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Abstract 
 
The real world is not only described by linear systems. It is rather generally explained by nonlinear 
structures, which have a richer behaviour with respect to linear ones. This thesis is devoted to better 
understand the nonlinear features of vibrating mechanical structures involved in automotive 
subsystems. It starts from a method to discretise a complex system using Lupos, a MATLAB based 
software because nowadays simulation and numerical analyses are essential for both linear and 
nonlinear structures. The device in question is the right lever of the LEVIT F173, projected and 
assembled at Valeo, Santena. 
 
Then a deep look at the major distinctions of the two kinds of systems is performed, dealing with 
theoretical and practical aspects with the use of different approaches including Simulink numerical 
simulations of SDOF systems. To be more precise, their frequency contents are postprocessed with 
the use of: 

• Spectrogram, that is based on the FFT, representing structures with summation of sines and 
cosines. It is used on a large scale to reduce the dimensions of the files that we daily handle; 

• Wavelet, which employs waves of various shapes and now are widespread in the word of 
compressing sounds. 

 
At the end, an experiment test is carried out and has its frequency contents examined in order to 
spot the nonlinear symptoms and characteristics described in the previous sections. In particular, a 
beam is employed with two sources of nonlinearity, i.e. magnets and a non-holonomic constraint. 
Moreover, numerical simulations with Lupos are executed with the idea of fully interpret the 
obtained results. 
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1. Pad Lever Right SW 2021 to Lupos 
 
 
This chapter deals with the method of generating a frequency analysis of a simple assembly in 
SolidWorks 2021 and use both the results and the meshed geometry in Lupos, after properly 
exporting them from the abovementioned CAD software. Afterwards, the model is transformed into 
a parallelepipedal mesh, i.e. into a Minecraft model. 
The components analysed in this document are part of a known system, which is the 
“Valeo Levit F173”, the paddle-shift of a Ferrari production car. In particular the right pad and the 
lever, making up the up-shift system, are taken into account. The device is shown in Figure 1.1. 
 

 
 

Figure 1.1 – Levit F173 and detail of the upshift-shift system. 
 
Firstly, three new frequency studies are performed in SolidWorks, sharing an appropriate choice of 
the materials, the connections and fixtures of the components. 
Afterwards, three discretisations with increasing grade of quality are carried out by using tetra4 
elements (tetrahedrons that have a node for each vertex of the element) and three simulations are 
run to calculate eight natural frequencies and their corresponding mode shapes. Therefore, the first 
study has the coarsest mesh, whereas the third one contains the finest discretisation. 
Next step is carefully exporting information about meshes, natural frequencies and mode shapes in 
order to utilise them in BDFtoLUPOS.m and SW_CSVtoPhiW2.m, which translate these files into 
Lupos ones. 
This process appears to be simple at first glance, but there are many expedients that one needs to 
carefully exploit. Indeed, the procedure is detailed in the following sections of the report. 
Eventually, the Lupos model becomes a Minecraft model, i.e. discretised into prisms with the 
proper material assigned to. This particular part requires a new MATLAB function that has many 
attentions to correctly perform the attribution. 
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1.1 CAD model 
 
The simple assembly of Figure 1.1 is taken into account. 
It is composed by two parts: E239483_PALETTA_DX_PANTOGRAFATA and 
BRACCIO_DX_E145589, that previously has been mentioned respectively as “pad” and “lever”. 
It can be helpful to dissolve the original sub-assembly that contained the lever and save the 
assembly of Figure 1.1.1 as “MAIN_..”. 
 

 
 

Figure 1.1.1 – MAIN CAD model. 
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1.2 FEM model files 
 
After the definition of the FEM analysis, of the application of materials to the parts, constraints, 
external generalised forces and/or other parameters of simulation, the meshing step allows to 
approximate the CAD volumes to finite element discretisation. This is done by following the steps 
described in [1]. 
Tetrahedral mesh of the first order (draft quality mesh, tetra4) or the second order (tetra10) are 
suitable in SolidWorks, hence only this kind of elements is taken into account to be exported in 
MATLAB/Lupos. 
In this particular example it is requested to choose two different types of aluminium alloy for the 
components in order to quickly change their colours in Lupos by modifying the file .tet that will 
be generated by the BDFtoLUPOS.m routine. More information about this function will be explained 
in § 1.4.1, § 1.5.3 and § 1.6.1. 
Figure 1.2.1 shows the discretised model for the first study, i.e. the one with the roughest mesh. 
 

 
 

Figure 1.2.1 – Meshed model of the first frequency analysis. 
 
It is crucial at this point to select the correct type and size of elements. As a matter of fact, using 
tetra10 instead of tetra4 does not improve the results since the above mentioned MATLAB routine 
only considers four nodes per tetrahedron, regardless if the element is a second order one. 
Therefore, check if the components have “draft quality mesh”, as shown in Figure 1.2.2. 
The steps to see the following screen are: right click on Mesh, select Create Mesh, select Mesh 
Quality  
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Figure 1.2.2 – Checking draft quality mesh. 
 
As explained before, three discretisation fineness are utilised. The only changing parameter can be 
found by following this path: right click on Mesh, select Create Mesh, select the Mesh Parameter 
drop down menu and modify Global Size, like Figure 1.2.3 
 

 
 

Figure 1.2.3 –Modifying mesh parameter. 
 
The applied configurations are detailed in Table 1.2.1, as well as the number of nodes. 
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Table 1.2.1 – Configurations of the mesh parameters and nodes. 
 

Frequency study Global size [mm] # Nodes # Elements # Dofs 
1 4 4154 14299 12462 
2 3 6762 25021 20286 
3 2 15066 62592 45198 

 
The number of the nodes, elements and dofs can be easily read in the .log file generated by 
SolidWorks. 
A graphical comparison of the meshes can be seen in Figures 1.2.4-6. 
 

       
 
Figure 1.2.4 – Coarse mesh in SolidWorks. Figure 1.2.5 –Medium mesh in SolidWorks 

 

 
 

Figure 1.2.6 – Fine mesh in SolidWorks. 
 
To export the model, select Simulation, then Export… as shown in Figure 1.2.7. 
Then, select NASTRAN files(*.dat), with Options…, Short Fixed (or Long Fixed) as shown in 
Figure 1.2.8. 
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Figure 1.2.7 – Meshed model export. 
 

 
 

Figure 1.2.8 – Meshed model export. 
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Notes about *.dat files: 
• the file contains all the three main parts of an MSC/Nastran file format (from ID to CEND, 

from CEND to BEGIN BULK, from BEGIN BULK to ENDDATA), hence not only the bdf part 
(from BEGIN BULK to ENDDATA); 

• due to the previous note, some cards can exist in a not suitable way w.r.t. the translator file 
BDFtoLUPOS.m, i.e. SPC = 1 in the part from CEND to BEGIN BULK part can create a row 
1 nan nan in the first row of the file *.bcs; 

• these small problems have to be handled correcting manually the affected files; 
• pay attention that, due to the Nastran short format, each field is composed by 8 characters 

only, hence to represent   3.141592653589793, the corresponding field is 3.141592 or 
3.142+00 (without the symbol e and using two digits for the exponent); 

• between the two alternatives long or short fixed files, the short format is suggested; 
• in the Export Options – NASTRAN about the International Standard parameters, SI means 

[mm, tonnes, s] (default and suggested), MKS means [m, kg, s], IPS means [inch, pound, s] 
(absolutely to be avoided). 

 
 
1.2.1 H-convergence analysis 
 
It is worth, at this point, to perform the so-called “h-convergence” on the elaborated discretisation 
shown in Table 1.2.1. The analysis consists of evaluating the ratio between #nodes and #elements 
and relating it to the #elements itself. As theory explains ([2]), the graph with the just mentioned 
axis is limited by two curves: 

• close volume (prismatic o spherical case), related to the densest volume, without any hole; 
• maximum surface available (surface case), related to the case of an extreme ideal heat 

exchanger. 
 
In this case, only tetra4 elements are used, in a configuration where a generic global cubic volume 
is discretised into twelve tetrahedrons. In Figure 1.2.1.1 is reported how the discretisation behaves 
in relation to the limit cases. Three other mesh have been added to the one of Table 2.1 and are 
reported in Table 1.2.1.1. 
 

Table 1.2.1.1 – Six configurations of the mesh parameters and nodes. 
 

Frequency study Global size [mm] # Nodes # Elements # Dofs 
1 4 4154 14299 12462 
2 3 6762 25021 20286 
3 2 15066 62592 45198 
4 1.5 28781 127753 86343 
5 1 81531 394842 244593 
6 0.5 161438 839394 484314 
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Figure 1.2.1.1 – H-convergence for Nodes/Elements. 
 
