20, during which we
have computed reproduction operators for France and Italy at weekly resolution.
Let Qt be these operators, with index t representing the week they refer to. We
are then able to compute the Perron eigenvectors vt of these matrices, that we
know to represent the long term equilibrium distribution of cases amongst spatial
patches. The idea is to compare the vt to the COVID-19 cases distribution in French
departments and Italian provinces, week by week during our observation period.

We collect data for COVID-19 cases in Italy by province from the dataset of
the Italian Civil Protection Department pcm-dpc/COVID-19. In this dataset, the
Italian Civil Protection Department reports the daily number of currently positive
individuals as the sum of hospitalized patients and home-confinement patients
[42]. More work is done to obtain positive cases in France. In this case, the
French government dataset data.gouv.fr only reports incidence of COVID-19 cases
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(and not prevalence) from May 2020 (later than our desired start date). For what
concerns the first issue, considering incidence instead of prevalence should not give
major differences in terms of cases distribution amongst departments or, at least,
convergence towards the equilibrium eigenvector should be observed anyways. For
what concerns the starting date, we decide to solve the issue estimating incidence
from hospital admissions data, which are available at the desired dates. Let H(t)
be the number of hospital admissions at time t. It is common to use the following
simple formula for the incidence at time t: Incidence(t) = H(t + 7)/0.032, with
0.032 the average fraction of hospitalisations per infectious case [43]. Instead
of considering the exact distribution of the time needed for infected individuals
to become hospitalized (if they do), we are assuming that individuals become
hospitalized after exactly the average required time (7 days) [43]. Both for France
and Italy we sum cases over weekly basis to match the reproduction operators’
time resolution. We call xt the normalized cases distribution vector at week t. We
adopt, as previously done, one minus cosine similarity as a measure of similarity
between xt and vt.

We have seen that discontinuities over time of the national mobility pattern have
a relevant impact on the convergence process. When analysing the convergence of
S to R under mobility discontinuities, we stressed that when Q changes the true
reproductive number changes as well. In the case of the asymptotic convergence of
x to v, if Q changes the Perron eigenvector v also changes. Variations of v may be
both of small magnitude, meaning that the leading component does not change, or
of greater magnitude, if a new leading component establishes. If the latter is true,
the system is likely to be abruptly driven far from equilibrium. We should then
contextualize the convergence process of x to v with respect to mobility pattern
discontinuities and their intensities. We choose as a metric the Frobenius matrix
norm defined as:

∥A∥F =

√√√√ M∑
i,j=1

|aij|2 =
√

trace(AT ∗ A) (5.1)

with aij the elements of a square matrix A ∈ RM,M . We compute ∥Qt − Qt−1∥F
for subsequent reproduction operators.

5.2 Data analysis results

In Fig. 5.1, a and b, we show 1 − cs(xt, vt) and ∥Qt − Qt−1∥F for France and
Italy. Let’s first focus on mobility discontinuities. Interestingly, variations of the
reproduction operator in the two countries have common patterns. We may
identify four main peaks of ∥Qt −Qt−1∥F shared by France and Italy during the
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Figure 5.1: Convergence of the cases distribution vector x (from COVID-19 data) to the
equilibrium eigenvector v of Q over time in France (a) and Italy (b), 2020-03-03 to 2021-
07-20. We plot 1− cs(xt, vt) as a metric of similarity of the two vectors and ∥Qt −Qt−1∥F
as a metric for mobility patterns variations. Data resolution is weekly, with weeks starting
on Tuesdays and ending the following Mondays, following the convention of Meta Colocation
Maps. Weekly values are plotted in correspondence of Tuesdays on the date axis. We do a
rolling mean of cosine similarity (but not of Frobenius norm). We substitute a generic value at
time t with the unweighted average of values at t− 1, t, t+ 1. Also, we adopt different scales
for the two countries to facilitate the figure comprehension. For what concerns ∥Qt−Qt−1∥F ,
we set the first point to zero.

