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Abstract

The increased interest in electrodynamic levitation systems for the purpose
of commercial transportation has put a focus on the need to fully characterise
their dynamic behaviour. The requirement for passenger comfort has introduced
challenges related to the stability and control of vibrations that may be induced
from track irregularities and changing weight distribution in the vehicle. The aim
of the present thesis is to understand the solution to the inherent instability of the
levitating system by means of a quarter-car model, with the possibility of validating
the same by means of a dedicated test bench. A voice coil that exhibits a sprung and
unsprung mass provides the ability to practically study the system, by considering
a lack of decoupling of the masses, as well as an application of passive damping. A
COMSOL Multiphysics® model of the experimental system is refined to account
for magnet misalignment and spacing, also considering two differing orientations of
the Halbach array. Offset values for each nominal air gap are suggested, for each
Halbach array, obtained from comparing numerical and experimental forces. A
general offset value is also reported for each array, accounting for pad irregularities,
with satisfactory correspondence between experimental and FEM data. To further
improve on the discussion of stability, several control strategies are explored, where
the initial approach consists of implementing extensively studied solutions in the
automotive field, namely skyhook and groundhook damping. A stability analysis
in MATLAB® and Simulink® is performed, and simulations in the time domain
confirm certain favourable configurations. A general approach is then adopted, by
means of the Linear Quadratic Regulator introduced in a simplified model of the
system that exhibits observable states. The compatibility of the reduced order
model with the model including the inherent instability is verified in frequency
domain. The effect of the control input penalisation on the sensitivity of a single
weighting parameter influencing the states of interest is explored and agreeable
design choices are suggested, considering varying excitation profiles pertaining to
the track. These include a sinusoidal profile used for the HyperloopTT™ test track,
and a random profile defined by the ISO/TC 108/WG9 standard, as well as a
combination of the two.
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Chapter 1

Introduction

1.1 System
The theoretical model by which the system can be modelled and subsequently

controlled is that of a quarter-car configuration, due to prevalent similarities in
conventional automotive systems. In particular, it can be demonstrated that the
system in a single degree of freedom arrangement exhibits an inherent instability
beyond a certain threshold of longitudinal velocity [1]. Indeed, the solution involves
decoupling the pad (bogie) and the capsule (passenger compartment), effectively
converting the system into a two degree of freedom arrangement. In between
the sprung and unsprung masses, a suspension is introduced, where an optimal
damping factor can be identified in a passive damping configuration, maximising
the system’s stability. The model for this system can be noted in Figure 1.1. The
identification of this damping factor requires a stability analysis of the system,
by observing the poles of the dynamic matrix. For each damping factor, for a
specific longitudinal velocity, a set of poles can be extracted, with the largest pole
representing the most critical condition for the system’s stability.

Moreover, the model used to fully capture the system’s instability consists of a
lumped parameter approach, coupling the electrical and mechanical domains [1].
This approach involves states that may not be directly measured, such as the eddy
currents in the track, as well as states that can be readily observed, for example the
vertical displacements of the sprung and unsprung masses. This model in particular
is implemented in the stability and dynamic response analyses of conventional
automotive control strategies. As a further step, a model incorporating the pad as
an equivalent stiffness is used in the exploration of control strategies pertaining to
a Linear Quadratic Regulator.

1



Introduction

Figure 1.1: Quarter-car model of electrodynamically levitated pod.

For clarity, it is necessary to outline the key arguments pertaining to the sys-
tem incorporating a lumped parameter approach. The electrodynamic domain is
modelled by means of a multi-branch electrical circuit that consists of a voltage
generator representing a Back Electromotive Force (BEMF), in parallel with a
number of branches, each containing a resistor and inductor connected in series.
The balance of terms pertaining to the k-th branch of the circuit is indicated in
Equation 1.1, representing the starting point from which the formulations for the
lift and drag forces can be obtained.

Lk
dik

dt
+ Rkik + E = 0 (1.1)

By considering a transformation from the static to the rotating reference frame
concerning the current, and by identifying the BEMF in terms of the flux linkage,
two coupled expressions that become useful for describing the electrodynamic
behaviour of the system are obtained, evident in Equations 1.2 and 1.4. In
particular, the BEMF is distinguished with its direct and quadrature components
highlighted in Equations 1.3 and 1.5. The electrodynamic pole frequency is defined
as for an eddy current damper [2] or electromagnetic bearing, due to the exploitation
of identical principles for modeling.

did,k

dt
= −ωp,kid,k + ωiq,k − Ed

Lk

(1.2)

Ed = ∂Λ
∂zp

żp (1.3)

diq,k

dt
= −ωp,kiq,k − ωid,k − Eq

Lk

(1.4)

2



1.1 – System

Eq = Λv

γ
(1.5)

Performing a power balance, three contributions are evident: the rate of change
of stored magnetic energy, the dissipated power by Joule effect, and the mechanical
power developed. By focusing one’s attention on the final contribution, the lift
and drag forces are highlighted in Equations 1.6 and 1.7 respectively. In particular,
these forces stem from the interaction between the Halbach array and the track,
when a relative motion between the two is present.

Flift = Ed

żp

NbØ
k=1

idk (1.6)

Fdrag = −Eg

v

NbØ
k=1

iq,k (1.7)

Having identified the non-linear expressions for the lift and drag force, a lineari-
sation in particular for the lift force is performed around a nominal air gap to allow
for its inclusion in a state space representation of the system. This linearisation
depends on Taylor-expanding the flux linkage, meaning that the Equations 1.2
and 1.4 for the direct and quadrature components of the current necessary for
the aforementioned power balance also become linearised around a nominal air
gap, allowing them to be designated as states. The appropriate terms concerning
these linearised equations can be found represented within a matrix notation for a
system incorporating the inherent instability in section A.1 of the Appendix. The
nominal air gap is computed by equating the total weight force of the system with
the expression of the non-linear lift force in static conditions, present in Equation
1.9. This force is obtained by neglecting all transient variables, and developing an
expression for the direct current component stemming from Equations 1.2 and 1.4,
to be substituted into Equation 1.6. The linearised lift force and the nominal air
gap expressions are indicated in Equations 1.8 and 1.10 respectively.

F̄lift = −
NbØ

k=1

A
Λ2

0
γLk

e−2zp,0/γ +2Λ0

γ
e−zp,0/γ id,k

B
(1.8)

Flift,s = Λ2
0

γ
e−2zp/γ Γ(ω) (1.9)

zp,0(ω) = −γ

2 ln
A

mtgγ

Λ2
0Γ(ω)

B
(1.10)

Γ(ω) =
NbØ

k=1

ω2/ω2
p,k

Lk(1 + ω2/ω2
p,k) (1.11)

3



Introduction

The lift force in static conditions is useful for the treatment regarding the tuning
of the FEM model to the experimental data. Likewise, the drag force is useful
to the same end, with its definition outlined in Equation 1.12. Similarly to the
derivation of the lift force, an expression for the quadrature current component is
obtained by operating on Equations 1.2 and 1.4, disregarding all transient variables,
and substituting into Equation 1.7.

Fdrag,s = Λ2
0

γ
e−2zp/γ Θ(ω) (1.12)

Θ(ω) =
NbØ

k=1

ω/ωp,k

Lk(1 + ω2/ω2
p,k) (1.13)

The above mentioned discussion represents the foundation for the dynamic
analysis and numerical validation of the automotive control strategies, as well as
the fitting for the FEM model to the experimental test bench, herein reported.

1.2 Test Bench
Considering the extensive theoretical treatment of the system, a test bench to

validate the stability and dynamic response of the system is used. A notable feature
of the test bench is its rotating track. It is constructed with a vertical rotation axis
layout, to reduce footprint, as a linear guideway entails larger space requirements [3].
The circular non-ferromagnetic metal (copper) track is attached to an aluminium
disc, whose rotation is induced by means of a Kollmorgen™ servo-motor. A flexible
joint connection between the disc and motor shaft allows for this rotation. In
particular, the average diameter of the track Dt, and the length of the pad Lp can
inform an appropriate selection of the test bench dimensions. The ratio Dt/Lp ≥ 10
ensures that the peripheral velocity can be approximated as constant along the
entire pad length. A horizontal rotation axis layout is also possible [4], however
the size of the circular track increases considerably if a planar pad is desired. A
constant air gap must be guaranteed, meaning the Halbach array must be curved
with respect to the track, increasing costs. The air gap is ideally constant in the
vertical axis layout, however in practice conical motion due to the lift force may
cause variations. Figure 1.2 indicates the most prominent features of the test bench.
On one side of the test bench, a structure facilitating the mounting of the pad is
present, with the possibility of mounting two different assemblies. Quasi-static
phenomena can be studied using one layout of the test bench, while the system’s
dynamics can be studied using another.

For quasi-static experimentation, the pad is fixed by means of flex hinges in
the vertical and horizontal directions. HBM™ S2 load cells are present along the
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1.2 – Test Bench

(a) Lateral view of test bench. (b) Top view of slot cavity on test bench.

