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Abstract 
 

This study focus on the assessment of climate simulation variables by exploiting different bias 

correction methods and analysis the comparison of different bias corrected simulation. Because   

measured models need to generate high resolution input data, global and regional climate 

models are often distorted and have poor resolution. The purpose of this study is to find an 

accurate bias correction approach for climate variables prediction which are used to estimate 

the potential of renewable energy in a local area. Three different bias correction methods are 

analyzed, one of them is simply to correct based on mean values of previous data while others 

are based on the choice of different quantiles. In order to ensure the accuracy of the study, an 

important assumption is that the statistical properties of the present climate bias are 

maintained in the future, which can guarantee the experimental results are useful in future 

climate predictions. The observation data are obtained using buoy measurement positioned in 

special locations and the original simulation data is simulated in ERA5 (the fifth generation 

ECMWF atmospheric reanalysis of the global climate). The main variables that are considered 

are Hs  (significant wave height), Tp (peak period) and Uw (wind speed), which are corrected 

using three common bias corrections: Delta method, The Empirical Quantile Mapping method 

(EQM) and the Empirical Gumbel Quantile Mapping method (EGQM). These three bias 

correction (BC) methods are used to correct original simulation data, making it as close to the 

observation as possible, and finally the most suitable method would be selected to correct the 

simulation data in the future, for which on the study of Spanish coast, is the EQM. 

 

Key words: offshore renewable energy; resource assessment; climate re-analysis models, buoy 

data; bias correction; 

 

 

 

 



Introduction 
 

  Due to the warning signals of climate change to human beings, countries all over the world 

have been thinking about how to reduce carbon emission and save energy. To reduce 

dependence on fossil energy, many countries start using nuclear energy, but the continuous 

occurrence of nuclear facility accidents has increased the doubts about the safe use of nuclear 

energy. Therefore, safe and clean renewable energy becomes the trend in the future 

development, especially ocean renewable energy (ocean energy), which refers to the renewable 

energy contained in the ocean due to the special background environment of the ocean, mainly 

including offshore wind energy (fixed and floating), tidal energy, wave energy, temperature 

difference energy, etc. But according to the report "Oceans Offer Solutions to Climate Change" 

published by the High level Panel on a Sustainable Ocean Economy in 2019, only 0.3% of global 

electricity generation comes from marine renewable energy currently. And the world's marine 

renewable energy reserves have reached more than 75 billion kilowatts, which means that, 

assuming the utilization efficiency of marine energy is 10%, the renewable energy contained in 

the ocean can fully meet the future electricity demand of human society. 

In recent years, the establishment of offshore energy farms has provided new ideas for the use 

of ocean energy. In order to reasonably utilize these renewable energy sources, it is first 

necessary to calculate and predict the future energy production capacity of the region. This 

project aims to compare the past observation data and simulation data based on global-scale 

reanalysis, and apply different Bias Correction (BC) methods. The objective is to improve the 

simulation data to approximate the observed values, and find the most suitable (closest fitted 

data) correction method to predict future climate trends and changes in climate parameters in 

the region. 

Global Climate Models (GCMs) has been the original simulation for hydro meteorological 

research, and it is the fundamental for assessing the impacts of climate change at all levels. 

However, for real climate studies, GCMs are rarely used directly because systematic errors exist 

in this original simulation, commonly due to simplified physical modes, poor spatial resolution 

and thermodynamic processes or other unrecognized knowledge about climate parameters. 

Errors in GCM simulations relative to historical observations can be large (Ramirez-Villegas et al. 

2013). Hence, the use of a BC method is necessary in order to get a precise data that are 



significantly closing the gap between the original simulation and observation point. Bias 

Correction is also used to overcome critical bias in climate models and various methods have 

been developed. It is important that for all methods, the quality of the observed data 

determines the quality of bias correction. To have a good observational dataset, long-term 

observed data sets are necessary. 

Several BC methods are applied in this study, the first and simplest approach to reduce errors, 

commonly named as the “Delta” method (Hay et al., 2000), which is applied by reducing the 

mean difference between observation and simulation from simulation datasets. After that, 

different bias correction methods have been applied, from time averaged corrections to higher 

distribution moments corrections (Piani et al., 2010). A more precise simulation calibration has 

been created by using linear/nonlinear regression methods (e.g., Hay and Clark et al., 2003; von 

Storch and Zwiers et al., 1999; Minguez et al., 2011), quantiles analysis methods (e.g., empirical 

quantile mapping; Déqué, 2007; Boé et al., 2007; Amengual et al., 2012), among others, like 

fitted histogram equalization (Piani et al., 2010) and gamma-gamma transformation (Sharma et 

al., 2007). The most advanced quantile mapping methods are often used to better fit the 

variance of the simulated distribution to the observed variance. (Teutschbein and Seibert et al., 

2012), performing a quantile-based transformation of distributions (Panofsky and Brier et al., 

1968).BC are employed in many climate research that include hydrology and meteorology 

parameters, like winds, temperature and precipitation (Hemer et al., 2012; Applequist, 2012; 

Terink et al., 2009), local wave and tidal climate research(e.g., Charles et al., 2012) are also 

included. 

For climate researches, few studies on the application of BC techniques to dynamic global wave 

climate projections are available in the scientific literature. This study implement several BC 

methods, applied to Hs (wave height), T𝑝 (peak period) and U𝑤 (wind speed) in different 

positions around Spain, eg. Gulf of Biscay, Galicia, Gulf of Cadiz and Cape of Creus.  The 

observation data that we used are obtained from buoy measurement positioned in special 

locations provided by the ‘Spanish Oceanography Agency Puertos del Estado’, and the original 

simulation data are given by ERA5, which is the fifth generation ECMWF (European Centre for 

Medium-Range Weather Forecasts) atmospheric reanalysis of the global climate. Reanalysis 

combines observation model data all over the world into a globally complete and consistent 

dataset. ERA5 replaces its predecessor-- the ERA-Interim reanalysis.   



After collecting all datasets, next step is post-processing with following rules: 

1, interpolating dataset in one hour: the observation data in Bilbao Vizcaya are obtained every 

three hours, to get the datasets in every hour, linear interpolating method is used for both 

time data and observation data; 

2, ignoring missing data (in the observation data with time interval greater than 7 days) and 

meaningless data (observation data that does not be recorded and using 99.99 in files) for 

each parameter and each year; 

3, combine observation and simulation into one data file, observation and simulation data must 

have same time period and same number. 

The data will be compared and displayed through statistical metrics (mean, root mean square 

deviation (RMSD), Pearson correction coefficient (PC) and standard deviation ( 𝛿𝑦)) illustrated 

via Taylor diagrams, which are usually used to evaluate the accuracy of the model.  

The results of final study show that the simple Delta method (changing the simulation mean) 

can improve the performance of original simulation, but the results still provide poor accuracies. 

Because the simple Delta correction changes the average of the overall data, there is not much 

improvement for extreme data. In comparison, EQM and EGQM have a significant improvement 

on the original data. EQM is applied by 99 linear divided quantiles, and for EGQM, due to the 

selection of different quantiles higher than 99%, the extreme data has a good improvement. 

The reminder of the work is as follows: In Section 1 of the thesis, different datasets are 

presented. The performance and comparison of observation data and original simulation data 

are assessment in Section 2. For Section 3, several BC methods are used to correct the 

simulation data, and the results and conclusion will be displayed in Sections 4 and 5, 

respectively. 

 

 

 



1. Data collection  
1.1Literature review of different data sources  
 
Observed and simulated climate can be thought of as a sample of a time-dependent multivariate 

probability distribution—multivariate in space, in time and between different climatic variables. 

In Fig.1.1 (Douglas Maraun et al., 2016) 

 
Fig.1.1two-s imensional  distribution  (t ime and space)  

Global Climate Model (GCM) is a mathematical formulation of processes related to the climate 

system, including the formation of radiative, wind power transport, clouds formation, water 

evaporation and heat transport by ocean currents. Climate models are useful to predict future 

weather conditions. The obtained knowledge can lead to policy decisions related to climate 

change. One of the benefits of GCM is its ability to operate multiple simulation researches using 

different greenhouse gas emission scenarios. The downside of GCM is that it cannot solve 

spatial features smaller than 50 miles by 50 miles. 

Regional Climate Model (RCM) is a numerical weather prediction model enforced by oceanic 

conditions determined from atmospheric circulation models (GCMs) or observational data 

(Reanalysis) Simulate processes and land areas in the atmosphere. It should also be considered 

high-resolution topographic data, land-sea contrasts, surface characteristics, and other 

components of the Earth-system. Because RCM only covers a limited area, the limits of these 

values must be clearly stated which are called boundary conditions. These boundary conditions 

are Results through thicker GCM or new analysis. 

Global Climate Models are large models that simulate the behavior of atmospheric circulation 

models with a total resolution of about 100-250 km. Therefore, a downscaling technique must 

be used to achieve results at a finer resolution of 25-50 km. RCM model is the most commonly 



used technology. The highest resolution RCM and complex physical processes are able to 

reproduce and project detailed climate data that cannot be captured by GCM. 

Global Wave hindcasts (GOW2) provides information on wave weather conditions over long 

periods of time. This improves our understanding of climate variability, long-term and extreme 

trends. This information is useful for coastal researches and can also be used directly for 

regional and local downscaling boundary conditions. GOW2 is used to obtain wave climate 

simulations over a reference historical period. It has multiple grids, being the parent grid 0.5° 

(latitude) x 0.5° (longitude). The wave spectral domain varies from 0.0373 Hz to 0.7159 Hz with 

32 logarithmically spaced frequencies and 24 directions (15° resolution).In contrast to altimeter 

and buoy data, the validation of GOW2 performs  better agreement between the coastal and 

offshore datasets, same condition happens for the higherranking quantiles. 

