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Summary

The main focus of this thesis is on the implementation and testing of digital Optical
Performance Monitoring (OPM) algorithms applied to optical fiber communication
links, in the scenario of dynamically reconfigurable all-optical networks. What
characterizes this type of networks is a high flexibility with adaptive routing of
optical paths and switching of optical wavelengths. Hence, flexibility and band-
width efficiency are a core characteristic. In particular, they are obtained exploiting
high-order modulation formats and Digital Signal Processing (DSP) techniques in
digital coherent receivers.

In the first part of the thesis, the important role of the digital coherent receiver and
DSP is explained, so as to highlight the fact that they are enablers to the OPM
techniques that are the subject of this work. Particular attention is given to the
digital filtering stage. More in detail, this stage is composed of a fixed Chromatic
Dispersion (CD) compensator and an adaptive equalizer, both implemented as
Finite Impulse Response (FIR) filters. As for the adaptive equalization, not only
does it compensate for all the linear channel impairments, e.g., residual CD, Polar-
ization Mode Dispersion (PMD), Polarization Dependent Loss (PDL) and potential
bandwidth limitations, but also allows to get an estimation of them. Indeed, the
first digital OPM technique presented manages to extract from the tap coefficients
of the equalizer an estimate of the aforementioned impairments.
What makes this possible is the fact that the filter impulse response of the equalizer
relates to the inverse channel impulse response. Thus, under the assumption of a
weakly non-linear regime, it is possible to separate each individual contribution
simply through the processing of such tap coefficients. The advantage of this
approach lies in the fact that it does not require external devices, such as Optical
Spectrum Analyzers (OSA) or other tapping devices, granting a cost efficient and
reliable in-service estimation of impairments.
A few examples of results are presented, implementing the OPM algorithm in
MATLAB. Therefore, at first results have been obtained in a simulation environ-
ment only, then, in order to have a more robust validation, also results obtained
through post-processing of data collected in real long-haul transmission experiments
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(performed in the Photonlab at Politecnico di Torino) are displayed. Figure 1 shows
some of the results obtained post-processing the experimental data.
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Figure 1: Monitoring result over a 4820-km transmission distance for (a) residual
CD (b) PDL (c) DGD (d) bandwidth limitation or filtering detuning.

The second part of the thesis aims at taking a further step. The quantities estimated
in the first part of the thesis are cumulative quantities. However, also the monitoring
of fiber longitudinal parameters, such as loss profiles, CD maps and responses of
individual link components (filters and amplifiers), is essential to guarantee the
reliability and capacity maximization of dynamic optical networks. Being able to
monitor those profiles solely relying on the data available in the digital receiver
would lead to a “smarter” system, able to detect anomalies spatially. The objective
of the second part of the thesis is then to design and implement an OPM algorithm
able to perform a “distributed” estimation of the transmission parameters along the
line, on the basis of the information available in the receiver. These techniques go
under the definition of Digital Longitudinal Monitoring (DLM). In particular, what
makes this possible is the “non-commutativity” of linear and non-linear operators
and the intrinsic similarity between the structures of neural networks (NN) and
the Digital Back-Propagation (DBP) algorithm. The DLM algorithm is based on
the implementation of a Channel Reconstruction Method (CRM), which generates
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a virtual copy of the actual non-linear transmission channel in the digital domain
and tries to estimate the longitudinal loss profile of the optical link. The received
signal is sent into a Channel Emulator which implements the DBP algorithm, a cost
function is computed by comparing the obtained samples with the output of the
CRM block and the parameters are updated according to the Stochastic Gradient
Descent (SGD) algorithm in an iterative way. Then, the algorithm has been tested
in a simulation environment. Figure 2 shows simulation results obtained for the
longitudinal loss profile estimation and anomaly localization.
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Figure 2: Estimated longitudinal loss profiles when an excess loss of 0 dB (solid
blue line), 3 dB (solid orange line) and 5 dB (solid yellow line) is inserted at the
beginning of the third span (at a distance of 140 km from the transmitter end).
Also the ideal loss profile (dashed black line) is reported

In its most basic form, the CRM has proved to be a valid technique to move from a
cumulative to a distributed OPM approach for optical fiber communication systems.
Indeed, it managed to successfully extract some useful longitudinal quantities, i.e.,
the loss profiles and the localized excess losses. Of course, this represents just a
starting point for these DLM applications, which have a lot of potential still to
develop.
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Chapter 1

Introduction

In the scenario of all-optical networks, increasing flexibility and bandwidth effi-
ciency are key issues. Moreover, the possibility of automatizing network operations
is highly appreciated, since it has a direct effect also on the operating expendi-
tures related to the network infrastructure. In this sense, Optical Performance
Monitoring (OPM) plays a role of utmost importance. Indeed, it provides func-
tionalities to monitor the "health" status of the optics in the network and potentially
detect anomalies. Of course, this monitoring needs to be performed on a large-scale
optical network, whence the requirement for cost-effective and easily-deployable
OPM techniques. Furthermore, if these techniques could be performed by solely
leveraging the information which is present at the receiver side, it would be possible
to avoid the employment of external monitoring devices, which should be scattered
over the whole network, and improve system automatization. OPM algorithms and
techniques are indeed expected to play an increasing role in next generation elastic
optical networks, since they can help realize several key functionalities, such as
the dynamic and adaptive adjustment of modulation formats for the maximization
of transparent reach, and the optimization of routing and wavelength assignment
algorithms.

OPM is exactly the subject of this work. In particular, its digital implementation,
which is made possible by a fundamental system element, i.e., the digital coherent
receiver and the digital signal processing (DSP) techniques implemented in
it. Let us start, then, by giving an outline of the topics discussed in this work and
their organization.

In Chapter 2, the concept of optical fiber communication and its main technological
enablers are introduced. After that, the main characteristics of propagation over
optical fibers are described, along with all the effects which impair the propagating
signals. At the end, a brief overview of the evolution of optical fiber communication
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systems is presented.

In Chapter 3, a description of the digital coherent receiver’s working principles and
structure is given. Besides, its important role as OPM enabler is also explained,
together with the DSP chain of operations inside of it. Particular attention is given
to the digital filtering stage, including Chromatic Dispersion (CD) compensation
and adaptive equalization. Finally, the Digital Back-Propagation (DBP) algorithm
is introduced, together with some simulation and experimental results related to
its application.

In Chapter 4, the OPM concept is discussed more in detail. Several techniques
to extract the major linear system impairments are introduced. Among these
impairments, one may find CD, Polarization Mode Dispersion (PMD), Polarization
Dependent Loss (PDL) and potential bandwidth limitations or frequency detuning.
Also in this case, both simulation and experimental results are reported.

In Chapter 5, a step forward is taken. Indeed, up to this point the OPM techniques
presented are able to extract only cumulative quantities. Here, longitudinal
monitoring techniques are also discussed. In particular, a Channel Reconstruction
Method (CRM) is presented, whose main enablers are the fiber non-linearity and the
intrinsic similarity of the DBP structure with neural networks (NN). In particular,
the target of the algorithm’s estimation is the longitudinal loss profile of the optical
link and potential anomaly detection. To conclude, simulation results are reported.

In Chapter 6, the future works over this topic are illustrated. More in detail,
possible solutions to the issues which have come up during CRM application and
more results which is possible to obtain are indicated. Furthermore, a proposed
alternative method to CRM is also briefly described.
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Chapter 2

Optical fiber communication

The process of transferring information between two or more points is generally
referred to as communication. Information is modulated in order to be carried
by an electromagnetic wave over the communication system and reach its des-
tination. Then it is demodulated through specific techniques which attempt to
retrieve the original message.
When the electromagnetic carrier is chosen from the optical range of frequencies
and the communication system is composed of optical fibers, we refer to the whole
communication process as optical fiber communication.

In this chapter an overview on the fundamentals of this type of communication
systems is presented. This includes a brief description of the technological enablers,
their principle of operation and the major transmission impairments in an optical
fiber link. Finally, such systems and their evolution are discussed in a historical
perspective.

The main reference for this chapter is [1].

2.1 Fundamentals
Optical systems use light as carrier waves. Similarly to radio and microwave
frequency waves, light is also an electromagnetic wave whose frequency is relatively
higher. Indeed, for fiber systems the central frequencies which are generally used
are near the visible light spectrum.
However, in optical communications also wavelength is commonly used. The
relation between the two is

λ = c

f
(2.1)
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where λ is the wavelength, c is the speed of light in vacuum and f is the
frequency.
Hence, the optical range can be defined as the wavelengths from 0.8 µm to 1.7 µm,
which is fully contained within the infrared region. Figure 2.1 gives a graphical
representation of the spectrum.

Figure 2.1: The electromagnetic spectrum showing the region used for optical
fiber communications, as in [1].

Of course, the choice of the central frequency affects the system for what con-
cerns both the technological solutions adopted and the performance of the system
itself. These aspects will be highlighted when needed.

What is more, optical systems do not differ in principle from any of the other
telecommunication systems. In a very simplified way, they are still composed of a
transmitter, a transmission medium over which the signal propagates and a receiver.
Figure 2.2 illustrates the schematic of a general communication system (a) and of
an optical fiber communication system (b). The latter is basically the former, but
with a greater level of detail. It is possible to notice that for the transmission part,
a conversion from the electrical domain to the optical one is needed. The dual at
the receiver side, since processing is generally performed in the electrical domain.
What is more, the transmission medium has to be capable of transporting light,
i.e., an optical fiber.
It is of utmost importance to have devices in the system which are capable of
performing all of the aforementioned functions.
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Figure 2.2: (a) The general communication system. (b) The optical fiber commu-
nication system, as in [1].

What makes this type of approach possible are the so-called technological
enablers. The most important ones are:

• semiconductor-based laser technology;

• semiconductor-based photodiodes;

• optical amplifier technology;

• optical fiber technology;

The first three technologies are all strictly related to the energy levels of the
materials used and the interaction of light with them.
From quantum physics it is possible to learn that light interacts with matter by
means of packets of energy, i.e., photons. Furthermore, electrons in an atom can
only exist in specific discrete energy states. Thus, when light interacts with atoms,
electrons (or carriers) can move from one energy state to the other.
Every time a carrier performs a transition from an energy level E1 to an energy
level E2, the frequency of the radiation emitted/absorbed is related to the difference
between those energy states, i.e.,:

∆E = E2 − E1 = hf (2.2)

where h = 6.626× 10−34 J · s is Planck’s constant.
The three main physical effects that are possible are:
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• absorption: when a carrier moves from a lower energy level E1 to a higher
one E2 due to the interaction with an incoming photon. The photon is then
absorbed and an electrical current is generated;

• spontaneous emission: when a carrier decays from a higher energy level
E2 to a lower one E1, generating a photon whose frequency is related to Eq.
(2.2);

• stimulated emission: when a carrier decays from a higher energy level
E2 to a lower one E1 due to the interaction with an incoming photon. The
generated photon has the same frequency and phase of the input photon, i.e.,
it is coherent;

Figure 2.3: Energy state diagram showing: (a) absorption; (b) spontaneous
emission; (c) stimulated emission, as in [1].

All of the mechanisms showed in Figure 2.3 are at the basis of optical sources,
photodiodes and optical amplification.
As for optical fibers, their principle of operation is different and will be illustrated
in the following.

2.1.1 LASER
As mentioned at the beggining of Sec. 2.1, optical fiber communication systems
use light as carrier waves. Therefore, the system needs devices which are capable
of generating light and couple it into the optical fiber.
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Several options are available, depending on the type of source needed. Among the
most popular ones it is possible to find LED’s (Light Emitting Diode) for incoherent
optical sources and LASER’s (Light Amplification by Stimulated Emission of
Radiation) for coherent optical sources. Since the former fall outside the scope
of this discussion, only the latter will be taken into consideration and commonly
referred to as laser.

A laser is an opto-electronic device that converts an electrical current into an
optical power. Its principle of operation is similar to that of electronic oscillators.
A current is injected into the laser structure (a semiconductor P-I-N junction) in
order to bring about a carrier inversion, i.e., to bring a large number of carriers
into the conduction band. At this point, light generation takes place according
to the mechanisms introduced at the end of Sec. 2.1. It is important to mention
the fact that if no optical feedback is present in the structure, the dominant
effect is spontaneous emission. However, the light wave needs to be coherent and
monochromatic. This is the reason why an additional element has to be introduced
in the structure, so as to control the spontaneous emission and have stimulated
emission as dominant effect. Otherwise it would be a LED.
Figure 2.4 shows the most basic laser structure to achieve this feedback mechanism.

Figure 2.4: The basic laser structure incorporating plane mirrors, as in [1].

Indeed, the mirror elements create an optical cavity which traps the photons
through partial reflection. While moving, the photons get amplified thanks to
stimulated emission inside the amplifying medium. Apart from the amplification
gain Gactive, though, photons also experience passive losses due to attenuation and
absorption effects, and wavelength selective losses due to the cavity filtering effect.
Let L(λ) be the total passive wavelength-selective loss, if the total gain G(λ) seen
by a photon with frequency f or, equivalently, wavelength λ is

G(λ) = GactiveL(λ) = 1 (2.3)

the laser is said to be lasing for that wavelength. On the other hand, if such
condition is not satisfied, then only spontaneous emission is present and the laser
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behaves as a LED.

Let us recall Eq. (2.2). The wavelength of the photons generated through stimu-
lated emission is related to the difference between the energy states of the material.
Hence, the choice of the central frequency influences, as already anticipated in Sec.
2.1, the technological solution of the system itself. A few examples are:

• GaAs for 810 nm - 870 nm (first window);

• InGaAsP for 1000 nm - 1650 nm (second window);

Since one of the most important windows in today’s optical communication
systems is around 1550 nm, lasers are commonly made using InGaAsP.

To conclude this brief description about lasers, a set of parameters to character-
ize and classify different types of lasers are introduced.

First of all, the P-I characteristic gives information about the optical power
generated for a defined value of the input current.

Figure 2.5: The ideal light output against current characteristic for an injection
laser, as in [1].

Figure 2.5 pinpoints the different regions of operation of a laser. It operates in
the spontaneous emission region, i.e., no lasing and LED-like behavior, when the
condition expressed by Eq. (2.3) is not satisfied. Indeed, low power is generated
and the output spectrum of the signal results to be very large, thus very far from
being monochromatic.
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When the input current is higher than a specific value, called threshold current
Ith, then the lasing condition is satisfied and the laser operates in the stimulated
emission region. It is necessary to say, then, that lasers always operate above
threshold. In this condition, defining Iin(t) as the input current, Pout(t) as the
output power and K as the slope of the stimulated emission region characteristic
(which is ideally linear), it is possible to write the mathematical expression which
relates current and power as

Pout(t) = K · (Iin(t)− Ith) (2.4)

Finally, lasers are also classified according to the optical spectrum they emit
when driven by a continuous-wave current, i.e., fixed current. Let us recall that
the bandwidth of an optical signal can be expressed both in terms of frequencies
(∆f) and wavelengths (∆λ). The relation between the two can be approximated
by means of the Taylor expansion of Eq. (2.1), truncated at the first order, as

∆f ≈ c

λ2 ∆λ (2.5)

where λ is the considered central wavelength. Minus sign is ignored since bandwidth
is always positive. In this work it is always equal to λ = 1550 nm if not specified.
It is possible to distinguish basically three classes of optical sources:

• LED: incoherent source and large bandwidth. Typical values are in the range
∆λ = 30 nm - 100 nm, or ∆f = 3.75 THz - 11 THz;

• Multi Longitudinal Mode (MLM) Laser Diode: several narrow coherent
spectral lines. Bandwidth in the range ∆λ = 10 nm, or ∆f = 1.25 THz;

• Single Longitudinal Mode (SLM) Laser Diode: ∆λ ≤ 0.01 nm, or ∆f ≤
1.25 GHz. Typical values for distributed feedback (DFB) lasers are ∆f =
10 MHz - 30 MHz;

Nowadays, External Cavity Lasers (ECL) are mostly used for high-performance
coherent optical systems. They have an external optical filter which allows to have
a very narrow spectrum at the output, in the range of 150 kHz.
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2.1.2 Photodiode
If a laser is in charge of converting electrical current into optical power, a photo-
diode is its dual device. Indeed, it receives an optical power and turns it into an
electrical current. The most common type is the P-I-N photodiode.

The working principle is simple. Photodiodes are semiconductor P-I-N junctions
on which photons impact. A certain amount of those photons are absorbed and
carriers manage to move from a lower to a higher energy state. The movement of
carriers in the conduction band subjected to an electromagnetic field then results
in an electrical current.
It is possible to write the relation between the received optical power Pin(t) and
the output electrical current Iout(t) in the form

Iout(t) = R · Pin(t) (2.6)

Of course, ideally it would be nice if for each received photon, one electron is
created. However, this is not true. The proportional term R is called responsivity
and depends on a physical quantity called quantum efficiency ηph. The latter
is adimensional and defined as the number of electrons generated on average for
each impacting photon. It is by definition lower than 1 for P-I-N photodiodes
and greater than 1 for another type of photodiode called avalanche photodiode.
Overall, the expression for R is

R = q

hf
ηph (2.7)

where q = 1.6022 · 10−19 C is the electron charge

Photodiodes are another example of how the choice of the central frequency and
the technological solution influence the performance. The responsivity is not at
all a constant quantity. In fact, it depends on both the material used to make the
photodiode itself and the central frequency at which it operates.