Figure 1.2: Lateral and top views of the test bench. Prominent features: 1. Test bench structure;
2. Equipment support block with micro-metric stage; 3. Shaft; 4. Copper track; 5. Aluminium
disc; 6. Servo-motor.

vertical and horizontal directions to acquire the lift force and drag force, respectively.
The vertical flex hinges allow for horizontal deflection, while the horizontal flex
hinges permit vertical deflection. Two pad types are studied, the 90° and the 45°
magnetisation orientations of the Halbach array, to understand their performance
differences. Figure 1.3 summarises the described assembly.

Figure 1.3: Assembly of equipment required for quasi-static experiments. Prominent features:
1. Support structure; 2. HBM™ S2 load cell for lift force acquisition; 3. Vertical flex hinge; 4.
Horizontal flex hinge; 5. Mount with PM array; 6. HBM™ S2 load cell for drag force acquisition.
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To acquire quasi-static force data, a nominal air gap is set using the micro-metric
stage on the test bench. A target angular velocity corresponding to an equivalent
longitudinal velocity is imposed in the Kollmorgen™ Workbench software controlling
the servo-motor. Once this velocity is reached, acquisition is executed by means of
Siemens LMS™ SCADAS Mobile platform. Lift and drag force data are logged in
this manner for different nominal air gaps. A COMSOL Multiphysics® model is
produced to simulate the behaviour of the test bench in the static configuration for
each pad type, and its tuning is facilitated by the experimental data recorded.

In the dynamic configuration, the pad is attached to an effective unsprung mass
of a voice coil assembly, with the ferromagnetic casing of the mover representing
the sprung mass. The use of a voice coil is advantageous due to the possibility of
controlling its vertical displacement by means of externally supplied current. With a
voltage across the coil’s terminals, a separation of the sprung and unsprung masses
is achieved, allowing one to study the dynamic response of the system as though a
suspension were present. Additionally, control strategies based on state observation
can be implemented, to understand the system’s capability of being actively con-
trolled. The voice coil subsystem can be replaced with a passive damper, with a
damping coefficient corresponding to optimum stability of the system, allowing one
to compare the effectiveness of an active control as opposed to a passive damping.
Note that the scope of this work does not extend to treating dynamic experimen-
tal data, and therefore further details on the dynamic configuration are not provided.

The overall aim of the study on stability and control of the system is to obtain
strategies and corresponding system parameters for which passenger comfort is
prioritised. An alternative consideration is the prioritisation of handling, however
this does not fall into the scope of commercial applications for the system’s
technology. A further aim is to obtain a satisfactory characterisation of the
behaviour of the non-linear system, by means of a FEM model.
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Chapter 2

FEM Model

2.1 Model Tuning
The expected non-conformity of the results produced by the 3D FEM model

on COMSOL Multiphysics® and the results obtained experimentally for the two
different pad configurations demands further treatment regarding the FEM model.
The presence of pitch, yaw, and roll angles, however minute in the experimental
setup of the pad yield performance differences when compared to the ideal setup.
Moreover, irregularities in the magnet array as well as in the track impact the
magnitude of the lift force that can be generated. Investing time and effort in
quantifying these deviations from the nominal condition may prove to be costly
in light of the potential improvement in accuracy of the FEM model. A more
straightforward approach is adopted, where the effects of irregularities are lumped
into an air gap offset added to the nominal air gap of the model. In particular, a
study is performed for the 90° and the 45° configurations of the Halbach array, for
which experimental data are already available.

Note that the use of the lift and drag force formulations in static conditions is
necessary to identify the air gap offset. In particular, a fitting for these forces is
performed for both the experimental and nominal FEM data, allowing the curves
to be more readily compared, as a root mean square (RMS) error can be extracted.
An additional motivation for using the expressions fitted to the experimental and
FEM data is the computational cost; generating multiple curves for the same
nominal air gap at different offsets on FEM software would considerably increase
the time to reach the final results. The identification of the most adequate air
gap offset is achieved by minimising the squared error between the forces obtained
using the expressions of the lift and drag in static conditions fitted to the FEM
and experimental data. Specifically, a vector of offsets is introduced as inputs for
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the lift and drag forces fitted to the FEM data, to vary the outputs over a range
of longitudinal velocities. The most appropriate offset corresponds to the lowest
RMS error between the experimental and FEM curves.

2.1.1 45°configuration
The 3D FEM model for the pad in 45° configuration incorporates the magneti-

sation scheme depicted in Figure 2.1. The parameters obtained after fitting the
multi-branch electrical model used for the generation of the forces in MATLAB® are
reported in Table 2.1 for the experimental data and in Table 2.2 for the COMSOL
data. In particular, to configure the 3D FEM model, magnet and track characteris-
tics are introduced. Regarding the magnet array, the remanence flux Br = 1.35 T
while the recoil permeability µpm = 1.05. The magnet side length is 12.7 mm
and there are 8 magnets per pole pair, which is useful for the identification of
the magnetic pole pair pitch ratio, γ. The resistivity of the copper track is set
to ρt = 1.72 × 10−8 W m for both configuration studies. As the amplitude of the
flux linkage Λ0 is not known, a unitary value is imposed, meaning all parameters
obtained from fitting the multi-branch electrical model to the nominal FEM data
and the experimental data are in correspondence with this value (applicable also
for the 90° configuration).

When carrying out the fitting for each nominal air gap, the optimal air gap
offset is observed to be different and unique. By applying these unique air gap
offsets to the expressions for static lift and drag corresponding to FEM data, the
fit achieved between the numerical curves and the experimental data is remarkable
as seen in Figures 2.2 and 2.3. Moreover, a plot, present in Figure 2.4 can be
generated indicating the air gap offsets for each nominal air gap. Multiple offsets
are generated for each air gap, by focusing the least square optimisation on the
error stemming only from the lift force, only from the drag force, and from the two
combined. The plot evidences a greater weighting of the error in favour of the lift
force, due to its larger magnitude with respect to the drag force, using the Halbach
array in question. Indeed, Figure 2.5 indicates the contribution (as a percentage)
to the combined error for the lift and drag forces, with a greater weighting for the
lift force evident in lower air gaps, due to a comparatively larger magnitude.

x

z

Figure 2.1: Magnetisation scheme for Halbach array in 45° configuration (cross-sectional view).

8
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Figure 2.2: Lift force fitted to a set of experimental data for nominal air gaps by means of unique
air gap offsets obtained from minimisation of RMS error for 45° configuration.
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Figure 2.3: Drag force fitted to a set of experimental data for nominal air gaps by means of
unique air gap offsets obtained from minimisation of RMS error for 45° configuration.
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Figure 2.4: Optimum air gap offsets for each nominal air gap, dependent on the error used for
computation regarding the 45° configuration.
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Figure 2.5: Percentage of combined error for lift and drag force, for each nominal air gap, in the
identification of unique air gap offsets for 45° configuration.
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Air gap [mm] ωp,1 [rad s−1] ωp,2 [rad s−1] L1 [H] L2 [H]
10 245.06 1.43 × 103 0.103 0.176
12 235.26 1.22 × 103 0.108 0.177
14 226.49 1.09 × 103 0.113 0.173
16 221.51 1.04 × 103 0.115 0.173
18 220.65 1.03 × 103 0.117 0.177
20 219.62 1.03 × 103 0.117 0.182
22 221.72 1.04 × 103 0.117 0.180
24 219.09 1.01 × 103 0.120 0.180
26 223.05 1.03 × 103 0.120 0.185

Table 2.1: Multi-branch electrical circuit model parameters for experimental data in 45° configu-
ration.

In addition, to obtain a single offset value that applies to all air gaps, and to
both forces, the combined error (of the lift and drag forces) is averaged across all
contributing nominal air gaps. Applying the resulting value to the lift force and
drag force fitted to the FEM data, and comparing the curves with respect to the
experimental data, an agreeable match is noted in Figures 2.6 and 2.7.

To verify the procedure in identifying the unique offsets, the FEM model is
exploited. Figures 2.8 and 2.9 highlight comparisons for different selections of the
air gap offset imposed in the model, for a nominal air gap of 10 mm for the lift and
drag force respectively. Observed in Figure 2.8a, the data obtained from COMSOL
Multiphysics® presents a satisfactory fit with the experimental data, for an imposed
(unique) offset of 1.37 mm, corresponding to that calculated from the combined
error of the lift and drag force. Figure 2.8b indicates the FEM data stemming
from the imposition of the unique offset of 1.11 mm calculated from only the drag
force error, and as expected presents a less adequate fit. The converse of these
observations is evident in Figures 2.9a and 2.9b, regarding the drag force. The
offset calculated prioritising the drag force presents curves that fit more closely
with the experimental data. A further improvement in the fit is achieved through
an estimation of a lower offset value that presents the most satisfactory match
for the experimental drag force data, for the nominal air gap of 10 mm, evident
in Figure 2.10. However, it is advised to remain within the limits of the offsets
computed using the RMS error, as further improvements by means of estimation
may prove time-consuming.

