

Degree in mechanical engineering

Second cycle 30 CFU

Techno-economic Analysis of a
Hybrid Particle CSP-PV Plant
including Cogeneration

STEFAN MOROSANU

Stockholm, Sweden 2022

-2-

 Master of Science Thesis

Department of Energy Technology

KTH 2020

Techno-economic analysis of hybrid particle CSP-PV
plant including cogeneration

 TRITA: ITM-EX 2022:188

 Stefan Morosanu

Approved

13-01-2022

Examiner

Laumert Björn

Supervisor

Rafael Eduardo Guedez

Mata,

Silvia Trevisan,

Salvatore Guccione

 Industrial Supervisor

-

Contact person

Eliodoro Chiavazzo

TRITA – ITM-EX 2022:188

www.kth.se

https://www.kth.se/

-3-

Abstract

This study aimed at evaluating the economic performance of electricity and heat production from

a concentrated solar power system hybridized with PV, working with particles, and using a

thermodynamic cycle base on the Brayton one having supercritical CO2. The heat is produced at

around 400 ÷ 450 °C and it is intended for industrial application.

The study has been divided into two steps, the first one has been the evaluation of feasibility

without the cogeneration, and the second step has been the implementation of the cogeneration

and finding for which thermal load the heat production can be cost-competitive.

The analysis of the performance of the systems has been made using MoSES (Modelling of Solar

Energy Systems), a new Python-based tool developed in KTH. The techno-economic has been

done considering a quasi-steady-state model coupled with an economical model. The leading

parameter for the optimization of both systems has been the LCOE, to make the technology

economically attractive to the market the system should be able to cover almost 100 % of the

thermal load to make the system able to supply heat reliably.

In this analysis has emerged that the systems can cover a high percentage of the electric load with

an LCOE of 90 €/MWh, in the case of downsizing of the power block the LCOE is 82 €/MWh

but with a small penalization on the load coverage. The plant presents an LCOE lower than 90

€/MWh at a power size of 50 MWe, which is relatively a small size for a power plan. In case of

the cogeneration, the LCOE is 95 €/MWh with a lower electrical load coverage but the system is

able to produce heat at the same LCOH from natural gas and in a reliable way.

The analysis has shown that the LCOE and the overall performance of the system indicate that

its role in the grid could be the covering the slow and predictable fluctuation of the electric

demand, it can also produce heat at the same price as natural gas. With the technological progress

and the urging need for the reduction of emissions, these technologies will get more and more

market traction.

-4-

Index

Abstract ... 3

1 Introduction .. 6

1.1 Introduction on the heat demand .. 7

1.2 Aim of the study .. 7

2 Theoretical background ... 8

2.1 Types of CSP ... 8

2.2 Solar Power Tower (SPT) .. 9

2.3 Ways of making more competitive the SPT ...10

2.3.1 Particles ..10

2.3.1.1 Direct heating particle ..11

2.3.1.2 Indirect heating particle ..12

2.3.2 Integration with photovoltaic (PV) ...13

2.3.3 Supercritical CO2 as a working fluid for the power block ...14

2.4 Heat demand from the industry ...15

2.4.1 CSP for heat generation ..16

2.5 Market trend...17

2.5.1 Past and state of the art ...17

2.5.2 Future direction ..18

3 Methodology ...19

3.1 Optimization ..20

3.1.1 Design variable ...20

3.1.2 Genetic algorithm ..22

3.1.2.1 With cogeneration ...23

4 Modelling ...24

4.1 Modelling the receiver ..25

4.2 Modelling of the heat exchanger for heating the sCO2 ..27

4.3 Modelling the thermal energy storage ..30

4.4 Modelling the cogeneration ...33

4.5 Modelling the electric grid ...35

4.6 Modelling the thermal load ..36

4.7 Modelling the economic scenario ...37

4.8 Modelling the total land usage ..38

5 Analysis of results ...39

5.1 Without cogeneration ...39

5.1.1 Performance in the scenario ...43

5.2 With cogeneration ...44

5.2.1 Performance in the scenario ...46

5.3 Comparison the LCOE among different technologies ...48

-5-

5.4 Comparison the LCOH among different technologies ..49

5.5 The footprint of the system...50

6 Conclusion ...51

6.1 Limitation and future work ...52

7 Reference ...53

8 Appendix ...55

8.1 System model ...55

8.2 Receiver model ..92

8.3 Particle heat exchanger ...94

8.4 Thermal storage (TES) ...96

8.5 Cogeneration ..97

8.6 Genetic algorithm ...98

-6-

1 Introduction

Nowadays, the energy demand is increasing and at the same time, there is a need of reducing the

emission of greenhouse gases in the atmosphere. In this context, solar energy takes an important

role in the energy transition to renewable sources. The solution that is feasible for a large-scale

application that has been discussed here is the so-called concentrated solar power (CSP). This

type of solution for producing electricity is ideal in the counties that are located in tropical areas

where the solar irradiance is high enough to make economically advantageous the conversion.

The main idea of CSP is to use the reflection of the light to concentrate in a relatively small area

then, reach a high temperature up to 1000 °C (it depends on the technology) and use this heat

source to run a power cycle like the Rankine or Brayton. The leading advantage of this

technology is thermal energy storage, which gives the possibility to match the demand and the

supply of electricity in a cost-competitive way.

Due to the decreasing price of photovoltaic panels, CSP is integrated with PV to mitigate the

high LCOE of CSP alone. On the other hand, the main disadvantage of the photovoltaic panels

is the variability of power output, which is intrinsic due to the weather conditions, this drawback

of the PV is mitigated by the TES of the CSP. For these reasons, the hybridization with PV has

gained market traction (1) due to the combinations of cost-effective energy storage and electricity

production.

Moreover, the thermodynamic performance of CSP is increased by using particles because this

allows the system of increasing the working temperature, which is beneficial for the overall

efficiency of the thermodynamic cycle. The thermodynamic cycle is based on the Brayton cycle,

and it has as a working fluid supercritical CO2, which offers better thermodynamic behaviour in

that temperature range (2).

-7-

1.1 Introduction on the heat demand

A significant percentage of the energy demand is ascribable to the heat demand, Fig. 1 (3) shows

that in 2030 the 48% of the overall energy demand will be as a form of heat demand. More

specifically, about 11% of the energy demand will be requested as high-temperature heat, at

temperature higher than 400 °C.

Fig. 1 Total energy demand share in 2030

According to this information, one of the points on which the study focuses is the possibility of

these systems producing high-temperature heat reliably in a cost-competitive way because that

system could be economically attractive. There are some CSP systems already in the market for

heat production mainly parabolic through see paragraph 2.4.1 for more details, the system studied

in the present work has the advantage of reaching a higher temperature than parabolic through

thus, it can cover a higher variety of thermal loads.

1.2 Aim of the study

The goal of this work is the evaluation of the techno-economic performance of CSP hybridized

with PV working with particles and having a Brayton cycle with sCO2 for the power block with

cogeneration and without cogeneration.

The performance of the system has been evaluated with the following considerations:

• Calculating the minimum LCOE of the system in the design variable chosen

• Find an application in the electricity market in which these technologies could be

competitive considering its KPI, mainly capacity factor (𝐶𝑓) and LCOE.

• Test the system considering the actual prices of electricity of the geographical position

chosen

• Introducing the cogeneration and finding if the system can produce heat at a competitive

cost.

-8-

2 Theoretical background

This chapter has discounted the most relevant theoretical background for the sake of

understanding the system that has been modelled. It has been explained the different types of

CSP with a particular focus on solar power tower (SPT) because it is the system that has been

used for the studying, after which, it has been discussed the different techniques commonly used

for making the SPT more competitive in the market.

2.1 Types of CSP

There are mainly 4 types of configurations of CSP see Fig. 2 (4). However, only 2 types are used

which are parabolic trough and solar tower; The most used nowadays is the parabolic trough in

90% of the cases and for the rest part there is the solar tower, nevertheless, the solar tower

technology has gained market traction due to its potential and the decreasing costs.

Fig. 2 Scheme of the different types of CSP

• The parabolic trough is the most used nowadays due to its relative simplicity and its

reasonable power production. The distinctive feature of this technology is the shape of

the mirror, therefore, the shape of the receiver. The mirror has a parabolic shape, and it

concentrates the solar irradiance on the pipe, the solar tracking of the mirrors is one

dimension, so it tracks the movement of the sun using just one single axis hence, the

cosine effectiveness is not always maximum. The solar irradiance is concentrated on the

receiver, which is the pipe, the working fluid can be directly water to have a direct steam

generation of can be synthetic oil that through a heat exchange warms up the water for

the power cycle. The receiver is made of layers, the first layer has the function to reduce

the heat losses due to the convection of the external wind and at the same time having

the lowest possible reflection, so it is typically transparent glass. The second layer has the

function to absorb as much as possible thus, it is a black material with high absorption

properties. The main limit of this technology is the low concertation ratio that leads to a

low working temperature, therefore, a low thermal efficiency.

-9-

• Linear Fresnel reflector plants have a similar design to parabolic trough collect, the

receiver is a pipe on which is concentrated the solar radiation by the mirrors, by contrast,

the mirrors have a linear profile or a slightly curved shape to descries the optical losses.

The structure is closer to the ground than in the case of parabolic trough collection,

which leads to a simpler mechanical structure because there are fewer loads applied to the

structure. The overall system complexity is relatively low compared to the other types

because there are fewer technical difficulties. However, it has a low system efficiency due

to the low working temperature because it has a low concentration ratio.

• Dish-Stirling solar power generation concentrates all the solar irradiance on a focal point

that allows the system reaching temperatures up to 750 °C (5), the conversion of heat

into mechanical power is done by a Stirling cycle. The mirrors of the engine systems have

the same requirements as always (e.g. high reflectance, accurate shape), due to the

structure of the systems, it has a sun-tracking system to increase the energy harvest. The

Dish-Stirling has a high potential due to its high concentration ratio because of the small

scale of the engine the losses are significant the overall efficiency is up to 30% (5). The

main advantage of this type of technology is modularity. Due to its modular properties, it

can be used in remote areas or for bigger power production.

2.2 Solar Power Tower (SPT)

This is the second most used type of CSP, it seems that this technology will take the lead in the

future over the other types of CSP (4). This technology has a vastly potential because of its high

concentration ratio, which leads to high efficiency and summed up with the fact that it is feasible

for large-scale power production this is the technology in which there is a lot of interest.

The working principle of a solar power tower is that all the solar irradiance is concentrated on the

one receiver (the tower) see Fig. 2 (4), the sun concentration must be done with reasonable

accuracy, therefore, all the heliostats of the systems have a double-axis tracking of solar zenith

and solar elevation and to reflect on the receiver. Furthermore, these plants can reach a relatively

high working temperature and compared to the other types of technologies has a short heat

transfer path, which leads to small heat losses. The optical-electrical power efficiency is

comparatively higher than the other solution.

The different types of solar power towers may differ from each other in the heat transfer fluid

(HTF) the fluid could be water, molten salt, or air. In the case of water/steam, the advantage is

the heat transfer fluid is also the same fluid for the power cycle and in this case, there is not a

need for heat exchange which leads to a decrease in the complexity of the system. In a plant in

which the HTF is molten-salt hence, the fluid that receives directly the heat is molten-salt, after

this, HTF supplies a steam generator to feed the cycle for the power generation.

The benefit of using molten salt as an HTF is a simplification of the mechanical structure, the

heat absorption by the HTF is done with a relatively low-pressure increase, which allows the

system to increase the pressure in the power cycle and together with that an increase in the

system efficiency. Another advantage of molten-salt plants is the energy storage, in these systems

the integration with efficient energy storage is easier. The last type of solar power tower is the

one that has only air circulating in the system, these kinds of solutions are using the Joule cycle.

The air in the receiver is warmed up to around 700°C (5)], after it, it expands on a gas turbine and

produces mechanical power. The benefit of the plants that use air as an HTF is that these

systems are water-free and in places where there is a lot of solar irradiation water could be a

precious resource for example in the desert, which are places where there is a lot of potential for

energy production, but water is difficult to obtain.

-10-

2.3 Ways of making more competitive the SPT

One way to increase the thermodynamic performance of the system is by increasing the working

temperature in the power cycle, the classic molten salts have problems with chemical stability at

temperatures above 600°C, generating corrosive chemical compounds, which lead to significant

mass losses (5). To overcome this problem particle receivers have been introduced, they can

reach higher working temperatures, particle receivers can be integrated into plants heating directly

or indirectly see the next paragraph (2.3.1).

One of the problems of SPT is its low profitability and its high cost of it, to reduce the Levelized

Cost of energy produced (LCOE), the integration with PV has been proposed in many scientific

papers in the last years, see paragraph 2.3.2 for more details.

SPT uses a power cycle like the Ranking cycle, but the Brayton with supercritical CO2 cycle

demonstrates a better performance than the classic Ranking cycle in the common temperature

range of SPT. See paragraph 2.3.3 for more details.

2.3.1 Particles

The first benefit of working with a particle receiver is the possibility of increasing the working

temperature range, which is the current limitation of using the molten-salt system because of the

chemical degradation of the salt. The thermal energy storage costs could be reduced by using a

cheap particle like sand (5). Another advantage is the reduction of the mechanical stress in the

structure because there is no increase of pressure during the heating of the fluid for the power

cycle thus, there is a reduction in the complexity and the costs. The particle receiver can be done

in two ways, direct or indirect.

The direct method consists of heating the particles without an intermediate medium, by contrast,

the indirect method has an intermediate medium. Both heating methods have been discussed in

the next paragraph 2.3.1.1 and 2.3.1.2.

-11-

2.3.1.1 Direct heating particle

The basic idea of direct particle heating is that directly concentrates the light on the particle

without an intermediate medium to reduce the exegetic losses. There are a few types of direct

heating particles, but just the one called Free falling particle (Fig. 3 (5)) applied on solar power

towers seems to be feasible for large-scale applications so just this technology has been discussed

in this paragraph. The particles are released above the receiver, creating a thin layer of falling

particles through the receiver. To significantly increase the outlet temperature the particles are

continuously recirculating, this allows reaching temperatures above 700 °C with a thermal

efficiency of around 50-65% (5). The amount of heat absorbed by the particles depends on the

time of exposure to concentrated sunlight, which can be increased by recirculating the particles

multiple times in the receiver.

Fig. 3 Free falling particle receiver integrated with solar tower and thermal heat storage

-12-

2.3.1.2 Indirect heating particle

The indirect heating particles were introduced to avoid the loss of particles through the cavity of

the receiver, the main drawback of this technology is the loss in efficiency due to the intermediate

medium.

A solution that has been proposed is called flow-through enclosures (5), the intermediate

mediums for the heat exchange from the concentrated sunlight to the particles are a kind of tube.

On the inner surface of the tubes is concentrated the light, on the external surface there is a

flowing of particles that are flowing by the gravity field see Fig. 4 (5), the heat is transferred by

conduction and convection.

According to (5) the tests that have been made the heat exchange seems to be limited due to the

loss of contact between the particles and the external surface of the tube, however, it is a

technology under study.

Fig. 4 Indirect particle receiver

-13-

2.3.2 Integration with photovoltaic (PV)

The integration with PV allows the system to be more flexible to supply the electricity according

to the demand. The basic idea is to produce electricity during the day using PV because it is the

most cost-competitive way. During the cloudy periods or overnight, it relies on CSP, which has

thermal energy storage. The two systems are coupled with a thermal link (an electrical heater) see

Fig. 5 (1), however, they interact with each just in some cases. When the electricity production

from the PV is not enough to supply the electrical demand the power block of CSP is turned on

to cover the gap between the demand and the output of PV.

Fig. 5 Scheme of CSP integrated with PV

There are four different scenarios, the first is when the demand of the grid is higher than the PV

output in this case if there is enough thermal energy storage the power block of CSP is turned on

to cover the difference between the demand and power output of PV. In the second case when

the demand of the grid is almost equal to the output of PV, in this case, the CSP accumulates

energy in the thermal battery. In the third case, the demand is lower than the output of PV the

extra electricity is converted into heat and stored in the thermal battery has space, this aspect is

useful to avoid the overload of the grid, however, the convention of electricity into heat that it

will be further converted into electricity, and this is a waste of exergy, but it makes sense from an

economical perspective. The last case is when the sum of the power output of the power block

and PV is not enough to cover the demand, in this case, the load has to be supported by other

sources.

The integration of PV with a CSP that has some degree of freedom to adapt according to the

demand and a possibility of energy storage, allows the system to increase the energy supply from

30 % of the demand to 60-90% depending on the area (1). The drawback of the integration of

PV with CSP is that the LCOE (Levelized Cost of Energy) is almost double that of the one using

only PV, the LCOE of PV only is 0.05 €/kWh and with the integration of the two technologies is

0.08-0.11 €/kWh (1).

-14-

2.3.3 Supercritical CO2 as a working fluid for the power block

The idea of running a power cycle with a working fluid of CO2 came up in the late '90, but due

to the low price of natural gas, the idea of using CO2 for a closed Brayton (see Fig.6 (2)) cycle

was abandoned until recently [9]. In the last few years, many studies have been done about the

topic, there are several proposals in the literature, but it seems that almost all of them agree on

the benefits, which are discussed in this paragraph.

The first advantage of Brayton supercritical CO2 is the higher efficiency than the Rankine cycle

at the typical temperature of CSP, furthermore, it has a good efficiency in a reasonable range of

working temperature, which is very important to increase the off-design performance. Brayton

C02 can be used in the solar power tower where the temperature is up to 1000° and in the case of

parabolic through due to its flexibility.

The second benefit is that the density of supercritical CO2 is high in the working conditions of

CSP, this leads to high power density machines as a direct consequence of a reduced size of the

components and a lower footprint of the power block (2). The last significant improvement

considering the Rankine is that there is no need for water, this is an important aspect considering

the lack of water in some areas where there is a huge amount of solar energy like in a desert.

The last significant improvement considering the Rankine is that there is no need for water, this

is an important aspect considering the lack of water in some areas where there is a huge amount

of solar energy like in a desert.

Fig. 6 Thermodynamic cycle on T-s and the scheme of the basic components of the cycle

There are seven types of different configurations, the recompression with reheating reaches the

highest efficiency if the load is between 100 % and 57 % of the nominal capacity (2). Under 57 %

partial-cooling cycles show higher efficiency than recompression with reheating, but generally

speaking the layout with the best thermal performance is recompression with reheating (2).

However, under a techno-economic analysis considering the TES capacity, the layout with the

lowest LCOE is partial-cooling (6). Although the recompression with reheating has the highest

thermal efficiency it has also the highest cost due to its components.

-15-

2.4 Heat demand from the industry

The CSP technologies could be used to generate heat for the industry without relying on fossil

fuel technology. Fig. 7 (7) shows the heat demand from the industry based on the sector and the

temperature needed in the European Union in 2006. Based on Fig. 7, there are many sectors

where the temperature needed could be matched with the capability of the CSP for heat

production.

Fig. 7 The top figure shows the heat demand for different sectors, the bottom figure shows the

normalized heat demand of each nation for different temperature

The location of the study is Sevilla (Spain 37° N, 6°W, DNI=1800 kWh/m2 (8)), Figure 7 also

indicates the heat demand according to the temperature for some European countries. The

percentage of heat demand up to 450°C is around 40% of the overall heat demand in Spain thus,

these technologies could be able to produce renewable heat in a cost-competitive way without

relying on fossil fuel resources. SH is the acronym for space heat, and HW is the acronym for hot

water. The other categories of temperature range are referring to the heat needed for industrial

processes.

-16-

2.4.1 CSP for heat generation

At the present moment, the systems that have integrated CSP as a heat supply for their need are

relatively few. However, the most used CSP type for heat production is the parabolic trough that

could reach temperatures up to 300 °C (4). Fig. 8 (9) shows a typical case of integration of the

CSP in the existing plant, in this case, the CSP allows the system to consume significantly less

amount of natural gas for its heat needs. The application in which the CSP has been integrated

for heat generation purposes are the following: beverage, food processing, textile, district heating,

dairy, and chemicals.

Fig. 8 Possible layout of CSP used as a heat generation for industrial purposes

The main difference between the parabolic trough and the Solar Power Tower for heat

generation is the maximum temperature, in the case of SPT the temperature could be up almost

to 800 °C. Another difference is SPT requires more infrastructure because of its need for the

tower hence, it is not attractive on a small scale.

-17-

2.5 Market trend

This chapter summarizes the past and the current state of the art regarding the SPT and it

forecasts the future market trend according to the scientific papers that have been found in the

literature.

2.5.1 Past and state of the art

In the past years since nowadays, the most implemented CSP technology worldwide is the

Parabolic trough collector (PTC) see Fig. 9 (4). As a direct consequence, it is the most mature

technology of CSP and it has the lowest technical and financial risk (10). The first CSP plants

have not been integrated with thermal energy storage (TES) because of the costs and complexity

of the system, but the benefits of TES are so significant that the integration with it makes the

plant more competitive. Since 2015, hardly any projects have been built without a TES, the

addition of TES is now a cost-effective way to lower LCOE (11), increasing the flexibility and

increasing the capacity factor. Until today, the method of thermal energy storage has been done

using Sensible heat storage (SHS) even though phase change energy storage has better

thermodynamic properties, from a technological and economical point of view, SHS are

competitive (12). The materials most used for TES have been molten salt (60% wt NaNO3 and

40% wt KNO3 (13)) or synthetic oil. The molten salt has the following benefits: higher working

temperature, no flammability, and lower toxicity (13). Once the technological challenges have

been overcome, the most plant started to use molten salt.

Fig. 9 The global the number of CSP plant and types of plants in the world

-18-

2.5.2 Future direction

The first trend of the market relevant to mention is the one of SPT, considering the total capacity

under construction the 60% of it is on SPT and 37% of it is PTC (10). The SPT due to its

concentration ratio and its properties is more feasible for large scale and it seems that the market

is going in this direction. Consequently, there are many papers on improving the efficiency, and

the integration with PV and the Brayton-CO2 cycles is almost certain.

However, there are different approaches regarding the heat transfer fluid: molten salt, particles,

and air. In this case, is more difficult to predict which HTF will take the lead in the future. The

HTF more suitable for the integration with SPT Brayton sCO2 now is molten salt due to its

maturity, but in the future, air with a packed bed of rocks and particles will take remarkable

importance in the market. Both air and particles receivers have the following advantages (12):

higher operating temperature, operating pressure can be close to ambient temperature so there is

no need for complex sealing, lower fabrication cost than in the case of molten salts and steam,

lower cost of rocks and particles (if properly chosen).

In the next future, thermal heat storage will still be sensible heat storage because of the low

maturity of the other technologies. There are some studies regarding the possibility of using

latent heat storage or chemical storage, but there are remarkably more expensive despite their

higher thermal efficiency these solutions are not ready to be commercialized (14).

Fig.10 shows (14) that the majority of the capacity currently developing is of the types of SPT,

this is a clear direction of the market.

Fig. 10 Status and distribution of each type of CSP

-19-

3 Methodology

The starting point has been the literature review to have a better understanding of the topic and

find the literature gap to determine the research direction.

The second step was finding in the literature the most suitable component for the conversion

from a classic molten salt system to a particle one. The components that changed remarkably are

the following: the receiver, the storage system, the heat exchanger that heats the sCO2 and the

heat exchanger for the cogeneration. The first part of the study has been conductive non

considering the cogeneration to evaluate the system without it.

The third step was building a techno-economical of the components and integrating them into

the model, after which the assumptions of the electrical demand and the geographical positions

have been made. At this point it has been possible deciding the design variable of the study and

run the optimization to obtain the size of each component, the optimization algorithm is from

the family of Genetic Algorithms. The optimization of the system has been based on the

minimization of the LCOE.

After the first optimization, the cogeneration has been added to the system. To avoid having too

many design variables the size of the plant has been fixed at the minimum LCOE of the case

without cogeneration. Two types of thermal load profiles have been tried with different peak

values and for each thermal load, the system has been optimized. The optimization in the case of

the cogeneration has been slightly different, the fitness function of the algorithm is not just the

LCOE but a parameter that decreases the rank of the solution if it does not respect the constraint

on the reliability. Since the parameters that decrease the rank of the solution are arbitrary, a

sensitivity analysis has been done to see the influence on the results.

The fourth step has been introducing a price of electricity from the geographical position chosen

and analyzing how the system performs in that scenario, in the case of the system with

cogeneration it has been analyzed the possibility to produce heat at the same cost as natural gas.