As can be seen, the ratio approaches the Prism tetra4 curve when the number of the elements grows. 
Moreover, the amounts corresponding to SW mesh are compatible with the theoretical range of 
values. In addition to that, it is worth to note that, only after a severe refining of the mesh, the point 
representing the three triangulations, become near the Prism tetra4 curve. The reason of that might 
be the strong two-dimensionality of the assembly, which forces the structure to not assume a mesh 
with the densest volume of the elements. 
A further confirmation of this is the difference between two radiuses regarding the geometry of the 
components. The first one can be calculated using the data in Figure 1.2.1.2 and is the radius that 
the structure will have if it was a sphere: from the inverse formula of the volume over the surface 
we get that the radius should be about 6 mm. 
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Figure 1.2.1.2 – Volume and surface of the assembly. 
 
While the latter is equal to 80 mm and is the mean value between the radius of the smallest 
inscribed sphere (dY/2 in Figure 2.1.3) and radius of the largest circumscribed sphere (Dist/2 in 
Figure 1.2.1.4). 
 

 
 

Figure 1.2.1.3 – Diameter of the smallest inscribed sphere. 
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Figure 1.2.1.4 – Diameter of the largest circumscribed sphere. 
 
The diversity of these two values gives a sort of quantification of how strong the bidimensionality 
is. 
Another grade of the planarity of the assembly could be given by comparing the logarithmic 
distance between the two asymptotes and the distance between the mesh data and the prismatic 
curve. The results are shown in Table 1.2.1.2: the former gap is called “D1” while the latter “D2”. 
 

Table 1.2.1.2 – Six configurations of the mesh parameters and nodes. 
 

Frequency study Global size [mm] D1 D2 D2/D1[%] 
1 4 1.2553 0.2413 19.2239 
2 3 1.2553 0.2099 16.7232 
3 2 1.2553 0.1596 12.7168 
4 1.5 1.2553 0.1309 10.4269 
5 1 1.2553 0.0931 7.4128 
6 0.5 1.2553 0.0622 4.9544 

 
As can be seen from Table 1.2.1.2 and Figure 1.2.1.1, only by approaching a value of D2/D1 
proximate to 10% the mesh data become close to the Prism curve asymptote.  
 
It could be interesting to perform an h-convergence analysis comparing the eight natural 
frequencies for the three initial discretisations, as shown in Figure 1.2.1.3. 
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Figure 1.2.1.3 – H-convergence for natural frequencies. 
 
Like one could expect, the trend is monotonous. The fact that values are decreasing as the number 
of the elements increases is related to the fact that stiffness of the assembly reduces while the mass 
remains constant. 
 
1.2.2 Example of exported Nastran file 
 
The following file (MAIN_Pad_Lever_Right-Frequency 1.DAT) is an example of exported Nastran 
file, corresponding to the meshed CAD model in the first frequency analysis in SolidWorks. 
As can be seen, the document part where are described the element only contains tetra4, according 
to what it is written in § 1.2. 
 
$    Output from COS2NAS translator Version 2014 

$    Date        :  4/13/2022     Time:   20:49:51 

ID,NASTRAN, 

TIME 3600 

SOL 3 

CEND 

TITLE=                                                                          

ECHO=NONE 

DISP  =ALL 

SPC=100 

METHOD=400 

BEGIN BULK 

CORD2C  1       0       0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 +C1      

+C1     1.00000 0.00000 0.00000  

CORD2S  2       0       0.00000 0.00000 0.00000 0.00000 0.00000 1.00000 +C2      

+C2     1.00000 0.00000 0.00000  

CORD2C  3       0       0.065994-.833-02-.0344150.065994-.833-020.965585+C3      

+C3     1.06599 -.833-02-.034415 

CORD2C  4       0       0.065994-.833-02-.0344150.065994-.833-020.965585+C4      

+C4     1.06599 -.833-02-.034415 

GRID    1       0       0.073569-.0143270.021223                 

GRID    2       0       0.072494-.0143270.020935                 
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GRID    3       0       0.071369-.0143270.021137                 

GRID    4       0       0.073569-.014327-.028777                 

GRID    5       0       0.072494-.014327-.029065                 

GRID    6       0       0.071369-.014327-.028863                 

GRID    7       0       0.060060-.014327-.033915                 

GRID    8       0       0.064673-.014327-.033915                 

GRID    9       0       0.069285-.014327-.033915                 

GRID    10      0       0.065978-.014327-.031017                 

GRID    11      0       0.064794-.014327-.026917                 

GRID    12      0       0.064915-.014327-.025557                 

GRID    13      0       0.065334-.014327-.024084                 

GRID    14      0       0.066990-.014327-.019321                 

GRID    15      0       0.068242-.014327-.014436                 

GRID    16      0       0.069082-.014327-.946-02 

... 

GRID    2783    0       0.155487-.064407-.056632                 

GRID    2784    0       0.153446-.064551-.064027                 

GRID    2785    0       0.130055-.0667860.104686                 

GRID    2786    0       0.123709-.0660180.114909                 

GRID    2787    0       0.150239-.049041.6444-02                 

GRID    2788    0       0.134744-.0356110.022064                 

GRID    2789    0       0.153291-.063154-.064731                 

GRID    2790    0       0.153344-.059539-.258-02                 

GRID    2791    0       0.109685-.023246.9317-02                 

GRID    2792    0       0.150499-.0533200.026129                 

CTETRA  1       1       1175    1190    1191    1192     

CTETRA  2       1       1192    1193    123     116      

CTETRA  3       1       1194    153     1193    1192     

CTETRA  4       1       1191    1190    153     1192     

CTETRA  5       1       1195    1191    1190    153      

CTETRA  6       1       1196    1197    1198    1199     

CTETRA  7       1       209     210     282     1196     

CTETRA  8       1       1200    1201    1196    1202     

... 

CTETRA  9028    2       2596    2424    2434    2423     

CTETRA  9029    2       2697    1655    1656    1661     

CTETRA  9030    2       2699    2410    2411    2424     

CTETRA  9031    2       2097    1904    1948    2662     

CTETRA  9032    2       1904    2372    1903    2371     

CTETRA  9033    2       2698    2597    2596    2424     

CTETRA  9034    2       2632    2058    2054    2057     

SPC     100     166     13      0.00000  

SPC     100     167     13      0.00000  

SPC     100     168     13      0.00000  

SPC     100     169     13      0.00000  

SPC     100     170     13      0.00000  

SPC     100     171     13      0.00000  

SPC     100     172     13      0.00000  

SPC     100     173     13      0.00000  

SPC     100     174     13      0.00000 

... 

SPC     100     746     13      0.00000  

SPC     100     747     13      0.00000  

EIGR    400     MGIV    0.0     1.0E+10 8       8                       +C5      

+C5     MAX      

PSOLID  1       1       0       2        

PSOLID  2       2       0       2        

MAT1    1       .7240+11.2800+110.3300002800.00 .2300-04298.000         +C6      

+C6     .1850+09 

MAT1    2       .7240+11.2720+110.3300002680.00 .2100-04298.000         +C7      

+C7     .2280+09.1850+09 

ENDDATA 
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1.3 Steps to real modal analysis simulation 
 
According to Figure 1.13.1, frequency analysis, i.e. real modal analysis in SolidWorks is taken into 
account: 
 

 
 

Figure 1.3.1 – Frequency simulation of SolidWorks. 
 
 
1.3.1 Inputs of real modal analysis simulation 
 
The following inputs for the assembly are utilised: 

• materials for every part of the model, which it is chosen by clicking on Part in the 
simulation ambient, right click on the component whom the material should be applied, 
select Apply/Edit Material and finally decide it from a long list given by SW. In this 
case both the parts are made of Aluminium Alloy “EN AC 46100” in the reality. For this 
simple simulations, it is worth applying two different alloys for the components as similar as 
possible to the original material. Thanks to this, it is possible to easily change the colours of 
the meshed model in Lupos. In Table 1.3.1.1 and 1.3.1.2 are reported the parameters of the 
abovementioned part, where: 

 
•  is the density; 
• E is the Young modulus; 
•  is the Poisson ratio; 

• G is the shear modulus, calculated as 
( )2 1

EG


=
+

; 

• Rp0.2 is the yield strength. 
 

Table 1.3.1.1 – Materials of the parts. 
 

Real parts Pad Lever 
EN AC 46100 356.0-T6 Permanent Mold Cast (SS) 2014-O 
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Table 1.3.1.2 – Aluminium alloy data. 
 

Property EN AC 46100 356.0-T6 Permanent  
Mold Cast (SS) 2014-O 

 [kg/m3] 2619 2680 2800 
E [GPa] 74.56 72.40 72.40 
 [-] 0.33 0.33 0.33 

G [GPa] 28.03 27.22 27.22 
Rp0.2 [MPa] 170 152 95 

 
• connections: make sure that the Enforce common nodes between touching boundaries 

is activated, as Figure 1.3.1.1 indicates. The screen in the just mentioned figure appears after 
a right click on Global Interaction, and selecting Edit Definitions; 

 

 
 

Figure 1.13.1.1 – Connection used in SolidWorks. 
 