Figure 2.6 (a) shows both the ideal and realistic silicon photodiode responsivity
for different values of the wavelength. On the other hand, Figure 2.6 (b) shows
the responsivity values for different values of the wavelength, as well as of different
materials. Quantum efficieny is also reported.
By taking an operating wavelength of λ = 1550 nm, for instance, it is possible to
notice that it is more convenient to use a photodiode made of InGaAs rather than
one made of Ge.
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Figure 2.6: Responsivity against wavelength characteristics: (a) an ideal silicon
photodiode; (b) silicon, germanium and InGaAs photodiodes with quantum effi-
ciencies also shown, as in [1].

To conclude, the role of the photodiode is extremely important in terms of
performance. Hence, it is suggested that such devices be characterized by a
high sensitivity at the operating frequency, low noise introduction and stable
characteristics.
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2.1.3 Optical amplifier
At this point, the important role of both lasers and photodiodes within an optical
fiber communication system is clear. However, it has to be mentioned that those
devices represent also a limiting factor. Indeed, the conversion of the signal from
the electrical domain to the optical domain and vice versa may cause a reduction
in the operating bandwidth, as well as a loss in signal quality.
This happens, for example, in intermediate nodes of the system where Optical/-
Electrical (O/E) and Electrical/Optical (E/O) interfaces are present. In those
points, the signal may be either processed or simply forwarded. Hence, to avoid all
the limitations associated to those interfaces and reduce the costs, devices capable
of operating on the signal in the optical domain (when it is not strictly mandatory
to convert the signal into the electrical domain) are needed. This is the case of
optical amplifiers, which allow to linearly amplify the optical signal directly in
the optical domain, without converting it into the electrical one. Let Ein(t) and
Eout(t) be, respectively, the input and output optical fields to/from the amplifier,
it is possible to write the relation between them as

Eout(t) =
√

G · Ein(t) (2.8)

where G is the optical power gain.

Optical amplifiers come in different types. Just to cite a couple of them, there
are semiconductor optical amplifiers, i.e., P-N junctions, and fiber amplifiers,
which use optical fibers previously doped with some material in order to exploit
the stimulated emission mechanism and other scattering effects.

Figure 2.7: Gain–bandwidth characteristics of different optical amplifiers, as in
[1].
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Figure 2.7 supplies a few examples of gain spectra for different types of optical
amplifiers.

For the usual 1550 nm window the Erbium Doped Fiber Amplifier (EDFA)
is used. It consists of a silica fiber which is doped with erbium (Er) ions. Figure
2.8 shows the resulting energy levels of the structure.

Figure 2.8: Energy level structure of Er3+ in glass fiber host. EDFA can be
pumped either at 980 or at 1480 nm, as in [2].

The working principle is the same as for the lasers. Photons are injected into
the doped fiber so as to have carrier inversion and move the carriers to the excited
energy levels. This operation is defined pumping and is generally performed
with an unmodulated laser source. After pumping, the carriers will tend to go
back to the lower energy levels and generate photons at a wavelength which is
proportional to the energy gap. The first two excited levels of the structure allow
for the absorption of photons at λ = 980 nm and λ = 1480 nm, which are also the
possible pumping wavelenghts.
The amplification mechanisms takes place when, along with the pumping photons,
also an input optical signal propagates within the fiber. If the stimulated emission
mechanisms is such that the generated photons are coherent with those of the input
signal (e.g., at λ = 1550 nm), then the overall effect is that of having an amplified
optical signal. Stimulated emission, though, is not the only mechanism present.
Hence, the overall working principle can be summed up as an exchange of energy
between the pumping signal and the input signal.

Why are EDFA’s used for the 1550 nm window, though? At first sight, it may
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seem that the generated photons can only be at λ = 1480 nm, but this is not entirely
true. The reason lies in a physical effect known as Stark effect which causes a
broadening of the energy levels and allows for amplification over a much larger
range of wavelengths. This is also the reason why in Figure 2.8 the wavelength of
the emitted photons includes the range 1520 - 1570 nm.

This concludes the discussion over the first three technological enablers, which
more or less share the same working principles. It is now time to go on to describe
the last key element of an optical fiber communication system, i.e., the optical
fiber.

2.1.4 Optical fiber
The optical fiber is the system element which allows the signal (or light) to propagate
between its source and destination. It is a cylindrical dielectric waveguide usually
made of very pure glass (SiO2) and with very small dimensions (a diameter around
125 µm). The fiber is composed by two sections. The inner section is called
core, while the outer one is cladding. In particular, the core is characterized
by a refractive index n1 which is slightly higher (usually less than 1%) than the
refractive index n2 of the cladding and this is performed by doping the core with
selected impurities, e.g, Ge.
Figure 2.9 highlights these elements in a piece of fiber.

Figure 2.9: Optical fiber waveguide showing the core of refractive index n1,
surrounded by the cladding of slightly lower refractive index n2, as in [1]

Indeed, refractive index is a crucial quantity in order to be able to understand
the working principle of optical fibers. It basically defines the interaction of the
electromagnetic field with a certain material. This interaction can be defined in
terms of velocity, since a wave propagating in a medium with refractive index n
moves at a velocity

v = c

n
. (2.9)
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However, this interaction can also be expressed in terms of reflection and refraction.
When a wave impacts on the interface between a medium with refractive index n1
and one with refractive index n2, part of it is generally reflected back and the other
part is refracted. Snell’s law gives us the relation between the incident wave and
the refracted one:

n1 · sin ϕ1 = n2 · sin ϕ2 (2.10)

where ϕ1 and ϕ2 are, respectively, the incidence angle and the refraction angle.
Figure 2.10 gives a graphical representation of the scenario in which the law is
applied, taking as example a glass-air interface.

Figure 2.10: Light rays incident on a high to low refractive index interface (e.g.
glass–air): refraction, as in [1]

A special case is the case in which ϕ2 = π/2. This condition is called total
internal reflection and is possible only in the case in which n1 > n2. The wave
is completely reflected and no refraction occurs. By substituting ϕ2 = π/2 into
Eq. (2.10) it is possible to define the critical angle ϕc, i.e., the minimum incident
angle to have total internal reflection. In particular

sin ϕc = n2

n1
(2.11)

The working principle of optical fibers is based exactly on this phenomenon.
The core and the cladding have refractive indices such that when light impacts on
the core-cladding interface, it gets totally reflected and remains confined within
the fiber while propagating.

15



Optical fiber communication

Not all rays of light remain confined within the fiber, though. It depends on the
acceptance angle θa, defined as the maximum angle of entrance of the light ray
into the fiber which grants an incidence angle at the core-cladding interface larger
than ϕc. Its derivation is of no interest for this discussion, hence only a graphical
representation is given in Figure 2.11.

Of course, several types of fiber exist, depending on how they are manufactured.
Each of them is characterized by different properties and most of them were
mainly thought having in mind an impairment which affects fiber communications
called chromatic dispersion (CD) and discussed in Sec. 2.3. In particular,
such properties depend on the step-index profile, i.e., how the refractive index is
distributed on a section of the fiber. For the sake of completeness, the main types
are (ITU-T standard in brackets): Standard Single Mode Fiber (SSMF, G.652),
Non-Zero Dispersion-Shifted Fiber (NZDSF, G.655), Dispersion Compensating
Fiber (DCF, ) and Pure Silica Core (PSC, G.656) fibers.

Figure 2.11: The acceptance angle θa when launching light into an optical fiber,
as in [1]

2.2 Advantages of fiber communication
After going through the main elements of an optical fiber communication system
and their functioning, it is important to highlight also the advantages deriving
from this type of approach. Being guided propagation systems, a comparison with
their equivalent in the electrical domain comes natural. Indeed, when fibers were
first proposed in 1970 [3], their main competitors were copper-wired systems, such
as twisted-pair-based and coaxial-cable-based systems.
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The main advantages of optical fiber communications can be grouped in the
following list:

• Bandwidth: the potential bandwidth offered by optical fibers is much higher
than that of traditional cable systems. In numbers, simply considering the
so-called C-band (191 - 196 THz) the available bandwidth is approximately 5
THz, while for copper cables it is in the range of MHz or GHz. In any case,
fibers offer an available bandwidth from three up to six orders of magnitude
higher. Besides, this also translates into much higher rates. For instance, in
2018 commercial long-haul C+L-band (185 THz - 196 THz) systems man-
aged to carry an aggregate capacity up to around 48 Tb/s [4] by employing
Wavelength Division Multiplexing (WDM) technologies.

• Dimensions: as already mentioned in Sec. 2.1.4, the typical diameter of
a fiber is around one tenth of a millimeter, i.e., smaller than a human hair.
Despite the fact that some more protections have to be added to the plain
structure of the fiber, its dimentions are still very small compared to those of
traditional copper cables.

• Isolation: fibers are usually made of glass, which is an electrical insulator.
Therefore, no earth loop or short circuit can be generated from their usage.
Furthermore, this also makes them very good for electromagnetically hazardous
environment.

• Interference and crosstalk: fibers are dielectric waveguides, which makes
them immune to any kind of electromagnetic interference. Plus, they do not
irradiate because all photons are confined inside the fiber itself. No crosstalk
is, then, present and a large number of fibers can be grouped together.

• Transmission loss: optical fibers are characterized by a very low loss. Typical
values for fiber attenuation are around 0.2 dB/km. This is an extremely low
attenuation which has some positive implication also on the system composition
and cost. Indeed, such a low attenuation allows for fewer repeater/amplifiers
on the line and, consequently, a lower cost. Finally, it is also important to
highlight the fact that optical attenuation does not introduce any noise, which
happens for coaxial cable, for instance.

These were some of the most important reasons why fiber optics had and
continues to have an enormous success.
However, in order to have a better understanding on optical systems, also the
transmission impairments that optical signals face during propagation need to be
discussed, since they have a strong implication on how systems are designed.
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2.3 Fiber impairments
Light is an electromagnetic wave and its behavior is dictated by Maxwell’s laws.
In a SSMF optical fiber, neglecting non-linearity for now, the field E obeys the
following wave equation while propagating:

∂

∂z
E(ω, z) = [−jβ(ω)− α]E(ω, z) (2.12)

where z is the distance on the central axis of the fiber, ω = 2πf is the angular
frequency, j is the imaginary unit, β is the propagation constant and α is the
loss coefficient. Let us recall the double polarization nature of light in the fiber,
conventionally indicated as x-polarization and y-polarization. For simplicity, the
field is considered to be on only one polarization for now, hence no subscript is
indicated. Also, the field is expressed in the complex envelope notation.
The solution of Eq. (2.12) is

E(ω, z) = E(ω,0)e−jβ(ω)ze−αz (2.13)

However, the propagation constant is not actually constant. It depends on
several factors which give rise to the different types of impairments. Such factors
and the related main impairments are listed in the following:

• Frequency: whose main impairment is given by a second-order effect called
CD. Higher-order effects exist, but their impact is generally smaller than CD;

• Polarization: generating birefringence and Polarization Mode Disper-
sion (PMD);

• Signal power: generating non-linear distortions;

Each of them will be briefly discussed, in order to have an idea on what their
effect is and how it is modelled.

Also, other kind of impairments are introduced, not directly related to the fiber
itself, but to components on the link: Polarization Dependent Loss (PDL)
and Amplified Spontaneous Emission (ASE) noise.

In the end, the Manakov equations are presented, which supply a mathemati-
cal expression for the propagation of the field in the optical fiber, gathering all of
the aforementioned impairments.
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2.3.1 Attenuation
Attenuation is present in any transmission medium and represents a gradual loss
in signal power. It is represented by the coefficient α in Eq. (2.13). Hence, power
loss in optical fibers is exponential.

What is interesting about it in this context has already been discussed in Sec.
2.2. Indeed, optical fibers are characterized by very low loss coefficients and in the
C-band their value is approximately constant and around 0.2 dB/km. However,
attenuation varies with wavelength. Figure 2.12 gives a representation of this, plus
the attenuation related to other effects not discussed in this work.

Figure 2.12: Example of attenuation spectrum for a single-mode fiber (solid line)
with the attenuation spectra for some of the loss mechanisms contributing to the
overall fiber attenuation (dashed and dotted lines), as in [1]

A curious fact is that the range with the lowest attenuation in an optical fiber
also corresponds to the range which allows the best amplification at the lowest
cost, as explained in Sec. 2.1.3.

2.3.2 Optical noise
Attenuation does not introduce noise in optical fibers (see Sec. 2.2), but optical
noise does exist. While describing the EDFA functioning (see Sec. 2.1.3), it has
been mentioned the fact that amplification occurs due to the stimulated emission
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mechanism. However, spontaneous emission is also there and is responsible for the
amplified spontaneous emission (ASE) noise.

Considering also the noise which is introduced at the output of the EDFA in an
additive way, Eq. (2.8) needs to be re-written as

Eout(t) =
√

G · Ein(t) + n(t) (2.14)

where n(t) is the ASE noise.

In the complex envelope notation, it is possible to write it as

n(t) = nI(t) + jnQ(t) (2.15)

where I and Q subscripts indicate the in-phase and quadrature components.
Both quadrature components are modelled as white Gaussian random processes
with a power spectral density (PSD) equal to

N0

2 = hf

2 (G− 1)nsp (2.16)

where h is the Planck’s constant, f the central frequency, G the EDFA power
gain and nsp the spontaneous emission factor. The nsp is always greater than 1
and acts as the noise indicator for EDFA’s. A quantity of interest, which is generally
used instead of nsp, is the noise figure F defined as twice the spontaneous emission
factor., i.e., F = 2nsp.

2.3.3 Chromatic Dispersion
Chromatic dispersion is a linear distortion effect. Going back to Eq. (2.12), the
propagation constant is frequency dependent, hence it can be expanded according
to its Taylor series around a generic central frequency f0. Note that f0 is the central
frequency of the considered optical band, e.g., C-band. This operation yields

β(ω) = β0 + β1∆ω + 1
2β2∆ω2 + ... (2.17)

and the field can be written as

E(ω, z) = E(ω,0)e−jβ0ze−jβ1∆ωze− 1
2 β2∆ω2ze−jαz (2.18)

by cutting the Taylor expansion at the second order.

The term β0 is frequency independent and is an irrelevant phase term for most
applications. β1 is linearly dependent from frequency, hence it does not distort the
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signal. It determines the group velocity and just introduces a fixed propagation
delay. Finally, β2 is quadratically dependent from frequency and does distort the
signal. It is responsible for CD.

Ignoring β0 and β1 and provided that the launched power is not too high, the
system can be considered linear and represented by means of a transfer function.
So can the effect of CD. Therefore, it is possible to write the transfer function of
CD from Eq. (2.18), substituting ω with 2πf , as

HCD(f) = e−j2π2β2(f−f0)2z (2.19)
Its effect is that of changing the phase of the optical field and, thus, the group

delay of the signal in a frequency-selective way. Indeed, the group delay τg is
defined as

τg(f) = − 1
2π

∂

∂f
ϕ(f) (2.20)

being ϕ(f) the phase of HCD(f). Substituting the expression of the phase ϕ(f)
obtained from Eq. (2.19), the group delay becomes

τg(f) = 2πβ2(f − f0)z (2.21)
This mathematical expression allows us to better understand the effect of CD.

Since the group delay changes linearly with frequency, each frequency component
will "see" a different group delay and be delayed by a different amount of time.
The final result is that of having a broadened pulse and a consequent increase in
inter-symbol interference (ISI), which may make the communication impossible.
Furthermore, the quantity β2 · z is called cumulated CD and represents the fact
that the more the signal propagates, the more the effect of CD increases.

It is important to notice that CD is generally associated to the parameter β2.
However, also another parameter is usually used: D. The relation between the two
is the following:

D = −β2
2πc

λ2 (2.22)

where D is in [ ps
nm·km

], c in [km
s

], λ in [nm] and β2 in [ps2

km
].

To conclude, since CD is one of the major impairments for optical fiber com-
munications, over the years different types of fibers have been manufactured, with
the intent of modifying β2 (see Sec. 2.1.4). Figure 2.13 shows typical values for
SSMF, NZDSF and DCF (sometimes referred to as Negative Dispersion Fiber,
NDF) fibers.
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Figure 2.13: Single-mode fiber dispersion characteristics: comparing the profiles
for nonzero-dispersion-shifted fiber (NZ-DSF) and negative-dispersion fiber (NDF)
with standard single-mode fiber (SSMF), as in [1].

2.3.4 Polarization Mode Dispersion

As mentioned at the beginning of Sec. 2.3, the optical fiber has a dual polarization
nature, which means that each signal is actually composed of two propagating
modes associated to orthogonal polarization states.
Besides, the fiber is also a birefringent medium. This is due to the fact that its
circular symmetry is broken by random imperfections introduced during the manu-
facturing stage or external stress. Both these aspects make the fiber an anisotropic
medium, meaning that its refractive index varies according to the polarization state
of the fields. Equivalently, it is possible to state that the two polarizations of the
propagating fields are characterized by different propagation constants.