To generate lift and drag force data in static conditions as a function of longi-
tudinal velocity in COMSOL Multiphysics®, the air gap offset approximating all
contributing irregularities is imposed. The resulting data generated serves as an
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Air gap [mm] ωp,k [rad s−1] Lk [H]

10
ωp,1 = 195.90 L1 = 0.112
ωp,2 = 792.19 L2 = 0.128
ωp,3 = 3.99 × 103 L3 = 9.48 × 106

12
ωp,1 = 195.93 L1 = 0.116
ωp,2 = 785.70 L2 = 0.134
ωp,3 = 3.76 × 103 L3 = 3.68 × 107

14
ωp,1 = 196.21 L1 = 0.121
ωp,2 = 779.25 L2 = 0.140
ωp,3 = 3.85 × 103 L3 = 2.92 × 107

16
ωp,1 = 195.38 L1 = 0.125
ωp,2 = 768.22 L2 = 0.144
ωp,3 = 4.15 × 103 L3 = 2.32 × 107

18
ωp,1 = 195.35 L1 = 0.128
ωp,2 = 761.13 L2 = 0.147
ωp,3 = 4.29 × 103 L3 = 1.82 × 105

20
ωp,1 = 195.09 L1 = 0.131
ωp,2 = 752.84 L2 = 0.150
ωp,3 = 4.30 × 103 L3 = 1.43 × 107

22
ωp,1 = 195.09 L1 = 0.134
ωp,2 = 745.38 L2 = 0.152
ωp,3 = 4.71 × 103 L3 = 1.12 × 107

24
ωp,1 = 195.26 L1 = 0.136
ωp,2 = 739.34 L2 = 0.153
ωp,3 = 5.22 × 103 L3 = 1.72 × 106

26
ωp,1 = 195.35 L1 = 0.137
ωp,2 = 732.73 L2 = 0.152
ωp,3 = 5.74 × 103 L3 = 6.58 × 106

Table 2.2: Results after fitting multi-branch electrical circuit model to COMSOL data in 45°
configuration.

approximation for the lift and drag forces that are present on the test bench for the
Halbach array configuration. To represent these forces more accurately, individual
air gap offsets for each nominal air gap are suggested to be imposed in the FEM
model.
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Figure 2.6: Lift force fitted to a set of experimental data for nominal air gaps by means of a
single air gap offset obtained from minimisation of averaged RMS error across all gaps for 45°
configuration.
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Figure 2.7: Drag force fitted to a set of experimental data for nominal air gaps by means of a
single air gap offset obtained from minimisation of averaged RMS error across all gaps for 45°
configuration.
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(a) FEM data obtained imposing an air gap offset of
1.37 mm for the lift force.
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(b) FEM data obtained imposing an air gap offset of
1.11 mm for the lift force.

Figure 2.8: FEM data for the lift force fitted to experimental data at a nominal air gap of 10 mm
and at different offsets.
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(a) FEM data obtained imposing an air gap offset of
1.37 mm for the drag force.
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Figure 2.9: FEM data for the drag force fitted to experimental data at a nominal air gap of 10
mm and at different offsets.
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Figure 2.10: FEM data for the drag force fitted to experimental data at a nominal air gap of 10
mm and at a further improved estimate for the offset.

2.1.2 90°configuration
The magnetisation scheme pertaining to this Halbach array may be noted in

Figure 2.11 as proposed in [5]. The parameters for numerical generation of the
forces necessary for the computation of the offsets are reported in Tables 2.3
and 2.4. To initialise the 3D FEM model, the magnet array’s remanence flux
Br = 1.44 T while the recoil permeability µpm = 1.05. The remanence flux differs
slightly due to the difference in material composition between the two arrays of
interest. The magnet side length is 12 mm, and the number of magnets per pole
pair is 4, meaning that the magnetic pole pair pitch ratio γ is different for this array.

An analogous procedure is applied to this configuration, with a set of offset values
obtained for each nominal air gap seen in Figures 2.12 and 2.13. Additionally, the
offsets obtained for each air gap are reported in Figure 2.14. Note that, as in the
case of the 45° configuration, the points on this plot are not joined due to lack of
motivation for a correlation between the optimal air gap offset, and the nominal
air gap. The plot in Figure 2.4 may suggest a correlation, with the lower offset at
higher air gaps implying a lower effect of irregularities on the experimental data.
The same cannot be suggested for the plot concerning the 90° configuration, as
the points appear to have a distribution that does not present a regularity in its
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behaviour. A possible reason may be that inconsistencies in the experimental setup
influence the data, requiring a significantly different offset to be applied to the
FEM model to capture more accurately the static behaviour. It may be noted that
a general decreasing trend can be identified, if the offsets for the air gaps of 12 mm
and 24 mm are considered anomalies and are removed. A verification of the offsets
calculated for this configuration is executed, by simulating the data corresponding
to the nominal air gap of 12 mm, whose plots are present in Figures 2.18 and 2.19.
The curves present satisfactory fits, confirming the robustness of the method in
identifying the unique air gap offset required to replicate the experimental system’s
behaviour with a FEM model. A further lack of correlation may be observed in the
plot in Figure 2.15 for the weighting of the two forces, concerning the combined
error, however this may be attributed once again to the potentially subjective
nature of the experimental data.

x

z

Figure 2.11: Magnetisation scheme for Halbach array in 90° configuration (cross-sectional view).

Air gap [mm] ωp,1 [rad s−1] ωp,2 [rad s−1] L1 [H] L2 [H]
10 649.10 3.88 × 103 0.0904 0.115
12 592.28 3.06 × 103 0.0826 0.103
14 576.54 2.79 × 103 0.0900 0.111
16 560.58 2.69 × 103 0.0837 0.103
18 544.48 2.56 × 103 0.0800 0.0954
20 549.12 2.58 × 103 0.0730 0.0908
22 517.47 2.32 × 103 0.0689 0.0832
24 507.69 2.23 × 103 0.0715 0.0879
26 506.22 2.17 × 103 0.0547 0.0685

Table 2.3: Multi-branch electrical circuit model parameters for experimental data in 90° configu-
ration.
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Air gap [mm] ωp,k [rad s−1] Lk [H]

10
ωp,1 = 319.93 L1 = 0.347
ωp,2 = 651.51 L2 = 0.0.106
ωp,3 = 2.51 × 103 L3 = 0.0999

12
ωp,1 = 297.66 L1 = 0.418
ωp,2 = 624.83 L2 = 0.0996
ωp,3 = 2.47 × 103 L3 = 0.0982

14
ωp,1 = 330.37 L1 = 0.319
ωp,2 = 637.57 L2 = 0.103
ωp,3 = 2.47 × 103 L3 = 0.0971

16
ωp,1 = 494.79 L1 = 0.0827
ωp,2 = 2.19 × 103 L2 = 0.0855
ωp,3 = 7.69 × 103 L3 = 3.09 × 104

18
ωp,1 = 488.35 L1 = 0.0784
ωp,2 = 2.15 × 103 L2 = 0.0818
ωp,3 = 8.83 × 103 L3 = 4.25 × 105

20
ωp,1 = 481.28 L1 = 0.0734
ωp,2 = 2.10 × 103 L2 = 0.0772
ωp,3 = 9.02 × 103 L3 = 8.01 × 104

22
ωp,1 = 474.27 L1 = 0.0678
ωp,2 = 2.05 × 103 L2 = 0.0718
ωp,3 = 9.52 × 103 L3 = 1.76 × 104

24
ωp,1 = 471.38 L1 = 0.0615
ωp,2 = 2.02 × 103 L2 = 0.0663
ωp,3 = 9.37 × 103 L3 = 5.42 × 104

24
ωp,1 = 465.67 L1 = 0.0551
ωp,2 = 1.97 × 103 L2 = 0.0599
ωp,3 = 8.93 × 103 L3 = 1.94 × 105

Table 2.4: Results after fitting multi-branch electrical circuit model to COMSOL data in 90°
configuration.

The single offset generated by considering the combined error, and an average of
said error over all air gaps, yields satisfactory plots for the forces in Figures 2.16
and 2.17, when compared to the experimental data. As concluded for the previous
configuration, the single offset remains a convenient parameter to approximate the
forces generated for each air gap in the FEM model, however more accurate results
can be obtained by imposing individual optimal offsets.
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Figure 2.12: Lift force fitted to a set of experimental data for nominal air gaps by means of
unique air gap offsets obtained from minimisation of squared error for 90° configuration.
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Figure 2.13: Drag force fitted to a set of experimental data for nominal air gaps by means of
unique air gap offsets obtained from minimisation of squared error for 90° configuration.
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Figure 2.14: Optimum air gap offsets for each nominal air gap, dependent on the error used for
computation regarding 90° configuration.
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Figure 2.15: Percentage of combined error for lift and drag force, for each nominal air gap, in the
identification of unique air gap offsets for 90° configuration.
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Figure 2.16: Lift force fitted to a set of experimental data for nominal air gaps by means of a
single air gap offset obtained from minimisation of averaged squared error across all gaps for 90°
configuration.
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Figure 2.17: Drag force fitted to a set of experimental data for nominal air gaps by means of a
single air gap offset obtained from minimisation of averaged squared error across all gaps for 90°
configuration.
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Figure 2.18: FEM data for the lift force fitted to experimental data at a nominal air gap of 12
mm at an offset of 0.349 mm for 90° configuration.
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Figure 2.19: FEM data for the drag force fitted to experimental data at a nominal air gap of 12
mm at an offset of 0.349 mm for 90° configuration.
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Chapter 3