1.2 Data classification  
For dataets analysis in this study, in order to make reasonable predictions, two kinds of data 

have been choosen and processed: 

1, Buoy Measurements (Observation data): Ocean buoys measure many meteorological 

variables, such as wave height, peak period, wave direction, wind speed and direction, air and 

water temperature, and barometric pressure.  

2, ERA5 data (Original Simulation data): ‘simulation is taking a large amount of data and using it 

to simulate or mirror real-world conditions to either predict a future instance, determine the 

best course of action or validate a model.’ [Drew Robb May 21, 2021] 

1.2.1 Buoy Measurements 
Instead of using the approaches above, valid climate observation datasets can also be 

downloaded through ‘puertos del estado’ (www.puertos.es/es-

es/oceanografia/Paginas/portus.aspx), which is a State-owned company responsible for the 

management of state-owned ports of Spain. 

In this study, 4 different observation sites around Spain were selected, namely Cabo Begur in 

the east, Cabo Silleiro in the west, Golf Cadizin in the sourth and Bilbao Vizcaya in the north, 

details of geographic coordinates are shown in the Table1.1: 

 



Buoy site longitude latitude 

Cabo Begur 3.65°E 41.90°N 

Cabo Silleiro 9.43°W 42.12°N 

Golf Cadizin 6.96°W 36.49°N 

Bilbao Vizcaya 3.69°W 40.42°N 

Table1.1buoy-measurement locat ions coordinate  

The parameters selected to apply BC are Hs (wave height), Tp (peak period) and Uw (wind 

speed). Apart from the missing data, all parameters are recorded every three hours in 20th 

Century of Bilbao Vizcaya from 1990, while from 2000 to 2022 of Bilbao Vizcaya, Cabo Begur, 

Cabo Silleiro and Golf Cadizin, data are logged hourly. 

1.2.2ERA5 data 
 

Original simulation data are obtained in ERA5. ERA5 --the fifth-generation of ECMWF(European 

Centre for Medium-Range Weather Forecasts) that are processed to analysis of global weather 

and climate over the past forty to seventy years. Current dataset is available start from 1959 to 

present. ERA5 provides hourly estimates for a large number of atmospheric, ocean-wave and 

land-surface quantities. Data has been re-gridded to a regular grid of 0.25 degrees for the 

reanalysis and 0.5 degrees for the uncertainty estimate (0.5 and 1 degree respectively for ocean 

waves) (ERA5 hourly data on pressure levels from 1959 to present.) 

Taking the Hs  (wave height) data of 'Bilbao Vizcaya' as an example, in order to compare and 

analyze it with data obtained from the observation, we selected the time period from 1990 to 

2020, around 160,000 data samples. The comparison of original simulation and observation data 

in whole time period are displayed on Fig.1.2, where red line represents the buoy measurement 

data and blue line is the data from ERA5. 

 

Fig.1.2 observation and or ig inal s imulat ion data sample  of Hs between 1990 and 2020  

 



 

Fig.1.3 scatter dens ity p lot of  Hs (1990-2020)  

Scatter density plot (Fig.1.3) introduces the data density, using dots to represent values for 

observation and original simulation. The color bar on the right indicates the ratio of the number 

of points to the total number of points in the area. The closer the color to red, the higher the 

number of points in that area. Where x-axis is the dataset of observation and y-axis represents 

simulation data. From Fig.1.3, most of Hs wave height observation data are between 0m and 2m, 

which has scatter density around 1, same tendency happened for simulation, which has scatter 

density closer to 1. 

2. Initial resource assessment via statistical characterisation 
To better analyse and understand the tendency of raw datasets, wave resources and wind 

resources are estimated respectively.  

2.1 Overall wave resource characterisation 
Three main variables will be studied in this thesis, two of them related to wave resources--- Hs 

(wave height) and Tp (peak period). These two parameters have significant impacts on the 

production of ocean energy, the higher the wave height, the more wave energy would be 

generated. Having the same wavelength, a wave with higher height will produce more power 

when it falls back to sea level than a wave of lesser height. Energy per square meter is 

proportional to the square of the wave height (𝐻𝑠): E ∝ Hs2. Tp (peak period) is defined as the 

time interval between two adjacent peaks, which represent how long two adjoining waves 

produce maximum energy. 



2.1.1 Overall resource   
Taking samples of Bilbao Vizcaya as an example, 4 separate years (1993, 2003, 2013 and 2020) 

were chosen for comparison. In order to get a clear vision between observation and simulation 

data, raw observation and simulation data after interpolating and post-processing are used. Hs 

and Tp are shown on Fig. 2.1 and Fig. 2.3:  

Hs  (Bilbao Vizcaya): 

 

Hs 1993 (Raw data of observat ion and s imulation  after  interpolating  and post-processing)  

 

Hs 2003 (Raw data of observat ion and s imulation  after  interpolating  and post-processing)  

 

Hs 2013 (Raw data of observat ion and s imulation  after  interpolating  and post-processing)  

 

Hs 2020 (Raw data of observat ion and s imulation  after  interpolating  and post-processing)  

F ig2.1  Hs Raw data of Bi lbao V izcaya after  interpolat ing  and post-process ing  



In Fig2.1, the blue line introduces the observation data (buoy-measurement) and red line is the 

original simulation data. From the figures above, wave height has less fluctuations in this region 

from April to September, most of the data are lower than 4m for both observation and 

simulation. While from October to March of the following year, wave height changes more 

clearly, and extreme values always occur during this time period for all samples. Reading from 

figures, the highest wave height is around 10m. This is of course related to the local climatic 

environment and ocean current conditions. The unique oceanic climate along the coast and the 

North Atlantic circulation combine together generate hydrological features in this sea area. 

The density of the data and its corresponding value can be visually represented by the scatter 

density plot (Fig. 2.2): 

       

 Scatter density plot  for Hs 1993                                 Scatter  density  plot  for Hs 2003  

                               

          Scatter dens ity plot for Hs 2013                                Scatter  density  p lot for  Hs 2020 

Fig.  2.2  Scatter dens ity p lot for Hs(Bi lbao V izcaya)  



Where for 1993, the vast majority of observation values are around 0.919m, the vast majority of 

simulations are equal to 0.875m, and their scatter density is 0.996. Situations changes for 2003, 

the largest number of observation value of it is 1.3m and largest number of simulation value is 

1.139m, scatter density is 0.995. As for 2013, these three values are 1.2m for observation, 

0.969m for simulation and 0.987(scatter density); for 2020, they are 1.2m (observation), 1.017m 

(simulation) and 0.993 (scatter density), respectively. 

Tp (Bilbao Vizcaya): 

 

Tp 1993 (Raw data  of observat ion and s imulation  after  interpolating  and post-processing)  

 

Tp 2003 (Raw data  of observat ion and s imulation  after  interpolating  and post-processing)  

 

Tp 2013 (Raw data  of observat ion and s imulation  after  interpolating  and post-processing)  

 

Tp 2020 (Raw data  of observat ion and s imulation  after  interpolating  and post-processing)  

F ig.2.3 Tp Raw data of  Bilbao Vizcaya  after interpolating  and post-processing  



For Tp (peak period) of the observation and simulation data, sample trend and maximum point 

are not as clear as what shown on Hs. But differences can also be found between time period A 

(from May to October) and B (October to April of the following year). The transition of samples 

in time period A is relatively gradual and does not produce a sudden rise or reduction. However, 

data in time period B are relatively different, the ups and downs of the points are obvious and 

maximum point always occurs in this area. Specific data can be obtained by scatter density plot 

(Fig.2.4). 

Scatter density plot for Tp (Bilbao Vizcaya): 

         

                Scatter dens ity  plot for Tp 1993                                      Scatter dens ity plot  for Tp 2003        

      

                 Scatter density  plot  for Tp 2013                                    Scatter dens ity plot  for Tp 2020 

Fig.  2.4 Scatter dens ity p lot for Tp (B i lbao Vizcaya)  



For 1993 and 2003, the vast majority of observation values for both figures are between 10s and 

15s, the vast majority of simulation values are between 12s and 14s. Almost same situations 

happened for 2013 and 2020. For extreme values, its number is higher than 20s and lower than 

22s for 1993, but for the other three years, extreme values are less than 20s. 

2.2 Overall Wind resource characterisation 
Several parameters affect the energy generation related to wind resource, and in this study, the 

most significant variable has been chosen—wind speed. Wind speed largely determines the 

amount of electricity generated. The greater the wind speed and the longer the duration of the 

wind, the greater the wave energy will be produced. 

2.2.1Average resource   
Same location and same year are selected as it displayed for wave resources, but for 

Uw(wind speed ), instead of using the original observation and simulation data, post-processing 

data would be more clearly to reflect the trend of sample, which are shown in (Fig.2. 5): 

 

Uw 1993 Raw data of  observat ion and s imulation  after  interpolating  and post-processing  

 

Uw 2003 Raw data of  observat ion and s imulation  after  interpolating  and post-processing  

 

Uw 2013 Raw data of  observat ion and s imulation  after  interpolating  and post-processing  



 

Uw 2020 Raw data of  observat ion and s imulation  after  interpolating  and post-processing  

Fig.2.5 Uw Raw data of  Bilbao Vizcaya  after interpolating and post -processing  

 

2.2.1.1 Overall resource 

 
Unlike Hs  and Tp, there is no obvious difference in Uw, but the sample fluctuation in summer 

and autumn is slightly smaller than that in spring and winter. 

Scatter density plot for Uw (Bilbao Vizcaya): 

            

                  Scatter  dens ity p lot for  Uw 1993                            Scatter  density  p lot for  Uw 2003 

             

                   Scatter dens ity plot for Uw 2013                           Scatter dens ity p lot for Uw 2020 

Fig.  2.6 Scatter dens ity p lot for Uw 



Like what it shown on sample data, same situation also displayed in scatter density plot. From 

the figure above, observation samples focuses on range between 0 and 10 m/s, simulation data 

focuses on range 0 and 10 m/s. Most samples located in this large area, which also means the 

fluctuation is not so evident during the whole period. 