observed period, plus a fifth one in France. The first shared peak is in early March
and is representative of the mobility reduction due to the introduction of the first
lockdown in the two countries. The exact lockdown onset dates are 16 March 2020
for France and 9 March 2020 for Italy [39, 40]. Peaks of ∥Qt −Qt−1∥F are exactly
located at the corresponding weeks. The release of the lockdown is on 11 May in
France, with again a visible discontinuity peak. Things are more complicated in
Italy, with mobility restrictions gradually lifted in the time span of a month, from
4 May to 3 June, so that we cannot see a single Frobenius norm peak. We then
have a double peak, that we found to be present for Spain, Portugal and Sweden
as well. ∥Qt − Qt−1∥F is high in the beginning of August, when many workers
go on holidays, and then again in the beginning of September, when holidays
end. The last major mobility variation takes place at Christmas, with between
patches mobility likely increasing due to people reaching their families. As a
general remark, note that the plateau values of ∥Qt −Qt−1∥F are approximately
equal to the smallest eigenvalue of Q and the highest peaks are of the order of
magnitude of the Perron eigenvalue.

All ∥Qt −Qt−1∥F peaks are accompanied by 1− cs(xt, vt) increasing. This tells
us that the system was actually leading towards equilibrium and was then driven
away from it. After these peaks, ∥Qt−Qt−1∥F gradually decreases again. The least
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noisy evidence of the convergence phenomenon we want to observe is the period
from January 2021 to April 2021 in France, with ∥Qt −Qt−1∥F almost completely
flat and x gradually approaching v. What may instead look atypical is the abrupt
descent of 1− cs(xt, vt) in Italy in the beginning of July, followed by a fast growth
again. What is actually happening is that a new leading component establishes
in v in early July. This new v is nearer to the distribution of cases at the time in
Italy. Then the old component establishes again as the leading one. In general,
many leading component shifts occur in the observed period in Italy, due to the
small spectral gap between the first eigenvalues, and Frobenius norm peaks are
always accompanied by these shifts. Conversely, only two shifts occur in France,
at the beginning of the observed period. Apart from these exceptions, the Paris
component of v is always the major one.

As a last remark, we note that 1− cs(xt, vt) is typically higher in Italy than in
France and that slopes pointing towards equilibrium are steeper in France. Both
these results are in agreement with our simulations: in our model Italy was slower
at going towards equilibrium and never reached it, while France was faster and
could reach it. This is, again, a matter of spectra. The larger the spectral gap
between the first two eigenvalues, the faster the convergence, Eq. (2.14, 2.15,
2.16).
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Chapter 6

An alternative estimate of R

We have shown that surveillance based estimates of the reproductive number show
a bias in spatially structured populations as far as the system is out-of-equilibrium.
We found this result analytically first, then verified it simulating an epidemic
through a stochastic model and lastly we brought evidence analysing COVID-19
surveillance data published by France and Italy’s governments. In this chapter,
we define an alternative method for the estimate of the reproductive number,
combining surveillance data and colocation data.

6.1 Measure definition

Our aim is here to define an alternative estimate measure for the reproductive
number R that does not present a bias at the early stages of the epidemic. We will
proceed in analogy with the already defined measure S. We remind that when
measuring S we consider the total number of cases at time t, i.e., It,tot = F T It =∑

i Ii,t, with i = 1, ...,M spatial patches. St is simply given by the ratio between
the total number of cases at time t+ 1 and the total number of cases at time t:

St =
It+1,tot

It,tot
=

F TQIt
F T It

= F TQxt, (6.1)

as in Eq. 2.3. We want to eliminate the dependence of this measure on the
spatial distribution of cases, which is time-evolving and responsible for the bias.
It is therefore natural to replace the total number of cases by a projection of the
cases vector on the equilibrium eigenvector v. We define Jt,tot = MvT It, where
M serves as a normalization constant, assuring the weights sum is conserved
(
∑

i Fi = M = M
∑

i vi). Our new measure will be given by the ratio between
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subsequent J:

St(v − projection) =
Jt+1,tot

Jt,tot
=

vT It+1

vT It
=

vTQIt
vT It

. (6.2)

The idea is to observe how the epidemic is evolving on the equilibrium vector
subspace only. We actually know that measures of the reproductive number are
correct and time independent when restricting to this subspace. Instead of waiting
the cases distribution x to converge to the equilibrium distribution v, we can project
It and obtain a non biased measure even at the early stages of the considered
epidemic.