Conventional Control
Strategies

3.1 Skyhook Control
An initial attempt in implementing a control strategy on the system involves the

well-known skyhook damping, an imaginary parameter that appears explicitly in
the equations of motion [6] of the quarter-car model found in section A.1 of the
Appendix. This damping action is attached solely to the sprung mass, with the
intention to maximise passenger comfort. A schematic of the system is represented
in Figure 3.1. The analysis on the feasibility of this control method proceeds firstly
with a study on the most suitable combination of skyhook damping, csky, and
suspension damping, cs, such that the system is most stable. For every value of
longitudinal velocity, and for a set of skyhook and suspension damping values, the
poles of the system with the instability (lumped parameter model coupled with
equations of motion) are extracted. For each combination, the most positive pole is
recorded, allowing for a colour map to be plotted, evident in Figure 3.2. It can be
noted that with an increasing longitudinal velocity, the well of stability diminishes,
notably for lower values of cs, hence analysing the colour map pertaining to the
highest velocity is acceptable to highlight the pair of cs and csky that present the
most stable behaviour as it ensures the most conservative selection. Nonetheless,
the presence of a narrow band of stability allows for the identification of a set of
couples of cs and csky such that the real part of the largest negative pole of the
dynamic matrix is furthest from the origin.

As a secondary analysis, the dynamic response of the system is obtained by means
of a Simulink® model. Two responses are compared, one where an adequately stable
pair of cs and csky are used, and another where csky is null representing the most
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Conventional Control Strategies

Figure 3.1: Quarter-car model of electrodynamically levitated pod with skyhook control.
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Figure 3.2: Stability map for skyhook damping coupled with suspension damping.
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3.1 – Skyhook Control

stable case, with time domain plots of the unsprung mass displacement and sprung
mass acceleration. The excitation profile is chosen to be sinusoidal, with all relevant
parameters for the study of skyhook control as well as the subsequent conventional
control studies reported in Table 3.1. The sprung mass acceleration for the two
configurations is compared in Figure 3.3, with Figure 3.3a denoting the response
for the configuration improving passenger comfort and Figure 3.3b indicating the
system’s behaviour with the most stable choice of damping parameters. Likewise,
the unsprung mass displacement is compared in Figure 3.4, with Figures 3.4a
and 3.4b highlighting the behaviours of the two aforementioned configurations. A
notably higher magnitude for the unsprung mass displacement is observed for the
non-zero skyhook damping case, as a significantly lower suspension damping is
implemented.

Parameter Value Units
AR 0.5 mm
v 340 m/s

ω 100 rad s−1

x0 600 m
ms 20 kg
mp 2 kg
γ 0.0159 m
ks 789.57 N m−1

Λ0 3.29 × 10−4 Wb
L1 7.72 × 10−10 H
L2 2.06 × 10−9 H
L3 4.12 × 10−9 H
ωp,1 355.45 rad s−1

ωp,2 2.57 × 103 rad s−1

ωp,3 1.73 × 104 rad s−1

Table 3.1: Parameters used in the study of conventional control strategies.

Furthermore, the bode diagrams for the receptance of the system incorporating
the two pairs of cs and csky are displayed in Figures 3.5a and 3.5b, in Figure 3.5.
The bode diagrams for the comparison of the inertance are present in Figure 3.6,
with Figures 3.6a and 3.6b reporting the responses of the two system configurations.
It is evident that with the combination of cs and non-null csky, the unsprung mass
displacement is not controlled, however the sprung mass acceleration presents a lower
magnitude compared to that of the null skyhook damping case. Furthermore, it must
be noted that the pair of cs and csky that provide a superior condition for passenger
comfort yield a real part of the largest pole (closest to the origin) approximately
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Conventional Control Strategies

equal to -6.1 rad s−1, when imposed in the dynamic matrix. Conversely, the case
with null skyhook damping remains the most stable, with the real part of the pole
approximately equal to -6.59 rad s−1. The results of this comparison confirm that a
combination of cs and csky can be implemented in the system, improving passenger
comfort, while conserving the system’s stability.
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Figure 3.3: Sprung mass acceleration for different configurations of cs and csky.
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Figure 3.4: Unsprung mass displacement for different configurations of cs and csky.
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Figure 3.5: Receptance for different configurations of cs and csky.
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Figure 3.6: Inertance for different configurations of cs and csky.
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3.2 Groundhook Control
A shift in focus is introduced in the consideration of handling as opposed to

passenger comfort. While skyhook damping acts only on the sprung mass, ground-
hook damping behaves analogously by targeting the unsprung mass alone [6], as
illustrated in Figure 3.7. As in the case of skyhook damping, the stability of the
system is analysed for combinations of cs, and groundhook damping, cgr, with
an appropriate modification of the dynamic matrix found in section A.2 of the
Appendix. The colour map obtained in Figure 3.8 from the analysis corresponds
to that of the highest velocity, motivated by the same behaviour observed in the
case of skyhook damping. Discrete regions of stability are illustrated, however
with a much weaker dependency of cgr with respect to cs. A well of maximum
stability is nonetheless identifiable, from which a pair of cs and cgr are extracted.
For comparison, another pair close to the region of maximum stability are extracted
from the map, with a larger value of groundhook damping.

The dynamic responses in terms of unsprung mass displacement and sprung mass
acceleration are obtained from a corresponding Simulink® model, with identical
excitation parameters as those implemented for the skyhook damping analysis. The
time domain responses for the sprung mass acceleration are compared in Figures
3.9a and 3.9b of Figure 3.9, while those of the unsprung mass displacement are
presented in Figures 3.10a and 3.10b of Figure 3.10. Given that cs is almost invari-
ant with respect to cgr for regions of stability with similar real pole components,
it is expected and indeed evidenced in the time domain plots that in the case
of a larger value of cgr, the unsprung mass displacement is lower. The sprung
mass acceleration is also marginally lower in the case of a larger cgr, due to the
minimisation of vibrations transmitted from the unsprung mass to the sprung mass
via the intermediate suspension.

The bode diagrams representing the receptance are compared in Figures 3.11a
and 3.11b of Figure 3.11, while those for the inertance are compared in Figures
3.12a and 3.12b of Figure 3.12. It is clear that with a larger groundhook damping
coefficient, the magnitude of the response for the displacement is expected to be
lower compared to that of a lower cgr value. This confirms improved handling, and
it must be noted that in the case of a larger cgr, the system retains a real component
value of the largest pole in the neighbourhood of those noted for maximum stability,
approximately equal to -6.18 rad s−1. The real part of the largest pole for the most
stable pair of cs and cgr is approximately equal to -7.6 rad s−1.
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Figure 3.7: Quarter-car model of electrodynamically levitated pod with groundhook control.

Groundhook Damping Stability Map

0 1000 2000 3000 4000 5000

c
gr

 [Ns/m]

0

50

100

150

200

250

300

350

400

450

500

c
s [

N
s/

m
]

-7

-6

-5

-4

-3

-2

-1

0
Re(s) [rad/s]

Figure 3.8: Stability map for groundhook damping coupled with suspension damping.
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A further observation of the time domain responses confirms that the sprung
mass acceleration presents a markedly reduced peak value compared to that of the
skyhook damping case. A possible reason is that the value of csky is an order of
magnitude lower than the value of cgr, meaning that although groundhook damping
targets handling, its larger value may also prevent oscillations from reaching the
sprung mass. A brief investigation yields that a value of skyhook damping of
comparable order presents a similar sprung mass acceleration response as that
depicted for the groundhook damping case. A note of warning must be issued for
the use of an increased value of csky, where the real component of the largest pole
of the dynamic matrix is most certainly closer to the origin, therefore presenting
an unsatisfactory stability condition.
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Figure 3.9: Sprung mass acceleration for different configurations of cs and cgr.
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Figure 3.10: Unsprung mass displacement for different configurations of cs and cgr.
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Figure 3.11: Receptance for different configurations of cs and cgr.
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Figure 3.12: Inertance for different configurations of cs and cgr.
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3.3 Skyhook and Groundhook Control
The final analysis regarding conventional control strategies consists of a simulta-

neous action of both csky and cgr as portrayed in Figure 3.13. Only one configuration
is considered, with the selection of csky pertaining to the value providing a more
favourable condition for passenger comfort, as outlined in subsection 3.1. Regarding
cgr, its value corresponds with that providing optimum stability for the system in
subsection 3.2. The value of cs is chosen in accordance with csky, as the primary
intent remains to optimise passenger comfort. Modifying the dynamic matrix,
present in section A.3 of the Appendix, the largest real part of the poles is approxi-
mately equal to -6.16 rad s−1, residing in the neighbourhood of the values observed
during prior analyses.

Figure 3.13: Quarter-car model of electrodynamically levitated pod with skyhook and groundhook
control.