2.3 post-processing data samples for every decade: 
Data samples (during 1990—2000, 2001—2010 and 2011—2020): 

 

Fig.  2.7 data  sample 1990 —2000    

 

 

 

 

 



 

Fig.  2.8 data  sample 2001 —2010 

 

Fig.  2.9 data  sample 2011 —2020 

These figures above are the comparison of observation and simulation datasets after data post-

processing. The original datasets for both observation and simulation cannot be used directly 

not only because they choose different time interval, but missing data and incorrect recordings 

are also exist. Therefore, one hour time interval has been chosen during the whole period, by 



linearly interpolating approaches changing simulation from three hour interval to one hour, 

removing missing data that has time period over one week and ignoring meaningless data. At 

the same time, if the number of missing data higher than 50 percent of the total data number 

for each year, it says invalid and we will not take this data into account.   

These three figures are post-processing data for observation and original simulation, ignoring 

missing data and meaningless data, which will be the input data for BC.  

In the 20th century, weather data records were not very accurate, especially wind speed records, 

there were many missing and invalid data, and in some years useful data were even less than 

50%, such as 1992 and 1997. After that, the data quality has gradually improved, and it has been 

relatively complete in recent years, indicating that people are paying more attention to weather 

changes and renewable energy sources. 

3.  Bias Correction 
3.1 Literature review 

 
The wave and wind source forecast statistics that climate models provide during the control 

period often do not match observations for the same period. There are systematic errors in the 

results of both global and regional climate models (GCM, RCM). For instance, climate models 

often have lower wave height simulation and often underestimate the extreme values of it. Bias 

in climate simulation may be caused by a number of reasons. Errors due to this condition may 

affect simulated results for future time. Therefore, using inaccurate results in climate impact 

often produces unrealistic results. In order to solve these errors in climate models, a number of 

bias correction methods have been developed. The bias correction approach has been created 

to improve the suitability of climate model simulations to observations during the control period, 

it is also used to improve the reliability of climate model results for future time. As with all 

methods, it is significant to realise that the quality of the observed data dominates the quality of 

bias correction result. So, a good set of observations is the prerequisite for good bias orrection. 

If extreme values need to be corrected, then long-term effective data collection is essential. 

Bias correction is the process of scaling climate model outputs to account for their systematic 

errors, in order to improve their fitting to observations (Teutschbein, et al., 2010). 



3.2 Classification of bias correction techniques 
1, Delta method:  

The simplest BC, proposed by (Hay et al., 2000), is the Delta method, also called “perturbation 

method” (Themeßl et al., 2012; Fowler and Kilsby, 2007; Graham et al., 2007). This method is 

used to adjust the variable distribution of simulation data by adding each value the difference 

between the observation mean data and the simulation mean data that computed using (Eq. 1). 

The approach is applied to each dataset at each value, defined as: 

𝐻𝑠𝑖
𝐶 = 𝐻𝑠𝑖

𝑠𝑖𝑚𝑢 + (𝐻𝑠𝑜𝑏𝑣̅̅ ̅̅ ̅̅ ̅̅ − 𝐻𝑠𝑠𝑖𝑚𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅)    𝑖 = 1, … , 𝑁       (Eq. 1) 

 
 

Where 𝐻𝑠𝑖
𝐶  is the  𝐻𝑆(wave height) after applying bias correction, 𝐻𝑠𝑖

𝑠𝑖𝑚𝑢 is the original 

simulation that will be bias corrected,  𝐻𝑠𝑜𝑏𝑣̅̅ ̅̅ ̅̅ ̅̅  and 𝐻𝑠𝑠𝑖𝑚𝑢̅̅ ̅̅ ̅̅ ̅̅ ̅ are the mean values for observation 

and reference simulation samples, calculated for the choosing reference time period, and N is 

the length of the time period. Because Delta Correction method is operated for every single 

time point, errors from original simulations would be added to the corrected simulation 

datasets. Also, using Delta Correction to change means for original samples ignores extreme 

values that located in high quantiles, which is a disadvantage for this approach. 

In this project, Delta bias correction method is used for Hs, Tp and Uw respectively, and the 

reference time period are separated into every decade (ie.1990-2000, 2001-2010, 2011-2020); 

every twenty years (ie.1990-2010, 2001-2020) and every thirty years (ie.1990-2020). 

After statistical computation, which represented in Section 4.1, the PC (correction coefficient) 

and  𝛿𝑦(standard deviation) between the original simulated data and corrected data are the 

same, while RMSD are different. Compared with original simulation, the RMSD for corrected 

simulations are reduced which means the corrected sample is closer to the observation data on 

Taylor diagram (in section 4.1.1 and 4.1.2). The statistical meaning of RMSD is to measure the 

error between real data and simulated data, smaller RMSD means smaller error between them, 

so the corrected simulation value using Delta method is better than the original one.  

2, The empirical quantile mapping method (EQM) 

  Using statistical techniques to reduce systematic bias in numerical climate model simulations is 

an important tool in applied research. One of the common tools used to correct bias in climate 



model simulations is EQM, mapping between simulations and observed cumulative distribution 

(CDF) functions based on data from historical periods. However, EQM is very simple and robust 

in some cases, which are known to have inherent problems, especially in correcting biases in 

future climate projections. 

While comparing to Delta method, this is a more complex form of bias correction, where the 

simulated (empirical) cumulative distribution function ECDF is calibrated by supporting to each 

simulated ECDF interval a specific quantile correction (i.e., linearly divide simulation dataset 1st 

to 99th quantiles, adding to each single simulation dataset interval the difference between the 

inverse of observation ECDF and the inverse of simulation ECDF). The correction term is 

computed at each linearly spaced quantiles, as the inverse of observation ECDF minus the 

inverse of simulation, equations are as following (eg. use Hs as an example): 

X(𝑞𝑖) = 𝐸𝐶𝐷𝐹𝑜𝑏𝑣−1
(𝑞𝑖) − 𝐸𝐶𝐷𝐹𝑠𝑖𝑚𝑢−1

(𝑞𝑖), 𝑖 = 1, … , 𝑛𝑞  (Eq.2)  

𝐻𝑠𝐶(𝑞𝑖) = 𝐻𝑠𝑠𝑖𝑚𝑢(𝑞𝑖) + X(𝑞𝑖), 𝑖 = 1, … , 𝑛𝑞  (Eq.3)  

Where  𝐻𝑠𝑠𝑖𝑚𝑢 and 𝐻𝑠𝐶  are the original simulated datasets and datasets after bias correction 

respectively. The EQM method is purely empirical since no assumptions about the distributions 

are made (Wilcke et al., 2013), By correcting each quantile in particular, the EQM method 

accounts for different error characteristics of different quantiles, leading to a better BC than 

other methods (Wilcke et al., 2014; Themeßl et al., 2011). 

3. The empirical Gumbel quantile mapping method (EGQM) 

The EGQM method is a correction of a simulated empirical cumulative distribution function 

ECDF (Wilks et al., 1995), by adding corresponding correction terms to the data between 

adjacent and quantiles (pre-set). EGQM is an improved method of EQM, the only difference is 

that it uses the Standard Gumbel distribution (SGD; Gumbel et al., 1935) instead of the evenly 

distributed quantile as the correction term, it is therefore can better perform the correction of 

the upper-tailed distribution, which means a better correction for extreme values. For the 

operation of the EGQM approach, using the standard Gumbel distribution (SGD), choosing the 

number of quantiles to be 20 between the 1st quantile and the 99.999th quantile. Most of our 

quantiles are larger than 95th percentile, focusing on the correction of the extreme values, 



where higher biases are usually found (Gil Lemos, et al., 2020), (On the need of bias correction 

methods for wave climate projections Gil Lemos), such as: 

𝑥𝑞𝑖 = 𝑞𝑙𝑜 + (𝑖 − 1)
𝑞𝑢𝑝 − 𝑞𝑙𝑜

𝑛𝑞
, 𝑖 = 1, … , 𝑛𝑞 

𝑞𝑖 = exp[− exp(−𝑥𝑞𝑖)] , 𝑖 = 1, … , 𝑛𝑞 Eq. (4) )  

Where 𝑞𝑖 is the quantiles computed from the SGD,  𝑞𝑙𝑜 = 1 and 𝑞𝑢𝑝 = 99.999. The method was 

then implemented as in (Eq.(2) and Eq.(3)), by applying correction terms calculated as the 

difference between the inverse ECDFs of simulation and observation, at each quantile qi (as in 

Eq. (4)), linearly interpolating between them.  

3.3 Modelling of Bias Correction techniques 
All numerical simulations and modeling work in this study are done through Matlab. In the Delta 

method, after preprocessing the observation and simulation data, the difference between the 

averages of the two samples in every five years and every ten years is selected as the correction 

term for Delta BC.  

While EQM and EGQM are relatively complex. In EQM, 99 quantiles are selected linearly by the 

'quantile' command, a matrix is constructed for each two adjacent quantiles, which contains all 

the values within this interval, and the data is rearranged into the corresponding matrix. In each 

matrix of the interval, the inverse cumulative distribution function operation is performed to 

obtain the corrected result. Compared with the linear selection of EQM, EGQM adopts the 

'gumbel distribution' method in quantile selection, which selects extreme quantiles. The next 

calculation steps are the same with EQM method. 

