
 
 

Degree in mechanical engineering 

Second cycle 30 CFU 

Techno-economic Analysis of a 
Hybrid Particle CSP-PV Plant 
including Cogeneration 
 

STEFAN MOROSANU 

  

Stockholm, Sweden 2022 



-2- 
 

 

 

 

 

 

 

 

 Master of Science Thesis 

Department of Energy Technology 

KTH 2020 

 

Techno-economic analysis of hybrid particle CSP-PV 
plant including cogeneration 

  TRITA: ITM-EX 2022:188 

  Stefan Morosanu 

Approved 

13-01-2022 

Examiner 

Laumert Björn 

Supervisor 

Rafael Eduardo Guedez 

Mata, 

Silvia Trevisan,  

Salvatore Guccione 

 Industrial Supervisor 

- 

Contact person 

Eliodoro Chiavazzo 

 

  

TRITA – ITM-EX 2022:188 

www.kth.se 

https://www.kth.se/


-3- 
 

Abstract 

 

This study aimed at evaluating the economic performance of electricity and heat production from 

a concentrated solar power system hybridized with PV, working with particles, and using a 

thermodynamic cycle base on the Brayton one having supercritical CO2. The heat is produced at 

around 400 ÷ 450 °C and it is intended for industrial application.  

The study has been divided into two steps, the first one has been the evaluation of feasibility 

without the cogeneration, and the second step has been the implementation of the cogeneration 

and finding for which thermal load the heat production can be cost-competitive. 

The analysis of the performance of the systems has been made using MoSES (Modelling of Solar 

Energy Systems), a new Python-based tool developed in KTH. The techno-economic has been 

done considering a quasi-steady-state model coupled with an economical model. The leading 

parameter for the optimization of both systems has been the LCOE, to make the technology 

economically attractive to the market the system should be able to cover almost 100 % of the 

thermal load to make the system able to supply heat reliably. 

In this analysis has emerged that the systems can cover a high percentage of the electric load with 

an LCOE of 90 €/MWh, in the case of downsizing of the power block the LCOE is 82 €/MWh 

but with a small penalization on the load coverage. The plant presents an LCOE lower than 90 

€/MWh at a power size of 50 MWe, which is relatively a small size for a power plan. In case of 

the cogeneration, the LCOE is 95 €/MWh with a lower electrical load coverage but the system is 

able to produce heat at the same LCOH from natural gas and in a reliable way. 

The analysis has shown that the LCOE and the overall performance of the system indicate that 

its role in the grid could be the covering the slow and predictable fluctuation of the electric 

demand, it can also produce heat at the same price as natural gas. With the technological progress 

and the urging need for the reduction of emissions, these technologies will get more and more 

market traction.  
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1 Introduction 

 

Nowadays, the energy demand is increasing and at the same time, there is a need of reducing the 

emission of greenhouse gases in the atmosphere. In this context, solar energy takes an important 

role in the energy transition to renewable sources. The solution that is feasible for a large-scale 

application that has been discussed here is the so-called concentrated solar power (CSP). This 

type of solution for producing electricity is ideal in the counties that are located in tropical areas 

where the solar irradiance is high enough to make economically advantageous the conversion.  

The main idea of CSP is to use the reflection of the light to concentrate in a relatively small area 

then, reach a high temperature up to 1000 °C (it depends on the technology) and use this heat 

source to run a power cycle like the Rankine or Brayton. The leading advantage of this 

technology is thermal energy storage, which gives the possibility to match the demand and the 

supply of electricity in a cost-competitive way. 

Due to the decreasing price of photovoltaic panels, CSP is integrated with PV to mitigate the 

high LCOE of CSP alone. On the other hand, the main disadvantage of the photovoltaic panels 

is the variability of power output, which is intrinsic due to the weather conditions, this drawback 

of the PV is mitigated by the TES of the CSP. For these reasons, the hybridization with PV has 

gained market traction (1) due to the combinations of cost-effective energy storage and electricity 

production. 

Moreover, the thermodynamic performance of CSP is increased by using particles because this 

allows the system of increasing the working temperature, which is beneficial for the overall 

efficiency of the thermodynamic cycle. The thermodynamic cycle is based on the Brayton cycle, 

and it has as a working fluid supercritical CO2, which offers better thermodynamic behaviour in 

that temperature range (2). 
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1.1 Introduction on the heat demand 

 

A significant percentage of the energy demand is ascribable to the heat demand, Fig. 1 (3) shows 

that in 2030 the 48% of the overall energy demand will be as a form of heat demand. More 

specifically, about 11% of the energy demand will be requested as high-temperature heat, at 

temperature higher than 400 °C. 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Total energy demand share in 2030 

 

According to this information, one of the points on which the study focuses is the possibility of 

these systems producing high-temperature heat reliably in a cost-competitive way because that 

system could be economically attractive. There are some CSP systems already in the market for 

heat production mainly parabolic through see paragraph 2.4.1 for more details, the system studied 

in the present work has the advantage of reaching a higher temperature than parabolic through 

thus, it can cover a higher variety of thermal loads. 

 

1.2 Aim of the study 

 

The goal of this work is the evaluation of the techno-economic performance of CSP hybridized 

with PV working with particles and having a Brayton cycle with sCO2 for the power block with 

cogeneration and without cogeneration.  

The performance of the system has been evaluated with the following considerations: 

• Calculating the minimum LCOE of the system in the design variable chosen 

• Find an application in the electricity market in which these technologies could be 

competitive considering its KPI, mainly capacity factor (𝐶𝑓) and LCOE. 

• Test the system considering the actual prices of electricity of the geographical position 

chosen 

• Introducing the cogeneration and finding if the system can produce heat at a competitive 

cost. 
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2 Theoretical background 

 

This chapter has discounted the most relevant theoretical background for the sake of 

understanding the system that has been modelled. It has been explained the different types of 

CSP with a particular focus on solar power tower (SPT) because it is the system that has been 

used for the studying, after which, it has been discussed the different techniques commonly used 

for making the SPT more competitive in the market. 

 

2.1 Types of CSP 

There are mainly 4 types of configurations of CSP see Fig. 2 (4). However, only 2 types are used 

which are parabolic trough and solar tower; The most used nowadays is the parabolic trough in 

90% of the cases and for the rest part there is the solar tower, nevertheless, the solar tower 

technology has gained market traction due to its potential and the decreasing costs. 

 

Fig. 2 Scheme of the different types of CSP 

• The parabolic trough is the most used nowadays due to its relative simplicity and its 

reasonable power production. The distinctive feature of this technology is the shape of 

the mirror, therefore, the shape of the receiver. The mirror has a parabolic shape, and it 

concentrates the solar irradiance on the pipe, the solar tracking of the mirrors is one 

dimension, so it tracks the movement of the sun using just one single axis hence, the 

cosine effectiveness is not always maximum.  The solar irradiance is concentrated on the 

receiver, which is the pipe, the working fluid can be directly water to have a direct steam 

generation of can be synthetic oil that through a heat exchange warms up the water for 

the power cycle. The receiver is made of layers, the first layer has the function to reduce 

the heat losses due to the convection of the external wind and at the same time having 

the lowest possible reflection, so it is typically transparent glass. The second layer has the 

function to absorb as much as possible thus, it is a black material with high absorption 

properties. The main limit of this technology is the low concertation ratio that leads to a 

low working temperature, therefore, a low thermal efficiency. 
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• Linear Fresnel reflector plants have a similar design to parabolic trough collect, the 

receiver is a pipe on which is concentrated the solar radiation by the mirrors, by contrast, 

the mirrors have a linear profile or a slightly curved shape to descries the optical losses. 

The structure is closer to the ground than in the case of parabolic trough collection, 

which leads to a simpler mechanical structure because there are fewer loads applied to the 

structure. The overall system complexity is relatively low compared to the other types 

because there are fewer technical difficulties. However, it has a low system efficiency due 

to the low working temperature because it has a low concentration ratio. 

• Dish-Stirling solar power generation concentrates all the solar irradiance on a focal point 

that allows the system reaching temperatures up to 750 °C (5), the conversion of heat 

into mechanical power is done by a Stirling cycle. The mirrors of the engine systems have 

the same requirements as always (e.g. high reflectance, accurate shape), due to the 

structure of the systems, it has a sun-tracking system to increase the energy harvest. The 

Dish-Stirling has a high potential due to its high concentration ratio because of the small 

scale of the engine the losses are significant the overall efficiency is up to 30% (5). The 

main advantage of this type of technology is modularity. Due to its modular properties, it 

can be used in remote areas or for bigger power production. 

 

2.2 Solar Power Tower (SPT) 

This is the second most used type of CSP, it seems that this technology will take the lead in the 

future over the other types of CSP (4). This technology has a vastly potential because of its high 

concentration ratio, which leads to high efficiency and summed up with the fact that it is feasible 

for large-scale power production this is the technology in which there is a lot of interest. 

The working principle of a solar power tower is that all the solar irradiance is concentrated on the 

one receiver (the tower) see Fig. 2 (4), the sun concentration must be done with reasonable 

accuracy, therefore, all the heliostats of the systems have a double-axis tracking of solar zenith 

and solar elevation and to reflect on the receiver. Furthermore, these plants can reach a relatively 

high working temperature and compared to the other types of technologies has a short heat 

transfer path, which leads to small heat losses. The optical-electrical power efficiency is 

comparatively higher than the other solution. 

The different types of solar power towers may differ from each other in the heat transfer fluid 

(HTF) the fluid could be water, molten salt, or air. In the case of water/steam, the advantage is 

the heat transfer fluid is also the same fluid for the power cycle and in this case, there is not a 

need for heat exchange which leads to a decrease in the complexity of the system. In a plant in 

which the HTF is molten-salt hence, the fluid that receives directly the heat is molten-salt, after 

this, HTF supplies a steam generator to feed the cycle for the power generation.  

The benefit of using molten salt as an HTF is a simplification of the mechanical structure, the 

heat absorption by the HTF is done with a relatively low-pressure increase, which allows the 

system to increase the pressure in the power cycle and together with that an increase in the 

system efficiency. Another advantage of molten-salt plants is the energy storage, in these systems 

the integration with efficient energy storage is easier. The last type of solar power tower is the 

one that has only air circulating in the system, these kinds of solutions are using the Joule cycle. 

The air in the receiver is warmed up to around 700°C (5)], after it, it expands on a gas turbine and 

produces mechanical power. The benefit of the plants that use air as an HTF is that these 

systems are water-free and in places where there is a lot of solar irradiation water could be a 

precious resource for example in the desert, which are places where there is a lot of potential for 

energy production, but water is difficult to obtain. 
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2.3 Ways of making more competitive the SPT 

 

One way to increase the thermodynamic performance of the system is by increasing the working 

temperature in the power cycle, the classic molten salts have problems with chemical stability at 

temperatures above 600°C, generating corrosive chemical compounds, which lead to significant 

mass losses (5). To overcome this problem particle receivers have been introduced, they can 

reach higher working temperatures, particle receivers can be integrated into plants heating directly 

or indirectly see the next paragraph (2.3.1). 

One of the problems of SPT is its low profitability and its high cost of it, to reduce the Levelized 

Cost of energy produced (LCOE), the integration with PV has been proposed in many scientific 

papers in the last years, see paragraph 2.3.2 for more details. 

SPT uses a power cycle like the Ranking cycle, but the Brayton with supercritical CO2 cycle 

demonstrates a better performance than the classic Ranking cycle in the common temperature 

range of SPT. See paragraph 2.3.3 for more details. 

 

2.3.1 Particles  

 

The first benefit of working with a particle receiver is the possibility of increasing the working 

temperature range, which is the current limitation of using the molten-salt system because of the 

chemical degradation of the salt. The thermal energy storage costs could be reduced by using a 

cheap particle like sand (5). Another advantage is the reduction of the mechanical stress in the 

structure because there is no increase of pressure during the heating of the fluid for the power 

cycle thus, there is a reduction in the complexity and the costs. The particle receiver can be done 

in two ways, direct or indirect.  

The direct method consists of heating the particles without an intermediate medium, by contrast, 

the indirect method has an intermediate medium. Both heating methods have been discussed in 

the next paragraph 2.3.1.1 and 2.3.1.2. 
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2.3.1.1 Direct heating particle 

 

The basic idea of direct particle heating is that directly concentrates the light on the particle 

without an intermediate medium to reduce the exegetic losses. There are a few types of direct 

heating particles, but just the one called Free falling particle (Fig. 3 (5)) applied on solar power 

towers seems to be feasible for large-scale applications so just this technology has been discussed 

in this paragraph. The particles are released above the receiver, creating a thin layer of falling 

particles through the receiver. To significantly increase the outlet temperature the particles are 

continuously recirculating, this allows reaching temperatures above 700 °C with a thermal 

efficiency of around 50-65% (5). The amount of heat absorbed by the particles depends on the 

time of exposure to concentrated sunlight, which can be increased by recirculating the particles 

multiple times in the receiver.  

 

Fig. 3 Free falling particle receiver integrated with solar tower and thermal heat storage 
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2.3.1.2 Indirect heating particle 

 

The indirect heating particles were introduced to avoid the loss of particles through the cavity of 

the receiver, the main drawback of this technology is the loss in efficiency due to the intermediate 

medium.  

A solution that has been proposed is called flow-through enclosures (5), the intermediate 

mediums for the heat exchange from the concentrated sunlight to the particles are a kind of tube. 

On the inner surface of the tubes is concentrated the light, on the external surface there is a 

flowing of particles that are flowing by the gravity field see Fig. 4 (5), the heat is transferred by 

conduction and convection. 

According to (5) the tests that have been made the heat exchange seems to be limited due to the 

loss of contact between the particles and the external surface of the tube, however, it is a 

technology under study. 

 

Fig. 4 Indirect particle receiver  
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2.3.2 Integration with photovoltaic (PV) 

 

The integration with PV allows the system to be more flexible to supply the electricity according 

to the demand. The basic idea is to produce electricity during the day using PV because it is the 

most cost-competitive way. During the cloudy periods or overnight, it relies on CSP, which has 

thermal energy storage. The two systems are coupled with a thermal link (an electrical heater) see 

Fig. 5 (1), however, they interact with each just in some cases. When the electricity production 

from the PV is not enough to supply the electrical demand the power block of CSP is turned on 

to cover the gap between the demand and the output of PV. 

 

 

Fig. 5 Scheme of CSP integrated with PV 

 

There are four different scenarios, the first is when the demand of the grid is higher than the PV 

output in this case if there is enough thermal energy storage the power block of CSP is turned on 

to cover the difference between the demand and power output of PV. In the second case when 

the demand of the grid is almost equal to the output of PV, in this case, the CSP accumulates 

energy in the thermal battery. In the third case, the demand is lower than the output of PV the 

extra electricity is converted into heat and stored in the thermal battery has space, this aspect is 

useful to avoid the overload of the grid, however, the convention of electricity into heat that it 

will be further converted into electricity, and this is a waste of exergy, but it makes sense from an 

economical perspective. The last case is when the sum of the power output of the power block 

and PV is not enough to cover the demand, in this case, the load has to be supported by other 

sources. 

The integration of PV with a CSP that has some degree of freedom to adapt according to the 

demand and a possibility of energy storage, allows the system to increase the energy supply from 

30 % of the demand to 60-90% depending on the area (1). The drawback of the integration of 

PV with CSP is that the LCOE (Levelized Cost of Energy) is almost double that of the one using 

only PV, the LCOE of PV only is 0.05 €/kWh and with the integration of the two technologies is 

0.08-0.11 €/kWh (1). 
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2.3.3 Supercritical CO2 as a working fluid for the power block 

 

The idea of running a power cycle with a working fluid of CO2 came up in the late '90, but due 

to the low price of natural gas, the idea of using CO2 for a closed Brayton (see Fig.6 (2)) cycle 

was abandoned until recently [9]. In the last few years, many studies have been done about the 

topic, there are several proposals in the literature, but it seems that almost all of them agree on 

the benefits, which are discussed in this paragraph. 

The first advantage of Brayton supercritical CO2 is the higher efficiency than the Rankine cycle 

at the typical temperature of CSP, furthermore, it has a good efficiency in a reasonable range of 

working temperature, which is very important to increase the off-design performance. Brayton 

C02 can be used in the solar power tower where the temperature is up to 1000° and in the case of 

parabolic through due to its flexibility. 

The second benefit is that the density of supercritical CO2 is high in the working conditions of 

CSP, this leads to high power density machines as a direct consequence of a reduced size of the 

components and a lower footprint of the power block (2). The last significant improvement 

considering the Rankine is that there is no need for water, this is an important aspect considering 

the lack of water in some areas where there is a huge amount of solar energy like in a desert. 

The last significant improvement considering the Rankine is that there is no need for water, this 

is an important aspect considering the lack of water in some areas where there is a huge amount 

of solar energy like in a desert. 

Fig. 6 Thermodynamic cycle on T-s and the scheme of the basic components of the cycle 

 

There are seven types of different configurations, the recompression with reheating reaches the 

highest efficiency if the load is between 100 % and 57 % of the nominal capacity (2). Under 57 % 

partial-cooling cycles show higher efficiency than recompression with reheating, but generally 

speaking the layout with the best thermal performance is recompression with reheating (2).  

However, under a techno-economic analysis considering the TES capacity, the layout with the 

lowest LCOE is partial-cooling (6). Although the recompression with reheating has the highest 

thermal efficiency it has also the highest cost due to its components. 
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2.4 Heat demand from the industry 

 

The CSP technologies could be used to generate heat for the industry without relying on fossil 

fuel technology. Fig. 7 (7) shows the heat demand from the industry based on the sector and the 

temperature needed in the European Union in 2006. Based on Fig. 7, there are many sectors 

where the temperature needed could be matched with the capability of the CSP for heat 

production. 

 

Fig. 7 The top figure shows the heat demand for different sectors, the bottom figure shows the 

normalized heat demand of each nation for different temperature 

The location of the study is Sevilla (Spain 37° N, 6°W, DNI=1800 kWh/m2 (8)), Figure 7 also 

indicates the heat demand according to the temperature for some European countries. The 

percentage of heat demand up to 450°C is around 40% of the overall heat demand in Spain thus, 

these technologies could be able to produce renewable heat in a cost-competitive way without 

relying on fossil fuel resources. SH is the acronym for space heat, and HW is the acronym for hot 

water. The other categories of temperature range are referring to the heat needed for industrial 

processes. 
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2.4.1  CSP for heat generation 

 

At the present moment, the systems that have integrated CSP as a heat supply for their need are 

relatively few. However, the most used CSP type for heat production is the parabolic trough that 

could reach temperatures up to 300 °C (4). Fig. 8 (9) shows a typical case of integration of the 

CSP in the existing plant, in this case, the CSP allows the system to consume significantly less 

amount of natural gas for its heat needs. The application in which the CSP has been integrated 

for heat generation purposes are the following: beverage, food processing, textile, district heating, 

dairy, and chemicals.  

 

Fig. 8 Possible layout of CSP used as a heat generation for industrial purposes 

 

The main difference between the parabolic trough and the Solar Power Tower for heat 

generation is the maximum temperature, in the case of SPT the temperature could be up almost 

to 800 °C. Another difference is SPT requires more infrastructure because of its need for the 

tower hence, it is not attractive on a small scale. 
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2.5 Market trend 

 

This chapter summarizes the past and the current state of the art regarding the SPT and it 

forecasts the future market trend according to the scientific papers that have been found in the 

literature. 

 

2.5.1 Past and state of the art 

 

In the past years since nowadays, the most implemented CSP technology worldwide is the 

Parabolic trough collector (PTC) see Fig. 9 (4). As a direct consequence, it is the most mature 

technology of CSP and it has the lowest technical and financial risk (10). The first CSP plants 

have not been integrated with thermal energy storage (TES) because of the costs and complexity 

of the system, but the benefits of TES are so significant that the integration with it makes the 

plant more competitive. Since 2015, hardly any projects have been built without a TES, the 

addition of TES is now a cost-effective way to lower LCOE (11), increasing the flexibility and 

increasing the capacity factor. Until today, the method of thermal energy storage has been done 

using Sensible heat storage (SHS) even though phase change energy storage has better 

thermodynamic properties, from a technological and economical point of view, SHS are 

competitive (12). The materials most used for TES have been molten salt (60% wt NaNO3 and 

40% wt KNO3 (13) ) or synthetic oil. The molten salt has the following benefits: higher working 

temperature, no flammability, and lower toxicity (13). Once the technological challenges have 

been overcome, the most plant started to use molten salt. 

 

Fig. 9 The global the number of CSP plant and types of plants in the world 
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2.5.2 Future direction 

 

The first trend of the market relevant to mention is the one of SPT, considering the total capacity 

under construction the 60% of it is on SPT and 37% of it is PTC (10). The SPT due to its 

concentration ratio and its properties is more feasible for large scale and it seems that the market 

is going in this direction. Consequently, there are many papers on improving the efficiency, and 

the integration with PV and the Brayton-CO2 cycles is almost certain. 

However, there are different approaches regarding the heat transfer fluid: molten salt, particles, 

and air. In this case, is more difficult to predict which HTF will take the lead in the future. The 

HTF more suitable for the integration with SPT Brayton sCO2 now is molten salt due to its 

maturity, but in the future, air with a packed bed of rocks and particles will take remarkable 

importance in the market. Both air and particles receivers have the following advantages (12): 

higher operating temperature, operating pressure can be close to ambient temperature so there is 

no need for complex sealing, lower fabrication cost than in the case of molten salts and steam, 

lower cost of rocks and particles (if properly chosen). 

In the next future, thermal heat storage will still be sensible heat storage because of the low 

maturity of the other technologies. There are some studies regarding the possibility of using 

latent heat storage or chemical storage, but there are remarkably more expensive despite their 

higher thermal efficiency these solutions are not ready to be commercialized (14). 

Fig.10 shows (14) that the majority of the capacity currently developing is of the types of SPT, 

this is a clear direction of the market. 

 

 

 

 

Fig. 10 Status and distribution of each type of CSP 
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3 Methodology 

 

The starting point has been the literature review to have a better understanding of the topic and 

find the literature gap to determine the research direction. 

The second step was finding in the literature the most suitable component for the conversion 

from a classic molten salt system to a particle one. The components that changed remarkably are 

the following: the receiver, the storage system, the heat exchanger that heats the sCO2 and the 

heat exchanger for the cogeneration. The first part of the study has been conductive non 

considering the cogeneration to evaluate the system without it. 

The third step was building a techno-economical of the components and integrating them into 

the model, after which the assumptions of the electrical demand and the geographical positions 

have been made. At this point it has been possible deciding the design variable of the study and 

run the optimization to obtain the size of each component, the optimization algorithm is from 

the family of Genetic Algorithms. The optimization of the system has been based on the 

minimization of the LCOE. 

After the first optimization, the cogeneration has been added to the system. To avoid having too 

many design variables the size of the plant has been fixed at the minimum LCOE of the case 

without cogeneration. Two types of thermal load profiles have been tried with different peak 

values and for each thermal load, the system has been optimized. The optimization in the case of 

the cogeneration has been slightly different, the fitness function of the algorithm is not just the 

LCOE but a parameter that decreases the rank of the solution if it does not respect the constraint 

on the reliability. Since the parameters that decrease the rank of the solution are arbitrary, a 

sensitivity analysis has been done to see the influence on the results. 

The fourth step has been introducing a price of electricity from the geographical position chosen 

and analyzing how the system performs in that scenario, in the case of the system with 

cogeneration it has been analyzed the possibility to produce heat at the same cost as natural gas. 

The last step has been the analysis of the results and understanding of how the different plants 

could be implemented cost-effectively depending on the relationship with the grid. 

 

Fig. 11 Methodology scheme 
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3.1 Optimization 

 

This chapter explains the optimization procedure and the design variables used. 

 

3.1.1 Design variable 

 

In this short paragraph it has been explained the physical meaning of design variable use in this 

study. 

• Maximum power injectable into the grid (𝑃𝑚𝑎𝑥): it indicates the maximum power 

injectable in the electric grid, it corresponds to the summer peak. 

• Capacity of the CSP (𝑃𝐶𝑆𝑃): it indicates the power capacity of power block, it is connected 

to 𝑃𝑚𝑎𝑥 by the formula 3 

• Solar multiple (𝑆𝑀): it indicates the thermal power of the receiver considering the 

nominal thermal power required by the power block (PB) see formula 1 

𝑆𝑀 =
𝑄𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟

𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑃𝐵
      (1) 

• PV ration (𝑃𝑉): it indicates the ration between the capacity of the CSP and the PV power 

installed formula 2. 