The last step has been the analysis of the results and understanding of how the different plants

could be implemented cost-effectively depending on the relationship with the grid.

Fig. 11 Methodology scheme

-20-

3.1 Optimization

This chapter explains the optimization procedure and the design variables used.

3.1.1 Design variable

In this short paragraph it has been explained the physical meaning of design variable use in this

study.

• Maximum power injectable into the grid (𝑃𝑚𝑎𝑥): it indicates the maximum power

injectable in the electric grid, it corresponds to the summer peak.

• Capacity of the CSP (𝑃𝐶𝑆𝑃): it indicates the power capacity of power block, it is connected

to 𝑃𝑚𝑎𝑥 by the formula 3

• Solar multiple (𝑆𝑀): it indicates the thermal power of the receiver considering the

nominal thermal power required by the power block (PB) see formula 1

𝑆𝑀 =
𝑄𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟

𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙 𝑃𝐵
 (1)

• PV ration (𝑃𝑉): it indicates the ration between the capacity of the CSP and the PV power

installed formula 2.

𝑃𝑉 =
𝑃𝑉

𝑃𝐶𝑆𝑃
 (2)

• Thermal storage (𝑡): it indicates the number of hours for which the thermal storage (TES)

can support the power block at its nominal capacity

• Alfa (𝛼): it indicates the size of the power block in respect to the peak energy demand see

formula 3

𝛼 =
𝑃𝐶𝑆𝑃

𝑃𝑚𝑎𝑥
 (3)

• Thermal load (𝑄): it indicates the peak of the thermal load on the plant, its design variable

is represented in the formula 4

𝑄 =
𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑙𝑜𝑎𝑑 𝑝𝑒𝑎𝑘

𝑃𝑚𝑎𝑥
 (4)

-21-

After the definition of the design variable, their ranges have been defined table 1 summarized the

ranges.

Table 1. Design variables and their range

Design variable Without cogeneration With cogeneration

𝑃𝑚𝑎𝑥 50 ÷ 200 MW 130 MW

𝑃𝑉 1.1 ÷ 2.4 1.6 ÷ 2.7

𝑡 8 h ÷ 12 h 10 h ÷ 14 h

𝛼 0.8 ÷ 1 1

𝑆𝑀 1.1 ÷ 2.4 1.6 ÷ 2.7

𝑄 0 0.01 ÷ 0.4

The range of the PV ratio, storage time, and solar multiple has been found in the literature similar

study case (2), on the other hand for alpha and the thermal load the approach was different. The

rage of alpha has been selected to show the beneficial effect on the LCOE thus, values lower

than 0.8 has not been considered because there is no benefit on LCOE going lower than values.

The range of thermal load has been selected in such a way that has been possible for the techno-

economical thus, large enough to determine the minimum thermal load for which there is an

economical benefit.

The lowest power size investigated is 50 MWe because there are some limitations regarding the

modelling of some components for example the receiver and the main heat exchanger, while the

higher power size investigated has been 200 MWe because the CSP plants with higher capacity

are quite rare and not so realistic at the current state of the art of these technologies.

-22-

3.1.2 Genetic algorithm

The optimization has been based on the minimization of LCOE, the main issue is that each

simulation takes around 90 seconds to be computed and considering all the possible

combinations amount all the variables it will take around 120 days of simulations thus, this

approach of calculating for finding the minimum LCOE is not efficient. This problem is typical

in the field of simulations thus, there are several approaches possible, for this optimization have

been implemented a genetic algorithm.

For the calculation of LCOE has been used the formula 5, the parameters used are the following:

• 𝐶𝐴𝑃𝐸𝑋: capital expenditures

• 𝑖: interest rate

• 𝑡: lifetime of the pant

• 𝐸: annually energy produced

• 𝑂𝑃𝐸𝑋: operational expenditure

𝐿𝐶𝑂𝐸 =
𝐶𝐴𝑃𝐸𝑋{

𝑖(1+𝑖)𝑡

(1+𝑖)𝑡−1
}+𝑂𝑃𝐸𝑋

𝐸
 (5)

The genetic algorithm is inspired by the natural selection phenomena, the main components of

the algorithm are the following:

• Representation of a solution: a solution is represented by a specific combination of the

design variables, the vector that identifies the solution is called the genome, for example

[i,j,k,l,m...] each number represents the index of the design variable

• Iteration process: the algorithm works in such a way that at each iteration the accuracy of

the results increases, at each iteration the program calculates n number of solutions this

number is called population size

• Fitness function: it represents the criteria with which the solutions are ranked, in this

case, the fitness function is the LCOE

• Selection of the solutions: using the fitness function the best solutions are selected for the

generation of the solution of the next generation

• Generation of new solutions: At each iteration, a new set of solutions is generated based

on the solution with the higher rank at the iteration before.

• Random mutation: At each iteration, for each solution, a random mutation to a random

index in the genome is applied to avoid the algorithm will be blocked in a local minimum

The parameters which have been used are summarized in the table 2.

Table 2. Parameters used for the genetic algorithm

Parameter Value

Population size 10

Minimum rank 4

Random mutation 1

-23-

3.1.2.1 With cogeneration

In the optimization with the cogeneration, the first difference has been the introduction of a

penalty function, the fitness function used in this optimization is reported on the formula 6.

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐿𝐶𝑂𝐸 ∗ 𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑓𝑑) (6)

The penalty function represents the constrain on the reliability of the heat production, the 𝑓𝑑

defines the fraction of heat supplied over the theoretical one in one year formula 7.

𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 (𝑓𝑑) =
𝐻𝑒𝑎𝑡 𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑑

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 ℎ𝑒𝑎𝑡 𝑠𝑢𝑝𝑝𝑙𝑖𝑎𝑏𝑙𝑒
 (7)

Fig.12 shows the penalty function used; it is a linear interpolation between two points

summarized in table 3 The goal of the heat production is to supply 0.95 of the yearly thermal

demand thus, this is one of the interpolations the other has been set to have fast convergence.

Table 3. Values assumed for defining the penalty function

Fig. 12 Penalty function

However, this penalty function is arbitrary and for this, a sensitivity analysis has been done to

evaluate the influence of the penalty function on the results, the sensitivity analysis shows that

there is not a remarkable difference considering different values. The second difference has been

that alpha is considered unitary because of the need to reduce the number of design variables.

Fulfilled thermal demand Penalty function

0 4

0.95 1

1 1

-24-

4 Modelling

In this paragraph, it has been explained the modeling of the components used in the analysis. The

model that has been used is based on a quasi-static analysis without considering the transient

phenomenon. Fig. 13 shows the layout of the system that has been modelling.

Fig. 13 Scheme of the plant

-25-

4.1 Modelling the receiver

The receiver that has been chosen is called a free-falling particle receiver, the reason behind this

choice is because of its competitive costs and thermodynamic performance (15). Fig.14 shows

the scheme of it, the idea of this receiver is that the particles are falling from above and particles

are heated up from the concentrated solar irradiance from the heliostats field.

Fig. 14 Scheme of the particle receiver

The techno-economical model of the receiver is based on the following assumptions:

• The thermodynamic efficiency is a function of the DNI and the types of the particles (15)

• The heat losses and mass leakage have been included in the thermodynamic efficiency

• The cost of the receiver depends only on the thermal capacity installed

Considering these assumptions is not possible to evaluate the change in the efficiency for

different temperature ranges that is a limitation of the receiver model, furthermore, during the

cogeneration implementation, it will not be possible to make a consideration about the changing

performance of the receiver.

-26-

The efficiency of the receiver is plotted in Fig. 15 (15), it is specified for this type of receiver and

the sand particles.

Fig. 15 The efficiency of the receiver as a function of the DNI

Formula 8 is the formula used for calculating the thermal power that the receiver gives to the particles.

𝑄𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 = 𝑄ℎ𝑒𝑙𝑖𝑜𝑠𝑡𝑎𝑡 ∗ 𝜂𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 (8)

• 𝑄𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 : Useful thermal power

• 𝑄ℎ𝑒𝑙𝑖𝑜𝑠𝑡𝑎𝑡: Thermal power on the receiver from the heliostat field

The working temperatures of the receiver are listed in table 4 (15), and the output temperature is

fixed. However, the temperature of the particles entering the receiver depends on the working

conditions of the plants, in the case without cogeneration the temperature is around 500 °C and

in the case with cogeneration is around 400 °C because of the heat extraction.

Table 4. Main values for the modelling of the receiver

Parameter Value

𝑇𝑜𝑢𝑡 800 °C

𝑇𝑖𝑛 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 300 °C

𝜂𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 0.2-0.5

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑜𝑠𝑡 150 €/kWth

• 𝑇𝑜𝑢𝑡: it is the outlet temperature of the particle going out from the receiver to the TES

• 𝑇𝑖𝑛 𝑚𝑖𝑛𝑖𝑚𝑢𝑚: it is the temperature from the cold tank going to the receiver to be heated

up, it changes according to the conditions of the cold tank, but it cannot be lower than

𝑇𝑖𝑛 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 because it is outside of the working condition of the receiver.

The economic model is based on a specific price considering the installed capacity of thermal

power installed, C=150 €/kWth (15) valid for power installed higher than 100 MWth.

-27-

4.2 Modelling of the heat exchanger for heating the sCO2

The heat exchanger that has been used for connecting the particle loop with the supercritical

CO2 is shown in Fig.16 (16), it is the type of indirect heat exchanger because there is no direct

contact between the particles and the supercritical CO2. The particles are falling from above the

heat exchanger, most of the external pipes have the function of recirculating the air to increase

the effectiveness of heat exchange and the remaining ones are used for the circulation of the

supercritical CO2.

Fig. 16 Shows the particle heat exchanger

The techno-economical model of the heat exchange is based on the following assumptions:

• The thermal power exchanged between the particles and the sCO2 is a function of the

NTU

• The heat losses and mass leakage have been neglected

• The pressure drop has been neglected because of their relatively low value compared to

the pressure involved (16)

• The cost of the heat exchanger depends only on the thermal capacity installed

Considering these assumptions, the main limitation is that the cost of the heat exchanger depends

only on the thermal capacity installed and it is decoupled from the effectiveness, therefore, it is

not possible to make considerations about the effectiveness and the cost of the heat exchanger.

The thermodynamic modelling has been carried out using the experimental data [16] see Fig. 17.

The first step for the design of the heat exchange was imposing its working temperature in the

design point (16), table 5 summarized the design temperature and the specifics of the heat

exchange.

-28-

 Fig. 17 Effectiveness as a function of NTU experimental data

Table 5. Main values for the modelling of the heat exchanger that provides the thermal power to the

power block

Parameter Value

Effectiveness design point 0.85

T in particle 790 °C

T out particle 590 °C

T in sCO2 560 °C

T out sCO2 770 °C

U (Overall Heat Transfer

Coefficient)

100 W/K*m2

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑜𝑠𝑡 440 €/kWth

In the following list has been explained the parameters used for the modelling of the heat

exchanger:

• 𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑑𝑒𝑠𝑖𝑔𝑛 𝑝𝑜𝑖𝑛𝑡: it is the effectiveness that the heat exchanger has at its

nominal working point

• 𝑇𝑖𝑛 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒: it is the temperature of the particle coming from the hot tank (TES) going to

the heat exchanger to heat up the sCO2, it is fixed

• 𝑇𝑜𝑢𝑡 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒: it is the temperature of the particle coming from the heat exchanger and

going to the cold tank, it might have a little variation in the off-design of the heat

exchanger

• 𝑇𝑖𝑛 𝑠𝐶𝑂2: it is the temperature of the cold sCO2, it might have a little variation due to the

variation of the ambient temperature

• 𝑇𝑜𝑢𝑡 𝑠𝐶𝑂2: it is the temperature of the hot sCO2 that will go to the turbine, it is fixed to

have the same working condition for the power block

• 𝑈 (𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐻𝑒𝑎𝑡 𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡): it is the coefficient that regulates the heat

exchanger used to determine the area of the heat exchanger

-29-

The area of the heat exchanger has been calculated using the scheme in Fig. 18, the first step has

been calculating the mass flow rate needed (formula 9-10) to be able to fulfil the thermal power

requirement of the power block at the design point, and the second has been combining the

information of the effectiveness at the design point and the information about the mass flowrate

and determine the NTU, at last, an inverse formula of NTU (formula 11) has been used to

calculate the area.

Fig. 18 Scheme of determine the area of the heat exchanger

𝑚𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 𝑑𝑒𝑠𝑖𝑔𝑛 =
𝑄𝑑𝑒𝑠𝑖𝑔𝑛

ℎ𝑖𝑛 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠−ℎ𝑜𝑢𝑡 𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
 (9)

𝑚𝑠𝐶𝑂2 𝑑𝑒𝑠𝑖𝑔𝑛 =
𝑄𝑑𝑒𝑠𝑖𝑔𝑛

ℎ𝑖𝑛 𝑠𝐶𝑂2−ℎ𝑜𝑢𝑡 𝑠𝐶𝑂2
 (10)

𝑁𝑇𝑈 =
𝑈∗𝐴ℎ𝑒𝑎𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟

𝐶𝑚𝑖𝑛
 (11)

The specific cost of the receiver that has been chosen is 440 €/kWth (16) valid for power size higher than

100 kWth.

-30-

4.3 Modelling the thermal energy storage

The technology that has been chosen is the silo type for storing the heated particles see Fig. 19

(17) because this is the most competitive technology using particles, Fig. 19 shows the system of

transportation of the particles.

Fig.19 Thermal energy storage technology and the movement system

The techno-economical model of the heat exchange is based on the following assumptions:

• The heat losses coefficient is constant
• The cost of the thermal storage depends on the thermal energy installed

Considering these assumptions, the main limitation is that it is not possible to evaluate the heat

losses for different environment condition such a different wind speed.

The thermodynamic model used is quite simple since this type of TES has high efficiency (>95)

(17), and the heat losses have been calculated using the electrical analogy formula 12-15. Fig. 20

(17) shows the equivalent thermodynamic model used

-31-

Fig. 20 Thermal coefficient of each layer and the thermal resistance model

∅𝑙𝑜𝑠𝑠𝑒𝑠 = ℎ 𝐴 (𝑇𝑖𝑛 − 𝑇𝑎𝑚𝑏) =
1

𝑅𝑡𝑜𝑡
(𝑇𝑖𝑛 − 𝑇𝑎𝑚𝑏) (12)

𝑅𝑡𝑜𝑡 = ∑ 𝑅𝑖
5
𝑖=1 (13)

𝑅𝑖 =
log (

𝑟𝑘+1
𝑟𝑘

)

2∗𝜋∗𝑘𝑘∗𝐻
 (14)

𝑅5 =
1

𝐴 ℎ𝑎𝑖𝑟
 (15)

In the following list has been explained the parameters used for the modelling the TES:

• ∅𝑙𝑜𝑠𝑠𝑒𝑠: it is the heat losses in the environment

• 𝐴: it is the external area of the tank

• ℎ: it is the overall heat transfer coefficient

• 𝑇𝑖𝑛: it is the average temperature of the tank

• 𝑇𝑎𝑚𝑏: it is the temperature of the environment

• 𝑅𝑖: it is the thermal resistance that represent a specific layer

• 𝑅5: it is the thermal resistance of the air, it represents an average value through the year

Table 6. summarized the value used for the calculation of the heat losses and modelling the TES

Parameter Values

Height of the tank 25 m

Conductivity of the layer n°1 0.7 W/m*K

Conductivity of the layer n°2 0.2 W/m*K

Conductivity of the layer n°3 0.1 W/m*K

Conductivity of the layer n°4 0.8 W/m*K

Convection of the air 5 W/m2*K

Specific cost 25 €/kWh

-32-

The second step was defining the size range of the TES depending on the thermal energy to be

stored, which depends on the storage time and the capacity of the CSP. On this range has been

evaluated that the h coefficient does not change significantly concerning the size and the storage

time see Fig. 21 because of that it has been considered a constant value of h for the whole

studying.

Fig. 21 variation of the h coefficient considering different size of the TES

The cost of the thermal storage has been calculated considering the specific cost of 25 €/kWh

(17).

-33-

4.4 Modelling the cogeneration

The cogeneration implementation has been made in such a way that the heat production is done

reliably therefore, the system has the possibility to bypass the main heat exchangers when the

power block does not work. Fig. 22 show the scheme of the cogeneration implementation. Due

to the constrain of the reliability, the thresholds of the TES for the activation of the PB are

higher because there is the need of having enough heat for the cogeneration otherwise, the PB

would use all the heat for the electric conversion. With this change, the system in case of limited

thermal energy will choose to support the thermal load instead of the electric load.

Fig. 22 Scheme of the plant related to the cogeneration

The working temperature of the heat exchanger are summarized on the table 7. The lowest

possible temperature that the heat exchanger of the cogeneration brings the particles is Tmin

which depends on the receiver.

Table 7. Main values for the modelling of the cogeneration

Parameter Value

𝑇𝑏𝑦𝑝𝑎𝑠𝑠 790 °C

𝑇𝑝𝑜𝑤𝑒𝑟 𝑏𝑙𝑜𝑐𝑘 500 °C

𝑇𝑚𝑖𝑛 300 °C

𝑇𝑎𝑣𝑒𝑟𝑎𝑔𝑒 400/450 °C

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑐𝑜𝑠𝑡 110 €/kWth

The formulas that have been used are coming from the direct application of the first principle of

thermodynamics.

𝑄𝑐𝑜𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 ∗ (ℎ𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 − ℎ𝑚𝑖𝑛) (16)

ℎ𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 =
𝑚𝑝𝑜𝑤𝑒𝑟 𝑏𝑙𝑜𝑐𝑘∗ℎ𝑝𝑜𝑤𝑒𝑟 𝑏𝑙𝑜𝑐𝑘+𝑚𝑇𝐸𝑆∗ℎ𝑇𝐸𝑆

𝑚𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠
 (17)

-34-

In the following list has been explained the parameters used for the cogeneration:

• 𝑄𝑐𝑜𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛: it is the thermal power going to the heat user

• 𝑚𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠: it is the mass flow rate through the heat exchanger of the cogeneration and

going to the cold tank, when the power block is working that mass corresponds to the

mass flow rate needed to heat the sCO2 otherwise, the mass flow is taken directly from

the TES

• ℎ𝑚𝑖𝑛: it is the minimum enthalpy at which the cogeneration is working, it is a direct

consequential of the receiver minimum inlet temperature

• ℎ𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠: it is the enthalpy of the particles before the cogeneration when the power

block is operating ℎ𝑝 is equal to the outlet enthalpy after heating the sCO2 otherwise the

enthalpy of the particles is equal to the outlet enthalpy of the TES

Fig. 23 shows the control unit for the cogeneration. During the operation ration of the PB, the

remaining heat from particles heat is used for the cogeneration if that heat is not enough to

supply the thermal there is the necessity for heat extraction directly from the TES. When the PB

is not working all the heat is extracted from the TES. In the case of PB being off and there is not

enough thermal energy in the TES, the supply of heat is partial or null. The specific cost of the

heat exchanger in this analysis has been assumed based on a commercial heat exchanger air to

water, the specific cost (18) of the commercial heat exchanger has been multiplied by a factor of

1.3 because it uses air instead of particles. The specific cost used for the cogeneration

implementation is 110 €/kWth.

Fig. 23 Flow chart of the control system for the cogeneration

-35-

4.5 Modelling the electric grid

To understand the behavior and to evaluate the capacity factor of the system in one year a

variable electricity demand has been considered because the electrical load to support changes in

each month and for each hour. It has been considered 4 normalized electric loads for each

season, see Fig. 24 (19), the intermediate curve has been evaluated through multiple

interpolations, and the result is that for each hour of the year it has been calculated the

normalized electricity demand has. The electric load data has been selected from the Spanish

database according to the geographical location of the plant. To allow the system to support the

load in absence of solar radiation the maximum power injectable into the grid is equal to the CSP

capacity, however, the CSP depends on the alpha coefficient which is a design variable.

Fig. 24 Electric load for each season

Due to the electric load assumed the capacity factor (see formula 18) is limited to 0.72 because

the maximum power injectable in the grid is usually lower than 𝑃𝑚𝑎𝑥 thus, even in the best

scenario when it is possible to supply all the demand 𝐶𝑓 is limited. The 𝐶𝑓 limit has been

calculated using the formula 18 and substituted in the energy to produce the maximum energy

injectable into the grid.

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

24∗365∗𝑃𝑚𝑎𝑥
 (18)

-36-

4.6 Modelling the thermal load

The thermal loads considered are assumed to be the typical thermal need for industrial

applications because of their temperature, Fig. 25 shows the thermal load profile.

• The first thermal profile considered has been a continuous load hence, the system must

be able to supply heat continuously.

• The second has been a shift base load thus, the starting heat request is at the start of the

shift it has been supposed at 8:00 and the ending time is at the end of the shift it has been

supposed at 18:00.

The two-load profile have in common the peak power, but the energy that they extract from the

system is different by a factor of around 2.4. This difference leads to a higher impact on the

system because in the case of continuous load the system has to produce 2.4 more heat, Fig.32

shows that the impact on the LCOE for the same peak thermal power is remarkable higher in the

case of continuous load.

Fig. 25 Normalized thermal load over the time

-37-

4.7 Modelling the economic scenario

Most of the study has been based on the minimization of the LCOE, the last step of the analysis

has the goal of evaluating the economic performance of the system considering the actual price

of the electricity and the heat. The assumption behind this approach is the electricity and the heat

are sold at the market price.

In this scenario, a variable price of electricity has been considered (19) the intermediate price of

the electricity has been calculated using the same approach used in the maximum electricity

injectable into the grid. The price of electricity (Fig. 26) is the one for 2019, it has been

considered also the present prices (2022) that are strongly affected by the war in Ukraine. The

present prices of electricity and natural gas represent a scenario where there is the economic

pressure of finding to reach the independence of energy production. The price of electricity for

the year 2022 has been considering the trend 2.5 times more than the 2019 (19). The main reason

for introducing the variable price is to take into account the variable in the price of the different

seasons

Fig. 26 Price of the electricity for each season

The price of the heat has been considered fixed to the same LCOH of natural gas (20)

considering the year 2019 and 2022 (21).

Table 8. The cost of the heat from natural gas in two different years

Year Price of natural gas (€/MWh) LCOH (€/MWh)

2019 17 55

2022 80 118

-38-

4.8 Modelling the total land usage

An important aspect of the plant is its footprint, the size related to the plant of the system has

been estimated based on the similar power installed of PV and CSP operating in the world. The

footprints have been calculated for the system without cogeneration and with cogeneration in the

best optimal solution, formula 19 has been used for the calculation of the land needed. Table 9 (

(22), (23), (24), (25), (26)) indicates the values used for the calculation, these values have been

calculated based on the values found for the plant of a similar capacity and storage time of the

study case. Cerro Dominador Solar Thermal Plant (Antofagasta, Chile DNI 3200 kWh/m2 (27))

is the name of the power plant considered as a base case, the plant is hybridized with PV, and it

has a similar capacity to the configuration of which the footprint has been estimated. The

capacity of the base case is 100 MWe (28) hence, the land usage has been increased by a factor

𝑏𝑒𝑡𝑎 (see formula 19) to consider the difference in the power installed. The base case has a land

usage of 10 Km2 considering a capacity of 130 MWe.

𝑏𝑒𝑡𝑎 =
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒 𝑐𝑎𝑠𝑒
= 1.3 (19)

The ratio between the size of the receiver has been introduced to take into account the oversize

of some components in the case of cogeneration thus, in the case of cogeneration the electric

capacity is the same but the size of the heliostat field and the receiver increase. In the case where

there is no cogeneration that ratio is unitary otherwise, that ratio is bigger than the unit.

𝐿𝑎𝑛𝑑 = 𝑆𝑝𝑒𝑐𝑖𝑓 𝑎𝑟𝑒𝑎𝑃𝑉 ∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑃𝑉 +
𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑅𝐸𝐹
∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑟𝑒𝑎𝐶𝑆𝑃 ∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐶𝑆𝑃 (20)

In the following list has been explained the parameters used for the modelling the TES:

• 𝑆𝑝𝑒𝑐𝑖𝑓 𝑎𝑟𝑒𝑎𝑃𝑉: it is the specific land usage with respect to the capacity of the

photovoltaic installed

• 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑟𝑒𝑎𝐶𝑆𝑃: it is the specific land usage with respect to the capacity of the CSP

installed

• 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑃𝑉: it is the capacity of the PV installed

• 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝐶𝑆𝑃: it is the capacity of the CSP installation

• 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟: it is the thermal capacity of the receiver considering the cogeneration

• 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑅𝐸𝐹: it is the thermal capacity of the receiver of the base case without the

cogeneration at the specific size of the plant.