• fixtures applied: locking radial and axial displacements in the hole that houses the pin that 
allows the up-shift system to revolute around the z-axis of Figure 1.3.1.1. This means that 
there will be a rigid body mode in the results, in agreement with Figure 1.2.1.3; 

• no external forces are applied; 
• mesh discretisation, as shown in § 1.2. 

 
 
1.3.2 Exporting the outputs of real modal analysis simulation 
 
The frequency analysis can now be simulated in order to evaluate and export: 

• natural frequencies, i.e. file Frequency 1-Mode List-1.csv, Frequency 2-Mode List-
2.csv and Frequency 3-Mode List-3.csv; 
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• for each evaluated natural frequency, corresponding mode shape, i.e. modal displacement 
for each node, e.g. file Frequency 1-7.csv for mode #7 of the first simulation. 

 
See the following figures for steps and parameters. 
According to Figure 1.3.2.5, it is crucial to set in Advanced Options, Range (to export all nodes 
information) and choose, for each natural frequency, the corresponding number like Figure 1.3.2.2. 
 

 
 

Figure 1.3.2.1 – Simulation frequency results export, step 1. 
 

 
 

Figure 1.3.2.2 – Simulation frequency results export, step 2. 
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Figure 1.3.2.3 – Simulation frequency results export, step 3. 
 

 
 

Figure 1.3.2.4 – Simulation mode shape results export, step 1. 
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Figure 1.3.2.5 – Simulation mode shape results export, step 2: saving mode shape #1. 
 

 
 

Figure 1.3.2.6 – Simulation mode shape results export, step 3: saving mode shape #1. 
 
The last part of section§ 1.3.2 is dedicated to having a look of the files generated in the described 
process and writing down some suggestions to avoid futile mistakes. 
 
The following file (Frequency 1-Mode List-1.csv) is an example of exported SolidWorks 
results about natural frequencies. 
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20:50, mercoledì, aprile 13, 2022 

Study name:Frequency 1 

Mode No.  ,Frequency(Rad/sec)  ,Frequency(Hertz)  ,Period(Seconds) 

1  ,0             ,0             ,1e+32       

2  ,2068.5        ,329.22        ,0.0030375   

3  ,3594.9        ,572.14        ,0.0017478   

4  ,4831          ,768.87        ,0.0013006   

5  ,7154          ,1138.6        ,0.00087828  

6  ,9741.3        ,1550.4        ,0.00064501  

7  ,11205         ,1783.4        ,0.00056073  

8  ,12328         ,1962.1        ,0.00050966  

 
The following file (Frequency 1-1.csv) is an example of exported SolidWorks results about real 
mode shape #1 for the first simulation. 
 
20:50, mercoledì, aprile 13, 2022 

Study name:Frequency 1 

Units:  

Selected reference : Piano frontale 

Node  ,AMPX  ,AMPY  ,AMPZ  ,AMPRES 

1  ,-2.02186e-01  ,-2.55264e-01  ,-1.53848e-15  ,3.25636e-01 

2  ,-2.02186e-01  ,-2.19035e-01  ,-1.52766e-15  ,2.98087e-01 

3  ,-2.02186e-01  ,-1.81125e-01  ,-1.51634e-15  ,2.71451e-01 

4  ,-2.02186e-01  ,-2.55264e-01  ,-1.53848e-15  ,3.25636e-01 

5  ,-2.02186e-01  ,-2.19035e-01  ,-1.52766e-15  ,2.98087e-01 

6  ,-2.02186e-01  ,-1.81125e-01  ,-1.51634e-15  ,2.71451e-01 

7  ,-2.02186e-01  ,1.99959e-01  ,-1.40255e-15  ,2.84364e-01 

8  ,-2.02186e-01  ,4.45243e-02  ,-1.44896e-15  ,2.07031e-01 

9  ,-2.02186e-01  ,-1.10891e-01  ,-1.49537e-15  ,2.30600e-01 

10  ,-2.02186e-01  ,5.53353e-04  ,-1.46209e-15  ,2.02187e-01 

11  ,-2.02186e-01  ,4.04384e-02  ,-1.45018e-15  ,2.06191e-01 

12  ,-2.02186e-01  ,3.63726e-02  ,-1.45139e-15  ,2.05432e-01 

13  ,-2.02186e-01  ,2.22667e-02  ,-1.45560e-15  ,2.03409e-01 

14  ,-2.02186e-01  ,-3.35469e-02  ,-1.47227e-15  ,2.04950e-01 

15  ,-2.02186e-01  ,-7.57548e-02  ,-1.48487e-15  ,2.15912e-01 

16  ,-2.02186e-01  ,-1.04061e-01  ,-1.49333e-15  ,2.27394e-01 

... 

2784  ,-1.89462e+00  ,-2.94690e+00  ,-1.53137e-14  ,3.50341e+00 

2785  ,-1.96992e+00  ,-2.15869e+00  ,-1.56555e-14  ,2.92242e+00 

2786  ,-1.94407e+00  ,-1.94485e+00  ,-1.53935e-14  ,2.74988e+00 

2787  ,-1.37198e+00  ,-2.83884e+00  ,-1.12757e-14  ,3.15299e+00 

2788  ,-9.19414e-01  ,-2.31670e+00  ,-7.65115e-15  ,2.49247e+00 

2789  ,-1.84755e+00  ,-2.94169e+00  ,-1.49514e-14  ,3.47375e+00 

2790  ,-1.72572e+00  ,-2.94350e+00  ,-1.40181e-14  ,3.41208e+00 

2791  ,-5.02757e-01  ,-1.47228e+00  ,-4.20558e-15  ,1.55575e+00 

2792  ,-1.51616e+00  ,-2.84761e+00  ,-1.23834e-14  ,3.22609e+00 

 
Notes about *.csv files: 

• Windows setting must be defined using symbol . (dot) as decimal separator and using the 
symbol , (comma) to separate columns, according to MATLAB settings; 

• if *.csv files are generated using symbol , (comma) as decimal separator and using ; 
(semicolon) to separate columns, software like Notepad.exe or TextPad.exe must be used 
to convert in this order , (comma) with . (dot), then ; (semicolon) with , (comma). 
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1.4 Translation into Lupos using MATLAB 
 
Next step is converting the Nastran file (.DAT) and the modal analysis results into Lupos by using 
two MATLAB routines: BDFtoLUPOS and SW_CSVtoPhiW2. 
 
 
1.4.1 Example of script for real modal analysis simulation 
 
The following MATLAB script can define the needed files for a real modal analysis and the 
following translation in Lupos format. As can be seen, the inputs are the results exported from 
SolidWorks. In particular, BDFtoLUPOS translates Nastran BDF (or DAT) file into Lupos files and 
SW_CSVtoPhiW2 translate SolidWorks CSV files in Phi, NodePhi and W2 files. According to § 1.2, 
three scripts were written in order to use the discretisations discussed in Table 1.2.1. 
 
%Example of direct use of BDFtoLUPOS and SW_CSVtoPhiW2 

  

%Pad and Lever from the right part are converted into Lupos by using a 

%coarse mesh 

datain = 'MAIN_Pad_Lever_Right-Frequency 1.DAT'; 

dataout = 'StructureRef_Freq1'; 

BDFtoLUPOS(datain,dataout) 

 B 

datain_Freq = 'Frequency 1-Mode List-1.csv'; 

datain_Phi = {... 

    'Frequency 1-Mode 1.csv';... 

    'Frequency 1-Mode 2.csv';... 

    'Frequency 1-Mode 3.csv';... 

    'Frequency 1-Mode 4.csv';... 

    'Frequency 1-Mode 5.csv';... 

    'Frequency 1-Mode 6.csv';... 

    'Frequency 1-Mode 7.csv';... 

    'Frequency 1-Mode 8.csv';... 

    }; 

dataout = {... 

    'StructureRef_Freq1_Phi.dat';... 

    'StructureRef_Freq1_NodesPhi.dat';... 

    'StructureRef_Freq1_W2.dat';... 

    }; 

SW_CSVtoPhiW2(datain_Freq,datain_Phi,dataout) 
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1.5 Example of input/output files 
 
1.5.1 CAD/FEM SolidWorks files 
 
According to the simple example of Figure 1.1.1, some SolidWorks input files are: 

• MAIN_Pad_Lever_Right.SLDASM (SolidWorks CAD assembly, shown in Figure 1.1.1); 
• E239483_PALETTA_DX_PANTOGRAFATA.SLDPRT (SolidWorks CAD part, representing the 

pad); 
• BRACCIO_DX_E145589.SLDPRT (SolidWorks CAD part, representing the lever); 
• MAIN_Pad_Lever_Right-Frequency 1.CWR (CosmosWorks Result file for modal analysis, 

containing the meshed model and the mode shapes of the assembly); 
• MAIN_Pad_Lever_Right-Frequency 1.LOG (ASCII simulation resume file, for checking 

the number of nodes of the model). 
 