𝑃𝑉 =
𝑃𝑉

𝑃𝐶𝑆𝑃
        (2) 

• Thermal storage (𝑡): it indicates the number of hours for which the thermal storage (TES) 

can support the power block at its nominal capacity  

• Alfa (𝛼): it indicates the size of the power block in respect to the peak energy demand see 

formula 3 

𝛼 =
𝑃𝐶𝑆𝑃

𝑃𝑚𝑎𝑥
           (3) 

• Thermal load (𝑄): it indicates the peak of the thermal load on the plant, its design variable 

is represented in the formula 4 

𝑄 =
𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑙𝑜𝑎𝑑 𝑝𝑒𝑎𝑘 

𝑃𝑚𝑎𝑥
      (4) 
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After the definition of the design variable, their ranges have been defined table 1 summarized the 

ranges. 

Table 1. Design variables and their range 

Design variable Without cogeneration With cogeneration 

𝑃𝑚𝑎𝑥 50 ÷ 200 MW 130 MW 

𝑃𝑉 1.1 ÷ 2.4 1.6 ÷ 2.7 

𝑡 8 h ÷ 12 h 10 h ÷ 14 h 

𝛼 0.8 ÷ 1 1 

𝑆𝑀 1.1 ÷ 2.4 1.6 ÷ 2.7 

𝑄 0 0.01 ÷ 0.4 

 

 

The range of the PV ratio, storage time, and solar multiple has been found in the literature similar 

study case (2), on the other hand for alpha and the thermal load the approach was different. The 

rage of alpha has been selected to show the beneficial effect on the LCOE thus, values lower 

than 0.8 has not been considered because there is no benefit on LCOE going lower than values.  

The range of thermal load has been selected in such a way that has been possible for the techno-

economical thus, large enough to determine the minimum thermal load for which there is an 

economical benefit.  

The lowest power size investigated is 50 MWe because there are some limitations regarding the 

modelling of some components for example the receiver and the main heat exchanger, while the 

higher power size investigated has been 200 MWe because the CSP plants with higher capacity 

are quite rare and not so realistic at the current state of the art of these technologies. 
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3.1.2  Genetic algorithm 

 

The optimization has been based on the minimization of LCOE, the main issue is that each 

simulation takes around 90 seconds to be computed and considering all the possible 

combinations amount all the variables it will take around 120 days of simulations thus, this 

approach of calculating for finding the minimum LCOE is not efficient. This problem is typical 

in the field of simulations thus, there are several approaches possible, for this optimization have 

been implemented a genetic algorithm. 

 

For the calculation of LCOE has been used the formula 5, the parameters used are the following: 

• 𝐶𝐴𝑃𝐸𝑋: capital expenditures 

• 𝑖: interest rate 

• 𝑡: lifetime of the pant 

• 𝐸: annually energy produced 

• 𝑂𝑃𝐸𝑋: operational expenditure 

 

𝐿𝐶𝑂𝐸 =
𝐶𝐴𝑃𝐸𝑋{

𝑖(1+𝑖)𝑡

(1+𝑖)𝑡−1
}+𝑂𝑃𝐸𝑋

𝐸
    (5) 

 

The genetic algorithm is inspired by the natural selection phenomena, the main components of 

the algorithm are the following: 

• Representation of a solution: a solution is represented by a specific combination of the 

design variables, the vector that identifies the solution is called the genome, for example 

[i,j,k,l,m...] each number represents the index of the design variable  

• Iteration process: the algorithm works in such a way that at each iteration the accuracy of 

the results increases, at each iteration the program calculates n number of solutions this 

number is called population size 

• Fitness function: it represents the criteria with which the solutions are ranked, in this 

case, the fitness function is the LCOE 

• Selection of the solutions: using the fitness function the best solutions are selected for the 

generation of the solution of the next generation 

• Generation of new solutions: At each iteration, a new set of solutions is generated based 

on the solution with the higher rank at the iteration before. 

• Random mutation: At each iteration, for each solution, a random mutation to a random 

index in the genome is applied to avoid the algorithm will be blocked in a local minimum 

The parameters which have been used are summarized in the table 2. 

Table 2. Parameters used for the genetic algorithm 

Parameter Value 

Population size 10 

Minimum rank 4 

Random mutation 1 
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3.1.2.1 With cogeneration 

 

In the optimization with the cogeneration, the first difference has been the introduction of a 

penalty function, the fitness function used in this optimization is reported on the formula 6. 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  𝐿𝐶𝑂𝐸 ∗  𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑓𝑑)   (6) 

 

The penalty function represents the constrain on the reliability of the heat production, the 𝑓𝑑 

defines the fraction of heat supplied over the theoretical one in one year formula 7. 

 

𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 (𝑓𝑑) =
𝐻𝑒𝑎𝑡 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 ℎ𝑒𝑎𝑡 𝑠𝑢𝑝𝑝𝑙𝑖𝑎𝑏𝑙𝑒
   (7) 

Fig.12 shows the penalty function used; it is a linear interpolation between two points 

summarized in table 3 The goal of the heat production is to supply 0.95 of the yearly thermal 

demand thus, this is one of the interpolations the other has been set to have fast convergence. 

Table 3. Values assumed for defining the penalty function 

 

 

 

 

 

 

 

Fig. 12 Penalty function 

However, this penalty function is arbitrary and for this, a sensitivity analysis has been done to 

evaluate the influence of the penalty function on the results, the sensitivity analysis shows that 

there is not a remarkable difference considering different values. The second difference has been 

that alpha is considered unitary because of the need to reduce the number of design variables. 

Fulfilled thermal demand Penalty function 

0 4 

0.95 1 

1 1 
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4 Modelling 

 

In this paragraph, it has been explained the modeling of the components used in the analysis. The 

model that has been used is based on a quasi-static analysis without considering the transient 

phenomenon. Fig. 13 shows the layout of the system that has been modelling. 

 

 

Fig. 13 Scheme of the plant 
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4.1 Modelling the receiver 

 

The receiver that has been chosen is called a free-falling particle receiver, the reason behind this 

choice is because of its competitive costs and thermodynamic performance (15). Fig.14 shows 

the scheme of it, the idea of this receiver is that the particles are falling from above and particles 

are heated up from the concentrated solar irradiance from the heliostats field. 

 

Fig. 14 Scheme of the particle receiver 

The techno-economical model of the receiver is based on the following assumptions: 

• The thermodynamic efficiency is a function of the DNI and the types of the particles (15) 

• The heat losses and mass leakage have been included in the thermodynamic efficiency 

• The cost of the receiver depends only on the thermal capacity installed 

Considering these assumptions is not possible to evaluate the change in the efficiency for 

different temperature ranges that is a limitation of the receiver model, furthermore, during the 

cogeneration implementation, it will not be possible to make a consideration about the changing 

performance of the receiver. 
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The efficiency of the receiver is plotted in Fig. 15 (15), it is specified for this type of receiver and 

the sand particles. 

Fig. 15 The efficiency of the receiver as a function of the DNI 

 

Formula 8 is the formula used for calculating the thermal power that the receiver gives to the particles. 

 

𝑄𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝑄ℎ𝑒𝑙𝑖𝑜𝑠𝑡𝑎𝑡 ∗ 𝜂𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟     (8) 

• 𝑄𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 : Useful thermal power   

• 𝑄ℎ𝑒𝑙𝑖𝑜𝑠𝑡𝑎𝑡: Thermal power on the receiver from the heliostat field 

 

The working temperatures of the receiver are listed in table 4 (15), and the output temperature is 

fixed. However, the temperature of the particles entering the receiver depends on the working 

conditions of the plants, in the case without cogeneration the temperature is around 500 °C and 

in the case with cogeneration is around 400 °C because of the heat extraction. 

Table 4. Main values for the modelling of the receiver 

Parameter Value 

𝑇𝑜𝑢𝑡 800 °C 

𝑇𝑖𝑛 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 300 °C 

𝜂𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 0.2-0.5 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑜𝑠𝑡 150 €/kWth 

 

 

• 𝑇𝑜𝑢𝑡: it is the outlet temperature of the particle going out from the receiver to the TES 

• 𝑇𝑖𝑛 𝑚𝑖𝑛𝑖𝑚𝑢𝑚: it is the temperature from the cold tank going to the receiver to be heated 

up, it changes according to the conditions of the cold tank, but it cannot be lower than   

𝑇𝑖𝑛 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 because it is outside of the working condition of the receiver. 

The economic model is based on a specific price considering the installed capacity of thermal 

power installed, C=150 €/kWth (15) valid for power installed higher than 100 MWth. 
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4.2 Modelling of the heat exchanger for heating the sCO2 

 

The heat exchanger that has been used for connecting the particle loop with the supercritical 

CO2 is shown in Fig.16 (16), it is the type of indirect heat exchanger because there is no direct 

contact between the particles and the supercritical CO2. The particles are falling from above the 

heat exchanger, most of the external pipes have the function of recirculating the air to increase 

the effectiveness of heat exchange and the remaining ones are used for the circulation of the 

supercritical CO2. 

 

Fig. 16 Shows the particle heat exchanger 

 

The techno-economical model of the heat exchange is based on the following assumptions: 

• The thermal power exchanged between the particles and the sCO2 is a function of the 

NTU 

• The heat losses and mass leakage have been neglected 

• The pressure drop has been neglected because of their relatively low value compared to 

the pressure involved (16) 

• The cost of the heat exchanger depends only on the thermal capacity installed 

 

Considering these assumptions, the main limitation is that the cost of the heat exchanger depends 

only on the thermal capacity installed and it is decoupled from the effectiveness, therefore, it is 

not possible to make considerations about the effectiveness and the cost of the heat exchanger. 

The thermodynamic modelling has been carried out using the experimental data [16] see Fig. 17. 

The first step for the design of the heat exchange was imposing its working temperature in the 

design point (16), table 5 summarized the design temperature and the specifics of the heat 

exchange. 
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       Fig. 17 Effectiveness as a function of NTU experimental data 

Table 5. Main values for the modelling of the heat exchanger that provides the thermal power to the 

power block 

Parameter Value 

Effectiveness design point 0.85 

T in particle 790 °C 

T out particle 590 °C 

T in sCO2 560 °C 

T out sCO2 770 °C 

U (Overall Heat Transfer 

Coefficient) 

100 W/K*m2 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑜𝑠𝑡 440 €/kWth 

 

In the following list has been explained the parameters used for the modelling of the heat 

exchanger: 

• 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑑𝑒𝑠𝑖𝑔𝑛 𝑝𝑜𝑖𝑛𝑡: it is the effectiveness that the heat exchanger has at its 

nominal working point 

• 𝑇𝑖𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒: it is the temperature of the particle coming from the hot tank (TES) going to 

the heat exchanger to heat up the sCO2, it is fixed 

• 𝑇𝑜𝑢𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒: it is the temperature of the particle coming from the heat exchanger and 

going to the cold tank, it might have a little variation in the off-design of the heat 

exchanger 

• 𝑇𝑖𝑛 𝑠𝐶𝑂2: it is the temperature of the cold sCO2, it might have a little variation due to the 

variation of the ambient temperature 

• 𝑇𝑜𝑢𝑡 𝑠𝐶𝑂2: it is the temperature of the hot sCO2 that will go to the turbine, it is fixed to 

have the same working condition for the power block 

• 𝑈 (𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡): it is the coefficient that regulates the heat 

exchanger used to determine the area of the heat exchanger 
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The area of the heat exchanger has been calculated using the scheme in Fig. 18, the first step has 

been calculating the mass flow rate needed (formula 9-10) to be able to fulfil the thermal power 

requirement of the power block at the design point, and the second has been combining the 

information of the effectiveness at the design point and the information about the mass flowrate 

and determine the NTU, at last, an inverse formula of NTU (formula 11) has been used to 

calculate the area. 

Fig. 18 Scheme of determine the area of the heat exchanger 

 

𝑚𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑑𝑒𝑠𝑖𝑔𝑛 =
𝑄𝑑𝑒𝑠𝑖𝑔𝑛

ℎ𝑖𝑛 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠−ℎ𝑜𝑢𝑡 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                   (9) 

𝑚𝑠𝐶𝑂2 𝑑𝑒𝑠𝑖𝑔𝑛 =
𝑄𝑑𝑒𝑠𝑖𝑔𝑛

ℎ𝑖𝑛 𝑠𝐶𝑂2−ℎ𝑜𝑢𝑡 𝑠𝐶𝑂2
                                        (10) 

𝑁𝑇𝑈 =
𝑈∗𝐴ℎ𝑒𝑎𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟

𝐶𝑚𝑖𝑛
                                         (11) 

 

The specific cost of the receiver that has been chosen is 440 €/kWth (16) valid for power size higher than 

100 kWth. 
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4.3 Modelling the thermal energy storage 

 

The technology that has been chosen is the silo type for storing the heated particles see Fig. 19 

(17) because this is the most competitive technology using particles, Fig. 19 shows the system of 

transportation of the particles. 

 

 

Fig.19 Thermal energy storage technology and the movement system 

 

The techno-economical model of the heat exchange is based on the following assumptions: 

• The heat losses coefficient is constant 
• The cost of the thermal storage depends on the thermal energy installed 

 

Considering these assumptions, the main limitation is that it is not possible to evaluate the heat 

losses for different environment condition such a different wind speed. 

 

The thermodynamic model used is quite simple since this type of TES has high efficiency (>95) 

(17), and the heat losses have been calculated using the electrical analogy formula 12-15. Fig. 20 

(17) shows the equivalent thermodynamic model used 
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Fig. 20 Thermal coefficient of each layer and the thermal resistance model 

∅𝑙𝑜𝑠𝑠𝑒𝑠 = ℎ 𝐴 ( 𝑇𝑖𝑛 − 𝑇𝑎𝑚𝑏) =
1

𝑅𝑡𝑜𝑡 
( 𝑇𝑖𝑛 − 𝑇𝑎𝑚𝑏)                                                            (12) 

𝑅𝑡𝑜𝑡 = ∑ 𝑅𝑖
5
𝑖=1                     (13) 

𝑅𝑖 =
log (

𝑟𝑘+1
𝑟𝑘

)

2∗𝜋∗𝑘𝑘∗𝐻
                    (14) 

𝑅5 =
1

𝐴 ℎ𝑎𝑖𝑟
                                          (15)  

In the following list has been explained the parameters used for the modelling the TES: 

• ∅𝑙𝑜𝑠𝑠𝑒𝑠: it is the heat losses in the environment 

• 𝐴: it is the external area of the tank 

• ℎ: it is the overall heat transfer coefficient 

• 𝑇𝑖𝑛: it is the average temperature of the tank 

• 𝑇𝑎𝑚𝑏: it is the temperature of the environment 

• 𝑅𝑖: it is the thermal resistance that represent a specific layer 

• 𝑅5: it is the thermal resistance of the air, it represents an average value through the year 

 

Table 6. summarized the value used for the calculation of the heat losses and modelling the TES 

Parameter Values 

Height of the tank 25 m 

Conductivity of the layer n°1 0.7 W/m*K 

Conductivity of the layer n°2 0.2 W/m*K 

Conductivity of the layer n°3 0.1 W/m*K 

Conductivity of the layer n°4 0.8 W/m*K 

Convection of the air  5   W/m2*K 

Specific cost 25 €/kWh 
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The second step was defining the size range of the TES depending on the thermal energy to be 

stored, which depends on the storage time and the capacity of the CSP. On this range has been 

evaluated that the h coefficient does not change significantly concerning the size and the storage 

time see Fig. 21 because of that it has been considered a constant value of h for the whole 

studying. 

 

Fig. 21 variation of the h coefficient considering different size of the TES 

 

The cost of the thermal storage has been calculated considering the specific cost of 25 €/kWh 

(17). 
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4.4 Modelling the cogeneration 

 

The cogeneration implementation has been made in such a way that the heat production is done 

reliably therefore, the system has the possibility to bypass the main heat exchangers when the 

power block does not work. Fig. 22 show the scheme of the cogeneration implementation. Due 

to the constrain of the reliability, the thresholds of the TES for the activation of the PB are 

higher because there is the need of having enough heat for the cogeneration otherwise, the PB 

would use all the heat for the electric conversion. With this change, the system in case of limited 

thermal energy will choose to support the thermal load instead of the electric load. 

 

Fig. 22 Scheme of the plant related to the cogeneration 

 

The working temperature of the heat exchanger are summarized on the table 7. The lowest 

possible temperature that the heat exchanger of the cogeneration brings the particles is Tmin 

which depends on the receiver. 

Table 7.  Main values for the modelling of the cogeneration 

Parameter Value 

𝑇𝑏𝑦𝑝𝑎𝑠𝑠 790 °C 

𝑇𝑝𝑜𝑤𝑒𝑟 𝑏𝑙𝑜𝑐𝑘 500 °C 

𝑇𝑚𝑖𝑛 300 °C 

𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒 400/450 °C 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑜𝑠𝑡 110 €/kWth 

 

The formulas that have been used are coming from the direct application of the first principle of 

thermodynamics. 

𝑄𝑐𝑜𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 ∗ (ℎ𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 − ℎ𝑚𝑖𝑛)                  (16) 

ℎ𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 =
𝑚𝑝𝑜𝑤𝑒𝑟 𝑏𝑙𝑜𝑐𝑘∗ℎ𝑝𝑜𝑤𝑒𝑟 𝑏𝑙𝑜𝑐𝑘+𝑚𝑇𝐸𝑆∗ℎ𝑇𝐸𝑆

𝑚𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
                  (17) 
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In the following list has been explained the parameters used for the cogeneration: 

• 𝑄𝑐𝑜𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛: it is the thermal power going to the heat user 

• 𝑚𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠: it is the mass flow rate through the heat exchanger of the cogeneration and 

going to the cold tank, when the power block is working that mass corresponds to the 

mass flow rate needed to heat the sCO2 otherwise, the mass flow is taken directly from 

the TES 

• ℎ𝑚𝑖𝑛: it is the minimum enthalpy at which the cogeneration is working, it is a direct 

consequential of the receiver minimum inlet temperature 

• ℎ𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠: it is the enthalpy of the particles before the cogeneration when the power 

block is operating ℎ𝑝 is equal to the outlet enthalpy after heating the sCO2 otherwise the 

enthalpy of the particles is equal to the outlet enthalpy of the TES 

Fig. 23 shows the control unit for the cogeneration. During the operation ration of the PB, the 

remaining heat from particles heat is used for the cogeneration if that heat is not enough to 

supply the thermal there is the necessity for heat extraction directly from the TES. When the PB 

is not working all the heat is extracted from the TES. In the case of PB being off and there is not 

enough thermal energy in the TES, the supply of heat is partial or null. The specific cost of the 

heat exchanger in this analysis has been assumed based on a commercial heat exchanger air to 

water, the specific cost (18) of the commercial heat exchanger has been multiplied by a factor of 

1.3 because it uses air instead of particles. The specific cost used for the cogeneration 

implementation is 110 €/kWth. 

Fig. 23 Flow chart of the control system for the cogeneration 
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4.5 Modelling the electric grid 

 

To understand the behavior and to evaluate the capacity factor of the system in one year a 

variable electricity demand has been considered because the electrical load to support changes in 

each month and for each hour. It has been considered 4 normalized electric loads for each 

season, see Fig. 24 (19), the intermediate curve has been evaluated through multiple 

interpolations, and the result is that for each hour of the year it has been calculated the 

normalized electricity demand has. The electric load data has been selected from the Spanish 

database according to the geographical location of the plant. To allow the system to support the 

load in absence of solar radiation the maximum power injectable into the grid is equal to the CSP 

capacity, however, the CSP depends on the alpha coefficient which is a design variable. 

Fig. 24 Electric load for each season 

 

Due to the electric load assumed the capacity factor (see formula 18) is limited to 0.72 because 

the maximum power injectable in the grid is usually lower than 𝑃𝑚𝑎𝑥 thus, even in the best 

scenario when it is possible to supply all the demand 𝐶𝑓 is limited. The 𝐶𝑓 limit has been 

calculated using the formula 18 and substituted in the energy to produce the maximum energy 

injectable into the grid. 

 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

24∗365∗𝑃𝑚𝑎𝑥
                     (18) 
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4.6 Modelling the thermal load 

 

The thermal loads considered are assumed to be the typical thermal need for industrial 

applications because of their temperature, Fig. 25 shows the thermal load profile. 

• The first thermal profile considered has been a continuous load hence, the system must 

be able to supply heat continuously. 

• The second has been a shift base load thus, the starting heat request is at the start of the 

shift it has been supposed at 8:00 and the ending time is at the end of the shift it has been 

supposed at 18:00. 

The two-load profile have in common the peak power, but the energy that they extract from the 

system is different by a factor of around 2.4. This difference leads to a higher impact on the 

system because in the case of continuous load the system has to produce 2.4 more heat, Fig.32 

shows that the impact on the LCOE for the same peak thermal power is remarkable higher in the 

case of continuous load. 

 

Fig. 25 Normalized thermal load over the time 
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4.7 Modelling the economic scenario 

 

Most of the study has been based on the minimization of the LCOE, the last step of the analysis 

has the goal of evaluating the economic performance of the system considering the actual price 

of the electricity and the heat. The assumption behind this approach is the electricity and the heat 

are sold at the market price. 

In this scenario, a variable price of electricity has been considered (19) the intermediate price of 

the electricity has been calculated using the same approach used in the maximum electricity 

injectable into the grid. The price of electricity (Fig. 26) is the one for 2019, it has been 

considered also the present prices (2022) that are strongly affected by the war in Ukraine. The 

present prices of electricity and natural gas represent a scenario where there is the economic 

pressure of finding to reach the independence of energy production. The price of electricity for 

the year 2022 has been considering the trend 2.5 times more than the 2019 (19). The main reason 

for introducing the variable price is to take into account the variable in the price of the different 

seasons 

 

Fig. 26 Price of the electricity for each season 

 

The price of the heat has been considered fixed to the same LCOH of natural gas (20) 

considering the year 2019 and 2022 (21).  

Table 8. The cost of the heat from natural gas in two different years 

Year Price of natural gas (€/MWh) LCOH (€/MWh) 

2019 17 55 

2022 80 118 
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4.8 Modelling the total land usage 

 

An important aspect of the plant is its footprint, the size related to the plant of the system has 

been estimated based on the similar power installed of PV and CSP operating in the world. The 

footprints have been calculated for the system without cogeneration and with cogeneration in the 

best optimal solution, formula 19 has been used for the calculation of the land needed. Table 9 ( 

(22), (23), (24), (25), (26)) indicates the values used for the calculation, these values have been 

calculated based on the values found for the plant of a similar capacity and storage time of the 

study case. Cerro Dominador Solar Thermal Plant (Antofagasta, Chile DNI 3200 kWh/m2 (27)) 

is the name of the power plant considered as a base case, the plant is hybridized with PV, and it 

has a similar capacity to the configuration of which the footprint has been estimated. The 

capacity of the base case is 100 MWe (28) hence, the land usage has been increased by a factor 

𝑏𝑒𝑡𝑎 (see formula 19) to consider the difference in the power installed. The base case has a land 

usage of 10 Km2 considering a capacity of 130 MWe. 

 

𝑏𝑒𝑡𝑎 =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒
= 1.3                   (19) 

 

The ratio between the size of the receiver has been introduced to take into account the oversize 

of some components in the case of cogeneration thus, in the case of cogeneration the electric 

capacity is the same but the size of the heliostat field and the receiver increase. In the case where 

there is no cogeneration that ratio is unitary otherwise, that ratio is bigger than the unit. 

 

𝐿𝑎𝑛𝑑 =  𝑆𝑝𝑒𝑐𝑖𝑓 𝑎𝑟𝑒𝑎𝑃𝑉 ∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑃𝑉 +
𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑅𝐸𝐹
∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑟𝑒𝑎𝐶𝑆𝑃 ∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐶𝑆𝑃             (20) 

 

In the following list has been explained the parameters used for the modelling the TES: 

• 𝑆𝑝𝑒𝑐𝑖𝑓 𝑎𝑟𝑒𝑎𝑃𝑉: it is the specific land usage with respect to the capacity of the 

photovoltaic installed 

• 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑟𝑒𝑎𝐶𝑆𝑃: it is the specific land usage with respect to the capacity of the CSP 

installed 

• 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑃𝑉: it is the capacity of the PV installed 

• 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐶𝑆𝑃: it is the capacity of the CSP installation 

• 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟: it is the thermal capacity of the receiver considering the cogeneration 

• 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑅𝐸𝐹: it is the thermal capacity of the receiver of the base case without the 

cogeneration at the specific size of the plant. 

Table 9. Specific areas calculated from actual plants 

Parameter Value 

𝑆𝑝𝑒𝑐𝑖𝑓 𝑎𝑟𝑒𝑎𝑃𝑉 0.028 
𝐾𝑚2

𝑀𝑊
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑟𝑒𝑎𝐶𝑆𝑃 0.05 
𝐾𝑚2

𝑀𝑊
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5 Analysis of results 

 

In this chapter, the results of several simulations have been presented. The results have been 

divided into two paragraphs, one considering without the cogeneration and the anther 

considering with the cogeneration. 