Table 9. Specific areas calculated from actual plants

Parameter Value

𝑆𝑝𝑒𝑐𝑖𝑓 𝑎𝑟𝑒𝑎𝑃𝑉 0.028
𝐾𝑚2

𝑀𝑊

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑟𝑒𝑎𝐶𝑆𝑃 0.05
𝐾𝑚2

𝑀𝑊

-39-

5 Analysis of results

In this chapter, the results of several simulations have been presented. The results have been

divided into two paragraphs, one considering without the cogeneration and the anther

considering with the cogeneration.

5.1 Without cogeneration

The optimization using the genetic algorithm gave the optimal solution, which is summarized in

table 10, from this solution several plots have been obtained (Fig. 27-29) fixing all the design

variables at their optimal values (minimum of LCOE) expects P max and the specific parameter.

Table 10. The best optimal solution in the case without cogeneration

Design variable Value

𝑃𝑚𝑎𝑥 130 MW

𝑆𝑀 1.8

𝑡 11 h

𝛼 0.85

𝑃𝑉 2.4

Fig. 27 the plot at the left has summarized the calculation for mapping the minimum of LCOE

in the design variable done by the genetic algorithm. The plot is quite scattered, to be sure that

the actual minimum of LCOE is the one shown on the left of Fig. 27 a sensitivity analysis

considering the design variables has been done on the minimum LCOE found by the genetic

algorithm. The right plot of Fig. 27 shows that the minimum found by the genetic algorithm is

the same that has been found in the sensitivity analysis. Moreover, the black window in Fig. 27

shows that the system has several solutions that have an LCOE of around 82 €/MWh with

different CAPEX, which offers some flexibility to the system because it can have the same

LCOE but if a lower capital investment. The configuration with the lowest power size (50 MWe)

presents an LCOE of 88 with almost the lowest CAPEX in all configurations simulated.

-40-

Fig. 27 Mapping the global minimum using the genetic algorithm and the sensitivity analyses on the

minimum found in the mapping step

In Fig. 28 it is possible to see the effect of the alpha it has a beneficial effect on the LCOE with

the downside of reducing the capacity factor, the choice of the specific alpha depends on the

agreement with the electric grid, it the plant should supply a baseload alpha can be lower to

reduce the size and the cost of the power block. It is possible to see those values close to the unit

have remarkable benefits on LCOE with a limited influence on the capacity factor. An important

observation is that the 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 is limited at 0.72 with the electric load chosen (see

paragraph 4.5), which is a value like the one obtained for the different values of alpha considered.

This shows that the system can reliably produce electricity in absence of sunlight and that is a

high-value asset.

Fig. 28 The influence of alpha on the LCOE and Cf on the system

-41-

Fig. 29 shows the effect of the solar multiple, PV ratio and the storage time on the LCOE. It has

been plotted the most significant values to make the representation clear and comprehensive.

The design variable that affects the most the LCOE is the storage time because it has a strong

impact on the electricity of the power block, it is possible to notice that lower values of t, which

is an indication of the capacity of the TES, have a remarkably higher value of LCOE.

Fig. 29 The effect on LCOE considering PV ration, storage time and solar multiple

-42-

The behavior of the system considering two typical days one in summer and one in winter is

shown in Fig. 30, it shows that the influence of alpha does not significantly affect the electricity

production in winter because the electricity demand is lower thus, the system can cover almost

the same percentage of the demand with a lower cost of the components. Fig. 30 shows the

working principle of the system, during the sunlight the plant produces electricity using the PV,

while at night-time it produces the electricity using the CSP (power block). Generally, the PV and

the power block are working in opposite phases thus, they do not work at the same time for the

following reasons:

• The power block minimum working load is 0.4 𝑃𝐶𝑆𝑃

• There is no reason not to produce electricity with PV when it is possible, the PV field is

oversized this allows the system to cover the electrical demand normally in the daytime

Fig. 30 shows the behavior of the plant and the influence of alpha

-43-

5.1.1 Performance in the scenario

The payback time has been evaluated to show that the system has a lower payback time than its

lifetime thus, the technology could be profitable and have some market attraction. The analysis

that has been done is the one for the evaluation of the payback time of the system without

cogeneration, formula 19 has been used for finding the payback time. Fig. 31 shows the point of

NVP=0, which corresponds to the payback time, for two different values of alpha. The alpha has

a beneficial impact also in the CAPEX without impacting remarkably on the revenues. The two

systems have a similar payback time because there is compensation between a lower CAPEX and

lower revenue. It has been considered 1 year for the construction of the plant. In this context, the

payback time is an indication that the system can compete in the energy market considering the

actual prices without any government substitutes. Fig. 31 shows the difference of the NPV over

time considering two different prices scenario, due to the Ukrainian conflict the price of

electricity has increased significantly, which leads to a lower payback time.

𝑁𝑒𝑡𝑃𝑟𝑒𝑠𝑒𝑛𝑡𝑉𝑎𝑙𝑢𝑒 (𝑁𝑃𝑉) = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 – 𝐶𝑜𝑠𝑡 (21)

Fig. 31 NPV considering two prices scenario

Table 11 summarizes the payback time considering the different conditions, the big difference in

the payback time is due to the dependence between the price of the electricity and the cost of the

natural gas, which have been increased in 2022 due to the war in Ukraine.

Table 11. Payback time considering two different price scenarios

Year considered Payback time (year)

2019 7 years

2022 17 years

-44-

5.2 With cogeneration

The design variables that have been considered for the cogeneration analysis are summarized in

table 1.

The LCOE of the systems increases because of the following reasons:

• The lower amount of heat available for the power block thus, the amount electricity

produced is lower

• Due to the constraint on the reliability of the heat generation, some components are

oversized to introduce more heat into the system hence, the total costs are increasing

• The system produces less electricity due to the changing of the minimum threshold of the

TES to activates the power block

Fig. 32 shows the changes in the LCOE and the different sizes of the components, the reason

for the increasing size of the components is due to the increasing heat requested by the system to

operate properly. The overall trend of the 𝐶𝑓 and the component size are intuitive, a lower

electricity production leads to a lower 𝐶𝑓 and a higher heat request in the system leads to a higher

components size. The impact on the system with a continuous thermal load to supply is higher

because it extracts higher heat from the system.

Fig. 32 shows the changes in the LCOE and in the components of the plant for different thermal load

-45-

Fig. 33 shows the behavior of the system considering cogeneration, the thermal load affects the

electricity production of the CSP most in the winter due to the lower solar resource, while in the

summer period the electricity production is nearly not affected by the thermal load.

Fig. 33 The behavior of the system in case of the cogeneration in a representative winter and summer day

-46-

5.2.1 Performance in the scenario

The system without cogeneration and the one with is compared in the scenario where the price

of electricity and natural gas is the one in 2019 because the comparison has been done based on

the relative difference in the revenues (from the system without cogeneration to the one with

cogeneration). Considering the year 2022 would lead to higher revenues in the system but this

study has analyzed the relative difference in the revenues between the two plants.

To compare properly the two systems, it has been calculated the minimum price for selling the

heat to have the same revenues as the system without cogeneration for the different thermal

loads. For lower thermal load the price of the heat needed is extremely high because the system

produces less amount of heat, but it is modified from the optimal case to be able of producing

heat reliably. Fig. 34 it shows the minimum price at which the system has to sell the heat to have

the same revenues as the plant without cogeneration, the plant with cogeneration has lower

revenues from the electricity production because it produces less electricity for the reason above

mentioned. Fig. 34 has two plots, the one on the left is considering all the domains studied while

the right one is a zoom on the most economically interesting part. The price of the natural gas

has been used to determine the minimum thermal load which has the same revenues as the

system without cogeneration. Formula 22 has been used for calculating the cost of the heat.

𝐶𝑜𝑠𝑡 𝑜𝑓 ℎ𝑒𝑎𝑡 =
𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 𝑒𝑙𝑒𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑐𝑜𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛−𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑠 𝑒𝑙𝑒𝑡𝑟𝑖𝑐𝑖𝑡𝑦𝑤𝑖𝑡ℎ 𝑐𝑜𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑
 (22)

Fig. 34 The minimum price of the heat to have the same revenues for different thermal load

The thermal loads that have been selected for the calculation of the payback time are those that

have a cost of heat limit equal to the LCOH of the natural gas, table 12 summarized the two

systems with the minimum thermal load.

Table 12. The minimum thermal load to get the same cost of the heat of the natural gas

Type of thermal load Minimum load

Continuous 19.5 MW

Shift base 45.5 MW

-47-

Fig. 35 shows the ratio of energy production from the three sources, the PV and CSP produce

electricity and the cogeneration produces heat, although from an energetic point of view they

should not be directly compared it is important to understand the amount of heat produced for

the cogeneration with respect to the electricity produced. In the case of cogeneration, the

electricity production from the CSP decreases because of the less amount of heat in the system a

way of mitigating the reduction of the revenues from the CSP could be the changing the dispatch

strategy thus, producing the electricity with the CSP when the price of it is highest.

Fig. 35 Pie chart of the energy production considering a thermal load that has the same revenues as the

system without cogeneration and sells heat at the LCOH of natural gas

The evaluation of system with cogeneration has been evaluated using formula 15. Fig. 36 shows

the payback time for two different thermal loads, considering the price of natural gas in 2019.

The type of thermal load affects in a negligible way the payback time because the revenues from

the heat generation are less than 20 % of the total revenues.

Fig. 36 NPV considering two prices scenario

-48-

5.3 Comparison the LCOE among different technologies

Fig. 37 ((29), (30), (31), (32)) shows the comparison among some CSP technologies, according

to the data found in the literature the system that shows the lower LCOE is the one using SPT

with molten salt. The system studied in this analysis is in the lower range of other CSP

technologies. However, the systems studied have a wide range of improvements because they

have a higher thermodynamic potential due to their higher working temperature and they have

not reached their maturity.

Fig. 37 shows the LCOE from a combined cycle using natural gas as a heat source for different

years, normally the price of natural gas is that the CSP are less competitive in the energy market.

However, in the case when the price of natural gas significantly increases the CSP are more cost-

competitive, in the past something similar happen around the 70’ during first the oil crisis and

these technologies got some interest in the market but, after the decreasing prices of fossil fuels

they almost all the market attraction. Nowadays, in the context of urging or reducing the

greenhouse emission and energy independence is less likely that it will happen something like in

the 70'.

The systems studied could have a similar relationship with the grid to one of the combined cycle

plants because the systems have in common the thermodynamic cycle and due to the TES the

CSP can produce electricity to meet the demand.

Fig. 37 Comparison of LCOE among different CSP and combined cycle in different years

-49-

5.4 Comparison the LCOH among different technologies

Fig. 38 ((20), (21)) shows the comparison between the cost of the heat from the study case

compared to the LCOH from natural gas considering two different scenarios for the gas price.

The cost of the heat depends on the thermal load, for a continuous thermal load higher than 20

MW the system can produce heat at the same LCOH of natural gas in 2019. The minimum cost

of heat found is 20 €/MWh which is the asymptotic value of the LCOH produced using the

system.

Fig. 38 Comparison of LCOH from natural gas in two different years to the LCOH of the study case

-50-

5.5 The footprint of the system

Table 13 summarizes the footprint of different configurations of the system. It is possible to

appreciate the effect the downsizing of the power block has some advantages on land use. The

main reduction is coming from the lower heliostats field. In case of the cogeneration, the bigger

contribution to the increase of the footprint of the system is coming from the higher heliostats

field needed to introduce more heat into the system. The comparison among the footprint of

different configurations should be done between the base and the system optimized with the

downsizing without the cogeneration. The reason is that the base case system considered (Cerro

Dominador Solar Thermal Plant) does not have a cogeneration feature, the main contribution of

the difference in the land usage is because of the different locations the base case location has a

DNI significantly higher than the one of Sevilla.

Table 13. Land used of different configurations analyses and the base case used for the estimation of the

footprint

Configuration Footprint

Best Optimal solution without downsized of the PB 14 Km2

Best Optimal solution with downsized of the PB 12.8 Km2

Base case (see 4.8) 10 Km2

Best Optimal solution having a continuous thermal

load of 20 MW

15 Km2

-51-

6 Conclusion

These systems studied show a higher capacity factor between 0.5-0.6 which compared to other

renewable technology is a competitive value, they also show an LCOE between 82-120 €/MWh

and considering that the system has some degree of flexibility for the electricity production this

LCOE is competitive in the energy market. The systems studied could have a similar relationship

with the grid to one of the combined cycle plants. The payback time of the system considering

the prices of 2019 are around 16 years for both systems, which is a positive indication since the

systems can make a profit within their lifetime, on the other hand considering that these

technologies are relatively new building a system of this size (130 MWe) with the risk of being

obsolete in some years it is not a negligible aspect.

• Without cogeneration: The base case system shows the minimum LCOE of 82 €/MWh

which is a competitive value considering the possibility of electricity when is needed,

alpha coefficient shows that is possible changing the size of the power block according to

the relationship with the electric grid that is a variable feature

• With cogeneration: The modified system shows the possibility of selling the heat at the

same cost as the LCOH of natural gas in a reliable way, which gives market attraction to

this system. The system with some changes would be able of producing heat at

temperatures up to 760 °C, that is the main difference between this technology and the

parabolic trough for producing high-temperature heat

The possibility of producing high-temperature heat for industrial purposes could boost the

performance of these technologies significantly in the case of some government action in the

direction of reducing greenhouse emissions. The main limitation of these technologies is their

location, which must have specific characteristics, however, an implementation would surely lead

to a decrease of emissions from the energy sector and the industry. The present work indicates

the possibility of producing renewable heat at a cost like the one of natural gas hence, the overall

trend of the energy market seems to go in the favor of these technologies.

-52-

6.1 Limitation and future work

The limitation of this analysis can be summarized in the following lists:

• The model is a quasi-static model which does not consider the transient phenomena, it

has been used for evaluating the performance of a load which varies every 1 hour hence,

the quasi-static assumption has been used at its limit. The model used gives a reasonably

precise indication of the overall energy production of the systems, but it cannot evaluate

the losses of the changing working condition of the CSP.

o A possible future work could be the introduction of electric batteries and analysis

of their impact on the LCOE, the electric battery could overcome the problem of

the transient behavior of the thermodynamic cycle hence, the system will be able

to cover the electric demand when there is not solar resource availability. The

electric battery could impact a positive way on the LCOE and on the exegetic

performance because the electric heater will be used less.

• The assumption on the thermal used is optimistic thus, considering the heat user in a

long-distance so introducing the heat losses the system could not be able to produce heat

at the same LCOH of natural gas.

o A possible future work could be analyzing a specific thermal user and considering

the distance between the heat generation and the heat user and evaluating if it is

still possible to produce heat in a cost-competitive way.

• The economic advantage of using this type of technology in a context where the

population is more sensitive to the greenhouse reduction could have a positive impact

perceived image of the firm that implements it, therefore the costumers are willing to a

higher price this would increase the economical values

• The system footprint and the constraints on the location are strong limits on the

application of these technologies thus, the CSP for obvious reasons needs an area where

the DNI has high enough value to make the plant cost-competitive in the energy market.

In the case of cogeneration, the system must have a near industry which needs high-

temperature heat to operate, with the cogeneration the conditions in the location increase

thus, it could applicable only in some areas. The effect of the high footprint could

mitigate acting the downsize of the power thus, reducing the alpha parameter.

o A possible future work could be of integrating the cogeneration with the Carnot

battery to avoid the limitation of having an area with high DNI, however, the

system will be drastically different as it will have only the TES and the power

block.

-53-

7 Reference

1. Alberto Giaconia, Roberto Grena. A model of integration between PV and thermal CSP

technologies. ScienceDirect. [Online] 2021.

https://www.sciencedirect.com/science/article/pii/S0038092X21004138.

2. Jingze Yang, Zhen Yang,Yuanyuan Duan. Load matching and techno-economic analysis of CSP

plant with S–CO2 Brayton cycle in CSP-PV-wind hybrid system. ScienceDirect. [Online] 2021.

https://www.sciencedirect.com/science/article/pii/S0360544221002656.

3. Trevisan, Silvia. Renewable Heat on Demand: High-temperature thermal energy storage: a comprehensive study from

material investigation to system analysis via innovative component design. 2022.

4. Naman Goyal, Akshansh Aggarwal, Anil Kumar. Concentrated solar power plants: A critical review

of regional dynamics and operational parameters. ScienceDirect. [Online] 2022.

https://www.sciencedirect.com/science/article/abs/pii/S2214629621004230.

5. Wang, Zhifeng. Design of Solar Thermal Power Plants. ScienceDirect. [Online] 2019.

https://www.sciencedirect.com/science/article/pii/B9780128156131000018.

6. Francesco Crespi, Giacomo Gavagnin, David Sánchez, Gonzalo S. Martínez. Supercritical carbon

dioxide cycles for power generation: A review. [Online] 2017.

https://www.sciencedirect.com/science/article/pii/S0306261917301915.

7. Tobias Naegler, Sonja Simon, Martin Klein, Hans Christian Gils. Quantification of the European

industrial heat demand. 2015.

8. Solargis. Spain. Solargis. [Online] https://solargis.com/maps-and-gis-data/download/spain.

9. ABSOLICON. [Online] https://www.absolicon.com/solar-applications-markets/.

10. IRENA. International Renewable Energy Agency. [Online] 2019.

https://www.irena.org/publications/2020/Jun/Renewable-Power-Costs-in-2019.

11. Harmeet Singh, R.P. Saini, J.S. Saini. A review on packed bed solar energy storage systems. Science

Direct. [Online] 2009. https://www.sciencedirect.com/science/article/pii/S1364032109002536.

12. Markus Hänchen, Sarah Brückner, Aldo Steinfeld. High-temperature thermal storage using a

packed bed of rocks e Heat transfer analysis and experimental validation. Science Direct. [Online] 2010.

https://reader.elsevier.com/reader/sd/pii/S1359431111001062?token=76B2E09A219E77E93746211405

F0924D319204A90290F1EAD5BD9E96E3EEABACB4493EDA9C1F9344FFDC945942DC2B1E&origi

nRegion=eu-west-1&originCreation=20220216121247.

13. Alberto Giaconia, Gaetano Iaquaniello, Amr Amin Metwally, Giampaolo Caputo, Irena Balog.

Experimental demonstration and analysis of a CSP plant with molten salt. Direct Science. [Online] 2020.

https://www.sciencedirect.com/science/article/pii/S0038092X20310501.

14. O. Achkari, A. El Fadar. Latest developments on TES and CSP technologies – Energy and

environmental issues, applications and research trends. ScienceDirect. [Online] 2020.

https://www.sciencedirect.com/science/article/pii/S1359431118363269.

15. A new methodology of thermal performance improvement and numerical analysis of free-falling particle receiver. Rui

Jiang, Ming-Jia Li, Wen-Qi Wang. 2021, DirectScience.

16. High-Temperature Particle Heat . Matthew D.Carlson, Kevin J. Albrecht, Clifford K. Ho, Hendrick

F. Laubscher, Francisco Alvarez. 2020, Sandia National Laboratories.

17. Design analysis of particle-base thermal energy storage system for concentrating solar power or grid energy storage.

Zhiwen Ma, Patrick Davenport, Ruichong Zhang. 2020.

18. ATO. [Online] 2022. https://www.ato.com/plate-heat-exchanger-50-60-plate.

19. Omie. [Online] 2019. https://www.omie.es/en/market-results/monthly/daily-market/daily-

market-price?scope=monthly&year=2021&month=5.

-54-

20. Standardized benchmarking establishes degree of competitiveness for thermal storage

solutions. McK/LDES.

21. Trading economic. [Online] https://tradingeconomics.com/commodity/eu-natural-gas.

22. Wikipedia. Solar power tower. [Online]

https://en.wikipedia.org/wiki/Solar_power_tower#:~:text=Generally%2C%20installations%20u

se%20from%20150,hectares%20(3%2C200%2C000%20m2).

23. —. Cerro Dominador Solar Thermal Plant. [Online]

https://en.wikipedia.org/wiki/Cerro_Dominador_Solar_Thermal_Plant.

24. —. Khi Solar One. [Online] https://en.wikipedia.org/wiki/Khi_Solar_One.

25. Photovoltaic power station. Wikipedia. [Online]

https://en.wikipedia.org/wiki/Photovoltaic_power_station.

26. Golmud Solar Park. [Online]

https://en.wikipedia.org/wiki/Huanghe_Hydropower_Golmud_Solar_Park.

27. Solargis. Chile. [Online] https://solargis.com/maps-and-gis-data/download/chile.

28. Cerro Dominador Solar Thermal Plant. Wikipedia. [Online]

https://en.wikipedia.org/wiki/Cerro_Dominador_Solar_Thermal_Plant.

29. Energy Intelligence. [Online] https://www.energyintel.com/0000017e-fc9d-d1a7-affe-

fcff7cfe0000.

30. The Cost of Electricity. Direct Science. [Online]

https://www.sciencedirect.com/science/article/pii/B9780128238554000097.

31. Qiliang Wanga, Gang Peib, Hongxing Yanga. Direct Science. [Online] 2020.

https://www.sciencedirect.com/science/article/pii/S096014812031884X.

32. Guccione, Salvatore. Design and Optimization of a Sodium-Molten Salt Heat Exchanger for

Concentrating Solar Power applications. Diva. [Online] 2020. http://kth.diva-

portal.org/smash/record.jsf?pid=diva2%3A1461996&dswid=7396.

33. A Methodology to Identify the Most Promising Concentrating Solar . Guccione, Salvatore.

2022.

34. Wikipedia. Ouarzazate Solar Power Station. [Online]

https://en.wikipedia.org/wiki/Ouarzazate_Solar_Power_Station.

-55-

8 Appendix

In this paragraph, there is the code used for the analysis. The code was written by Salvatore

Guccione for simulating the techno-economical performance of a system having molten salt, I

adapted to be able to simulate the behavior of a system working with particles.