One question may arise, concerning real life applications: assuming the re-
production operator Q is known, why shouldn’t we simply compute its largest
eigenvalue as a measure of the reproductive number of the system? As already
discussed, Q depends on a constant pre-factor (see Eq. 3.7). This does affect
the magnitude of the largest eigenvalue, but it does not affect the eigenvalue v.
In general, estimating this pre-factor is difficult and would require to consider a
large number of variables we are neglecting in our analysis. For this reason, the
v-projection method is simpler and less subject to errors.

6.2 Testing the measure

Wewant to test the performance of the defined alternativemeasure S(v−projection).
To this aim, we take the metapopulation model of Chapter 4 for France. We set
β such that R = 1.5. Analogously with what done in Chapter 4, we accompany
analytical estimates of the reproductive number with EpiEstim estimates. In this
case, we refer to EpiEstim(v − projection) as the EpiEstim estimates obtained
giving as input the projection of cases on v. The reasoning is the same as above: we
want to focus on the v-subspace only when monitoring how the epidemic develops.
We take 100 initial cases and extract them according to two different multinomial
distributions. In a first case the multinomial distribution p are such that pi ∝ ni ∀i
(I.C. 0), in the second one pHauts−De−Seine = 1, pi = 0 ∀i ̸= Hauts−De− Seine
(I.C. 1). 1000 runs were made. Median values and 95% confidence intervals are
reported in Fig. 6.1. In both cases reported in Fig. 6.1 S(v − projection) and
EpiEstim(v − projection) are able to estimate the reproductive number with very
little or no error, even though the confidence interval for EpiEstim(v− projection)
is quite large. S(v − projection), on the other hand, has very little confidence
interval, proving itself to be a very stable and reliable measure. In any case, the
proposed estimates have clearly better performances than the canonical ones.
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Figure 6.1: S(v − projection) and EpiEstim(v − projection) compared to S and EpiEstim,
with I.C. 0 in the top panel and I.C. 1 in the bottom panel. EpiEstim estimates relative to
the first two weeks since the start of simulations were discarded. The proposed v-projection
measure is not subject to the early stages bias.
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Chapter 7

Conclusions and outlook

In this work we showed that in spatially structured populations surveillance-based
estimates of the reproduction number undergo a transient, out-of-equilibrium,
period during which they commit substantial error with respect to the true value
of R. Then, we showed that non biased measures of the reproductive number
may be obtained combining surveillance data and colocation data. Precisely, our
receipt consists in replacing incidence with its projection on the Perron eigenvector
of the so called reproduction operator when estimating R.

It was already known that in the case of heterogeneous populations the observed
growth factor converges to the true reproduction number of the system only after
some time, and that a similar process exists for the cases distribution with respect
to the Perron eigenvector of the reproduction operator. What we did was first to
analytically expand these results focusing on the out-of-equilibrium period. We
considered the case of a discrete set of spatial patches in a country. We derived
equations for the evolution over time of the global observed reproductive number
of the system. We found that R estimates may oscillate around the true R if the
system is strongly coupled. However, what typically happens is that the system is
weakly coupled and oscillations do not occur. This means that depending on initial
conditions, surveillance-based estimates systematically either underestimate or
overestimate R during the transient period. We then introduced a definition for
local measures of the reproductive number and studied their time evolution as
well. In this case we found that oscillations can occur even if the system is weakly
coupled. Lastly, we studied how the distribution of cases in patches x behaves in
time and found its time evolution equations. We identified the spectral structure
of the reproduction operator Q to be a major factor determining the convergence
time of x to the Perron eigenvector of Q. We stress that the analytical discussion
we developed is in fact valid for generic discrete heterogeneity classes. Motivation
for further studies may be to apply the obtained results to the case where classes
are - as an example for which data are often available - age classes.
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In Chapter 3 we laid the basis for the application of our findings. We re-
constructed weekly resolution reproduction operators for France and Italy from
Colocation Maps and Movement Range Maps. We analysed how the mobility
networks in France and Italy differ from each other and how mobility changed
in time due to COVID-19 epidemic response measures in the past two years. We
were then able to compute the spectra of the operators along time and the leading
eigenvectors corresponding to the equilibrium distribution of cases. We made some
predictions concerning how the star-like mobility network structure in France and
the more democratic network in Italy would affect our out-of-equilibrium process.