 

5.1 Without cogeneration 

 

The optimization using the genetic algorithm gave the optimal solution, which is summarized in 

table 10, from this solution several plots have been obtained (Fig. 27-29) fixing all the design 

variables at their optimal values (minimum of LCOE) expects P max and the specific parameter. 

 

Table 10. The best optimal solution in the case without cogeneration 

Design variable Value 

𝑃𝑚𝑎𝑥 130 MW 

𝑆𝑀 1.8 

𝑡 11 h 

𝛼 0.85 

𝑃𝑉 2.4 

 

 

Fig. 27 the plot at the left has summarized the calculation for mapping the minimum of LCOE 

in the design variable done by the genetic algorithm. The plot is quite scattered, to be sure that 

the actual minimum of LCOE is the one shown on the left of Fig. 27 a sensitivity analysis 

considering the design variables has been done on the minimum LCOE found by the genetic 

algorithm. The right plot of Fig. 27 shows that the minimum found by the genetic algorithm is 

the same that has been found in the sensitivity analysis. Moreover, the black window in Fig. 27 

shows that the system has several solutions that have an LCOE of around 82 €/MWh with 

different CAPEX, which offers some flexibility to the system because it can have the same 

LCOE but if a lower capital investment. The configuration with the lowest power size (50 MWe) 

presents an LCOE of 88 with almost the lowest CAPEX in all configurations simulated. 
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Fig. 27 Mapping the global minimum using the genetic algorithm and the sensitivity analyses on the 

minimum found in the mapping step 

 

In Fig. 28 it is possible to see the effect of the alpha it has a beneficial effect on the LCOE with 

the downside of reducing the capacity factor, the choice of the specific alpha depends on the 

agreement with the electric grid, it the plant should supply a baseload alpha can be lower to 

reduce the size and the cost of the power block. It is possible to see those values close to the unit 

have remarkable benefits on LCOE with a limited influence on the capacity factor. An important 

observation is that the 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 is limited at 0.72 with the electric load chosen (see 

paragraph 4.5), which is a value like the one obtained for the different values of alpha considered. 

This shows that the system can reliably produce electricity in absence of sunlight and that is a 

high-value asset. 

 

Fig. 28 The influence of alpha on the LCOE and Cf on the system 
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Fig. 29 shows the effect of the solar multiple, PV ratio and the storage time on the LCOE. It has 

been plotted the most significant values to make the representation clear and comprehensive. 

The design variable that affects the most the LCOE is the storage time because it has a strong 

impact on the electricity of the power block, it is possible to notice that lower values of t, which 

is an indication of the capacity of the TES, have a remarkably higher value of LCOE. 

 

Fig. 29 The effect on LCOE considering PV ration, storage time and solar multiple 
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The behavior of the system considering two typical days one in summer and one in winter is 

shown in Fig. 30, it shows that the influence of alpha does not significantly affect the electricity 

production in winter because the electricity demand is lower thus, the system can cover almost 

the same percentage of the demand with a lower cost of the components. Fig. 30 shows the 

working principle of the system, during the sunlight the plant produces electricity using the PV, 

while at night-time it produces the electricity using the CSP (power block). Generally, the PV and 

the power block are working in opposite phases thus, they do not work at the same time for the 

following reasons: 

 

• The power block minimum working load is 0.4 𝑃𝐶𝑆𝑃  

• There is no reason not to produce electricity with PV when it is possible, the PV field is 

oversized this allows the system to cover the electrical demand normally in the daytime 

 

Fig. 30 shows the behavior of the plant and the influence of alpha 
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5.1.1 Performance in the scenario 

The payback time has been evaluated to show that the system has a lower payback time than its 

lifetime thus, the technology could be profitable and have some market attraction. The analysis 

that has been done is the one for the evaluation of the payback time of the system without 

cogeneration, formula 19 has been used for finding the payback time. Fig. 31 shows the point of 

NVP=0, which corresponds to the payback time, for two different values of alpha. The alpha has 

a beneficial impact also in the CAPEX without impacting remarkably on the revenues. The two 

systems have a similar payback time because there is compensation between a lower CAPEX and 

lower revenue. It has been considered 1 year for the construction of the plant. In this context, the 

payback time is an indication that the system can compete in the energy market considering the 

actual prices without any government substitutes. Fig. 31 shows the difference of the NPV over 

time considering two different prices scenario, due to the Ukrainian conflict the price of 

electricity has increased significantly, which leads to a lower payback time. 

𝑁𝑒𝑡𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 (𝑁𝑃𝑉) = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 –  𝐶𝑜𝑠𝑡                  (21) 

 

Fig. 31 NPV considering two prices scenario  

Table 11 summarizes the payback time considering the different conditions, the big difference in 

the payback time is due to the dependence between the price of the electricity and the cost of the 

natural gas, which have been increased in 2022 due to the war in Ukraine. 

Table 11. Payback time considering two different price scenarios 

Year considered Payback time (year) 

2019 7 years 

2022 17 years 
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5.2 With cogeneration 

 

The design variables that have been considered for the cogeneration analysis are summarized in 

table 1.  

The LCOE of the systems increases because of the following reasons:  

• The lower amount of heat available for the power block thus, the amount electricity 

produced is lower 

• Due to the constraint on the reliability of the heat generation, some components are 

oversized to introduce more heat into the system hence, the total costs are increasing  

• The system produces less electricity due to the changing of the minimum threshold of the 

TES to activates the power block 

 

 

Fig. 32 shows the changes in the LCOE and the different sizes of the components, the reason 

for the increasing size of the components is due to the increasing heat requested by the system to 

operate properly. The overall trend of the 𝐶𝑓 and the component size are intuitive, a lower 

electricity production leads to a lower 𝐶𝑓 and a higher heat request in the system leads to a higher 

components size. The impact on the system with a continuous thermal load to supply is higher 

because it extracts higher heat from the system. 

 

Fig. 32 shows the changes in the LCOE and in the components of the plant for different thermal load 
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Fig. 33 shows the behavior of the system considering cogeneration, the thermal load affects the 

electricity production of the CSP most in the winter due to the lower solar resource, while in the 

summer period the electricity production is nearly not affected by the thermal load. 

 

 

Fig. 33 The behavior of the system in case of the cogeneration in a representative winter and summer day 
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5.2.1 Performance in the scenario 

 

The system without cogeneration and the one with is compared in the scenario where the price 

of electricity and natural gas is the one in 2019 because the comparison has been done based on 

the relative difference in the revenues (from the system without cogeneration to the one with 

cogeneration). Considering the year 2022 would lead to higher revenues in the system but this 

study has analyzed the relative difference in the revenues between the two plants. 

To compare properly the two systems, it has been calculated the minimum price for selling the 

heat to have the same revenues as the system without cogeneration for the different thermal 

loads. For lower thermal load the price of the heat needed is extremely high because the system 

produces less amount of heat, but it is modified from the optimal case to be able of producing 

heat reliably. Fig. 34 it shows the minimum price at which the system has to sell the heat to have 

the same revenues as the plant without cogeneration, the plant with cogeneration has lower 

revenues from the electricity production because it produces less electricity for the reason above 

mentioned. Fig. 34 has two plots, the one on the left is considering all the domains studied while 

the right one is a zoom on the most economically interesting part. The price of the natural gas 

has been used to determine the minimum thermal load which has the same revenues as the 

system without cogeneration. Formula 22 has been used for calculating the cost of the heat. 

 

𝐶𝑜𝑠𝑡 𝑜𝑓 ℎ𝑒𝑎𝑡 =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 𝑒𝑙𝑒𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑜𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 𝑒𝑙𝑒𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑤𝑖𝑡ℎ 𝑐𝑜𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑
           (22) 

Fig. 34 The minimum price of the heat to have the same revenues for different thermal load 

The thermal loads that have been selected for the calculation of the payback time are those that 

have a cost of heat limit equal to the LCOH of the natural gas, table 12 summarized the two 

systems with the minimum thermal load. 

Table 12. The minimum thermal load to get the same cost of the heat of the natural gas 

Type of thermal load Minimum load  

Continuous 19.5 MW 

Shift base 45.5 MW 
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Fig. 35 shows the ratio of energy production from the three sources, the PV and CSP produce 

electricity and the cogeneration produces heat, although from an energetic point of view they 

should not be directly compared it is important to understand the amount of heat produced for 

the cogeneration with respect to the electricity produced. In the case of cogeneration, the 

electricity production from the CSP decreases because of the less amount of heat in the system a 

way of mitigating the reduction of the revenues from the CSP could be the changing the dispatch 

strategy thus, producing the electricity with the CSP when the price of it is highest.  

 

Fig. 35 Pie chart of the energy production considering a thermal load that has the same revenues as the 

system without cogeneration and sells heat at the LCOH of natural gas 

 

The evaluation of system with cogeneration has been evaluated using formula 15. Fig. 36 shows 

the payback time for two different thermal loads, considering the price of natural gas in 2019. 

The type of thermal load affects in a negligible way the payback time because the revenues from 

the heat generation are less than 20 % of the total revenues. 

 

Fig. 36 NPV considering two prices scenario 
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5.3 Comparison the LCOE among different technologies 

 

Fig. 37 ( (29), (30), (31), (32)) shows the comparison among some CSP technologies, according 

to the data found in the literature the system that shows the lower LCOE is the one using SPT 

with molten salt. The system studied in this analysis is in the lower range of other CSP 

technologies. However, the systems studied have a wide range of improvements because they 

have a higher thermodynamic potential due to their higher working temperature and they have 

not reached their maturity. 

Fig. 37 shows the LCOE from a combined cycle using natural gas as a heat source for different 

years, normally the price of natural gas is that the CSP are less competitive in the energy market. 

However, in the case when the price of natural gas significantly increases the CSP are more cost-

competitive, in the past something similar happen around the 70’ during first the oil crisis and 

these technologies got some interest in the market but, after the decreasing prices of fossil fuels 

they almost all the market attraction. Nowadays, in the context of urging or reducing the 

greenhouse emission and energy independence is less likely that it will happen something like in 

the 70'. 

The systems studied could have a similar relationship with the grid to one of the combined cycle 

plants because the systems have in common the thermodynamic cycle and due to the TES the 

CSP can produce electricity to meet the demand. 

 

Fig. 37 Comparison of LCOE among different CSP and combined cycle in different years 
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5.4 Comparison the LCOH among different technologies 

 

Fig. 38 ( (20), (21))  shows the comparison between the cost of the heat from the study case 

compared to the LCOH from natural gas considering two different scenarios for the gas price. 

The cost of the heat depends on the thermal load, for a continuous thermal load higher than 20 

MW the system can produce heat at the same LCOH of natural gas in 2019. The minimum cost 

of heat found is 20 €/MWh which is the asymptotic value of the LCOH produced using the 

system. 

 

Fig. 38 Comparison of LCOH from natural gas in two different years to the LCOH of the study case 
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5.5 The footprint of the system 

 
 

Table 13 summarizes the footprint of different configurations of the system. It is possible to 

appreciate the effect the downsizing of the power block has some advantages on land use. The 

main reduction is coming from the lower heliostats field. In case of the cogeneration, the bigger 

contribution to the increase of the footprint of the system is coming from the higher heliostats 

field needed to introduce more heat into the system.  The comparison among the footprint of 

different configurations should be done between the base and the system optimized with the 

downsizing without the cogeneration. The reason is that the base case system considered (Cerro 

Dominador Solar Thermal Plant) does not have a cogeneration feature, the main contribution of 

the difference in the land usage is because of the different locations the base case location has a 

DNI significantly higher than the one of Sevilla. 

 

Table 13. Land used of different configurations analyses and the base case used for the estimation of the 

footprint 

Configuration Footprint 

Best Optimal solution without downsized of the PB 14 Km2 

Best Optimal solution with downsized of the PB 12.8 Km2 

Base case (see 4.8 ) 10 Km2 

Best Optimal solution having a continuous thermal 

load of 20 MW 

15 Km2 
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6 Conclusion 

 

These systems studied show a higher capacity factor between 0.5-0.6 which compared to other 

renewable technology is a competitive value, they also show an LCOE between 82-120 €/MWh 

and considering that the system has some degree of flexibility for the electricity production this 

LCOE is competitive in the energy market. The systems studied could have a similar relationship 

with the grid to one of the combined cycle plants. The payback time of the system considering 

the prices of 2019 are around 16 years for both systems, which is a positive indication since the 

systems can make a profit within their lifetime, on the other hand considering that these 

technologies are relatively new building a system of this size (130 MWe) with the risk of being 

obsolete in some years it is not a negligible aspect. 

• Without cogeneration: The base case system shows the minimum LCOE of 82 €/MWh 

which is a competitive value considering the possibility of electricity when is needed, 

alpha coefficient shows that is possible changing the size of the power block according to 

the relationship with the electric grid that is a variable feature  

• With cogeneration: The modified system shows the possibility of selling the heat at the 

same cost as the LCOH of natural gas in a reliable way, which gives market attraction to 

this system. The system with some changes would be able of producing heat at 

temperatures up to 760 °C, that is the main difference between this technology and the 

parabolic trough for producing high-temperature heat 

The possibility of producing high-temperature heat for industrial purposes could boost the 

performance of these technologies significantly in the case of some government action in the 

direction of reducing greenhouse emissions. The main limitation of these technologies is their 

location, which must have specific characteristics, however, an implementation would surely lead 

to a decrease of emissions from the energy sector and the industry. The present work indicates 

the possibility of producing renewable heat at a cost like the one of natural gas hence, the overall 

trend of the energy market seems to go in the favor of these technologies. 
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6.1 Limitation and future work 

 

The limitation of this analysis can be summarized in the following lists: 

• The model is a quasi-static model which does not consider the transient phenomena, it 

has been used for evaluating the performance of a load which varies every 1 hour hence, 

the quasi-static assumption has been used at its limit. The model used gives a reasonably 

precise indication of the overall energy production of the systems, but it cannot evaluate 

the losses of the changing working condition of the CSP.  

o A possible future work could be the introduction of electric batteries and analysis 

of their impact on the LCOE, the electric battery could overcome the problem of 

the transient behavior of the thermodynamic cycle hence, the system will be able 

to cover the electric demand when there is not solar resource availability. The 

electric battery could impact a positive way on the LCOE and on the exegetic 

performance because the electric heater will be used less. 

• The assumption on the thermal used is optimistic thus, considering the heat user in a 

long-distance so introducing the heat losses the system could not be able to produce heat 

at the same LCOH of natural gas.  

o A possible future work could be analyzing a specific thermal user and considering 

the distance between the heat generation and the heat user and evaluating if it is 

still possible to produce heat in a cost-competitive way. 

• The economic advantage of using this type of technology in a context where the 

population is more sensitive to the greenhouse reduction could have a positive impact 

perceived image of the firm that implements it, therefore the costumers are willing to a 

higher price this would increase the economical values 

• The system footprint and the constraints on the location are strong limits on the 

application of these technologies thus, the CSP for obvious reasons needs an area where 

the DNI has high enough value to make the plant cost-competitive in the energy market. 

In the case of cogeneration, the system must have a near industry which needs high-

temperature heat to operate, with the cogeneration the conditions in the location increase 

thus, it could applicable only in some areas. The effect of the high footprint could 

mitigate acting the downsize of the power thus, reducing the alpha parameter. 

o A possible future work could be of integrating the cogeneration with the Carnot 

battery to avoid the limitation of having an area with high DNI, however, the 

system will be drastically different as it will have only the TES and the power 

block. 
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8 Appendix 

 

In this paragraph, there is the code used for the analysis. The code was written by Salvatore 

Guccione for simulating the techno-economical performance of a system having molten salt, I 

adapted to be able to simulate the behavior of a system working with particles. 

 

8.1 System model 

import Models.HybridPlant.PV as PV 

import Models.ControlSystems.CS_ElectricHeater as EHCS 

import Models.HybridPlant.ElectricHeater as EH 

import Models.Media.Particle as Medium1 

import Models.Media.sCO2 as Medium3 

import Models.SolarField.Sun as SUN 

import Models.SolarField.HeliostatField as HF 

import Models.Utilities.U_SolarField.SolarFunctions as SFun 

import Models.ControlSystems.CS_DirectReceiverS as RECS 

import Models.Receivers.ParticleReceiverS as REFREC 

import Models.Utilities.U_Receiver.ThermalLosses_MoltenSaltReceiver as TLMSREC 

import Models.Storages.TankStorage as TES 

import Models.ControlSystems.CS_PowerBlock as PBCS 

import Models.HeatExchangers.HX_sCO2PowerBlockS as PBHX 

import Models.Utilities.U_PowerBlock.Mixer as MIX 

import Models.Utilities.U_ControlSystem.Tank2Logic as T2LU 

import Models.Utilities.U_CostModels.CM_MoltenSaltsCO2System as CM 

import Models.Utilities.KPI as KPI 

import Models.Utilities.GeneralUtilities as GU 

import Models.Utilities.ExportExcel as EE 

from pathlib import Path 

import Data.ElectricityDemand.Demand as DE 

import Models.HeatExchangers.HX_cogeneration as HX_coge 

import Models.ControlSystems.CS_Cogeneration as CS_coge 

import math as MA 

import numpy as np 

import pandas as pd 

import time 

import openpyxl 

 

 

def MoltenSaltsCO2( 

 

    Model_Name = 'MoltenSaltsCO2',                                  # [-]       - 

Name of the model 

 

    # ------------------------------       Location Inputs 

    state_name = 'Spain',                                           # [-]       - 

Name of the state where the plant is located 

    w_file_path = r'./Data/Weather/Spain/',                         # [-]       - 

Path to the weather file 

    w_file_name = 'ESP_AN_Sevilla.AP.083910_TMYx.epw',              # [-]       - 

Weather file name 

    day_des = 172,                                                  # [-]       - 

Design day [1-365] 

    hour_des = 12,                                                  # [-]       - 

Design hour (in solar time) [1-24] 

    lat = 37.367,                                                   # [deg]     - 

Latitude of the location 
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    lon = -6.000,                                                   # [deg]     - 

Longitude of the location 

    time_zone = 1,                                                  # [h]       - 

Time zone of the location 

    Wspd_des = 5,                                                   # [m/s]     - 

Wind speed at the design point 

    elev_location = 2,                                              # [m]       - 

Elevation of the methereological tower 

    alpha_wind = 0.16,                                              # [-]       - 

Scaling coefficient for wind speed - assumed based on: 

https://doi.org/10.1016/j.rser.2021.111411 

 

    # ------------------------------       PV Inputs 

    P_max = 25e6,                                                   # [W]       - 

Maximum Electric Power that can be injected to the grid 

    P_AC=50e6,                                                      # [W]       - 

AC nameplate system capacity 

    r_DCAC=1.2,                                                     # [-]       - 

DC-to-AC ratio 

    module_type = 0,                                                # [-]       - 

Module type [0, 1, 2] - [Standard,Premium,Thin film] 

    array_type = 0,                                                 # [-]       - 

Array type [0, 1, 2, 3, 4] - [Fixed Rack, Fixed Roof, 1Axis, Backtracked, 2Axis] 

    tilt=35,                                                        # [deg]     - 

Array tilt angle (if no tracking) 

    azimuth = 180,                                                  # [deg]     - 

Array azimuth angle [deg] - Options: N=0, E=90,S=180,W=270 

    enable_battery = 0,                                             # [-]       - 

Boolean to enable battery 

    GCR = 0.4,                                                      # [-]       - 

Ground coverage ratio - MIN=0.01,MAX=0.99 

    eta_inv_input = 98,                                             # [%]       - 

Inverter efficiency at rated power - MIN=90,MAX=99.5 

https://www.nrel.gov/docs/fy19osti/72399.pdf 

    P_single_PV = 325,                                              # [W]       - 

Single PV module DC power output - Based on the YGE 72 CELL SERIES 2 - P = 325 W 

    A_single_PV = 1.96*0.99,                                        # [m2]      - 

Single PV module area - Based on the YGE 72 CELL SERIES 2 - P = 325 W 

 

    # ------------------------------       Electric Heater Inputs 

    P_name_EH = 25e6,                                               # [W]       - 

Nominal electric heater capacity (P_AC - P_max) 

    eta_heater_design = 0.95,                                       # [-]       - 

Electric heater efficiecny 

 

    # ------------------------------       Heliostat Field Inputs 

    SM = 2.4,                                                       # [-]       - 

Solar Multiple 

    use_SolarPilot=True,                                            # [-]       - 

Boolean to decide to use SolarPILOT 

    helio_width=12.2,                                               # [m]       - 

Width of the heliostat 

    helio_height=12.2,                                              # [m]       - 

Height of the heliostat 

    DNI_des=850,                                                    # [W/m2]    - 

Direct Normal Irradiance at design point 

    excl_fac=0.97,                                                  # [-]       - 

Exclusion factor (mirror density) 

    he_av_design = 0.99,                                            # [-]       - 

Helisotats availability 
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    helio_reflectance = 0.9,                                        # [-]       - 

Heliostats reflectance 

    Optimize_SF = True,                                             # [-]       - 

Boolean to run optimization of the solar field 

    input_helio_map = False,                                        # [-]       - 

Boolean to decide if the heliostat map is given as an input 

    optical_path = r'./Data/Optical/',                              # [-]       - 

Path to the heliostat map 

    helio_map_name = 'Heliostats_Position_Map.xlsx',                # [-]       - 

Heliostat map file name 

    land_max = 9.5,                                                 # [-]       - 

Maximum land multiplier 

    land_min = 0.75,                                                # [-]       - 

Minimum land multiplier 

    W_track=0.055e3,                                                # [W]       - 

Tracking power for a single heliostat 

    optical_file_name = 'OpticalEfficiency.txt',                    # [-]       - 

Name of the optical file 

 

    # ------------------------------       Tower and Receiver Inputs 

    FlatPlate = False,                                              # [-]       - 

Boolean to decide to use a flat plate receiver or not 

    input_eff = False,                                              # [-]       - 

Boolean to decide to use a fixed receiver efficiency 

    eta_rec_input = 0.5,                                           # [-]       - 

Input of a constant receiver efficiency 

    D_rec_input = 17.65,                                            # [m]       - 

Input of the receiver diameter 

    ar_rec_input = 51.6/17.65,                                      # [-]       - 

Receiver aspect ratio (height over width) 

    N_pa_rec = 20,                                                  # [-]       - 

Number of panels in receiver 

    N_fl = 1,                                                       # [-]       - 

Number of parallel flow-paths 

    t_tb_rec = 1.25e-3,                                             # [m]       - 

Thickness of the receiver tube wall 

    D_tb_rec = 40e-3,                                               # [m]       - 

Receiver tube outer diameter 

    H_tower_input = 190,                                            # [m]       - 

Input of the tower height 

    rec_absorptance = 0.95,                                         # [-]       - 

Receiver coating absorptance 

    rec_emissivity = 0.84,                                          # [-]       - 

Receiver coating emissivity 

    k_material = 16,                                                # [W/(mK)]  - 

Conductivity of the receiver material (SS) 

https://doi.org/10.1680/ensu.2007.160.4.167 

    rec_hl_perm_guess = 30,                                         # [kW/m2]   - 

Receiver design heat loss 

    T_cold_set_REC_input = GU.from_degC(290),                       # [K]       - 

Cold Receiver design temperature - Ref. https://elib.dlr.de/141315/ 

    T_hot_set_REC = GU.from_degC(800),                              # [K]       - 

Hot Receiver design temperature - Ref. https://elib.dlr.de/141315/ 

 

    # ------------------------------       Storage Inputs 

    t_storage = 10,                                                 # [h]       - 

Hours of storage 

    H_storage = 12,                                                 # [m]       - 

Height of the storage tank 
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    T_hot_start_TES = GU.from_degC(790),                            # [K]       - 

Hot tank starting temperature (T_hot_start_TES = T_hot_set_REC) 

    T_cold_aux_set = GU.from_degC(290),                             # [K]       - 

Cold tank auxiliary heater set-point temperature 

    T_hot_aux_set = GU.from_degC(785),                              # [K]       - 

Hot tank auxiliary heater set-point temperature 

    alpha = 0.4,                                                    # [W/(m2K)] - 

Tank constant heat transfer coefficient with ambient 

    k_loss_cold = 0.15e3,                                           # [J/kg]    - 

Cold tank parasitic power coefficient 

    k_loss_hot = 0.55e3,                                            # [J/kg]    - 

Hot tank parasitic power coefficient 

    k_loss_rec = 0.21e3,                                            # [J/kg]    - 

Cold tank parasitic power coefficient 

    W_heater_hot = 30e6,                                            # [W]       - 

Hot tank heater capacity 

    W_heater_cold = 15e6,                                           # [W]       - 

Cold tank heater capacity 

    tank_ar = 38.8/12,                                              # [-]       - 

Storage tank aspect ratio 

    e_ht= 0.99,                                                     # [-]       - 

Tank Heater Efficiency 

    dt = 3600,                                                      # [s]       - 

Number of samples to generate in one hour in the ODE to simulate the storage 

behaviour 

    # ------------------------------      Heat Exchanger 

 