3.4 data validation 
We analysis the differences between observation and simulation datasets from several ways of 

expression: 

1, scatter plot between observation and simulation, also plot the fit line (like what we did 

above); 

2, computing and comparing mean value, root mean square deviation (RMSD), Pearson 

correction coefficient (PC) and standard deviation ( 𝛿𝑦) for both datasets; 



3, plotting Taylor diagram for every year, every five year, and every decade; 

4, making distribution line for every year, every five year, and every decade. 

In this section, in order to judge the agreement of the corrected results, some statistical 

parameters need to be calculated and statistical diagrams need to be drawn, the parameters are 

listed below and the most useful diagram would be the Taylor diagram. 

3.5. Methodology 

3.5.1 dataset validation 
 

Dataset validation is essential to make sure that the simulated and observed datasets introduce 

the correct metocean conditions of a given location. To that end, the most relevant variables 

obtained from the buoy measurements (observation) and the re-analysis (original simulation) 

data are compared by means of statistical metrics for the time-period is very important. And in 

some cases, statistical parameters can quantitatively show the characteristics of the sample and 

the improvement of the overall data after correction. The statistical parameters used for data 

analysis and comparison are the Root Mean Square Deviation (RMSD), Pearson correlation 

coefficient (PC) is employed for the analysis of similarity and the Standard  deviation (𝛿𝑦), 

equations of these three parameters are following (eg. using Hs  as example, all the equations 

for Tp and Uware the same): 

1, Root Mean Square Deviation (RMSD), The RMSD represents the square root of the second 

sample moment of the differences between simulated values and observed values or the 

quadratic mean of these differences, The RMSD is very sensitive to the much large or small 

errors in a set of measurements, so it can reflect the precision of the measurement very well. 

 

RMSD𝐻𝑠 = √∑ (𝐻�̂�−𝐻𝑠𝑛)
2𝑁

𝑛=1

𝑁
  Eq. (5)  

 

Where Hŝ is the variable obtained from the observation model, Hsn is the simulation variable 

and N is the number of meaningful samples considered within the validation time period.  

 



 2, Pearson correction coefficient (PC) is a linear correlation coefficient and it is the most 

commonly used correlation coefficient. It is used to reflect the degree of linear correlation 

between two variables X and Y. The value is between -1 and 1. The larger the absolute value, 

the stronger the correlation, the formula is: 

 

PC =
𝑐𝑜𝑣(𝐻�̂�,𝐻𝑠)

𝛿𝑦
̂  𝛿𝑦

  Eq. (6)  

Where cov(Hŝ, Hs) is the covariance,  δy  ̂ and δy are the standard deviation for simulated and 

observed dataset respectively.  

3, Standard deviation ( δy) is defined as the square root of the arithmetic mean of the square of 

the difference between the standard value and its mean. It reflects the degree of dispersion 

among individuals within a group, which defined as: 

 𝛿𝑦 = √
1

𝑁
∑ (𝐻𝑠 − 𝜇𝑦)

2𝑁
𝑛=1   Eq. (7) 

And μy represent the mean value of samples, which is a measure of central tendency of a finite 

set of numbers, defined as: 

𝜇𝑦 =
1

𝑁
∑ (𝐻𝑠𝑛)𝑁

𝑛=1   Eq. (8) 

By using these statistical values, a Taylor diagram can be easily plotted that represent the 

similarity between simulation and observation, which also introduce the difference before and 

after bias correction method. 

Taylor diagram was first proposed by Karl E. Taylor in 2001, mainly used to compare the ability 

of several meteorological models of simulation, which is simply a chart that can represent three 

indicators: standard deviation ( 𝛿𝑦), root mean square deviation (RMSD) and correlation 

coefficient (PC). It is more intuitive than a single RMSE and other horizontal and vertical 

coordinates. 

 It can centrally represent the relevant information of multiple models, and is an effective 

method widely used in model evaluation and testing in recent years. It can comprehensively 

display 3 different parameters on a two-dimensional map, the multi-mode simulation capability 

can be fully and clearly reflected. 



For instance: 

 

Fig.3.1  example of  Taylor  d iagram 

Fig.3.1 is an example of Taylor diagram, for the red point, its pattern correction is between 0.7 

and 0.75, while the closer the coefficient is to 1, the better the correlation; the orange dash line 

indicates the RMSD value, so the centered RMSD is 20, the standard deviation is the distance 

between the red point and the origin, in this case around 20. The ‘observed (purple)’ is 

observation, the closer to the observed point, the more similar to the realistic, the better the 

correction part has been done. From the figure, red point is closest to observation, means it 

generally agrees best to the realistic. 

 
 

 

  



4. Results 
The results of corrected simulation using different BC will be shown below, which includes one 

Delta method, two EQM methods and one EGQM method. 

4.1 Result of Delta method 
 To check the validation of Delta bias correction method, the simulation datasets are divided 

into several time-slices: present climate used to compute the BC (bias correction), different time 

periods and different time intervals can be used to find a better correction value. It includes 3 

kinds of time intervals and 6 different time period: every decade (ie.1990-2000, 2001-2010, 

2011-2020); every twenty years (ie.1990-2010, 2001-2020) and every thirty years (ie.1990-2020). 

The datasets during 2001-2020 are used as fundamental dataset to compare the validation of 

different time intervals. 

4.1.1Wave data 
Wave data includes Hs  (wave height) and Tp (peak period). The observation, original simulation 

datasets and simulation data after Delta BC correction through different years are integrated in 

the Table4.1 and Table4.2 below, 

Hs 2001-2020 
(fundamental) 

  Mean [m] RMSD [m] PC [-] σy [m] 

Buoy 1.945 0.000 0.000 1.238 

Simu 1.598 0.564 0.965 0.891 

every decade 

1990-2000(cor) corrected 1.907 0.447 0.965 0.891 

2001-2010(cor) corrected 1.939 0.446 0.965 0.891 

2011-2020(cor) corrected 1.949 0.446 0.965 0.891 

every 20 years 
1990-2010(cor) corrected 1.924 0.446 0.965 0.891 

2001-2020(cor) corrected 1.945 0.446 0.965 0.891 

every 30 years 1990-2020(cor) corrected 1.934 0.446 0.965 0.891 

 

Table4.1:  Hs (wave height) for the va lidat ion of or ig ina l s imulation &corrected simulat ion model with  

respect to  observation.  

 

Where the statistical values are the last four columns (mean, RMSD, PC correction coefficient, 

standard deviation), the first two rows indicate the values of observation and original simulation,  

the rest of the rows are corrected values after Delta BC using different years correction terms. 

The Pearson correction coefficient (PC) and standard deviation (𝛿𝑦) do not change after Delta BC 

and the values are 0.965 and 0.891 respectively. This is obvious because we add a correction 

term for each value and its means changes the same. While RMSD is the only parameter should 



be considered and for Hs, it is almost the same, which means the degree of dispersion is not 

changed much when corrected with different years. Although corrected values show similar 

numbers, there is a high improvement compared with original simulation both for mean value 

and RMSD.  

Because PC and 𝛿𝑦 do not change, the Taylor diagram is not so clear to tell the difference, so a 

bar plot (Fig.4.1 (a)) is enough: 

Tp (peak period): 

Same trend happened forTp, the value of PC is 0.819 and 𝛿𝑦  is 2.911 that are the same for all 

simulation samples. Before correction, the mean value of original simulation is 10.842 that is 

larger than observed 9.665. This condition has been improved after BC, all of these ‘Means’ are 

closer to observation than before. 

Tp 
 

Tp(peak period) 

2001-2020 
(fundamental) 

 Mean [s] RMSD [s] PC [-] σy [s] 

Buoy 9.655 0.000 0.000 2.606 

Simu 10.842 2.061 0.819 2.911 

every decade 

1990-2000(cor) corrected 9.798 1.692 0.819 2.911 

2001-2010(cor) corrected 9.683 1.686 0.819 2.911 

2011-2020(cor) corrected 9.631 1.686 0.819 2.911 

every 20 years 
1990-2010(cor) corrected 9.736 1.688 0.819 2.911 

2001-2020(cor) corrected 9.655 1.686 0.819 2.911 

every 30 years 1990-2020(cor) corrected 9.696 1.686 0.819 2.911 

 

Table  4.2:  Tp (peak period) for  the va l idation of  or ig inal  s imulat ion &corrected s imulation model with 

respect to  observation.  

Different values of ‘RMSD’ for 𝑇𝑝 are in Fig.4.1 (b)：  

4.1.2Wind data  
 

Uw (wind speed) is the only wind data considered in this study, whose mean value of 

observation is 5.078 m/s and original simulation mean is 6.201m/s. From the table below, using 

the correction term from 2001-2020 works best, and the corrected data is closest to the 

observation, its mean value equal to 5.106m/s and RMSD is 1.935. Of course, all simulations of 



Uw after Delta BC show better performance than before with same PC equal to 0.843 and same 

 𝛿𝑦 equal to 3.592. 

Uw 
 

Uw(wind speed) 

2001-2020 
(fundamental) 

 Mean [m/s] RMSD [m/s] PC [-] 
σy 

[m/s] 

Buoy 5.078 0.000 0.000 3.031 

Simu 6.201 2.237 0.843 3.592 

every decade 

1990-2000(cor) corrected 5.716 2.037 0.843 3.592 

2001-2010(cor) corrected 5.362 1.956 0.843 3.592 

2011-2020(cor) corrected 4.849 1.948 0.843 3.592 

every 20 years 
1990-2010(cor) corrected 5.539 1.989 0.843 3.592 

2001-2020(cor) corrected 5.106 1.935 0.843 3.592 

every 30 years 1990-2020(cor) corrected 5.194 1.938 0.843 3.592 

 

Table4.3:  Uw (wind speed) for the va lidat ion of or ig ina l s imulation & corrected simulat ion model with  

respect to  observation.  