8.1 System model

import Models.HybridPlant.PV as PV

import Models.ControlSystems.CS_ElectricHeater as EHCS

import Models.HybridPlant.ElectricHeater as EH

import Models.Media.Particle as Medium1

import Models.Media.sCO2 as Medium3

import Models.SolarField.Sun as SUN

import Models.SolarField.HeliostatField as HF

import Models.Utilities.U_SolarField.SolarFunctions as SFun

import Models.ControlSystems.CS_DirectReceiverS as RECS

import Models.Receivers.ParticleReceiverS as REFREC

import Models.Utilities.U_Receiver.ThermalLosses_MoltenSaltReceiver as TLMSREC

import Models.Storages.TankStorage as TES

import Models.ControlSystems.CS_PowerBlock as PBCS

import Models.HeatExchangers.HX_sCO2PowerBlockS as PBHX

import Models.Utilities.U_PowerBlock.Mixer as MIX

import Models.Utilities.U_ControlSystem.Tank2Logic as T2LU

import Models.Utilities.U_CostModels.CM_MoltenSaltsCO2System as CM

import Models.Utilities.KPI as KPI

import Models.Utilities.GeneralUtilities as GU

import Models.Utilities.ExportExcel as EE

from pathlib import Path

import Data.ElectricityDemand.Demand as DE

import Models.HeatExchangers.HX_cogeneration as HX_coge

import Models.ControlSystems.CS_Cogeneration as CS_coge

import math as MA

import numpy as np

import pandas as pd

import time

import openpyxl

def MoltenSaltsCO2(

 Model_Name = 'MoltenSaltsCO2', # [-] -

Name of the model

 # ------------------------------ Location Inputs

 state_name = 'Spain', # [-] -

Name of the state where the plant is located

 w_file_path = r'./Data/Weather/Spain/', # [-] -

Path to the weather file

 w_file_name = 'ESP_AN_Sevilla.AP.083910_TMYx.epw', # [-] -

Weather file name

 day_des = 172, # [-] -

Design day [1-365]

 hour_des = 12, # [-] -

Design hour (in solar time) [1-24]

 lat = 37.367, # [deg] -

Latitude of the location

-56-

 lon = -6.000, # [deg] -

Longitude of the location

 time_zone = 1, # [h] -

Time zone of the location

 Wspd_des = 5, # [m/s] -

Wind speed at the design point

 elev_location = 2, # [m] -

Elevation of the methereological tower

 alpha_wind = 0.16, # [-] -

Scaling coefficient for wind speed - assumed based on:

https://doi.org/10.1016/j.rser.2021.111411

 # ------------------------------ PV Inputs

 P_max = 25e6, # [W] -

Maximum Electric Power that can be injected to the grid

 P_AC=50e6, # [W] -

AC nameplate system capacity

 r_DCAC=1.2, # [-] -

DC-to-AC ratio

 module_type = 0, # [-] -

Module type [0, 1, 2] - [Standard,Premium,Thin film]

 array_type = 0, # [-] -

Array type [0, 1, 2, 3, 4] - [Fixed Rack, Fixed Roof, 1Axis, Backtracked, 2Axis]

 tilt=35, # [deg] -

Array tilt angle (if no tracking)

 azimuth = 180, # [deg] -

Array azimuth angle [deg] - Options: N=0, E=90,S=180,W=270

 enable_battery = 0, # [-] -

Boolean to enable battery

 GCR = 0.4, # [-] -

Ground coverage ratio - MIN=0.01,MAX=0.99

 eta_inv_input = 98, # [%] -

Inverter efficiency at rated power - MIN=90,MAX=99.5

https://www.nrel.gov/docs/fy19osti/72399.pdf

 P_single_PV = 325, # [W] -

Single PV module DC power output - Based on the YGE 72 CELL SERIES 2 - P = 325 W

 A_single_PV = 1.96*0.99, # [m2] -

Single PV module area - Based on the YGE 72 CELL SERIES 2 - P = 325 W

 # ------------------------------ Electric Heater Inputs

 P_name_EH = 25e6, # [W] -

Nominal electric heater capacity (P_AC - P_max)

 eta_heater_design = 0.95, # [-] -

Electric heater efficiecny

 # ------------------------------ Heliostat Field Inputs

 SM = 2.4, # [-] -

Solar Multiple

 use_SolarPilot=True, # [-] -

Boolean to decide to use SolarPILOT

 helio_width=12.2, # [m] -

Width of the heliostat

 helio_height=12.2, # [m] -

Height of the heliostat

 DNI_des=850, # [W/m2] -

Direct Normal Irradiance at design point

 excl_fac=0.97, # [-] -

Exclusion factor (mirror density)

 he_av_design = 0.99, # [-] -

Helisotats availability

-57-

 helio_reflectance = 0.9, # [-] -

Heliostats reflectance

 Optimize_SF = True, # [-] -

Boolean to run optimization of the solar field

 input_helio_map = False, # [-] -

Boolean to decide if the heliostat map is given as an input

 optical_path = r'./Data/Optical/', # [-] -

Path to the heliostat map

 helio_map_name = 'Heliostats_Position_Map.xlsx', # [-] -

Heliostat map file name

 land_max = 9.5, # [-] -

Maximum land multiplier

 land_min = 0.75, # [-] -

Minimum land multiplier

 W_track=0.055e3, # [W] -

Tracking power for a single heliostat

 optical_file_name = 'OpticalEfficiency.txt', # [-] -

Name of the optical file

 # ------------------------------ Tower and Receiver Inputs

 FlatPlate = False, # [-] -

Boolean to decide to use a flat plate receiver or not

 input_eff = False, # [-] -

Boolean to decide to use a fixed receiver efficiency

 eta_rec_input = 0.5, # [-] -

Input of a constant receiver efficiency

 D_rec_input = 17.65, # [m] -

Input of the receiver diameter

 ar_rec_input = 51.6/17.65, # [-] -

Receiver aspect ratio (height over width)

 N_pa_rec = 20, # [-] -

Number of panels in receiver

 N_fl = 1, # [-] -

Number of parallel flow-paths

 t_tb_rec = 1.25e-3, # [m] -

Thickness of the receiver tube wall

 D_tb_rec = 40e-3, # [m] -

Receiver tube outer diameter

 H_tower_input = 190, # [m] -

Input of the tower height

 rec_absorptance = 0.95, # [-] -

Receiver coating absorptance

 rec_emissivity = 0.84, # [-] -

Receiver coating emissivity

 k_material = 16, # [W/(mK)] -

Conductivity of the receiver material (SS)

https://doi.org/10.1680/ensu.2007.160.4.167

 rec_hl_perm_guess = 30, # [kW/m2] -

Receiver design heat loss

 T_cold_set_REC_input = GU.from_degC(290), # [K] -

Cold Receiver design temperature - Ref. https://elib.dlr.de/141315/

 T_hot_set_REC = GU.from_degC(800), # [K] -

Hot Receiver design temperature - Ref. https://elib.dlr.de/141315/

 # ------------------------------ Storage Inputs

 t_storage = 10, # [h] -

Hours of storage

 H_storage = 12, # [m] -

Height of the storage tank

-58-

 T_hot_start_TES = GU.from_degC(790), # [K] -

Hot tank starting temperature (T_hot_start_TES = T_hot_set_REC)

 T_cold_aux_set = GU.from_degC(290), # [K] -

Cold tank auxiliary heater set-point temperature

 T_hot_aux_set = GU.from_degC(785), # [K] -

Hot tank auxiliary heater set-point temperature

 alpha = 0.4, # [W/(m2K)] -

Tank constant heat transfer coefficient with ambient

 k_loss_cold = 0.15e3, # [J/kg] -

Cold tank parasitic power coefficient

 k_loss_hot = 0.55e3, # [J/kg] -

Hot tank parasitic power coefficient

 k_loss_rec = 0.21e3, # [J/kg] -

Cold tank parasitic power coefficient

 W_heater_hot = 30e6, # [W] -

Hot tank heater capacity

 W_heater_cold = 15e6, # [W] -

Cold tank heater capacity

 tank_ar = 38.8/12, # [-] -

Storage tank aspect ratio

 e_ht= 0.99, # [-] -

Tank Heater Efficiency

 dt = 3600, # [s] -

Number of samples to generate in one hour in the ODE to simulate the storage

behaviour

 # ------------------------------ Heat Exchanger

 U_HX_design=100, #[W/K*m^2]

 T_source_cold_design=595+273.15,

 eff_HX_coge=1,

 L_min_HX=0.3,

 Q_de=10*1e3,

 # ------------------------------ Control Inputs

 t_ramping = 0.5*3600, # [s] -

Power block startup delay: 0.5 hour

 t_standby = 2*3600, # [s] -

Power block standby delay: 2 hour

 ele_min = 0.13962634015955, # [rad] -

Heliostat stow deploy angle

 Wspd_max = 15, # [m/s] -

Wind stow speed

 nu_start = 0.2, # [-] -

Minimum energy start-up fraction to start the receiver

 nu_min_sf = 0.2, # [-] -

Minimum turn-down energy fraction to stop the receiver

 nu_min_EH = 0.2, # [-] -

Minimum energy fraction to start/stop the electric heater

 L_start = 50, # [%] -

Hot Tank initial level

 hot_tnk_empty_lb = 6, # [%] -

Hot tank empty trigger lower bound - Level (below which) to stop disptach

 hot_tnk_empty_ub = 11, # [%] -

Hot tank empty trigger upper bound - Level (above which) to start disptach

 hot_tnk_full_lb = 93, # [%] -

Hot tank full trigger lower bound

 hot_tnk_full_ub = 98, # [%] -

Hot tank full trigger upper bound

 cold_tnk_defocus_lb = 6, # [%] -

Cold tank empty trigger lower bound# - Level (below which) to stop disptach

-59-

 cold_tnk_defocus_ub = 11, # [%] -

Cold tank empty trigger upper bound# - Level (above which) to start disptach

 cold_tnk_crit_lb = 5, # [%] -

Cold tank critically empty trigger lower bound# - Level (below which) to stop

disptach

 cold_tnk_crit_ub = 10, # [%] -

Cold tank critically empty trigger upper bound# - Level (above which) to start

disptach

 # ------------------------------ sCO2 Power Block Inputs

 P_gross=115e6, # [W] -

Power Cycle Gross Output

 use_eta_net_blk=True, # [-] -

Boolean to decide to use a fixed net-to-gross efficiecny or calculate parasitic

losses

 eta_net_blk = 0.95, # [-] -

Gross-to-net power conversion factor at the power block - Ref.

https://doi.org/10.17185/duepublico/73961

 TIT = GU.from_degC(775), # [K] -

Turbine Inlet Temperature at design

 T_in_Compr = GU.from_degC(32), # [K] -

Compressor inlet temperature at design

 eta_gen = 0.98, # [-] -

Mechanical-to-Electrical Efficiency - Ref.

https://doi.org/10.17185/duepublico/73961

 Reheat = False, # [-] -

Boolean to decide to include Reheating in the sCO2 power block

 Recompression = True, # [-] -

Boolean to decide to include Recompression in the sCO2 power block

 Intercooling = True, # [-] -

Boolean to decide to include Intercooling in the sCO2 power block

 p_high_blk = 25e6, # [Pa] -

Power block operating high pressure - 250 bar

 p_int_blk= 16.19e6, # [Pa] -

Power block operating intermediate pressure - 161.9 bar (ONLY if Reheat is True)

 p_low_blk = 7.38e6, # [Pa] -

Power block operating low pressure - 73.8 bar

 p_incooler_blk = 10e6, # [Pa] -

Power block operating intercooler pressure - 100 bar (ONLY if Intercooling is True)

 T_in_inter_Compr = GU.from_degC(32), # [K] -

Compressor inlet temperature at design

 SR = 0.7, # [-] -

sCO2 mass flow split ratio (ONLY if Recompression is True)

 eta_HTR = 0.95, # [-] -

Effectiveness High-Temperature Recuperator

 eta_LTR = 0.95, # [-] -

Effectiveness Low-Temperature Recuperator (ONLY if Recompression is True)

 DT_recuperator = 10, # [K] -

Min Pich-point temperature recuperators

 PB_load_min = 0.4, # [-] -

Min load at which the PB can operate

 eta_PBHX=1, # [-] -

Salt-to-sCO2 HX efficiency

 DT_pinch_TESsCO2=15, # [K] -

Initial Temperature difference for the primary HX(s)

 T_in_air_cooler_des = GU.from_degC(28), # [K] -

Ambient temperature at design point for power block

-60-

 par_fix_fr = 0.0055, # [-] -

Fixed parasitics as fraction of gross rating

 # ------------------------------ Cost Data Inputs

 currency_name = "EUR", # [-] -

Name of the currency adopted

 M_conv_currency_to_USD = 0.84, # [EUR/USD] -

The currency rate from USD to currecny adopted

 r_disc = 0.07, # [-] -

Discount rate

 r_i = 0.025, # [-] -

Inflation rate

 t_life = 30, # [years] -

Lifetime of plant - Based on Downselect Criteria, Table 2

 f_contingency_CSP = 0.07, # [-] -

Contingency costs share - CSP plant - Ref. SAM Default Value

 f_contingency_PV = 0.03, # [-] -

Contingency costs share - PV plant - Ref. SAM Default Value

https://www.nrel.gov/docs/fy19osti/72399.pdf

 f_decommissioning = 0, # [-] -

Decommissioning costs share - It shoudl be 0.05 #Decommissioning costs share

 f_EPC_CSP = 0.13, # [-] -

Engineering, procurement and construction(EPC) and owner costs costs share - CSP

plant - Ref. SAM Default Value

 f_EPC_PV = 0.1, # [-] -

Engineering, procurement and construction(EPC) and owner costs costs share - PV

plant - Ref. SAM Default Value https://www.nrel.gov/docs/fy19osti/72399.pdf

 f_Subs = 0, # [-] -

Subsidies on initial investment costs

 # ------------------------------ Characterization of the System

Optimization

 LCOE_OF = True, # [-] -

Boolean to select LCOE as an objective function for the system optimization

 CAPEX_OF = False, # [-] -

Boolean to select CAPEX as an objective function for the system optimization

 CF_OF = False, # [-] -

Boolean to select CF as an objective function for the system optimization

 AEY_OF = False, # [-] -

Boolean to select AEY as an objective function for the system optimization

 AF_OF = False, # [-] -

Boolean to select AF as an objective function for the system optimization

 c_block_OF = False, # [-] -

Boolean to select c_block as an objective function for the system optimization

 ASCO2eq_OF = False, # [-] -

Boolean to select ASCO2eq as an objective function for the system optimization

 TEW_share_OF = False, # [-] -

Boolean to select TEW_share as an objective function for the system optimization

 f_AEY_CSP_OF = False, # [-] -

Boolean to select f_AEY_CSP as an objective function for the system optimization

 CF_CSP_OF = False, # [-] -

Boolean to select CF_CSP as an objective function for the system optimization

 CF_PV_OF = False, # [-] -

Boolean to select CF_PV as an objective function for the system optimization

 CAPEX_CSP_OF = False, # [-] -

Boolean to select CAPEX_CSP as an objective function for the system optimization

 CAPEX_PV_OF = False, # [-] -

Boolean to select CAPEX_PV as an objective function for the system optimization

 EH_UF_OF = False, # [-] -

Boolean to select EH_UF as an objective function for the system optimization

-61-

 TES_PV_fraction_OF = False, # [-] -

Boolean to select TES_PV_fraction as an objective function for the system

optimization

 # ------------------------------ Handling of the Outputs

 identification_folder_summary = '', # [-] -

Identification of the folder for the summary of the results

 identification_summary = '', # [-] -

Identification of the summary of results file

 identification_folder_results = '', # [-] -

Identification of the folder for the results

 identification_results = '', # [-] -

Identification of the results files

 save_all_files = False, # [-] -

Boolean to decide if to save all the results files or only the summary

 erase_old_summary = False, # [-] -

Boolean to decide if to erase the old results in the summary file

 # ------------------------------ Other Inputs

 Short_Simulation = False, # [-] -

Boolean to decide to limit the simulation at a short time interval

 shortime_start = 0, # [-] -

Index of the start of the time interval

 shortime_end = 3, # [-] -

Index of the end of the time interval

 #--------------------------------- Simulation with multiple parameters

 Flag=0,

 Co_i=1,

 Co_j=1,

 Co_k=1,

 Co_l=1,

 Co_m=1,

 number_sim=1

):

 start_time = time.time()