    U_HX_design=100,                                                 #[W/K*m^2] 

    T_source_cold_design=595+273.15, 

    eff_HX_coge=1, 

    L_min_HX=0.3, 

    Q_de=10*1e3, 

 

    # ------------------------------       Control Inputs 

    t_ramping = 0.5*3600,                                           # [s]       - 

Power block startup delay: 0.5 hour 

    t_standby = 2*3600,                                             # [s]       - 

Power block standby delay: 2 hour 

    ele_min = 0.13962634015955,                                     # [rad]     - 

Heliostat stow deploy angle 

    Wspd_max = 15,                                                  # [m/s]     - 

Wind stow speed 

    nu_start = 0.2,                                                 # [-]       - 

Minimum energy start-up fraction to start the receiver 

    nu_min_sf = 0.2,                                                # [-]       - 

Minimum turn-down energy fraction to stop the receiver 

    nu_min_EH = 0.2,                                                # [-]       - 

Minimum energy fraction to start/stop the electric heater 

    L_start = 50,                                                   # [%]       - 

Hot Tank initial level 

    hot_tnk_empty_lb = 6,                                           # [%]       - 

Hot tank empty trigger lower bound - Level (below which) to stop disptach 

    hot_tnk_empty_ub = 11,                                          # [%]       - 

Hot tank empty trigger upper bound - Level (above which) to start disptach 

    hot_tnk_full_lb = 93,                                           # [%]       - 

Hot tank full trigger lower bound 

    hot_tnk_full_ub = 98,                                           # [%]       - 

Hot tank full trigger upper bound 

    cold_tnk_defocus_lb = 6,                                        # [%]       - 

Cold tank empty trigger lower bound# - Level (below which) to stop disptach 
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    cold_tnk_defocus_ub = 11,                                       # [%]       - 

Cold tank empty trigger upper bound# - Level (above which) to start disptach 

    cold_tnk_crit_lb = 5,                                           # [%]       - 

Cold tank critically empty trigger lower bound# - Level (below which) to stop 

disptach 

    cold_tnk_crit_ub = 10,                                          # [%]       - 

Cold tank critically empty trigger upper bound# - Level (above which) to start 

disptach 

     

 

 

    # ------------------------------       sCO2 Power Block Inputs 

    P_gross=115e6,                                                  # [W]       - 

Power Cycle Gross Output 

    use_eta_net_blk=True,                                           # [-]       - 

Boolean to decide to use a fixed net-to-gross efficiecny or calculate parasitic 

losses 

    eta_net_blk = 0.95,                                             # [-]       - 

Gross-to-net power conversion factor at the power block - Ref. 

https://doi.org/10.17185/duepublico/73961 

    TIT = GU.from_degC(775),                                        # [K]       - 

Turbine Inlet Temperature at design 

    T_in_Compr = GU.from_degC(32),                                  # [K]       - 

Compressor inlet temperature at design 

    eta_gen = 0.98,                                                 # [-]       - 

Mechanical-to-Electrical Efficiency - Ref. 

https://doi.org/10.17185/duepublico/73961 

    Reheat = False,                                                 # [-]       - 

Boolean to decide to include Reheating in the sCO2 power block 

    Recompression = True,                                           # [-]       - 

Boolean to decide to include Recompression in the sCO2 power block 

    Intercooling = True,                                            # [-]       - 

Boolean to decide to include Intercooling in the sCO2 power block 

    p_high_blk = 25e6,                                              # [Pa]      - 

Power block operating high pressure - 250 bar 

    p_int_blk= 16.19e6,                                             # [Pa]      - 

Power block operating intermediate pressure - 161.9 bar (ONLY if Reheat is True) 

    p_low_blk = 7.38e6,                                             # [Pa]      - 

Power block operating low pressure - 73.8 bar 

    p_incooler_blk = 10e6,                                          # [Pa]      - 

Power block operating intercooler pressure - 100 bar (ONLY if Intercooling is True) 

    T_in_inter_Compr = GU.from_degC(32),                            # [K]       - 

Compressor inlet temperature at design 

    SR = 0.7,                                                       # [-]       - 

sCO2 mass flow split ratio (ONLY if Recompression is True) 

    eta_HTR = 0.95,                                                 # [-]       - 

Effectiveness High-Temperature Recuperator 

    eta_LTR = 0.95,                                                 # [-]       - 

Effectiveness Low-Temperature Recuperator (ONLY if Recompression is True) 

    DT_recuperator = 10,                                            # [K]       - 

Min Pich-point temperature recuperators 

    PB_load_min = 0.4,                                              # [-]       - 

Min load at which the PB can operate 

    eta_PBHX=1,                                                     # [-]       - 

Salt-to-sCO2 HX efficiency 

    DT_pinch_TESsCO2=15,                                            # [K]       - 

Initial Temperature difference for the primary HX(s) 

    T_in_air_cooler_des = GU.from_degC(28),                         # [K]       - 

Ambient temperature at design point for power block 
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    par_fix_fr = 0.0055,                                            # [-]       - 

Fixed parasitics as fraction of gross rating 

 

    # ------------------------------       Cost Data Inputs 

    currency_name = "EUR",                                          # [-]       - 

Name of the currency adopted 

    M_conv_currency_to_USD = 0.84,                                  # [EUR/USD] - 

The currency rate from USD to currecny adopted 

    r_disc = 0.07,                                                  # [-]       - 

Discount rate 

    r_i = 0.025,                                                    # [-]       - 

Inflation rate 

    t_life = 30,                                                    # [years]   - 

Lifetime of plant - Based on Downselect Criteria, Table 2 

    f_contingency_CSP = 0.07,                                       # [-]       - 

Contingency costs share - CSP plant - Ref. SAM Default Value 

    f_contingency_PV = 0.03,                                        # [-]       - 

Contingency costs share - PV plant - Ref. SAM Default Value 

https://www.nrel.gov/docs/fy19osti/72399.pdf 

    f_decommissioning = 0,                                          # [-]       - 

Decommissioning costs share - It shoudl be 0.05 #Decommissioning costs share 

    f_EPC_CSP = 0.13,                                               # [-]       - 

Engineering, procurement and construction(EPC) and owner costs costs share - CSP 

plant - Ref. SAM Default Value 

    f_EPC_PV = 0.1,                                                 # [-]       - 

Engineering, procurement and construction(EPC) and owner costs costs share - PV 

plant - Ref. SAM Default Value https://www.nrel.gov/docs/fy19osti/72399.pdf 

    f_Subs = 0,                                                     # [-]       - 

Subsidies on initial investment costs 

 

    # ------------------------------       Characterization of the System 

Optimization 

    LCOE_OF = True,                                                 # [-]       - 

Boolean to select LCOE as an objective function for the system optimization 

    CAPEX_OF = False,                                               # [-]       - 

Boolean to select CAPEX as an objective function for the system optimization 

    CF_OF = False,                                                  # [-]       - 

Boolean to select CF as an objective function for the system optimization 

    AEY_OF = False,                                                 # [-]       - 

Boolean to select AEY as an objective function for the system optimization 

    AF_OF = False,                                                  # [-]       - 

Boolean to select AF as an objective function for the system optimization 

    c_block_OF = False,                                             # [-]       - 

Boolean to select c_block as an objective function for the system optimization 

    ASCO2eq_OF = False,                                             # [-]       - 

Boolean to select ASCO2eq as an objective function for the system optimization 

    TEW_share_OF = False,                                           # [-]       - 

Boolean to select TEW_share as an objective function for the system optimization 

    f_AEY_CSP_OF = False,                                           # [-]       - 

Boolean to select f_AEY_CSP as an objective function for the system optimization 

    CF_CSP_OF = False,                                              # [-]       - 

Boolean to select CF_CSP as an objective function for the system optimization 

    CF_PV_OF = False,                                               # [-]       - 

Boolean to select CF_PV as an objective function for the system optimization 

    CAPEX_CSP_OF = False,                                           # [-]       - 

Boolean to select CAPEX_CSP as an objective function for the system optimization 

    CAPEX_PV_OF = False,                                            # [-]       - 

Boolean to select CAPEX_PV as an objective function for the system optimization 

    EH_UF_OF = False,                                               # [-]       - 

Boolean to select EH_UF as an objective function for the system optimization 
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    TES_PV_fraction_OF = False,                                     # [-]       - 

Boolean to select TES_PV_fraction as an objective function for the system 

optimization 

 

    # ------------------------------       Handling of the Outputs 

    identification_folder_summary = '',                             # [-]       - 

Identification of the folder for the summary of the results 

    identification_summary = '',                                    # [-]       - 

Identification of the summary of results file 

    identification_folder_results = '',                             # [-]       - 

Identification of the folder for the results 

    identification_results = '',                                    # [-]       - 

Identification of the results files 

    save_all_files = False,                                         # [-]       - 

Boolean to decide if to save all the results files or only the summary 

    erase_old_summary = False,                                      # [-]       - 

Boolean to decide if to erase the old results in the summary file 

 

    # ------------------------------       Other Inputs 

    Short_Simulation = False,                                       # [-]       - 

Boolean to decide to limit the simulation at a short time interval 

    shortime_start = 0,                                             # [-]       - 

Index of the start of the time interval 

    shortime_end = 3,                                                # [-]       - 

Index of the end of the time interval 

    #--------------------------------- Simulation with multiple parameters 

    Flag=0, 

    Co_i=1, 

    Co_j=1, 

    Co_k=1, 

    Co_l=1, 

    Co_m=1, 

    number_sim=1 

): 

 

    start_time = time.time() 

    print(u"\u2192 Design of the plant started") 

 

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

Design  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

    PD=DE.load(P_max) 

    #print(max(PD)) 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

#                                                                   PV Field 

Calculated Parameters 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    part1 = time.time() 

    P_DC=r_DCAC*P_AC                                                # [W]       - 

System size - DC nameplate 

    W_heater_min = P_name_EH * nu_min_EH                            # [W]       - 

Minimum Electric Heater Power 

    w_file = '%s%s' %(w_file_path, w_file_name)                     # [-]       - 

Weather file 
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                                                                    # Calculation 

of the PV Field 

    [PV_rows, A_land_PV_tot, A_PV_field, PV_EnergyYield, PV_CF, PV_P_AC_inv_annual, 

PV_Annual_Energy, PV_P_DC_inv, PV_P_AC_inv, W_net_PV, W_heater_PV_raw, EH_on, 

PV_share, W_wasted_PV_plus]=PV.Simple_PVPlant( 

        w_file, tilt, azimuth, array_type, module_type, P_single_PV, A_single_PV, 

r_DCAC, P_DC, GCR, enable_battery, eta_inv_input, P_max, P_name_EH, W_heater_min, 

PD) 

    #print(len(PV_share)) 

    print(u"\u2192 Design of the PV Field completed (Duration: %s s)" 

%(np.around(time.time() - part1, decimals=0))) 

 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

#                                                                   Power Block 

Calculated Parameters 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    part1 = time.time() 

                                                                    # Selecting the 

PB Type and defining the design 

    if Recompression==False and Reheat==False and Intercooling==False: 

        import Models.PowerBlocks.sCO2_PB_Simple as PBS 

        PB_S=True 

        PB_S_Inter=False 

        PB_R=False 

        PB_R_Inter=False 

        PB_Recomp=False 

        PB_Recomp_Inter=False 

        PB_RR=False 

        PB_RR_Inter=False 

    if Recompression==False and Reheat==False and Intercooling==True: 

        import Models.PowerBlocks.sCO2_PB_Simple_Intercooler as PBSInter 

        PB_S=False 

        PB_S_Inter=True 

        PB_R=False 

        PB_R_Inter=False 

        PB_Recomp=False 

        PB_Recomp_Inter=False 

        PB_RR=False 

        PB_RR_Inter=False 

    if Recompression==False and Reheat==True and Intercooling==False: 

        import Models.PowerBlocks.sCO2_PB_Reheat as PBR 

        PB_S=False 

        PB_S_Inter=False 

        PB_R=True 

        PB_R_Inter=False 

        PB_Recomp=False 

        PB_Recomp_Inter=False 

        PB_RR=False 

        PB_RR_Inter=False 

    if Recompression==False and Reheat==True and Intercooling==True: 

        import Models.PowerBlocks.sCO2_PB_Reheat_Intercooler as PBRInter 

        PB_S=False 

        PB_S_Inter=False 

        PB_R=False 
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        PB_R_Inter=True 

        PB_Recomp=False 

        PB_Recomp_Inter=False 

        PB_RR=False 

        PB_RR_Inter=False 

    if Recompression==True and Reheat==False and Intercooling==False: 

        import Models.PowerBlocks.sCO2_PB_Recompr as PBRecomp 

        PB_S=False 

        PB_S_Inter=False 

        PB_R=False 

        PB_R_Inter=False 

        PB_Recomp=True 

        PB_Recomp_Inter=False 

        PB_RR=False 

        PB_RR_Inter=False 

    if Recompression==True and Reheat==False and Intercooling==True: 

        import Models.PowerBlocks.sCO2_PB_Recompr_Intercooler as PBRecompInter 

        PB_S=False 

        PB_S_Inter=False 

        PB_R=False 

        PB_R_Inter=False 

        PB_Recomp=False 

        PB_Recomp_Inter=True 

        PB_RR=False 

        PB_RR_Inter=False 

    if Recompression==True and Reheat==True and Intercooling==False: 

        import Models.PowerBlocks.sCO2_PB_Recompr_plus_Reheat as PBRR 

        PB_S=False 

        PB_S_Inter=False 

        PB_R=False 

        PB_R_Inter=False 

        PB_Recomp=False 

        PB_Recomp_Inter=False 

        PB_RR=True 

        PB_RR_Inter=False 

    if Recompression==True and Reheat==True and Intercooling==True: 

        import Models.PowerBlocks.sCO2_PB_Recompr_plus_Reheat_Intercooler as 

PBRRInter 

        PB_S=False 

        PB_S_Inter=False 

        PB_R=False 

        PB_R_Inter=False 

        PB_Recomp=False 

        PB_Recomp_Inter=False 

        PB_RR=False 

        PB_RR_Inter=True 

    

    if PB_Recomp_Inter: 

        identification_PB='_PB_Recomp_Inter_' 

        [m_flow_sCO2_des, eta_blk_des, T_MH_sCO2_cold, T_max_HTR_sCO2, 

T_max_LTR_sCO2, W_HPT_des, eta_HPT_des, W_MC1_des, eta_MC1_des, W_MC2_des, 

eta_MC2_des, W_RC_des, eta_RC_des, UA_MH_des, UA_HTR_des, UA_LTR_des, 

UA_cooler_des, UA_intercooler_des, Q_Cooler_des, DT_pinch_cooler, 

Q_Intercooler_des, DT_pinch_intercooler, Q_HTR_des, Q_LTR_des, 

thermodynamic_cycle_des, 

f_prop_des]=PBRecompInter.Design_sCO2_PB_Recompr_Intercooler( 

            P_gross, TIT, T_in_Compr, T_in_inter_Compr, p_high_blk, p_low_blk, 

p_incooler_blk, SR, eta_gen, eta_HTR, eta_LTR, T_hot_set_REC, T_cold_set_REC_input, 

DT_pinch_TESsCO2, T_in_air_cooler_des, DT_recuperator 

            ) 
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        [TS_1_des, TS_2_des, TS_3_des, TS_4_des, TS_5_des, TS_6_des, TS_7_des, 

TS_8_des, TS_9_des, TS_9_prime_des, TS_9_second_des, TS_10_des] = 

thermodynamic_cycle_des 

        T_sCO2_1_des=GU.to_degC(Medium3.temperature(TS_1_des)) 

        T_sCO2_2_des=GU.to_degC(Medium3.temperature(TS_2_des)) 

        T_sCO2_3_des=GU.to_degC(Medium3.temperature(TS_3_des)) 

        T_sCO2_4_des=GU.to_degC(Medium3.temperature(TS_4_des)) 

        T_sCO2_5_des=GU.to_degC(Medium3.temperature(TS_5_des)) 

        T_sCO2_6_des=GU.to_degC(Medium3.temperature(TS_6_des)) 

        T_sCO2_7_des=GU.to_degC(Medium3.temperature(TS_7_des)) 

        T_sCO2_8_des=GU.to_degC(Medium3.temperature(TS_8_des)) 

        T_sCO2_9_des=GU.to_degC(Medium3.temperature(TS_9_des)) 

        T_sCO2_9_des_K = Medium3.temperature(TS_9_des) 

        T_sCO2_9_prime_des=GU.to_degC(Medium3.temperature(TS_9_prime_des)) 

        T_sCO2_9_second_des=GU.to_degC(Medium3.temperature(TS_9_second_des)) 

        T_sCO2_10_des=GU.to_degC(Medium3.temperature(TS_10_des)) 

        #print(T_sCO2_10_des) 

        #print("332") 

        T_high_h = f_prop_des[1] 

        T_incooler_h = f_prop_des[5] 

        T_low_T = f_prop_des[9] 

        h_high_T = f_prop_des[0] 

        h_incooler_T = f_prop_des[4] 

        h_low_T = f_prop_des[8] 

        m_flow_sCO2_MC = SR * m_flow_sCO2_des 

        m_flow_sCO2_RC = (1-SR) * m_flow_sCO2_des 

     

             

                                                                    # sCO2 

Thermodynamic States 

    state_MH_hot_sCO2 = Medium3.setState_pTX(p_high_blk, TIT) 

    state_MH_cold_sCO2 = Medium3.setState_pTX(p_high_blk, T_MH_sCO2_cold) 

    #print(T_MH_sCO2_cold) #Temperatura 825,75  

    #print("347") 

    h_MH_sCO2_hot_des = Medium3.specificEnthalpy(state_MH_hot_sCO2) 

    h_MH_sCO2_cold_des = Medium3.specificEnthalpy(state_MH_cold_sCO2) 

    if PB_RR or PB_R or PB_RR_Inter or PB_R_Inter: 

        state_RH_hot_sCO2 = Medium3.setState_pTX(p_int_blk, TIT) 

        state_RH_cold_sCO2 = Medium3.setState_pTX(p_int_blk, T_RH_sCO2_cold) 

        h_RH_sCO2_hot_des = Medium3.specificEnthalpy(state_RH_hot_sCO2) 

        h_RH_sCO2_cold_des = Medium3.specificEnthalpy(state_RH_cold_sCO2) 

                                                                    # Design 

thermal power to the power Block 

    #Q_flow_MH_des = m_flow_sCO2_des*(h_MH_sCO2_hot_des-

h_MH_sCO2_cold_des)/eta_PBHX 

    Q_flow_MH_des=P_gross/eta_blk_des   #The requirement thermal power needed for 

the PB at the desing point 

    if PB_RR or PB_R or PB_RR_Inter or PB_R_Inter: 

        Q_flow_RH_des = m_flow_sCO2_des*(h_RH_sCO2_hot_des-

h_RH_sCO2_cold_des)/eta_PBHX 

        Q_flow_des=Q_flow_MH_des+Q_flow_RH_des                      # It can be 

calculated also as P_gross/eta_blk_des 

         

    else: 

        Q_flow_des=Q_flow_MH_des                                    # It can be 

calculated also as P_gross/eta_blk_des 

         

    W_base_blk = par_fix_fr * P_gross                               # Power 

consumed at all times in power block 
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    P_net = eta_net_blk * P_gross                                   # Power block 

net rating at design point 

    P_name = P_net + P_AC                                           # Nominal Power 

of the system 

    print(u"\u2192 Design of the PB completed (Duration: %s s)" 

%(np.around(time.time() - part1, decimals=0))) 

 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

#                                                                   Control of the 

Power Block Calculated Parameters 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    part1 = time.time() 

                                                                    # Molten Salt-

side Thermodynamic States 

    T_hot_set_TES = T_hot_set_REC 

    state_hot_set_TES = Medium1.setState_pTX(Medium1.p_default, T_hot_set_TES) 

    h_hot_set_TES = Medium1.specificEnthalpy(state_hot_set_TES) 

    h_hot_set_REC = h_hot_set_TES 

    state_cold_set_TES_input = Medium1.setState_pTX(Medium1.p_default, 

T_cold_set_REC_input) 

    h_cold_set_TES_input = Medium1.specificEnthalpy(state_cold_set_TES_input) 

    state_min_cold_TES_MH = Medium1.setState_pTX(Medium1.p_default, 

T_MH_sCO2_cold+DT_pinch_TESsCO2) 

    h_cold_min_TES_MH =  Medium1.specificEnthalpy(state_min_cold_TES_MH) 

     

    h_cold_set_TES_MH = max(h_cold_set_TES_input, h_cold_min_TES_MH) 

    state_cold_TES_MH = Medium1.setState_phX(Medium1.p_default, h_cold_set_TES_MH) 

    T_cold_set_TES_MH = Medium1.temperature(state_cold_TES_MH) 

    m_flow_blk_MH = Q_flow_MH_des / (h_hot_set_TES - h_cold_set_TES_MH) # Mass flow 

rate to power block MH at design point 

    

 

    m_flow_startup_MH = m_flow_blk_MH/2                             # Mass flow 

rate to power block at startup 

    m_flow_standby = 0                                              # Mass flow 

rate to power block at standby 

    m_flow_off = 0                                                  # Mass flow 

rate to power block during no operation 

    if PB_RR or PB_R or PB_RR_Inter or PB_R_Inter: 

        state_min_cold_TES_RH = Medium1.setState_pTX(Medium1.p_default, 

T_RH_sCO2_cold+DT_pinch_TESsCO2) 

        h_cold_min_TES_RH =  Medium1.specificEnthalpy(state_min_cold_TES_RH) 

        T_cold_min_TES_RH = Medium1.temperature(state_min_cold_TES_RH) 

        h_cold_set_TES_RH = max(h_cold_set_TES_input, h_cold_min_TES_RH) 

        state_cold_TES_RH = Medium1.setState_phX(Medium1.p_default, 

h_cold_set_TES_RH) 

        T_cold_set_TES_RH = Medium1.temperature(state_cold_TES_RH) 

        m_flow_blk_RH = Q_flow_RH_des / (h_hot_set_TES - h_cold_set_TES_RH) # Mass 

flow rate to power block RH at design point 

        m_flow_startup_RH = m_flow_blk_RH/2                         # Mass flow 

rate to power block at startup 

    print(u"\u2192 Design of the Controller completed (Duration: %s s)" 

%(np.around(time.time() - part1, decimals=0))) 
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# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

#                                                                   Storage 

Calculated Parameters 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    part1 = time.time() 

    if PB_RR or PB_R or PB_RR_Inter or PB_R_Inter:                  # Cold salt 

specific enthalpy at design 

        h_cold_set_TES = MIX.Mixer(m_flow_blk_MH, h_cold_set_TES_MH, m_flow_blk_RH, 

h_cold_set_TES_RH)  

    else: 

        h_cold_set_TES = h_cold_set_TES_MH 

    state_cold_set_TES = Medium1.setState_phX(Medium1.p_default, h_cold_set_TES) # 

Cold salt thermodynamic state at design 

    T_cold_set_TES = Medium1.temperature(state_cold_set_TES)        # Cold salt 

specific enthalpy at design 

    T_cold_set_REC = T_cold_set_TES 

    T_cold_start_TES = T_cold_set_TES 

    DT_TES = T_hot_set_REC - T_cold_set_TES                         # Design DT 

storage 

    #print(T_cold_set_TES) 

    #print("423") 

    state_hot_set_TES = Medium1.setState_pTX(Medium1.p_default, T_hot_set_REC) # 

Hold salt thermodynamic state at design 

    h_hot_set_TES = Medium1.specificEnthalpy(state_hot_set_TES)     # Hot salt 

specific enthalpy at design 

    E_max = t_storage * 3600 * Q_flow_des                           # [J] - Maximum 

tank stored energy 

    rho_cold_set = Medium1.density(state_cold_set_TES)              # Cold salt 

density at design 

    rho_hot_set = Medium1.density(state_hot_set_TES)                # Hot salt 

density at design 

    m_max = E_max / (h_hot_set_TES - h_cold_set_TES)                # Max salt mass 

in tanks 

    V_max = m_max / ((rho_hot_set + rho_cold_set) / 2)              # Max salt 

volume in tanks 

    tank_min_l = 1.8                                                # Storage tank 

fluid minimum height - Based on NREL Gen3 SAM model v14.02.2020 

    D_storage = (4*V_max/(MA.pi*(H_storage - tank_min_l)))**0.5 

    V_tank = (H_storage*MA.pi*D_storage**2)/4                       # Tank Volume 

    A_surf_TES=MA.pi*D_storage*H_storage + MA.pi*D_storage**2/4     # [m2] 