The situation of RMSD of 𝑈𝑤is as same as before, displayed on Fig.4.1 (c) 

As showing in the above table, for each variable, PC (Pearson correction coefficient) and 

 𝛿𝑦(standard deviation) are the same, RMSD is the parameter that only changed by using Delta 

bias correction. In this case, Taylor diagram is not a convenient approach to show the 

comparison, and a bar plot is easily to represent its difference:          

      

     (a )                                                      (b)                                                      (c )  

F ig.  4.1RMSD for  Hs Tp and Uw in di f ferent time period  

Where ‘OBS’ is the observation data that set as ‘0’, Hsim , Tpsim, Uwsim are the original 

simulated RMSD for Hs, Tp andUw. Hs cr, Tpcr
, Uwcr are the corrected RMSD value. As can be 

seen in these three plots, all corrected RMSD are smaller than the original one so the Delta BC 

actually improve the simulation dataset, making it closer to the observation part. 



For Hs, after using the above time intervals’ correction, its minimum RMSD difference between 

original simulation and corrected simulation is 0.1173, the maximum difference is 0.1189, that 

does not change so much. Same situation happens for Tp and Uw: for Tp, minimum difference is 

0.3696, maximum difference is 0.3757; for Uw, minimum difference is 0.2, maximum difference 

is 0.302. 

4.2 Result of EQM (The empirical quantile mapping method) method 
There are two approaches to use the EQM method:  

1, using CDF in the whole dataset, correcting simulation bias without different intervals; 

2, dividing the dataset using 99 quantiles, and implement CDF computing for each part 

separately. The result of EQM method to correct data is better than Delta method whenever 

using the first or the second method. While comparing the first approach, the corrected 

simulation that using 99 quantiles are closer to the observation, the example result of Hs, Tp 

and Uware displayed below: 

Hs 

  Hs(wave height)  

1990-2020 
(fundamental) 

  Mean [m] RMSD [m] PC [-] σy [m] 

Buoy 1.937 0.000 0.000 1.218 

Simu 1.601 0.547 0.966 0.882 

 
 

2(using 99 quantiles) 1.937 0.083 0.997 1.218 

 1(without 99 quantiles) 1.937 0.318 0.998 1.217 

 

Table4.4  Statist ical  va lues compare 1 and 2  for Hs  

Tp 

  Tp(peak period)  

1990-2020 
(fundamental) 

  Mean [s] RMSD [s] PC [-] σy [s] 

Buoy 9.763 0.000 0.000 2,641 

Simu 10.909 2.019 0.823 2.888 

 
 

2(using 99 quantiles) 9.763 0.166 0.998 2.640 

 1(without 99 quantiles) 9.763 1.568 0.999 2.637 

 

Table4.5  Statist ical  va lues compare 1 and 2  for Tp  

Uw 

  Uw(wind speed)  

1990-2020 
(fundamental) 

  
Mean [m/s] RMSD [m/s] PC [-] 

σy 
[m/s] 

Buoy 5.232 0.000 0.000 3.084 

Simu 6.201 2.222 0.832 3.598 

 
 

2(using 99 quantiles) 5.232 0.169 0.999 3.084 

 1(without 99 quantiles) 5.232 1.795 0.998 3.083 

 

Table4.6  Statist ical  va lues compare 1 and 2  for Uw 



Where ‘2’ represent statistical values for method using 99 quantiles and ‘1’ includes values using 

CDF in the whole dataset. ‘simu’ is the original simulation value(without bias correction) and 

‘Buoy’ for observation data. 

 By concluding from the table, the mean Hs  value for observation is 1.937m, while for original 

simulation, it is 1.601m. After bias correction, mean value became 1.937m for both EQM 

methods, get very close to observation. 

Same results happened for PC (Pearson correlation coefficient) and δy (standard deviation), the 

bias corrected simulation becomes more similar to observed value that are around 0.997 and 

1.218 respectively. These parameters are almost the same by using the two EQM methods 

above. 

While for RMSD, the RMSD for original simulation, bias corrected values using the ’2’ method 

and ‘1’ method are 0.547m, 0.0833m and 0.3178m respectively. Although bias correction made 

RMSD better, the difference between ‘2’ method and ‘1’ method are large, and 0.0833m (‘2’ 

method) is smaller than 0.3178m (‘1’ method), which means ‘2’ method performs better degree 

of dispersion than ‘1’ method. 

 For Tp (peak period) and Uw (wind speed), same situations are displayed---mean, PC and  𝛿𝑦 

show almost the same value for both EQM methods, while the differences between RMSD are 

large. And the RMSD for method ’2’ is smaller than using method ‘1’, means two bias correction 

EQM methods made data more similar than original simulation and using 99 quantiles to do the 

CDF has better results than compute CDF on whole dataset. 

Another interesting thing is to compare it with the Delta method, EQM has smaller RMSD, 

especially for method ‘2’ (using 99 quantiles), and really good PC coefficient (around 1). The 

standard deviation of EQM method is closer to observation than original and Delta BC 

simulation, and the plot of sample data before and after BC are as follow in Fig.4.2. 

Plot Fig.4.2 (a) is the sample data for observation, original simulation, corrected simulation using 

Delta, EQM method ‘1’ and EQM method ‘2’, Fig.4.2 (b) introduce the CDF for all datasets. 

Because there are too many data samples in one plot, we can only see the general trend 

through Fig.4.2. Therefore, Fig.4.2 (a) has been zoomed in, in order to observe the specific 



changes before and after correction and using different correction methods, results (general 

result chosen in average value area)has been displayed on Fig.4.3(a). 

 

       (a)                                                                                       (b)  

F ig.4.2 Hs data  samples  and CDF plot  for DELTA and EQM method 

 

Fig.4.3 (a)  zoomed in sample for average value  

Where Fig.4.3(a) is the lower red circle on Fig.4.2 (a), which represent the average sample value 

of the whole Hs data. As for the zoomed in part of all samples, straight blue line represents the 

observation data, orange dash line is the original simulation, yellow line is corrected sample 



using  EQM method’1’(without 99 quantiles), the corrected data for EQM method ‘2’ is shown in 

purple dash, and the green line displays Delta correction method. 

Compared Delta correction method with original simulation, after Delta BC, the simulation 

samples has moved up and be significantly closing the gap between simulation and observation. 

EQM (using 99 quantiles) can not see clearly in this figure because it is almost overlap with the 

observation, which is by far the most suitable method. So a simple result can be concluded that 

the effect of correction for Hs  is EQM (using 99 quantiles)> EQM (without 99 quantiles)>Delta 

method. 

The EQM and Delta for Tp is shown below: 

                    

(a)                                                              (b)  

F ig.4.4 data samples and CDF plot for DELTA and EQM method (Tp)  

 



 

Fig4.5 zoomed in  sample for average va lue  

ForTp, Fig4.5 is the zoomed in area of red square in Fig.4.4(a),  the original simulation is 

overestimated, while in some parts of the figure, Delta method fit better than the EQM (without 

99 quantiles), and the EQM (using 99 quantiles) is always the most similar simulation to the 

observation. 

The EQM and Delta for Uwis shown below: 

 

(a)                                                          (b)  

F ig.4.6 data samples and CDF plot for DELTA and EQM method  (Uw)  



 

Fig4.7 zoomed in  plot  for  data sample   

ForUw, Fig4.7 is the zoomed in area of red square in Fig.4.6 (a), and same situation happened, 

original simulation is a little bit overestimated. For Delta and the EQM (without 99 quantiles), 

we can not see which one is better. And there is no doubt that EQM (using 99 quantiles) 

correction always suit the observation best. 

Cause EQM (using 99 quantiles) fits the observation data very well, so the detail results of it are 

listed below:  



EQM statistical values: 

Fig.4.8  Taylor  d iagram for  Hs  (EQM)                  Table4.7 statistica l  value for Hs  (EQM)                                                           

        F ig4.9 Taylor diagram for  Tp  (EQM)                         Table4.8 statist ica l  value for Tp (EQM)                               

                 
F ig4.10Taylor diagram for Uw (EQM)                        Table4.9  stat istica l  va lue for  Uw  (EQM)     

Hs 

  Hs(wave height) EQM 

  
Mean [m] 

RMSD 
[m] PC [-] σy [m] 

Buoy 1.937 0.000 0.000 1.218 

Simu 1.601 0.547 0.966 0.882 

EQMcor 1.937 0.083 0.998 1,218 

Tp 

  Tp(peak period)  EQM 

  
Mean [s] RMSD [s] PC [-] σy [s] 

Buoy 9.763 0.000 0.000 2.641 

Simu 10.909 2.019 0.823 2.888 

EQMcor 9.763 0.166 0.998 2.640 

Uw 

  Uw(wind speed)  EQM 

  Mean 
[m/s] 

RMSD 
[m/s] PC [-] σy [m/s] 

Buoy 5.232 0.000 0.000 3.084 

Simu 6.201 2.222 0.832 3.598 

EQMcor 5.232 0.169 0.998 3.084s 



Where in these charts, ‘Buoy’ is the observation data, ‘Simu’ includes the original simulation 

datasets and ‘EQMcor’ includes corrected datasets after EQM method (using 99 quantiles). And 

in Taylor diagram, ‘*’ is the observation point, ’+’ represent the original simulation and ‘○’ is the 

bias corrected point using EQM method. As for original simulation dataset, comparing with Hs  

and Uw, Tp is the best, Uw shows the worst situation, because its ‘Simu’ point is farthest to its 

‘Obv’ point. 

In the Hs  chart, the difference of mean value between ‘buoy’ and ‘simu’ is 0.336m, RMSD for 

original simulation is 0.547, correction coefficient (PC) is 0.966 and standard deviation is 1.218. 