 print(u"\u2192 Design of the plant started")

~~~

Design ~~~

 PD=DE.load(P_max)

 #print(max(PD))

PV Field

Calculated Parameters

 part1 = time.time()

 P_DC=r_DCAC*P_AC # [W] -

System size - DC nameplate

 W_heater_min = P_name_EH * nu_min_EH # [W] -

Minimum Electric Heater Power

 w_file = '%s%s' %(w_file_path, w_file_name) # [-] -

Weather file

-62-

 # Calculation

of the PV Field

 [PV_rows, A_land_PV_tot, A_PV_field, PV_EnergyYield, PV_CF, PV_P_AC_inv_annual,

PV_Annual_Energy, PV_P_DC_inv, PV_P_AC_inv, W_net_PV, W_heater_PV_raw, EH_on,

PV_share, W_wasted_PV_plus]=PV.Simple_PVPlant(

 w_file, tilt, azimuth, array_type, module_type, P_single_PV, A_single_PV,

r_DCAC, P_DC, GCR, enable_battery, eta_inv_input, P_max, P_name_EH, W_heater_min,

PD)

 #print(len(PV_share))

 print(u"\u2192 Design of the PV Field completed (Duration: %s s)"

%(np.around(time.time() - part1, decimals=0)))

Power Block

Calculated Parameters

 part1 = time.time()

 # Selecting the

PB Type and defining the design

 if Recompression==False and Reheat==False and Intercooling==False:

 import Models.PowerBlocks.sCO2_PB_Simple as PBS

 PB_S=True

 PB_S_Inter=False

 PB_R=False

 PB_R_Inter=False

 PB_Recomp=False

 PB_Recomp_Inter=False

 PB_RR=False

 PB_RR_Inter=False

 if Recompression==False and Reheat==False and Intercooling==True:

 import Models.PowerBlocks.sCO2_PB_Simple_Intercooler as PBSInter

 PB_S=False

 PB_S_Inter=True

 PB_R=False

 PB_R_Inter=False

 PB_Recomp=False

 PB_Recomp_Inter=False

 PB_RR=False

 PB_RR_Inter=False

 if Recompression==False and Reheat==True and Intercooling==False:

 import Models.PowerBlocks.sCO2_PB_Reheat as PBR

 PB_S=False

 PB_S_Inter=False

 PB_R=True

 PB_R_Inter=False

 PB_Recomp=False

 PB_Recomp_Inter=False

 PB_RR=False

 PB_RR_Inter=False

 if Recompression==False and Reheat==True and Intercooling==True:

 import Models.PowerBlocks.sCO2_PB_Reheat_Intercooler as PBRInter

 PB_S=False

 PB_S_Inter=False

 PB_R=False

-63-

 PB_R_Inter=True

 PB_Recomp=False

 PB_Recomp_Inter=False

 PB_RR=False

 PB_RR_Inter=False

 if Recompression==True and Reheat==False and Intercooling==False:

 import Models.PowerBlocks.sCO2_PB_Recompr as PBRecomp

 PB_S=False

 PB_S_Inter=False

 PB_R=False

 PB_R_Inter=False

 PB_Recomp=True

 PB_Recomp_Inter=False

 PB_RR=False

 PB_RR_Inter=False

 if Recompression==True and Reheat==False and Intercooling==True:

 import Models.PowerBlocks.sCO2_PB_Recompr_Intercooler as PBRecompInter

 PB_S=False

 PB_S_Inter=False

 PB_R=False

 PB_R_Inter=False

 PB_Recomp=False

 PB_Recomp_Inter=True

 PB_RR=False

 PB_RR_Inter=False

 if Recompression==True and Reheat==True and Intercooling==False:

 import Models.PowerBlocks.sCO2_PB_Recompr_plus_Reheat as PBRR

 PB_S=False

 PB_S_Inter=False

 PB_R=False

 PB_R_Inter=False

 PB_Recomp=False

 PB_Recomp_Inter=False

 PB_RR=True

 PB_RR_Inter=False

 if Recompression==True and Reheat==True and Intercooling==True:

 import Models.PowerBlocks.sCO2_PB_Recompr_plus_Reheat_Intercooler as

PBRRInter

 PB_S=False

 PB_S_Inter=False

 PB_R=False

 PB_R_Inter=False

 PB_Recomp=False

 PB_Recomp_Inter=False

 PB_RR=False

 PB_RR_Inter=True

 if PB_Recomp_Inter:

 identification_PB='_PB_Recomp_Inter_'

 [m_flow_sCO2_des, eta_blk_des, T_MH_sCO2_cold, T_max_HTR_sCO2,

T_max_LTR_sCO2, W_HPT_des, eta_HPT_des, W_MC1_des, eta_MC1_des, W_MC2_des,

eta_MC2_des, W_RC_des, eta_RC_des, UA_MH_des, UA_HTR_des, UA_LTR_des,

UA_cooler_des, UA_intercooler_des, Q_Cooler_des, DT_pinch_cooler,

Q_Intercooler_des, DT_pinch_intercooler, Q_HTR_des, Q_LTR_des,

thermodynamic_cycle_des,

f_prop_des]=PBRecompInter.Design_sCO2_PB_Recompr_Intercooler(

 P_gross, TIT, T_in_Compr, T_in_inter_Compr, p_high_blk, p_low_blk,

p_incooler_blk, SR, eta_gen, eta_HTR, eta_LTR, T_hot_set_REC, T_cold_set_REC_input,

DT_pinch_TESsCO2, T_in_air_cooler_des, DT_recuperator

)

-64-

 [TS_1_des, TS_2_des, TS_3_des, TS_4_des, TS_5_des, TS_6_des, TS_7_des,

TS_8_des, TS_9_des, TS_9_prime_des, TS_9_second_des, TS_10_des] =

thermodynamic_cycle_des

 T_sCO2_1_des=GU.to_degC(Medium3.temperature(TS_1_des))

 T_sCO2_2_des=GU.to_degC(Medium3.temperature(TS_2_des))

 T_sCO2_3_des=GU.to_degC(Medium3.temperature(TS_3_des))

 T_sCO2_4_des=GU.to_degC(Medium3.temperature(TS_4_des))

 T_sCO2_5_des=GU.to_degC(Medium3.temperature(TS_5_des))

 T_sCO2_6_des=GU.to_degC(Medium3.temperature(TS_6_des))

 T_sCO2_7_des=GU.to_degC(Medium3.temperature(TS_7_des))

 T_sCO2_8_des=GU.to_degC(Medium3.temperature(TS_8_des))

 T_sCO2_9_des=GU.to_degC(Medium3.temperature(TS_9_des))

 T_sCO2_9_des_K = Medium3.temperature(TS_9_des)

 T_sCO2_9_prime_des=GU.to_degC(Medium3.temperature(TS_9_prime_des))

 T_sCO2_9_second_des=GU.to_degC(Medium3.temperature(TS_9_second_des))

 T_sCO2_10_des=GU.to_degC(Medium3.temperature(TS_10_des))

 #print(T_sCO2_10_des)

 #print("332")

 T_high_h = f_prop_des[1]

 T_incooler_h = f_prop_des[5]

 T_low_T = f_prop_des[9]

 h_high_T = f_prop_des[0]

 h_incooler_T = f_prop_des[4]

 h_low_T = f_prop_des[8]

 m_flow_sCO2_MC = SR * m_flow_sCO2_des

 m_flow_sCO2_RC = (1-SR) * m_flow_sCO2_des

 # sCO2

Thermodynamic States

 state_MH_hot_sCO2 = Medium3.setState_pTX(p_high_blk, TIT)

 state_MH_cold_sCO2 = Medium3.setState_pTX(p_high_blk, T_MH_sCO2_cold)

 #print(T_MH_sCO2_cold) #Temperatura 825,75

 #print("347")

 h_MH_sCO2_hot_des = Medium3.specificEnthalpy(state_MH_hot_sCO2)

 h_MH_sCO2_cold_des = Medium3.specificEnthalpy(state_MH_cold_sCO2)

 if PB_RR or PB_R or PB_RR_Inter or PB_R_Inter:

 state_RH_hot_sCO2 = Medium3.setState_pTX(p_int_blk, TIT)

 state_RH_cold_sCO2 = Medium3.setState_pTX(p_int_blk, T_RH_sCO2_cold)

 h_RH_sCO2_hot_des = Medium3.specificEnthalpy(state_RH_hot_sCO2)

 h_RH_sCO2_cold_des = Medium3.specificEnthalpy(state_RH_cold_sCO2)

 # Design

thermal power to the power Block

 #Q_flow_MH_des = m_flow_sCO2_des*(h_MH_sCO2_hot_des-

h_MH_sCO2_cold_des)/eta_PBHX

 Q_flow_MH_des=P_gross/eta_blk_des #The requirement thermal power needed for

the PB at the desing point

 if PB_RR or PB_R or PB_RR_Inter or PB_R_Inter:

 Q_flow_RH_des = m_flow_sCO2_des*(h_RH_sCO2_hot_des-

h_RH_sCO2_cold_des)/eta_PBHX

 Q_flow_des=Q_flow_MH_des+Q_flow_RH_des # It can be

calculated also as P_gross/eta_blk_des

 else:

 Q_flow_des=Q_flow_MH_des # It can be

calculated also as P_gross/eta_blk_des

 W_base_blk = par_fix_fr * P_gross # Power

consumed at all times in power block

-65-

 P_net = eta_net_blk * P_gross # Power block

net rating at design point

 P_name = P_net + P_AC # Nominal Power

of the system

 print(u"\u2192 Design of the PB completed (Duration: %s s)"

%(np.around(time.time() - part1, decimals=0)))

Control of the

Power Block Calculated Parameters

 part1 = time.time()

 # Molten Salt-

side Thermodynamic States

 T_hot_set_TES = T_hot_set_REC

 state_hot_set_TES = Medium1.setState_pTX(Medium1.p_default, T_hot_set_TES)

 h_hot_set_TES = Medium1.specificEnthalpy(state_hot_set_TES)

 h_hot_set_REC = h_hot_set_TES

 state_cold_set_TES_input = Medium1.setState_pTX(Medium1.p_default,

T_cold_set_REC_input)

 h_cold_set_TES_input = Medium1.specificEnthalpy(state_cold_set_TES_input)

 state_min_cold_TES_MH = Medium1.setState_pTX(Medium1.p_default,

T_MH_sCO2_cold+DT_pinch_TESsCO2)

 h_cold_min_TES_MH = Medium1.specificEnthalpy(state_min_cold_TES_MH)

 h_cold_set_TES_MH = max(h_cold_set_TES_input, h_cold_min_TES_MH)

 state_cold_TES_MH = Medium1.setState_phX(Medium1.p_default, h_cold_set_TES_MH)

 T_cold_set_TES_MH = Medium1.temperature(state_cold_TES_MH)

 m_flow_blk_MH = Q_flow_MH_des / (h_hot_set_TES - h_cold_set_TES_MH) # Mass flow

rate to power block MH at design point

 m_flow_startup_MH = m_flow_blk_MH/2 # Mass flow

rate to power block at startup

 m_flow_standby = 0 # Mass flow

rate to power block at standby

 m_flow_off = 0 # Mass flow

rate to power block during no operation

 if PB_RR or PB_R or PB_RR_Inter or PB_R_Inter:

 state_min_cold_TES_RH = Medium1.setState_pTX(Medium1.p_default,

T_RH_sCO2_cold+DT_pinch_TESsCO2)

 h_cold_min_TES_RH = Medium1.specificEnthalpy(state_min_cold_TES_RH)

 T_cold_min_TES_RH = Medium1.temperature(state_min_cold_TES_RH)

 h_cold_set_TES_RH = max(h_cold_set_TES_input, h_cold_min_TES_RH)

 state_cold_TES_RH = Medium1.setState_phX(Medium1.p_default,

h_cold_set_TES_RH)

 T_cold_set_TES_RH = Medium1.temperature(state_cold_TES_RH)

 m_flow_blk_RH = Q_flow_RH_des / (h_hot_set_TES - h_cold_set_TES_RH) # Mass

flow rate to power block RH at design point

 m_flow_startup_RH = m_flow_blk_RH/2 # Mass flow

rate to power block at startup

 print(u"\u2192 Design of the Controller completed (Duration: %s s)"

%(np.around(time.time() - part1, decimals=0)))

-66-

Storage

Calculated Parameters

 part1 = time.time()

 if PB_RR or PB_R or PB_RR_Inter or PB_R_Inter: # Cold salt

specific enthalpy at design

 h_cold_set_TES = MIX.Mixer(m_flow_blk_MH, h_cold_set_TES_MH, m_flow_blk_RH,

h_cold_set_TES_RH)

 else:

 h_cold_set_TES = h_cold_set_TES_MH

 state_cold_set_TES = Medium1.setState_phX(Medium1.p_default, h_cold_set_TES) #

Cold salt thermodynamic state at design

 T_cold_set_TES = Medium1.temperature(state_cold_set_TES) # Cold salt

specific enthalpy at design

 T_cold_set_REC = T_cold_set_TES

 T_cold_start_TES = T_cold_set_TES

 DT_TES = T_hot_set_REC - T_cold_set_TES # Design DT

storage

 #print(T_cold_set_TES)

 #print("423")

 state_hot_set_TES = Medium1.setState_pTX(Medium1.p_default, T_hot_set_REC) #

Hold salt thermodynamic state at design

 h_hot_set_TES = Medium1.specificEnthalpy(state_hot_set_TES) # Hot salt

specific enthalpy at design

 E_max = t_storage * 3600 * Q_flow_des # [J] - Maximum

tank stored energy

 rho_cold_set = Medium1.density(state_cold_set_TES) # Cold salt

density at design

 rho_hot_set = Medium1.density(state_hot_set_TES) # Hot salt

density at design

 m_max = E_max / (h_hot_set_TES - h_cold_set_TES) # Max salt mass

in tanks

 V_max = m_max / ((rho_hot_set + rho_cold_set) / 2) # Max salt

volume in tanks

 tank_min_l = 1.8 # Storage tank

fluid minimum height - Based on NREL Gen3 SAM model v14.02.2020

 D_storage = (4*V_max/(MA.pi*(H_storage - tank_min_l)))**0.5

 V_tank = (H_storage*MA.pi*D_storage**2)/4 # Tank Volume

 A_surf_TES=MA.pi*D_storage*H_storage + MA.pi*D_storage**2/4 # [m2]

 HT_Design=[V_tank, D_storage, H_storage, alpha, W_heater_hot, T_hot_aux_set,

e_ht]

 CT_Design=[V_tank, D_storage, H_storage, alpha, W_heater_cold, T_cold_aux_set,

e_ht]

 state_cold_start_TES = Medium1.setState_pTX(Medium1.p_default,

T_cold_start_TES) # Cold salt thermodynamic state at design

 state_hot_start_TES = Medium1.setState_pTX(Medium1.p_default, T_hot_start_TES)

Hold salt thermodynamic state at design

 h_cold_start_TES = Medium1.specificEnthalpy(state_cold_start_TES) # Cold salt

specific enthalpy at design

 h_hot_start_TES = Medium1.specificEnthalpy(state_hot_start_TES) # Hot salt

specific enthalpy at design

 rho_cold_start = Medium1.density(state_cold_start_TES) # Cold salt

density at design

-67-

 rho_hot_start = Medium1.density(state_hot_start_TES) # Hot salt

density at design

 print(u"\u2192 Design of the TES completed (Duration: %s s)"

%(np.around(time.time() - part1, decimals=0)))

Electric Heater

Calculated Parameters

 Q_name_EH = P_name_EH*eta_heater_design

 state_inlet_EH_des = Medium1.setState_pTX(Medium1.p_default, T_cold_set_REC)

 state_outlet_EH_des = Medium1.setState_pTX(Medium1.p_default, T_hot_set_REC)

 h_cold_set_EH = Medium1.specificEnthalpy(state_inlet_EH_des)

 h_hot_set_EH = Medium1.specificEnthalpy(state_outlet_EH_des)

 m_flow_EH_des = Q_name_EH/(h_hot_set_EH-h_cold_set_EH) # Design

Electric Heater mass flow rate

Heliostat Field

and Receiver Calculated Parameters

 part1 = time.time()

 helio_map_file = '%s%s' %(optical_path, helio_map_name)

 optical_file = '%s%s' %(optical_path, optical_file_name)

 Q_rec_des = Q_flow_des * SM # Heat from

receiver at design

 [_, tower_fixed_cost, tower_exp] = CM.Cost_Tower(M_conv=M_conv_currency_to_USD,

H_tower=1)

 #[_, C_receiver_ref, A_receiver_ref, rec_cost_exp] =

CM.Cost_Receiver(M_conv=M_conv_currency_to_USD, A_receiver = 1)

 [_, pri_land] = CM.Cost_Land(M_conv = M_conv_currency_to_USD, A_land_tot = 1)

 [_, pri_site] = CM.Cost_SiteImprovements(M_conv=M_conv_currency_to_USD, A_SF=1)

 [_, pri_field] = CM.Cost_SolarField(M_conv=M_conv_currency_to_USD, A_SF=1)

 geom_inputs=[N_pa_rec, D_tb_rec, t_tb_rec, N_fl]

 [A_SF, n_heliostat, A_single_heliostat, A_land_base, A_land_CSP_tot, H_tower,

H_rec, ar_rec, D_rec, D_tower, C_ratio, Map_Helio,

SF_Efficiency]=HF.Design_HeliostatField(

 use_SolarPilot = use_SolarPilot,

 DNI_des = DNI_des,

 helio_width = helio_width,

 helio_height = helio_height,

 excl_fac = excl_fac,

 he_av_design = he_av_design,

 FlatPlate = FlatPlate,

 D_rec_input = D_rec_input,

 ar_rec_input = ar_rec_input,

 Q_rec_des = Q_rec_des,

 w_file = w_file,

-68-

 helio_reflectance = helio_reflectance,

 Optimize_SF = Optimize_SF,

 H_tower_input = H_tower_input,

 rec_absorptance = rec_absorptance,

 rec_hl_perm_guess = rec_hl_perm_guess,

 input_helio_map = input_helio_map,

 helio_map_file = helio_map_file,

 land_max = land_max,

 land_min = land_min,

 tower_fixed_cost = tower_fixed_cost,

 tower_exp = tower_exp,

 #C_receiver_ref = C_receiver_ref,

 #A_receiver_ref = A_receiver_ref,

 #rec_cost_exp = rec_cost_exp,

 site_spec_cost = pri_site,

 heliostat_spec_cost = pri_field,

 land_spec_cost = pri_land,

 contingency_rate = f_contingency_CSP,

 cost_sf_fixed = 0,

 sales_tax_frac = 100,

 sales_tax_rate = 0

)

 # Receiver

Design

 T_amb_des = T_in_air_cooler_des

 Wspd_des_Ht=Wspd_des*(H_tower/elev_location)**alpha_wind

 [Rec_design, eta_rec_des, eta_rec_th_des, Q_loss_rec_des, R_des,

m_flow_rec_des]=REFREC.Design_Receiver(

 Q_rec_des, T_hot_set_REC, T_cold_set_REC,eta_rec_input)

 #print(T_cold_set_REC)

 #print("508")

 #H_rec = Rec_design[1]

 #A_receiver = Rec_design[3]

 #A_out_losses_rec = Rec_design[4]

 #A_in_losses_rec = Rec_design[5]

 #A_cs_rec = Rec_design[6]

 #N_tubes_rec = Rec_design[7]

 #D_in_tb_rec = Rec_design[9]

 #w_pa = Rec_design[11]

 #N_tb_pa = Rec_design[12]

 #V_rec = Rec_design[14]

 #rec_hl_perm=(R_des-Q_rec_des)/(A_receiver)/1000 # [kW/m2]

Receiver design heat loss

 m_flow_max_REC = 1.5 * m_flow_rec_des # Maximum mass

flow rate from/to receiver

 m_flow_start_REC = m_flow_rec_des # Initial or

guess value of mass flow rate from/to heat exchanger in the feedback controller

 Q_field_design = (R_des - Q_rec_des + Q_flow_des)

 time_des=(24*(day_des-1)+hour_des)*3600

 [hra_des, dec_des] = SFun.SolarPosition(time_des, time_zone, lon)

 azi_deg180_des = GU.to_deg(SFun.azimuthAngle(dec_des, hra_des, lat))+180

 ele_deg_des = GU.to_deg(SFun.elevetionAngle(dec_des, hra_des, lat))

 eff_SF_des=SF_Efficiency(azi_deg180_des, ele_deg_des)

 print(u"\u2192 Design of the Receiver and SF completed (Duration: %s s)"

%(np.around(time.time() - part1, decimals=0)))

 # Heat exchange

Design

-69-

#[NTU_UC_d,NTU_fu_d,Fact_c,Area_HX,eta_HX_de,m_flow_sCO2_design,m_flow_p_design,Del

ta_1]=PBHX.Desing_HeatExchanger(T_hot_start_TES-273.15,T_source_cold_design-

273.15,TIT-273.15,T_MH_sCO2_cold-273.15, Medium1.h_T(T_hot_start_TES-

273.15),Medium3.h_T(p_high_blk,T_MH_sCO2_cold),Medium1.h_T(T_source_cold_design-

273.15),Medium3.h_T(p_high_blk,TIT),Q_flow_des,U_HX_design,p_high_blk

 #)

[NTU_UC,Area_HX,m_flow_sCO2_design,m_flow_p_design,eta_de_HX]=PBHX.Desing_HeatExcha

nger(T_hot_start_TES,T_source_cold_design, TIT,T_MH_sCO2_cold,

Medium1.h_T(T_hot_start_TES),Medium3.h_T(p_high_blk,T_MH_sCO2_cold),Medium1.h_T(T_s

ource_cold_design),Medium3.h_T(p_high_blk,TIT),Q_flow_des,U_HX_design,p_high_blk)

 #print(m_flow_sCO2_design) #test

 #print(m_flow_sCO2_des) #

 #print(m_flow_p_design)

 #print(m_flow_blk_MH)

 #print("522")

Calculated

Costs

 part1 = time.time()

 # PV - Costs

 C_modules_PV = CM.Cost_PV_Field(M_conv_currency_to_USD, P_DC)

 C_BoS_PV = CM.Cost_PV_BoS(M_conv_currency_to_USD, P_DC)

 [C_site_PV, _] = CM.Cost_SiteImprovements(M_conv_currency_to_USD, A_PV_field) #

Site improvements cost

 C_inverter_PV = CM.Cost_Inverter(M_conv_currency_to_USD, P_AC)

 [C_land_PV, _] = CM.Cost_Land(M_conv_currency_to_USD, A_land_PV_tot) # PV Land

cost

 C_year_PV = CM.Cost_OperationAndMaintenence_PV_Fixed(M_conv_currency_to_USD,

P_AC)

 # Hybrid

Component

 C_heater = CM.Cost_ElectricalHeater(M_conv_currency_to_USD, Q_name_EH) #

Electric Heater cost

 # CSP Section

 [C_land_CSP, _] = CM.Cost_Land(M_conv_currency_to_USD, A_land_CSP_tot) # CSP

Land cost

 [C_site_CSP, _] = CM.Cost_SiteImprovements(M_conv_currency_to_USD, A_SF) # Site

improvements cost

 [C_field, _] = CM.Cost_SolarField(M_conv_currency_to_USD, A_SF) # Field cost

 [C_tower, _, _] = CM.Cost_Tower(M_conv_currency_to_USD, H_tower) # Tower cost

 #A_receiver=100 #

 C_receiver = CM.Cost_Receiver(M_conv_currency_to_USD, Q_rec_des) # Receiver

cost

 C_storage = CM.Cost_ThermalEnergyStorage(M_conv_currency_to_USD, E_max, DT_TES,

m_max) # Storage cost

 #C_cogeneration=CM.Cost_Cogeneretion(M_conv_currency_to_USD,Q_de)

 C_HX_part=CM.Cost_HX(M_conv_currency_to_USD,Q_flow_des)

 # Power Block

cost

-70-

 if PB_S:

 C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des)

 C_MC2 = 0

 C_RC = 0

 C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des)

 C_LPT = 0

 C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des)

 C_RH = 0

 C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2,

UA_HTR_des)

 C_LTR = 0

 C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des)

 C_intercooler = 0

 W_net_turbomachinery_des = W_HPT_des-W_MC1_des

 C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 if PB_S_Inter:

 C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des)

 C_MC2 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC2_des)

 C_RC = 0

 C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des)

 C_LPT = 0

 C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des)

 C_RH = 0

 C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2,

UA_HTR_des)

 C_LTR = 0

 C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des)

 C_intercooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD,

UA_intercooler_des)

 W_net_turbomachinery_des = W_HPT_des-W_MC1_des-W_MC2_des

 C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 if PB_R:

 C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des)

 C_MC2 = 0

 C_RC = 0

 C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des)

 C_LPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_LPT_des)

 C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des)

 C_RH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_RH_des)

 C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2,

UA_HTR_des)

 C_LTR = 0

 C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des)

 C_intercooler = 0

 W_net_turbomachinery_des = W_HPT_des+W_LPT_des-W_MC1_des

 C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 if PB_R_Inter:

 C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des)

 C_MC2 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC2_des)

 C_RC = 0

 C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des)

-71-

 C_LPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_LPT_des)

 C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des)

 C_RH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_RH_des)

 C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2,

UA_HTR_des)

 C_LTR = 0

 C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des)

 C_intercooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD,

UA_intercooler_des)

 W_net_turbomachinery_des = W_HPT_des+W_LPT_des-W_MC1_des-W_MC2_des

 C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 if PB_Recomp:

 C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des)

 C_MC2 = 0

 C_RC = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_RC_des)

 C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des)

 C_LPT = 0

 C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des)

 C_RH = 0

 C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2,

UA_HTR_des)

 C_LTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_LTR_sCO2,

UA_LTR_des)

 C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des)

 C_intercooler = 0

 W_net_turbomachinery_des = W_HPT_des-W_MC1_des-W_RC_des

 C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 if PB_Recomp_Inter:

 C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des)

 C_MC2 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC2_des)

 C_RC = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_RC_des)

 C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des)

 C_LPT = 0

 C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des)

 C_RH = 0

 C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2,

UA_HTR_des)

 C_LTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_LTR_sCO2,

UA_LTR_des)

 C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des)

 C_intercooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD,

UA_intercooler_des)

 W_net_turbomachinery_des = W_HPT_des-W_MC1_des-W_MC2_des-W_RC_des

 C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 if PB_RR:

 C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des)

 C_MC2 = 0

 C_RC = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_RC_des)

 C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des)

 C_LPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_LPT_des)

 C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des)

-72-

 C_RH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_RH_des)

 C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2,

UA_HTR_des)

 C_LTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_LTR_sCO2,

UA_LTR_des)

 C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des)

 C_intercooler = 0

 W_net_turbomachinery_des = W_HPT_des+W_LPT_des-W_MC1_des-W_RC_des

 C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 if PB_RR_Inter:

 C_MC1 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC1_des)

 C_MC2 = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_MC2_des)

 C_RC = CM.Cost_Compressor_PB(M_conv_currency_to_USD, W_RC_des)

 C_HPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_HPT_des)

 C_LPT = CM.Cost_Turbine_PB(M_conv_currency_to_USD, TIT, W_LPT_des)

 C_MH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_MH_des)

 C_RH = CM.Cost_Heater_PB(M_conv_currency_to_USD, UA_RH_des)

 C_HTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_HTR_sCO2,

UA_HTR_des)

 C_LTR = CM.Cost_Recuperator_PB(M_conv_currency_to_USD, T_max_LTR_sCO2,

UA_LTR_des)

 C_cooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD, UA_cooler_des)

 C_intercooler = CM.Cost_Cooler_PB(M_conv_currency_to_USD,

UA_intercooler_des)

 W_net_turbomachinery_des = W_HPT_des+W_LPT_des-W_MC1_des-W_MC2_des-W_RC_des

 C_gearbox = CM.Cost_Gearbox_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 C_generator = CM.Cost_Generator_PB(M_conv_currency_to_USD,

W_net_turbomachinery_des)

 # PB Equipment

Costs

 C_equipment_PB = C_MC1 + C_MC2 + C_RC + C_HPT + C_LPT + C_MH + C_RH + C_HTR +

C_LTR + C_cooler + C_intercooler + C_generator + C_gearbox + C_HX_part

 #C_equipment_PB= C_equipment_PB+ C_cogeneration

 C_piping_PB = CM.Cost_Piping_PB(C_equipment_PB, Reheat) # PB Piping

Cost

 C_block = C_equipment_PB + C_piping_PB # Power block

cost

 C_bop = CM.Cost_BalanceOfPlant(M_conv_currency_to_USD, P_gross) # Balance of

plant cost

 C_site = C_site_CSP

 # Direct

capital cost subtotal - i.e. purchased equipment costs

 C_Cap_CSP = (C_field + C_site + C_tower + C_receiver + C_storage + C_block +

C_bop + C_heater)

 C_Cap_PV = (C_modules_PV + C_BoS_PV + C_site_PV + C_inverter_PV)

 C_year_CSP = CM.Cost_OperationAndMaintenence_CSP_Fixed(M_conv_currency_to_USD,

P_net) # Fixed O&M cost per year

 C_year = C_year_CSP + C_year_PV

 c_OM_CSP = CM.Cost_OperationAndMaintenence_CSP(M_conv_currency_to_USD)

 print(u"\u2192 Definition of the Costs completed (Duration: %s s)"

%(np.around(time.time() - part1, decimals=0)))

 design_time = time.time()

 print(u"\u2192 Design of the plant completed (Duration: %s s)"

%(np.around(design_time - start_time, decimals=0)))

-73-

~~~

Operation

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

#                                                                   Sun Operation 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    [time_vec_original, hra_deg, dec_deg, ele_deg, azi_deg, zen_deg, DNI_original, 

Tamb, Wspd_original]=SUN.SolarCalculations(w_file) 

    if Short_Simulation==True: 

        time_vec=time_vec_original[shortime_start:shortime_end] 

        DNI=DNI_original[shortime_start:shortime_end] 

        Wspd = Wspd_original[shortime_start:shortime_end] 

    else: 

        time_vec=time_vec_original 

        DNI=DNI_original 

        Wspd = Wspd_original 

    ele=np.array(ele_deg)*MA.pi/180 

    if use_SolarPilot: 

        azi_deg180=np.array(azi_deg)+180*np.ones(len(azi_deg)) 

        eff_field_SP=SF_Efficiency(azi_deg180, ele_deg) 

    else: 

        eff_field_SP=0*np.ones(len(azi_deg)) 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

#                                                                   Definition and 

Initialization of the variables 

# 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    # 1) Heliostat Field 

    Q_in_SF = np.empty(len(time_vec)) 

    Q_raw_SF = np.empty(len(time_vec)) 

    Q_out_SF = np.empty(len(time_vec)) 

    Q_wasted_startup = np.empty(len(time_vec)) 

    Q_wasted_defocus = np.empty(len(time_vec)) 

    Q_wasted_CSP = np.empty(len(time_vec)) 

    eta_opt_SF = np.empty(len(time_vec)) 

    SF_on=np.empty(len(time_vec)) 

    Wspd_Ht=Wspd*(H_tower/elev_location)**alpha_wind 

    W_loss_HF = np.empty(len(time_vec)) 

    defocus=np.empty(len(time_vec)) 

    defocus1=np.empty(len(time_vec)) 

    defocus2=np.empty(len(time_vec)) 

    Q_flow_defocus = np.empty(len(time_vec)) 

    # 2) Receiver 

    Q_out_rec = np.empty(len(time_vec)) 

    eta_rec = np.empty(len(time_vec)) 

    eta_th_rec = np.empty(len(time_vec)) 

    Q_loss_rec=np.empty(len(time_vec)) 

    h_REC_hot = np.empty(len(time_vec)) 

    h_REC_cold = np.empty(len(time_vec)) 



-74- 
 

    T_REC_cold = np.empty(len(time_vec)) 

    T_REC_hot = np.empty(len(time_vec)) 

    m_flow_rec = np.empty(len(time_vec)) 

    # 3) Electric Heater 

    m_flow_heater = np.empty(len(time_vec)) 

    W_heater_PV = np.empty(len(time_vec)) 

    Q_missing_defocus = np.empty(len(time_vec)) 

    Q_out_heater = np.empty(len(time_vec)) 

    h_EH_hot = np.empty(len(time_vec)) 

    h_EH_cold = np.empty(len(time_vec)) 

    T_EH_cold = np.empty(len(time_vec)) 

    T_EH_hot = np.empty(len(time_vec)) 

    eta_heater = np.empty(len(time_vec)) 

    Q_loss_heater = np.empty(len(time_vec)) 

    waste_extra_PV = np.empty(len(time_vec)) 

    W_wasted_PV_tot = np.empty(len(time_vec)) 

    W_wasted_PV_defocus = np.empty(len(time_vec)) 

    # 4) Thermal Energy Storage 

    h_TES_cold=np.empty(len(time_vec)) 

    h_TES_hot=np.empty(len(time_vec)) 

    h_toTES_cold = np.empty(len(time_vec)) 

    h_toTES_hot = np.empty(len(time_vec)) 

    T_TES_cold = np.empty(len(time_vec)) 

    T_TES_hot = np.empty(len(time_vec)) 

    T_toTES_cold = np.empty(len(time_vec)) 

    T_toTES_hot = np.empty(len(time_vec)) 

    cold_tank_ready=np.empty(len(time_vec)) 

    L_HT=np.empty(len(time_vec)) 

    h_HT=np.empty(len(time_vec)) 

    m_HT=np.empty(len(time_vec)) 

    Q_losses_HT=np.empty(len(time_vec)) 

    W_loss_HT=np.empty(len(time_vec)) 

    L_CT=np.empty(len(time_vec)) 

    h_CT=np.empty(len(time_vec)) 

    m_CT=np.empty(len(time_vec)) 

    Q_losses_CT=np.empty(len(time_vec)) 

    W_loss_CT=np.empty(len(time_vec)) 

    HT_on_discharge=np.empty(len(time_vec)) 

    HT_on_charge=np.empty(len(time_vec)) 

    Q_flow_PB = np.empty(len(time_vec)) 

    m_flow_PB = np.empty(len(time_vec)) 

    m_flow_TES_cold = np.empty(len(time_vec)) 

    m_flow_toTES_cold = np.empty(len(time_vec)) 

    m_flow_toTES_hot = np.empty(len(time_vec)) 

    m_flow_TES_hot = np.empty(len(time_vec)) 

    # 5) Power Block 

    F_prod = np.empty(len(time_vec)) 

    F_prod_off = np.empty(len(time_vec)) 

    PB_on = np.empty(len(time_vec)) 