 
1.5.2 Exported FEM meshed and results model files 
 
Independently from the kind of static or frequency analyses, the exported file provided following 
§ 2 is MAIN_Pad_Lever_Right-Frequency 1.DAT (corresponding ASCII Nastran file of the 
meshed model of Figure 1.2.1); 
 
Taking into account a real modal (frequency) analysis, the exported files provided following § 1.3.2 
for the first simulation are: 

• Frequency 1-Mode List-1.csv (corresponding ASCII natural frequencies [rad/s] file 
containing the first 8 values (m = 8) that requests the corresponding 8 mode shape files); 

• Frequency 1-Mode 1.csv (corresponding ASCII mode shape #1 file of all the model 
nodes); 

• Frequency 1-Mode 2.csv (corresponding ASCII mode shape #2 file of all the model 
nodes); 

• Frequency 1-Mode 3.csv (corresponding ASCII mode shape #3 file of all the model 
nodes); 

• Frequency 1-Mode 4.csv (corresponding ASCII mode shape #4 file of all the model 
nodes); 

• Frequency 1-Mode 5.csv (corresponding ASCII mode shape #5 file of all the model 
nodes); 

• Frequency 1-Mode 6.csv (corresponding ASCII mode shape #6 file of all the model 
nodes); 

• Frequency 1-Mode 7.csv (corresponding ASCII mode shape #7 file of all the model 
nodes); 

• Frequency 1-Mode 8.csv (corresponding ASCII mode shape #8 file of all the model 
nodes). 

 
 
1.5.3 MATLAB/Lupos translated model and results files 
 
In modal analysis, inside the example provided in § 1.4.1, through BDFtoLUPOS.m script, using as 
input file MAIN_Pad_Lever_Right-Frequency 1.DAT, the exported file provided following § 1.2 
are: 
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• Structure.geo (ASCII Lupos file of the N model nodes and containing the number of the 
nodes and their corresponding coordinates in xyz reference system (N x 4) ); 

• Structure.tet (ASCII Lupos file of T model tetra4 elements (T x 8) and the nodes of 
each tetrahedron as well as a number representing the colour of the element in Lupos and the 
properties of the tetra4 material); 

• Structure.bcs (ASCII Lupos file of the V model constraints (V x 2) and including the 
number of the constrained node and a number corresponding to degree of freedom locked as 
explained in Table 1.5.3.1 and described in [3]); 

 
Table 1.5.3.1 – Dof and Id number. 

 
Generalised dof Id number 

x, translation 1 
y, translation 2 
z, translation 3 

x, rotation 4 
y, rotation 5 
z, rotation 6 

 
• Structure.fms (ASCII Lupos file of model generalised forces elements (F x 3)). 

 
 
Through SW_CSVtoPhiW2.m script and according to the input file *.cvs of the specific real modal 
analysis, the exported file provided following § 1.3 are: 

• Phi.dat (ASCII Lupos file of model eigenvectors (N x m = 13057*6 x 8 = 78342 x 8) 
where N is the number of the nodes and the m is the number of the computed natural 
frequencies [-] ); 

• NodesPhi.dat (ASCII Lupos file of model nodes label (N x 2) [-] ); 
• W2.dat (ASCII Lupos file of the m model eigenvalues (m x 1 = 8 x 1)  

[(rad/s)2] ). 
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1.6 Example of Lupos figures 
 
 
1.6.1 Visualisation of the assembly 
 
Thanks to what it is explained in § 1.3.1, it is possible to easily change the colours of the meshed 
model in Lupos. Figure 1.6.1.1 shows how to do it. The method exploits the fact that the .tet file 
has the colour and the density of an element written in two consequent columns. Therefore, it is 
possible to choose green for the pad and red for the lever. The corresponding number for the just 
mentioned colour are: 3 for green and 2 for red ([3]). It is useful to remind that this simple 
modification can be done only because two slightly different materials has been selected for the 
parts of the assembly. 
 

 
 

Figure 1.6.1.1 – Procedure of colour changing in MATLAB. 
 
After loading the .geo file in TRCP ([3]), the model appears as shown in Figures 1.6.1.2-4. Each of 
these figures represents a model, according to Table 1.2.1. 
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 Figure 1.6.1.2 – First model with Tet. Figure 1.6.1.3 – Second model with Tet. 
 

 
 

Figure 1.6.1.4 – Third model with Tet. 
 
 
1.6.2 Visualisation of a mode shape 
 
It is worth showing an animation in Lupos of the mode shape exported from SolidWorks. In order 
to do this, .geo and *Phi.dat files should be loaded in the appropriate cell in MCP. Figure 1.6.2.1 
contains the mode shape for the first non-rigid body mode (i.e. the 2nd one) for the first simulation 
of the assembly. 
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Figure 1.6.2.1 – 2nd mode shape. 
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1.7 Minecraft: from tetrahedrons to hexahedrons 
 
This part of the report is devoted to the use of a Minecraft model, which is obtained by transforming 
the tetra4 mesh produced by SolidWorks into hexahedrons. In this particular case, the past 
elementary cubes are substituted with prisms, in the sense that the discretisation along the cartesian 
axis is different. The main advantage of this kind of model is certainly a lower number of the nodes 
and, consequently, a minor computational effort. In addition, the new mesh just needs the indication 
of the distances between the nodes in the three directions, and therefore the spatial dimensions of 
the elements.  
The process of transformation is carried out, for each SolidWorks discretisation, in 
Pad_Lever_Right_Prismatic_MINECRAFT.m script, which is not fully reported here. 
The structure of this main script is: 

1. Define the desired dimensions of the hexahedrons, create an equispaced geometrical grid 
based on the real dimensions of the assembly and use this partitioning as the nodes of the 
prismatic elements. 

2. Delete the non-existing nodes on the base of a nearness criterion with respect to the 
tetrahedral mesh. 

3. Cancel the excessive prisms. 
4. Attribute the proper material to the Minecraft discretisation. 
5. Check of the mass and save the model. 

 
In the following paragraphs some of these parts will be deepened and compared to the previous 
dedicated MATLAB routines. 
 
 
1.7.1 Equispaced grid 
 
In the initial approach of this Minecraft approximation, this part exploited a routine reported in [4], 
that created cubical elements utilising a grid that considered the sizes of the SW meshed assembly, 
i.e. the tetra4 mesh. Afterwards two main improvements have been made: 

• The coordinates of the nodes of the parallelepipedal elements become multiples of the 
desired dimensions of the prisms, which are contained into a 1x3 vector, called dist. 

• If the measured coordinates in a spatial dimension have discordant sign, there will surely be 
a node that has 0 as coordinate in that axis. 

 
This portioning is performed in first lines of PrismaticDiscretisation.m, and is displayed in the 
next lines: 
 
%% Partinioning of the prism containing parts 

    %Definition of max size of a meshed box with hexahedrons and creating a 

    %grid of equispaced nodes along x,y,z. The distance between the nodes in 

    %one direction can be different from another direction 

    disp('determining min/max geometrical dimensions...') 

    %Dim [2x3] with min and max of x, y, z 

    Dim = [min(Geo_ini(:,2:4)); max(Geo_ini(:,2:4))]; 

    num_cubes = round(diff(Dim)./dist)+2; 

    x_mean = round(mean(Dim)./dist).*dist; 

    x_min = zeros(1,size(num_cubes,2)); 

    x_max = zeros(1,size(num_cubes,2)); 

x = cell(1,size(num_cubes,2)); 

    for count = 1 : size(num_cubes,2) 

        if rem(num_cubes(1,count),2)==1 
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            num_cubes(1,count) = num_cubes(1,count)+1; 

        end 

        x_min(1,count) = x_mean(1,count)-dist(1,count)*num_cubes(1,count)/2; 

        x_max(1,count) = x_mean(1,count)+dist(1,count)*num_cubes(1,count)/2; 

        x{1,count} = [x_min(1,count):dist(1,count):x_max(1,count)]; 

    end 

    clear count 

 
It is also worth, at this stage deleting possible in excess nodes in order to save time in part b). The 
strategy chosen is a loop where, for every axis, it is controlled if there the grid is unnecessary wide. 
It is not clever carrying out that in the previous part of the code since the randomness of the 
rounding shown before and the brevity of the adopted control.  
 
%Deleting possible in excess nodes in order to reduce computation time in 

Fea_simpler 

    for count = 1 : size(num_cubes,2) 

        if x{1,count}(1,1)+dist(1,count)<Dim(1,count) 

            x{1,count} = x{1,count}(1,2:end); 

            num_cubes(1,count) = num_cubes(1,count)-1; 

        end 

        if x{1,count}(1,end)-dist(1,count)>Dim(2,count) 

            x{1,count} = x{1,count}(1,1:end-1); 

            num_cubes(1,count) = num_cubes(1,count)-1; 

        end 

    end 

    clear count x_min x_max x_mean Dim 

    disp('... done!') 