While all these parameters change a lot after EQM bias correction, and the mean value of EQM 

correction is same with observation that is 1.937m, the difference between corrected data and 

observation is 0 that is true for both EQM approaches. They also have same standard deviation--

-1.218m. In contrast to ‘Simu’, RMSD, mean value and standard deviation of EQM corrected 

improve significantly, made it more similar to observation part, this can also be seen in Taylor 

diagram. The improving tendency for Tp and Uw are the same, moving the simulation point 

close to observation. 

As for Tp, its observation data has mean value as 9.763s and standard deviation is 2.641, while 

these two values are 10.909s and 2.888 for original simulation. After EQM (using 99 quantiles), 

there is a higher improvement, ‘mean’ and ‘𝛿𝑦’ are the same with observation, also with small 

RMSD (0.166) and much higher correction coefficient (0.998). A good correction is directly 

shown on Taylor diagram of Fig.4.9. Similar tendency can also be found on Uw that has higher 

PC (0.998) and low RSMD (0.169) and a higher quantity in contrast to the original simulation. 

Although EQM BC shows good performance for most of the data, its correction effect on 

extreme data (which is the upper red square of Fig.4.3,) is not obvious, as shown in the Fig.4.3 (b) 

below: 



 

Fig.4.3(b)  extreme sample for  data  sample above  

The purple dash line (EQM) does not fit the blue line (observation) very well. In order to solve 

this problem, the EGQM method has been studied in the next part. 

4.3 Result of EGQM (empirical Gumbel quantile mapping method) method 

The EGQM method is usually useful to correct samples which have significant extreme values. Its 

steps are what we discussed in the section 3 before. As for the EQM method, there is a simple 

conclusion that using EQM (using 99 quantiles) fits observation best, so in this part, the 

comparison between EQM (using 99 quantiles) and EGQM will be presented. 

For Hs, its statistical parameters and Taylor diagram are displayed below: 

 

Fig4.11Taylor diagram for Hs  (EGQM)                     Table4.10 statist ica l  value for Hs  (EGQM) 

Hs 

  Hs(wave height) EGQM 

  Mean 
[m] 

RMSD 
[m] PC [-] σy [m] 

Buoy 1.937 0.000 0.000 1.218 

Simu 1.601 0.547 0.966 0.882 

EQMcor 1.937 0.083 0.998 1,218 

 EGQMcor 1.938 0.154 0.992 1.221 



Where ‘EGQMcor’ refers to variable after using EGQM BC method, and the meaning of the other 

parameters is the same as before. There is no doubt that EGQM method improves quality of the 

original simulation data making it closer to the observation. Comparing its results with EQM, the 

mean value of EQM is 1.937, and it is 1.938 in EGQM, no noticeable difference, same situation 

happened for PC and standard deviation, which are 0.998, 1.218 for EQM and 0.992, 1,221 for 

EGQM. The main change comes from RMSD, where samples using EGQM is around two times 

higher than EQM, so the dispersion degree of EGQM with observation is higher than EQM with 

observation. In Taylor diagram, ‘×’ represents the sample corrected by EGQM, and same trend 

can be seen clearly, with the other two parameters are almost the same, RMSD is the only 

variance. 

For Tp, its statistical parameters and Taylor diagram are displayed below: 

   
F ig4.12Taylor diagram for Tp  (EGQM)                                Table4.11  stat istica l  value for Tp  (EGQM)                        

The RMSD for peak period using EGQM method is 0.432 that is 2.6 times higher than EQM, and 

the value of PC in EGQM is 0.987 also not as good as 0.998 in EQM. For mean value and 

standard deviation, the performance of EQM is a little bit better than that in EGQM, and this can 

also be seen on Taylor diagram, because the EQM point is closer to observation in contrast with 

EGQM. 

 

 

 

Tp 

  Tp(peak period) EGQM 

  Mean 
[s] 

RMSD 
[s] PC [-] σy [s] 

Buoy 9.763 0.000 0.000 2.641 

Simu 10.909 2.019 0.823 2.888 

EQMcor 9.763 0.166 0.998 2.640 

 EGQMcor 9.768 0.432 0.987 2.651 



For Uw, its statistical parameters and Taylor diagram are displayed below: 

Fig4.13 Taylor  d iagram for  Uw (EGQM)                         Table4.12 stat istical  va lue for  Uw  (EGQM)                       

Same situation happened for Uw, higher RSMD are the main difference between EQM and 

EGQM method just as what we got from Hs  and Tp. So a conclusion can be made that in this 

location, for all three parameters, the EQM (using 99 quantiles) BC method is better than EGQM. 

As can be seen for the position Bilbao Vizcaya (Gulf of Biscay, north of Spain), three different BC 

methods have been used and the comparison of these methods is integrated in one plot below: 

For Hs: 

 

(a)Hs  in  the whole per iod ( Bilbao V izcaya)  

Uw 

  Uw(wind speed) EGQM 

  Mean 
[m/s] 

RMSD 
[m/s] PC [-] 

σy 
[m/s] 

Buoy 5.232 0.000 0.000 3.084 

Simu 6.201 2.222 0.832 3.598 

EQMcor 5.232 0.169 0.998 3.084 

 EGQMcor 5.235 0.432 0.990 3.091 



                                                                               
(b)Hs  extreme value (Bilbao V izcaya)                        (c)  Hs average value ( Bilbao Vizcaya)  

F ig.4.14 Hs sample for  Bilbao Vizcaya  

 Where Fig.4.14 (a) is the total tendency for three approaches for Hs, Fig.4.14 (b) represent the 

extreme event of (a)(upper red square of Fig.4.14 (a)), and Fig.4.14 (c) is the part of average 

condition that selected of (a) (lower red square of Fig.4.14 (a)),. As for the extreme values that 

displayed in Fig.4.14.(b), green dash line, the correction data using EGQM, fits the blue straight 

(observation) best. The purple line (correction data using EQM) not fit it so good as EGQM, third 

order is EQM (without using 99quantiles) and the Delta method is the least similar to the 

observed data after correction. For instance, if the sample points are1.0644 × 105, the 

observation is 11.1m, EGQM BC value is 11.2m and EQM BC value is 10.55m. 

In contrast to extreme value sample, things changes for average sample, in which, the similarity 

of EQM correction (using 99 quantiles) fits the observation best and EGQM is in the second 

order, next is EQM correction (without using 99 quantiles) and Delta is the roughest as well. This 

result is expected, as EGQM improves values higher than 99 quantiles, and most of these data 

fall in the extreme part, so in extreme areas, EGQM has a good performance. In comparison, 

EQM correction (using 99 quantiles) is to linearly divide the overall time period into 99 quantiles, 

and the correction for each part is relatively uniform, so in the average position, EQM has a 

better performance. 

 

 



For Tp: 

 

(a)  Tp in the whole period (Bilbao V izcaya)  

              

  (b)Tp extreme va lue ( Bi lbao Vizcaya)                   (c)  Tp average value ( Bilbao Vizcaya)  

F ig.4.15 Tp sample for  Bilbao Vizcaya  

Where (b) represent extreme value of Tp, which is the zoomed in part of upper red square in 

Fig.4.15 (a), and (c) is the average example of  Tp, which is the zoomed in part of lower red 

square in Fig.4.15 (a). For the extreme sample part of Tp, the order of similarity to observation is 



Delta method, EQM (without using 99 quantiles), EQM (using 99 quantiles), and EGQM, this 

strange situation happened for the highest extreme part, after that, EGQM fit the observation in 

extreme as well and EQM (using 99 quantiles) is closest to observation in average location. 

For Uw: 

 

(a)  Uw in the whole period ( Bilbao V izcaya)  

                

(b)Uw extreme va lue ( Bi lbao V izcaya)                  (c)  Uw average va lue ( Bi lbao V izcaya)  

F ig.4.16 Uw sample for  Bi lbao Vizcaya  



Where Fig.4.16 (b) represent extreme value of Uw , which is the zoomed in part of upper red 

square in Fig.4.16 (a), and Fig.4.16 (c) is the average example of  Uw , which is the zoomed in 

part of lower red square in Fig.4.16 (a). Same situation happened for Uw, there is no special 

performance as the extreme part of Tp. In this case, EGQM and EQM (using 99quantiles) are the 

correction samples that fit observation very well, and EGQM is more useful for extreme values, 

EQM (using 99quantiles) performs better in average part.  

From Taylor diagram and sample points figure, the conclusion is that all three bias corrected 

datasets have better agreement to the observation point compared with the original simulation 

point, which means BC actually improves the accuracy of the original simulation. For most of the 

cases, EQM (using 99 quantiles) correction data performs best and the correction of EGQM is 

more effective when correcting extreme values. While the correction effect of Delta and EQM 

(without using 99 quantiles) is not so evident, and which one of them is better depends on the 

quality of the observation data. 

4.4 Bias correction in a different location  
 

The study above provides details of three BC methods for analysing three parameters--- Hs, Tp 

and Uw at Bilbao Vizcaya (north of Spain). Next, same method will be used to analyse Cabo 

Begur in the east, Cabo Silleiro in the west, and Golf Cadizin in the south, respectively. 

4.4.1Cabo Begur (east of Spain) 
Same approach has been adopted for observation and simulation data during 2003 to 2020 in 

Cabo Begur, the datasets after pre-processing is: 



 

Fig.4.17 datasets after  pre -processing for Cabo Begur  

4.4.1.1Wave data 
Hs: The 3 BC methods integrated in one single figure: 

 

Fig.4.18 Hs in the whole per iod (Cabo Begur)  



The two red squares correspond to the samples of an extreme event and average conditions. 

The following figures illustrate the different signals for the extreme event (on the left) and the 

point with average conditions (on the right): 

                 

               (a)Hs extreme va lue (Cabo Begur)                                    (b)Hs average value (Cabo Begur)  

F ig.4.19 Hs extreme and average sample  Cabo Begur  

Fig.4.19 (a) represent extreme value of Hs , which is the zoomed in part of upper red square in 

Fig.4.18, and Fig.4.19 (b) is the average example of  Hs , which is the zoomed in part of lower red 

square in Fig.4.8. Same situations are illustrated below where the upper red square is the 

zoomed out area of extreme part and the lower red square represent the zoomed out area of 

average part. 