    PB_ramp = np.empty(len(time_vec)) 

    t_on_PB=np.empty(len(time_vec)) 

    t_off_PB=np.empty(len(time_vec)) 

    rampUP_PB=np.empty(len(time_vec)) 

    t_ramp_start=np.empty(len(time_vec)) 

    t_ramp_end=np.empty(len(time_vec)) 

    Q_flow_MH = np.empty(len(time_vec)) 

    m_flow_MH = np.empty(len(time_vec)) 

    h_cold_MH = np.empty(len(time_vec)) 

    T_toTES_MH_cold = np.empty(len(time_vec)) 

    Q_sCO2_PB_MH = np.empty(len(time_vec)) 



-75- 
 

    m_flow_sCO2_MH = np.empty(len(time_vec)) 

    h_sCO2_hot_PB_MH = np.empty(len(time_vec)) 

    T_cold_MH=np.empty(len(time_vec)) 

    #T_source_hot=np.empty(len(time_vec)) 

    h_sCO2_cold_PB_MH = np.empty(len(time_vec)) 

    T_sCO2_hot_MH = np.empty(len(time_vec)) 

    T_sCO2_cold_MH = np.empty(len(time_vec)) 

    W_T1 = np.empty(len(time_vec)) 

    W_MC1 = np.empty(len(time_vec)) 

    T_sCO2_1 = np.empty(len(time_vec)) 

    T_sCO2_2 = np.empty(len(time_vec)) 

    T_sCO2_3 = np.empty(len(time_vec)) 

    T_sCO2_4 = np.empty(len(time_vec)) 

    T_sCO2_5 = np.empty(len(time_vec)) 

    T_sCO2_6 = np.empty(len(time_vec)) 

    W_loss_PB_pumps = np.empty(len(time_vec)) 

    parasities_blk = np.empty(len(time_vec)) 

    W_net_CSP=np.empty(len(time_vec)) 

    W_net_tot=np.empty(len(time_vec)) 

    eff_PB = np.empty(len(time_vec)) 

    Q_cond = np.empty(len(time_vec)) 

    Q_HTR = np.empty(len(time_vec)) 

    # Heat exchanger 

    NTU_UC=np.empty(len(time_vec)) 

    eta_HXopp=np.empty(len(time_vec)) 

    T_sCO2_hot_pb_check=np.empty(len(time_vec)) 

    T_sCO2_cold_pb_check=np.empty(len(time_vec)) 

    T_source_hot_pb_check=np.empty(len(time_vec)) 

    T_source_cold_pb_check=np.empty(len(time_vec)) 

 

    HX_co=np.empty(len(time_vec)) 

    Q_co_HX=np.empty(len(time_vec)) 

    T_coldtoTES_HX=np.empty(len(time_vec)) 

 

 

    if PB_Recomp_Inter: 

        Q_LTR = np.empty(len(time_vec)) 

        Q_intercooler = np.empty(len(time_vec)) 

        W_MC2 = np.empty(len(time_vec)) 

        W_RC = np.empty(len(time_vec)) 

        T_sCO2_7 = np.empty(len(time_vec)) 

        T_sCO2_8 = np.empty(len(time_vec)) 

        T_sCO2_9_prime = np.empty(len(time_vec)) 

        T_sCO2_9_second = np.empty(len(time_vec)) 

        T_sCO2_9 = np.empty(len(time_vec)) 

        T_sCO2_10 = np.empty(len(time_vec)) 

     

 

    #Start Values for Variables 

    # 1) Heliostat Field 

    Q_in_SF[0] = 0 

    Q_raw_SF[0] = 0 

    Q_out_SF[0] = 0 

    Q_wasted_startup[0] = 0 

    Q_wasted_defocus[0] = 0 

    Q_wasted_CSP[0] = 0 

    eta_opt_SF[0]=0 

    SF_on[0] = False 

    W_loss_HF[0] = 0 

    defocus1[0] = False 



-76- 
 

    defocus2[0] = False 

    defocus[0] = GU.Or(defocus1[0], defocus2[0]) 

    Q_flow_defocus[0] = 0 

    # 2) Receiver 

    Q_out_rec[0] = 0 

    eta_rec[0] = 0 

    eta_th_rec[0] = 0 

    Q_loss_rec[0] = 0 

    h_REC_hot[0] = h_hot_set_REC 

    h_REC_cold[0] = h_REC_hot[0] 

    T_REC_hot[0] = GU.to_degC(T_hot_set_REC) 

    T_REC_cold[0] = GU.to_degC(T_cold_set_REC) 

    m_flow_rec[0] = 0 

    # 4) Electric Heater 

    m_flow_heater[0] = 0 

    W_heater_PV[0] = 0 

    Q_missing_defocus[0] = 0 

    Q_out_heater[0] = 0 

    h_EH_hot[0] = Medium1.specificEnthalpy(state_hot_set_TES) 

    h_EH_cold[0] = h_EH_hot[0] 

    T_EH_hot[0] = GU.to_degC(Medium1.temperature(state_hot_set_TES)) 

    T_EH_cold[0] = T_EH_hot[0] 

    eta_heater[0] = 0 

    Q_loss_heater[0] = 0 

    waste_extra_PV[0] = 0 

    W_wasted_PV_tot[0] = 0 

    W_wasted_PV_defocus[0] = 0 

    # 5) Thermal Energy Storage 

    h_TES_cold[0] = h_cold_set_TES 

    h_TES_hot[0] = h_hot_set_TES 

    h_toTES_cold[0] = h_cold_set_TES 

    h_toTES_hot[0] = h_hot_set_TES 

    T_TES_cold[0] = GU.to_degC(T_cold_set_REC) 

    T_TES_hot[0] = GU.to_degC(T_hot_set_REC) 

    T_toTES_cold[0] = GU.to_degC(T_cold_set_REC) 

    T_toTES_hot[0] = GU.to_degC(T_hot_set_REC) 

    cold_tank_ready[0] = True 

    L_HT[0] = L_start 

    h_HT[0]=h_hot_start_TES 

    m_HT[0]= L_HT[0]/100*m_max 

    Q_losses_HT[0] = 0 

    W_loss_HT[0] = 0 

    L_CT[0] = 100-L_start 

    h_CT[0]=h_cold_start_TES 

    m_CT[0]=L_CT[0]/100*m_max 

    Q_losses_CT[0] = 0 

    W_loss_CT[0] = 0 

    HT_on_discharge[0] = (L_HT[0]>hot_tnk_empty_ub) and (L_HT[0]>hot_tnk_empty_lb) 

    HT_on_charge[0] = m_flow_rec[0]>0 

    Q_flow_PB[0] = 0 

    m_flow_PB[0] = 0 

    m_flow_TES_cold[0] = 0 

    m_flow_toTES_cold[0] = 0 

    m_flow_toTES_hot[0] = 0 

    m_flow_TES_hot[0] = 0 

    # 5) Power Block 

    F_prod[0] = 1 

    F_prod_off[0] = 1 

    PB_ramp[0] = 0 

    PB_on[0] = False 



-77- 
 

    t_ramp_start[0] = 0 

    t_ramp_end[0] = 3600 

    t_on_PB[0] = 0 

    t_off_PB[0] = 0 

    rampUP_PB[0]=False 

    Q_flow_MH[0] = 0 

    m_flow_MH[0] = 0 

    h_cold_MH[0] = h_TES_hot[0] 

    T_toTES_MH_cold[0] = GU.to_degC(T_hot_set_REC) 

    Q_sCO2_PB_MH[0] = 0 

    m_flow_sCO2_MH[0] = 0 

    h_sCO2_hot_PB_MH[0] = h_MH_sCO2_cold_des 

    h_sCO2_cold_PB_MH[0] = h_MH_sCO2_cold_des 

    state_cold_PB_sCO2=state_MH_cold_sCO2 

    T_sCO2_hot_MH[0] = GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

    T_sCO2_cold_MH[0] =GU.to_degC(Medium3.temperature(state_cold_PB_sCO2))  # 

possibile problema nel valore iniziale 

    eff_PB[0] = 0 

    Q_cond[0] = 0 

    Q_HTR[0] = 0 

    W_T1[0] = 0 

    W_MC1[0] = 0 

    T_sCO2_1[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

    T_sCO2_2[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

    T_sCO2_3[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

    T_sCO2_4[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

    T_sCO2_5[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

    T_sCO2_6[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

    W_loss_PB_pumps[0] = 0 

    parasities_blk[0] = 0 

    W_net_tot[0] = 0 

    W_net_CSP[0] = 0 

    HX_co[0]=0 

     

  

    if PB_Recomp_Inter: 

        Q_LTR[0] = 0 

        Q_intercooler[0] = 0 

        W_MC2[0] = 0 

        W_RC[0] = 0 

        T_sCO2_7[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

        T_sCO2_8[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

        T_sCO2_9_prime[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

        T_sCO2_9_second[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

        T_sCO2_9[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

        T_sCO2_10[0]=GU.to_degC(Medium3.temperature(state_cold_PB_sCO2)) 

     

    TES_time = 0 

    PB_time = 0 

    PBControl_time = 0 

    HF_time = 0 

    RecEH_time = 0 

    ControlRecEH_time = 0 

    Temperature_time = 0 

    print(u"\u2192 Initialization of the plant variables completed (Duration: %s 

s)" %(np.around(time.time() - design_time, decimals=0))) 

     

    for tt in range(1, len(time_vec)): 

    # 

___________________________________________________________________________________



-78- 
 

___________________________________________________________________________________

_____ 

    #                                                                   Hourly 

Helisotat Field Operation 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

         

        time0 = time.time() 

        F_prod[tt] = (max(0,min(1,1 - PV_share[tt])))*(PD[tt])/(P_max) 

        cold_tank_ready[tt] = T2LU.Tank2Logic(L_CT[tt-1], cold_tnk_crit_ub, 

cold_tnk_crit_lb, cold_tank_ready[tt-1]) 

        if not cold_tank_ready[tt]: 

            defocus_HF = True 

        else: 

            defocus_HF = defocus[tt-1] 

        Q_flow_defocus[tt] = (R_des - Q_rec_des + Q_flow_des*F_prod[tt])  

        [Q_in_SF[tt], Q_raw_SF[tt], Q_out_SF[tt], Q_wasted_startup[tt], 

Q_wasted_defocus[tt], Q_wasted_CSP[tt], SF_on[tt], eta_opt_SF[tt], W_loss_HF[tt]] = 

HF.Operating_HeliostatFIeld( 

            A_SF, DNI[tt], Q_field_design, Q_flow_defocus[tt], Q_loss_rec_des, 

nu_start, nu_min_sf, ele[tt], ele_min, Wspd[tt], Wspd_max, defocus_HF, SF_on[tt-1], 

use_SolarPilot, eff_field_SP[tt], optical_file, hra_deg[tt], dec_deg[tt], 

n_heliostat, W_track, he_av_design 

        ) 

        DTime = time.time() - time0 

        HF_time = HF_time + DTime 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly PV 

Operation 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        # The following variables are calculated in PV Calculated parameters:  

        #W_net_PV, W_heater_PV_raw, EH_on, PV_share 

        Q_missing_defocus[tt] = max(0, Q_flow_defocus[tt]-Q_out_SF[tt]-

R_des+Q_rec_des) 

        if waste_extra_PV[tt-1] or (not cold_tank_ready[tt]): 

            W_wasted_PV_defocus[tt] = max(0, (W_heater_PV_raw[tt] - 

Q_missing_defocus[tt]/eta_heater_design)) 

        else: 

            W_wasted_PV_defocus[tt] = 0 

        W_heater_PV[tt] = max(0,(W_heater_PV_raw[tt] - W_wasted_PV_defocus[tt])) 

        W_wasted_PV_tot[tt] = W_wasted_PV_defocus[tt] + W_wasted_PV_plus[tt] 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly 

Receiver Control Output 

    # 

___________________________________________________________________________________



-79- 
 

___________________________________________________________________________________

_____ 

        time0 = time.time() 

        h_REC_cold[tt] = h_TES_cold[tt-1] 

        [m_flow_rec[tt], defocus1[tt]]=RECS.ReferenceREC_ControlSystem( 

            SF_on[tt], L_CT[tt-1], cold_tnk_defocus_lb, cold_tnk_defocus_ub, 

defocus[tt-1], Q_out_SF[tt], h_REC_cold[tt], T_hot_set_REC, eta_rec_input, 

input_eff, DNI[tt] 

        ) 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly 

Electric Heater Control Output 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        h_EH_cold[tt] = h_TES_cold[tt-1] 

        [m_flow_heater[tt], waste_extra_PV[tt]]=EHCS.ReferenceEH_ControlSystem( 

            Medium1, EH_on[tt], L_CT[tt-1], cold_tnk_defocus_lb, 

cold_tnk_defocus_ub, waste_extra_PV[tt-1], eta_heater_design, W_heater_PV[tt], 

h_EH_cold[tt], T_hot_set_REC) 

        DTime = time.time() - time0 

        ControlRecEH_time = ControlRecEH_time + DTime 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly 

Receiver Opration 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        time0 = time.time() 

        [Q_out_rec[tt], h_REC_hot[tt], eta_rec[tt], eta_th_rec[tt], 

Q_loss_rec[tt]]=REFREC.Operating_Receiver( 

            DNI[tt], Q_out_SF[tt], h_REC_cold[tt], m_flow_rec[tt], SF_on[tt], 

input_eff, eta_rec_input 

        ) 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly 

Electric Heater Opration 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        [Q_out_heater[tt], h_EH_hot[tt], eta_heater[tt], Q_loss_heater[tt]]= 

EH.Operating_ElectricHeater( 

            W_heater_PV[tt], h_EH_cold[tt-1], m_flow_heater[tt], EH_on[tt], 

eta_heater_design) 

        m_flow_toTES_hot[tt] = m_flow_rec[tt]+ m_flow_heater[tt] 



-80- 
 

        h_toTES_hot[tt] = MIX.Mixer(m_flow_rec[tt], h_REC_hot[tt], 

m_flow_heater[tt], h_EH_hot[tt]) 

        m_flow_TES_cold[tt] = m_flow_toTES_hot[tt] 

        DTime = time.time() - time0 

        RecEH_time = RecEH_time + DTime 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly 

Power Block Control Output 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        time0 = time.time() 

        T_cold_control_MH =GU.from_degC(T_sCO2_cold_MH[tt-1]) + DT_pinch_TESsCO2 

        #print(T_sCO2_cold_MH[tt-1]) 

        #print("1034") 

 

        state_cold_control_MH = Medium1.setState_pTX(Medium1.p_default, 

T_cold_control_MH) 

        h_cold_control_MH = Medium1.specificEnthalpy(state_cold_control_MH) 

        if PB_on[tt-1]>0: 

            if Tamb[tt]>T_in_air_cooler_des: 

                F_prod_off[tt] = 1+(eta_blk_des-eff_PB[tt-1])/eta_blk_des 

            else: 

                F_prod_off[tt] = 1 

        else: 

            F_prod_off[tt] = 1 

        if PB_S or PB_Recomp or PB_S_Inter or PB_Recomp_Inter: 

            # m_flow_blk_MH = Q_flow_MH_des / (h_TES_hot[tt-1] - h_cold_set_TES_MH) 

#Mass flow rate to power block MH at design point 

            m_flow_blk_MH = Q_flow_MH_des / (h_TES_hot[tt-1] - h_cold_control_MH) 

#Mass flow rate to power block MH at design point take in to account change it to 

the design of the HX 

            #print(Q_flow_MH_des) 

            #print(h_TES_hot[tt-1]) 

            #print(h_cold_control_MH) 

            #print(m_flow_blk_MH) 

            [m_flow_MH[tt], PB_on[tt], PB_ramp[tt], defocus2[tt], W_loss_HT[tt], 

HT_on_discharge[tt], HT_on_charge[tt], t_on_PB[tt], t_off_PB[tt], rampUP_PB[tt], 

t_ramp_start[tt], t_ramp_end[tt]]=PBCS.PB_ControlSystem_MH( 

                F_prod[tt], F_prod_off[tt], PB_load_min, m_flow_toTES_hot[tt], 

L_HT[tt-1], time_vec[tt], m_flow_blk_MH, m_flow_blk_MH/2, m_flow_standby, 

m_flow_off, hot_tnk_full_ub, hot_tnk_full_lb, hot_tnk_empty_ub, hot_tnk_empty_lb, 

t_ramping, t_standby, t_ramping, k_loss_hot, defocus2[tt-1], HT_on_discharge[tt-1], 

HT_on_charge[tt-1], t_on_PB[tt-1], t_off_PB[tt-1], rampUP_PB[tt-1], 

t_ramp_start[tt-1], t_ramp_end[tt-1] 

            ) 

            m_flow_PB[tt]=m_flow_MH[tt] 

             

             

         

        if PB_R or PB_RR or PB_R_Inter or PB_RR_Inter: 

            m_flow_blk_MH = Q_flow_MH_des / (h_TES_hot[tt-1] - h_cold_control_MH) 

#Mass flow rate to power block MH at design point 

            m_flow_blk_RH = Q_flow_RH_des / (h_TES_hot[tt-1] - h_cold_set_TES_RH) 

#Mass flow rate to power block RH at design poin 



-81- 
 

            [m_flow_MH[tt], m_flow_RH[tt], PB_on[tt], PB_ramp[tt], defocus2[tt], 

W_loss_HT[tt], HT_on_discharge[tt], HT_on_charge[tt], t_on_PB[tt], t_off_PB[tt], 

rampUP_PB[tt], t_ramp_start[tt], t_ramp_end[tt]]=PBCS.PB_ControlSystem_MH_and_RH( 

                F_prod[tt], F_prod_off[tt], PB_load_min, m_flow_toTES_hot[tt], 

L_HT[tt-1], time_vec[tt], m_flow_blk_MH, m_flow_blk_RH, m_flow_blk_MH/2, 

m_flow_blk_RH/2, m_flow_standby, m_flow_off, hot_tnk_full_ub, hot_tnk_full_lb, 

hot_tnk_empty_ub, hot_tnk_empty_lb, t_ramping, t_standby, t_ramping, k_loss_hot, 

defocus2[tt-1], HT_on_discharge[tt-1], HT_on_charge[tt-1], t_on_PB[tt-1], 

t_off_PB[tt-1], rampUP_PB[tt-1], t_ramp_start[tt-1], t_ramp_end[tt-1] 

            ) 

            print("1051 no") 

            m_flow_PB[tt]=m_flow_MH[tt]+m_flow_RH[tt] 

        m_flow_TES_hot[tt] = m_flow_PB[tt] 

        m_flow_toTES_cold[tt] = m_flow_TES_hot[tt] 

        defocus[tt]=GU.Or(defocus1[tt], defocus2[tt]) 

        DTime = time.time() - time0 

        PBControl_time = PBControl_time + DTime 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly TES 

- Hot Tank Operation 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        time0 = time.time() 

        [L_HT[tt], h_HT[tt], m_HT[tt], Q_losses_HT[tt], 

W_loss_HT[tt]]=TES.Storage_Tank( 

            Medium1, m_flow_toTES_hot[tt], h_toTES_hot[tt], m_HT[tt-1], h_HT[tt-1], 

m_flow_TES_hot[tt], Tamb[tt], time_vec[tt-1], time_vec[tt], dt, HT_Design, m_max 

        ) 

        h_TES_hot[tt]=h_HT[tt] 

        Dtime1 = time.time() - time0 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Primary 

Heat Exchanger(s) Operation 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        time0 = time.time() 

        if PB_S or PB_Recomp or PB_S_Inter or PB_Recomp_Inter:          # Only Main 

Heater 

            #[Q_sCO2_PB_MH[tt], m_flow_sCO2_MH[tt], h_cold_MH[tt], 

h_sCO2_hot_PB_MH[tt], T_cold_MH[tt], T_source_hot[tt] 

]=PBHX.Operating_HeatExchanger( 

            #    PB_on[tt], m_flow_MH[tt], h_TES_hot[tt], h_sCO2_cold_PB_MH[tt-1], 

h_cold_control_MH, h_MH_sCO2_hot_des, eta_PBHX 

            #) 

            #Dum_var=Medium3.T_h(p_high_blk,h_sCO2_cold_PB_MH[tt-1])-273.15 

            #Dum_var1=Medium1.T_h(h_TES_hot[tt])  



-82- 
 

            [Q_sCO2_PB_MH[tt], m_flow_sCO2_MH[tt], 

h_cold_MH[tt],h_sCO2_hot_PB_MH[tt],T_cold_MH[tt],NTU_UC[tt],eta_HXopp[tt]]=PBHX.Ope

rating_HeatExchanger( 

                PB_on[tt], m_flow_MH[tt], h_TES_hot[tt],h_sCO2_cold_PB_MH[tt-

1],h_MH_sCO2_hot_des, U_HX_design, Area_HX, p_high_blk) 

            #if PB_on[tt]: 

            #    print(m_flow_sCO2_MH[tt]) 

            #    print(Q_sCO2_PB_MH[tt]) 

 

 

 

 

            T_sCO2_hot_pb_check[tt]=Medium3.T_h(p_high_blk,h_sCO2_hot_PB_MH[tt]) 

            T_sCO2_cold_pb_check[tt]=Medium3.T_h(p_high_blk,h_sCO2_cold_PB_MH[tt-

1]) 

            T_source_hot_pb_check[tt]=Medium1.T_h(h_TES_hot[tt]) 

            T_source_cold_pb_check[tt]=Medium1.T_h(h_cold_MH[tt]) 

             

            Q_flow_MH[tt] = m_flow_MH[tt]*(h_TES_hot[tt]-h_cold_MH[tt]) 

             

            #print(m_flow_MH[tt]) 

            #print(h_cold_MH[tt]) 

            #print(HX_co[tt]) 

            

[HX_co[tt],Q_co_HX[tt]]=CS_coge.Control_Cogeneration(L_HT[tt]/100,L_min_HX,T_cold_s

et_REC_input,T_source_cold_pb_check[tt],Q_de,m_flow_MH[tt],PB_on[tt]) 

            

[T_coldtoTES_HX[tt],h_cold_MH[tt],Q_co_HX[tt]]=HX_coge.HX_cogeneration(HX_co[tt],ef

f_HX_coge,T_source_cold_pb_check[tt],Q_co_HX[tt],m_flow_MH[tt]) 

            #print(HX_co[tt]) 

            #print(m_flow_MH[tt]) 

            #print(h_cold_MH[tt]) 

             

            h_toTES_cold[tt] = h_cold_MH[tt] 

            Q_flow_PB[tt]=Q_flow_MH[tt] 

            W_loss_PB_pumps[tt]=k_loss_hot*(m_flow_MH[tt]) 

        if PB_R or PB_RR or PB_R_Inter or PB_RR_Inter:                  # Main 

Heater + Reheater 

            #Main Heater 

            [Q_sCO2_PB_MH[tt], m_flow_sCO2_MH[tt], h_cold_MH[tt], 

h_sCO2_hot_PB_MH[tt]]=PBHX.Operating_HeatExchanger( 

                PB_on[tt], m_flow_MH[tt], h_TES_hot[tt], h_sCO2_cold_PB_MH[tt-1], 

h_cold_control_MH, h_MH_sCO2_hot_des, eta_PBHX 

            ) 

            Q_flow_MH[tt] = m_flow_MH[tt]*(h_TES_hot[tt]-h_cold_MH[tt]) 

            #Re-Heater 

            [Q_sCO2_PB_RH[tt], m_flow_sCO2_RH[tt], h_cold_RH[tt], 

h_sCO2_hot_PB_RH[tt]]=PBHX.Operating_HeatExchanger( 

                PB_on[tt], m_flow_RH[tt], h_TES_hot[tt], h_sCO2_cold_PB_RH[tt-1], 

h_cold_set_TES_RH, h_RH_sCO2_hot_des, eta_PBHX 

            ) 

            Q_flow_RH[tt] = m_flow_RH[tt]*(h_TES_hot[tt]-h_cold_RH[tt]) 

            Q_flow_PB[tt]=Q_flow_MH[tt]+Q_flow_RH[tt] 

            h_toTES_cold[tt]=MIX.Mixer(m_flow_MH[tt], h_cold_MH[tt], m_flow_RH[tt], 

h_cold_RH[tt]) 

            W_loss_PB_pumps[tt]=k_loss_hot*(m_flow_MH[tt]+m_flow_RH[tt]) 

            print("1117 no") 

        parasities_blk[tt]=W_loss_CT[tt-

1]+W_loss_HT[tt]+W_loss_PB_pumps[tt]+W_loss_HF[tt] 