    HT_Design=[V_tank, D_storage, H_storage, alpha, W_heater_hot, T_hot_aux_set, 

e_ht] 

    CT_Design=[V_tank, D_storage, H_storage, alpha, W_heater_cold, T_cold_aux_set, 

e_ht] 

    state_cold_start_TES = Medium1.setState_pTX(Medium1.p_default, 

T_cold_start_TES) # Cold salt thermodynamic state at design 

    state_hot_start_TES = Medium1.setState_pTX(Medium1.p_default, T_hot_start_TES) 

# Hold salt thermodynamic state at design 

    h_cold_start_TES = Medium1.specificEnthalpy(state_cold_start_TES) # Cold salt 

specific enthalpy at design 

    h_hot_start_TES = Medium1.specificEnthalpy(state_hot_start_TES) # Hot salt 

specific enthalpy at design 

    rho_cold_start = Medium1.density(state_cold_start_TES)          # Cold salt 

density at design 
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    rho_hot_start = Medium1.density(state_hot_start_TES)            # Hot salt 

density at design 

    print(u"\u2192 Design of the TES completed (Duration: %s s)" 

%(np.around(time.time() - part1, decimals=0))) 

 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

#                                                                   Electric Heater 

Calculated Parameters 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    Q_name_EH = P_name_EH*eta_heater_design 

    state_inlet_EH_des = Medium1.setState_pTX(Medium1.p_default, T_cold_set_REC) 

    state_outlet_EH_des = Medium1.setState_pTX(Medium1.p_default, T_hot_set_REC) 

    h_cold_set_EH = Medium1.specificEnthalpy(state_inlet_EH_des) 

    h_hot_set_EH = Medium1.specificEnthalpy(state_outlet_EH_des) 

    m_flow_EH_des = Q_name_EH/(h_hot_set_EH-h_cold_set_EH)          # Design 

Electric Heater mass flow rate 

 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

#                                                                   Heliostat Field 

and Receiver Calculated Parameters 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    part1 = time.time() 

    helio_map_file = '%s%s' %(optical_path, helio_map_name) 

    optical_file = '%s%s' %(optical_path, optical_file_name) 

    Q_rec_des = Q_flow_des * SM                                     # Heat from 

receiver at design 

    [_, tower_fixed_cost, tower_exp] = CM.Cost_Tower(M_conv=M_conv_currency_to_USD, 

H_tower=1) 

    #[_, C_receiver_ref, A_receiver_ref, rec_cost_exp] = 

CM.Cost_Receiver(M_conv=M_conv_currency_to_USD, A_receiver = 1) 

    [_, pri_land] = CM.Cost_Land(M_conv = M_conv_currency_to_USD, A_land_tot = 1) 

    [_, pri_site] = CM.Cost_SiteImprovements(M_conv=M_conv_currency_to_USD, A_SF=1) 

    [_, pri_field] = CM.Cost_SolarField(M_conv=M_conv_currency_to_USD, A_SF=1) 

    geom_inputs=[N_pa_rec, D_tb_rec, t_tb_rec, N_fl] 

    [A_SF, n_heliostat, A_single_heliostat, A_land_base, A_land_CSP_tot, H_tower, 

H_rec, ar_rec, D_rec, D_tower, C_ratio, Map_Helio, 

SF_Efficiency]=HF.Design_HeliostatField( 

            use_SolarPilot = use_SolarPilot, 

            DNI_des = DNI_des, 

            helio_width = helio_width, 

            helio_height = helio_height, 

            excl_fac = excl_fac, 

            he_av_design = he_av_design, 

            FlatPlate = FlatPlate, 

            D_rec_input = D_rec_input, 

            ar_rec_input = ar_rec_input, 

            Q_rec_des = Q_rec_des, 

            w_file = w_file, 
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            helio_reflectance = helio_reflectance, 

            Optimize_SF = Optimize_SF, 

            H_tower_input = H_tower_input, 

            rec_absorptance = rec_absorptance, 

            rec_hl_perm_guess = rec_hl_perm_guess, 

            input_helio_map = input_helio_map, 

            helio_map_file = helio_map_file, 

            land_max = land_max, 

            land_min = land_min, 

            tower_fixed_cost = tower_fixed_cost, 

            tower_exp = tower_exp, 

            #C_receiver_ref = C_receiver_ref, 

            #A_receiver_ref = A_receiver_ref, 

            #rec_cost_exp = rec_cost_exp, 

            site_spec_cost = pri_site, 

            heliostat_spec_cost = pri_field, 

            land_spec_cost = pri_land, 

            contingency_rate = f_contingency_CSP, 

            cost_sf_fixed = 0, 

            sales_tax_frac = 100, 

            sales_tax_rate = 0 

            ) 

                                                                    # Receiver 

Design 

    T_amb_des = T_in_air_cooler_des 

    Wspd_des_Ht=Wspd_des*(H_tower/elev_location)**alpha_wind 

     

    [Rec_design, eta_rec_des, eta_rec_th_des, Q_loss_rec_des, R_des, 

m_flow_rec_des]=REFREC.Design_Receiver( 

        Q_rec_des, T_hot_set_REC, T_cold_set_REC,eta_rec_input) 

    #print(T_cold_set_REC) 

    #print("508") 

    #H_rec = Rec_design[1] 

    #A_receiver = Rec_design[3] 

    #A_out_losses_rec = Rec_design[4] 

    #A_in_losses_rec = Rec_design[5] 

    #A_cs_rec = Rec_design[6] 

    #N_tubes_rec = Rec_design[7] 

    #D_in_tb_rec = Rec_design[9] 

    #w_pa = Rec_design[11] 

    #N_tb_pa = Rec_design[12] 

    #V_rec = Rec_design[14] 

    #rec_hl_perm=(R_des-Q_rec_des)/(A_receiver)/1000                 # [kW/m2] 

Receiver design heat loss 

    m_flow_max_REC = 1.5 * m_flow_rec_des                           # Maximum mass 

flow rate from/to receiver 

    m_flow_start_REC = m_flow_rec_des                               # Initial or 

guess value of mass flow rate from/to heat exchanger in the feedback controller 

    Q_field_design = (R_des - Q_rec_des + Q_flow_des) 

    time_des=(24*(day_des-1)+hour_des)*3600 

    [hra_des, dec_des] = SFun.SolarPosition(time_des, time_zone, lon) 

    azi_deg180_des = GU.to_deg(SFun.azimuthAngle(dec_des, hra_des, lat))+180 

    ele_deg_des = GU.to_deg(SFun.elevetionAngle(dec_des, hra_des, lat)) 

    eff_SF_des=SF_Efficiency(azi_deg180_des, ele_deg_des) 

    print(u"\u2192 Design of the Receiver and SF completed (Duration: %s s)" 

%(np.around(time.time() - part1, decimals=0))) 

                                                                # Heat exchange 

Design 
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#[NTU_UC_d,NTU_fu_d,Fact_c,Area_HX,eta_HX_de,m_flow_sCO2_design,m_flow_p_design,Del

ta_1]=PBHX.Desing_HeatExchanger( T_hot_start_TES-273.15,T_source_cold_design-

273.15,TIT-273.15,T_MH_sCO2_cold-273.15, Medium1.h_T(T_hot_start_TES-

273.15),Medium3.h_T(p_high_blk,T_MH_sCO2_cold),Medium1.h_T(T_source_cold_design-

273.15),Medium3.h_T(p_high_blk,TIT),Q_flow_des,U_HX_design,p_high_blk 

    #)                                                          

    

[NTU_UC,Area_HX,m_flow_sCO2_design,m_flow_p_design,eta_de_HX]=PBHX.Desing_HeatExcha

nger( T_hot_start_TES,T_source_cold_design, TIT,T_MH_sCO2_cold, 

Medium1.h_T(T_hot_start_TES),Medium3.h_T(p_high_blk,T_MH_sCO2_cold),Medium1.h_T(T_s

ource_cold_design),Medium3.h_T(p_high_blk,TIT),Q_flow_des,U_HX_design,p_high_blk)  

    #print(m_flow_sCO2_design) #test 

    #print(m_flow_sCO2_des)   # 

    #print(m_flow_p_design) 

    #print(m_flow_blk_MH) 

    #print("522") 

 

 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

#                                                                   Calculated 

Costs 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    part1 = time.time() 

                                                                    # PV - Costs 

    C_modules_PV = CM.Cost_PV_Field(M_conv_currency_to_USD, P_DC) 

    C_BoS_PV = CM.Cost_PV_BoS(M_conv_currency_to_USD, P_DC) 

    [C_site_PV, _] = CM.Cost_SiteImprovements(M_conv_currency_to_USD, A_PV_field) # 

Site improvements cost 

    C_inverter_PV = CM.Cost_Inverter(M_conv_currency_to_USD, P_AC) 

    [C_land_PV, _] = CM.Cost_Land(M_conv_currency_to_USD, A_land_PV_tot) # PV Land 

cost 

    C_year_PV = CM.Cost_OperationAndMaintenence_PV_Fixed(M_conv_currency_to_USD, 

P_AC) 

                                                                    # Hybrid 

Component 

    C_heater = CM.Cost_ElectricalHeater(M_conv_currency_to_USD, Q_name_EH) # 

Electric Heater cost 

                                                                    # CSP Section 

    [C_land_CSP, _] = CM.Cost_Land(M_conv_currency_to_USD, A_land_CSP_tot) # CSP 

Land cost 

    [C_site_CSP, _] = CM.Cost_SiteImprovements(M_conv_currency_to_USD, A_SF) # Site 

improvements cost 

    [C_field, _] = CM.Cost_SolarField(M_conv_currency_to_USD, A_SF) # Field cost 

    [C_tower, _, _] = CM.Cost_Tower(M_conv_currency_to_USD, H_tower) # Tower cost 

    #A_receiver=100 # 

    C_receiver = CM.Cost_Receiver(M_conv_currency_to_USD, Q_rec_des) # Receiver 

cost 

    C_storage = CM.Cost_ThermalEnergyStorage(M_conv_currency_to_USD, E_max, DT_TES, 

m_max) # Storage cost 

    #C_cogeneration=CM.Cost_Cogeneretion(M_conv_currency_to_USD,Q_de) 

    C_HX_part=CM.Cost_HX(M_conv_currency_to_USD,Q_flow_des) 

                                                                    # Power Block 

cost 
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    if PB_S: 

        C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des) 

        C_MC2 = 0 

        C_RC = 0 

        C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des) 

        C_LPT = 0 

        C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des) 

        C_RH = 0 

        C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2, 

UA_HTR_des) 

        C_LTR = 0 

        C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des) 

        C_intercooler = 0 

        W_net_turbomachinery_des = W_HPT_des-W_MC1_des 

        C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

        C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

    if PB_S_Inter: 

        C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des) 

        C_MC2 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC2_des) 

        C_RC = 0 

        C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des) 

        C_LPT = 0 

        C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des) 

        C_RH = 0 

        C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2, 

UA_HTR_des) 

        C_LTR = 0 

        C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des) 

        C_intercooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, 

UA_intercooler_des) 

        W_net_turbomachinery_des = W_HPT_des-W_MC1_des-W_MC2_des 

        C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

        C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

    if PB_R: 

        C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des) 

        C_MC2 = 0 

        C_RC = 0 

        C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des) 

        C_LPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_LPT_des) 

        C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des) 

        C_RH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_RH_des) 

        C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2, 

UA_HTR_des) 

        C_LTR = 0 

        C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des) 

        C_intercooler = 0 

        W_net_turbomachinery_des = W_HPT_des+W_LPT_des-W_MC1_des 

        C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

        C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

    if PB_R_Inter: 

        C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des) 

        C_MC2 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC2_des) 

        C_RC = 0 

        C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des) 
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        C_LPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_LPT_des) 

        C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des) 

        C_RH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_RH_des) 

        C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2, 

UA_HTR_des) 

        C_LTR = 0 

        C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des) 

        C_intercooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, 

UA_intercooler_des) 

        W_net_turbomachinery_des = W_HPT_des+W_LPT_des-W_MC1_des-W_MC2_des 

        C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

        C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

    if PB_Recomp: 

        C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des) 

        C_MC2 = 0 

        C_RC = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_RC_des) 

        C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des) 

        C_LPT = 0 

        C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des) 

        C_RH = 0 

        C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2, 

UA_HTR_des) 

        C_LTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_LTR_sCO2, 

UA_LTR_des) 

        C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des) 

        C_intercooler = 0 

        W_net_turbomachinery_des = W_HPT_des-W_MC1_des-W_RC_des 

        C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

        C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

    if PB_Recomp_Inter: 

        C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des) 

        C_MC2 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC2_des) 

        C_RC = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_RC_des) 

        C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des) 

        C_LPT = 0 

        C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des) 

        C_RH = 0 

        C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2, 

UA_HTR_des) 

        C_LTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_LTR_sCO2, 

UA_LTR_des) 

        C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des) 

        C_intercooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, 

UA_intercooler_des) 

        W_net_turbomachinery_des = W_HPT_des-W_MC1_des-W_MC2_des-W_RC_des 

        C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

        C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

    if PB_RR: 

        C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des) 

        C_MC2 = 0 

        C_RC = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_RC_des) 

        C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des) 

        C_LPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_LPT_des) 

        C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des) 
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        C_RH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_RH_des) 

        C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2, 

UA_HTR_des) 

        C_LTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_LTR_sCO2, 

UA_LTR_des) 

        C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des) 

        C_intercooler = 0 

        W_net_turbomachinery_des = W_HPT_des+W_LPT_des-W_MC1_des-W_RC_des 

        C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

        C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

    if PB_RR_Inter: 

        C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des) 

        C_MC2 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC2_des) 

        C_RC = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_RC_des) 

        C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des) 

        C_LPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_LPT_des) 

        C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des) 

        C_RH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_RH_des) 

        C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2, 

UA_HTR_des) 

        C_LTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_LTR_sCO2, 

UA_LTR_des) 

        C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des) 

        C_intercooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, 

UA_intercooler_des) 

        W_net_turbomachinery_des = W_HPT_des+W_LPT_des-W_MC1_des-W_MC2_des-W_RC_des 

        C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

        C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD, 

W_net_turbomachinery_des) 

                                                                    # PB Equipment 

Costs 

    C_equipment_PB = C_MC1 + C_MC2 + C_RC + C_HPT + C_LPT + C_MH + C_RH + C_HTR + 

C_LTR + C_cooler + C_intercooler + C_generator + C_gearbox + C_HX_part  

    #C_equipment_PB= C_equipment_PB+ C_cogeneration 

    C_piping_PB = CM.Cost_Piping_PB(C_equipment_PB, Reheat)         # PB Piping 

Cost 

    C_block = C_equipment_PB + C_piping_PB                          # Power block 

cost 

    C_bop = CM.Cost_BalanceOfPlant(M_conv_currency_to_USD, P_gross) # Balance of 

plant cost 

    C_site = C_site_CSP 

                                                                    # Direct 

capital cost subtotal - i.e. purchased equipment costs 

    C_Cap_CSP = (C_field + C_site + C_tower + C_receiver + C_storage + C_block + 

C_bop + C_heater)  

    C_Cap_PV = (C_modules_PV + C_BoS_PV + C_site_PV + C_inverter_PV) 

    C_year_CSP = CM.Cost_OperationAndMaintenence_CSP_Fixed(M_conv_currency_to_USD, 

P_net) # Fixed O&M cost per year 

    C_year = C_year_CSP + C_year_PV 

    c_OM_CSP = CM.Cost_OperationAndMaintenence_CSP(M_conv_currency_to_USD) 

    print(u"\u2192 Definition of the Costs completed (Duration: %s s)" 

%(np.around(time.time() - part1, decimals=0))) 

    design_time = time.time() 

    print(u"\u2192 Design of the plant completed (Duration: %s s)" 

%(np.around(design_time - start_time, decimals=0))) 
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# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

Operation  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

#                                                                   Sun Operation 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    [time_vec_original, hra_deg, dec_deg, ele_deg, azi_deg, zen_deg, DNI_original, 

Tamb, Wspd_original]=SUN.SolarCalculations(w_file) 

    if Short_Simulation==True: 

        time_vec=time_vec_original[shortime_start:shortime_end] 

        DNI=DNI_original[shortime_start:shortime_end] 

        Wspd = Wspd_original[shortime_start:shortime_end] 

    else: 

        time_vec=time_vec_original 

        DNI=DNI_original 

        Wspd = Wspd_original 

    ele=np.array(ele_deg)*MA.pi/180 

    if use_SolarPilot: 

        azi_deg180=np.array(azi_deg)+180*np.ones(len(azi_deg)) 

        eff_field_SP=SF_Efficiency(azi_deg180, ele_deg) 

    else: 

        eff_field_SP=0*np.ones(len(azi_deg)) 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

#                                                                   Definition and 

Initialization of the variables 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    # 1) Heliostat Field 

    Q_in_SF = np.empty(len(time_vec)) 

    Q_raw_SF = np.empty(len(time_vec)) 

    Q_out_SF = np.empty(len(time_vec)) 

    Q_wasted_startup = np.empty(len(time_vec)) 

    Q_wasted_defocus = np.empty(len(time_vec)) 

    Q_wasted_CSP = np.empty(len(time_vec)) 

    eta_opt_SF = np.empty(len(time_vec)) 

    SF_on=np.empty(len(time_vec)) 

    Wspd_Ht=Wspd*(H_tower/elev_location)**alpha_wind 

    W_loss_HF = np.empty(len(time_vec)) 

    defocus=np.empty(len(time_vec)) 

    defocus1=np.empty(len(time_vec)) 

    defocus2=np.empty(len(time_vec)) 

    Q_flow_defocus = np.empty(len(time_vec)) 

    # 2) Receiver 

    Q_out_rec = np.empty(len(time_vec)) 

    eta_rec = np.empty(len(time_vec)) 

    eta_th_rec = np.empty(len(time_vec)) 

    Q_loss_rec=np.empty(len(time_vec)) 

    h_REC_hot = np.empty(len(time_vec)) 

    h_REC_cold = np.empty(len(time_vec)) 
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    T_REC_cold = np.empty(len(time_vec)) 

    T_REC_hot = np.empty(len(time_vec)) 

    m_flow_rec = np.empty(len(time_vec)) 

    # 3) Electric Heater 

    m_flow_heater = np.empty(len(time_vec)) 

    W_heater_PV = np.empty(len(time_vec)) 

    Q_missing_defocus = np.empty(len(time_vec)) 

    Q_out_heater = np.empty(len(time_vec)) 

    h_EH_hot = np.empty(len(time_vec)) 

    h_EH_cold = np.empty(len(time_vec)) 

    T_EH_cold = np.empty(len(time_vec)) 

    T_EH_hot = np.empty(len(time_vec)) 

    eta_heater = np.empty(len(time_vec)) 

    Q_loss_heater = np.empty(len(time_vec)) 

    waste_extra_PV = np.empty(len(time_vec)) 

    W_wasted_PV_tot = np.empty(len(time_vec)) 

    W_wasted_PV_defocus = np.empty(len(time_vec)) 

    # 4) Thermal Energy Storage 

    h_TES_cold=np.empty(len(time_vec)) 

    h_TES_hot=np.empty(len(time_vec)) 

    h_toTES_cold = np.empty(len(time_vec)) 

    h_toTES_hot = np.empty(len(time_vec)) 

    T_TES_cold = np.empty(len(time_vec)) 

    T_TES_hot = np.empty(len(time_vec)) 

    T_toTES_cold = np.empty(len(time_vec)) 

    T_toTES_hot = np.empty(len(time_vec)) 

    cold_tank_ready=np.empty(len(time_vec)) 

    L_HT=np.empty(len(time_vec)) 

    h_HT=np.empty(len(time_vec)) 

    m_HT=np.empty(len(time_vec)) 

    Q_losses_HT=np.empty(len(time_vec)) 

    W_loss_HT=np.empty(len(time_vec)) 

    L_CT=np.empty(len(time_vec)) 

    h_CT=np.empty(len(time_vec)) 

    m_CT=np.empty(len(time_vec)) 

    Q_losses_CT=np.empty(len(time_vec)) 

    W_loss_CT=np.empty(len(time_vec)) 

    HT_on_discharge=np.empty(len(time_vec)) 

    HT_on_charge=np.empty(len(time_vec)) 

    Q_flow_PB = np.empty(len(time_vec)) 

    m_flow_PB = np.empty(len(time_vec)) 

    m_flow_TES_cold = np.empty(len(time_vec)) 

    m_flow_toTES_cold = np.empty(len(time_vec)) 

    m_flow_toTES_hot = np.empty(len(time_vec)) 

    m_flow_TES_hot = np.empty(len(time_vec)) 

    # 5) Power Block 

    F_prod = np.empty(len(time_vec)) 

    F_prod_off = np.empty(len(time_vec)) 

    PB_on = np.empty(len(time_vec)) 

    PB_ramp = np.empty(len(time_vec)) 

    t_on_PB=np.empty(len(time_vec)) 

    t_off_PB=np.empty(len(time_vec)) 

    rampUP_PB=np.empty(len(time_vec)) 

    t_ramp_start=np.empty(len(time_vec)) 

    t_ramp_end=np.empty(len(time_vec)) 

    Q_flow_MH = np.empty(len(time_vec)) 

    m_flow_MH = np.empty(len(time_vec)) 

    h_cold_MH = np.empty(len(time_vec)) 

    T_toTES_MH_cold = np.empty(len(time_vec)) 

    Q_sCO2_PB_MH = np.empty(len(time_vec)) 
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    m_flow_sCO2_MH = np.empty(len(time_vec)) 

    h_sCO2_hot_PB_MH = np.empty(len(time_vec)) 

    T_cold_MH=np.empty(len(time_vec)) 

    #T_source_hot=np.empty(len(time_vec)) 

    h_sCO2_cold_PB_MH = np.empty(len(time_vec)) 

    T_sCO2_hot_MH = np.empty(len(time_vec)) 

    T_sCO2_cold_MH = np.empty(len(time_vec)) 

    W_T1 = np.empty(len(time_vec)) 

    W_MC1 = np.empty(len(time_vec)) 

    T_sCO2_1 = np.empty(len(time_vec)) 

    T_sCO2_2 = np.empty(len(time_vec)) 

    T_sCO2_3 = np.empty(len(time_vec)) 

    T_sCO2_4 = np.empty(len(time_vec)) 

    T_sCO2_5 = np.empty(len(time_vec)) 

    T_sCO2_6 = np.empty(len(time_vec)) 

    W_loss_PB_pumps = np.empty(len(time_vec)) 

    parasities_blk = np.empty(len(time_vec)) 

    W_net_CSP=np.empty(len(time_vec)) 

    W_net_tot=np.empty(len(time_vec)) 

    eff_PB = np.empty(len(time_vec)) 

    Q_cond = np.empty(len(time_vec)) 

    Q_HTR = np.empty(len(time_vec)) 

    # Heat exchanger 

    NTU_UC=np.empty(len(time_vec)) 

    eta_HXopp=np.empty(len(time_vec)) 

    T_sCO2_hot_pb_check=np.empty(len(time_vec)) 

    T_sCO2_cold_pb_check=np.empty(len(time_vec)) 

    T_source_hot_pb_check=np.empty(len(time_vec)) 

    T_source_cold_pb_check=np.empty(len(time_vec)) 

 

    HX_co=np.empty(len(time_vec)) 

    Q_co_HX=np.empty(len(time_vec)) 

    T_coldtoTES_HX=np.empty(len(time_vec)) 

 

 

    if PB_Recomp_Inter: 

        Q_LTR = np.empty(len(time_vec)) 

        Q_intercooler = np.empty(len(time_vec)) 

        W_MC2 = np.empty(len(time_vec)) 

        W_RC = np.empty(len(time_vec)) 

        T_sCO2_7 = np.empty(len(time_vec)) 

        T_sCO2_8 = np.empty(len(time_vec)) 

        T_sCO2_9_prime = np.empty(len(time_vec)) 

        T_sCO2_9_second = np.empty(len(time_vec)) 

        T_sCO2_9 = np.empty(len(time_vec)) 

        T_sCO2_10 = np.empty(len(time_vec)) 

     

 