Regarding the dynamic response, time domain plots and bode diagrams reveal a
superior performance of the system with the inclusion of both imaginary damp-
ing contributions, where the sprung mass acceleration and the unsprung mass
displacement are lower when compared to all previous dynamic responses. The
response regarding the sprung mass acceleration is indicated in Figure 3.14, while
the unsprung mass displacement is reported in Figure 3.15. The bode plots for
the receptance and inertance in Figures 3.16 and 3.17 respectively present notably
reduced peaks in magnitude. To preserve consistency in the comparison, the input
parameters such as the profile of the track and the velocity remain constant.
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Figure 3.14: Sprung mass acceleration of configuration implementing a combination of csky and
cgr.
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Figure 3.16: Receptance of configuration implementing a combination of csky and cgr.
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Figure 3.17: Inertance of configuration implementing a combination of csky and cgr.
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Chapter 4

Optimal Control Strategies

4.1 Excitation Profiles
4.1.1 Sinusoidal

Prior to the discussion concerning the Linear Quadratic Regulator, a further
analysis is made on the various excitation profiles useful as inputs for the validation
of the control strategy’s performance. As in the case of the study concerning the
implementation of skyhook and groundhook damping, the system’s response due
to a sinusoidal excitation profile is explored. In Simulink®, the sinusoidal input
is introduced in temporal frequency, however the profile may also be expressed
in spatial frequency [7] as reported in Equation 4.1. The passage from spatial to
temporal frequency is outlined in Equation 4.2.

zR(x) = AR sin(Ωx) (4.1)

Ωx = 2π

λ
x = 2π

λ
vt = 2π

v

λ
t = ωt (4.2)

The study of a generic sinusoidal excitation profile is further refined by the
introduction of characteristic parameters present on the HyperloopTT™ test track
in Toulouse, France. The vertical profile excitations of the track comprise of
mechanical loading, thermal loading, and the effects of the linear synchronous
motor. The expression in spatial frequency is reported in Equation 4.3. Given that
Simulink® requires a temporal frequency, appropriate modifications are made to
the argument of the sine function prior to its numerical implementation for the
study, as per the formulation in Equation 4.2.

ZHA = ZD sin
32π

λL

x
4

+ Z∆T sin
32π

λL

x
4

− ZS

λS

rem
3

x

λS

4
− ZS

2 (4.3)
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4.1.2 Random
Random track irregularities represent a more accurate input profile, allowing for

a realistic analysis of the control strategy. It is also possible to define a random
track profile by means of a superposition of sinusoidal functions [7]. For a true
random profile, the auto-correlation function is defined in terms of the one-sided
PSD (a function of the wave number, analogous to the spatial frequency), and a
cosine function with the wave number and a spatial shift as its argument, evident in
Equation 4.4. For a null spatial shift, the auto-correlation function coincides with
the variance of the random distribution describing the profile, indicated in Equation
4.5. Moreover, the variance can be approximated in discrete terms, by means of a
summation of N power spectral densities dependent on N wave numbers, as seen
in Equation 4.6.

R(ξ) =
Ú ∞

0
Φ(Ω) cos(Ωξ)dΩ (4.4)

R(ξ = 0) = σ2 =
Ú ∞

0
Φ(Ω)dΩ (4.5)

σ2 ≃
NØ

i=1
Φ(Ωi)∆Ω (4.6)

∆Ω = ΩN − Ω1

N
(4.7)

Before the development of the sinusoidal approximation for a random profile, an
expression is defined regarding the PSD, in relation to a PSD at a reference wave
number (Ω0 = 1 [rad/m]), in Equation 4.8. It has been empirically verified that
a waviness w=2 is an adequate parameter choice. The vertical profile at a point
along the track is defined by a summation of a number N → ∞ sine waves, and
is evident in Equation 4.9. Moreover, the variance pertaining to a random profile
generated by N → ∞ sine waves is given by Equation 4.10, and when equated to
Equation 4.6 for a true random profile, the expression for the amplitude of each
component sine wave as a function of the PSD at each corresponding wave number
is obtained in Equation 4.11.

Φ(Ω) = Φ(Ω0)
A

Ω
Ω0

B−w

(4.8)

zR(x) =
NØ

i=1
Ai sin(Ωix − Ψi) (4.9)

σ2 = 1
2

NØ
i=1

A2
i (4.10)
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Ai =
ñ

2Φ(Ωi)∆Ω (4.11)

The discussion above provides the basis for modelling the irregularities of high
speed maglev railway tracks [8]. Indeed it is possible to identify a power spectral
density associated to this track type, as well as other types [9], present in Figure
4.1. Moreover, the generation of this profile type can be achieved with a direct
implementation of the sinusoidal method, however another method to achieve a
random input profile is through the well-documented ISO/TC 108/WG9 standard,
where road roughness, power spectral density of the profile, and vehicle velocity
primarily contribute to generating the irregularities. The use of this method is
chosen for the numerical study of the system, given that the profile generated
is similar to that obtainable from the sinusoidal approximation method, with
a comparison evident in Figure 4.2. The PSD generated by means of the ISO
method corresponds more closely to that of a welded railway track rather than
to a super-speed guideway, however it is deemed appropriate in the context of
the current study as the velocity imposed reflects conventional rail car speeds.
The transfer function that can be identified beginning from the PSD in spatial
domain defined in the standard is reported in Equation 4.12. Note that the term
s = iω in this context. The parameters used for the generation of the profiles are
found in Table 4.1 with Table 4.1a indicating those necessary for the sinusoidal
approximation method, and Table 4.1b outlining those generating the ISO profile.
The value of Gr in particular corresponds with the roughness coefficient of the
welded railway track, also coinciding with the value provided by the standard for a
Grade A road. In addition, the frequency f0 retains the purpose of shifting the
pole of the transfer function such that higher frequency content is not included.
The wavelength λf refers to the filter, and the longitudinal velocity v as well as the
distance travelled are kept constant for the comparison. It must be noted that the
value of the reference PSD Φ0, coincides with that of a Grade A road [7], further
confirming the adequacy of the comparison. The computational cost of the ISO
profile’s generation is also markedly lower.

TF (s) = 2π
√

Grv

s + 2πf0
(4.12)

Having defined the irregularities of the track, a sinusoidal input profile (par-
ticularly that described by the HyperloopTT™ test track) coupled with random
irregularities may be studied as a further attempt to gather an adequately realistic
response of the system.
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Figure 4.1: Power spectral densities of typical tracks, after Zhao and Zhai, 2002.
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Figure 4.2: Comparison of different profiles generated by varying methods.
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Parameter Value Units
Φ0 10−6 m2

rad/m

Ωmin 0.0628 rad/m

Ωmax 62.83 rad/m

Ω0 1 rad/m

N 2500 −
(a) Parameters used to obtain the random
input profile in Figure 4.2a.

Parameter Value Units
Gr 1.5 × 10−6 m2

rad/m

v 25 m/s

f0 0.25 Hz
λf 100 m
x0 100 m

(b) Parameters used to obtain the random input
profile in Figure 4.2b. Note that v and x0 also
pertain to the profile in Figure 4.2a.

Table 4.1: Parameters used for random profile generation.

4.2 Linear Quadratic Regulator
4.2.1 Overview and Implementation

A more general approach to the active control of the system under study is
possible by means of the Linear Quadratic Regulator (LQR). The LQR is based on
the minimisation of a cost function that considers appropriate target states coupled
with weighting parameters. In particular, the cost function represents a quadratic
performance index whose structure descends from the definition of the RMS value
of the variables of interest [10][11]. With a larger weighting parameter, a lower
magnitude of the coupled target state is achieved. The weighting parameters for
the target states are contained in the diagonal and positive definite matrix Q.
Similarly, the diagonal weighting matrix R acts on the control input, imposing an
expensive or cheap control strategy. An expensive control strategy involves larger
weighting on the control input, such that the action of the actuator is limited,
reducing power consumption. Conversely, a cheap control strategy allows for the
full exploitation of the actuator, such that the weighting parameters affecting the
target states are more significant in comparison to those of the control input. The
expression in Equation 4.13 outlines the structure of the cost function.