The birefringence of the optical fiber leads to the first distortion effect depending
on the field’s polarization state: the polarization mode dispersion (PMD).
It is a random effect which introduces a dependency of the group velocity on the
polarization state. Hence, the two polarizations travel at different speed and tend
to separate in time, leading to an overall pulse broadening. The distance in time
of the two polarizations is called differential group delay (DGD) ∆τDGD and
is generally expressed in [ps]. It is defined as the difference between the group
velocity of the fast and slow mode in the fiber, i.e., the directions in which the group
velocity is, respectively, maximum and minimum, over a certain length. Figure
2.14 gives a graphical representation of the effect of the PMD.

Sometimes, another parameter that is used to represent the PMD is Dp, whose
units are [ps/

√
km].
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Figure 2.14: Time domain effect of polarization mode dispersion in a short fiber
length with a pulse being launched with equal power on the two birefringent axes,
x and y, becoming two pulses at the output separated by the differential group
delay, as in [1].

2.3.5 Polarization Dependent Loss

It is convenient to discuss a further polarization-dependent impairment, which is not
directly related to the optical fiber itself, but which will be taken into consideration
in the next chapters: the Polarization Dependent Loss (PDL).
It is caused by optical components on the communication link and defined as the
difference between the maximum and minimum insertion loss introduced by such
components, when stimulated by all of the possible polarization states. This means
that, depending on the polarization state of the field while crossing the component,
the signal power gets attenuated by a different amount.
This becomes an issue in long-haul optical communication systems, since the
transmission distance is designed according to specific power levels. The random
combination of all the PDL effects on the links makes this task much harder to
accomplish and causes more margin to be considered, hence worse performances.

2.3.6 Non-linear effects

An assumption that has been made while discussing Eq. (2.12) is that non-linearities
are neglected. However, when the power of the optical signal increases, some non-
linear (NL) effects may arise and impair the communication process. Therefore,
also those effects need to be introduced.

The most prominent one is the Kerr effect. It causes a variation in the
refractive index n of the transmission medium depending on the propagating field
power. Its expression can be written as
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n(t, z) = nL + P (t, z)
Aeff

(2.23)

where nL is the nominal refractive index, P (t, z) = |E(t, z)|2 is the field power
and Aeff is the effective area of the propagating mode (approximately corresponding
to the fiber core area).
Eq. (2.23) shows how the refractive index of the medium varies in an instantaneous
way. Consequently, this variation causes also a variation in the propagation constant
which can be expressed as

∆β(t, z) = γP (t, z) (2.24)

where γ is defined as the non-linear coefficient and reported in [W −1m−1].

For this reason Eq. (2.13) should be corrected so as to consider also this non-
linear effect. In particular, it is necessary to convert the equation into the time
domain, since the additional term is time dependent. Plus, he Taylor expansion to
the second order for β(ω) is also applied (once again neglecting β0 and β1). The
equation, then, becomes

∂

∂z
E(t, z) = j

β2

2
∂2

∂t2 E(t, z)ü ûú ý
CD

−αE(t, z)ü ûú ý
Loss

− jγ|E(t, z)|2E(t, z)ü ûú ý
NL

(2.25)

Eq. (2.25) contains all the terms related to attenuation, CD and NL and is
commonly known as Non-Linear Schrödinger equation (NLSE).

In order to understand in a proper way the effects of NL, the i-th channel of a
WDM system is considered, i.e., multiplexing of several channels (at different central
frequencies) in the same fiber. The NL term is responsible for the coupling of the
frequency components of the signal and its effect is generally cross-talking among
channels and generation of new frequency lines. However, all the cross-talking
effects it generates are not qualitatively equal. They can be grouped into three
main categories:

• Self-Phase Modulation (SPM): it does not create new frequency lines.
It is generated by the i-th channel and acts on the i-th channel itself. The
interference is in the form of a phase shift.

• Cross-Phase Modulation (XPM): also this interference does not generate
new frequency lines. It is generated by other channels and acts on the i-th
channel. Again, the interference is in the form of a phase shift, but twice
stronger than SPM.
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• Four-Wave Mixing (FWM): this type of cross-talk generates new frequen-
cies due to the beating of the different channels at different frequencies. To
put it simple, the i-th, j-th and k-th channel frequencies interact to generate
an l-th channel frequency which was not there before. Even worse, if the
channels are equally and closely spaced, the new frequencies fall on the chan-
nels’ frequencies, mixing coherently with them. Plus, in order to perform this,
FWM robs the original signal of his power.

While SPM always exists within a fiber, XPM and FWM are peculiar of WDM,
since more than one channel is needed. What is more, as these processes require a
phase matching in order to be "efficient", one way to counteract them is using a
larger channel spacing or introducing chromatic dispersion into the system. In this
sense, NL and CD need to be balanced in order to have a proper system functioning.

2.3.7 Manakov Equation
To conclude this discussion, now that all the main impairments have been described,
it is important to recall that at the beginning of Sec. 2.3, the dual polarization
nature of light has been highlighted. But the signal has been considered on only
one polarization (either x or y). Considering both polarizations, the optical field
can be written as

E(t, z) = [Ex(t, z) Ey(t, z)]T (2.26)
where [ ]T indicates the transposed operator. E(t, z) is a Jones vector, according
to Jones calculus [5], while optical elements are generally defined by means of a
Jones matrix.

Let us then consider this notation, the stochastic birefringence of optical fibers
and the fact that in this notation the power of the field becomes P (t, z) =
|Ex(t, z)|2 + |Ey(t, z)|2. Plus, let us average out the stochastic contribution of
birefringence. It is possible to re-write Eq. (2.25) in this notation as

∂

∂z
E(t, z) = j

β2

2
∂2

∂t2 E(t, z)− αE(t, z)− jγ
8
9
è
|Ex(t, z)|2 + |Ey(t, z)|2

é
E(t, z)

(2.27)
This is a deterministic system of coupled NL differential equations, commonly

known as Manakov equations. They supply mathematical expressions which
describe how the fields propagate within an optical fiber, taking into account all of
the impairments discussed so far.
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2.4 Evolution of optical fiber communication
systems

The first time signals were transmitted through optical fibers in a test system
was back in 1977 [6]. Ever since, the performance of optical systems has been
increasingly improving, also thanks to technological progress related to it. Just
to have an idea, Figure 2.15 reports their over the past 30 years and provides a
prospect on what the future trends might be.

Figure 2.15: Evolution of commercial optical transmission systems over the past
30 years and extrapolations for the coming 20 years, as in [4].

The achievable rates are extremely high and destined to increase even more, up
to an aggregated capacity in the range of Pb/s per cable, i.e., 1015 bits transmitted
every second within a cable of optical fibers. It is, then, interesting to have an
overview on how such systems have come this far.

Over the years, three main eras can be identified:

• Era of regeneration: 1977 - 1995;

• Era of amplified dispersion-managed systems: 1995 - 2008;

• Era of amplified coherent systems: 2008 - present;

The first long-haul span-by-span optical fiber communication systems were based
on opto-electronic regeneration. It has already been discussed how these interfaces
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represent a major limitation in performance (see Sec. 2.1.3), since the overall
transmission rate would depend on the rate transceivers were capable of supporting.
Furthermore, the progress to increase these interface rates was very slow, making
them unable to keep up with the increasing transmission rates achieved with tech-
niques such as WDM.
This is the era of regeneration (1977 - 1995), as it has been previously defined.

The game changer was the invention of EDFA’s (replacing opto-electronic re-
generation), together with the development of techniques which were able to deal
with fiber non-linearities.
Indeed, during the first years of 1990s only two types of fibers were available. The
first one was the SSMF, characterized by a CD of D = 17 ps/nm/km around λ =
1550 nm. CD was the major impairment for high-rate optical communications,
limiting transmission distances in the range of few tens of kilometers. This leads to
the second type of fiber: DSF. This fiber is characterized by a CD of 0 ps/nm/km
around 1550 nm. Ideally, it would solve the problem of CD, but it turned out to
be disastrous for what concerns WDM. NL effects were highly enhanced, especially
FWM (see Sec. 2.3.6).
For this reason NZDSF fibers were invented. Their CD was not exactly 0 around
1550 nm, but slightly higher or lower.
These fibers also inspired a technique called dispersion management, which
gives the name to the second era: the era of amplified dispersion-managed
systems (1995 - 2008). The idea was that of having a concatenation of fibers
characterized by opposite CD signs, i.e., positive and negative. By doing so, the
final CD results to be around 0, but in the link the CD is never really 0. The result
is a mitigation of both CD and FWM.
This initial approach was successful, but not enough for higher-rate systems (e.g.,
20 Gb/s). Plus, the addition of a NZDSF introduced extra losses during the signal
propagation. A solution was the invention of DCF fibers, characterized by a much
more negative CD than NZDSF’s. Hence, DCF’s could be inserted as a spool
within the EDFA, without the need for two different fiber types on the same line.
However, these additions also increased the complexity of the systems, particularly
related to the emerging branch of optically-switched networking.

Note that also other impairments were still present. An example is the PMD.
It was a problem for fibers produced before 1992, since each channel in a WDM
signal required its own PMD compensation at the receiver. A method called
spinning, though, allowed for the production of optical fibers characterized by a
much lower level of PMD. It had the advantage of avoiding PMD compensation just
by choosing a fiber with a low enough PMD. This was related to 40 Gb/s systems.
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For the advent of 100 Gb/s systems, PMD was no longer an issue, since the in-
troduction of coherent receivers allowed to compensate digitally both CD and PMD.

This is the beginning of the third era: the era of amplified coherent systems
(2008 - present). From the technological point of view, the coherent revolution
was driven by the evolution of CMOS processing speed, which allowed analog-to-
digital converters (ADC) and digital-to-analog (DAC) converters to catch up with
10 GBaud symbol rates.
Coherent receivers have the advantages of both homodyne and heterodyne detec-
tion, as will be discussed in Chapter 3. They allow to bring the signal to baseband
and retrieve the full optical field, i.e., both its real and imaginary part and for
both polarizations. Let us specify that up to this point Intensity-Modulation
Direct-Detection (IM-DD) were the most popular systems. In these systems,
the power of the optical field was modulated and demodulated, no information
on the phase of the propagating field. Going coherent, instead, allows to have
information also on the field phase and use higher-order modulation formats (e.g.,
QPSK), with the subsequent increase in spectral efficiency (four times higher, due
to the double polarization and quadrature components). This was compliant with
the CMOS technology at the time, since 40 Gb/s rates could be supported by 10
Gb/s receivers.
The impact on system designs was immense. Thanks to modern digital signal
processing (DSP) techniques, coherent receivers are capable of compensating
huge amounts of CD, as well as PMD, PDL and even NL. All of this with basically
no additional loss. What is more, dispersion-compensated systems were eliminated,
going back to fibers characterized by a high CD. In this way, NL effects are re-
duced, the system is much simpler and all of the impairments are electronically
compensated for at the receiver side.

This concludes the overview over what optical fiber communication is and what
makes it possible.
In addition, the enabling element of this work has been introduced: the digital
coherent receiver, discussed more in depth in Chapter 3.
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Chapter 3

Digital coherent receiver

In this chapter, the digital coherent receiver is analyzed more in detail. Its
huge impact is by now clear, given by the combination of coherent detection and
digital signal processing (DSP) techniques. Just to cite the main advantages,
it allows to move towards higher-order modulation formats, e.g., phase-shift keying
(PSK) and quadrature-amplitude modulation (QAM). This is made possible thanks
to the ability of efficiently estimating the carrier and phase of the incoming signal
in the digital domain. In addition, because the information on the phase of the
field is preserved, it is possible to mitigate the impairments the signal suffers from
by means of proper DSP techniques.

In order to have a better understanding of all these aspects, the principles of
coherent detection will be looked further into, so as to arrive to the description
of the phase-diverse and polarization-diverse homodyne receiver, which allows to
introduce also the intradyne receiver. This type of receiver is the one commonly
used today and also the enabler of the techniques which are the subject of this
work.
After that, a brief description of the DSP chain implemented within the receiver
is supplied. Particular attention is given to the description of the digital filtering
techniques, which allow for the compensation of linear impairments, e.g. CD, PMD,
PDL and filtering effects along the line.
To conclude, the digital back-propagation (DBP) algorithm is presented, which
manages to compensate NL effects, too. Together with its theoretical description,
some examples of results are presented, both from a simulation and experimental
environment.

The main references for this chapter are [7] and [8].
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3.1 Principle of coherent optical detection
The working principle of coherent detection is that of extracting the complex
envelope of the field. This can be performed by combining the signal itself and
another continuous-wave signal, called local oscillator (LO).

Two of the main types of coherent detection available are heterodyne detec-
tion and homodyne detection, to which the concepts of phase-diversity and
polarization-diversity will be added at the end, together with the third type of
coherent detection: intradyne detection.

3.1.1 Configuration
In order to understand the basic configuration of the coherent receiver, it is funda-
mental to go back to the operation performed by photodiodes, i.e., a conversion of
the input optical power into an output electrical current.

Let us consider the optical field in its analytic signal notation and on one po-
larization for simplicity:

Ê(t) = E(t)ejωst (3.1)

where E(t) is the complex envelope and ωs the angular frequency.
When using a photodiode to detect the optical field, its functioning is described by
Eq. (2.6). Because the power of the signal is P (t) = |Ê(t)|2, all of the information
on the phase gets lost. So, in order to detect the whole complex envelope, some
modifications are required.

Let us also define the LO in the same notation as

ÊLO(t) = ELOejωLOt (3.2)

and consider it aligned to the optical field for now. If these two fields are summed
together before impinging on the photodiode, then the generated current can be
written as

I(t) ∝ |Ê(t) + ÊLO(t)|2 (3.3)

which can be further expanded as

I(t) ∝ |Ê(t)|2 + |ÊLO(t)|2 + 2ℜ(Ê(t)Ê∗
LO(t)) (3.4)

where [ ]∗ and ℜ denote the complex conjugate and real part operators. Note that
the proportionality coefficient is given by the photodiode responsivity R, as defined
in Eq. (2.7).
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Let P (t) = |E(t)|2 and PLO = |ELO|2 be the power of the optical signal and of the
LO, respectively. The expression for the current becomes

I(t) ∝ P (t) + PLO + 2
ñ

P (t)PLO cos (∆ωt + θsig(t)− θLO(t)) (3.5)

where ∆ω = |ωs − ωLO|, θsig(t) is the phase of the optical field and θLO(t) is the
phase of the LO, basically its phase noise.

It has been proven that by means of this procedure, it is possible to extract
the beat of the optical field and the LO. However, the first two terms from Eq.
(3.5), called direct-current (DC) components, are not interesting from the point of
view of coherent detection. Hence, two ways are possible to eliminate them.
The first one consists of using the PLO term as an amplifying term, which permits
to have the beat term much higher than the DC component.
The second one, instead, consists in a technique called balanced detection. The
idea is that of having two different photodiodes: on the first one, the impinging
field is Ê(t) + ÊLO(t), whereas on the second one Ê(t) − ÊLO(t). The resulting
currents are:

I1(t) ∝ P (t) + PLO + 2
ñ

P (t)PLO cos (∆ωt + θsig(t)− θLO(t))

I2(t) ∝ P (t) + PLO − 2
ñ

P (t)PLO cos (∆ωt + θsig(t)− θLO(t))
(3.6)

Therefore, by subtracting them, the final output current is

I(t) ∝ 4
ñ

P (t)PLO cos (∆ωt + θsig(t)− θLO(t)) (3.7)

The final result is that of having only the beat between the optical field and
the LO. In particular, Eq. (3.7) can be used to implement the two types of
coherent detection introduced at the beginning of this section, i.e., heterodyne
and homodyne detection. Figure 3.1 shows the basic configuration for coherent
detection.

3.1.2 Heterodyne detection
The first techinique described is heterodyne detection. This type of coherent
detection refers to the case in which |∆ω| ≫ 2π

T
, where T is the symbol time of the

signal. This means that the field is down-converted to an intermediate frequency
ωIF and the complex envelope information is preserved, without spectral folding.
Figure 3.2 shows this process. Let us recall that the phase of the optical field has
been defines as θsig(t). It is necessary to remember that this phase is composed of
two terms, namely the phase modulation θs(t) and the phase noise of the optical
source θsn(t). Hence, the total signal phase is given by θsig(t) = θs(t) + θsn(t). By
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Figure 3.1: Configuration of the coherent receiver that measures the beat between
the signal and the LO. Balanced detection eliminates the dc component and
maximizes the beat signal, as in [7].

Figure 3.2: Spectra of (a) the optical signal and (b) the down-converted IF signal.
By setting the LO frequency close to the signal frequency, we can obtain the IF
spectrum shown in (b), as in [7].

combining this phase noise with the one of the LO, it is possible to separate the
contributions of the phase modulation (in which we are interested) and the total
phase noise, i.e., θn(t) = θsn(t)− θLO(t). In this way, the output current from the
balanced detector, according to Eq. (3.7), can be re-written as

I(t) ∝ 4
ñ

P (t)PLO cos (ωIF t + θs(t) + θn(t)) (3.8)

What is more, the complex envelope of the current I(t) is

Ic.e.(t) ∝ 4
ñ

P (t)PLOej(θs(t)+θn(t)) (3.9)

which is basically the complex envelope of the optical field, with the exception of
the phase noise term. For proper heterodyne detection, then, a phase-locked loop
(PLL) is required at the intermediate frequency stage, so as to compensate for the
phase noise.
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3.1.3 Homodyne detection
If heterodyne detection brings down the signal to an intermediate frequency ωIF ,
homodyne detection refers to the case in which ∆ω = 0, or equivalently in which
such intermediate frequency is ωIF = 0.