    #Start Values for Variables 

    # 1) Heliostat Field 

    Q_in_SF[0] = 0 

    Q_raw_SF[0] = 0 

    Q_out_SF[0] = 0 

    Q_wasted_startup[0] = 0 

    Q_wasted_defocus[0] = 0 

    Q_wasted_CSP[0] = 0 

    eta_opt_SF[0]=0 

    SF_on[0] = False 

    W_loss_HF[0] = 0 

    defocus1[0] = False 
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    defocus2[0] = False 

    defocus[0] = GU.Or(defocus1[0], defocus2[0]) 

    Q_flow_defocus[0] = 0 

    # 2) Receiver 

    Q_out_rec[0] = 0 

    eta_rec[0] = 0 

    eta_th_rec[0] = 0 

    Q_loss_rec[0] = 0 

    h_REC_hot[0] = h_hot_set_REC 

    h_REC_cold[0] = h_REC_hot[0] 

    T_REC_hot[0] = GU.to_degC(T_hot_set_REC) 

    T_REC_cold[0] = GU.to_degC(T_cold_set_REC) 

    m_flow_rec[0] = 0 

    # 4) Electric Heater 

    m_flow_heater[0] = 0 

    W_heater_PV[0] = 0 

    Q_missing_defocus[0] = 0 

    Q_out_heater[0] = 0 

    h_EH_hot[0] = Medium1.specificEnthalpy(state_hot_set_TES) 

    h_EH_cold[0] = h_EH_hot[0] 

    T_EH_hot[0] = GU.to_degC(Medium1.temperature(state_hot_set_TES)) 

    T_EH_cold[0] = T_EH_hot[0] 

    eta_heater[0] = 0 

    Q_loss_heater[0] = 0 

    waste_extra_PV[0] = 0 

    W_wasted_PV_tot[0] = 0 

    W_wasted_PV_defocus[0] = 0 

    # 5) Thermal Energy Storage 

    h_TES_cold[0] = h_cold_set_TES 

    h_TES_hot[0] = h_hot_set_TES 

    h_toTES_cold[0] = h_cold_set_TES 

    h_toTES_hot[0] = h_hot_set_TES 

    T_TES_cold[0] = GU.to_degC(T_cold_set_REC) 

    T_TES_hot[0] = GU.to_degC(T_hot_set_REC) 

    T_toTES_cold[0] = GU.to_degC(T_cold_set_REC) 

    T_toTES_hot[0] = GU.to_degC(T_hot_set_REC) 

    cold_tank_ready[0] = True 

    L_HT[0] = L_start 

    h_HT[0]=h_hot_start_TES 

    m_HT[0]= L_HT[0]/100*m_max 

    Q_losses_HT[0] = 0 

    W_loss_HT[0] = 0 

    L_CT[0] = 100-L_start 

    h_CT[0]=h_cold_start_TES 

    m_CT[0]=L_CT[0]/100*m_max 

    Q_losses_CT[0] = 0 

    W_loss_CT[0] = 0 

    HT_on_discharge[0] = (L_HT[0]>hot_tnk_empty_ub) and (L_HT[0]>hot_tnk_empty_lb) 

    HT_on_charge[0] = m_flow_rec[0]>0 

    Q_flow_PB[0] = 0 

    m_flow_PB[0] = 0 

    m_flow_TES_cold[0] = 0 

    m_flow_toTES_cold[0] = 0 

    m_flow_toTES_hot[0] = 0 

    m_flow_TES_hot[0] = 0 

    # 5) Power Block 

    F_prod[0] = 1 

    F_prod_off[0] = 1 

    PB_ramp[0] = 0 

    PB_on[0] = False 
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    t_ramp_start[0] = 0 

    t_ramp_end[0] = 3600 

    t_on_PB[0] = 0 

    t_off_PB[0] = 0 

    rampUP_PB[0]=False 

    Q_flow_MH[0] = 0 

    m_flow_MH[0] = 0 

    h_cold_MH[0] = h_TES_hot[0] 

    T_toTES_MH_cold[0] = GU.to_degC(T_hot_set_REC) 

    Q_sCO2_PB_MH[0] = 0 

    m_flow_sCO2_MH[0] = 0 

    h_sCO2_hot_PB_MH[0] = h_MH_sCO2_cold_des 

    h_sCO2_cold_PB_MH[0] = h_MH_sCO2_cold_des 

    state_cold_PB_sCO2=state_MH_cold_sCO2 

    T_sCO2_hot_MH[0] = GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

    T_sCO2_cold_MH[0] =GU.to_degC(Medium3.temperature(state_cold_PB_sCO2))  # 

possibile problema nel valore iniziale 

    eff_PB[0] = 0 

    Q_cond[0] = 0 

    Q_HTR[0] = 0 

    W_T1[0] = 0 

    W_MC1[0] = 0 

    T_sCO2_1[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

    T_sCO2_2[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

    T_sCO2_3[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

    T_sCO2_4[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

    T_sCO2_5[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

    T_sCO2_6[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

    W_loss_PB_pumps[0] = 0 

    parasities_blk[0] = 0 

    W_net_tot[0] = 0 

    W_net_CSP[0] = 0 

    HX_co[0]=0 

     

  

    if PB_Recomp_Inter: 

        Q_LTR[0] = 0 

        Q_intercooler[0] = 0 

        W_MC2[0] = 0 

        W_RC[0] = 0 

        T_sCO2_7[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

        T_sCO2_8[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

        T_sCO2_9_prime[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

        T_sCO2_9_second[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

        T_sCO2_9[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

        T_sCO2_10[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

     

    TES_time = 0 

    PB_time = 0 

    PBControl_time = 0 

    HF_time = 0 

    RecEH_time = 0 

    ControlRecEH_time = 0 

    Temperature_time = 0 

    print(u"\u2192 Initialization of the plant variables completed (Duration: %s 

s)" %(np.around(time.time() - design_time, decimals=0))) 

     

    for tt in range(1, len(time_vec)): 

    # 

___________________________________________________________________________________
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___________________________________________________________________________________

_____ 

    #                                                                   Hourly 

Helisotat Field Operation 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

         

        time0 = time.time() 

        F_prod[tt] = (max(0,min(1,1 - PV_share[tt])))*(PD[tt])/(P_max) 

        cold_tank_ready[tt] = T2LU.Tank2Logic(L_CT[tt-1], cold_tnk_crit_ub, 

cold_tnk_crit_lb, cold_tank_ready[tt-1]) 

        if not cold_tank_ready[tt]: 

            defocus_HF = True 

        else: 

            defocus_HF = defocus[tt-1] 

        Q_flow_defocus[tt] = (R_des - Q_rec_des + Q_flow_des*F_prod[tt])  

        [Q_in_SF[tt], Q_raw_SF[tt], Q_out_SF[tt], Q_wasted_startup[tt], 

Q_wasted_defocus[tt], Q_wasted_CSP[tt], SF_on[tt], eta_opt_SF[tt], W_loss_HF[tt]] = 

HF.Operating_HeliostatFIeld( 

            A_SF, DNI[tt], Q_field_design, Q_flow_defocus[tt], Q_loss_rec_des, 

nu_start, nu_min_sf, ele[tt], ele_min, Wspd[tt], Wspd_max, defocus_HF, SF_on[tt-1], 

use_SolarPilot, eff_field_SP[tt], optical_file, hra_deg[tt], dec_deg[tt], 

n_heliostat, W_track, he_av_design 

        ) 

        DTime = time.time() - time0 

        HF_time = HF_time + DTime 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly PV 

Operation 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        # The following variables are calculated in PV Calculated parameters:  

        #W_net_PV, W_heater_PV_raw, EH_on, PV_share 

        Q_missing_defocus[tt] = max(0, Q_flow_defocus[tt]-Q_out_SF[tt]-

R_des+Q_rec_des) 

        if waste_extra_PV[tt-1] or (not cold_tank_ready[tt]): 

            W_wasted_PV_defocus[tt] = max(0, (W_heater_PV_raw[tt] - 

Q_missing_defocus[tt]/eta_heater_design)) 

        else: 

            W_wasted_PV_defocus[tt] = 0 

        W_heater_PV[tt] = max(0,(W_heater_PV_raw[tt] - W_wasted_PV_defocus[tt])) 

        W_wasted_PV_tot[tt] = W_wasted_PV_defocus[tt] + W_wasted_PV_plus[tt] 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly 

Receiver Control Output 

    # 

___________________________________________________________________________________
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___________________________________________________________________________________

_____ 

        time0 = time.time() 

        h_REC_cold[tt] = h_TES_cold[tt-1] 

        [m_flow_rec[tt], defocus1[tt]]=RECS.ReferenceREC_ControlSystem( 

            SF_on[tt], L_CT[tt-1], cold_tnk_defocus_lb, cold_tnk_defocus_ub, 

defocus[tt-1], Q_out_SF[tt], h_REC_cold[tt], T_hot_set_REC, eta_rec_input, 

input_eff, DNI[tt] 

        ) 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly 

Electric Heater Control Output 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        h_EH_cold[tt] = h_TES_cold[tt-1] 

        [m_flow_heater[tt], waste_extra_PV[tt]]=EHCS.ReferenceEH_ControlSystem( 

            Medium1, EH_on[tt], L_CT[tt-1], cold_tnk_defocus_lb, 

cold_tnk_defocus_ub, waste_extra_PV[tt-1], eta_heater_design, W_heater_PV[tt], 

h_EH_cold[tt], T_hot_set_REC) 

        DTime = time.time() - time0 

        ControlRecEH_time = ControlRecEH_time + DTime 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly 

Receiver Opration 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        time0 = time.time() 

        [Q_out_rec[tt], h_REC_hot[tt], eta_rec[tt], eta_th_rec[tt], 

Q_loss_rec[tt]]=REFREC.Operating_Receiver( 

            DNI[tt], Q_out_SF[tt], h_REC_cold[tt], m_flow_rec[tt], SF_on[tt], 

input_eff, eta_rec_input 

        ) 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly 

Electric Heater Opration 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        [Q_out_heater[tt], h_EH_hot[tt], eta_heater[tt], Q_loss_heater[tt]]= 

EH.Operating_ElectricHeater( 

            W_heater_PV[tt], h_EH_cold[tt-1], m_flow_heater[tt], EH_on[tt], 

eta_heater_design) 

        m_flow_toTES_hot[tt] = m_flow_rec[tt]+ m_flow_heater[tt] 
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        h_toTES_hot[tt] = MIX.Mixer(m_flow_rec[tt], h_REC_hot[tt], 

m_flow_heater[tt], h_EH_hot[tt]) 

        m_flow_TES_cold[tt] = m_flow_toTES_hot[tt] 

        DTime = time.time() - time0 

        RecEH_time = RecEH_time + DTime 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly 

Power Block Control Output 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        time0 = time.time() 

        T_cold_control_MH =GU.from_degC(T_sCO2_cold_MH[tt-1]) + DT_pinch_TESsCO2 

        #print(T_sCO2_cold_MH[tt-1]) 

        #print("1034") 

 

        state_cold_control_MH = Medium1.setState_pTX(Medium1.p_default, 

T_cold_control_MH) 

        h_cold_control_MH = Medium1.specificEnthalpy(state_cold_control_MH) 

        if PB_on[tt-1]>0: 

            if Tamb[tt]>T_in_air_cooler_des: 

                F_prod_off[tt] = 1+(eta_blk_des-eff_PB[tt-1])/eta_blk_des 

            else: 

                F_prod_off[tt] = 1 

        else: 

            F_prod_off[tt] = 1 

        if PB_S or PB_Recomp or PB_S_Inter or PB_Recomp_Inter: 

            # m_flow_blk_MH = Q_flow_MH_des / (h_TES_hot[tt-1] - h_cold_set_TES_MH) 

#Mass flow rate to power block MH at design point 

            m_flow_blk_MH = Q_flow_MH_des / (h_TES_hot[tt-1] - h_cold_control_MH) 

#Mass flow rate to power block MH at design point take in to account change it to 

the design of the HX 

            #print(Q_flow_MH_des) 

            #print(h_TES_hot[tt-1]) 

            #print(h_cold_control_MH) 

            #print(m_flow_blk_MH) 

            [m_flow_MH[tt], PB_on[tt], PB_ramp[tt], defocus2[tt], W_loss_HT[tt], 

HT_on_discharge[tt], HT_on_charge[tt], t_on_PB[tt], t_off_PB[tt], rampUP_PB[tt], 

t_ramp_start[tt], t_ramp_end[tt]]=PBCS.PB_ControlSystem_MH( 

                F_prod[tt], F_prod_off[tt], PB_load_min, m_flow_toTES_hot[tt], 

L_HT[tt-1], time_vec[tt], m_flow_blk_MH, m_flow_blk_MH/2, m_flow_standby, 

m_flow_off, hot_tnk_full_ub, hot_tnk_full_lb, hot_tnk_empty_ub, hot_tnk_empty_lb, 

t_ramping, t_standby, t_ramping, k_loss_hot, defocus2[tt-1], HT_on_discharge[tt-1], 

HT_on_charge[tt-1], t_on_PB[tt-1], t_off_PB[tt-1], rampUP_PB[tt-1], 

t_ramp_start[tt-1], t_ramp_end[tt-1] 

            ) 

            m_flow_PB[tt]=m_flow_MH[tt] 

             

             

         

        if PB_R or PB_RR or PB_R_Inter or PB_RR_Inter: 

            m_flow_blk_MH = Q_flow_MH_des / (h_TES_hot[tt-1] - h_cold_control_MH) 

#Mass flow rate to power block MH at design point 

            m_flow_blk_RH = Q_flow_RH_des / (h_TES_hot[tt-1] - h_cold_set_TES_RH) 

#Mass flow rate to power block RH at design poin 
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            [m_flow_MH[tt], m_flow_RH[tt], PB_on[tt], PB_ramp[tt], defocus2[tt], 

W_loss_HT[tt], HT_on_discharge[tt], HT_on_charge[tt], t_on_PB[tt], t_off_PB[tt], 

rampUP_PB[tt], t_ramp_start[tt], t_ramp_end[tt]]=PBCS.PB_ControlSystem_MH_and_RH( 

                F_prod[tt], F_prod_off[tt], PB_load_min, m_flow_toTES_hot[tt], 

L_HT[tt-1], time_vec[tt], m_flow_blk_MH, m_flow_blk_RH, m_flow_blk_MH/2, 

m_flow_blk_RH/2, m_flow_standby, m_flow_off, hot_tnk_full_ub, hot_tnk_full_lb, 

hot_tnk_empty_ub, hot_tnk_empty_lb, t_ramping, t_standby, t_ramping, k_loss_hot, 

defocus2[tt-1], HT_on_discharge[tt-1], HT_on_charge[tt-1], t_on_PB[tt-1], 

t_off_PB[tt-1], rampUP_PB[tt-1], t_ramp_start[tt-1], t_ramp_end[tt-1] 

            ) 

            print("1051 no") 

            m_flow_PB[tt]=m_flow_MH[tt]+m_flow_RH[tt] 

        m_flow_TES_hot[tt] = m_flow_PB[tt] 

        m_flow_toTES_cold[tt] = m_flow_TES_hot[tt] 

        defocus[tt]=GU.Or(defocus1[tt], defocus2[tt]) 

        DTime = time.time() - time0 

        PBControl_time = PBControl_time + DTime 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly TES 

- Hot Tank Operation 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        time0 = time.time() 

        [L_HT[tt], h_HT[tt], m_HT[tt], Q_losses_HT[tt], 

W_loss_HT[tt]]=TES.Storage_Tank( 

            Medium1, m_flow_toTES_hot[tt], h_toTES_hot[tt], m_HT[tt-1], h_HT[tt-1], 

m_flow_TES_hot[tt], Tamb[tt], time_vec[tt-1], time_vec[tt], dt, HT_Design, m_max 

        ) 

        h_TES_hot[tt]=h_HT[tt] 

        Dtime1 = time.time() - time0 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Primary 

Heat Exchanger(s) Operation 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        time0 = time.time() 

        if PB_S or PB_Recomp or PB_S_Inter or PB_Recomp_Inter:          # Only Main 

Heater 

            #[Q_sCO2_PB_MH[tt], m_flow_sCO2_MH[tt], h_cold_MH[tt], 

h_sCO2_hot_PB_MH[tt], T_cold_MH[tt], T_source_hot[tt] 

]=PBHX.Operating_HeatExchanger( 

            #    PB_on[tt], m_flow_MH[tt], h_TES_hot[tt], h_sCO2_cold_PB_MH[tt-1], 

h_cold_control_MH, h_MH_sCO2_hot_des, eta_PBHX 

            #) 

            #Dum_var=Medium3.T_h(p_high_blk,h_sCO2_cold_PB_MH[tt-1])-273.15 

            #Dum_var1=Medium1.T_h(h_TES_hot[tt])  
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            [Q_sCO2_PB_MH[tt], m_flow_sCO2_MH[tt], 

h_cold_MH[tt],h_sCO2_hot_PB_MH[tt],T_cold_MH[tt],NTU_UC[tt],eta_HXopp[tt]]=PBHX.Ope

rating_HeatExchanger( 

                PB_on[tt], m_flow_MH[tt], h_TES_hot[tt],h_sCO2_cold_PB_MH[tt-

1],h_MH_sCO2_hot_des, U_HX_design, Area_HX, p_high_blk) 

            #if PB_on[tt]: 

            #    print(m_flow_sCO2_MH[tt]) 

            #    print(Q_sCO2_PB_MH[tt]) 

 

 

 

 

            T_sCO2_hot_pb_check[tt]=Medium3.T_h(p_high_blk,h_sCO2_hot_PB_MH[tt]) 

            T_sCO2_cold_pb_check[tt]=Medium3.T_h(p_high_blk,h_sCO2_cold_PB_MH[tt-

1]) 

            T_source_hot_pb_check[tt]=Medium1.T_h(h_TES_hot[tt]) 

            T_source_cold_pb_check[tt]=Medium1.T_h(h_cold_MH[tt]) 

             

            Q_flow_MH[tt] = m_flow_MH[tt]*(h_TES_hot[tt]-h_cold_MH[tt]) 

             

            #print(m_flow_MH[tt]) 

            #print(h_cold_MH[tt]) 

            #print(HX_co[tt]) 

            

[HX_co[tt],Q_co_HX[tt]]=CS_coge.Control_Cogeneration(L_HT[tt]/100,L_min_HX,T_cold_s

et_REC_input,T_source_cold_pb_check[tt],Q_de,m_flow_MH[tt],PB_on[tt]) 

            

[T_coldtoTES_HX[tt],h_cold_MH[tt],Q_co_HX[tt]]=HX_coge.HX_cogeneration(HX_co[tt],ef

f_HX_coge,T_source_cold_pb_check[tt],Q_co_HX[tt],m_flow_MH[tt]) 

            #print(HX_co[tt]) 

            #print(m_flow_MH[tt]) 

            #print(h_cold_MH[tt]) 

             

            h_toTES_cold[tt] = h_cold_MH[tt] 

            Q_flow_PB[tt]=Q_flow_MH[tt] 

            W_loss_PB_pumps[tt]=k_loss_hot*(m_flow_MH[tt]) 

        if PB_R or PB_RR or PB_R_Inter or PB_RR_Inter:                  # Main 

Heater + Reheater 

            #Main Heater 

            [Q_sCO2_PB_MH[tt], m_flow_sCO2_MH[tt], h_cold_MH[tt], 

h_sCO2_hot_PB_MH[tt]]=PBHX.Operating_HeatExchanger( 

                PB_on[tt], m_flow_MH[tt], h_TES_hot[tt], h_sCO2_cold_PB_MH[tt-1], 

h_cold_control_MH, h_MH_sCO2_hot_des, eta_PBHX 

            ) 

            Q_flow_MH[tt] = m_flow_MH[tt]*(h_TES_hot[tt]-h_cold_MH[tt]) 

            #Re-Heater 

            [Q_sCO2_PB_RH[tt], m_flow_sCO2_RH[tt], h_cold_RH[tt], 

h_sCO2_hot_PB_RH[tt]]=PBHX.Operating_HeatExchanger( 

                PB_on[tt], m_flow_RH[tt], h_TES_hot[tt], h_sCO2_cold_PB_RH[tt-1], 

h_cold_set_TES_RH, h_RH_sCO2_hot_des, eta_PBHX 

            ) 

            Q_flow_RH[tt] = m_flow_RH[tt]*(h_TES_hot[tt]-h_cold_RH[tt]) 

            Q_flow_PB[tt]=Q_flow_MH[tt]+Q_flow_RH[tt] 

            h_toTES_cold[tt]=MIX.Mixer(m_flow_MH[tt], h_cold_MH[tt], m_flow_RH[tt], 

h_cold_RH[tt]) 

            W_loss_PB_pumps[tt]=k_loss_hot*(m_flow_MH[tt]+m_flow_RH[tt]) 

            print("1117 no") 

        parasities_blk[tt]=W_loss_CT[tt-

1]+W_loss_HT[tt]+W_loss_PB_pumps[tt]+W_loss_HF[tt] 
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    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Power Block 

Operation 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

         

        if PB_Recomp_Inter: 

            [W_net_CSP[tt], h_sCO2_cold_PB_MH[tt], eff_PB[tt], Q_cond[tt], 

Q_intercooler[tt], Q_HTR[tt], Q_LTR[tt], W_T1[tt], W_MC1[tt], W_MC2[tt], W_RC[tt], 

cycle_temperatures]=PBRecompInter.sCO2_PB_Recompr_Intercooler( 

                m_flow_sCO2_MH[tt], TIT, T_in_Compr, T_in_inter_Compr, 

T_sCO2_9_des_K, SR, eta_HPT_des, eta_MC1_des, eta_MC2_des, eta_RC_des, eta_HTR, 

eta_LTR, eta_gen, use_eta_net_blk, eta_net_blk, Tamb[tt], DT_pinch_cooler, 

DT_pinch_intercooler, W_base_blk, parasities_blk[tt], DT_recuperator, f_prop_des 

            ) 

            [T1, T2, T3, T4, T5, T6, T7, T8, T9, T9_prime, T9_second, T10] = 

cycle_temperatures 

            T_sCO2_1[tt]=GU.to_degC(T1) 

            T_sCO2_2[tt]=GU.to_degC(T2) 

            T_sCO2_3[tt]=GU.to_degC(T3) 

            T_sCO2_4[tt]=GU.to_degC(T4) 

            T_sCO2_5[tt]=GU.to_degC(T5) 

            T_sCO2_6[tt]=GU.to_degC(T6) 

            T_sCO2_7[tt]=GU.to_degC(T7) 

            T_sCO2_8[tt]=GU.to_degC(T8) 

            T_sCO2_9[tt]=GU.to_degC(T9) 

            T_sCO2_9_prime[tt]=GU.to_degC(T9_prime) 

            T_sCO2_9_second[tt]=GU.to_degC(T9_second) 

            T_sCO2_10[tt]=GU.to_degC(T10) 

         

        W_net_tot[tt] = min(W_net_CSP[tt] + W_net_PV[tt], P_max) 

        DTime = time.time() - time0 

        PB_time = PB_time + DTime 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly TES 

- Cold Tank Operation 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        time0 = time.time() 

        [L_CT[tt], h_CT[tt], m_CT[tt], Q_losses_CT[tt], 

W_loss_CT[tt]]=TES.Storage_Tank( 

            Medium1, m_flow_toTES_cold[tt], h_toTES_cold[tt], m_CT[tt-1], h_CT[tt-

1], m_flow_TES_cold[tt], Tamb[tt], time_vec[tt-1], time_vec[tt], dt, CT_Design, 

m_max 

        ) 

        h_TES_cold[tt]=h_CT[tt] 

        DTime = time.time() - time0 

        TES_time = TES_time + DTime + Dtime1 
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    #  

                                  Hourly Temperatures Calculations 

___________________________________________________________________________________ 

        time0 = time.time()  

        #Molten Salt - Receiver 

        state_output_REC = Medium1.setState_phX(Medium1.p_default, h_REC_hot[tt]) 

        state_input_REC = Medium1.setState_phX(Medium1.p_default, h_REC_cold[tt]) 

        T_REC_hot[tt] = GU.to_degC(Medium1.temperature(state_output_REC)) 

        T_REC_cold[tt] = GU.to_degC(Medium1.temperature(state_input_REC)) 

        #Electric Heater 

        state_output_EH = Medium1.setState_phX(Medium1.p_default, h_EH_hot[tt]) 

        T_EH_hot[tt] = GU.to_degC(Medium1.temperature(state_output_EH)) 

        state_input_EH = Medium1.setState_phX(Medium1.p_default, h_CT[tt]) 

        T_EH_cold[tt] = GU.to_degC(Medium1.temperature(state_input_EH)) 