 
A further step is creating a .geo file where the nodes of the prisms are located. Before this 
application this was made by a loop. Now, instead, it is performed exploiting the just created grid 
and MATLAB logical indexing, and thus reducing computational time. 
 
    disp(' ') 

    disp('Grid creation...') 

    num_nodes = num_cubes+1;    %nodes along the three dimensions [-] 

    tot_nodes = num_nodes(1,1)*num_nodes(1,2)*num_nodes(1,3); 

     

    %Knowing the size of the big box and the coordinates of the nodes it is now 

    %much easier to create Model.Geo 

    Model.Geo = zeros(tot_nodes,4); 

    Model.Geo(:,1) = [1:1:tot_nodes].'; 

    Model.Geo(:,2) = repmat(x{1,1},1,num_nodes(1,2)*num_nodes(1,3)); 

    A = repmat(x{1,2},num_nodes(1,1),num_nodes(1,3)); 

    Model.Geo(:,3) = reshape(A,tot_nodes,1); 

    B = repmat(x{1,3},num_nodes(1,1)*num_nodes(1,2),1); 

    Model.Geo(:,4) = reshape(B,tot_nodes,1); 

    clear tot_nodes x A B 

 
In the last part of the script the prismatic elements are built. Unfortunately, this section could not be 
shortened. Moreover, it is decided arbitrary to firstly assign a generic Alluminium Alloy to the 
prisms. The right material will be applied in a separate function described in § 1.7.3. 
 
    Model.Hex = []; 

    h = waitbar(0,'Wait... ','Name','Hex'); 

    for count_z = 1 : num_cubes(1,3) 

        for count_y = 1 : num_cubes(1,2) 

            for count_x = 1 : num_cubes(1,1) 
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                waitbar((count_x+(num_cubes(1,1))*(count_y-

1)+(num_cubes(1,1))*(num_cubes(1,2))*(count_z-

1))/((num_cubes(1,1))*(num_cubes(1,2))*(num_cubes(1,3))),h,... 

                    ['Wait: Hex ',num2str(count_x+(num_cubes(1,1))*(count_y-

1)+(num_cubes(1,1))*(num_cubes(1,2))*(count_z-1)),... 

                    ' of 

',num2str((num_cubes(1,1))*(num_cubes(1,2))*(num_cubes(1,3)))]) 

                Model.Hex = [ Model.Hex 

                    count_x+num_nodes(1,1)*(count_y-

1)+num_nodes(1,1)*num_nodes(1,2)*(count_z-1) ... 

                    count_x+num_nodes(1,1)*(count_y-

1)+num_nodes(1,1)*num_nodes(1,2)*(count_z-1)+1 ... 

                    

count_x+num_nodes(1,1)*count_y+num_nodes(1,1)*num_nodes(1,2)*(count_z-1)+1 ... 

                    

count_x+num_nodes(1,1)*count_y+num_nodes(1,1)*num_nodes(1,2)*(count_z-1) ... 

                    count_x+num_nodes(1,1)*(count_y-

1)+num_nodes(1,1)*num_nodes(1,2)*count_z ... 

                    count_x+num_nodes(1,1)*(count_y-

1)+num_nodes(1,1)*num_nodes(1,2)*count_z+1 ... 

                    

count_x+num_nodes(1,1)*count_y+num_nodes(1,1)*num_nodes(1,2)*count_z+1 ... 

                    

count_x+num_nodes(1,1)*count_y+num_nodes(1,1)*num_nodes(1,2)*count_z ... 

                    5  2.8000000e+03  7.2400000e+10  0.33 

                    ]; 

            end 

        end 

    end 

    close(h); 

    clear count_x count_y count_z tot_nodes num_cubes num_nodes h 

    disp('... done!') 

 
To be clearer, a demonstrating imagine is shown in Figure 1.7.1.1. The y coordinate of the 
highlighted node is caused by the MATLAB machine epsilon and should be 0, as the x coordinate. 
 

 
 

Figure 1.7.1.1 – yz view and node with 0 coordinates. 
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1.7.2 Simplification of the mesh 
 
This paragraph deals with the elimination of the prisms nodes that are not near enough to the ones 
of the meshed assembly coming from SW. Indeed, the remaining ones are about 10% of the total 
nodes generated in § 1.7.1, that will be also called as “Ema nodes” The tet4, instead, are connected 
by the “Fea nodes”.  
This process is made into FeaSimpler_Prismatic, which needs four inputs: 

1. EmaGeo; 
2. FeaGeo; 
3. dist: a modified version of the 1x3 vector discussed in § 1.7.1; 
4. wbar: a logical input that specifies if a graphical visualisation of the process is requested. 

 
The output is EmaFea: a .geo file that includes the coordinates of the survived nodes of the 
parallelepipedal elements. 
As regards the condition that the surviving nodes have to satisfy, it is mandatory that at least one 
Fea node is located into a specific control volume. In particular, an ellipsoid centred in each Ema 
node and with semiaxis dist(1,1), dist(1,2) and dist(1,3), that are the desired sizes of the 
Minecraft elements, as examined before. Moreover, dist is multiplied by a coefficient, which will 
be called as “correction factor”, “premultiplication factor” or “multiplication factor” in this chapter. 
However there is an exception for this association criterion: if more than one node of the Hex mesh 
is going to survive thanks to the same Fea node, only the nearest Ema node keeps on living. 
Figure 1.7.2.1 shows the working mechanism with a cubical mesh and 1*dist for sake of 
simplicity. 
 

 
 

Figure 1.7.2.1 – Working mechanism of FeaSimpler_Prismatic. 
 
As can be seen, in the background there is the SW mesh, whose elements have orange edges. The 
nodes of the Hex discretisation are symbolised with black dots. Moreover, a representation of the 
distance between the Ema nodes is presented using the parameters dist(1,1) and dist(1,2). In 
the picture is explained the simplification applied to nodes 1 and 2, that would survive both because 
of the presence of node a, which is the closest Fea node contained in their control volume. But only 
node 2 is saved since it is the nearest to node a. 
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It is also crucial to acknowledge what happens if dist is multiplied by 0.5: in consequence of 
Figure 1.7.2.1, it can be easily understood that in this case a correspondance with two equal nodes is 
not anymore possible. That is because the control volumes of two adiacent Hex nodes just have a 
point in common and so the overlapping phenomena is not present. As Figure 1.7.2.2 (left) shows, 
the surviving prisms are very few also owing to a decrease dimensions of the control volumes. 
Therefore choosing a premultiplication factor minor than 1 is not a right strategy to have a correct 
parallelepipedal discretisation. 
 
The more the factor grows, the more Hexs are saved because the control volumes become larger. 
Furthermore the number of the left nodes and prisms increase less than proportional with respect to 
the correction factor due to the elimination criterion related to the overlapping. This trend has a 
plateau after the premultiplication factor overcomes 2. Even if the remaining nodes after 
FeaSimpler_Prismatic keeps on increasing, the function CheckModel, which runs immediately 
after it, cannot save further prisms . 
The explanation of this trend is related to the fact that a new survived Ema node is kept by 
FeaSimpler_Prismatic because a Fea node is contained in a prism that is not touching the 
Minecraft node at all.  
 
In Figures 1.7.2.3-4 the effect of varying the multiplication factor is shown. 

 
 

Figure 1.7.2.2 – Application of FeaSimpler_Prismatic to 2nd mesh with 0.5*dist (left) and 
0.8*dist (right). 
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Figure 1.7.2.3 – Application of FeaSimpler_Prismatic to 2nd mesh with 1*dist (left) and 
1.5*dist (right). 

 

 
 

Figure 1.7.2.4 – Application of FeaSimpler_Prismatic to 2nd mesh with 1.9*dist. 
 
Figure 1.7.2.2 shows that the holes in the Minecraft model with 0.8*dist are very lower with 
respect to the 0.5*dist on foot of the bigger control volumes. Also the structure has a certain 
grade of regularity. 
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As can be seen in Figure 1.7.2.3, the left discretisation appears to be more uniform, while the right 
one and the one in Figure 1.7.2.4 have too many cubes and therefore an overestimation of the 
volume and the mass happens. 
 
Eventually, Table 1.7.2.1. and Figure 1.7.2.5 show the trend of the survived nodes and prisms of the 
2nd mesh in relation to the correction factor of dist. 
 

Table 1.7.2.1 – Seven configurations of the mesh parameters, nodes and prisms. 
 