The EGQM BC method has significant effect for extreme values correction as can be seen in 

Fig.4.19 (a) green dash line, and the corrected agreement of EQM (using 99 quantiles) is not so 

effective. But EQM (using 99 quantiles) performs best for the averaged values as shown in 

Fig.4.19 (b), while EGQM BC reduce its effectiveness in this regard. Compared with the first two 

methods, delta and EQM (without using 99 quantiles) are rough, both in extreme and average 

samples.  

 

 



Taylor diagram and statistical parameters for Hs  using EQM and EGQM in Cabo Begur, 

 

 
F ig4.20 Taylor  d iagram for  Hs  (Cabo Begur)            Table4.13 statist ica l  value for Hs  (Cabo Begur )  

From Taylor diagram, the overall performance of EQM (using 99 quantiles) is higher than EGQM, 

with better RMSD and significantly closing the gap between observation and simulation point. 

For Tp: The 3 BC method integrated in one plot: 

 

Fig.4.21 Tp in the whole period ( Cabo Begur)  

 

Hs 

  Hs( Cabo Begur) 

  Mean 
[m] 

RMSD 
[m] PC [-] σy [m] 

Buoy 1.29 0 0 1.02 

Simu 1.02 0.43 0.95 0.82 

EQMcor 1.29 0.06 0.998 1.01 

 EGQMcor 1.29 0.12 0.992 1.02 



Its extreme sample Fig.4.22 (a) and average value sample Fig.4.22(b): 

                
(a)Tp extreme va lue (Cabo Begur)                         (b)Tp average value ( Cabo Begur)  

Fig.4.22 Tp extreme and average sample  Cabo Begur  

Remember the result of Tp in Bilbao Vizcaya, same situation also appear in this location, which 

can be seen in Fig.4.22 (a), this is because for Tp, the difference between extreme values and 

average values is not so obvious in the whole dataset, so EGQM is not evident to correct this 

value part. The trend of average values shows the same thing, where EQM (using 99 quantiles) 

BC simulation fits observation best, EGQM is the second, next orders are Delta and EQM 

(without using 99 quantiles). Taylor diagram and statistical parameters for Tp using EQM and 

EGQM in Cabo Begur, 

Fig4.23 Taylor  d iagram for  Tp  (Cabo Begur  )            Table4.14 statist ica l  value for Tp ( Cabo Begur )  

Tp 

  Tp( Cabo Begur) 

  Mean 
[s] 

RMSD 
[s] PC [-] σy [s] 

Buoy 5.49 0 0 1.41 

Simu 4.98 1.21 0.71 1.48 

EQMcor 5.49 0.07 0.998 1.41 

 EGQMcor 5.49 0.19 0.990 1.42 



Same condition happened for Tp, compared with others, EQM and EGQM are the first two best 

choices that have less distance to observation point. 

For Uw: The 3 BC methods integrated in a single figure: 

 

Fig.4.24 Uw in the whole period ( Cabo Begur)  

Extreme event Fig.4.25 (a) and average condition Fig.4.25 (b) for Uw: 

          
(a)Uw extreme va lue (Cabo Begur)                        (b)Uw average va lue (Cabo Begur)  

F ig.4.25 Uw extreme and average sample  Cabo Begur  



The value trend of Uw has significant different performance compared with that of Tp, so for 

extreme sample, EGQM BC simulation performs better and EQM makes good performance for 

average sample. 

Taylor diagram and statistical parameters for Uw using EQM and EGQM in Cabo Begur, 

 

Fig4.26 Taylor  d iagram for  Uw (Cabo Begur )             Table4.15 stat istical  va lue for  Uw  (Cabo Begur )  

where the red ’●’ represents the statistical metrics for EQM BC and ‘×’ for EGQM, where EQM 

shows a better agreement than EGQM with the observation point. 

  

 
Uw 

  Uw( Cabo Begur) 

  Mean 
[m/s] 

RMSD 
[m/s] PC [-] 

σy 
[m/s] 

Buoy 6.00 0 0 4.34 

Simu 8.26 3.61 0.83 5.02 

EQMcor 6.00 0.14 0.999 4.34 

 EGQMcor 6.01 0.44 0.995 4.35 



4.4.2 Cabo Silleiro (west of Spain) 
Useful time period that has been chosen for Cabo Silleiro is 2000 to 2020, and the pre-

processing dataset: 

 

Fig.4.27 datasets after  pre -processing for Cabo S i l le iro  

The total trend of simulation to observation for all three plots are the same, for Tp and Uw, 

simulation is overestimated compared with observation, while for Hs, simulation is 

underestimated. 

4.4.2.1Wave data 
Hs: The 3 BC methods integrated in a single figure 

 



 
Fig.4.28 Hs in the whole per iod (Cabo S i l le iro)  

Where the two red squares correspond to the samples of an extreme event (on the left) and a 

point of average conditions (on the right). 

               

      (a)Hs  extreme va lue (Cabo Si l le iro)                           (b)Hs  average value (Cabo Si l lei ro)  

F ig.4.29 Hs extreme and average sample  Cabo Si l lei ro  

For extreme event Fig.4.29 (a),the domination of EGQM is obvious, no other BC methods 

perform better than it, and for average condition Fig.4.29(b), EQM (using 99 quantiles) is the 

best. 



 Taylor diagram and statistical values： 

Fig4.30 Taylor  d iagram for  Hs  (Cabo Si l le iro )   Table4.16 stat istica l  value for Hs ( Cabo Si l lei ro)  

Although EGQM BC performs better for extreme values, EQM (using 99 quantiles) still make 

better correction for the whole time period. Compared EGQM with EQM, with same ‘Mean’, ‘PC’ 

and ‘standard deviation’, RMSD for EQM (0.08) is lower than that of EGQM that is 0.15. 

Tp: The 3 BC methods integrated in a single figure: 

 

 
Fig.4.31 Tp in the whole period (Cabo S i l le iro)  

 

Hs 

  Hs (Cabo Silleiro) 

  Mean 
[m] 

RMSD 
[m] PC [-] σy [m] 

Buoy 2.40 0 0 1.30 

Simu 2.16 0.44 0.97 1.04 

EQMcor 2.40 0.08 0.998 1.30 

 EGQMcor 2.40 0.15 0.993 1.31 



Extreme event Fig.4.32 (a) and average condition Fig.4.32 (b) for Tp, 

              
(a)Tp extreme va lue (Cabo S i l leiro)                                (b)Tp average value (Cabo Si l lei ro)  

F ig.4.32 Tp extreme and average sample  Cabo Si l lei ro  

For extreme values of Tp in Cabo Silleiro, no special point appears, the EGQM fits observation 

data very well and better than EQM. While EQM shows best correction for average sample, 

second one is EGQM. 

Same situation can also be displayed in Taylor diagram: 

 

     F ig4.33 Taylor diagram for Tp  (Cabo Si l lei ro)              Table4.17 statist ica l  value for Tp ( Cabo Si l le iro)  

In the whole dataset, EQM always show better correction performance than EGQM, which 

means it is similar to observation point in Taylor diagram. 

Tp 

  Tp (Cabo Silleiro) 

  Mean 
[s] 

RMSD 
[s] PC [-] σy [s] 

Buoy 9.82 0 0 2.28 

Simu 10.98 1.89 0.83 2.69 

EQMcor 9.82 0.16 0.998 2.28 

 EGQMcor 9.82 0.34 0.988 2.28 



4.4.2.2 Wind data 
Uw: The 3 BC methods integrated in a single figure: 

 

Fig.4.34 Uw in whole time period  (Cabo S i l le iro)  

Details of extreme and average values are showing below: 

           
(a)Uw extreme va lue (Cabo S i l leiro)                               (b)Uw average value (Cabo Si l lei ro)  

F ig.4.35 Uw extreme and average sample  Cabo S i l le iro  

Displaying from the figure above, purple (EQM) and green dash line (EGQM) are the first two 

lines that fit blue line (observation) best in both Fig.4.35 (a) and (b). And for sample choosing 



from extreme values Fig.4.35 (a), EGQM is most fitable, EQM is more close in average values 

Fig.4.35(b). Taylor diagram and statistical parameters: 

 

   F ig4.36  Taylor  d iagram for  Uw  (Cabo Si l lei ro)         Table4.18 stat istical  va lue for  Uw ( Cabo Si l lei ro)  

The mean value of original simulation is 8.31m/s, after BC, for both using EQM and EGQM, it 

becomes 5.94m/s that is the same with observation mean. RMSD, PC and standard deviation are 

all improving significantly compared with original simulation. As for the whole dataset, EQM also 

performs better than EGQM, like what is showing before. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Uw 

  Uw (Cabo Silleiro) 

  Mean 
[m/s] 

RMSD 
[m/s] PC [-] 

σy 
[m/s] 

Buoy 5.94 0 0 3.30 

Simu 8.31 3.17 0.89 4.39 

EQMcor 5.94 0.12 0.999 3.30 

 EGQMcor 5.94 0.37 0.994 3.31 



4.4.3 Gulf Cadiz (south of Spain) 
For Gulf Cadiz, meaningful time period has also been chosen during 2000 to 2020, pre-

processing observation and simulation are: 

 

Fig.4.37 datasets after  pre -processing for Gulf Cadiz  

Where for Tp and Uw, original simulation overestimate the observation value, and in Hs  figure, 

original simulation underestimate the observation. 