        # Molten Salt - TES 

        state_toTES_hot = Medium1.setState_phX(Medium1.p_default, h_toTES_hot[tt]) 

        state_cold_TES = Medium1.setState_phX(Medium1.p_default, h_TES_cold[tt]) 

        T_TES_cold[tt] = GU.to_degC(Medium1.temperature(state_cold_TES)) 

        T_toTES_hot[tt] = GU.to_degC(Medium1.temperature(state_toTES_hot)) 

        #Molten Salt  - from TES to/from Power Block 

        state_hot_TES = Medium1.setState_phX(Medium1.p_default, h_TES_hot[tt]) 

        state_toTES_cold = Medium1.setState_phX(Medium1.p_default, 

h_toTES_cold[tt]) 

        state_toTES_MH_cold = Medium1.setState_phX(Medium1.p_default, 

h_cold_MH[tt]) 

        T_TES_hot[tt] = GU.to_degC(Medium1.temperature(state_hot_TES)) 

        T_toTES_cold[tt] = GU.to_degC(Medium1.temperature(state_toTES_cold)) 

        T_toTES_MH_cold[tt] = GU.to_degC(Medium1.temperature(state_toTES_MH_cold)) 

        if PB_R or PB_RR or PB_R_Inter or PB_RR_Inter: 

            state_toTES_RH_cold = Medium1.setState_phX(Medium1.p_default, 

h_cold_RH[tt]) 

            T_toTES_RH_cold[tt] = 

GU.to_degC(Medium1.temperature(state_toTES_RH_cold)) 

        #sCO2 - Power Block - Main Heater 

        T_sCO2_hot_MH[tt] = GU.to_degC(T_high_h(h_sCO2_hot_PB_MH[tt])) 

        T_sCO2_cold_MH[tt] = GU.to_degC(T_high_h(h_sCO2_cold_PB_MH[tt])) # non 

capisco che è sta roba però è solo il plot 

        #sCO2 - Power Block - Re-Heater 

        if PB_R or PB_RR or PB_R_Inter or PB_RR_Inter: 

            T_sCO2_hot_RH[tt] = GU.to_degC(T_int_h(h_sCO2_hot_PB_RH[tt])) 

            T_sCO2_cold_RH[tt] = GU.to_degC(T_int_h(h_sCO2_cold_PB_RH[tt])) 

        DTime = time.time() - time0 

        Temperature_time = Temperature_time + DTime 

 

    operation_time = time.time() 

    print(u"\u2192 Operation of Heliostat Field (Duration: %s s)" 

%(np.around(HF_time, decimals=1))) 

    print(u"\u2192 Control of Receiver and EH  (Duration: %s s)" 

%(np.around(ControlRecEH_time, decimals=1))) 

    print(u"\u2192 Operation of Receiver and EH (Duration: %s s)" 

%(np.around(RecEH_time, decimals=1))) 

    print(u"\u2192 Operation of TES (Duration: %s s)" %(np.around(TES_time, 

decimals=1))) 

    print(u"\u2192 Operation of PB Control (Duration: %s s)" 

%(np.around(PBControl_time, decimals=1))) 

    print(u"\u2192 Operation of PB (Duration: %s s)" %(np.around(PB_time, 

decimals=1))) 

    print(u"\u2192 Evaluation of system temperatures (Duration: %s s)" 

%(np.around(Temperature_time, decimals=1))) 
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    print(u"\u2192 Operation of the plant completed (Duration: %s s)" 

%(np.around(operation_time - design_time, decimals=0))) 

 

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

Results  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

# 

___________________________________________________________________________________

_________________________________________________________________ 

#                                                                     - Results -  

# _______________________________________________________________   KPIs 

Calculation   _______________________________________________________________ 

    time0 = time.time()  

    AEY=KPI.sumEnergy(W_net_tot) #[GWh] 

    AEY_CSP=KPI.sumEnergy(W_net_CSP) #[GWh] 

    AEY_PV=KPI.sumEnergy(W_net_PV) #[GWh] 

    CF=KPI.CapacityFactor(AEY, P_net) #[%] 

    CAPEX_CSP=float(KPI.CapitalExpenditure(C_Cap_CSP, C_land_CSP, 

f_contingency_CSP, f_EPC_CSP, f_decommissioning, f_Subs)) #[currency] 

    CAPEX_PV=float(KPI.CapitalExpenditure(C_Cap_PV, C_land_PV, f_contingency_PV, 

f_EPC_PV, f_decommissioning, f_Subs)) #[currency] 

    CAPEX = CAPEX_CSP + CAPEX_PV 

    OPEX=KPI.OperationExpenditure(C_year, c_OM_CSP, AEY_CSP) #[currency/year] 

    LCOE=float(KPI.LevelizedCostofElectricity(CAPEX, OPEX, AEY, r_disc, r_i, 

t_life)) #[currency/MWh] 

    AF=KPI.AvailabilityFactor(W_net_tot) 

    EH_UF=KPI.ElectricHeaterUtilizationFactor(W_heater_PV, P_name_EH) #[%] 

    TES_PV_fraction=KPI.PVSharechargingStorage(Q_out_heater, Q_out_rec) #[%] 

    c_block = KPI.PowerBlockSpecificCost(C_block, P_net) #[currency/kWe] 

    ASCO2eq = KPI.AnnualSavingCO2eq(state_name, AEY) #[Mtons/year] 

    QW_startup_CSP = KPI.sumEnergy(Q_wasted_startup) #[GWh] 

    QW_defocus_CSP = KPI.sumEnergy(Q_wasted_defocus) #[GWh] 

    QW_CSP = KPI.sumEnergy(Q_wasted_CSP) #[GWh] 

    QSF_CSP = KPI.sumEnergy(Q_out_SF) #[GWh] 

    EW_PV = KPI.sumEnergy(W_wasted_PV_tot) #[GWh] 

    EEH_PV = KPI.sumEnergy(W_heater_PV) #[GWh] 

    QW_tot = QW_CSP + EW_PV 

    Q_prod_tot = QSF_CSP + EEH_PV 

    TEW_share = KPI.ShareofEnergyWasted(Q_prod_tot, QW_tot) #[%] 

    CSP_wasting_share = KPI.ShareofEnergyWasted(QSF_CSP, QW_CSP) #[%] 

    PV_wasting_share = KPI.ShareofEnergyWasted(EEH_PV, EW_PV) #[%] 

    CF_tot=KPI.CapacityFactor(AEY, P_name) #[%] 

    CF_CSP=KPI.CapacityFactor(AEY_CSP, P_net) #[%] 

    CF_PV=KPI.CapacityFactor(AEY_PV, P_AC) #[%] 

    f_AEY_CSP = AEY_CSP/AEY*100 #[%] 

    f_AEY_PV = AEY_PV/AEY*100 #[%] 

    df_KPIs = { 'currency' : currency_name, 

                'AEY' : AEY, 

                'CF' : CF, 

                'LCOE' : LCOE, 

                'CAPEX' : CAPEX, 

                'OPEX' : OPEX, 

                'AF' : AF, 

                'EH_UF' : EH_UF, 

                'TES_PV_fraction' : TES_PV_fraction, 

                'ASCO2eq' : ASCO2eq, 

                'c_block' : c_block, 

                'eta_blk_des' : eta_blk_des*100, 

                'f_AEY_CSP' : f_AEY_CSP, 

                'f_AEY_PV' : f_AEY_PV, 



-86- 
 

                'TEW_share' : TEW_share, 

                'CSP_wasting_share' : CSP_wasting_share, 

                'PV_wasting_share' : PV_wasting_share, 

                'QW_startup_CSP' : QW_startup_CSP, 

                'QW_defocus_CSP' : QW_defocus_CSP, 

                'QSF_CSP' : QSF_CSP, 

                'EW_PV' : EW_PV, 

                'EEH_PV' : EEH_PV, 

                'CF_tot' : CF_tot, 

                'CF_CSP' : CF_CSP, 

                'CF_PV' : CF_PV, 

                } 

    df1=pd.DataFrame(df_KPIs, index=[0]) 

    exporting_KPIs = time.time() - time0 

    print(u"\u2192 Calculation and Exporting of the KPIs (Duration: %s s)" 

%(np.around(exporting_KPIs, decimals=1))) 

 

# 

___________________________________________________________________________________

_________________________________________________________________ 

#                                                                     - Results -  

# ____________________________________________________________   Exporting Cost 

Results   ____________________________________________________________ 

    time0 = time.time()  

    df_Cost = { 'C_tower' : C_tower, 

                'C_receiver' : C_receiver, 

                'C_field' : C_field, 

                'C_site_CSP' : C_site_CSP, 

                'C_storage' : C_storage, 

                'C_block' : C_block, 

                'C_bop' : C_bop, 

                'C_heater' : C_heater, 

                'C_land_CSP' : C_land_CSP, 

                'C_year_CSP' : C_year_CSP, 

                'C_OM_CSP' : c_OM_CSP*AEY_CSP, 

                'C_cap_CSP' : C_Cap_CSP, 

                'C_modules_PV' : C_modules_PV, 

                'C_BoS_PV' : C_BoS_PV, 

                'C_site_PV' : C_site_PV, 

                'C_inverter_PV' : C_inverter_PV, 

                'C_land_PV' : C_land_PV, 

                'C_year_PV' : C_year_PV, 

                'C_cap_PV' : C_Cap_PV, 

                'C_MC1' : C_MC1, 

                'C_MC2' : C_MC2, 

                'C_RC' : C_RC, 

                'C_HPT' : C_HPT, 

                'C_LPT' : C_LPT, 

                'C_MH' : C_MH, 

                'C_RH' : C_RH, 

                'C_HTR' : C_HTR, 

                'C_LTR' : C_LTR, 

                'C_cooler' : C_cooler, 

                'C_intercooler' : C_intercooler, 

                'C_piping_PB' : C_piping_PB, 

                'C_generator' : C_generator, 

                'C_gearbox' : C_gearbox, 

                'C_HX_part': C_HX_part 

                #'C_cogeneration': C_cogeneration 

    } 
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    df2=pd.DataFrame(df_Cost, index=[0]) 

    exporting_Cost = time.time() - time0 

    print(u"\u2192 Exporting of the Costs (Duration: %s s)" 

%(np.around(exporting_Cost, decimals=1))) 

# 

___________________________________________________________________________________

_________________________________________________________________ 

#                                                                     - Results -  

# ________________________________________________________   Exporting Solar Field 

Results   _________________________________________________________ 

    time0 = time.time()  

    nptsx, nptsy = 400, 100 

    x_in=np.linspace(0, 360, nptsx) 

    y_in=np.linspace(0, 90, nptsy) 

    xg, yg = np.meshgrid(x_in, y_in) 

    zg = SF_Efficiency(xg, yg)*100 

    SF_Eff=np.matrix(zg) 

    Map_Helio=np.matrix(Map_Helio) 

    df3=pd.DataFrame(SF_Eff) 

    df4=pd.DataFrame(Map_Helio.transpose()) 

    exporting_SF = time.time() - time0 

    print(u"\u2192 Exporting of the SF Design (Duration: %s s)" 

%(np.around(exporting_SF, decimals=1))) 

# 

___________________________________________________________________________________

_________________________________________________________________ 

#                                                                     - Results -  

# ___________________________________________________________   Exporting Design 

Results   ___________________________________________________________ 

    time0 = time.time()  

    if PB_Recomp_Inter: 

        df_Design = {   'Q_field_des' : R_des, 

                        'A_SF' : A_SF, 

                        'A_land_CSP_tot' : A_land_CSP_tot, 

                        'eff_SF_des' : eff_SF_des, 

                        'n_heliostat' : n_heliostat, 

                        'SM' : SM, 

                        'H_tower' : H_tower, 

                        'Q_rec_des' : Q_rec_des, 

                        'H_rec' : H_rec, 

                        'D_rec' : D_rec, 

                        'rec_eff_design' : eta_rec_des, 

                        'rec_eff_th_design' : eta_rec_th_des, 

                        #'A_receiver' : A_receiver, 

                        'm_flow_rec' : m_flow_rec_des, 

                        'T_hot_set_REC/EH' : T_hot_set_REC, 

                        'T_cold_set_REC/EH' : T_cold_set_REC, 

                        'Q_name_EH' : Q_name_EH, 

                        'EH_eff_design' : eta_heater_design, 

                        'm_flow_EH_des' : m_flow_EH_des, 

                        'P_name_EH' : P_name_EH, 

                        'EH_W_min' : W_heater_min, 

                        't_storage' : t_storage, 

                        'H_storage' : H_storage, 

                        'D_storage' : D_storage, 

                        'A_surf_TES' : A_surf_TES, 

                        'm_max' : m_max, 

                        'Q_flow_des' : Q_flow_des, 

                        'Q_Cooler_des' : Q_Cooler_des, 

                        'eta_blk_des' : eta_blk_des, 
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                        'm_flow_sCO2_des' : m_flow_sCO2_des, 

                        'SR' : SR, 

                        'm_flow_sCO2_MC' : m_flow_sCO2_MC, 

                        'm_flow_sCO2_RC' : m_flow_sCO2_RC, 

                        'W_MC1_des' : W_MC1_des, 

                        'eta_MC1_des' : eta_MC1_des, 

                        'W_MC2_des' : W_MC2_des, 

                        'eta_MC2_des' : eta_MC2_des, 

                        'W_RC_des' : W_RC_des, 

                        'eta_RC_des' : eta_RC_des, 

                        'Q_HTR_des' : Q_HTR_des, 

                        'Q_LTR_des' : Q_LTR_des, 

                        'W_HPT_des' : W_HPT_des, 

                        'eta_HPT_des' : eta_HPT_des, 

                        'TIT' : TIT, 

                        'T_sCO2_1_des' : T_sCO2_1_des, 

                        'T_sCO2_2_des' : T_sCO2_2_des, 

                        'T_sCO2_3_des' : T_sCO2_3_des, 

                        'T_sCO2_4_des' : T_sCO2_4_des, 

                        'T_sCO2_5_des' : T_sCO2_5_des, 

                        'T_sCO2_6_des' : T_sCO2_6_des, 

                        'T_sCO2_7_des' : T_sCO2_7_des, 

                        'T_sCO2_8_des' : T_sCO2_8_des, 

                        'T_sCO2_9_prime_des' : T_sCO2_9_prime_des, 

                        'T_sCO2_9_second_des' : T_sCO2_9_second_des, 

                        'T_sCO2_9_des' : T_sCO2_9_des, 

                        'T_sCO2_10_des' : T_sCO2_10_des, 

                        'UA_MH_des' : UA_MH_des, 

                        'UA_HTR_des' : UA_HTR_des, 

                        'UA_LTR_des' : UA_LTR_des, 

                        'UA_cooler_des' : UA_cooler_des, 

                        'UA_intercooler_des' : UA_intercooler_des, 

                        'P_gross' : P_gross, 

                        'P_net' : P_net, 

                        'PV_P_AC' : P_AC, 

                        'PV_P_DC' : P_DC, 

                        'PV_r_DCAC' : r_DCAC, 

                        'A_PV_field' : A_PV_field, 

                        'A_land_PV_tot' : A_land_PV_tot, 

                        'PV_GCR' : GCR, 

                        'PV_rows' : PV_rows, 

                        'PV_azimuth' : azimuth, 

                        'eta_inv' : eta_inv_input, 

                        'P_max' : P_max, 

                        'Area_HX':Area_HX, 

                        'eta_de_HX':eta_de_HX 

 

                    } 

    df5=pd.DataFrame(df_Design, index=[0]) 

    exporting_design = time.time() - time0 

    print(u"\u2192 Exporting of the System Design (Duration: %s s)" 

%(np.around(exporting_design, decimals=1))) 

 

# 

___________________________________________________________________________________

_________________________________________________________________ 

#                                                                     - Results -  

# _________________________________________________________   Exporting Operating 

Results   __________________________________________________________ 

    time0 = time.time()  
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    if PB_Recomp_Inter: 

        df_Operation = {'DNI' : DNI, 

                        'defocus' : defocus, 

                        'eta_opt_SF' : eta_opt_SF, 

                        'Q_in_SF' : Q_in_SF, 

                        'Q_out_SF' : Q_out_SF, 

                        'eta_rec' : eta_rec, 

                        'eta_th_rec' : eta_th_rec, 

                        'Q_raw_SF' : Q_raw_SF, 

                        'Q_wasted_CSP': Q_wasted_CSP, 

                        'Q_wasted_defocus' : Q_wasted_defocus, 

                        'Q_wasted_startup' : Q_wasted_startup, 

                        'W_loss_HF' : W_loss_HF, 

                        'SF_on' : SF_on, 

                        'Wspd_Ht' : Wspd_Ht, 

                        'Q_flow_defocus' : Q_flow_defocus, 

                        'Q_rec' : Q_out_rec, 

                        'T_REC_hot' : T_REC_hot, 

                        'T_REC_cold' : T_REC_cold, 

                        'm_flow_rec' : m_flow_rec, 

                        'waste_extra_PV' : waste_extra_PV, 

                        'W_heater_PV_raw' : W_heater_PV_raw, 

                        'W_heater_PV' : W_heater_PV, 

                        'W_wasted_PV_defocus' : W_wasted_PV_defocus, 

                        'W_wasted_PV_plus' : W_wasted_PV_plus, 

                        'W_wasted_PV' : W_wasted_PV_tot, 

                        'Q_missing_defocus' : Q_missing_defocus, 

                        'Q_out_heater' : Q_out_heater, 

                        'eta_heater' : eta_heater, 

                        'Q_loss_heater' : Q_loss_heater, 

                        'EH_on' : EH_on, 

                        'm_flow_heater' : m_flow_heater, 

                        'T_EH_hot' : T_EH_hot, 

                        'T_EH_cold' : T_EH_cold, 

                        'm_flow_toTES_hot' : m_flow_toTES_hot, 

                        'T_toTES_hot' : T_toTES_hot, 

                        'T_TES_hot' : T_TES_hot, 

                        'm_flow_TES_hot' : m_flow_TES_hot, 

                        'm_flow_toTES_cold' : m_flow_toTES_cold, 

                        'T_toTES_cold' : T_toTES_cold, 

                        'T_TES_cold' : T_TES_cold, 

                        'm_flow_TES_cold' : m_flow_TES_cold, 

                        'cold_tank_ready' : cold_tank_ready, 

                        'L_HT' : L_HT, 

                        'L_CT' : L_CT, 

                        'Q_losses_HT' : Q_losses_HT, 

                        'W_loss_HT' : W_loss_HT, 

                        'Q_losses_CT' : Q_losses_CT, 

                        'W_loss_CT' : W_loss_CT, 

                        'Q_flow_PB' : Q_flow_PB, 

                        'm_flow_PB' : m_flow_PB, 

                        'Q_flow_MH' : Q_flow_MH, 

                        'm_flow_MH' : m_flow_MH, 

                        'T_toTES_MH_cold' : T_toTES_MH_cold, 

                        'Q_sCO2_PB_MH' : Q_sCO2_PB_MH, 

                        'm_flow_sCO2_MH' : m_flow_sCO2_MH, 

                        'T_sCO2_hot_MH' : T_sCO2_hot_MH, 

                        'T_sCO2_cold_MH' : T_sCO2_cold_MH, 
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                        'T_sCO2_1' : T_sCO2_1, 

                        'T_sCO2_2' : T_sCO2_2, 

                        'T_sCO2_3' : T_sCO2_3, 

                        'T_sCO2_4' : T_sCO2_4, 

                        'T_sCO2_5' : T_sCO2_5, 

                        'T_sCO2_6' : T_sCO2_6, 

                        'T_sCO2_7' : T_sCO2_7, 

                        'T_sCO2_8' : T_sCO2_8, 

                        'T_sCO2_9' : T_sCO2_9, 

                        'T_sCO2_9_prime' : T_sCO2_9_prime, 

                        'T_sCO2_9_second' : T_sCO2_9_second, 

                        'T_sCO2_10' : T_sCO2_10, 

                        'W_loss_PB_pumps' : W_loss_PB_pumps, 

                        'parasities': parasities_blk, 

                        'Q_cond' : Q_cond, 

                        'Q_intercooler' : Q_intercooler, 

                        'Q_HTR' : Q_HTR, 

                        'Q_LTR' : Q_LTR, 

                        'W_T1' : W_T1, 

                        'W_MC1' : W_MC1, 

                        'W_MC2' : W_MC2, 

                        'W_RC' : W_RC, 

                        'PB_on' : PB_on, 

                        'F_prod' : F_prod, 

                        'W_net_CSP' : W_net_CSP, 

                        'W_net_PV' : W_net_PV, 

                        'W_net_tot' : W_net_tot, 

                        'PD':PD, 

                        'eff_PB' : eff_PB, 

                        'T_cold_MH':T_cold_MH, 

                        #'T_source_hot':T_source_hot, 

                        'NTU_UC':NTU_UC, 

                        'eta_HXopp':eta_HXopp, 

                        'T_sCO_hot':T_sCO2_hot_pb_check, 

                        'T_sCO_cold':T_sCO2_cold_pb_check, 

                        'T_source_hot':T_source_hot_pb_check, 

                        'T_source_cold':T_source_cold_pb_check, 

                        'HX_co': HX_co, 

                        'Q_co_HX': Q_co_HX, 

                        'T_coldtoTES': T_coldtoTES_HX 

                        } 

 

    df6=pd.DataFrame(df_Operation) 

    exporting_design = time.time() - time0 

    print(u"\u2192 Exporting of the System Design (Duration: %s s)" 

%(np.around(exporting_design, decimals=1))) 

 

# 

___________________________________________________________________________________

_________________________________________________________________ 

#                                                                     - Results -                                                                       

# ______________________________________________________   Exporting Summary of the 

Results   ________________________________________________________ 

    summary_results = pd.concat([df1, df2, df5], axis=1) 

    Outputs_max = np.array([LCOE, CAPEX, CF, AEY, AF, c_block, ASCO2eq, TEW_share, 

f_AEY_CSP, CF_CSP, CF_PV, CAPEX_CSP, CAPEX_PV, EH_UF, TES_PV_fraction]) 

    ObjectiveFunction_index = np.array([LCOE_OF, CAPEX_OF, CF_OF, AEY_OF, AF_OF, 

c_block_OF, ASCO2eq_OF, TEW_share_OF, f_AEY_CSP_OF, CF_CSP_OF, CF_PV_OF, 

CAPEX_CSP_OF, CAPEX_PV_OF, EH_UF_OF, TES_PV_fraction_OF]) 

    index_outputs = np.where(ObjectiveFunction_index == True) 
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    Outputs = Outputs_max[index_outputs] 

    path_summary_results = './Outputs/%s/Source/%s' %(Model_Name, 

identification_folder_summary) 

    Path(path_summary_results).mkdir(parents=True, exist_ok=True) 

    filename_summary = '%s/SummaryResults%s.xlsx' %(path_summary_results, 

identification_summary) 

    EE.export_to_excel(filename_summary, summary_results, erase_old_summary) 

    if save_all_files: 

        path_results = './Outputs/%s/Source/%s' %(Model_Name, 

identification_folder_results) 

        path_KPIs = '%s/KPIs' %(path_results) 

        path_Cost = '%s/Cost' %(path_results) 

        path_SF1 = '%s/SF1' %(path_results) 

        path_SF2 = '%s/SF2' %(path_results) 

        path_Design = '%s/Design' %(path_results) 

        path_Operation = '%s/Operation' %(path_results) 

        Path(path_results).mkdir(parents=True, exist_ok=True) 

        Path(path_KPIs).mkdir(parents=True, exist_ok=True) 

        Path(path_Cost).mkdir(parents=True, exist_ok=True) 

        Path(path_SF1).mkdir(parents=True, exist_ok=True) 

        Path(path_SF2).mkdir(parents=True, exist_ok=True) 

        Path(path_Design).mkdir(parents=True, exist_ok=True) 

        Path(path_Operation).mkdir(parents=True, exist_ok=True) 

        df1.to_excel('%s/KPIs%s.xlsx' %(path_KPIs, identification_results)) 

        df2.to_excel('%s/Cost%s.xlsx' %(path_Cost, identification_results)) 

        df3.to_excel('%s/SF1%s.xlsx' %(path_SF1, identification_results)) 

        df4.to_excel('%s/SF2%s.xlsx' %(path_SF2, identification_results)) 

        df5.to_excel('%s/Design%s.xlsx' %(path_Design, identification_results)) 

        df6.to_excel('%s/Operation%s.xlsx' %(path_Operation, 

identification_results)) 

    print(u"\u2192 Simulation completed (Duration: %s s)" %(np.around(time.time() - 

start_time, decimals=0))) 

 

 

    if Flag==1: 