Correction 
factor 

# Survived 
nodes 

# Survived 
prisms 

0.5 998 250 
0.8 1417 567 
1 1653 709 

1.5 2082 861 
1.9 2290 901 
3 2598 918 
5 2716 918 

 

 
 

Figure 1.7.2.5 – Seven configurations of the mesh parameters, nodes and prisms. 
 
 
1.7.3 Material assignment 
 
After utilising FeaSimpler_Prismatic and CheckModel it is time to finally associate the proper 
material to the remaining prisms. The dedicated MATLAB function where this is done is 
Hex_Mat_assign. It has 5 inputs: 
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• Hex_Geo: contains the coordinates of the nodes of the survived prisms; 
• Hex_Hex: contains the nodes that made up each prism. It will be modified and will become 

the only output of the function; 
• Tet_Geo: contains the coordinates of the nodes of the initial tetra4; 
• Tet_Tet: contains the nodes that made up each initial tetra4, as well as their properties; 
• Mats: a structure that has the information about the material used in the assembly. 

 
Basically, this routine is structured as follows: 

1. Use of a modified Lupos routine called CheckMass_TetHex_2. The new part with respect to 
CheckMass_TetHex consists of the return of two new outputs, i.e. a matrix with 5 columns, 
containing respectively the volume, mass and centre of gravity for the Tets and another one 
for the Hexs. 

2. A loop for each hexahedron, where its borders are found. Afterwards another inner loop is 
used to check, for every tetrahedron a COG condition and a node condition. The former 
checks if the barycentre of a Tet is contained in the Hex border, while the latter only actives 
if the first is not satisfied and verifies if a node of a Tet4 is located inside a prism. This 
section has the attention to not consider the mass of a surrounding Tet plural times if a 
tetrahedron has more than one node in a Hex. 

3. The effective assigning of the appropriate material based on the mass of the neighbouring 
tetrahedrons. In particular, it attributes the right properties on the base of the majority of the 
material of the Tet related to a Hex by the criterions discussed in (2). 

4. If dist is multiplied by 1.9 in FeaSimpler_Prismatic there will be some hexahedrons that 
will not find a single Tet node in it, so they will have not the proper material. 

 
In order to solve this issue there are 3 strategies: 

I. Use FeaSimpler_Prismatic without any factor applied to dist. The main drawback of this 
solution is that the number of the Hex making up the Minecraft model decreases about 10-
20%. Nevertheless, this option makes to resulting structure to be more regular. 

II. If a hexahedron is uncoupled at the end of the main loop, the properties of the last Hex 
analysed are assigned to it, knowing that some prisms could have the wrong properties and it 
is necessary to manually correct afterwards. 

III. Correct them in another loop on the base of the properties of the neighbouring prisms, 
minding considering only the elements whose material has been correctly assigned. The 
schematic drawing in Figure 1.7.3.1 [5] can help to understand this strategy. 

 

 
 

Figure 1.7.3.1 – 3rd solution – before. 



 37 / 116 

 
As can be seen, Hex mesh has been represented with cubes instead of parallelepiped for sake of 
simplicity. It is shown the process of attribution of the element with darker edges on the base of its 
neighbouring cubes, which are: 

• four red coloured; 
• two green coloured; 
• two orange coloured. 

 
Since the 8 eight surrounding Hex include 2 uncoupled elements, the attribution of the property of 
the central one is only established on the remaining 6 prisms, therefore the material assigned to the 
Hex at issue is the red one, as shown in Figure 1.7.3.2. It is also worth to highlight that, if the 
number of valid neighbours had been 4 red and 4 green, it would have applied the green one, since 
has the minor density between the two. 
 

 
 

Figure 1.7.3.2 – 3rd solution – after. 
 
The following pictures better explain part (4). All the imagines are made with dist = [0.005 
0.004 0.006] %[m]. This choice of the dimensions of the cubes is the child of the overall sizes of 
the assembly. Indeed, it is clever, with this particular geometry, to decide for y-mesh density bigger 
than the x and z ones since the components have their minor dimensions along the y axis. 
Figures 1.7.3.3-5 concern the first solution for the three mesh of SW. Figures from 1.7.3.6-8, are 
related to the second strategy and dist multiplied by 1.9. Figures from 1.7.3.9-11 concern the 
comparison between the results with none of the solution applied and the ones with the third option 
and dist multiplied by 1.9. In addition to that it is useful to use the colour orange for the 
unassigned Hexs because the default colour for the Minecraft elements has always been this one. 
It is evident, in the pictures concerning the 3rd solution, that the algorithm works well even in the 
regions where two materials are touching each other. 
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Figure 1.7.3.3 – 1st solution for 1st mesh. 
 

  
 
 Figure 1.7.3.4 – 1st solution for 2nd mesh. Figure 1.7.3.5 – 1st solution for 3rd mesh 
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Figure 1.7.3.6 – 2nd solution for 1st mesh. 
 

  
 

Figure 1.7.3.7 – 2nd solution for 2nd mesh front (left) and back (right). 
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Figure 1.7.3.8 – 2nd solution for 3rd mesh front (left) and back (right). 

  
 

Figure 1.7.3.9 – Uncoupled Hexs for 1st mesh (left) and 3rd solution (right). 
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Figure 1.7.3.10 – Uncoupled Hexs for 2nd mesh (left) and 3rd solution (right). 
 
 

  
 

Figure 1.7.3.11 – Uncoupled Hexs for 3rd mesh (left) and 3rd solution (right). 
 
 
It is also possible to use another function to assign the material to the prisms. This function has been 
developed by Professor Bonisoli and is called “Converter_TetHex.m”. It evaluates for each Hex 
element its COG, then if at least one Tet and/or one Hex contain it, the Tet or the Hex 
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corresponding colour and material properties are assumed. The first found element that contains the 
Hex COG is assumed. If no element is found, nor colour, neither material properties are set. 
There are three strategies to carry out the attribution: 

1. check for each COG, if it is inside the same Tet; 
2. check for all the COGs contemporaneously, they are inside the same Tet; 
3. find for each COG the closest 10 nodes of Tets, for all the Tets using these nodes, if the 

COG is inside these Tets, from the closest node to each COG; 
 
While the first two approaches are far more time-consuming than Hex_Mat_assign, the third one is 
similar to it. 
Figures 1.7.3.12-13 show the comparison between the first solution of Hex_Mat_assign and the 
results of Converter_TetHex.m. Both the imagines are obtained with the second mesh simplified 
with 1*dist. 

  
 
Figure 1.7.3.12 – Hex_Mat_assign to 2nd mesh. Figure 1.7.3.13 – Converter_TetHex to 2nd mesh.  
 
It is evident that the second routine leaves many uncoupled hexahedrons because the condition to 
attribute the material is probably too strict. In addition to that, the complexity and tridimensionality 
of the assembly make a criterion like in Figure 1.7.3.12 to be more effective. 
Even by changing the tolerance in FeaSimpler_Prismatic the results of the 2nd routine do not 
change, as shown in Figure 7.3.14. Moreover, the process of material attribution of Figure 1.7.3.12 
lasted 13 seconds, as the one of Figure 1.7.3.13 for 16 seconds. 
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Figure 1.7.3.14 – Converter_TetHex to 2nd mesh with 1.9*dist. 
 
Eventually are presented some results obtained by setting dist = [0.004 0.003 0.0035]; %[m] 
and no premultiplication factor in FeaSimpler_Prismatic in the use of the third mesh, which is 
the finest. 
 

 
 

Figure 1.7.3.15 – 1st solution for 3rd mesh with dist = [0.004 0.003 0.0035]. 
 
As expected, the increased number of prisms make the discretisation more complete, even if very 
few elements are not coupled to the right material. 
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The results become more precise if the 3rd solution is adopted. 
 

 
 

Figure 1.7.3.16 – 3rd solution for 3rd mesh with dist = [0.004 0.003 0.0035]. 
 
It is also worth noting that a more cubical-shape elements seem to behave better in respect of the 
material attribution and the overall number of survived Hexs. 
 
 
1.7.4 Mass check 
 
The last part of this report is dedicated to confronting the mass of the Hex elements to the one of the 
undiscretised assembly of SW. 
To carry out this operation the mass massSW of the components is computed directly in SW and it 
is 153.82 g, while the prisms mass is calculated by using CheckMass_TetHex_2. 
The comparison of the mass is performed by the calculation of the percentual relative error err of 
the Hex mass with respect to the assembly weight. It is calculated with Equation 1.7.4.1. 
 
 

 100massHex massSWerr
massSW

−
=   (1.7.4.1) 

 
where massHex is the measured mass of the Hexahedrons and massSW is computed by SolidWorks 
and is the real mass of the assembly. Therefore a positive error means an overestimation of the parts 
mass, while a negative one is an underestimation. 
The results of the three main SW discretisation with dist = [0.005 0.004 0.006] and no 
correction factor in Fea_Simpler are reported in Table 1.7.4.1. 
 
 
 
 



 45 / 116 

Table 1.7.4.1 – Results of the mass comparison. 
 