By doing so, the current which is generated from the balanced detector results to
be

I(t) ∝ 4
ñ

P (t)PLO cos (θsig(t)− θLO(t)) (3.10)

Eq. (3.10) basically performs the scalar product between the optical field and the
LO. The outcome is that only one quadrature component is measured and the full
information on the complex envelope is not available at the receiver at the same
time. In addition, for the whole system to work, it is required that the LO phase
noise and the optical field phase noise are equal. This is achieved thorugh an opti-
cal phase-locked loop (OPLL), which increases by a lot the complexity of the system.

It needs to be specified, though, that the advantage of homodyne detection with
respect to heterodyne detection lies in the fact that the signal generated by the
former is a base-band signal. Thus the receiver has to deal with a much smaller
bandiwdth than that in the former case (which is at least twice the size). An
example with a PSK signal is presented in Figure 3.3.

Figure 3.3: Comparison of the electrical spectra at the optical detector output
for homodyne and heterodyne detection of a PSK signal, as in [1]

3.1.4 Phase and polarization diversity
Given that one of the main limitations associated to the homodyne detection is that
only one quadrature component can be detected at a time, a solution is supplied
by the concept of phase-diversity.
Up to now, only one LO has been considered, with the addition of the 3-dB coupler,
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to introduce a rotation of π between the two copies of the LO itself.
However, in the case of homodyne detection, this allows to detect only one of the
two quadrature components. Phase-diversity consists in adding one more LO, which
is rotated by π/2 with respect to the other one. Such rotation can be introduced
by making use of another optical device called 90° optical hybrid. Furthermore,
two balanced detectors are used, i.e., one for each LO. The overall configuration is
reported in Figure 3.4.

Figure 3.4: Configuration of the phase-diversity homodyne receiver using a 90◦
optical hybrid. The in-phase component and the quadrature component of the
signal complex amplitude are obtained simultaneously, as in [7].

In this case, the fields impinging on the photodiodes are:

Ê1(t) = Ê(t) + ÊLO(t)
Ê2(t) = Ê(t)− ÊLO(t)

(3.11)

for the first balanced detector, and:

Ê3(t) = Ê(t) + jÊLO(t)
Ê4(t) = Ê(t)− jÊLO(t)

(3.12)

for the second one.

After that, naming the two currents at the output of the balanced detectors
II(t) and IQ(t), it is possible to write

II(t) ∝ 2
ñ

P (t)PLO cos (θsig(t)− θLO(t))

IQ(t) ∝ 2
ñ

P (t)PLO sin (θsig(t)− θLO(t))
(3.13)

Finally, the complex envelope can be restored:

Ic.e.(t) = II(t) + jIQ(t) (3.14)
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Eq. (3.14) demonstrates how phase-diversity still allows to down-convert the signal
to base-band, but avoids the folding of the spectrum, which brings to the detection
of only one quadrature component.

This was the definition of phase-diverse homodyne receiver. However also
the intradyne receiver is possible and similar to the homodyne one. The term
"intradyne" refers to the fact that, as long as the intermediate angular frequency
∆ω is below 2π

T
, the whole configuration still works out. Plus, both heterodyne and

intradyne detection manage to extract the full information on the signal complex
envelope. However, intradyne detection makes the signal base-band (or brings it
around a small intermediate frequency). Hence it is preferrable with respect to
heterodyne detection, since the receiver has to deal with a much smaller bandwidth.

All of these aspects are true, but one element is still missing. The optical field
has so far been considered on only one polarization. Moving towards the dual
polarization nature of the signal and also considering the fact that the optical field
and the LO are not necessarily aligned, due to birefringence, the last concept to
introduce is polarization-diversity.
The idea is to use two phase-diverse homodyne receivers, after dividing the incom-
ing signal into two orthogonal polarizations with a polarization beam splitter
(PBS). Then, from each of them the quadrature components are extracted.
Figure 3.5 shows the configuration of the polarization-diverse and phase-diverse
homodyne receiver.

Figure 3.5: Configuration of the homodyne receiver employing phase and po-
larization diversities. Two phase-diversity homodyne receivers are placed in the
polarization-diversity configuration, where a common LO is employed, as in [7].
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3.2 DSP in coherent receivers
The four extracted components are then the input to the DSP chain which follows
the coherent detection stage. Since all of the signal processing techniques are
implemented in the digital domain, the first element of the chain is the ADC, to
convert the four components from analog to digital.
The configuration of the system is presented in Figure 3.6.

Figure 3.6: Basic configuration of the digital coherent receiver. Four outputs
from the homodyne receiver consisting of phase and polarization diversities are
sent to the ADC/DSP circuit. These outputs include all the information of the
complex amplitude of the signal, and linear impairments are compensated for in
the DSP core, as in [7].

The task of the DSP chain is that of restoring the complex envelope of the input
signal in order to be able to decode the originally transmitted data.
Of course, all of these operations need to be performed taking into account the
phase noise introduced by the transmitter laser and LO, as well as the polarization
multiplexing induced by the fiber birefringence and all the other impairments intro-
duced so far. Hence, it is fundamental to have proper control of such time-varying
parameters in the digital domain.
Besides, DSP algorithms improve system stability with respect to other optical
control methods (e.g., OPLL), allowing to take them out and eliminate part of the
complexity which made coherent detection systems hard to implement.

Figure 3.7 reports the block scheme of the DSP chain in the coherent receiver.
The first three blocks are necessary to have the four electrical signals, i.e., the I/Q
components on both polarizations, characterized by an integer number of samples
per symbol and synchronized with one another.
What is more, the normalization and orthogonalization stage is in charge of com-
pensating for the possible variation in the responsivity values of the two balanced
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Figure 3.7: Block scheme of DSP chain in coherent receivers, as in [8]

detectors, as well as the imperfections which might be present in the 90° optical
hybrids.

Then, digital filtering is applied. Its task is that of compensating for all the im-
pairments affecting the signal during its propagation. As usual, CD, PDL, PMD
and all those filtering effects originating from devices along the line and inside the
receiver itself can be mentioned.

Finally, going back to Eq. (3.13), the eventual difference between the transmitting
laser frequency and LO frequency, together with the phase noise of the two lasers
need to be compensated for. For this reason, a block implementing frequency offset
and carrier phase recovery is required.

The last block in the DSP chain, reported as "symbol estimation and FEC" refers
to the stage at which forward error correction (FEC) decoding is applied, if present,
and a decision is made over the received symbols. FEC refers to signal processing
techniques which add some redundancy in the transmitted data in order to be able
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to detect and correct potential transmission errors at the receiver side.
Several techniques exist and with the advent of soft-decision FEC (SD-FEC) (e.g.,
low parity density codes (LDPC), turbo codes and polar codes) most modern
optical fiber communication transceivers make use of binary SD-FEC’s based on a
bit-interleaved coded modulation (BICM) structure.
Even though this falls out of the scope of this work, it is still mentioned since a
couple of experiments will be presented in the following chapters. Indeed, obtaining
post-FEC metrics, such as bit error rate (BER), becomes prohibitive. The reason
lies in the fact that post-FEC BER’s are generally very low (e.g., 10−15) and a lot
of samples would be required.
Hence, pre-FEC metrics are required. A good metric is the generalized mu-
tual information (GMI), expressed in bit/symbol, representing the number of
information bits per symbol that can be reliably transmitted over the channel.
Furthermore, it proves to be a good metric especially for codes based on BICM [9].
This aspect justifies the use of GMI as main metric to evaluate the system perfor-
mance during the experiments which have been carried out.

For the purpose of this work, digital filtering is the most interesting aspect.
Therefore, the details related to it are presented in Sec. 3.3 and Sec. 3.4.

3.3 Linear impairments mitigation

In this section, the equalization of linear transmission impairments is discussed.
It is convenient to separate the contribution of polarization-independent (e.g., CD)
and polarization-dependent impairments (e.g., PMD, PDL, birefrigence).
In this way, it is possible to have two separate blocks whose adaptation rate can
be even very different. Indeed, for a fixed optical path the value of cumulated CD
is basically fixed, whereas polarization varies on a much faster time scale.
Hence, the block in charge of CD compensation can implement a fixed equalizer in
order to compensate for a large amount of CD. This allows to have an equalizer
whose tap coefficients do not need frequent updating and relieves the following block
of large CD compensation, since only the residual CD needs to be accounted for.
What is more, this also allows to have the equalizer characterized by a significantly
lower number of taps with respect to the fixed CD compensation stage.
Figure 3.8 shows the general block scheme of the digital filtering stage in a DSP
chain.
On the other hand, the polarization-dependent block is implemented as 2×2
butterfly-structured finite impulse response (FIR) filters. This type of struc-
ture takes into account also the interaction of the two polarizations and tries to
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Figure 3.8: Block scheme of the digital filtering stage in a DSP chain. The two
blocks can also be exchanged, thanks to system linearity. As in [8]

compensate for it, i.e., polarization de-multiplexing. Note that if the first CD-
compensating stage is accurate, the FIR filters can be characterized by a few
number of taps, generally in the order of a few tens.

Before going through the techniques used to equalize linear transmission impair-
ments, it is useful to have a general understanding on FIR filters functioning.
Figure 3.9 illustrates the basic configuration of a FIR. The filter is composed of k

Figure 3.9: Basic configuration of a FIR filter, as in [7]

memory elements, which delay the input signal x(n) by multiples of T/m, being m
the oversampling factor.
Let x(n) be the vector of these delayed inputs and ci the tap coefficients by which
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each input gets multiplied (i = 0,1, ..., k − 1), i.e.,

x(n) = [x(n) x(n− 1), ..., x(n− k + 1)]T (3.15)

c = [c0 c1, ..., ck−1]T (3.16)
According to this notation, the output y(n) can be written as

y(n) = cT x(n) (3.17)

The tap coefficients c thus define the impulse response of the filter itself and its
discrete Fourier transform (DFT) represents the transfer function.
Hence, the proper design and adaptive control of such coefficients allow to implement
the filters needed to compensate for the signal transmission impairments.

3.3.1 Chromatic dispersion compensation
As for CD compensation, FIR filters can be efficiently implemented both in the
time domain [8] and frequency domain. The latter are easily implemented thanks to
efficient algorithms to compute the DFT of a signal, e.g., the fast Fourier transform
(FFT) algorithm. Plus, Eq. (2.19) gives the expression of the CD transfer function
HCD(f). Therefore, the implementation of a FIR filter to compensate CD in the
frequency domain is simply achieved by making sure that the tap coefficients are
characterized by values which represent the inverse of the transfer function, i.e.,
HCD(f)−1. Its expression is:

HCD,eq(f) = HCD(f)−1 = ej2π2β2f2z (3.18)

Note that the term f0 is not present in this expression since the complex envelope
of the signal (or WDM channel of interest) is considered.

Finally, the minimum number of taps kmin in the FIR filter can be computed.
A good estimation of the channel memory in symbols results to be

µ = λ2c−1 Rb

M2 DL (3.19)

where Rb is the bit rate, M is the number of bits per symbol carried and L is
the total distance over which the signal propagated. Considering the number of
samples per symbol nsps at the receiver side, the minimum number of tap coefficients
required is given by

kmin = nspsµ (3.20)
Note that the complexity of a FIR filter scales with the number of taps used. For this
reason, considering practical implementations (e.g., application specific integrated
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circuit, ASIC), if too many taps are required, a block-by-block processing is possible.
A simplified block scheme of the whole compensation process is presented in Figure
3.10, making use of parallel-to-serial (P/S) and serial-to-parallel (S/P) converters
and DFT/IDFT operations for block-by-block processing.

Figure 3.10: CD compensation block scheme. IDFT is the inverse DFT converting
the signal from the frequency to the time domain. H is the transfer function of the
filter. As in [7].

3.3.2 Adaptive equalization
Moving to the polarization-dependent impairments, they can be modeled according
to a time-varying and frequency-dependent Jones matrix. Thus, the goal is to have
the equalizer implementing the inverse of the Jones matrix. Since the polarization
variation time scale is very fast, the tap coefficients of the equalizer need to be adap-
tive. The main focus of this section is on polarization-dependent effects, however
it is important to recall the fact that the adaptive equalizer also compensates for
eventual filtering effects along the line and residual CD, just to cite a couple of them.

In order to update the tap coefficients and make them adaptive to the channel
conditions, some algorithms are needed. A couple of examples are the constant
modulus algorithm (CMA) and least mean-squared (LMS) algorithm.

Let the notation be the same as in Figure 3.8. In this way, the two output signals
can be written as

xout(n) = hT
xx · xp(n) + hT

xy · yp(n) (3.21)

yout(n) = hT
yx · xp(n) + hT

yy · yp(n) (3.22)
where hxx, hxy, hyx and hyy are the k × 1 tap coefficient vectors of the four FIR
filters composing the adaptive equalizer.

CMA is a possible choice to adapt these coefficients. It works well for modulation
formats whose symbols have magnitude equal to one (e.g., QPSK) and attempts to
optimize the tap coefficients so as to minimize the errors in MSE sense, defined as

ϵx = 1− |xout(n)|2 ϵy = 1− |yout(n)|2 (3.23)
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by making use of a stochastic gradient algorithm with learning rate η. The updating
equations then become

hxx → hxx + ηϵxxout(n) · x∗
p(n) (3.24)

hxy → hxy + ηϵxxout(n) · y∗
p(n) (3.25)

hyx → hyx + ηϵyyout(n) · x∗
p(n) (3.26)

hyy → hyy + ηϵxyout(n) · y∗
p(n) (3.27)

The other solution is LMS. The process is the same as CMA, but the equations
to update the tap coefficients are

hxx → hxx + ηϵx · x∗
p(n) (3.28)

hxy → hxy + ηϵx · y∗
p(n) (3.29)

hyx → hyx + ηϵy · x∗
p(n) (3.30)

hyy → hyy + ηϵx · y∗
p(n) (3.31)

where the errors are defined as

ϵx = dx(n)− xout(n) ϵy = dy(n)− yout(n) (3.32)

and dx(n) and dy(n) can be either pilot symbols, if a training phase is present
during the equalization (data-aided LMS or DA-LMS), or the closest symbols to
xout(n) and yout(n). In this last case, the algorithm is said to be decision-directed
(DD) LMS, since dx(n) and dy(n) are not known symbols, but the symbols decided
according to the previously equalized ones.

3.4 Non-linear impairments mitigation
Up to this point, only linear impairments have been considered. However, for
applications involving WDM systems and higher power levels per channel (e.g.,
a few milliwatts), NL effects arise. SPM, XPM and FWM are some examples
and have already been discussed in Chapter 2. It is thus necessary to have some
mechanism which is able to compensate also for those effects.
The solution is the digital back-propagation (DBP) algorithm [10].

The idea is relatively simple. DBP tries to retrieve the originally transmitted signal
starting from the received one. This is achieved by back-propagating the received
signal into a digitally reconstructed optical fiber, with all of its main paramenters
(i.e., α, β2 and γ) with opposite sign.
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The result is that of having the signal propagating into a fiber which compensates
for the impairments introduced during the original propagation. What is more,
both CD and NL effects are simultaneously compensated. Hence, this algorithm
can be implemented in place of the CD compensation stage, composed of a fixed
frequency-domain equalizer (see Sec. 3.3.1).

In this section, a theoretical presentation of the DBP algorithm is given. Then,
a few examples of result are reported, both in a simulation and experimental
environment. This is done especially because DBP is one of the key elements for
the techniques presented in Chapter 5. Therefore, it is useful to understand how it
works.

3.4.1 Digital back-propagation
The propagation of a signal inside an optical fiber is described by the Manakov
equations, as in Eq. (2.27). Such equations have two different contributions, one is
linear and the other is NL. Therefore, it is possible to re-write them as

∂

∂z
E(t, z) = D̂{E(t, z)}+ N̂ {E(t, z)} (3.33)

where D̂ = (j β2
2

∂2

∂t2 − α) and N̂ = −j 8
9γ(|Ex(t, z)|2 + |Ey(t, z)|2) are the linear and

non-linear operators, respectively.
Since the whole equation is not completely linear, superposition of effects is not
valid and such contributions cannot be separated. In addition, no analytical solu-
tion exists. However, if a sufficiently short section of fiber is considered, then such
separation is possible with a small error and a numerical approach can be imple-
mented. The split-step Fourier method (SSFM) is the name of the algorithm
used.

Let us consider a single fiber span of length Lspan. The method consists of dividing
such span into smaller sections of length h. For each step, the linear part is
integrated in the frequency domain, which is made fast and efficient thanks to the
FFT algorithm. The field at frequency f and step i after this operation can be
written as

E(f, ih) = F{E(t, (i− 1)h)} · eD̂h (3.34)

where F is the Fourier transform operator.
Then, also the NL contribution is integrated, but in time domain. The final
expression for the field after the i-th step becomes

E(t, ih) = F−1{E(f, ih)} · eξN̂ h (3.35)
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where F−1 is the inverse Fourier transform operator, while ξ is a parameter between
0 and 1 which needs to be optimized in an empirical way and depends on dispersion
map, launched power and oversampling factor [10].