J =
Ú ∞

0
(x⊤Qx + u⊤Ru)dt (4.13)

The output of the LQR optimisation consists of a state gain matrix K that
is useful to compute the counteractive control forces u, for each linear actuator
necessary to stabilise the system, summarised in Equation 4.14. Several studies
have implemented the LQR to achieve optimal control using a linear actuator in
the context of automotive applications [10][12], however its novel inclusion in the
system representing the quarter-car model of the electrodynamic levitation vehicle
is explored here.
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u = −Kx (4.14)

The practical implementation of the LQR in the form of a linear actuator
requires an adequate observation of the target states. It can be noted that the
lumped parameter model of the electrodynamically levitated system (including
electrodynamic and mechanical behaviours) consists of states that cannot be
observed with ease. Therefore, a model of reduced size is considered that accounts
for more readily observable target states. The foundation of the aforementioned
model lies in the introduction of an equivalent spring that approximates the
behaviour of the levitation pad, coupling the track with the unsprung mass [1][13].
Thus all states concerning the eddy currents are ignored. Firstly, an expression for
the stiffness is developed by using Equation 1.9 for the lift force in static conditions,
followed by the substitution of Equation 1.10 for the nominal air gap. The resulting
formulation evident in Equation 4.15 is a function of the total mass, the pole pitch
ratio, and acceleration due to gravity. A notable feature of this approximation for
the behaviour of the pad is that the system becomes marginally stable at worst.

kp = 2mtg

γ
(4.15)

In all the systems under consideration, only one control input exists, consistent
with the presence of one linear actuator, meaning the matrix R and vector u
reduce to scalars. An optimisation of the LQR implementation is performed with
a single weighting parameter r, varying from 0 to 1. The cost function representing
this modification is expressed in Equation 4.16. With the reduced size model and
the LQR approach defined, the target states of the optimisation are explicitly
evidenced: the unsprung mass velocity and the sprung mass velocity. MATLAB®

and Simulink® are used to attain time domain responses of the states. In particular,
all states are extracted as outputs in a dynamic response of the system, and are
operated on by the state gain matrix to provide a force that becomes an input to
the system along with the external disturbances. For each value of the weighting
parameter r, a set of RMS values pertaining to the outputs extracted represent
performance indicators. It is evident that the weighting parameter r serves as
an indicator for the priority assigned to each of the two states. With a unitary
value, the cost function responds by minimising the sprung mass velocity the most,
disregarding entirely the unsprung mass velocity. The opposite occurs with a null
value. Note that the absence of the scalar R implies a null value, however in
practice it is set to a comparatively smaller value with respect to the weighting
parameter r (in the order of 10−5 to 10−12). The studies presented herein impose
the value of R = 10−5 for an expensive control condition, and R = 10−12 for a
cheap control condition.
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J =
Ú ∞

0
(rż2

s + (1 − r)ż2
p)dt (4.16)

The avenue taken in the evaluation of the LQR comprises the study of four
models. Two of these models incorporate the LQR, with one being of reduced size
while the other representing the system with the inherent instability, indicated in
Figures 4.3 and 4.4 respectively. An analogous approach is present in the remaining
two, with both utilising a passive damper, as seen in Figures 4.5 and 1.1. The
intention of this comparison is two-fold. The lumped parameter model contain-
ing the instability is analysed against the reduced order model with the control
mechanism constant in one comparison. A second comparison varies the control
mechanism between an active and passive type. Of interest is the latter study, as
the performance of the passive damper provides a benchmark for the LQR, with the
LQR preferably demonstrating a superior behaviour. The cost function in Equation
4.16 is not written in a matrix and vector formulation, however the corresponding
matrix Q can be identified for the optimisation, and is outlined in section A.10 of
the Appendix. Note that section A.11 indicates the matrix Q necessary for the
computation of the state gain matrix for the dynamic response analysis of the LQR
controlled system containing the inherent instability. The main parameters useful
for the models are presented in Table 4.2.

Figure 4.3: Quarter-car model of electrodynamically levitated pod with LQR control and equivalent
pad stiffness.

Before proceeding to the analysis of the control strategies, an understanding of
the adequacy of the proposed simplified model must be reached. For this purpose,
the state space representations of both the reduced order model and the lumped
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Figure 4.4: Quarter-car model of electrodynamically levitated pod with LQR control.

Figure 4.5: Quarter-car model of electrodynamically levitated pod with passive damper and
equivalent pad stiffness.

parameter model (inherent instability included) are used to obtain their respective
bode plots in MATLAB®. The state space representations of the four models useful
for the current study are present in the Appendix, in sections A.5, A.6, A.8, and
A.9. In particular, the receptance and inertance are observed to carry out the
comparison, and it is noteworthy that the fit is appreciable, evident in Figures 4.6
and 4.7 respectively. For all analyses presented henceforth, the longitudinal velocity
v is kept constant as in the study of the random profile generation, reported in
Table 4.2. This pertains to the studies in frequency domain as well, due to the
dependency of the dynamic matrix on the velocity for the lumped parameter model
with inherent instability.
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Parameter Value Units
v 25 m/s

x0 100 m
ms 20 kg
mp 2 kg
mt 22 kg
γ 0.0159 m
ks 789.57 N m−1

kp 27.1 × 103 N m−1

cs 246.8 N s m−1

Λ0 3.29 × 10−4 Wb
L1 7.72 × 10−10 H
L2 2.06 × 10−9 H
L3 4.12 × 10−9 H
ωp,1 355.45 rad s−1

ωp,2 2.57 × 103 rad s−1

ωp,3 1.73 × 104 rad s−1

Table 4.2: Parameters used in the study of optimal control strategies.

The results indicate a further comparison regarding the type of LQR strategy
employed, where Figures 4.6a and 4.7a exhibit the behaviour of the receptance
and inertance respectively, for a choice of R = 10−12. Conversely, Figures 4.6b and
4.7b concern the receptance and inertance for a selection of R = 10−5. Although
the fit is agreeable for this choice of R, a significant deviation between the two
models can be observed for the inertance in particular. This may prove to be a
source of inconsistencies in the dynamic responses to be studied. Note that in the
figures, the weighting parameter notation r refers to the system described by the
reduced order model, whereas the notation rf refers to the lumped parameter model
containing the instability. Given that a more expensive control strategy limits the
power consumption of the linear actuator, an expected decrease in performance
is outlined in the behaviour of both the receptance and inertance. Indeed, at the
frequencies where the sprung mass resonates, higher magnitude peaks are observed.
An additional remark is an apparent shift of the poles when a cheaper control
strategy is implemented; the weighting parameter r forces the poles towards lower
frequencies.

Moreover, the general study of the reduced order model’s response in the frequency
domain is extended to a comparison between the control strategies introduced.
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Figures 4.8 and 4.9 concern the receptance and inertance respectively, for two values
of the weighting parameter r in a LQR controlled system, as well as for a system
controlled by a passive damper. Figure 4.8a indicates a favourable performance for
the unsprung mass displacement with a choice of the smallest value for r, when a
cheap LQR control is used. Figure 4.8b also presents a superior performance for
the smallest value of r, however a large peak is noted for the sprung mass. The
performance at the largest value of r is comparable to that of the passively damped
system. A similar analysis can be made for the inertance, where the magnitude of
the sprung mass gain at the expected resonance frequency for the largest value of r
is comparable to that of passive damper, in both the cheap and expensive control
cases, indicated in Figures 4.9a and 4.9b.

The analysis moves to a study in the time domain, where RMS values for various
quantities at different values for the weighting parameter r provide performance
indications. The type of LQR strategy employed is also studied, varying from
a cheap control strategy to an expensive control strategy. The responses for
three input profiles are studied: a random profile generated by means of the ISO
standard, a sinusoidal profile corresponding to the HyperloopTT™ track, and a
profile combining the first two. In addition to the aforementioned longitudinal
velocity, the distance travelled is maintained constant for all analyses, reported in
Table 4.2.
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(b) Receptance comparison between reduced order
model and lumped parameter model with inherent
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(R = 10−5) and two weighting parameters r.

Figure 4.6: Receptance comparison for cheap and expensive control strategies, at varying weighting
parameters r.

10
0

10
2

-60

-40

-20

0

20

40

60

80

100

120

M
ag

n
it

u
d
e 

(d
B

)

r = 1e-05

rf = 1e-05

r = 1

rf = 1

Inertance Comparison

Frequency  (Hz)

(a) Inertance comparison between reduced order
model and lumped parameter model with inherent
instability, concerning a cheap control strategy (R =
10−12) and two weighting parameters r.

10
0

10
2

-10

0

10

20

30

40

50

60

70

M
ag

n
it

u
d
e 

(d
B

)

r = 1e-05

rf = 1e-05

r = 1

rf = 1

Inertance Comparison

Frequency  (Hz)

(b) Inertance comparison between reduced order
model and lumped parameter model with inherent
instability, concerning an expensive control strategy
(R = 10−5) and two weighting parameters r.

Figure 4.7: Inertance comparison for cheap and expensive control strategies, at varying weighting
parameters r.
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(b) Receptance performance comparison between
reduced order model with a cheap LQR control
strategy (R = 10−5) and passive damping control.

Figure 4.8: Receptance performance comparison for cheap and expensive control strategies.
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(a) Inertance performance comparison between re-
duced order model with a cheap LQR control strat-
egy (R = 10−12) and passive damping control.
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Figure 4.9: Inertance performance comparison for cheap and expensive control strategies.
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4.2.2 Sinusoidal Profile Response
An initial analysis consists of studying effects of a sinusoidal track on the LQR

controlled system. The parameters used for the generation of the HyperloopTT™

track profile are reported in Table 4.3, and a cheap LQR strategy is selected with
R = 10−12. The input profile in question imposes a certain dynamic response
for different values of the weighting parameter r. The RMS of the sprung mass
acceleration is presented varying with r, in Figure 4.10. Likewise, the unsprung
mass displacement is reported in Figure 4.11. In particular, it must be outlined that
the variables exhibit an expected behaviour regarding the range of r imposed. The
sprung mass acceleration decreases with a value of r nearing 1, while the unsprung
mass displacement increases. This reflects the design of the optimisation, evident
in the matrices present in sections A.10 and A.11 of the Appendix. In all figures
pertaining to the LQR analysis, Full Model refers to the model incorporating the
instability, while Reduced Model refers to the system with the observable states.
In all the plots, it is evident that the two models provide near indistinguishable
behaviours with respect to r, further confirming that the reduced order model is
adequate for its implementation in this context. In addition, the thresholds for
performance discrimination are provided by the RMS values of the appropriate
variables pertaining to the passively damped system.