Mesh Percentual 
relative error 

1 12.8 % 
2 50.8 % 
3 65.5 % 

 
Like one would expect the cuboid mesh is an overestimation of the system mass and the big 
difference is justified by the fact that the structure is very tridimensional especially in the part of the 
Pads of the Levit. Indeed the thickness of these parts is 4 mm, and they are inclined to the x and y 
axis, so it is normal to discretise them with the use of two rows of Hexs instead of one when using 
dist = [0.005 0.004 0.006].  
An xy plane view of the Hex mesh and Tet mesh better explains this concept and is presented in 
Figure 1.7.4.1. 
 

  
 

Figure 1.7.4.1 – xy plane view of the Hex (left) and Tet (right) discretisation of the 2nd mesh. 
 
Moreover, it is also normal to have an increasing error as the mesh becomes finer because many 
more cuboids survive after the use of Fea_Simpler_Prismatic owing to the increasing presence of 
nodes of tetrahedrons in the original SW discretisation. This statement is in agreement with 
Figures 1.7.3.9-11 (right). 
It is worth to analyse deeper the error of the second mesh: as a matter of fact the percentual 
becomes 17.6 % if the fourth mesh of Table 1.2.1.1 transform into Hex with dist = [0.0025 
0.002 0.003], i.e. half of the previous case. That is because the dimensions of the prisms allow to 
better reproduce the original shape of the assembly, as shown in Figure 1.7.4.2. 
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Figure 1.7.4.2 – Great improvement of 4th mesh with dist = [0.0025 0.002 0.003]. 
 
 
1.8 Conclusions 
 
This chapter has been created in order to avoid futile mistakes in the future in the procedure of 
exporting SolidWorks models into Lupos and re-discretise them. Moreover, two updates of 
Minecraft in terms of the elements and the materials are shown. The former is related to the fact that 
is now possible to discretise the structure into prisms and therefore not obligatorily in cubes; the 
latter concerns the automatic attribution of the material to the hexahedrons on the base of a nearness 
criterion of the original tetrahedrons. 
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2. Major distinctions between linear and nonlinear structures 
 
This section has the purpose to highlight the major distinctions between the two models, using also 
some SDOF systems created in MATLAB/Simulink. 
In particular, chapter § 2 deals with the free and forced behaviour of undamped and damped 
systems and the analyses of their frequency contents. Surely, the main reference of this first 
approach to nonlinear structures is the ‘Duffing type’ spring model [6]. The reason of that is the 
simplicity of the equation of motion and use of its parameters. Moreover, it allows to understand 
many aspects of nonlinear systems and it is widespread in the Vibration Mechanics. 
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2.1 Comparison of SDOF linear and nonlinear structures 
 
In Table 2.1.1 are summarised the main differences between the two types of systems. Some of 
these aspects will be deepened in other paragraphs of this chapter, because they could be better 
understood with a use of proper models, imagines and contexts. 
In the following table   is excitation frequency, n  is the natural frequency of the system, n is a 
positive integer number, and IC stands for initial conditions, and bold for matrices. 
 

Table 2.1.1 – Comparison of SDOF linear and nonlinear structures. 
 

Linear systems Nonlinear systems 
Possibility of the use of superimposition of 

effects ( )1 2 1 2   + = +K x x f f  (*) 
Incorrectness of the use  

of superimposition of effects 
Maxwell theorem for reciprocity 

( )

( )

( )

( ), ,
j k

j k k j
k j

x x
f f

 
 

 
= = =  (*) - 

Only primary resonances n =  
Also subharmonic 1

nn
 =  and 

superharmonic resonances nn =   
(odd and even terms) with n positive integer 

Analytical solution basically always possible; 
modal analysis, natural frequencies,  

mode shapes (*) 

Deep use of numerical solutions,  
due to the extreme difficulty of carrying out 
analytical solutions; nonlinear normal modes 

(equivalent of modal analysis) (*) 
Deterministic and sinusoidal behaviour  

(linear combination of frequencies/modes  
while using modal coordinates) (*) 

Sinusoidal (linearisable),quasi-static, periodic  
and chaotic behaviour 

Only an equilibrium point (stable or unstable), 
independent from the IC 

Presence of multiple equilibrium points (stable 
or unstable); the effective steady-state solution 

depends on the IC 
Closed elliptic orbits (conservative systems)  

in state space diagrams 
Presence of the drift of the equilibrium point  

of the oscillation 

- Presence of stiffening and/or softening 
phenomena (stiffness coefficient), jump effect 

- 
Presence of progressive and/or regressive 

phenomena (equivalent of stiffening/softening 
for damping coefficient) 

Participation factors are strictly constant Internal resonances (energy path) (*) 

- 
Linear combination of resonances generating 

“Sidebands” t r s  =  (*) 
 
The (*) marks the fact that the statement is valid for the MDOF systems. 
It is worth to say that systems in nature are mostly nonlinear but can be linearised if the amplitude 
of the excitation is not too high. 
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2.2 Free behaviour of nonlinear systems 
 
One of the most common sources of nonlinearity are the magnetic spring. They exploit the fact that 
two magnets oriented so that they repulse themselves, increase the modulus of the force in a 
nonlinear way. For example, a quantitatively way to express a magnetic spring force Fm is: 
 

 
1

m n
AF
x
B

=
 
+ 

 

 (2.2.1) 

 
where A, B and n are coefficient that well reproduce the trend of Fm and are obtained experimentally 
and x is the gap between the ferromagnetic elements. 
Figure 1.1.1 shows the trend of a normal magnetic spring with: 

• A = 1.5*10-3/0.023 N = 187.5 N; 
• B = 0.02 m; 
• n = 3. 

 
Moreover, it is presented a linearisation around the system static equilibrium point xe, which 
corresponds to coordinate where Fm = F0 = mg. In this way the weight of the mass is excluded from 
the equation of motion. This operation permits to write, using the polynomial expansion stopped to 
the term of first power: 
 
 ( )0m eF F k x x= − −  (2.2.2) 
 
where k is the first derivative of the (2.2.1) calculated in xe. 
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Figure 2.2.1 – Example of a magnetic spring characteristic and  
linearisation around xe = 6 mm. 
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For example, for a mass of 0.06 kg and the parameters shown right after (2.2.1), the equilibrium 
point and the coefficient for a polynomial expansion of the third power like (2.2.3) can be computed 
with (2.2.4) and (2.2.5), that make reference to [7]: 
 
 2 3

0 1 2 3( ) ( ) ( )k e e eF F k x x k x x k x x= − − − − − −  (2.2.3) 

 1ne
Ax B

mg
 

= −  
 

 = 0.11 m (2.2.4) 

 0

1
n

e

AF
x
B

=
 
+ 

 

 = 0.5886 N; 1 1

1
n

e

An
Bk

x
B

+
=
 
+ 

 

 = 13 N/m; 

 ( )

( )
2 2

1
2

n

n
e

n n A B
k

x B +

+
= − =

+
 = -189 N/m2; ( )( )

( )
3 3

1 2
6

n

n
e

n n n A B
k

x B +

+ +
= =

+
 = 2.3·103 N/m3 (2.2.5) 

 
Another type of nonlinearity is the Duffing type spring. Its main feature is to have a spring force kF  
related to the cube of the displacement x. Its complete formulation is structured as follows: 
 
 2 3

1 2 3kF k x k x k x= + +  (2.2.6) 
 
where k1 is the classic linear positive stiffness, k2 is the negative quadratic term and k3 is the typical 
Duffing term. k2 is negative because it reproduces the softening behaviour owed to the decreasing 
force that two magnets carry out of the distance between them is increased. 
The sign of the cubic term causes a great distinction between the spring behaviour: 

• 3 0k  : hardening behaviour because its stiffness increases with the displacement modulus; 
• 3 0k  : softening behaviour because its stiffness decreases with the displacement modulus. 

 
In Figure 2.2.2 are reported the characteristics of the two kinds of Duffing springs obtained with 
k1 = 1500 N/m, k2 = 0 N/m2, k3 = ±108 N/m3. As can be seen, the softening curve has a relative 
minimum near 17 mm. If the system presents a displacement that overcomes this value, it will 
become unstable. 
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Figure 2.2.2 – Duffing cubic springs. 
 
Similarly, it can exist a nonlinearity concerning damping, like follows: 
 
 2 3

1 2 3cF c x c x c x= + +  (2.2.7) 
where c1 is the classic linear positive damping, c2 and c3 are the quadratic and cubic terms. 
In particular, its sign causes a great distinction between the spring behaviour: 

• 3 0c  : progressive behaviour because the dissipative force increases with the displacement 
modulus; 

• 3 0c  : regressive behaviour because the dissipative force decreases with the displacement 
modulus. 