This is exactly what is done during DBP. In this case, the Manakov equations
become

∂

∂z
E(t, z) = D̂−1{E(t, z)}+ N̂−1{E(t, z)} (3.36)

where D̂−1 = (−j β2
2

∂2

∂t2 + α) and N̂−1 = j 8
9γ(|Ex(t, z)|2 + |Ey(t, z)|2) are the in-

verse linear and non-linear operators, respectively. DBP simply implements an
asymmetric SSMF backwards. Note, the name asymmetric derives from the fact
that first the linear part and then the non-linear one are integrated at each step. If
the integration of the linear part occurs half before and half after the integration
of the non-linear one, then the SSMF is said to be symmetric.

Finally, the step size is also an important parameter to consider. In the simplest
case, an equi-spaced approach can be adopted, i.e. h = Lspan/Nstep, being Nstep the
number of steps to perform. Nevertheless, something more elaborate can be done
taking into account the characteristics of the effects considered. An example is
the logarithmic step size [11], which considers the fact that the power level in a
fiber span has a logarithmic distribution, so smaller steps are used when the power
is higher (i.e., higher NL), and larger steps when power is lower. Its expression can
be written as

hi = − 1
2α

ln
C

1− (Nstep − i + 1)δ
1− (Nstep − i)δ

D
, i = 1, ..., Nstep (3.37)

where δ = (1− e−2αLspan)/Nstep and ln ( ) is the natural logarithm.

3.4.2 Simulation results
To prove the correct functioning of DBP, the algorithm is tested in a simulation
environment, using MATLAB.

In particular, the simulated system is a WDM system with 5 channels. Each of
them carries a PM-64QAM modulation format at a symbol rate of Rs = 64 GBaud.
In addition, the channel spacing is ∆f = 1.2Rs = 76.8 GHz.
The pulse is shaped by means of a Square-Root Raised Cosine (SRRC) filter char-
acterized by a roll-off factor ρ = 0.2.
Moving to the optical fiber link, it is composed of 10 spans of SSMF. The main
parameters are αdB = 0.21 dB/km, D = 16.7 ps/nm/km and γ = 1.3 1/W/km.
Each span is Lspan = 100 km long and EDFA’s are placed between spans. The gain
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of such optical amplifiers perfectly compensates for the losses along the span and
they introduce ASE noise with a noise figure F = 6 dB.

The goal of the simulation is to compute the maximum reach of the system when
using DBP at the receiver side. Besides, the maximum reach is computed consider-
ing a target GMI of 5.22 bit/symbol.
Hence, the propagation of the signal along the optical fiber is simulated and
the output is sent to the receiver DSP. Here, the signal is resampled at 2 sam-
ples/symbol and DBP is applied. Note that only the central WDM channel gets
back-propagated. This means that it is generally not possible to compensate for all
the NL impairments. Then, the signal goes through a matched SRRC filter and the
training sequence gets realigned. Adaptive equalization is performed according to a
DA-LMS algorithm for the training stage and DD-LMS for the tracking stage. No
frequency offset compensation is present, since no phase noise is present. However,
even if it was, the following phase recovery stage manages to track it as long as
it is characterized by a low enough value. In the end, phase recovery is applied,
according to a blind phase search (BPS) scheme, and the symbols are decoded. At
this point GMI is computed.

Several power levels have been tested, to check how high the launched power
can be, before NL effects kick in and start impairing the system way too much.
Indeed, the power level for each channel Pch has been swept in the range -2 dBm
to 10 dBm. What is more, the parameter ξ has been optimized for each DBP
application and a different number of steps per span has been considered. Nstep has
been set equal to 1, 2, 4, 8 and 16, with logarithmic spacing as defined in Eq. (3.37).

Figure 3.11 shows the results obtained. In order to be able to make comparisons
and draw conclusions, also the case in which no DBP is applied is reported. In this
way, it is possible to appreciate how DBP allows for a higher maximum reach.
Of course, no DBP means that only fixed CD compensation is performed.
Let us recall that theoretically, if no NL effects were present, the maximum reach
of an optical fiber communication system would increase with power.
In particular, for optically amplified multi-span systems, such as the one considered
in this simulation, the increase is linearly proportional to the launched power.
This is coherent with what happens for the channel powers from -2 dBm up to
around 1 dBm. Furthermore, no difference can be noticed between no-DBP and
DBP cases. The reason which lies behind this fact is that up to that point the
system can be assumed to be linear.
Hence, only CD compensation is enough, as no strong NL effects occur. Both fixed
CD compensation and DBP work.
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Figure 3.11: Maximum reach for a WDM system with 5 channels and 64 GBaud
symbol rate, when using DBP algorithm at receiver side, for different values of Pch

and Nstep.

However, as power increases, NL effects become stronger and stronger. The linear
increase in maximum reach versus power stops and the curves begin to bend.
Indeed, after a specific channel power level, the maximum reach starts decreasing.
This is a clear example of how fiber non-linearities represent one of the major
impairments for fiber communications when power levels are high. Just to have
numerical values, in the case in which only CD is compensated for, the maximum
reach for Pch = -2 dBm is around 300 km. For Pch = 10 dBm, instead, it goes down
to 168 km, i.e., a loss of 2.5 dB. An optimal power, though, exists in the middle.
For no-DBP case, it is 4 dBm and corresponds to a reach of 754 km.

It is evident how DBP manages to compensate for non-linearities and leads to
higher launched powers and system reach. Although the bending of the curves is
always present, since for increasingly higher power levels DBP does not manage to
keep up, the peak moves towards higher Pch values. This improvement is even more
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pronounced when a larger number of steps per span in the algorithm is performed.
Of course, the trade off is the complexity of the algorithm itself.
Table 3.1 reports all the results of interest. In particular, the gain refers to the
gain in maximum reach with respect to the case in which no DBP is performed.

Maximum reach [km] Pch [dBm] Gain [dB]
No DBP 754 4 0

DBP - 1 step/span 776 4 0.12
DBP - 2 step/span 809 4 0.31
DBP - 4 step/span 854 4 0.54
DBP - 8 step/span 914 5 0.84

DBP - 16 step/span 977 5 1.13

Table 3.1: Maximum reach when applying no DBP and DBP with different
number of steps per span, along with the maximum channel power associated to it.
Also the gain with respect to the case in which no DBP is performed is reported.

Note that when using DBP a gain up to 1.13 dB can be achieved. This translates
into a maximum reach up to 220 km higher with respect to the no-DBP case. To
sum up, DBP algorithm works well when NL effects need to be compensated. For
now, this has been verified for simulations only, though.

3.4.3 Experimental results
In this last section, DBP is applied in the post-processing of data collected in a
real long-haul transmission experiment, performed in the Photonlab at Politecnico
di Torino [12]. The experimental set-up is reported in Figure 3.12.

At the transmitter side, a WDM signal with 31 channels is generated. Each channel
is characterized by a symbol rate Rs = 16 GBaud and a spacing ∆f = 25 GHz.
The central channel, which is also the channel under test, is generated through an
ECL laser with a linewidth lower than 100 kHz. The other 30 interferring channels,
instead, through DFB lasers. The shape of the pulses is given by a SRRC filter
with roll-off ρ = 0.15.
The WDM signal is then transmitted onto a recirculating loop. Such loop structure
is composed of four 80 km spans of G.652 SMF.
The main parameters of the fiber are αdB = 0.2 dB/km, β2 = -21.27 ps2/km and
γ = 1.3 1/W/m. Each span is then terminated by an EDFA with noise figure F =
5.2 dB, whose gain fully recovers span loss.
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Figure 3.12: Set-up of the experiment, as in [12]. Note that in this case the spans
are 4×80-km SSMF.

At the receiver side, a tunable optical filter extracts the channel under test, which
gets mixed with another ECL laser. Its linewidth is once again lower than 100 kHz.
Finally, the four outputs of the coherent receiver are sampled and converted into
the digital domain by means of an oscilloscope, working at 50 GSample/s.

The collected data are processed offline. They are down-sampled to 2 samples/sym-
bol and DBP is applied to the channel under test. The frequency offset gets coarsely
recovered and the signal gets equalized with a LMS-based adaptive equalizer. Fi-
nally, phase recovery is implemented according to a BPS-ML (BPS followed by
maximum likelihood) algorithm.

The goal of this experiment is to show how DBP helps improve the resulting GMI of
the signal in such scenario. In particular, two cases are considered: no DBP case, in
which only fixed CD compensation is applied before equalization and DBP-2 case,
in which DBP with 2 step/span is applied. The parameter Nstep has been chosen
equal to 2 since it is a commonly used value and represents a good trade-off between
performance and complexity, given the long link to back-propagate. Indeed, the
signal has been propagated over 5 recirculations, corresponding to a total of 20
80-km spans and a resulting transmission distance of 1600 km. As for the channel
power Pch, it has been swept in the range Pch ∈ [-5, -4, -3, -2, -1.5, -1, -0.5, 0, 1 ,
2] dBm. What is more, given that 5 waveforms are collected at the end of each
loop, the median GMI is considered so as to cut outliers out. Figure 3.13 reports
the results obtained.
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Figure 3.13: GMI versus distance when no DBP (blue) and DBP with 2 step/span
(orange) is applied.

Note that the represented points are chosen considering only the optimal power
among the tested ones, namely the power associated to the highest GMI for a
defined recirculation. Indeed, the GMI varies depending on the launched power
and with the distance. Figure 3.14 gives a representation of this fact, considering
the GMI after 5 recirculations.

It is evident that also in a real experimental scenario DBP allows for a huge
improvement in terms of performance. After the first recirculations, the GMI gain
is low, while it starts increasing after successive loops. It is coherent with what
was obtained during simulations. For short distances, NL effects do not impair the
system too much and the two cases are almost equivalent. For instance, at the
end of the first loop, the gain after using DBP is just 0.02 dB. However, moving
towards longer distances, the gain keeps increasing, reaching a value of 0.7 dB after
1600 km. Furthermore, depending on the target GMI, the algorithm allows to gain
at least 100 km in transmission distance.
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Figure 3.14: GMI versus channel power Pch after 5 recirculations. The optimal
power in this case is -2 dBm.
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Chapter 4

Optical performance
monitoring

4.1 Introduction
In this chapter, coherent optical fiber communication systems are considered within
a dynamically reconfigurable all-optical networks scenario.
Such networks introduce high flexibility by means of adaptive routing of optical
paths and switching of optical wavelengths. In addition, bandwidth efficiency is
required to meet the increasingly high bandwidth demand, which can be obtained
resorting to multilevel modulation formats. The enabler of both these aspects is
the digital coherent receiver, which has already been discussed in Chapter 3.
It performs intradyne coherent detection and allows for the processing of all the
data in the electrical domain, making use of DSP techniques.
Not only does it manage to compensate for all the linear impairments affecting the
signal while propagating in the fiber (see Chapter 2, Sec. 2.3), but it also enables
another important functionality: optical performance monitoring (OPM).

OPM entails evaluating the quality of a data channel by measuring its optical
properties without directly inspecting the original bit sequence.
Basically, it represents a "health" monitoring of the optical system and a potential
approach to enhance control and automatization of transmission and physical layer
fault management in optical transmission systems.
The adaptive equalization within the digital coherent receiver allows to compensate
for Chromatic Dispersion (CD), Polarization-Mode Dispersion (PMD), Polarization-
Dependent Loss (PDL) and bandwidth limitations, but it also allows to get an
estimation of such impairments. What makes this possible is the fact that the filter
impulse response of the equalizer relates to the inverse channel impulse response.
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Thus, in a weakly non-linear regime, it is possible to separate each individual
contribution simply through the processing of the equalizer tap coefficients.
The advantage of this approach lies in the fact that it does not decrease the signal
power and does not require external devices, such as Optical Spectrum Analyzers
(OSA) and tapping devices, granting a cost efficient and reliable in-service
estimation of impairments.

This leads to digital OPM, i.e., OPM techniques fully implemented in the digital
domain. It is the subject of this work and will be discussed in the following chapters.
In particular, the main references for this chapter are [13] and [14].

4.2 Digital Optical Performance Monitoring
Let us consider a coherent receiver as the one described by the schematic reported in
Figure 3.6. The four electrical signals, representing the four quadrature components,
are converted into the electrical domain by means of an ADC and sent into the
DSP block. Here, they go through clock extraction and retiming, a normalization
and orthogonalization stage and finally digital filtering is applied.
Digital filtering is composed of two parts, as described in Figure 3.8. At first, fixed
CD compensation is performed and then also adaptive equalization, according to a
four-complex-FIR-filter structure in a butterfly configuration.
This is the key point in the DSP chain for what concerns OPM. Indeed, the
complex tap coefficients of the adaptive equalizer are constantly updated according
to specific algorithms, e.g., CMA and LMS (see Chaper 3 Sec. 3.3.2). After some
time, such coefficents converge to an optimal value for the equalization process.
It is possible to represent these complex FIR filters with a 2×2 matrix W(n) with
n =1, 2,...,Ntap, where Ntap is the number of taps in the FIR filters. Each element
represents one of the four FIR filters constituting the adaptive equalizer, i.e.,

W(n) =
C
wxx(n) wyx(n)
wxy(n) wyy(n)

D
(4.1)

The matrix W(n) is the filter impulse response and converges to the inverse of
the channel impulse response, so as to compensate for it. It is exactly thanks to
this relation between the two impulse responses that it is possible to extract an
estimate of the main paramaters of interest.
It is, therefore, convenient to first give a description of how the channel is modeled
according to this matrix notation.
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4.2.1 Channel Model
In coherent optical fiber communication systems, the transmitted signal in the
frequency domain is in the form

s(f) = [sx(f) sy(f)]T (4.2)

where the subscripts x and y indicate the x- and y-polarization in the optical fiber.
Let us define the 2×2 Jones matrix of the optical channel as J(f) and the AWGN
noise vector as n(f). Neglecting all NL propagation effects, at the receiver side the
received signal can be written as

r(f) = J(f)s(f) + n(f)

=
C
Jxx(f) Jyx(f)
Jxy(f) Jyy(f)

D C
sx(f)
sy(f)

D
+
C
nx(f)
ny(f)

D
(4.3)

It is well-known by now that, during its propagation along the optical communi-
cation channel, the signal is affected by CD, PMD, PDL and filtering effects of
different nature. Hence, it is necessary to model J(f) accordingly.

Let us define the the electro-optical system scalar transfer function as H(f), the
PMD matrix as U(f), the PDL matrix as P(f) and the residual CD scalar factor
exp (j2π2β2,resf

2). The channel matrix can be written as

J(f) = H(f)e−j2π2β2,resf2P(f)U(f) (4.4)

Note that in this context β2,res is the amount of cumulated CD which has not been
compensated for during the first fixed CD compensation stage. Thus, its units are
simply ps2.

In particular, the PMD matrix can be modeled as

U(f) =
C
ej(ϕ+2πf∆τDGD)/2 0

0 e−j(ϕ+2πf∆τDGD)/2

D C
cos (α) sin (α)
− sin (α) cos (α)

D
(4.5)

where ϕ is a phase shift, ∆τDGD is the DGD between the fast and slow axes of
the fiber and α is the angle between the state of polarization of the signal sx and
the slow axis. Indeed, the second matrix in Eq. (4.5) is the Jones matrix of a
polarization rotation by an angle α.
Owing to its structure, U(f) is a unitary matrix. This means that

U†(f) = U−1(f)
| det U(f)| = 1

(4.6)
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where [ ]† denotes the conjugate transpose operator and det the matrix determinant
operator.

On the other hand, the PDL matrix P(f) can be modeled as

P(f) =
C
1 0
0 k

D
(4.7)

where k indicates the attenuation of one polarization with respect to the other
introduced by PDL. Hence, k is always a value between 0 and 1 and the PDL in
dB can be computed as PDLdB = |20 log10 (k)|. In addition, the PDL matrix P(f)
is Hermitian, i.e.,

P†(f) = P(f) (4.8)

Then, the signal r(f) goes through all the previously described DSP stages, up to
adapative equalization. The transfer function of the equalizer is given by the DFT
of its impulse response, that is

W(f) = F{W(n)}

=
C
Wxx(f) Wyx(f)
Wxy(f) Wyy(f)

D
(4.9)

where each element is the DFT of the single elements from W(n), i.e., F{wi(n)}
with i = xx, xy, yx, yy. Besides, given that the impulse response of the adaptive
equalizer approaches the inverse impulse response of the channel, the same applies
for their transfer function. It is, thus, possible to write

W(f) = J−1(f) (4.10)

which can be further expanded into

W(f) = H−1(f)e2π2β2,resf2U−1(f)P−1(f) (4.11)

Even more interesting is the fact that it is easily proved that the inverse transfer
function of the channel, represented by the matrix W(f), is characterized by the
same DGD, PDL and residual CD (but with opposite sign) as the original channel
matrix J(f). Plus, the inverse matrices share the same properties as the original
ones.

This aspect is of fundamental importance, because it means that, even though the
characteristics of the optical channel are not known at the receiver side, they can
be extracted by simply acting on the equalizer transfer function.
The only operations to perform are: extract the tap coefficients from the four FIR
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filters in the adaptive equalizer, take the DFT to obtain the transfer function and
perform some matrix operations in order to isolate the quantities related to the
impairments one is interested in monitoring.
Particularly, this last operation is made easier if one exploits the characteristics of
the matrices involved, such as their being unitary or Hermitian.

In the next sections, a few techniques to extract PDL, residual CD β2,res, electro-
optical system transfer function H(f) and DGD are presented.