Parameter Value Units
ZD 2.5 × 10−3 m
Z∆T 2.5 × 10−3 m
ZS 10−3 m
λL 40 m
λS 1 m

Table 4.3: Parameters used in the generation of the HyperloopTT™ track profile.

The control force and control power are observed to decrease with an increasing
value of r, as seen in Figures 4.12 and 4.13 respectively. This may be viewed as
advantageous due to the preference of the designer to choose a value of r that
prioritises comfort. The control force required in an optimal comfort condition (with
a unitary r) is verified to be approximately equal and opposite to the force exerted
by the spring, meaning the sprung mass is stabilised. Both plots for the control
force and the control power do not report maximum values, as their magnitudes
exceed realistic bounds. These large power and force requirements occur for very
small values of r introduced, where the system prioritises the minimisation of the
unsprung mass velocity, and the actuator exerts a considerable force to stabilise it.
Lower power consumption and force exertion are needed when the sprung mass
is prioritised, because the actuator allows the unsprung mass to oscillate while
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providing only the necessary force to stabilise the sprung mass.

The suspension stroke also reduces with a prioritisation on comfort, observed
in Figure 4.14. The relative velocity is observed to generally decrease although it
increases for values of r approaching 1, plotted in Figure 4.15. This reaffirms the
movement of the unsprung mass with the stabilisation of the sprung mass. Once
again the suspension stroke and relative velocity are exceedingly large for small
values of r, hence the bounds for the axes are limited for clarity.

Moreover, given the behaviour of the weighting parameter r with respect to
the RMS values of unsprung mass displacement and sprung mass acceleration, an
optimal control condition can be identified with

0.991 < r < 1

where the upper bound represents the value of r guaranteeing a performance
of the unsprung mass displacement that is superior to that of the passive damper.
In this case, the value is unitary, due to the performance of the unsprung mass
displacement being consistently more favourable than the passive damper for any
value. Likewise, the lower bound represents the discriminant condition for the
sprung mass acceleration. Note that this range is obtained by observing solely
the curves related to the models of reduced order. With this condition, a state
observer may be implemented to introduce active control using a linear actuator.
The reduced order model may be configured with a desired value of r, and given
the observability of the states, can be experimentally validated.
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Figure 4.10: Sprung mass acceleration with R = 10−12 and across varying weighting parameters
r, for reduced order model and lumped parameter model with inherent instability. Sinusoidal
input profile.
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Figure 4.11: Unsprung mass displacement with R = 10−12 and across varying weighting parameters
r, for reduced order model and lumped parameter model with inherent instability. Sinusoidal
input profile.
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Figure 4.12: Control force for linear actuator with R = 10−12 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
Sinusoidal input profile.
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Figure 4.13: Control power for linear actuator with R = 10−12 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
Sinusoidal input profile.
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Figure 4.14: Suspension stroke for linear actuator with R = 10−12 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
Sinusoidal input profile.
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Figure 4.15: Relative velocity for linear actuator with R = 10−12 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
Sinusoidal input profile.
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4.2.3 Random Profile Response
The behaviour of the LQR controlled system with respect to a random input

profile across varying values of r is first indicated in Figure 4.16 with the sprung
mass acceleration reported. Secondly, the unsprung mass displacement is presented
in Figure 4.17. The two behaviours are once again consistent with those expected.
The unsprung mass displacement is observed to increase significantly as r nears 1,
while the sprung mass acceleration reflects increased comfort for the passengers.
The LQR strategy imposed remains the same with R = 10−12.

The control force and control power concerning the linear actuator reported
in Figures 4.18 and 4.19 respectively again demonstrate similar characteristics as
those for the sinusoidal input profile case. The power increases slightly with r
approaching 1, due to the relative velocity exhibiting an expected increase, evident
in Figure 4.21. The suspension stroke in Figure 4.20 notably behaves as expected
with a minimised magnitude, for r in the neighbourhood of 1. It is observed that a
track with random irregularities requests a higher control force for stabilisation
compared to the previous case of the HyperloopTT™ track due to the unpredictable
nature of the input.

As in the study regarding the sinusoidal input profile, discriminant values
stemming from the results regarding the sprung and unsprung masses give rise to
a condition

0.989 < r < 0.998

where the more stringent range must be respected for optimal performance. A
value of r closer to the lower bound favours handling performance, however the
constancy of the curve for unsprung mass displacement suggests that a similarly
acceptable response is expected even if a selection of r improving comfort is made.
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Figure 4.16: Sprung mass acceleration with R = 10−12 and across varying weighting parameters
r, for reduced order model and lumped parameter model with inherent instability. ISO standard
input profile.
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Figure 4.17: Unsprung mass displacement with R = 10−12 and across varying weighting parameters
r, for reduced order model and lumped parameter model with inherent instability. ISO standard
input profile.
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Figure 4.18: Control force for linear actuator with R = 10−12 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
ISO standard input profile.
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Figure 4.19: Control power for linear actuator with R = 10−12 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
ISO standard input profile.
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Figure 4.20: Suspension stroke for linear actuator with R = 10−12 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
ISO standard input profile.

0 0.2 0.4 0.6 0.8 1

r

0

0.1

0.2

0.3

0.4

0.5

0.6

R
el

at
iv

e 
V

el
o
ci

ty
 [

m
/s

]

Relative Velocity

LQR Control (Reduced Model)

LQR Control (Full Model)

Figure 4.21: Relative velocity for linear actuator with R = 10−12 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
ISO standard input profile.
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A more realistic profile may be conceived by combining the random profile gen-
erated by the ISO standard with the sinusoidal profile of the HyperloopTT™ track,
although the LQR control strategy does not differ. The RMS values of sprung mass
acceleration and unsprung mass displacement in this case are larger with respect
to those in previous cases, however the pattern with respect to r remains the same.
These behaviours are reported in Figure 4.22 for the sprung mass acceleration and
Figure 4.23 for the unsprung mass displacement. The force and control power in
Figures 4.24 and 4.25 respectively exhibit generally larger magnitudes as well, how-
ever of note is the plot for the relative velocity in Figure 4.27. The relative velocity
for the largest values of r increases significantly, compared to other cases, however
the power request is sufficiently limited due to the decreasing magnitude of the force.

The range of the parameter r necessary for optimal operation of the LQR
controlled system

0.989 < r < 0.999
is similar to that pertaining to solely a random input profile. This suggests

that a combination of the profiles yields a result that most closely relates to a
purely random ground excitation of the system, meaning that the range obtained
from the responses concerning an ISO standard input profile is sufficient for an
implementation in a state observer active control.

A final study is conducted by exploring the differences stemming from an expen-
sive control strategy (imposing R = 10−5). Indeed, an immediate feature of note is
the reduced conformity of the reduced model with the model incorporating the in-
herent instability. The sprung mass acceleration indicated in Figure 4.28 highlights
a more conservative condition for the full model with the instability compared to
the reduced order model. Regarding previous cases, one may observe that sprung
mass acceleration is lower, however when plotted with the same scale, it is evident
that increasing the control input penalisation reduces the sensitivity of r on the
variables of interest. The unsprung mass displacement in Figure 4.29 indicates
a comparable performance to that of the passive damper, although discriminant
values for r can nonetheless be identified.

The control force and control power in Figures 4.30 and 4.31 respectively also
highlight a more conservative behaviour for the full model. The control force is
verified to not be equal and opposite to the force exerted by the spring, confirming
that the actuator’s capability is not fully exploited. A noteworthy result in this
aspect of the study is the comparably lower power consumption, consistent with the
penalisation of the control input characteristic of an expensive control strategy. The
suspension stroke in Figure 4.32 is markedly lower in magnitude along the entire
range of r compared to previous cases, consistent with a limitation of actuator
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4.2 – Linear Quadratic Regulator

displacement. Likewise, the relative velocity in Figure 4.33 remains approximately
constant for most of the range of r, while increasing for values nearing 1. This is
again due to the stabilisation of the sprung mass.