 

        wb = openpyxl.load_workbook("History.xlsx") 

        ws = wb['Sheet1'] 

        ws.cell(row = number_sim, column = 1, value = LCOE) # Writes the content of 

totalcost in A1 

        ws.cell(row = number_sim, column = 2, value = CAPEX) 

        ws.cell(row = number_sim, column = 3, value = Co_i) 

        ws.cell(row = number_sim, column = 4, value = Co_j) 

        ws.cell(row = number_sim, column = 5, value = Co_k) 

        ws.cell(row = number_sim, column = 6, value = Co_l) 

        ws.cell(row = number_sim, column = 7, value = Co_m) 

         

        ws.cell(row = number_sim, column = 8, value = P_max) 

        ws.cell(row = number_sim, column = 9, value = t_storage) 

        ws.cell(row = number_sim, column = 10, value = SM) 

        ws.cell(row = number_sim, column = 11, value = P_AC) 

        ws.cell(row = number_sim, column = 12, value = Q_de) 

        ws.cell(row = number_sim, column = 13, value = number_sim) 

         

        wb.save("History.xlsx") 

        print('Simulation'+ ' ('+ str(Co_i)+','+str(Co_j)+','+str(Co_k)+','+ 

str(Co_l)+ ')'+','+ str(Co_m)+' #'+ str(number_sim)) 

 

    return Outputs 
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8.2 Receiver model 

 

from attr import define 

from sympy import Q 

import Models.Media.Particle as Medium1 

import math as MA 

import numpy as np 

 

 

def Design_Receiver( 

    Q_rec_des,                   # [W]       - Nominal output thermal power 

    #w_curtain,                  # [m]       - Width of the receiver 

    #ar_rec,                     # [-]       - Receiver aspect ratio (height over 

width) 

    #T_amb_des,                  # [K]       - Ambient temperature at the design 

point 

    T_max_particle_des,          # [K]       - Outlet HTF temperature at the design 

point 

    T_min_particle_des,          # [K]       - Inlet HTF temperature at the design 

point 

    #d_particle,                 # [m]       - Particle diameter 

    #vf_par,                     # [%]       - Volume fraction of particles 

    #ab_rec,                     # [-]       - Receiver coating absorptance 

    #em_rec,                     # [-]       - Receiver coating emissivity 

    eta_rec_des 

    ): 

     

    eta_rec_des=0.25             #the design but be calculated on the average 

efficiency 

    Rec_design=1 

    eta_rec_th_des=eta_rec_des 

    Q_loss_rec_des=Q_rec_des*(1- eta_rec_des) 

    Q_in_rec_des=Q_rec_des 

    h_cold_in=Medium1.h_T(T_min_particle_des) 

    h_hot_out=Medium1.h_T(T_max_particle_des) 

     

    m_flow_des=max(1e-3,((Q_rec_des*eta_rec_des)/(h_hot_out-h_cold_in))) 

 

    return (    Rec_design,         # [-]       - Complete geometrical design of 

the receiver 

                eta_rec_des,        # [-]       - Design total receiver efficiecny 

                eta_rec_th_des,     # [-]       - Design thermal receiver 

efficiecny 

                Q_loss_rec_des,     # [W]       - Design receiver losses 

                Q_in_rec_des,       # [w]       - Design receiver input power 

                m_flow_des)         # [kg/s]    - Design receiver mass flow rate 

 

def Operating_Receiver( 

    in_DNI,                         #[W/m^2]    - Direct normal irradice for the 

efficiency 

#    Medium,                         # [-]       - HTF utilized in the receiver 

#    TLREC,                          # [-]       - Thermal Losses Receiver 

Calculation - Model 

    Q_in_rec,                       # [W]       - Incoming receiver power 

    h_in,                           # [J/kg]    - Input specific enthalpy 

    m_flow,                         # [kg/s]    - Receiver mass flow rate 

    SF_on,                          # [-]       - Boolean to indicate if solar 

field is on 

#    T_amb,                          # [K]       - Ambient temperature 
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#    u_wind,                         # [m/s]     - Wind speed 

#    T_out_des,                      # [K]       - Set point output temperature 

#    Rec_design,                     # [-]       - Receiver geometrical design 

#    rec_absorptance,                # [-]       - Receiver absorptance 

#    rec_emissivity,                 # [-]       - Receiver emissivity 

    input_eff,                      # [-]       - Boolean to indicate if a fixed 

efficiency shoudl be used 

    eta_rec_input                   # [-]       - Input receiver efficiency (if 

input_eff is True) 

    ): 

 

    if SF_on: 

        if input_eff: 

            eta_rec = eta_rec_input 

            Q_loss_rec = Q_in_rec*(1-eta_rec) 

        else: 

            delta_eta=eta_rec_input-0.5 # 0.5 is the reference receiver efficency 

                      

            if in_DNI < 205:  

                eta_rec=0.2 + delta_eta 

            if in_DNI > 480: 

                eta_rec=0.5 + delta_eta 

            if in_DNI <= 480 and in_DNI >= 205: 

                coef_C1=0.0011 

                coef_C0=-0.0230 

                eta_rec=coef_C1*in_DNI+coef_C0+delta_eta 

            Q_loss_rec = Q_in_rec*(1-eta_rec) 

 

        #Efficiency 

 

        #  eta_rec = max(0,min(1,((Q_in_rec - Q_loss_rec)/(1e-3+Q_in_rec)))) in my 

case does not have any meaning 

     

         

        eta_th_rec=eta_rec 

    else: 

        # Advection Losses 

        Q_adv_loss = 0 

 

        #Radiative Losses 

        Q_rad_loss = 0 

 

        # Reflective Losses 

        Q_ref_loss = 0 

 

        # Total Losses 

        Q_loss_th_rec = Q_rad_loss + Q_adv_loss 

        Q_loss_rec = Q_loss_th_rec + Q_ref_loss 

        eta_th_rec = 0 

        eta_rec = 0 

    Q_out_rec=eta_rec*Q_in_rec 

    h_out=h_in+Q_out_rec/max(1e-6,m_flow) 

 

    return (    Q_out_rec,          # [W]       - Output receiver power 

                h_out,              # [J/kg]    - Output specific enthalpy 

                eta_rec,            # [-]       - Receiver total efficiency 

                eta_th_rec,         # [-]       - Receiver thermal efficiency 

                Q_loss_rec)         # [-]       - Receiver thermal losses 
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8.3 Particle heat exchanger 

from ast import Del 

from cmath import log 

import numpy as np 

import Models.Media.Particle as Medium1 

import Models.Media.sCO2 as Medium3 

import Models.Utilities.finterpolation as linear 

 

def Operating_HeatExchanger( 

    PB_on,                  # [-]       - Boolean to indicate if the power block is 

on 

    m_flow_hot_source,      # [kg/s]    - Mass flow rate hot-side 

    h_source_hot,           # [J/kg]    - Specific enthalpy hot source 

    h_sCO2_cold,            # [J/kg]    - Specific enthalpy cold sCO2 

    h_sCO2_hot_des,         # [J/kg]    - Set point specific enthalpy hot sCO2 

    U_HX_design,             # [W/m^2K]   - General heat transfer of the HX 

    Area, 

    pressure 

    ): 

    NTU_cc=2 #test  

     

    x=[1.2, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.5, 3, 3.1, 3.2, 3.3]           

    y=[0.3, 0.4, 0.5, 0.56, 0.65, 0.7, 0.75, 0.8, 0.81, 0.85, 0.9, 0.91, 0.95]  

    T_sco2_cold=Medium3.T_h(pressure,h_sCO2_cold) 

    T_source_hot=Medium1.T_h(h_source_hot) 

    if PB_on: 

        

        Q_in_HX=((T_source_hot-T_sco2_cold)*Medium1.cp_T(1)*m_flow_hot_source) 

        NTU_cc=(U_HX_design*Area)/(m_flow_hot_source*Medium1.cp_T(1)) 

        if NTU_cc <= 3.5: 

            eta_HX=linear.linear(y,x,NTU_cc) 

        else: 

            eta_HX=0.97 

        

        Q_sCO2_PB = eta_HX*Q_in_HX                 # Q_max  

        h_source_cold = h_source_hot - Q_sCO2_PB/max(1e-3,m_flow_hot_source)         

        m_flow_sCO2 = Q_sCO2_PB/(h_sCO2_hot_des-h_sCO2_cold) 

        h_sCO2_hot = h_sCO2_cold + Q_sCO2_PB/max(1e-3,m_flow_sCO2)  

     

    

    else: 

        h_source_cold = h_source_hot 

        h_sCO2_hot = h_sCO2_cold 

        Q_sCO2_PB = 0 

        m_flow_sCO2 = 0 

        NTU_cc=2 #test  

        eta_HX=0.8  

    T_cold_MH=Medium1.T_h(h_source_cold) 

    return (    Q_sCO2_PB,                   # [W]       - Thermal power to the 

sCO2 power block 

                m_flow_sCO2,                 # [kg/s]    - sCO2 power block mass 

flow rate 

                h_source_cold,               # [J/kg]    - Specific enthalpy output 

heat source #per me questo è l'output in design 

                h_sCO2_hot,                  # [J/kg]    - Specific enthalpy output 

hot sCO2 

                T_cold_MH, 

                NTU_cc, 

                eta_HX 
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                )                     

 

def Desing_HeatExchanger( 

    T_source_hot,           # [K] 

    T_source_cold,          # [K] 

    T_sco2_hot,             # [K] 

    T_sco2_cold,            # [K] 

    h_source_hot_des,       # [J/kg]    - Specific enthalpy hot source desing 

    h_sco2_cold_des,        # [J/kg]    - Specific enthalpy cold sCO2 desing 

    h_source_cold_des,      # [J/kg]    - Set point specific enthalpy cold source 

design 

    h_sco2_hot_des,         # [J/kg]    - Set point specific enthalpy hot sCO2 

design     

    Q_flow_des,             # [W]       - Heat in the PB at the design point 

    U_HX_design,            # [W/m^2K]  - General heat transfer of the HX 

    pressure_design,        # [Pa]      - Pressure     

    ): 

     

    # parametri dello scambiatore di calore 

    x=[1.2, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.5, 3, 3.1, 3.2]               

    y=[0.3, 0.4, 0.5, 0.56, 0.65, 0.7, 0.75, 0.8, 0.81, 0.85, 0.9, 0.91] 

 

    del_Tlog=((T_source_hot-T_sco2_hot)-(T_source_cold-

T_sco2_cold))/(np.log((T_source_hot-T_sco2_hot)/(T_source_cold-T_sco2_cold))) 

    m_flow_p_design=Q_flow_des/(h_source_hot_des-h_source_cold_des) 

    m_flow_sco2_design=Q_flow_des/(h_sco2_hot_des-h_sco2_cold_des) 

    eta_de=Q_flow_des/((T_source_hot-

T_sco2_cold)*(min(Medium1.cp_T(1)*m_flow_p_design,m_flow_sco2_design*Medium3.cp_T(p

ressure_design,T_sco2_hot),m_flow_sco2_design*Medium3.cp_T(pressure_design,T_sco2_c

old)))) 

    NTU_fu=linear.linear(x,y,eta_de) 

    #Area_U=Q_flow_des/(U_HX_design*del_Tlog) 

    

Area=NTU_fu*(min(Medium1.cp_T(1)*m_flow_p_design,m_flow_sco2_design*Medium3.cp_T(pr

essure_design,T_sco2_hot),m_flow_sco2_design*Medium3.cp_T(pressure_design,T_sco2_co

ld)))/U_HX_design 

    

#NTU_Uc=(U_HX_design*Area)/(min(Medium1.cp_T(1)*m_flow_p_design,m_flow_sco2_design*

Medium2.cp_T(pressure_design,T_sco2_hot),m_flow_sco2_design*Medium2.cp_T(pressure_d

esign,T_sco2_cold))) 

    #Fact_c= NTU_fu/NTU_Uc 

    #Delta_1=del_Tlog/eta_de 

 

 

    return ( 

        NTU_fu, 

        Area, 

        m_flow_sco2_design, 

        m_flow_p_design, 

        eta_de 

    ) 
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8.4 Thermal storage (TES) 

import Models.Utilities.GeneralUtilities as GU 

import Models.Utilities.U_Storage.ODEs_Storage as ODE 

from scipy.integrate import odeint 

import numpy as np 

import math as MA 

 

def Storage_Tank( 

    Medium,                         # [-]       - HTF utilized in the TES 

    m_flow_in,                      # [kg/s]    - Inlet mass flow rate in tank 

    h_in,                           # [J/kg]    - Inlet specific enthalpy 

    m_prev,                         # [kg]      - Previous value of estimated mass 

in tank 

    h_prev,                         # [J/kg]    - Previous value of average 

specific enthalpy 

    m_flow_out,                     # [kg/s]    - Outlet mass flow rate from tank 

    T_amb,                          # [K]       - Ambient temperature 

    t_in,                           # [s]       - Initial time step 

    t_out,                          # [s]       - Final time step 

    dt,                             # [s]       - Duration time step 

    Tank_Design,                    # [-]       - Tank design parameters (Tank 

volume, diameter, height, thermal losses coefficiecnt, auxiliary heater power, set 

point temperature HTF, efficiency auxiliary heater) 

    m_max_des                       # [kg]      - Maximum mass - design 

    ): 

 

    V_t=Tank_Design[0] # [m^3] 

    D=Tank_Design[1] # [m] 

    H=Tank_Design[2] # [m] 

    alpha=Tank_Design[3] 

    W_max=Tank_Design[4] 

    T_set=Tank_Design[5] 

    e_ht=Tank_Design[6] 

 

    #Calculated Parameters 

    state_medium=Medium.setState_phX(Medium.p_default, h_prev) 

    t_storage = np.linspace(t_in, t_out, num=dt) 

    m_time = odeint(ODE.mass_balance, m_prev, t_storage, args=(m_flow_in, 

m_flow_out)) #[kg] 

    m_calc = m_time[-1] 

    dmdt = ODE.mass_balance(0, 0, m_flow_in, m_flow_out) 

    max_mass = m_max_des*0.99+1e-5 

    min_mass = m_max_des*0.01-1e-5 

     

 

    if m_calc > min_mass and m_calc < max_mass: 

        m = m_calc 

    elif m_calc >= max_mass: 

        m = max_mass 

    else: 

        m = min_mass 

 

    L=100*m/m_max_des # [%] 

    rho = Medium.density(state_medium) # [kg/m^3] 

    V=m/rho 

    A=MA.pi*D*H*(V/V_t) + MA.pi*D**2/4 # [m^2] 

     

    T=Medium.temperature(state_medium) 

    Q_losses=A*alpha*(T-T_amb) 
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    if T<T_set: 

        W_net = min(Q_losses, W_max) 

    else: 

        W_net = 0 

 

    if m<1: 

        h_time = h_prev 

        h = h_prev 

    else: 

        h_time = odeint(ODE.energy_balance, h_prev, t_storage, args=(m_flow_in, 

m_flow_out, h_in, m, dmdt, W_net, Q_losses)) 

        h = h_time[-1] 

 

    W_loss=W_net/e_ht 

 

    return (    L,                  # [%]       - Tank level 

                h,                  # [J/kg]    - Averge spefic enthalpy 

                m,                  # [kg]      - Mass of HTF stored in tank 

                Q_losses,           # [W]       - Thermal losses 

                W_loss)             # [W]       - Parasitic losses due to heat 

tracing 

 

 

8.5 Cogeneration 

 

import Models.Media.Particle as Medium1 

 

def HX_cogeneration ( 

    HX_c,                    # boolean HX on/off 

    eff_HX_co,                # [-]   Effectivness of HX 

    T_cold_MH,                # [K]   Temperature particle after heat exchage 

    Q_out,                        # [Wth] Thermal power  

    m_particle               # [kg/s]Mass flow rate of the particle 

    #T_min,                    # [K]   Minimun Temperature in the TES   

): 

    if HX_c==1: 

     

        if eff_HX_co==1: 

            T_out=T_cold_MH-Q_out/(max((m_particle*Medium1.cp_T(1)),1e-3)) 

        else: 

            print("NoHXCO") 

    else: 

        Q_out=0 

        T_out=T_cold_MH 

    return ( 

        T_out, 

        Medium1.h_T(T_out), 

        Q_out 

    ) 
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8.6 Genetic algorithm 

 

from SystemModels.MoltenSaltsCO2 import MoltenSaltsCO2 

import numpy as np 

import pandas as pd 

import Generation as GE 

import openpyxl 

import random 

 

# ------------------------------       Design Variables 

P_max = 100e6                                           # [W]       - Maximum 

Electric Power that can be injected to the grid 

P_gross = 100e6/0.9                                     # [W]       - Power Cycle 

Gross Output 

Q_de=0                                                  # [W]       - Therma power 

output 

P_AC = 200e6                                            # [W]       - AC nameplate 

system capacity 

P_name_EH = P_AC - P_max                                # [W]       - Electric 

heater nominal capacity 

SM_value = 2                                            # [-]       - Solar 

multiple 

TES_value = 10                                          # [h]       - Thermal 

energy storage capacity 

H_tower_input = 190                                     # [m]       - Input of the 

tower height 

Optimize_SF = False                                     # [-]       - Boolean to 

run optimization of the solar field 

Reheat = False                                          # [-]       - Boolean to 

decide to include Reheating in the sCO2 power block 

Recompression = True                                    # [-]       - Boolean to 

decide to include Recompression in the sCO2 power block 

Intercooling = True                                     # [-]       - Boolean to 

decide to include Intercooling in the sCO2 power block 

 

P_max=np.array([50e6, 75e6, 100e6, 110e6, 120e6, 130e6, 140e6, 150e6, 160e6, 170e6, 

180e6, 190e6, 200e6 ]) 

P_gross=np.multiply(P_max,1.11111) 

#TES_value=np.array([8, 10, 12]) 

TES_value=np.array([6, 7, 8, 9, 10, 11, 12]) 

SM_value=np.array([ 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 

2.5]) 

#SM_value=np.array([1.5, 2, 2.5]) 

r_P_Ac=np.array([1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 

2.5]) 

 

Flag=1 

 

 

 

God_S=False 

First_time=False 

Size_population=10 

Min_rank=5 

CC=np.empty([2,Size_population]) 

S_start=1 

number_row=2 

 

Size_population=10 
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Number_generation=3 

Max_size=np.array([len(P_max),len(TES_value),len(SM_value), len(r_P_Ac)]) 

Max_gen=len(Max_size) 

Index=np.array([1, 5]) 

 

for k_gen in range(0,Number_generation): 

    if God_S: 

        Generation=1 

        number_sim=1# 

        Generation_data=GE.generation_start(Max_size,Max_gen,Size_population) 

        All_data=np.empty([Size_population,12]) 

        All_data[:,Index[0]:Index[1]]=Generation_data 

         

        God_S=False 

    else: 

        path="History.xlsx" 

        df=pd.read_excel(path) 

        #dt = pd.DataFrame(df, columns= 

['LCOE','i','j','k','l','m','P_CSP','Storage Time','Solar Time','PV','Number', 

'Gen','Number Give', 'Gen Give' ]) 

        dt = pd.DataFrame(df, columns= 

['LCOE','i','j','k','l','m','Number','P_CSP','Storage Time','Solar 

multipe','PV','Heat']) 

         

        Index_number=6 #keep track 

        All_data=np.array(dt) 

        number_row=int(max(All_data[:,Index_number]))+1 

        A=np.array(dt) 

        A = A[A[:, 0].argsort()]    #rank the solutions 

        #In=len(A)-Size_population 

        #St=In+Size_population 

        In=0 

        St=Size_population-1 

 

        Generation_data_raw=A[In:St,:]  #extraction 

        print(Generation_data_raw[:,Index[0]:Index[1]]) 

        print('cosa entra') 

        

[Generation_data,CC,ty]=GE.reproduction(Generation_data_raw,Max_size,Size_populatio

n,Index,Min_rank,Max_gen) 

        print(Generation_data) 

        print(CC) 

        #print('end reprod') 

     

    for i_spec in range(0,Size_population): 

         

        Co_i_c=int(Generation_data[i_spec,0]) 

        Co_j_c=int(Generation_data[i_spec,1]) 

        Co_k_c=int(Generation_data[i_spec,2]) 

        Co_l_c=int(Generation_data[i_spec,3]) 

        #Co_m_c=int(Generation_data[number_row,4]) 

        Co_m_c=2 

        print(Generation_data) 

        # ------------------------------       Handling of the Outputs 

        identification_folder_summary = 

'SingleSimulation'+str(Co_i_c)+str(Co_j_c)+str(Co_k_c)+str(Co_l_c)+str(Co_m_c)        

        identification_summary =''                                                                   

        

        identification_folder_results = 

'SingleSimulation'+str(Co_i_c)+str(Co_j_c)+str(Co_k_c)+str(Co_l_c)+str(Co_m_c)        
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        identification_results =''                                                       

        

        save_all_files = True                                                                        

        erase_old_summary = True                                                                    

   

        

[check_v,Results]=GE.clone(All_data,Generation_data[i_spec,:],Index,First_time) 

         

        if check_v: 

            #export  

            print('Y') 

            LCOE_c=float(Results[0]) 

            CAPEX_c=float(Results[0]) 

            Co_i_c=int(Results[1]) 

            Co_j_c=int(Results[2]) 

            Co_k_c=int(Results[3]) 

            Co_l_c=int(Results[4]) 

            Co_m_c=int(Results[5]) 

            P_CSP_c=float(Results[7]) 

            t_sto_c=float(Results[8]) 

            SM_c=float(Results[9]) 

            r_c=float(Results[10]) 

            Q_de_c=float(Results[11]) 

            

#[_]=EX.export_data(number_row,LCOE_c,CAPEX_c,Co_i_c,Co_j_c,Co_k_c,Co_l_c,Co_m_c,P_

CSP_c,t_sto_c,SM_c,r_c,Q_de_c) 

     

 

            wb = openpyxl.load_workbook("History.xlsx") 

            ws = wb['Sheet1'] 

            ws.cell(row = number_row, column = 1, value = LCOE_c) # Writes the 

content of totalcost in A1 

            ws.cell(row = number_row, column = 2, value = CAPEX_c) 

            ws.cell(row = number_row, column = 3, value = Co_i_c) 

            ws.cell(row = number_row, column = 4, value = Co_j_c) 

            ws.cell(row = number_row, column = 5, value = Co_k_c) 

            ws.cell(row = number_row, column = 6, value = Co_l_c) 

            ws.cell(row = number_row, column = 7, value = Co_m_c) 

            ws.cell(row = number_row, column = 8, value = P_CSP_c) 

            ws.cell(row = number_row, column = 9, value = t_sto_c) 

            ws.cell(row = number_row, column = 10, value = SM_c) 

            ws.cell(row = number_row, column = 11, value = r_c) 

            ws.cell(row = number_row, column = 12, value = Q_de_c) 

            ws.cell(row = number_row, column = 13, value = number_row) 

 

            wb.save("History.xlsx") 

            print('Simulation'+ ' ('+ 

str(Co_i_c)+','+str(Co_j_c)+','+str(Co_k_c)+','+ str(Co_l_c)+','+ str(Co_m_c)+ 

')'+' #'+ str(number_row)) 

        else: 

# ------------------------------       Simulation 

             

            Co_i_c=int(Generation_data[i_spec,0]) 

            Co_j_c=int(Generation_data[i_spec,1]) 

            Co_k_c=int(Generation_data[i_spec,2]) 

            Co_l_c=int(Generation_data[i_spec,3]) 

            #Co_m_c=int(Generation_data[number_row,4]) 

            Co_m_c=2 

            P_CSP_c=P_max[Co_i_c] 

            t_sto_c=TES_value[Co_j_c] 
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            SM_c=SM_value[Co_k_c] 

            r_c=r_P_Ac[Co_l_c] 

            Q_de_c=Q_de[Co_m_c] 

 

            MoltenSaltsCO2( 

            P_max = P_CSP_c,    #per avere tutto in un solo vettore  

            P_gross = P_CSP_c/0.9, 

            Q_de=Q_de_c, 

            P_AC = r_c*P_CSP_c, 

            P_name_EH = P_name_EH, 

            SM = SM_c, 

            t_storage = t_sto_c, 

            Optimize_SF = Optimize_SF, 

            Recompression = Recompression,  

            Reheat = Reheat, 

            Intercooling = Intercooling, 

            identification_folder_summary = identification_folder_summary, 

            identification_folder_results = identification_folder_results, 

            save_all_files = save_all_files, 

            Co_i=Co_i_c, 

            Co_j=Co_j_c, 

            Co_k=Co_k_c, 

            Co_l=Co_l_c, 

            Co_m=Co_m_c, 

            number_sim=number_row, 

            Flag=Flag 

            ) 

        number_row=number_row+1 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