4.2.2 PDL estimation
The first estimated paramter is the PDL. This computation is made easier con-
sidering the fact that the matrix P(f) is Hermitian and U(f) is unitary. Indeed,
this allows to isolate the contribution of the PDL from the other ones. For this
purpose, the matrix T(f) is introduced and defined as

T(f) = W†(f) ·W(f) (4.12)

Therefore, substituting in Eq. (4.12) the expression of matrix W(f), as reported
in Eq. (4.11), we obtain

T(f) = (H−1(f))∗e−2π2β2,resf2(P−1(f))†(U−1(f))†U−1(f)P−1(f)e2π2β2,resf2
H−1(f)

(4.13)
which can be further simplified applying the properties described in Eq. (4.6) and
Eq. (4.8) as

T(f) = |H−1(f)|2P−2(f) (4.14)

which completely eliminates the PMD and residual CD contributions.

To conclude, given the eigenvalues of the matrix T(f), namely λ1(f) and λ2(f),
the PDL can be estimated for each frequency f as

PDL(f) =
-----log10

A
λ1(f)
λ2(f)

B----- (4.15)

It is important to notice that in Eq. (4.14) there is still a dependence on the
system scalar transfer function. However, such dependence simply appears as a
multiplicative factor of the computed eigenvalues and gets simplified when the ratio
between the two is taken in Eq. (4.15).
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4.2.3 Residual CD estimation
The second step consists in isolating the residual CD contribution. In order to do
this, the inverse matrix of P−1(f), i.e., P(f), needs to be computed. This operation
can be carried out resorting to the similarity relation to diagonalize a matrix.
Recall that, given the previously computed eigenvalues λ1(f) and λ2(f) of P−1(f),
its inverse’s eigenvalues are λ−1

1 (f) and λ−1
2 (f). Hence, defining the diagonal matrix

D(f) as

D(f) =
C
λ−1

1 (f) 0
0 λ−1

2 (f)

D
(4.16)

and the matrix V(f) as the matrix whose columns are the eigenvectors of P−1(f),
then P(f) can be computed as

P(f) = V(f)D(f)V−1(f) (4.17)

At this point, the residual CD contribution can be isolated just by considering

det (W(f) ·P(f)) =
è
H−1(f)e2π2β2,resf2é2 det

1
U−1(f)

2
(4.18)

and the second expression in Eq. (4.6). Indeed, by computing the phase of the
determinant of such matrix product, one obtains

arg (det (W(f) ·P(f))) = 2 arg
1
H−1(f)

2
+ 4π2β2,resf

2 (4.19)

where arg is the argument operator to compute the phase of a complex number.
The result is then the sum of the phases of the system scalar transfer function and
the residual CD contribution. The last step is to eliminate the first term.

So as to do that, it is possible to take into account the fact that the phase of the
system scalar transfer function is an odd function around the origin. Thus, to cut
its contribution out, just a flipping and sum operation is needed, i.e.,

arg (det (W(f) ·P(f))) + flip{arg (det (W(f) ·P(f)))}
4 = 2π2β2,resf

2 (4.20)

where flip{ } is the operator inverting the order of the elements in a vector.

Note that Eq. (4.20) represents a parabolic function versus the frequency. For this
reason, the quantity β2,res can be obtained performing a parabolic interpolation of
the unwrapped phase and a proper normalization by 2π2.
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4.2.4 System scalar transfer function estimation
Starting once again from Eq. (4.18), the system scalar transfer function can also
be estimated or, to put it better, its squared magnitude.
It is enough to consider that the residual CD contribution is just a phase factor,
meaning that it is a complex number with magnitude equal to one and introducing
only a phase rotation. For this reason, if the magnitude of such quantity is
computed, the factor is taken out. This operation yields

|det (W(f) ·P(f))| =
---H−1(f)

---2 (4.21)

For what concerns this transfer function, it arises from any band-pass filtering that
occurs during the transmission on the communication link or low-pass filtering
during the demodulation process. However, it is necessary to precise that if one
really wants to estimate the real inverse system transfer function, the contribution
related to the shape of the transmitted pulses should be removed from it.
Finally, if the complex expression of H−1(f) is needed, its phase can be retrieved
from Eq. (4.19), by subtracting the estimated residual CD phase. Thus, the whole
transfer function can be written as H−1(f) = |H−1(f)|ej arg (H−1(f)).

4.2.5 DGD estimation
The last parameter to be estimated is then the DGD, related to PMD effects.
Given that all the previous quantities have been estimated, it is possible to fully
invert Eq. (4.11) and obtain the inverse PMD matrix U−1(f). At this point, the
DGD ∆τDGD(f) is estimated as

∆τDGD(f) =

------2
öõõôdet

A
1

2π

d

df
U−1(f)

B------ (4.22)

4.3 Simulation results
After having introduced all the main techniques to extract and estimate the pa-
rameters related to the major system impairments, some examples of result are
presented and discussed. In particular, as already done at the end of Chapter 3,
the algorithms are first tested within a simulation environment (MATLAB) and
then on experimental data.
Let us begin reporting a few simulation results. Of course simulations make every-
thing much easier, since there is complete control over what happens and allow to
insert all of the discussed impairments with the desired values.
Therefore, the goal of this section is that of introducing the previously discussed
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impairments with well-aimed values, so as to be able to check if the algorithms
manage to properly estimate them.

The system considered in this section is again a WDM system, but with 3 channels.
Each channel carries a PM-16QAM constellation at a symbol rate Rs = 64 GBaud
and is spaced from the others by ∆f = 76 GHz. The pulses are shaped according
to a SRRC filter characterized by a roll-off factor ρ = 0.2 and the channel power is
Pch = 0 dBm.
The optical link is composed of 4 spans of SMF with a span length Lspan = 100 km.
The main parameters of the optical fiber are αdB = 0.2 dB/km and β2 = -21.285
ps2/nm. Note that the parameter γ has been set to 0, since one of the requirements
for the algorithm to properly work is to operate in weakly non-linear conditions.
Hence, to make it easier, NL effects have been ignored for now.
At the end of each span is an EDFA, characterized by a noise figure F = 5 dB and
a gain G which perfectly compensates for the total span loss.

The signal is then resampled at 2 samples/symbol and goes into the DSP chain.
Here, fixed CD compensation and matched filtering are performed. For the same
reason as before, no DBP is performed on the signal.
Afterwards, the signal gets realigned and adaptive equalization is applied with
Ntap = 26. In particular, the tap coefficients update strategy consists of a DA-LMS
based training stage and a DD-LMS based tracking stage (see Sec. 3.3.2 for details).
Finally, phase recovery is carried out with a BPS-ML strategy and the symbols are
decoded.
It is important to mention that this is the overall basic system structure. However,
since the OPM algorithm is applied immediately after the adaptive equalization,
everything that comes after that is not really interesting from our perspective.

The first test consists in inserting a PDL element in the considered system. For
this purpose, a value of 3 dB for the PDL has been chosen.
Figure 4.1 shows the estimation result. In particular, only the values in the receiver
filter band are shown, i.e., f ∈ [-32 GHz, 32 GHz]. The reason is that the values
which belong in the frequency range beyond the receiver filter cut-off frequency are
not significant. Besides, this also allows to not consider the high-frequency values,
which get distorted by the MMSE solution, yielding unreliable estimates.

In any case, the estimation results to be very close to the nominal value. Indeed,
the estimate oscillates between the values 2.85 dB and 3.14 dB, with a mean value
of ⟨PDL(f)⟩ = 3.02 dB. The error of the mean value with respect to the nominal
one is just 0.02 dB. Even more interesting is the fact that the algorithm is capable
of estimating the correct PDL, independently on the polarization state of the signal.
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Indeed, the PDL value represents the maximum length of the loss interval the
signal may experience, but the real value is somewhere in the middle.

-30 -20 -10 0 10 20 30

f [GHz]

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

P
D

L
 [

d
B

]

Estimated PDL

Mean value

Nominal value

Figure 4.1: PDL estimation with OPM algorithm for a nominal value of 3 dB.

In order to test the residual CD estimation, instead, a CD quantizer has been
inserted before the DSP. In this way, a controlled error is introduced in the nominal
cumulated CD, generating a residual to be estimated.
For the considered case, the quantization grid has been built up considering a
maximum error of 25% of the nominal cumulated CD over a single span, i.e., -532
ps2, which translates into a step of 1064 ps2. Moreover, given the length of the
communication link (4×100-km spans), the grid range has been chosen from a
minimum of -16177 ps2 up to a maximum of -212.85 ps2.
After quantizing, the residual CD which is introduced in the system is equal to
-212.85 ps2 and the quantized CD, which is also the value used in the fixed CD
compensation stage of the DSP, is -8726 ps2.
From Figure 4.2 it is possible to learn that the estimate is in line with its nominal
value. Indeed, the nominal curve (dashed line) and the estimated one (solid line)
are basically overlapping. Furthermore, performing a quadratic fit to extract the
parameter β2,res, one gets an estimate equal to -213.5 ps2, which corresponds to an
error of 0.65 ps2.
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Figure 4.2: Residual CD β2,res estimation with OPM algorithm for a nominal
value of -212.25 ps2.

As for the electro-optical system transfer function, if no strong or particular
filtering effect is present, the result is basically a lowpass filter, centered at the
CUT frequency and with a flat response over the receiver filter bandwidth.
An example is shown in Figure 4.3.
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Figure 4.3: Electro-optical system transfer function estimation.
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However, a more interesting aspect regarding this type of estimation is that it can
be used to deduce if the filtering is tuned with the transmitter laser frequency or if
the signal has gone through a strong filtering effect. A few examples of these cases
will be presented.

Let us consider the case in which the signal gets filtered by a supergaussian filter
of order m = 3 and 3-dB bandwidth B3dB = 60 GHz, as reported in Figure 4.4.
In particular, the filter is detuned by ∆fdetun = 10GHz, meaning that its central
frequency differs from the signal’s central frequency by that amount.
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Figure 4.4: Power spectral density of the received signal (blue solid line) and the
supergaussian filter (red dashed line), with a detuning of ∆fdetun = 10 GHz.

Its effect on the estimation is that of creating two peaks at the borders of the
receiver filter bandwidth, as can be noticed from Figure 4.5. The reason is that the
equalizer tries to compensate for the bandwidth limitation that the filter introduces
in the signal, localized at the borders of its spectrum. Besides, the two peaks
are asymmetrical. This gives a hint on how the filter’s detuning is characterized.
Indeed, since the left peak is higher than the right one, it suggests that the filter’s
central frequency is located towards higher central frequencies, or easily speaking, it
is simply moved "to the right". Of course, the same applies for a negative detuning.
In that case, the two peaks are still present, but the right one is the highest, as
one would expect.
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Figure 4.5: Electro-optical system transfer function estimation when a detuning
of ∆fdetun = 10 GHz is applied.

The same can be noticed in the case with no detuning, but with just a bandwidth
limitation. Indeed, if the supergaussian filter is centered on the central frequency
of the signal, the estimate of the system transfer function is more symmetrical and
the two peaks have almost the same value.
An example is reported in Figure 4.6. Indeed, from the top figure, it is possible to
learn that the applied filtering is narrower with respect to the signal’s bandwidth.
This introduces a bandwidth limitation which is basically equal for both band
edges and results in two peaks, which are almost equal, in the estimated system
transfer function, as shown in the bottom figure.

A more synthetic way to monitor bandiwdth limitations is to consider the peak-
to-center (PTC) ratio. It is defined as

PTC = 20 log10

A
max (|H−1(f)|)
|H−1(0)|

B
(4.23)

The stronger the bandiwidth limitation, the higher the PTC. In the example, for
a 3-dB bandwith of the supergaussian filter equal to approximately 0.94·Rs, the
PTC results to be around 5 dB.
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Figure 4.6: Top: power spectral density of the received signal (blue solid line)
and the supergaussian filter (red dashed line) without detuning. Bottom: Electro-
optical system transfer function estimation without detuning.

The last parameter to estimate is the DGD. It is important to mention the fact
that the PMD is a stochastic effect, which depends on the polarization state of
the signal in the fiber. Hence its estimate is in general between 0 and the nominal
value. In order to have a more reliable PMD estimation, a continuous monitoring
over time should be performed. Here, just a single example is proposed.
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In this case, the parameter Dp has been set to 0.7812 ps/
√

km, which corresponds
to a maximum DGD of one symbol time, i.e., Ts = 15.625 ps. Figure 4.7 reports
the obtained result.
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Figure 4.7: DGD estimation normalized with respect to Ts obtained with OPM
algorithm, along with its mean value (0.55·Ts) and the nominal value 1 · Ts. The
PMD parameter Dp has been set to 0.7812 ps/

√
km

As already mentioned, the mean value, which is equal to 0.55·Ts, is around half
the nominal value. Even if this estimation is not really significant, it has been
presented for the sake of completeness.

This completes the section about simulation results. All of the discussed impair-
ments have been estimated and the results have proven to be in good agreement
with the expected ones. Now the OPM algorithm will be tested also in an ex-
perimental environment, so as to have a more robust validation of the results
obtained.
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4.4 Experimental results
The experimental results have been obtained applying the OPM algorithm to the
data collected from the experimental set-up already described in Sec. 3.4.3 and
shown in Figure 3.12.

In particular, the signal was propagated over 15 recirculations (i.e., 4800 km) and
the data have been collected for each of them. Plus, the channel power has been
varied in the range Pch ∈ [-5, -4, -3, -2.5, -2, -1.5, -1, -0.5, 0, 1, 2] dBm.
In order to have the best estimate possible, the estimate at the optimal power is
chosen for each recirculation, corresponding to the Pch value which is associated to
the highest GMI. What is more, since in each case (i.e., for each recirculation and
Pch) 5 waveforms have been collected, the median of the results is considered, so as
to have a unique value and cut out possible outliers.

Figure 4.8 reports the estimation result for the residual CD.
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Figure 4.8: Residual CD Dres estimated over 15 recirculations (4800 km) from
experimental data.

The residual CD turns out to cumulate linearly over successive recirculations. This
is coherent with what one would expect, since the value of β2 or, equivalently, D
inserted in the fixed CD compensator is generally a reasonable one, but it is not
optimized. In the considered case, the nominal value for G.652 SMF fibers is used
during the fixed CD compensation stage of the DSP, corresponding to β2 = -21.27
ps2/km or D = 16.7 ps/nm/km.
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This leads to a compensation which leaves out a certain amount of cumulated CD,
generating the residual. In particular, such residual is always the same and keeps
adding up at each recirculation, which explains the linear increase over the distance.
Just to give some numbers, the residual CD at the end of each loop is around -200
ps/nm, leading to a total uncompensated CD which goes from -200 ps/nm up to
around -3000 ps/nm over the whole propagation distance.

Then, also the PDL has been estimated and the result is shown in Figure 4.9. Since
the OPM algorithm estimates the whole PDL spectrum, the reported values in the
graph are the mean values over the frequency, i.e., ⟨PDL(f)⟩.
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Figure 4.9: Mean PDL estimated over 15 recirculations (4800 km) from experi-
mental data with OPM algorithms.

The PDL value results to be generally low, also owing to the fact that no specific
experimental set-up for PDL testing has been used. Furthermore, the presence of
the polarization scrambler in the recirculating loop randomly modifies the polariza-
tion state of the signal during the propagation, leading to an averaging effect on
the PDL itself. For the first loops, it is around 0.2-0.4 dB and then keeps growing
up to around 0.8 dB. Overall, it is characterized by an increasing behavior, which
is reasonable considering that the PDL effects combine as the signal propagates.

The same procedure has been applied for the DGD estimation. Once again, the
mean value ⟨∆τDGD(f)⟩ has been computed and reported with respect to the
transmission distance, as in Figure 4.10. As already done for the simulation results,
the DGD value is normalized with respect to the symbol time Ts = 62.5 ps.
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Figure 4.10: Mean DGD estimated over 15 recirculations (4800 km) from experi-
mental data with OPM algorithms.

Similarly to PDL, DGD estimation presents the same increasing behavior. In
particular, the estimated distance in time between the two polarizations doubles
when moving from the frst loop to the 15th one.
Indeed, the mean ∆τDGD goes from a minimum of 12.5% up to a maximum of 25%
of a symbol time over the successive recirculations. Also this result is in line with
what one would expect.

Finally, also the system scalar transfer function is estimated. For simplicity, as
discussed in Sec. 4.3, the potential bandwidth limitation is monitored according to
the PTC ratio, expressed in Eq. (4.23).
This operation makes it easier to monitor the filtering effects. From Figure 4.11
it is possible to learn that the PTC for each recirculation is always around 2 dB,
despite a few oscillations.
This translates into the fact that no strong bandwidth limitations are introduced
when the signal gets filtered. This is coherent with the experimental set-up.
Indeed, the optical bandpass filter in the recirculating loop has a relatively large
bandwidth because the WDM channels are widely spaced. This means that the
signal’s bandwidth is smaller (in the range of 16 GHz) when compared to the
transmitter or receiver bandwidth.
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Figure 4.11: PTC estimated over 15 recirculations (4800 km) from experimental
data with OPM algorithms.