  



4.4.3.1Wave data 
Hs: The 3 BC methods integrated in a single figure: 

 

Fig.4.38 Hs in whole time period  (Gulf  Cadiz)  

Extreme event Fig.4.39 (a) and average sample Fig.4.39 (b) are showing below: 

 

(a)Hs  extreme va lue ( Gulf  Cadiz)                   (b)Hs average va lue (Gulf Cadiz)  

F ig.4.39 Hs extreme and average sample Gulf Cadiz  

The result of corrected Hs  in Gulf Cadiz has no special changes, in which EGQM fit observation 

for extreme values and EQM performs best for average values. 



 

 

 F ig4.40 Taylor d iagram for Hs  (Gulf  Cadiz)                    Table4.19 stat istical  va lue for  Hs ( Gulf Cadiz)  

Same situation is showing in Taylor diagram where red ‘●’ represents the statistical metrics for 

EQM BC and ‘×’ for EGQM.  

Tp: The 3 BC methods integrated in a single figure: 

 

Fig.4.41 Tp in whole time period  (Gulf  Cadiz)  

Fig.4.41 is the figure for whole dataset, extreme sample Fig.4.42 (a) and average sample Fig.4.42 

(b) are showing below: 

Hs 

  Hs (Cabo Silleiro) 

  Mean 
[m] 

RMSD 
[m] PC [-] σy [m] 

Buoy 1.22 0 0 0.66 

Simu 1.23 0.23 0.94 0.63 

EQMcor 1.22 0.04 0.998 0.66 

 EGQMcor 1.22 0.09 0.991 0.66 



                                        
(a)Tp extreme va lue ( Gulf Cadiz)                             (b)Tp average va lue (Gulf Cadiz)  

F ig.4.42 Tp extreme and average sample  Gulf Cadiz  

Taylor diagram and statistical parameters： 

 

 

   F ig4.43  Taylor  d iagram for  Tp  (Gulf Cadiz)            Table4.20 stat ist ical  va lue for Tp ( Gulf Cadiz)  

Same situation happened like what we got before that is in whole data, EQM BC performs better 

than EGQM and EGQM performs better than any other BC methods. 

 
  

Tp 

  Tp (Cabo Silleiro) 

  Mean 
[m] 

RMSD 
[m] PC [-] σy [m] 

Buoy 7.47 0 0 2.95 

Simu 9.68 3.50 0.64 3.40 

EQMcor 7.47 0.15 0.998 2.95 

 EGQMcor 7.47 0.32 0.994 2.95 



4.4.3.2Wind data 
Uw: The 3 BC methods integrated in a single figure:  

 

Fig.4.44 Uw in whole time period  (Gulf  Cadiz)  

As we did before, extreme event Fig.4.45 (a) and average condition Fig.4.45 (b) has been 
illustrated below: 

               

     (a)Uw extreme value (Gulf Cadiz )                    (b)Uw average va lue (Gulf Cadiz)  

F ig.4.45 Uw extreme and average sample  Gulf Cadiz  



Where for extreme event Fig.4.45 (a), EGQM showing the best overlap with observation, EQM is 

the second one. For average condition Fig.4.45 (b), EQM performs best correction agreement 

and EGQM is the second.Taylor diagram and statistical parameters： 

 

    Fig4.46 Taylor diagram for Uw  (Gulf Cadiz )                    Table4.21 stat istical  va lue for  Uw ( Gulf  Cadiz) 

  

Uw 

  Uw (Cabo Silleiro) 

  Mean 
[m] 

RMSD 
[m] PC [-] σy [m] 

Buoy 5.29 0 0 2.82 

Simu 7.18 2.84 0.82 3.67 

EQMcor 5.29 0.13 0.999 2.82 

 EGQMcor 5.29 0.38 0.992 2.82 



4.5 Summary of results for four locations 

For a more intuitive comparison of the 4 BC methods in four different locations, all their data 

are summarized in Table4.22, where ‘bias’ is the difference between observation mean and 

simulation mean, ‘RMSD ’ refers to root mean square deviation, ‘PC’ is the correction coefficient 

and ‘SD’ represents standard deviation. From the Table4.22, the shadow parts illustrate the best 

value of the corresponding parameter, and for 48 different variables, 45 values are obtained 

from EQM (using 99 quantiles), and the other 3 different data are also very close compared to 

the corresponding EQM data, which means in this thesis, the chosen locations around Spain, 

EQM (using 99 quantiles) is the best Bias Correction method that can be used. 

 

 

Table4.22  Summary of  results for four locat ions  

It shows that by using EQM (using 99 quantiles), the mean differences between corrected 

simulation and observation are all 0, and correction coefficients are all higher than 0.99, which 

have good agreement with observation data. 

 

  

Bias RMSD PC SD Bias RMSD PC SD Bias RMSD PC SD Bias RMSD PC SD

Obs - 0 0 1.22 - 0 0 1.02 - 0 0 1.30 - 0 0 0.66

Ori sim 0.34 0.547 0.966 0.88 0.27 0.43 0.950 0.82 0.24 0.44 0.97 1.04 -0.01 0.23 0.94 0.63

Delta 0.01 0.45 0.965 0.89 0 0.34 0.954 0.82 -0.03 0.37 0.974 1.04 0 0.23 0.939 0.63

EQM 0 0.32 0.997 1.22 0 0.31 0.954 1.02 0 0.30 0.974 1.30 0 0.23 0.939 0.66

EQM_99 0 0.08 0.997 1.22 0 0.06 0.998 1.01 0 0.08 0.998 1.30 0 0.04 0.998 0.66

EGQM 0 0.15 0.992 1.22 0 0.12 0.992 1.02 0 0.15 0.993 1.31 0 0.09 0.991 0.66

Bias RMSD PC SD Bias RMSD PC SD Bias RMSD PC SD Bias RMSD PC SD

Obs - 0 0 2.64 - 0 0 1.41 - 0 0 2.28 - 0 0 2.95

Ori sim -1.15 2.02 0.82 2.89 0.51 1.21 0.71 1.48 -1.16 1.89 0.83 2.69 -2.21 3.50 0.64 3.40

Delta 0.06 1.69 0.819 2.91 0 1.10 0.709 1.48 -1.67 2.25 0.828 2.69 0 2.71 0.642 3.40

EQM 0 1.57 0.999 2.64 0 1.08 0.709 1.41 0 1.34 0.828 2.28 0 2.49 0.642 2.93

EQM_99 0 0.17 0.998 2.64 0 0.07 0.998 1.41 0 0.16 0.998 2.28 0 0.15 0.998 2.95

EGQM -0.01 0.43 0.987 2.65 0 0.19 0.990 1.42 0 0.34 0.988 2.28 0 0.32 0.994 2.95

Bias RMSD PC SD Bias RMSD PC SD Bias RMSD PC SD Bias RMSD PC SD

Obs - 0 0 3.08 - 0 0 4.34 - 0 0 3.30 - 0 0 2.82

Ori sim -0.97 2.22 0.83 3.60 -2.26 3.61 0.83 5.02 -2.37 3.17 0.89 4.39 -1.89 2.84 0.82 3.67

Delta 0.04 1.94 0.843 3.59 0 2.82 0.834 5.02 -0.12 2.09 0.890 4.39 0 2.12 0.818 3.67

EQM 0 1.80 0.998 3.08 0 2.50 0.834 4.34 0 1.55 0.890 3.30 0 1.70 0.818 2.82

EQM_99 0 0.17 0.999 3.08 0 0.14 0.999 4.34 0 0.12 0.999 3.30 0 0.13 0.999 2.82

EGQM -0.01 0.43 0.990 3.09 -0.01 0.44 0.995 4.35 0 0.37 0.994 3.31 0 0.38 0.992 2.82

Gulf Biscay Cabo Begur Cabo Silleiro Gulf Cadiz

Gulf Biscay Cabo Begur Cabo Silleiro Gulf Cadiz

Hs

Tp

Uw

Gulf Biscay Cabo Begur Cabo Silleiro Gulf Cadiz



5. Conclusion and future work 
 

This work has discussed the performance of simulation climate data after three kinds of bias 

correction techniques (Delta, The Empirical Quantile Mapping method (EQM) and the Empirical 

Gumbel Quantile Mapping method (EGQM)) in four different locations around Spain, in order to 

find a reasonable correction method to predict and calculate the local ocean energy resource. 

The results obtained allowing us comparing the performance of three bias correction 

approaches and find a better way to perform the correction for datasets of significantly different 

resource characteristics. Hence, the main conclusions are: 

1. After going through three different bias correction (BC) methods, each method 

improves the quality of the original simulation data, approaching to the observation 

data, which means all approaches are meaningful and useful. 

2. The two most effective correction methods to the original simulation data are EQM 

(using 99 quantiles) and EGQM, while the Delta method and EQM (without using 99 

quantiles) perform rougher than the above two. 

3.  Learning from data plots in one figure, EGQM performs very well for extreme values, 

while EQM fits best the observation data for average values. This is because EGQM uses 

a Standard Gumbel distribution that focuses on the highest (+99th) quantiles and EQM 

uses evenly distributed 99 quantiles. 

4.  From Taylor diagram, in the whole dataset, the most effective method is EQM (using 99 

quantiles), its parameter point is closet to observation, and EGQM is in the second rank. 

According to our conclusion, for different locations and situations, if extreme weather occurs 

frequently in a place, EGQM should be the best choice to correct simulation data.  And if the 

highest peak period in a certain place does not change so much compared with the average, 

then even if extreme sample is selected, EQM (using 99 quantiles) can still play a better 

correction effect, like the extreme sample of 𝑇𝑝 in Cabo Begur. 

This thesis provides an idea of what kind of bias correction methods can be used for climate 

analysis and prediction. The next work should be using this idea to predict climate condition and 

compute ocean energy in certain area, and finally build a renewable energy farm for electricity 

production. 
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