 



-83- 
 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Power Block 

Operation 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

         

        if PB_Recomp_Inter: 

            [W_net_CSP[tt], h_sCO2_cold_PB_MH[tt], eff_PB[tt], Q_cond[tt], 

Q_intercooler[tt], Q_HTR[tt], Q_LTR[tt], W_T1[tt], W_MC1[tt], W_MC2[tt], W_RC[tt], 

cycle_temperatures]=PBRecompInter.sCO2_PB_Recompr_Intercooler( 

                m_flow_sCO2_MH[tt], TIT, T_in_Compr, T_in_inter_Compr, 

T_sCO2_9_des_K, SR, eta_HPT_des, eta_MC1_des, eta_MC2_des, eta_RC_des, eta_HTR, 

eta_LTR, eta_gen, use_eta_net_blk, eta_net_blk, Tamb[tt], DT_pinch_cooler, 

DT_pinch_intercooler, W_base_blk, parasities_blk[tt], DT_recuperator, f_prop_des 

            ) 

            [T1, T2, T3, T4, T5, T6, T7, T8, T9, T9_prime, T9_second, T10] = 

cycle_temperatures 

            T_sCO2_1[tt]=GU.to_degC(T1) 

            T_sCO2_2[tt]=GU.to_degC(T2) 

            T_sCO2_3[tt]=GU.to_degC(T3) 

            T_sCO2_4[tt]=GU.to_degC(T4) 

            T_sCO2_5[tt]=GU.to_degC(T5) 

            T_sCO2_6[tt]=GU.to_degC(T6) 

            T_sCO2_7[tt]=GU.to_degC(T7) 

            T_sCO2_8[tt]=GU.to_degC(T8) 

            T_sCO2_9[tt]=GU.to_degC(T9) 

            T_sCO2_9_prime[tt]=GU.to_degC(T9_prime) 

            T_sCO2_9_second[tt]=GU.to_degC(T9_second) 

            T_sCO2_10[tt]=GU.to_degC(T10) 

         

        W_net_tot[tt] = min(W_net_CSP[tt] + W_net_PV[tt], P_max) 

        DTime = time.time() - time0 

        PB_time = PB_time + DTime 

 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

    #                                                                   Hourly TES 

- Cold Tank Operation 

    # 

___________________________________________________________________________________

___________________________________________________________________________________

_____ 

        time0 = time.time() 

        [L_CT[tt], h_CT[tt], m_CT[tt], Q_losses_CT[tt], 

W_loss_CT[tt]]=TES.Storage_Tank( 

            Medium1, m_flow_toTES_cold[tt], h_toTES_cold[tt], m_CT[tt-1], h_CT[tt-

1], m_flow_TES_cold[tt], Tamb[tt], time_vec[tt-1], time_vec[tt], dt, CT_Design, 

m_max 

        ) 

        h_TES_cold[tt]=h_CT[tt] 

        DTime = time.time() - time0 

        TES_time = TES_time + DTime + Dtime1 

 



-84- 
 

    #  

                                  Hourly Temperatures Calculations 

___________________________________________________________________________________ 

        time0 = time.time()  

        #Molten Salt - Receiver 

        state_output_REC = Medium1.setState_phX(Medium1.p_default, h_REC_hot[tt]) 

        state_input_REC = Medium1.setState_phX(Medium1.p_default, h_REC_cold[tt]) 

        T_REC_hot[tt] = GU.to_degC(Medium1.temperature(state_output_REC)) 

        T_REC_cold[tt] = GU.to_degC(Medium1.temperature(state_input_REC)) 

        #Electric Heater 

        state_output_EH = Medium1.setState_phX(Medium1.p_default, h_EH_hot[tt]) 

        T_EH_hot[tt] = GU.to_degC(Medium1.temperature(state_output_EH)) 

        state_input_EH = Medium1.setState_phX(Medium1.p_default, h_CT[tt]) 

        T_EH_cold[tt] = GU.to_degC(Medium1.temperature(state_input_EH)) 

        # Molten Salt - TES 

        state_toTES_hot = Medium1.setState_phX(Medium1.p_default, h_toTES_hot[tt]) 

        state_cold_TES = Medium1.setState_phX(Medium1.p_default, h_TES_cold[tt]) 

        T_TES_cold[tt] = GU.to_degC(Medium1.temperature(state_cold_TES)) 

        T_toTES_hot[tt] = GU.to_degC(Medium1.temperature(state_toTES_hot)) 

        #Molten Salt  - from TES to/from Power Block 

        state_hot_TES = Medium1.setState_phX(Medium1.p_default, h_TES_hot[tt]) 

        state_toTES_cold = Medium1.setState_phX(Medium1.p_default, 

h_toTES_cold[tt]) 

        state_toTES_MH_cold = Medium1.setState_phX(Medium1.p_default, 

h_cold_MH[tt]) 

        T_TES_hot[tt] = GU.to_degC(Medium1.temperature(state_hot_TES)) 

        T_toTES_cold[tt] = GU.to_degC(Medium1.temperature(state_toTES_cold)) 

        T_toTES_MH_cold[tt] = GU.to_degC(Medium1.temperature(state_toTES_MH_cold)) 

        if PB_R or PB_RR or PB_R_Inter or PB_RR_Inter: 

            state_toTES_RH_cold = Medium1.setState_phX(Medium1.p_default, 

h_cold_RH[tt]) 

            T_toTES_RH_cold[tt] = 

GU.to_degC(Medium1.temperature(state_toTES_RH_cold)) 

        #sCO2 - Power Block - Main Heater 

        T_sCO2_hot_MH[tt] = GU.to_degC(T_high_h(h_sCO2_hot_PB_MH[tt])) 

        T_sCO2_cold_MH[tt] = GU.to_degC(T_high_h(h_sCO2_cold_PB_MH[tt])) # non 

capisco che è sta roba però è solo il plot 

        #sCO2 - Power Block - Re-Heater 

        if PB_R or PB_RR or PB_R_Inter or PB_RR_Inter: 

            T_sCO2_hot_RH[tt] = GU.to_degC(T_int_h(h_sCO2_hot_PB_RH[tt])) 

            T_sCO2_cold_RH[tt] = GU.to_degC(T_int_h(h_sCO2_cold_PB_RH[tt])) 

        DTime = time.time() - time0 

        Temperature_time = Temperature_time + DTime 

 

    operation_time = time.time() 

    print(u"\u2192 Operation of Heliostat Field (Duration: %s s)" 

%(np.around(HF_time, decimals=1))) 

    print(u"\u2192 Control of Receiver and EH  (Duration: %s s)" 

%(np.around(ControlRecEH_time, decimals=1))) 

    print(u"\u2192 Operation of Receiver and EH (Duration: %s s)" 

%(np.around(RecEH_time, decimals=1))) 

    print(u"\u2192 Operation of TES (Duration: %s s)" %(np.around(TES_time, 

decimals=1))) 

    print(u"\u2192 Operation of PB Control (Duration: %s s)" 

%(np.around(PBControl_time, decimals=1))) 

    print(u"\u2192 Operation of PB (Duration: %s s)" %(np.around(PB_time, 

decimals=1))) 

    print(u"\u2192 Evaluation of system temperatures (Duration: %s s)" 

%(np.around(Temperature_time, decimals=1))) 



-85- 
 

    print(u"\u2192 Operation of the plant completed (Duration: %s s)" 

%(np.around(operation_time - design_time, decimals=0))) 

 

# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~  

Results  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- Results -

___ KPIs

Calculation ___

 time0 = time.time()

 AEY=KPI.sumEnergy(W_net_tot) #[GWh]

 AEY_CSP=KPI.sumEnergy(W_net_CSP) #[GWh]

 AEY_PV=KPI.sumEnergy(W_net_PV) #[GWh]

 CF=KPI.CapacityFactor(AEY, P_net) #[%]

 CAPEX_CSP=float(KPI.CapitalExpenditure(C_Cap_CSP, C_land_CSP,

f_contingency_CSP, f_EPC_CSP, f_decommissioning, f_Subs)) #[currency]

 CAPEX_PV=float(KPI.CapitalExpenditure(C_Cap_PV, C_land_PV, f_contingency_PV,

f_EPC_PV, f_decommissioning, f_Subs)) #[currency]

 CAPEX = CAPEX_CSP + CAPEX_PV

 OPEX=KPI.OperationExpenditure(C_year, c_OM_CSP, AEY_CSP) #[currency/year]

 LCOE=float(KPI.LevelizedCostofElectricity(CAPEX, OPEX, AEY, r_disc, r_i,

t_life)) #[currency/MWh]

 AF=KPI.AvailabilityFactor(W_net_tot)

 EH_UF=KPI.ElectricHeaterUtilizationFactor(W_heater_PV, P_name_EH) #[%]

 TES_PV_fraction=KPI.PVSharechargingStorage(Q_out_heater, Q_out_rec) #[%]

 c_block = KPI.PowerBlockSpecificCost(C_block, P_net) #[currency/kWe]

 ASCO2eq = KPI.AnnualSavingCO2eq(state_name, AEY) #[Mtons/year]

 QW_startup_CSP = KPI.sumEnergy(Q_wasted_startup) #[GWh]

 QW_defocus_CSP = KPI.sumEnergy(Q_wasted_defocus) #[GWh]

 QW_CSP = KPI.sumEnergy(Q_wasted_CSP) #[GWh]

 QSF_CSP = KPI.sumEnergy(Q_out_SF) #[GWh]

 EW_PV = KPI.sumEnergy(W_wasted_PV_tot) #[GWh]

 EEH_PV = KPI.sumEnergy(W_heater_PV) #[GWh]

 QW_tot = QW_CSP + EW_PV

 Q_prod_tot = QSF_CSP + EEH_PV

 TEW_share = KPI.ShareofEnergyWasted(Q_prod_tot, QW_tot) #[%]

 CSP_wasting_share = KPI.ShareofEnergyWasted(QSF_CSP, QW_CSP) #[%]

 PV_wasting_share = KPI.ShareofEnergyWasted(EEH_PV, EW_PV) #[%]

 CF_tot=KPI.CapacityFactor(AEY, P_name) #[%]

 CF_CSP=KPI.CapacityFactor(AEY_CSP, P_net) #[%]

 CF_PV=KPI.CapacityFactor(AEY_PV, P_AC) #[%]

 f_AEY_CSP = AEY_CSP/AEY*100 #[%]

 f_AEY_PV = AEY_PV/AEY*100 #[%]

 df_KPIs = { 'currency' : currency_name,

 'AEY' : AEY,

 'CF' : CF,

 'LCOE' : LCOE,

 'CAPEX' : CAPEX,

 'OPEX' : OPEX,

 'AF' : AF,

 'EH_UF' : EH_UF,

 'TES_PV_fraction' : TES_PV_fraction,

 'ASCO2eq' : ASCO2eq,

 'c_block' : c_block,

 'eta_blk_des' : eta_blk_des*100,

 'f_AEY_CSP' : f_AEY_CSP,

 'f_AEY_PV' : f_AEY_PV,

-86-

 'TEW_share' : TEW_share,

 'CSP_wasting_share' : CSP_wasting_share,

 'PV_wasting_share' : PV_wasting_share,

 'QW_startup_CSP' : QW_startup_CSP,

 'QW_defocus_CSP' : QW_defocus_CSP,

 'QSF_CSP' : QSF_CSP,

 'EW_PV' : EW_PV,

 'EEH_PV' : EEH_PV,

 'CF_tot' : CF_tot,

 'CF_CSP' : CF_CSP,

 'CF_PV' : CF_PV,

 }

 df1=pd.DataFrame(df_KPIs, index=[0])

 exporting_KPIs = time.time() - time0

 print(u"\u2192 Calculation and Exporting of the KPIs (Duration: %s s)"

%(np.around(exporting_KPIs, decimals=1)))

- Results -

__ Exporting Cost

Results __

 time0 = time.time()

 df_Cost = { 'C_tower' : C_tower,

 'C_receiver' : C_receiver,

 'C_field' : C_field,

 'C_site_CSP' : C_site_CSP,

 'C_storage' : C_storage,

 'C_block' : C_block,

 'C_bop' : C_bop,

 'C_heater' : C_heater,

 'C_land_CSP' : C_land_CSP,

 'C_year_CSP' : C_year_CSP,

 'C_OM_CSP' : c_OM_CSP*AEY_CSP,

 'C_cap_CSP' : C_Cap_CSP,

 'C_modules_PV' : C_modules_PV,

 'C_BoS_PV' : C_BoS_PV,

 'C_site_PV' : C_site_PV,

 'C_inverter_PV' : C_inverter_PV,

 'C_land_PV' : C_land_PV,

 'C_year_PV' : C_year_PV,

 'C_cap_PV' : C_Cap_PV,

 'C_MC1' : C_MC1,

 'C_MC2' : C_MC2,

 'C_RC' : C_RC,

 'C_HPT' : C_HPT,

 'C_LPT' : C_LPT,

 'C_MH' : C_MH,

 'C_RH' : C_RH,

 'C_HTR' : C_HTR,

 'C_LTR' : C_LTR,

 'C_cooler' : C_cooler,

 'C_intercooler' : C_intercooler,

 'C_piping_PB' : C_piping_PB,

 'C_generator' : C_generator,

 'C_gearbox' : C_gearbox,

 'C_HX_part': C_HX_part

 #'C_cogeneration': C_cogeneration

 }

-87-

 df2=pd.DataFrame(df_Cost, index=[0])

 exporting_Cost = time.time() - time0

 print(u"\u2192 Exporting of the Costs (Duration: %s s)"

%(np.around(exporting_Cost, decimals=1)))

- Results -

__ Exporting Solar Field

Results ___

 time0 = time.time()

 nptsx, nptsy = 400, 100

 x_in=np.linspace(0, 360, nptsx)

 y_in=np.linspace(0, 90, nptsy)

 xg, yg = np.meshgrid(x_in, y_in)

 zg = SF_Efficiency(xg, yg)*100

 SF_Eff=np.matrix(zg)

 Map_Helio=np.matrix(Map_Helio)

 df3=pd.DataFrame(SF_Eff)

 df4=pd.DataFrame(Map_Helio.transpose())

 exporting_SF = time.time() - time0

 print(u"\u2192 Exporting of the SF Design (Duration: %s s)"

%(np.around(exporting_SF, decimals=1)))

- Results -

___ Exporting Design

Results ___

 time0 = time.time()

 if PB_Recomp_Inter:

 df_Design = { 'Q_field_des' : R_des,

 'A_SF' : A_SF,

 'A_land_CSP_tot' : A_land_CSP_tot,

 'eff_SF_des' : eff_SF_des,

 'n_heliostat' : n_heliostat,

 'SM' : SM,

 'H_tower' : H_tower,

 'Q_rec_des' : Q_rec_des,

 'H_rec' : H_rec,

 'D_rec' : D_rec,

 'rec_eff_design' : eta_rec_des,

 'rec_eff_th_design' : eta_rec_th_des,

 #'A_receiver' : A_receiver,

 'm_flow_rec' : m_flow_rec_des,

 'T_hot_set_REC/EH' : T_hot_set_REC,

 'T_cold_set_REC/EH' : T_cold_set_REC,

 'Q_name_EH' : Q_name_EH,

 'EH_eff_design' : eta_heater_design,

 'm_flow_EH_des' : m_flow_EH_des,

 'P_name_EH' : P_name_EH,

 'EH_W_min' : W_heater_min,

 't_storage' : t_storage,

 'H_storage' : H_storage,

 'D_storage' : D_storage,

 'A_surf_TES' : A_surf_TES,

 'm_max' : m_max,

 'Q_flow_des' : Q_flow_des,

 'Q_Cooler_des' : Q_Cooler_des,

 'eta_blk_des' : eta_blk_des,

-88-

 'm_flow_sCO2_des' : m_flow_sCO2_des,

 'SR' : SR,

 'm_flow_sCO2_MC' : m_flow_sCO2_MC,

 'm_flow_sCO2_RC' : m_flow_sCO2_RC,

 'W_MC1_des' : W_MC1_des,

 'eta_MC1_des' : eta_MC1_des,

 'W_MC2_des' : W_MC2_des,

 'eta_MC2_des' : eta_MC2_des,

 'W_RC_des' : W_RC_des,

 'eta_RC_des' : eta_RC_des,

 'Q_HTR_des' : Q_HTR_des,

 'Q_LTR_des' : Q_LTR_des,

 'W_HPT_des' : W_HPT_des,

 'eta_HPT_des' : eta_HPT_des,

 'TIT' : TIT,

 'T_sCO2_1_des' : T_sCO2_1_des,

 'T_sCO2_2_des' : T_sCO2_2_des,

 'T_sCO2_3_des' : T_sCO2_3_des,

 'T_sCO2_4_des' : T_sCO2_4_des,

 'T_sCO2_5_des' : T_sCO2_5_des,

 'T_sCO2_6_des' : T_sCO2_6_des,

 'T_sCO2_7_des' : T_sCO2_7_des,

 'T_sCO2_8_des' : T_sCO2_8_des,

 'T_sCO2_9_prime_des' : T_sCO2_9_prime_des,

 'T_sCO2_9_second_des' : T_sCO2_9_second_des,

 'T_sCO2_9_des' : T_sCO2_9_des,

 'T_sCO2_10_des' : T_sCO2_10_des,

 'UA_MH_des' : UA_MH_des,

 'UA_HTR_des' : UA_HTR_des,

 'UA_LTR_des' : UA_LTR_des,

 'UA_cooler_des' : UA_cooler_des,

 'UA_intercooler_des' : UA_intercooler_des,

 'P_gross' : P_gross,

 'P_net' : P_net,

 'PV_P_AC' : P_AC,

 'PV_P_DC' : P_DC,

 'PV_r_DCAC' : r_DCAC,

 'A_PV_field' : A_PV_field,

 'A_land_PV_tot' : A_land_PV_tot,

 'PV_GCR' : GCR,

 'PV_rows' : PV_rows,

 'PV_azimuth' : azimuth,

 'eta_inv' : eta_inv_input,

 'P_max' : P_max,

 'Area_HX':Area_HX,

 'eta_de_HX':eta_de_HX

 }

 df5=pd.DataFrame(df_Design, index=[0])

 exporting_design = time.time() - time0

 print(u"\u2192 Exporting of the System Design (Duration: %s s)"

%(np.around(exporting_design, decimals=1)))

- Results -

___ Exporting Operating

Results __

 time0 = time.time()

-89-

 if PB_Recomp_Inter:

 df_Operation = {'DNI' : DNI,

 'defocus' : defocus,

 'eta_opt_SF' : eta_opt_SF,

 'Q_in_SF' : Q_in_SF,

 'Q_out_SF' : Q_out_SF,

 'eta_rec' : eta_rec,

 'eta_th_rec' : eta_th_rec,

 'Q_raw_SF' : Q_raw_SF,

 'Q_wasted_CSP': Q_wasted_CSP,

 'Q_wasted_defocus' : Q_wasted_defocus,

 'Q_wasted_startup' : Q_wasted_startup,

 'W_loss_HF' : W_loss_HF,

 'SF_on' : SF_on,

 'Wspd_Ht' : Wspd_Ht,

 'Q_flow_defocus' : Q_flow_defocus,

 'Q_rec' : Q_out_rec,

 'T_REC_hot' : T_REC_hot,

 'T_REC_cold' : T_REC_cold,

 'm_flow_rec' : m_flow_rec,

 'waste_extra_PV' : waste_extra_PV,

 'W_heater_PV_raw' : W_heater_PV_raw,

 'W_heater_PV' : W_heater_PV,

 'W_wasted_PV_defocus' : W_wasted_PV_defocus,

 'W_wasted_PV_plus' : W_wasted_PV_plus,

 'W_wasted_PV' : W_wasted_PV_tot,

 'Q_missing_defocus' : Q_missing_defocus,

 'Q_out_heater' : Q_out_heater,

 'eta_heater' : eta_heater,

 'Q_loss_heater' : Q_loss_heater,

 'EH_on' : EH_on,

 'm_flow_heater' : m_flow_heater,

 'T_EH_hot' : T_EH_hot,

 'T_EH_cold' : T_EH_cold,

 'm_flow_toTES_hot' : m_flow_toTES_hot,

 'T_toTES_hot' : T_toTES_hot,

 'T_TES_hot' : T_TES_hot,

 'm_flow_TES_hot' : m_flow_TES_hot,

 'm_flow_toTES_cold' : m_flow_toTES_cold,

 'T_toTES_cold' : T_toTES_cold,

 'T_TES_cold' : T_TES_cold,

 'm_flow_TES_cold' : m_flow_TES_cold,

 'cold_tank_ready' : cold_tank_ready,

 'L_HT' : L_HT,

 'L_CT' : L_CT,

 'Q_losses_HT' : Q_losses_HT,

 'W_loss_HT' : W_loss_HT,

 'Q_losses_CT' : Q_losses_CT,

 'W_loss_CT' : W_loss_CT,

 'Q_flow_PB' : Q_flow_PB,

 'm_flow_PB' : m_flow_PB,

 'Q_flow_MH' : Q_flow_MH,

 'm_flow_MH' : m_flow_MH,

 'T_toTES_MH_cold' : T_toTES_MH_cold,

 'Q_sCO2_PB_MH' : Q_sCO2_PB_MH,

 'm_flow_sCO2_MH' : m_flow_sCO2_MH,

 'T_sCO2_hot_MH' : T_sCO2_hot_MH,

 'T_sCO2_cold_MH' : T_sCO2_cold_MH,

-90-

 'T_sCO2_1' : T_sCO2_1,

 'T_sCO2_2' : T_sCO2_2,

 'T_sCO2_3' : T_sCO2_3,

 'T_sCO2_4' : T_sCO2_4,

 'T_sCO2_5' : T_sCO2_5,

 'T_sCO2_6' : T_sCO2_6,

 'T_sCO2_7' : T_sCO2_7,

 'T_sCO2_8' : T_sCO2_8,

 'T_sCO2_9' : T_sCO2_9,

 'T_sCO2_9_prime' : T_sCO2_9_prime,

 'T_sCO2_9_second' : T_sCO2_9_second,

 'T_sCO2_10' : T_sCO2_10,

 'W_loss_PB_pumps' : W_loss_PB_pumps,

 'parasities': parasities_blk,

 'Q_cond' : Q_cond,

 'Q_intercooler' : Q_intercooler,

 'Q_HTR' : Q_HTR,

 'Q_LTR' : Q_LTR,

 'W_T1' : W_T1,

 'W_MC1' : W_MC1,

 'W_MC2' : W_MC2,

 'W_RC' : W_RC,

 'PB_on' : PB_on,

 'F_prod' : F_prod,

 'W_net_CSP' : W_net_CSP,

 'W_net_PV' : W_net_PV,

 'W_net_tot' : W_net_tot,

 'PD':PD,

 'eff_PB' : eff_PB,

 'T_cold_MH':T_cold_MH,

 #'T_source_hot':T_source_hot,

 'NTU_UC':NTU_UC,

 'eta_HXopp':eta_HXopp,

 'T_sCO_hot':T_sCO2_hot_pb_check,

 'T_sCO_cold':T_sCO2_cold_pb_check,

 'T_source_hot':T_source_hot_pb_check,

 'T_source_cold':T_source_cold_pb_check,

 'HX_co': HX_co,

 'Q_co_HX': Q_co_HX,

 'T_coldtoTES': T_coldtoTES_HX

 }

 df6=pd.DataFrame(df_Operation)

 exporting_design = time.time() - time0

 print(u"\u2192 Exporting of the System Design (Duration: %s s)"

%(np.around(exporting_design, decimals=1)))

- Results -

__ Exporting Summary of the

Results __

 summary_results = pd.concat([df1, df2, df5], axis=1)

 Outputs_max = np.array([LCOE, CAPEX, CF, AEY, AF, c_block, ASCO2eq, TEW_share,

f_AEY_CSP, CF_CSP, CF_PV, CAPEX_CSP, CAPEX_PV, EH_UF, TES_PV_fraction])

 ObjectiveFunction_index = np.array([LCOE_OF, CAPEX_OF, CF_OF, AEY_OF, AF_OF,

c_block_OF, ASCO2eq_OF, TEW_share_OF, f_AEY_CSP_OF, CF_CSP_OF, CF_PV_OF,

CAPEX_CSP_OF, CAPEX_PV_OF, EH_UF_OF, TES_PV_fraction_OF])

 index_outputs = np.where(ObjectiveFunction_index == True)