An expensive control strategy may be implemented to reduce power consumption,
although an adequate choice of the control input penalisation parameter R needs
to be made. This is due to the divergence of the conformity for the two models,
and if a reduced order model is to be successfully employed, their correspondence
must be sufficiently close. Towards values of r closer to 1, the non-conformity is
less prominent, allowing the reduced order model to be used for maximisation of
passenger comfort. Moreover, the reduced sensitivity is exhibited by the range

0.518 < r < 0.948

where a wider set of values are suitable for optimal performance. This may
be advantageous in tuning the system for a compromise in handling as well as
passenger comfort. If only passenger comfort is desired, a cheaper control strategy
with a stringent set for the weighting parameter r may be employed.
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Figure 4.22: Sprung mass acceleration with R = 10−12 and across varying weighting parameters
r, for reduced order model and lumped parameter model with inherent instability. ISO standard
and sinusoidal input profile combination.
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Figure 4.23: Unsprung mass displacement with R = 10−12 and across varying weighting parameters
r, for reduced order model and lumped parameter model with inherent instability. ISO standard
and sinusoidal input profile combination.
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Figure 4.24: Control force for linear actuator with R = 10−12 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
ISO standard and sinusoidal input profile combination.
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Figure 4.25: Control power for linear actuator with R = 10−12 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
ISO standard and sinusoidal input profile combination.
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Figure 4.26: Suspension stroke for linear actuator with R = 10−12 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
ISO standard and sinusoidal input profile combination.
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Figure 4.27: Relative velocity for linear actuator with R = 10−12 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
ISO standard and sinusoidal input profile combination.
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Figure 4.28: Sprung mass acceleration with R = 10−5 and across varying weighting parameters r,
for reduced order model and lumped parameter model with inherent instability. ISO standard
and sinusoidal input profile combination.
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Figure 4.29: Unsprung mass displacement with R = 10−5 and across varying weighting parameters
r, for reduced order model and lumped parameter model with inherent instability. ISO standard
and sinusoidal input profile combination.
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Figure 4.30: Control force for linear actuator with R = 10−5 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
ISO standard and sinusoidal input profile combination.
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Figure 4.31: Control power for linear actuator with R = 10−5 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
ISO standard and sinusoidal input profile combination.
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Figure 4.32: Suspension stroke for linear actuator with R = 10−5 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
ISO standard and sinusoidal input profile combination.
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Figure 4.33: Relative velocity for linear actuator with R = 10−5 and across varying weighting
parameters r, for reduced order model and lumped parameter model with inherent instability.
ISO standard and sinusoidal input profile combination.
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Chapter 5

Final Remarks

5.1 Conclusions
The present study encompasses a characterisation of the effects of irregularities

on the static lift and drag forces, through an optimisation that yields an air gap
offset, allowing for a COMSOL model to replicate experimental behaviour. Unique
air gap offsets for each nominal air gap are attainable. In addition, one air gap
offset applicable to all nominal air gaps is found. The analysis concerns both config-
urations of the Halbach array, and as a result, the test bench is better understood,
and a more accurate FEM model is available.

With regards to dynamic phenomena, skyhook and groundhook damping are
implemented and studied individually within the system. Stability wells are iden-
tified, and time domain responses are obtained to validate the feasibility of such
control strategies. The most optimal configuration is found to be a combination
of both imaginary damping contributions, with csky = 220 N s m−1, cgr = 2020.2
N s m−1, and cs = 25.25 N s m−1. The value of csky corresponds to a condition of
optimal comfort found in the analysis of solely a skyhook implementation, with
the suspension damping chosen to conserve stability as per the map generated.
Similarly, the analysis of including only groundhook damping yields the value cited
above. This strategy may be further implemented into a semi-active control system
to achieve desired passenger comfort. Concerning further analysis of electrodynamic
levitation dynamics, input profiles are studied in anticipation of the LQR approach
for active control. The ISO standard is adopted for random track irregularities,
and the HyperloopTT™ track profile is adopted for a study of a sinusoidal input.
A reduced order model is implemented to ensure a potential use in state-observer
active control, and its adequacy is confirmed for a cheap control condition, with an
expensive control condition presenting deviations, in the frequency domain. Time
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Final Remarks

domain responses are generated for each value of r, ranging from 0 to 1. RMS
values of extracted states become performance indicators, and are compared against
those of the passively damped model, particularly for the sprung mass acceleration
and unsprung mass displacement. For each input case, a range of r values is
identified, such that the LQR controlled system’s performance is superior to that
of the passively damped system. The range 0.989 < r < 0.998 for r stemming
from the ISO standard profile input, although strict, is deemed sufficient for a
prioritisation of passenger comfort for a cheap control strategy. A lower sensitivity
of r is noted for an expensive control strategy, as well as a less satisfactory match
for time domain plots. An expensive control strategy is advised only for values
of r in the neighbourhood of 1, even though the identifiable range of superior
performance is considerably wider than that of a cheap control strategy.

5.2 Further work
Further work in this field consists of introducing active control, facilitated by

a state observer, on the voice coil of the test bench. The LQR control strategy
may be imposed, and an experimental campaign may be initiated to validate
numerical findings herein presented. The numerical work requires a modification
to suit the characteristics of the voice coil system, however the foundation for
attaining optimal weighting parameters r has been laid. For a given range of r
and a suitable value of control input penalisation R, experimental results may
inform the most optimal selection of final weighting parameters that significantly
improve passenger comfort. Moreover, the numerical work regarding skyhook and
groundhook damping may be practically exploited in a similar manner, integrating
the control in an experimental context. A comparison between the strategy em-
ploying skyhook and groundhook damping, and the LQR must be carried out as well.

To consolidate this work, a study on ride comfort may provide more refined
control strategies, where not only performance is considered, but also passenger
well-being. The Mean Comfort Method and Sperling’s Method may be used [14],
where the RMS of the vertical acceleration is used to generate an index that
corresponds with a certain level of perturbation sensation. The index in the
Mean Comfort Method undergoes a weighted filtering, accounting for high human
sensitivity to vertical vibrations. Conversely, Sperling’s Method may be computed
either over a range of frequencies [14], or at a specific frequency [15] regarding
external excitations, however in both scenarios a frequency weight factor must be
considered. These ride comfort characterisation methods may prove to generate a
more complete control strategy that reliably prioritises passenger comfort.
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Appendix A

Matrices

A.1 State Space for Skyhook Damping Imple-
mentation
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A.2 State Space for Groundhook Damping Im-
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zp żs z̈s

é⊤
pf = − 2Λ0

γmp

e−zp,0/γ

pd = Λ0

γ
e−zp,0/γ

pq = ωΛ0

γ
e−zp,0/γ

Agr =



-ωp,1 ω 0 0 0 0 pd

L1
0 0 0 0

-ω -ωp,1 0 0 0 0 0 pq

L1
0 0 −pq

L1
0 0 -ωp,2 ω 0 0 pd

L2
0 0 0 0

0 0 -ω -ωp,2 0 0 0 pq

L2
0 0 −pq

L2
0 0 0 0 -ωp,3 ω pd

L3
0 0 0 0

0 0 0 0 -ω -ωp,3 0 pq

L3
0 0 −pq

L3

pf 0 pf 0 pf 0 −cs−cgr

mp

−ks

mp

cs

mp

ks

mp
0

0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 cs

ms

ks

ms

−cs

ms

−ks

ms
0

0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0


Bgr =

è
− pd

L1
0 − pd

L2
0 − pd

L3
0 0 0 0 0 1

é⊤

Cgr =

 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 cs

ms

ks

ms

−cs

ms

−ks

ms
0


Dgr =

è
0 0 0

é⊤
70



A.3 – State Space for Skyhook and Groundhook Damping Implementation

A.3 State Space for Skyhook and Groundhook
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A.4 Dynamic and Input Gain Matrices for Equiv-
alent Pad (only for state gain matrix)
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A.6 State Space for Equivalent Pad with Passive
Damper
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A.7 Dynamic and Input Gain Matrices for Pad
with Inherent Instability (only for state gain
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A.9 – State Space for Pad with Inherent Instability and Passive Damper
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A.9 State Space for Pad with Inherent Instability
and Passive Damper

z =
è

id,1 iq,1 id,2 iq,2 id,3 iq,3 żp zp żs zs zin

é⊤

y =
è

zp żs z̈s

é⊤

pf = − 2Λ0

γmp

e−zp,0/γ

pd = Λ0

γ
e−zp,0/γ

pq = ωΛ0

γ
e−zp,0/γ
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Matrices

Afc =



−ωp,1 ω 0 0 0 0 pd

L1
0 0 0 0

−ω −ωp,1 0 0 0 0 0 pq

L1
0 0 −pq

L1
0 0 −ωp,2 ω 0 0 pd

L2
0 0 0 0

0 0 −ω −ωp,2 0 0 0 pq

L2
0 0 −pq

L2
0 0 0 0 −ωp,3 ω pd

L3
0 0 0 0

0 0 0 0 −ω −ωp,3 0 pq

L3
0 0 −pq

L3
pf 0 pf 0 pf 0 −cs

mp

−ks

mp

cs

mp

ks

mp
0

0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 cs

ms

ks

ms

−cs

ms

−ks

ms
0

0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0



Bfc =
è

− pd

L1
0 − pd

L2
0 − pd

L3
0 0 0 0 0 1

é⊤

Cfc =

 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 cs

ms

ks

ms

−cs

ms

−ks

ms
0



Dfc =
è

0 0 0
é⊤

A.10 Weighting Parameter Matrix for States of
Reduced Order System

Q =


1 − r 0 0 0

0 0 0 0
0 0 r 0
0 0 0 0


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A.11 – Weighting Parameter Matrix for States of System with Inherent Instability

A.11 Weighting Parameter Matrix for States of
System with Inherent Instability

Qf =



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 − r 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 r 0
0 0 0 0 0 0 0 0 0 0


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