In Chapter 4 we built a stochastic metapopulation model to simulate an epi-
demic process, validate our theoretical findings and our data-based specific case
predictions, to observe the actual convergence times for S, si and for x depending
on a number of factors, and to evaluate the surveillance-based estimates bias.
Given these objectives, we decided to compute observed reproductive numbers
not only through our analytical formula, but also through the R-package EpiEstim.
Once computed the true reproductive number for our model and the generation
interval, we designed three different experiments.

In Exp. I we confirm that the convergence time depends on the initial weights
associated to the most important non-leading eigenvectors of Q. We also see that
particular conditions exist for which surveillance-based estimates overestimateR in
the transient period, but what typically happens is that S < R out-of-equilibrium.

In Exp. II we see that, as expected, the Italian mobility network structure
makes convergence times longer. Interestingly, for all transmission rates such
that an epidemic outbreak occurs in more than one patch, and given SARS-CoV-2
medical estimates for the other parameters, the linear approximation on which
our findings rely expires before equilibrium is reached. This implies that S < R
for all the duration of the epidemics. A motivation for further works may be to
properly study this last empirical finding and to validate it over different network
structures. Precisely, interesting research questions may be: is it generally true
that the S to R convergence time is shorter than the linear approximation time,
given that R0 is above the threshold for the infection of a macroscopic number of
subpopulations (see [31])? If not, under which properties of the network does this
hold? Is it more specifically true for weakly coupled networks like those describing
the interaction of spatially separated communities? Are even more strict conditions
necessary? Answering to these questions would allow us to determine whether the
surveillance-based estimates bias in structured populations concerns the whole
period of existence of a disease, and not only its early stages.

In Exp. III we evaluated the effect of discontinuities in time of the mobility
network. We saw that the short-term behaviour of surveillance-based estimates
may be misleading after some major discontinuities take place. In particular,
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considering the introduction of mobility restrictions or their release, we saw that
cases exist under which we either overestimate or underestimate the impact of
these measures. In some other cases the effect of these measures is not visible from
reproductive number estimates. For completeness, we both considered equilibrium
and non equilibrium stages of the epidemic. Interesting future research questions
arise in this case too. What happens in the case of multiple discontinuities of
Q? Is there some frequency (or intensity) in discontinuities that does not allow
for equilibrium reaching? The analysis of multiple discontinuities is actually
relevant for real-case studies, since humanmobility typically undergoes continuous
variations of different intensity.

We actually performed a preliminary analysis of how multiple discontinuities
shape the convergence process using COVID-19 reported cases data in France and
Italy (Chapter 5). We found, qualitatively, that variations Q → Q′ such that the
Frobenius norm of Q−Q′ is larger than approximately the value of the smallest
eigenvalue are those that drive the system away from equilibrium. When variations
are of smaller intensity, 1− cs(x, v), with v the Perron eigenvector, decreases along
time.

Lastly, in Chapter 6 we defined a new method for the estimate of the repro-
ductive number R we call S(v − projection). S(v − projection) is computed
analogously to S but replacing the cases vector at time t It with its projection on v,
i.e. Jt. First we motivated this choice, then we tested the accuracy of the method
through our metapopulation model. What we claim is that S(v − projection) is
a non biased measure of R, presenting little or no error even out-of-equilibrium.
Similarly, we showed that EpiEstim returns better estimates of the reproductive
number when giving Jt as an input.

In conclusion, we believe all these contributions and future directions will help
to improve our understanding of epidemic dynamics in increasingly realistic and
heterogeneously structured models, to improve our methods aimed at estimating
the reproductive number for a disease spreading in a complex structured popula-
tion, and hence to contribute to correctly measure the reproductive number during
epidemic outbreaks.
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