-91-

 Outputs = Outputs_max[index_outputs]

 path_summary_results = './Outputs/%s/Source/%s' %(Model_Name,

identification_folder_summary)

 Path(path_summary_results).mkdir(parents=True, exist_ok=True)

 filename_summary = '%s/SummaryResults%s.xlsx' %(path_summary_results,

identification_summary)

 EE.export_to_excel(filename_summary, summary_results, erase_old_summary)

 if save_all_files:

 path_results = './Outputs/%s/Source/%s' %(Model_Name,

identification_folder_results)

 path_KPIs = '%s/KPIs' %(path_results)

 path_Cost = '%s/Cost' %(path_results)

 path_SF1 = '%s/SF1' %(path_results)

 path_SF2 = '%s/SF2' %(path_results)

 path_Design = '%s/Design' %(path_results)

 path_Operation = '%s/Operation' %(path_results)

 Path(path_results).mkdir(parents=True, exist_ok=True)

 Path(path_KPIs).mkdir(parents=True, exist_ok=True)

 Path(path_Cost).mkdir(parents=True, exist_ok=True)

 Path(path_SF1).mkdir(parents=True, exist_ok=True)

 Path(path_SF2).mkdir(parents=True, exist_ok=True)

 Path(path_Design).mkdir(parents=True, exist_ok=True)

 Path(path_Operation).mkdir(parents=True, exist_ok=True)

 df1.to_excel('%s/KPIs%s.xlsx' %(path_KPIs, identification_results))

 df2.to_excel('%s/Cost%s.xlsx' %(path_Cost, identification_results))

 df3.to_excel('%s/SF1%s.xlsx' %(path_SF1, identification_results))

 df4.to_excel('%s/SF2%s.xlsx' %(path_SF2, identification_results))

 df5.to_excel('%s/Design%s.xlsx' %(path_Design, identification_results))

 df6.to_excel('%s/Operation%s.xlsx' %(path_Operation,

identification_results))

 print(u"\u2192 Simulation completed (Duration: %s s)" %(np.around(time.time() -

start_time, decimals=0)))

 if Flag==1:

 wb = openpyxl.load_workbook("History.xlsx")

 ws = wb['Sheet1']

 ws.cell(row = number_sim, column = 1, value = LCOE) # Writes the content of

totalcost in A1

 ws.cell(row = number_sim, column = 2, value = CAPEX)

 ws.cell(row = number_sim, column = 3, value = Co_i)

 ws.cell(row = number_sim, column = 4, value = Co_j)

 ws.cell(row = number_sim, column = 5, value = Co_k)

 ws.cell(row = number_sim, column = 6, value = Co_l)

 ws.cell(row = number_sim, column = 7, value = Co_m)

 ws.cell(row = number_sim, column = 8, value = P_max)

 ws.cell(row = number_sim, column = 9, value = t_storage)

 ws.cell(row = number_sim, column = 10, value = SM)

 ws.cell(row = number_sim, column = 11, value = P_AC)

 ws.cell(row = number_sim, column = 12, value = Q_de)

 ws.cell(row = number_sim, column = 13, value = number_sim)

 wb.save("History.xlsx")

 print('Simulation'+ ' ('+ str(Co_i)+','+str(Co_j)+','+str(Co_k)+','+

str(Co_l)+ ')'+','+ str(Co_m)+' #'+ str(number_sim))

 return Outputs

-92-

8.2 Receiver model

from attr import define

from sympy import Q

import Models.Media.Particle as Medium1

import math as MA

import numpy as np

def Design_Receiver(

 Q_rec_des, # [W] - Nominal output thermal power

 #w_curtain, # [m] - Width of the receiver

 #ar_rec, # [-] - Receiver aspect ratio (height over

width)

 #T_amb_des, # [K] - Ambient temperature at the design

point

 T_max_particle_des, # [K] - Outlet HTF temperature at the design

point

 T_min_particle_des, # [K] - Inlet HTF temperature at the design

point

 #d_particle, # [m] - Particle diameter

 #vf_par, # [%] - Volume fraction of particles

 #ab_rec, # [-] - Receiver coating absorptance

 #em_rec, # [-] - Receiver coating emissivity

 eta_rec_des

):

 eta_rec_des=0.25 #the design but be calculated on the average

efficiency

 Rec_design=1

 eta_rec_th_des=eta_rec_des

 Q_loss_rec_des=Q_rec_des*(1- eta_rec_des)

 Q_in_rec_des=Q_rec_des

 h_cold_in=Medium1.h_T(T_min_particle_des)

 h_hot_out=Medium1.h_T(T_max_particle_des)

 m_flow_des=max(1e-3,((Q_rec_des*eta_rec_des)/(h_hot_out-h_cold_in)))

 return (Rec_design, # [-] - Complete geometrical design of

the receiver

 eta_rec_des, # [-] - Design total receiver efficiecny

 eta_rec_th_des, # [-] - Design thermal receiver

efficiecny

 Q_loss_rec_des, # [W] - Design receiver losses

 Q_in_rec_des, # [w] - Design receiver input power

 m_flow_des) # [kg/s] - Design receiver mass flow rate

def Operating_Receiver(

 in_DNI, #[W/m^2] - Direct normal irradice for the

efficiency

Medium, # [-] - HTF utilized in the receiver

TLREC, # [-] - Thermal Losses Receiver

Calculation - Model

 Q_in_rec, # [W] - Incoming receiver power

 h_in, # [J/kg] - Input specific enthalpy

 m_flow, # [kg/s] - Receiver mass flow rate

 SF_on, # [-] - Boolean to indicate if solar

field is on

T_amb, # [K] - Ambient temperature

-93-

u_wind, # [m/s] - Wind speed

T_out_des, # [K] - Set point output temperature

Rec_design, # [-] - Receiver geometrical design

rec_absorptance, # [-] - Receiver absorptance

rec_emissivity, # [-] - Receiver emissivity

 input_eff, # [-] - Boolean to indicate if a fixed

efficiency shoudl be used

 eta_rec_input # [-] - Input receiver efficiency (if

input_eff is True)

):

 if SF_on:

 if input_eff:

 eta_rec = eta_rec_input

 Q_loss_rec = Q_in_rec*(1-eta_rec)

 else:

 delta_eta=eta_rec_input-0.5 # 0.5 is the reference receiver efficency

 if in_DNI < 205:

 eta_rec=0.2 + delta_eta

 if in_DNI > 480:

 eta_rec=0.5 + delta_eta

 if in_DNI <= 480 and in_DNI >= 205:

 coef_C1=0.0011

 coef_C0=-0.0230

 eta_rec=coef_C1*in_DNI+coef_C0+delta_eta

 Q_loss_rec = Q_in_rec*(1-eta_rec)

 #Efficiency

 # eta_rec = max(0,min(1,((Q_in_rec - Q_loss_rec)/(1e-3+Q_in_rec)))) in my

case does not have any meaning

 eta_th_rec=eta_rec

 else:

 # Advection Losses

 Q_adv_loss = 0

 #Radiative Losses

 Q_rad_loss = 0

 # Reflective Losses

 Q_ref_loss = 0

 # Total Losses

 Q_loss_th_rec = Q_rad_loss + Q_adv_loss

 Q_loss_rec = Q_loss_th_rec + Q_ref_loss

 eta_th_rec = 0

 eta_rec = 0

 Q_out_rec=eta_rec*Q_in_rec

 h_out=h_in+Q_out_rec/max(1e-6,m_flow)

 return (Q_out_rec, # [W] - Output receiver power

 h_out, # [J/kg] - Output specific enthalpy

 eta_rec, # [-] - Receiver total efficiency

 eta_th_rec, # [-] - Receiver thermal efficiency

 Q_loss_rec) # [-] - Receiver thermal losses

-94-

8.3 Particle heat exchanger

from ast import Del

from cmath import log

import numpy as np

import Models.Media.Particle as Medium1

import Models.Media.sCO2 as Medium3

import Models.Utilities.finterpolation as linear

def Operating_HeatExchanger(

 PB_on, # [-] - Boolean to indicate if the power block is

on

 m_flow_hot_source, # [kg/s] - Mass flow rate hot-side

 h_source_hot, # [J/kg] - Specific enthalpy hot source

 h_sCO2_cold, # [J/kg] - Specific enthalpy cold sCO2

 h_sCO2_hot_des, # [J/kg] - Set point specific enthalpy hot sCO2

 U_HX_design, # [W/m^2K] - General heat transfer of the HX

 Area,

 pressure

):

 NTU_cc=2 #test

 x=[1.2, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.5, 3, 3.1, 3.2, 3.3]

 y=[0.3, 0.4, 0.5, 0.56, 0.65, 0.7, 0.75, 0.8, 0.81, 0.85, 0.9, 0.91, 0.95]

 T_sco2_cold=Medium3.T_h(pressure,h_sCO2_cold)

 T_source_hot=Medium1.T_h(h_source_hot)

 if PB_on:

 Q_in_HX=((T_source_hot-T_sco2_cold)*Medium1.cp_T(1)*m_flow_hot_source)

 NTU_cc=(U_HX_design*Area)/(m_flow_hot_source*Medium1.cp_T(1))

 if NTU_cc <= 3.5:

 eta_HX=linear.linear(y,x,NTU_cc)

 else:

 eta_HX=0.97

 Q_sCO2_PB = eta_HX*Q_in_HX # Q_max

 h_source_cold = h_source_hot - Q_sCO2_PB/max(1e-3,m_flow_hot_source)

 m_flow_sCO2 = Q_sCO2_PB/(h_sCO2_hot_des-h_sCO2_cold)

 h_sCO2_hot = h_sCO2_cold + Q_sCO2_PB/max(1e-3,m_flow_sCO2)

 else:

 h_source_cold = h_source_hot

 h_sCO2_hot = h_sCO2_cold

 Q_sCO2_PB = 0

 m_flow_sCO2 = 0

 NTU_cc=2 #test

 eta_HX=0.8

 T_cold_MH=Medium1.T_h(h_source_cold)

 return (Q_sCO2_PB, # [W] - Thermal power to the

sCO2 power block

 m_flow_sCO2, # [kg/s] - sCO2 power block mass

flow rate

 h_source_cold, # [J/kg] - Specific enthalpy output

heat source #per me questo è l'output in design

 h_sCO2_hot, # [J/kg] - Specific enthalpy output

hot sCO2

 T_cold_MH,

 NTU_cc,

 eta_HX

-95-

)

def Desing_HeatExchanger(

 T_source_hot, # [K]

 T_source_cold, # [K]

 T_sco2_hot, # [K]

 T_sco2_cold, # [K]

 h_source_hot_des, # [J/kg] - Specific enthalpy hot source desing

 h_sco2_cold_des, # [J/kg] - Specific enthalpy cold sCO2 desing

 h_source_cold_des, # [J/kg] - Set point specific enthalpy cold source

design

 h_sco2_hot_des, # [J/kg] - Set point specific enthalpy hot sCO2

design

 Q_flow_des, # [W] - Heat in the PB at the design point

 U_HX_design, # [W/m^2K] - General heat transfer of the HX

 pressure_design, # [Pa] - Pressure

):

 # parametri dello scambiatore di calore

 x=[1.2, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.5, 3, 3.1, 3.2]

 y=[0.3, 0.4, 0.5, 0.56, 0.65, 0.7, 0.75, 0.8, 0.81, 0.85, 0.9, 0.91]

 del_Tlog=((T_source_hot-T_sco2_hot)-(T_source_cold-

T_sco2_cold))/(np.log((T_source_hot-T_sco2_hot)/(T_source_cold-T_sco2_cold)))

 m_flow_p_design=Q_flow_des/(h_source_hot_des-h_source_cold_des)

 m_flow_sco2_design=Q_flow_des/(h_sco2_hot_des-h_sco2_cold_des)

 eta_de=Q_flow_des/((T_source_hot-

T_sco2_cold)*(min(Medium1.cp_T(1)*m_flow_p_design,m_flow_sco2_design*Medium3.cp_T(p

ressure_design,T_sco2_hot),m_flow_sco2_design*Medium3.cp_T(pressure_design,T_sco2_c

old))))

 NTU_fu=linear.linear(x,y,eta_de)

 #Area_U=Q_flow_des/(U_HX_design*del_Tlog)

Area=NTU_fu*(min(Medium1.cp_T(1)*m_flow_p_design,m_flow_sco2_design*Medium3.cp_T(pr

essure_design,T_sco2_hot),m_flow_sco2_design*Medium3.cp_T(pressure_design,T_sco2_co

ld)))/U_HX_design

#NTU_Uc=(U_HX_design*Area)/(min(Medium1.cp_T(1)*m_flow_p_design,m_flow_sco2_design*

Medium2.cp_T(pressure_design,T_sco2_hot),m_flow_sco2_design*Medium2.cp_T(pressure_d

esign,T_sco2_cold)))

 #Fact_c= NTU_fu/NTU_Uc

 #Delta_1=del_Tlog/eta_de

 return (

 NTU_fu,

 Area,

 m_flow_sco2_design,

 m_flow_p_design,

 eta_de

)

-96-

8.4 Thermal storage (TES)

import Models.Utilities.GeneralUtilities as GU

import Models.Utilities.U_Storage.ODEs_Storage as ODE

from scipy.integrate import odeint

import numpy as np

import math as MA

def Storage_Tank(

 Medium, # [-] - HTF utilized in the TES

 m_flow_in, # [kg/s] - Inlet mass flow rate in tank

 h_in, # [J/kg] - Inlet specific enthalpy

 m_prev, # [kg] - Previous value of estimated mass

in tank

 h_prev, # [J/kg] - Previous value of average

specific enthalpy

 m_flow_out, # [kg/s] - Outlet mass flow rate from tank

 T_amb, # [K] - Ambient temperature

 t_in, # [s] - Initial time step

 t_out, # [s] - Final time step

 dt, # [s] - Duration time step

 Tank_Design, # [-] - Tank design parameters (Tank

volume, diameter, height, thermal losses coefficiecnt, auxiliary heater power, set

point temperature HTF, efficiency auxiliary heater)

 m_max_des # [kg] - Maximum mass - design

):

 V_t=Tank_Design[0] # [m^3]

 D=Tank_Design[1] # [m]

 H=Tank_Design[2] # [m]

 alpha=Tank_Design[3]

 W_max=Tank_Design[4]

 T_set=Tank_Design[5]

 e_ht=Tank_Design[6]

 #Calculated Parameters

 state_medium=Medium.setState_phX(Medium.p_default, h_prev)

 t_storage = np.linspace(t_in, t_out, num=dt)

 m_time = odeint(ODE.mass_balance, m_prev, t_storage, args=(m_flow_in,

m_flow_out)) #[kg]

 m_calc = m_time[-1]

 dmdt = ODE.mass_balance(0, 0, m_flow_in, m_flow_out)

 max_mass = m_max_des*0.99+1e-5

 min_mass = m_max_des*0.01-1e-5

 if m_calc > min_mass and m_calc < max_mass:

 m = m_calc

 elif m_calc >= max_mass:

 m = max_mass

 else:

 m = min_mass

 L=100*m/m_max_des # [%]

 rho = Medium.density(state_medium) # [kg/m^3]

 V=m/rho

 A=MA.pi*D*H*(V/V_t) + MA.pi*D**2/4 # [m^2]

 T=Medium.temperature(state_medium)

 Q_losses=A*alpha*(T-T_amb)

-97-

 if T<T_set:

 W_net = min(Q_losses, W_max)

 else:

 W_net = 0

 if m<1:

 h_time = h_prev

 h = h_prev

 else:

 h_time = odeint(ODE.energy_balance, h_prev, t_storage, args=(m_flow_in,

m_flow_out, h_in, m, dmdt, W_net, Q_losses))

 h = h_time[-1]

 W_loss=W_net/e_ht

 return (L, # [%] - Tank level

 h, # [J/kg] - Averge spefic enthalpy

 m, # [kg] - Mass of HTF stored in tank

 Q_losses, # [W] - Thermal losses

 W_loss) # [W] - Parasitic losses due to heat

tracing

8.5 Cogeneration

import Models.Media.Particle as Medium1

def HX_cogeneration (

 HX_c, # boolean HX on/off

 eff_HX_co, # [-] Effectivness of HX

 T_cold_MH, # [K] Temperature particle after heat exchage

 Q_out, # [Wth] Thermal power

 m_particle # [kg/s]Mass flow rate of the particle

 #T_min, # [K] Minimun Temperature in the TES

):

 if HX_c==1:

 if eff_HX_co==1:

 T_out=T_cold_MH-Q_out/(max((m_particle*Medium1.cp_T(1)),1e-3))

 else:

 print("NoHXCO")

 else:

 Q_out=0

 T_out=T_cold_MH

 return (

 T_out,

 Medium1.h_T(T_out),

 Q_out

)

-98-

8.6 Genetic algorithm

from SystemModels.MoltenSaltsCO2 import MoltenSaltsCO2

import numpy as np

import pandas as pd

import Generation as GE

import openpyxl

import random

------------------------------ Design Variables

P_max = 100e6 # [W] - Maximum

Electric Power that can be injected to the grid

P_gross = 100e6/0.9 # [W] - Power Cycle

Gross Output

Q_de=0 # [W] - Therma power

output

P_AC = 200e6 # [W] - AC nameplate

system capacity

P_name_EH = P_AC - P_max # [W] - Electric

heater nominal capacity

SM_value = 2 # [-] - Solar

multiple

TES_value = 10 # [h] - Thermal

energy storage capacity

H_tower_input = 190 # [m] - Input of the

tower height

Optimize_SF = False # [-] - Boolean to

run optimization of the solar field

Reheat = False # [-] - Boolean to

decide to include Reheating in the sCO2 power block

Recompression = True # [-] - Boolean to

decide to include Recompression in the sCO2 power block

Intercooling = True # [-] - Boolean to

decide to include Intercooling in the sCO2 power block

P_max=np.array([50e6, 75e6, 100e6, 110e6, 120e6, 130e6, 140e6, 150e6, 160e6, 170e6,

180e6, 190e6, 200e6])

P_gross=np.multiply(P_max,1.11111)

#TES_value=np.array([8, 10, 12])

TES_value=np.array([6, 7, 8, 9, 10, 11, 12])

SM_value=np.array([1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4,

2.5])

#SM_value=np.array([1.5, 2, 2.5])

r_P_Ac=np.array([1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4,

2.5])

Flag=1

God_S=False

First_time=False

Size_population=10

Min_rank=5

CC=np.empty([2,Size_population])

S_start=1

number_row=2

Size_population=10

-99-

Number_generation=3

Max_size=np.array([len(P_max),len(TES_value),len(SM_value), len(r_P_Ac)])

Max_gen=len(Max_size)

Index=np.array([1, 5])

for k_gen in range(0,Number_generation):

 if God_S:

 Generation=1

 number_sim=1#

 Generation_data=GE.generation_start(Max_size,Max_gen,Size_population)

 All_data=np.empty([Size_population,12])

 All_data[:,Index[0]:Index[1]]=Generation_data

 God_S=False

 else:

 path="History.xlsx"

 df=pd.read_excel(path)

 #dt = pd.DataFrame(df, columns=

['LCOE','i','j','k','l','m','P_CSP','Storage Time','Solar Time','PV','Number',

'Gen','Number Give', 'Gen Give'])

 dt = pd.DataFrame(df, columns=

['LCOE','i','j','k','l','m','Number','P_CSP','Storage Time','Solar

multipe','PV','Heat'])

 Index_number=6 #keep track

 All_data=np.array(dt)

 number_row=int(max(All_data[:,Index_number]))+1

 A=np.array(dt)

 A = A[A[:, 0].argsort()] #rank the solutions

 #In=len(A)-Size_population

 #St=In+Size_population

 In=0

 St=Size_population-1

 Generation_data_raw=A[In:St,:] #extraction

 print(Generation_data_raw[:,Index[0]:Index[1]])

 print('cosa entra')

[Generation_data,CC,ty]=GE.reproduction(Generation_data_raw,Max_size,Size_populatio

n,Index,Min_rank,Max_gen)

 print(Generation_data)

 print(CC)

 #print('end reprod')

 for i_spec in range(0,Size_population):

 Co_i_c=int(Generation_data[i_spec,0])

 Co_j_c=int(Generation_data[i_spec,1])

 Co_k_c=int(Generation_data[i_spec,2])

 Co_l_c=int(Generation_data[i_spec,3])

 #Co_m_c=int(Generation_data[number_row,4])

 Co_m_c=2

 print(Generation_data)

 # ------------------------------ Handling of the Outputs

 identification_folder_summary =

'SingleSimulation'+str(Co_i_c)+str(Co_j_c)+str(Co_k_c)+str(Co_l_c)+str(Co_m_c)

 identification_summary =''

 identification_folder_results =

'SingleSimulation'+str(Co_i_c)+str(Co_j_c)+str(Co_k_c)+str(Co_l_c)+str(Co_m_c)

-100-

 identification_results =''

 save_all_files = True

 erase_old_summary = True

[check_v,Results]=GE.clone(All_data,Generation_data[i_spec,:],Index,First_time)

 if check_v:

 #export

 print('Y')

 LCOE_c=float(Results[0])

 CAPEX_c=float(Results[0])

 Co_i_c=int(Results[1])

 Co_j_c=int(Results[2])

 Co_k_c=int(Results[3])

 Co_l_c=int(Results[4])

 Co_m_c=int(Results[5])

 P_CSP_c=float(Results[7])

 t_sto_c=float(Results[8])

 SM_c=float(Results[9])

 r_c=float(Results[10])

 Q_de_c=float(Results[11])

#[_]=EX.export_data(number_row,LCOE_c,CAPEX_c,Co_i_c,Co_j_c,Co_k_c,Co_l_c,Co_m_c,P_

CSP_c,t_sto_c,SM_c,r_c,Q_de_c)

 wb = openpyxl.load_workbook("History.xlsx")

 ws = wb['Sheet1']

 ws.cell(row = number_row, column = 1, value = LCOE_c) # Writes the

content of totalcost in A1

 ws.cell(row = number_row, column = 2, value = CAPEX_c)

 ws.cell(row = number_row, column = 3, value = Co_i_c)

 ws.cell(row = number_row, column = 4, value = Co_j_c)

 ws.cell(row = number_row, column = 5, value = Co_k_c)

 ws.cell(row = number_row, column = 6, value = Co_l_c)

 ws.cell(row = number_row, column = 7, value = Co_m_c)

 ws.cell(row = number_row, column = 8, value = P_CSP_c)

 ws.cell(row = number_row, column = 9, value = t_sto_c)

 ws.cell(row = number_row, column = 10, value = SM_c)

 ws.cell(row = number_row, column = 11, value = r_c)

 ws.cell(row = number_row, column = 12, value = Q_de_c)

 ws.cell(row = number_row, column = 13, value = number_row)

 wb.save("History.xlsx")

 print('Simulation'+ ' ('+

str(Co_i_c)+','+str(Co_j_c)+','+str(Co_k_c)+','+ str(Co_l_c)+','+ str(Co_m_c)+

')'+' #'+ str(number_row))

 else:

------------------------------ Simulation

 Co_i_c=int(Generation_data[i_spec,0])

 Co_j_c=int(Generation_data[i_spec,1])

 Co_k_c=int(Generation_data[i_spec,2])

 Co_l_c=int(Generation_data[i_spec,3])

 #Co_m_c=int(Generation_data[number_row,4])

 Co_m_c=2

 P_CSP_c=P_max[Co_i_c]

 t_sto_c=TES_value[Co_j_c]

-101-

 SM_c=SM_value[Co_k_c]

 r_c=r_P_Ac[Co_l_c]

 Q_de_c=Q_de[Co_m_c]

 MoltenSaltsCO2(

 P_max = P_CSP_c, #per avere tutto in un solo vettore

 P_gross = P_CSP_c/0.9,

 Q_de=Q_de_c,

 P_AC = r_c*P_CSP_c,

 P_name_EH = P_name_EH,

 SM = SM_c,

 t_storage = t_sto_c,

 Optimize_SF = Optimize_SF,

 Recompression = Recompression,

 Reheat = Reheat,

 Intercooling = Intercooling,

 identification_folder_summary = identification_folder_summary,

 identification_folder_results = identification_folder_results,

 save_all_files = save_all_files,

 Co_i=Co_i_c,

 Co_j=Co_j_c,

 Co_k=Co_k_c,

 Co_l=Co_l_c,

 Co_m=Co_m_c,

 number_sim=number_row,

 Flag=Flag

)

 number_row=number_row+1