To conclude this section about the experimental results, also an example of system
scalar transfer function estimation is reported. In particular, it is taken from the
last recirculation and shown in Figure 4.12.
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Figure 4.12: System scalar transfer function |H−1(f)|2 estimated over 15 recircu-
lations (4800 km) from experimental data with OPM algorithms.
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Of course, real filters are not ideal, as the ones used during simulations. This
explains the lack of symmetry. Besides, it is also necessary to consider the fact that
in general a frequency detuning is present between the lasers at the transmitter
and at the receiver side, which also contributes to the asymmetry of the estimated
spectrum. In any case, this result confirms what has been said about the system
while discussing the estimated PTC and is also very similar to the ones obtained
by means of simulations (e.g., Figure 4.3).

Generally speaking, OPM algorithms have proven to be capable of supplying a
good estimation of the parameters related to the major system linear impairments,
as well as draw some conclusions about the system itself (e.g., strong filtering effect
and detuning). In Chapter 5, a further step forward is taken, in order to implement
more advanced OPM techniques which are capable of exploiting both optical fiber
non-linearities and some optimization techniques related to machine learning.
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Chapter 5

Digital longitudinal
monitoring

5.1 Introduction
One of the concepts that has mainly contributed to the recent progress in optical
fiber communications is system identification (SI). Practically speaking, SI
attempts to supply a simplified model of the system itself or extract its internal
parameters based on boundary conditions, i.e., input and output data. This allows
for two main types of applications:

1. Possibility to predict the outputs of a system given an arbitrary set of input
data and vice versa. Generally with a lower complexity.

2. Extraction of system parameters, which enables its monitoring

Examples of the first application have already been presented in the previous
chapters. Let us recall the SSFM algorithm to numerically solve the NLSE or
the DBP algorithm to compensate for both CD and NL effects (Chapter 3 Sec.
3.4.1). However, the main subject of this work is related to the second application.
It involves the identification of the system parameters starting from the received
signals, in order to monitor the system status. Also in this case, some techniques
have been presented in Chapter 4, which allowed to estimate residual CD, PDL,
DGD and filtering effects. The aspect that all these parameters have in common,
though, is that they refer to cumulative quantities. Indeed, the assumption which
has been made when discussing the aforementioned techniques is that the system
works in a weakly non-linear regime. This means that in a mostly linear system,
superposition of effects holds and the single effects add up along the propagation
over the communication link. For this reason, at the receiver side, it is not possible
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to separate those effects and localize them along the line. Only the cumulated
effect can be estimated.

The step forward which is taken in this chapter regards exactly this aspect. Fiber
longitudinal parameters, e.g., longitudinal loss profile and CD maps, are also
necessary to increase the reliability of the system and maximize its capacity. Hence,
all the elements of a system get tested with respect to these aspects both before
and during their operation. Up to now, these tests have been performed by means
of analog devices, such as OTDR’s and OSA’s. However, this is a costly and
time-consuming operation, since these devices should be placed on-site and in a
span-by-span fashion. Thus, if this operation could be performed through a digital
SI approach, that would lead to a strong reduction of both capital and opera-
tional expenditures (CAPEX and OPEX). Optical systems would become "smarter"
and more automatization could be achieved for what concerns measurements and
fault detection. In general, these techniques to estimate fiber parameters in a
distributed way and relying only on DSP go under the definition of digital
longitudinal monitoring (DLM).

In this chapter, at first a brief description of the concept of neural network (NN)
is given, together with a couple of optimization algorithms related to it, namely
gradient descent and stochastic gradient descent algorithms. Then, the enablers
of DLM are presented, including the important role of fiber non-linearity and the
intrinsic similarity of NN’s and SSFM which inspired this technique. Finally, a
channel reconstruction method (CRM) to implement DLM and estimate the
longitudinal loss profile in a link is described together with some simulation results.

The main references for this chapter are [15] and [16].

5.2 Basic concepts
Before going into the details of the DLM algorithm, it is convenient to introduce
the concept of neural network and its learning process, since it will be exploited in
the following sections. Hence its basic elements are illustrated, along with their
functioning and the overall NN structure. Then, the learning process is discussed,
according to two optimization techniques: gradient descent (GD) algorithm
and stochastic gradient descent (SGD) algorithm, with particular attention
to the latter. Of course, an in-depth discussion over these topics falls out of the
scope of this work. Only the very basic concepts and general descriptions will be
given.
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5.2.1 Neural networks
Neural networks are computing systems belonging to the field of machine learning.
The latter refers to a branch of artificial intelligence (AI) and closely belongs to the
first application of SI described in the introduction of this chapter. In particular,
machine learning involves finding models, training such models with training data
to fit them and make some decision rules. The problem is that in general it is
hard to define a good model and write computer programs to "describe" the data.
Whence, the introduction of NN’s. Indeed, NN’s learn both the model and the
decision rules. Mathematically speaking, they simply implement a multidimensional
non-linear function, which attempts to predict the output of a system given a set
of arbitrary data.

Its most basic element is the neuron, whose structure is reported in Figure 5.1.

Figure 5.1: Perceptron structure, with inputs xi, weigths wi and bias b.

Its functioning consists in weighing different inputs in order to make a binary
decision. Basically, the inputs x = [x1, ..., xN ]T get weighed by a set of weights
w = [w1, ..., wN ]T , summed and compared to a threshold b, said bias. The output
is then either 0 or 1, i.e., a step function. In this particular case, the neuron is
also said perceptron. However, to improve the learning process, more elaborated
functions are applied to the linear combination of inputs and weights. So, generally
the output of a neuron can be written as

y = f
1
wT · x + b

2
(5.1)
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where · denotes the scalar product and f is a non-linear function, called activation
function, with a smoother behavior and better differentiability properties than
the step function.

The neuron is just the basic element in a NN. However, in order to make more
complex decisions, neurons are organized in layers and multiple layers compose the
whole NN. Then, neurons from one layer are connected to those of the successive
layer. In this way, the output of one neuron becomes the input to the next one.
Figure 5.2 gives a representation of the generic structure of a feed-forward NN.
Other types exist, buy they are of no interest for this discussion.

Figure 5.2: Generic structure of a neural network with multiple neuron layers,
also said feed-forward neural network.

It is clear, then, that the correct functioning of a NN depends on the value of
its weigths w and biases b. Hence, they need to be optimized according to some
optimization techniques. Plus, an indicator to monitor how the optimization process
is going needs to be introduced. In particular, the latter is generally referred to
as cost function, i.e., a function which evaluates the error between the inferred
output ŷ of the NN and the "correct answer" y given an input x. Among the most
common ones is the mean squared error (MSE) cost function, defined as

C(w, b) = 1
N

NØ
n=1
∥ŷn(xn)− yn(xn)∥2 (5.2)

Note that MSE is also the cost function used to optimize the tap coefficients in
adaptive equalizers (Chapter 3 Sec. 3.3.2).
For this purpose, the process to have the NN learn the optimal parameters is
composed of several steps: pick a set of training inputs, propagate them along the
NN, compute the cost function and apply an optimization algorithm to update
all the weights and biases so as to decrease the cost function. These optimization
algorithms are the subject of the next sections and belong to the gradient-based
learning approach.
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5.2.2 Gradient descent algorithm
Let us start by defining the problem. Given a function C(v), depending on several
parameters v = [v1, ..., vN ]T , the objective is that of finding the values for v which
minimize C(v). The discussion applies in general for a high number of parameters
to optimize, as in NN’s. However, for simplicity, two dimensions are considered to
explain the algorithm functioning, i.e., v = [v1, v2]T .

When the values of the parameters in v are changed by a small enough amount
∆v = [∆v1, ∆v2]T , the variation of C can be written according to its Taylor
expansion as

∆C(v) ≈ ∂

∂v1
∆v1 + ∂

∂v2
∆v2 (5.3)

Since the objective of the optimization algorithm is that of minimizing C(v), then
it is necessary to find ∆v such that ∆C(v) is negative. In a more compact notation,
given the gradient of C(v), defined as

∇C(v) =
C

∂

∂v1
C(v), ∂

∂v2
C(v)

DT

(5.4)

it is possible to write
∆C(v) ≈ ∇C(v)T ·∆v (5.5)

Now, let us suppose that the chosen variation of the parameters v is ∆v =
−η∇C(v), then Eq. (5.5) becomes

∆C(v) ≈ −η∥∇C(v)∥2 (5.6)

which is an always negative quantity. In particular, η is the learning rate and
needs to be small enough in order for the Taylor approximation to hold.
In conclusion, the update of the parameters v can be written as

v ← v − η∇C(v) (5.7)

and the whole algorithm goes under the name of gradient descent (GD) algorithm.
It can be proved that GD algorithm converges to a local minimum of the function
C and does not require the computation of second derivatives, i.e., Hessian matrices.
As already mentioned, this type of algorithm is used for the updating process of
the tap coefficients for dapative equalization, but it can also be used for the update
of weights and biases in a NN considering the cost function as the aforementioned
function C(v). However, the problem becomes computationally complex, since the
number of parameters to optimize in a NN is huge.
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5.2.3 Stochastic gradient descent algorithm
One issue related to the GD algorithm is that it becomes slow when the training
set of data becomes large. The reason is that all the inputs need to be propagated
and the gradient is computed only at the end, averaging over the whole training
set. This leads to the second optimization algorithm, which is a modification of
the GD, i.e., the stochastic gradient descent (SGD) algorithm.

The idea is simple. Instead of estimating the cost function gradient from all
the training inputs, such estimation is carried out considering only a subset of
inputs, called mini-batch. Therefore, if only a mini-batch xMB = [x1, ..., xM ]T is
considered, with M < N and N being the training set dimension, one expects that

1
M

MØ
m=1
∇C(xMB

m ) ≈ 1
N

NØ
n=1
∇C(xn) = ∇C(x) (5.8)

In other words, avering over the mini-batch yields a gradient estimate which ap-
proximates the gradient estimate obtained considering the whole training set x
(GD algorithm). This algorithm proves to be faster from a computational point of
view and takes out the need to download the whole training set. This is repeated
for each mini-batch, paying attention to the fact that a mini-batch cannot contain
the same elements which have already been used for another one. No overlapping
is allowed.

For the particular case of NN, the SGD algorithm is generally used. Of course, in
order to apply it, the computation of the gradient for all the weights and biases is
required. This is achieved by means of the back-propagation algorithm which
supplies simple expressions to compute all of these derivatives. In particular, the
idea is that of starting from the end of the NN and "back-propagate" the gradient
so as to compute all the others. A further discussion of this algorithm, though,
is not reported, since the system presented in Sec. 5.3 is slightly different from
traditional NN’s and a specific back-propagation algorithm is presented, starting
from DBP.

5.3 Distributed optical performance monitoring
After introducing all the basic concepts related to NN and gradient-based opti-
mization techniques, a channel reconstruction method (CRM) is presented,
so as to perform DLM. Hence, in this section the similarity between NN’s and
the structure of the DBP algorithm is highlighted, to justify the CRM method.
Then, an analytical description of such method is provided and a description of the
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important role of fiber non-linearity is given, in relation to the non-commutativity
property of the linear and non-linear operators.

5.3.1 NN-DBP parallelism
Two approaches are possible to implement SI techniques. The first one is said
black-box and an example is machine learning together with NN’s. It has already
been discussed how NN’s can be trained in order to implement a multidimensional
non-linear function which is capable of predicting the system outputs from the
system inputs. However, this type of approach is not really suitable for performance
monitoring purposes. Indeed, the term "black-box" refers to the fact that everything
one knows is related to the input/output of the system. It is in general very difficult,
if not impossible, to give an explanation of the learned parameters. Therefore,
though these methods are generally powerful, they are not useful for what concerns
useful system parameters extraction.
Nonetheless, optical fiber communications supply an interesting way to move from
a purely data-driven approach to a more structure-aware one. This is exactly the
second approach, i.e., a behavioral approach. It is simply necessary to notice
the similarity between the structure of a NN and that of the SSFM or, equivalently,
DBP algorithm. In particular, both structures involve a sequence of linear and
non-linear operations which is repeated in an iterative way and in a cascaded
fashion, as Figure 5.3 shows.

Figure 5.3: Similarity of DBP and NN structure. Cascaded blocks iteratively
implementing a linear operation (CD compensation/linear combination of weights
and biases) and a non-linear operation (non-linear phase rotation compensation
(NLPR)/activation function). Note: Sigmoid and ReLu are just examples of
activation function. Taken from [16].
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Therefore, this similarity allows for an easier physical interpretation of the learned
parameters (e.g., β2, γ etc) and the possibility to exploit the optimization techniques
which have been developed in the field of machine learning. Even more importantly,
it allows for a distributed performance monitoring of those parameters, e.g., the
longitudinal loss profile.

5.3.2 Problem formulation
Let us first recall the model for the propagation of a polarization-multiplexed signal
in an optical fiber. It is given by the Manakov equations, as in Eq. (2.27) and here
reported with some modifications:

∂

∂z
E′(t, z) = j

β2(z)
2

∂2

∂t2 E′(t, z)− α(z)E′(t, z)− jγ(z)8
9∥E

′(t, z)∥2
E′(t, z) (5.9)

where E′(t, z) = [E ′
x(t, z), E ′

y(t, z)]T is the Jones vector of the optical field char-
acterized by an instantaneous power of ∥E′(t, z)∥2 = |E ′

x(t, z)|2 +
---E ′

y(t, z)
---2. The

modification consists in introducing a spacial dependency on the main fiber pa-
rameters, namely α(z), β2(z) and γ(z). What is more, if the field with normalized
amplitude

E(t, z) = E′(t, z)e
s z

0 α(z′)dz′ (5.10)
is substituted in Eq. (5.9), then it is possible to merge together α(z) and γ(z). In
this way, all the contributions to the variation of the signal power can be imputed
to a single parameter γ′(z). Eq. (5.9) then becomes

∂

∂z
E(t, z) = j

β2(z)
2

∂2

∂t2 E(t, z)− jγ′(z)∥E(t, z)∥2E(t, z) (5.11)

where
γ′(z) = 8

9γ(z)e
s z

0 α(z′)dz′ (5.12)

This equation can be numerically solved making use of the SSFM, iteratively
computing first the linear part and then the non-linear one independently. To
retrieve the original transmitted signal, instead, DBP is available. In particular,
defining the linear and non-linear operators in Eq. (5.11) respectively as

D̂ = j
β2(z)

2
∂2

∂t2 (5.13)

N̂ = −jγ′(z)∥E(t, z)∥2 (5.14)
the basic DBP step to go from position zk to the position zk−1 is given by

Ê(t, zk−1) = Ê(t, zk)eN̂ −1∆zeD̂−1∆z (5.15)
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where N̂−1 = jγ′(z)∥E(t, z)∥2 and D̂−1 = −j β2(z)
2

∂2

∂t2 are the inverse linear and
non-linear operators. Plus, zk represents the position on the z-axis along the fiber
length, with k = 0,..., K and K being the total number of steps ∆z = zk − zk−1.
In particular z0 = 0 and zK = L, where L is the total link length. DBP consists
then in a cascaded structure of CD compensation and NL compensation. In the
CRM method, it will be used as the model for the inverse system of the optical
fiber and referred to as channel emulator. Besides, the target of the estimation
is also defined and results to be γ′(zk), for each k = 0, ..., K, which is related to
the longitudinal fiber loss profile.

Note that γ′(z) contains the integral contribution with respect to the fiber loss
α(z). Therefore, CRM does not estimate the fiber loss parameter itself, but its
integral version. Figure 5.4 gives a representation of this aspect.

Figure 5.4: Behavior of α(z) and its integral along a multi-span optical system.
The spikes in the curve representing α(z) are given by the amplifiers’ gains gs at
the end of each span. Taken from [15].

Once defined both a model for the optical link and the target of the DLM estimation,
it is necessary to formulate the estimation problem to solve.
Typically, in a plain application of DBP, the parameters γ′(z) and β2(z) are
unknown. They are set to reasonable values or according to the result of measuring
procedures. In this case, they are obtained as those values which better emulate
the channel so that the received signal goes back to the originally transmitted one.
Hence, the optimization problem can be formulated as a classical minimization
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problem in the sense of least squares. Practically speaking,

γ̂′(zk) = arg min I

= arg min
Ns−1Ø
n=0

...E(0, nT )− Ê(0, nT )
...2 (5.16)

where arg min is the operator which extracts the value which minimizes its argu-
ment, I is the cost function, Ns is the total number of samples in the signal, T is
the sampling interval, E(0, nT ) is the originally transmitted field at position z = 0
and Ê(0, nT ) is the output of the channel emulator. This problem can be solved
by means of the SGD algorithm and considering specific expressions for ∂I/∂γ′(zk),
which implement a procedure similar to the back-propagation algorithm in NN’s.

Note that the cost function I requires the knowledge of the transmitted signal
E(0, nT ). However, it can be reconstructed at the receiver side following the usual
demodulation process in the DSP. This relieves of the usage of training sequences
or dedicated monitoring channels.

5.3.3 Longitudinal loss profile estimation
The DLM algorithm for longitudinal loss profile estimation is composed of four
steps: data pre-processing, channel emulator, cost function computation
and gradient back-propagation.

At the input of the CRM the optical signal is polarization-demultiplexed. Hence,
it is composed of a vector for the x-polarization (or, H-polarization) and a vector
for the y-polarization (or, V-polarization). During data pre-processing, Nsamp

samples are alternatively taken from each polarization with a step of 2 samples.
These groups of samples are called waveform and get stored within a structure
called batch. Then, a smaller structure, called mini-batch, of Nwf randomly
chosen waveforms is sent as input to the channel emulator.

In the channel emulator the DBP is performed according to the algorithm which
has already been discussed. In particular, the reconstructed channel gets divided
into S spans and Ks DBP steps are performed for each span, composed of a CD
compensation (CDC) block and a non-linear phase rotation (NLPR) compensation
block. In the end, the residual phase term gets also compensated for and the output
is sent to the cost function block. In general, due to the fact that the samples at
the edges of a waveform are not properly compensated with respect to CD during
DBP, 1/2 of the samples from each waveform are cut out before computing the
cost function I. Half of those cut out samples are taken from the first samples and
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the other half from the last samples. Figure 5.5 gives a graphical representation of
this algorithm.

Figure 5.5: (a) DLM algorithm scheme and the involved data structures for the
estimation of γ′(zk). In particular, in this example waveforms are composed of
Nsamp = 1024 samples, a batch of 60000 waveforms and a mini-batch of Nwf = 100
waveforms. (b) More detailed structure of DBP-based channel emulator. Note: the
complex-valued FIR filter is not considered in this work. Taken from [15].

After computing the cost function I, its gradient is also computed and the learn-
ing process based on gradient back-propagation begins. As anticipated in Sec.
5.2.3, error back-propagation is an algorithm in NN’s to compute the gradient
of the cost function with respect to all the parameters to optimize. In particular,
the term "back-propagation" refers to the fact that the gradient with respect to one
parameter is obtained from the one previously computed at the successive layer.
Here, the same is performed, considering the channel emulator as a NN with one
neuron (CDC+NLPR, see Figure 5.3) per layer and S ·Ks layers.

Let us define the input waveform to each block in the channel emulator as the
Nsamp × 2 vector x = [xH , xV ]T and its output as y = [yH , yV ]T . The 2 in the
vector dimensions represents the two polarizations. The first step is to compute
the gradient of the cost function I with respect to the complex conjugated output
of the last block in the channel emulator. In particular, its structure is

∂I

∂y∗ =
C

∂I

∂y∗
1
, ... ,

∂I

∂y∗
Nsamp

DT

(5.17)

and is the same for both the H- and V-polarization.
Given that complex-valued quantities are involved, this gradient, as well as all the
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other ones, are computed according to Wirtinger calculus. Hence, considering the
waveforms according to their real and imaginary parts, i.e., y = yR + jyI , it is
possible to apply the Wirtinger linear partial differential operator

∂

∂z∗ = 1
2

A
∂

∂zR

+ j
∂

∂zI

B
(5.18)

where z = zr + jzI is a complex-valued variable. Applying this operator to the
argument of Eq. (5.16) yields

∂I

∂y∗ = y − ŷ (5.19)

where ŷ = ŷR + jŷI is the reconstructed transmitted signal. After this operation,
the gradient needs to be back-propagated. For this reason, the back-propagation
expressions of the channel emulator blocks, namely FFT, CDC, IFFT and NLPR,
are to be defined. It is important to remember that during DBP, the input and
the outputs to each block are x and y, respectively.
On the contrary, during back-propagation, the gradient is propagated in the op-
posite direction. Hence, the input to each block becomes ∂I/∂y∗ and the output
∂I/∂x∗. In particular, back-propagation is indicated in Figure 5.5 by means of
dashed arrows between blocks.

The first block considered is the CDC block. The operation implemented by the
CDC block during DBP at position zk is

y = F−1
î
F{x}ej2π2β2(zk)f2∆z

ï
(5.20)

where F and F−1 are the FFT and IFFT operators, respectively. Considering the
fact that the back-propagation expression of the FFT operator is the IFFT and
vice versa, the whole CDC back-propagation expression can be written as

∂I

∂x∗ = F−1
I
F
I

∂I

∂y∗

J
e−j2π2β2(zk)f2∆z

J
(5.21)

where the frequency domain CDC expression is computed as

∂I

∂x∗ = ∂I

∂y

∂y

∂x∗ + ∂I

∂y∗
∂y∗

∂x∗

= 0 + ∂I

∂y∗ e−j2π2β2(zk)f2∆z

(5.22)

Then the NLPR back-propagation expression is computed. Also in this case, the
operation performed by it at position zk is

y = xejγ′(zk)∥x∥2∆z (5.23)
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hence its back-propagation becomes
∂I

∂x∗ = ∂I

∂y

∂y

∂x
+ ∂I

∂y∗
∂y∗

∂x∗

= ∂I

∂y
(jγ′(zk)∆z)x2ejγ′(zk)∥x∥2∆z

+ ∂I

∂y∗ (1− jγ′(zk)∥x∥2∆z)e−jγ′(zk)∥x∥2∆z

(5.24)

where ∂I/∂y = (∂I/∂y∗)∗, x2 denotes the pointwise square operator applied to x
and ∥x∥2 = |xH |2 + |xV |2.

In order to estimate the longitudinal loss profile, also the derivative of I with
respect to each γ′(zk) is required. Otherwise, it is not possible to perform the SGD
algorithm to update the parameters and have the system learn the optimal ones.
At this purpose, it is possible to write according to Eq. (5.23)

∂I

∂γ′(zk) = ∂I

∂y

∂y

∂γ′(zk) + ∂I

∂y∗
∂y∗

∂γ′(zk)

= 2ℜ
I

∂I

∂y∗
∂y∗

∂γ′(zk)

J

= 2ℜ
I

∂I

∂y∗

T

· x∗(−j∥x∥2∆z)e−jγ′(zk)∥x∥2∆z

J (5.25)

where · denotes the scalar product and ℜ the real part operator.

At this point the algorithm is complete. At each iteration, a mini-batch is sent
as input to the channel emulator, a cost function is computed, the gradient gets
back-propagated and the SGD algorithm is applied to the parameters γ′(zk) so as
to update and optimize them. This last operation is the same as the one described
in Eq. (5.7), i.e.,

γ′(zk)← γ′(zk)− η
∂I

∂γ′(zk) (5.26)

where η is the learning rate.
Figure 5.6 shows a schematic representation of this learning process. It is important
to mention the fact that γ′(zk) is estimated. However, if the fiber parameter γ is
known or measured, also the absolute longitudinal power profile can be obtained.
In particular, going back to Eq. (5.11), one can write

P (zk) = 9
8

γ′(zk)
γ

(5.27)

If γ is not available, only the relative power profile is estimated, but absolute γ′(zk).
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Figure 5.6: Scheme of the learning process in the DLM algorithm, as in [15].

5.3.4 Non-commutativity property
In Sec. 5.3.1 the similarity between NN’s and DBP structures has been highlighted
and indicated as one of the main enablers of the CRM for DLM applications.
However, a second element needs to be considered. This technique leverages
the non-commutativity property of the linear and non-linear operators. In
this way, it is possible to localize system physical characteristics, such as the
parameters γ′(zk), and estimate them pointwise. Going a little more in-depth into
the algorithm itself, the linear and non-linear operators have been indicated as D̂
and N̂ , respectively. Therefore, when applying the DBP, the chain of compensation
blocks alternatively performs the integration of the linear and non-linear part of the
Manakov equation. This integration has been indicated by means of an exponential
term, i.e., exp (D̂(zk)∆z) and exp (N̂ (zk)∆z). It is, indeed, these operators which
are non-commutative with one another. In general, a signal which has gone through
a system characterized by non-commutative operators can be restored only if the
inverse-order system is found. According to this view, the inverse-order system
is the one which minimizes the cost function of the optimization process. Non-
commutativity of operators, then, introduces in the system a concept of "ordering",
which is exactly what DLM tries to achieve. This is, of course, an enabler of the
CRM. On the other hand, though, it is also the main limitation. If low non-linearity
is present in the system, the ordering is lost and localization is not possible anymore.
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5.4 Simulation results
In this last section a few examples of result obtained with MATLAB are reported.

The system considered in this section is a single-channel system. The modulation
format is PM-16QAM with a symbol rate Rs = 64 GBaud. The pulses are shaped
according to a SRRC filter characterized by a roll-off factor ρ = 0.2 and the channel
power is Pch = 10 dBm.
The optical link is composed of 4 spans of SMF with a span length Lspan = 70 km.
The main parameters of the optical fiber are αdB = 0.2 dB/km and β2 = -21.285
ps2/nm. Differently from Chapter 4 Sec. 4.3, in this scenario non-linearity is the
CRM enabler, so also the parameter γ = 1.3 1/W/m is considered.
At the end of each span is an EDFA, characterized by a noise figure F = 5 dB and
a gain G which perfectly compensates for the total span loss.

The signal is then resampled at 2 samples/symbol and goes into the DSP. Here,
fixed CD compensation and matched filtering are performed.
Afterwards, the signal gets realigned and adaptive equalization is applied with
Ntap = 26. In particular, the tap coefficients update strategy consists of a DA-LMS
based training stage and a DD-LMS based tracking stage.
Finally, phase recovery is carried out with a BPS-ML strategy and the symbols are
decoded.

Within the DSP chain, the CRM is applied right after the adaptive equalization
stage. Indeed, the signal is divided into two paths. The first one is the path leading
to CRM. Here, the signal goes through a CD reload stage, in which all the CD which
was previously compensated for is re-inserted. Right after that, the signal goes
into the data pre-processing stage, where batches and mini-batches are generated.
In this simulation, the batch is composed by 60000 waveforms of Nsamp = 1024
samples, whereas the mini-batches are composed of Nwf = 100 waveforms. Each
mini-batch is finally sent as input to the channel emulator.
The second path, instead, is in charge of generating the reference (or reconstructed)
transmitted signal, which will be used for the computation of the cost function
during the CRM (see Eq. (5.16)) and the subsequent SGD algorithm. For simplicity,
given that the originally transmitted symbol sequence is available, that has been
used to reconstruct the transmitted signal. In particular, the symbol sequence has
been shaped by means of a SRRC filter and then again, to perform the matched
filtering. Finally, it has been re-aligned to the received signal.

As for the CRM algorithm, the DBP step ∆z has been set to a fixed value of 2
km, which corresponds to a total of 140 DBP steps per iteration. The values for
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γ′(zk) and β2(zk), instead, have been initialized to 0 and the nominal value of β2
respectively, with k = 1, ... ,140. Figure 5.7 shows the estimated longitudinal loss
profile after 600 iterations and using a learning rate η = 0.1 for the SGD. Since the
parameter γ is known in this scenario, then it has been possible to evaluate the
absolute power loss profile by means of Eq. (5.27). In order to make comparisons,
also the ideal loss profile has been reported, computed according to Eq. (5.12).
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Figure 5.7: Estimated longitudinal loss profile (solid blue line) and the ideal
longitudinal loss profile (dashed black line) after 600 iterations with step ∆z = 2 km
and learning rate η = 0.1.

The CRM manages to detect and extract the correct behavior of the loss profile.
Indeed, it is possible to distinguish between the four spans of the optical link
and also the position in which EDFA amplification occurs. This is a first type of
localization. Another simulation experiment consists in inserting an excess loss in
some point of the optical link and check if the DLM algorithm manages to detect
it and estimate its value. All the system parameters are unchanged, but an excess
loss (or anomaly) is inserted at the beginning of the third span, i.e., at a distance of
140 km from the transmitter end. The loss profiles have been estimated considering
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three values for the loss, namely 0 dB, 3 dB and 5 dB. The result of the estimation
is reported in Figure 5.8, together with the ideal loss profile.
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Figure 5.8: Estimated longitudinal loss profiles when an excess loss of 0 dB (solid
blue line), 3 dB (solid orange line) and 5 dB (solid yellow line) is inserted at the
beginning of the third span (at a distance of 140 km from the transmitter end).
Also the ideal loss profile (dashed black line) is reported.

Though the estimated profiles are not always perfectly overlapping, it is possible to
coarsely identify the point in which the excess loss has been inserted. By looking
at the third span, the peak of the loss profile lowers by approximately 3 dB and 5
dB, which are exactly the value of the inserted loss for the two cases.
A possible method to estimate the position and the value of the excess loss is that
of computing the deviation of the 3-dB and 5-dB loss profiles from the 0-dB one.
Figure 5.9 shows exactly this result, along with their ideal value. In particular, the
inflection points of the curves represent the position of the excess loss. Despite
some fluctuations, the anomaly position can be roughly estimated around 140 km.
Overall, the curves are in good agreement with the ideal ones, represented by the
dashed lines.
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Figure 5.9: Deviation of 3-dB loss profile (blue line) and 5-dB loss profile (orange
line) from the 0-dB one. Ideal deviation for 3 dB case (dashed blue line) and 5 dB
case (dashed red line) are also reported.

5.5 Conclusions
These examples conclude the section about simulation results on CRM. In its most
basic form, the CRM has proved to be a valid technique to move from a cumulative
to a distributed OPM approach for optical fiber communication systems. Indeed, it
manages to extract some useful longitudinal quantities, such as the loss profiles and
the localized excess loss, solely relying on digital techniques implemented in the
DSP chain and making use of the received signal only. Of course, this represents
just a starting point for these DLM applications, which have a lot of potential to
still develop, as well as implementation issues to solve. All of these aspects are
discussed in Chapter 6.
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Chapter 6

Future works

In this chapter, we discuss on the main issues which came up during CRM im-
plementations, together with some possible improvements suggested by recent
scientific research works. Then, more examples of results with CRM are shown,
taken from the main reference for this method, i.e., [15]. Finally, an overview of an
alternative DLM method is presented, namely the correlation method (CM), as
described in [17].

6.1 Issues of CRM and possible improvements
The first issue emerged during simulations of CRM is related to longer optical
communication links. In Sec. 5.4 an optical link with 4×70-km spans has been
considered and used to present the main results. However, moving to a longer
system, e.g., 8×70-km spans, the CRM still manages to detect the correct behavior
of the loss profile, but tends to diverge more easily. Of course, this represents a
major impairment for long-haul optical systems, since they are in general made
of a large number of spans and reach transmission distances of up to thousands
of kilometers. What is more, the estimated profiles suffer from dead-zones at the
beginning and at the end of profiles themselves. This aspect can be noticed by
looking at Figure 5.9, where a higher deviation from the 0-dB profile occurs at
both edges of the estimated profile, though no particular loss is inserted.

As for convergence issues, an improved version of SGD is suggested in [15], namely
the adaptive moment (ADAM) algorithm. It also exploits the first and second order
moment of the system parameters gradients, allowing for a faster and more steady
convergence of the learning process. Hence, this is one aspect to look further into.

A possible solution to the dead-zone issue, instead, is proposed in [18], from the
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same authors. The idea is similar and coherent with what has been discussed for
the optimization of DBP steps in Sec. 3.4.1. It consists in adjusting the DBP steps
performed in the channel emulator proportionally to the power of the signal during
propagation. Figure 6.1 shows an example of results taken from this article.

Figure 6.1: (a) Estimated profile over a 4×70-km optical link for different step
sizes, according to the rule h(z) ∝ P (z)p. (b) Step size for each case. (c) Estimation
error for each p. Taken from [18].

Finally, the application of the CRM method on experimental data is still to be
performed.

6.2 CD maps and multiple filters’ responses ex-
traction with CRM

In [15] also a method to extract the CD map and multiple filters’ responses over the
communication link is presented. The procedure is the same as the one described
in Sec. 5.3.3. For the CD map, it is necessary to add the β2(zk) parameters
in the optimization process and update them computing their back-propagation
expression. The filters’ transfer functions, instead, are computed by modeling the
filters at the end of each span as complex-valued FIR filters, and optimizing their
tap coefficients during the learning process. Despite the fact that the CD map
extraction method has proved to be very slow, it can still be used to detect if a
span is made of a different fiber type. On the other hand, filters’ transfer function
extraction is more interesting. Indeed, non-linearity in the fiber allows to separate
the contributions of each individual filter and check if some detuning is present. In
this way, it is possible to act on just that particular filter. Figure 6.2 and Figure
6.3 show some results.

89



Future works

Figure 6.2: (a) Estimated β2(zk) profile for a different number of SGD iterations
when a DSF span is inserted between SSMF spans. (b) Maximum value reached
by β(zk) versus number of iterations. Taken from [15]

Figure 6.3: Estimated FIR filters responses in a 3×50-km system with an optical
bandpass filter at each node when a detuning of +15 GHz is inserted (b) in the
first filter and (c) in the second filter. Taken from [15]
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6.3 An alternative approach: the correlation method
Finally, an alternative approach is described in [17]. This DLM algorithm belongs
to the correlation method (CM) approach and is referred to as "in-situ power profile
estimator" or "in-situ PPE". The scheme of the algorithm is reported in Figure 6.4.

Figure 6.4: In-situ PPE algorithm scheme, as in [17].

This type of approach to extract the longitudinal fiber loss profile is not very
different from the CRM method, which is the subject of this work. Indeed, at each
step the algorithm performs a partial DBP and then evaluates the power by means
of a correlation operation. In any case, it would be extremely interesting to try to
implement also this DLM approach and eventually compare the performance of
the two.

6.4 Conclusions
To sum up, OPM is a field full of potential. This work has presented an advance in
terms of what can be estimated, moving from a cumulative to a distributed OPM
and has proved to be successful in its very basic implementation and application.
For this reason, it would be of great interest to keep developing and improving these
techniques, in order to contribute to the progress of optical fiber communication
systems and telecommunications more in general.
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