 
In Figure 2.2.3 are reported the characteristics of the two kinds of nonlinear dashpots obtained with 
c1 = 1500 N/(m/s), c2 = 0 N/(m/s)2, c3 = ±108 N/(m/s)3. 
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Figure 2.2.3 – Nonlinear cubic dashpots. 
 
 
2.2.1 Free behaviour of conservative nonlinear systems 
 
The analysed SDOF system has the parameter reported in Figure 2.2.1.1 
 

 
 

Figure 2.2.1.1 – Conservative SDOF nonlinear system. 
 
It is made up by a mass connected to a magnetic spring with the same characteristic of Figure 2.2.1. 
The equation of motion is the following: 
 
 0mmx F mg− + =  (2.2.1.1) 
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where ex x x= −  and xe is the static equilibrium point of the same spring. Fm can be written as: 
 

 
1

m n
AF
x
B

=
 
+ 

 

 (2.2.1.2) 

 
where A  and B  are different from the coefficients of (2.2.1) because the spring force is now 
described through a relative coordinate and not an absolute one. The spring can be described, after a 
polynomial development, as: 
 
 2 3

0 1 2 3mF F k x k x k x= − − −  (2.2.1.3) 
 
F0 is equal to mg = F(x = xe). In this way the equation of motion is: 
 
 2 3

1 2 3 0mx k x k x k x+ + + =  (2.2.1.4) 
 
The chosen parameters are listed in Table 2.2.1.1, while the chosen initial conditions are shown in 
Table 2.2.1.2. 
 

Table 2.2.1.1 – Analysed SDOF system. 
 

Parameter Value 
Mass m 0.06 kg 

Linear stiffness k1 1500 N/m 
Quadratic stiffness k2 -104 N/m2 

Cubic stiffness k3 108 N/m3 
 

Table 2.2.1.2 – Initial condition for the analysed SDOF system. 
 

Parameter Value 
0x  0.002 m 

0x  0 m/s 
 
Note that the chosen initial displacement is compatible with the fact that a simulation using only k1 
and negative k3 does not highlight instability phenomenon since the characteristic of a spring of this 
kind would be as shown in Figure 2.2.1.2. Thus it is evident that a system like this would become 
unstable if the initial condition was about x0 = 2.5 mm. 
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Figure 2.2.1.2 – Spring characteristic with k1 = 1500 N/m and k3 = -108 N/m3 
and its stability region. 

 
The effects of nonlinearity can be spotted in the so called ‘state plane’, a graph that shows the 
velocity and the displacement of a mass respectively in y-axis and x-axis. 
Some simulations results are shown in Figures 2.2.1.3-5, which are parametrised on the base of the 
nonlinearity level. 
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Figure 2.2.1.3 – State plane with linear spring k1 = 1500 N/m. 
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Figure 2.2.1.4 – State plane with linear and  
various hardening cubic spring (left) and various softening cubic spring (right). 

 
An increasing absolute value of the nonlinear terms produce a progressively deformed state plane. 
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Figure 2.2.1.5 – State plane with linear, various quadratic and positive cubic springs. 
 
An increasing absolute value of the nonlinear quadratic term produces a progressively unsymmetric 
state plane. 
 
As can be seen, the imagines show the typical state plane shapes for the 3 analysed system: 

• symmetrical elliptical shape for linear system; 
• symmetrical pseudo-elliptical shape for nonlinear cubical systems; 
• asymmetrical elliptical shape for nonlinear quadratic and hardening cubic systems. 
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2.2.2 Free behaviour of damped nonlinear systems 
 
Briefly, what happens if a dissipative term is introduced into a nonlinear system is shown in 
Figure 2.2.2.1. 
 

 
 

Figure 2.2.2.1 – Damping in nonlinear structures. 
 
As can be seen, the typical nonlinear backbone disappears when damping (indicated with the ‘μ’ 

parameter) increases and the system seems to be linear, just like what takes place whether the 
excitation amplitude is too low. 
Moreover, in the presence of damping, the phase shift of the response is altered and cannot be only 
0° or 180° out of phase with the excitation, as occurs in nonlinear conservative structures. 
 
For the system of Figure 2.2.1.1 is now introduced a low dissipative term modelled with the relative 

parameter ζ so that the damping term itself is calculated as 2 nc m = . n
k
m

 =  is the linearised 

natural frequency of the system. The equation of motion becomes: 
 
 2 3

1 2 3 0mx cx k x k x k x+ + + + =  (2.2.2.1) 
 
It is worth displaying the results of the state plane with various values of damping of the free-
response of the system for 5 seconds. 
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Figure 2.2.2.2 – State plane with linear spring and various values of damping factor. 
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Figure 2.2.2.3 – State plane with linear, damped, 
hardening cubic spring (left) and softening cubic spring (right). 
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Figure 2.2.2.4 – State plane with linear, damped, quadratic and positive cubic springs. 
 
Here the considerations that can be made are the same for Figures 2.2.1.2-4 with the difference that 
the dissipative term forces the system to run out of its energy. 
Considering damping, it is partially visible in Figure 2.2.2.4 the drift phenomenon for ζ = 0.05, 
which display the progressive shift of the centre of the orbit towards the right. 
For high values of damping the differences of the graphs decrease, indeed it is worth producing 
Figure 2.2.2.5 in order to properly distinguish the orbits of the system with ζ = 0.05. 
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Figure 2.2.2.5 – Comparison between state planes of hardening cubic term (red), null cubic term 
(blue) and softening cubic term (black) with constant damping factor ζ = 0.05. 
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As can be seen, the curves appear different only if they are in the same graph. This is a confirmation 
of the fact that non linearities are difficult to be spotted if the dissipation sources are intense. 
If the damping had been set on higher values (e.g. ζ = 0.3÷0.5), Figures 2.2.2.2-4 would have 
shown a more rapid process of assuming the coordinates (0,0) and therefore, simulations like these 
are not included in this report for sake of brevity. 
 
Another import aspect for these simulations is that Simulink step time has been decreased in order 
to avoid aliasing. Indeed, the regions of the graph with the bigger displacements are characterised 
by rapid velocity changes so that the vertical part of the path appeared under sampled before the 
intensification of the measured points. 
Eventually, it is important to create Figure 2.2.2.6, because the trajectory of the SDOF in the 
involuting pseudo-ellipses in the damped cubic system have identical shapes of the fundamental 
trajectory of the equivalent conservative system. 
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Figure 2.2.2.6 – Comparison between state planes of conservative system with linear and cubic 
springs and damped system with linear and hardening cubic springs ζ = 0.05. 
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2.3 Forced behaviour of damped nonlinear systems 
 
One of the main tools used to describe the Duffing springs is the ‘frequency – response curve’, 

where it is reported the amplitude of the response in relation to frequency of the harmonic 
excitation. 
Figure 3.1 explains the difference between linear and nonlinear systems. 
 

 
 

Figure 2.3.1 – Frequency – response curves  
for a linear spring (a), hardening (b) and softening (c) Duffing springs.[8] 

 
The x – axis in the imagine is tied to σ, which if it is equal to 0, means that is considered an 
excitation frequency corresponding to the natural frequency of the system. The α parameter is 
related to k3, indeed Figure 2.3.1(b) concerns a hardening spring, as α is bigger than 0. 
In these figures are presented the behaviour of the systems where a forward or backward frequency 
sweep is carried out. 
In Duffing spring, can be seen the so-called backbones. In particular, the hardening one shows a 
jump phenomenon from the upper branch to the low one when the frequency excitation is increased 
quasi-statically. In fact the amplitude of the oscillations decreases, according to the definition of the 
hardening spring. 
 
In addition to that, it is worth to have a look at the phase angle γ, defined as difference between the 
excitation phase angle and the response one. 
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Figure 2.3.2 – Comparison of a hardening spring and a linear spring  
for: (a) and (b) amplitudes; (c) and (d) phases. [10] 

 
As known, the phase become 90° in correspondence of the resonance frequency in linear SDOF 
structures. 
Instead, in nonlinear response curves the phase becomes 180° in the case of forward sweep test.  
 
Moreover, according to what is written right after Table 2.1.1, Figure 2.3.3 shows how the 
backbones become more inclined if the amplitude of the excitation (symbolised with the ‘k’ 

parameter) grows and how the system works as a linear one if it is under excited. 
 

 
 

Figure 2.3.3 – Backbones and amplitude of the excitation. 
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2.3.1 Simulations of forward sweep 
 
A system similar to the one of (2.2.2.1) is excited with a forward frequency sweep that covers 0 to 
50 Hz in 50 s. The reason why these simulations were not performed with the same structure is that 
this kind of excitation made the mass to become unstable. More specifically, the oscillations 
resulted bigger than 3 mm and so, on the right of the relative minimum point shown in 
Figure 2.2.1.2 if the damping was not regulated to unrealistic high value and/or the initial 
displacement set to incredibly small amplitude. 
Therefore the structure is now: 
 

Table 2.3.1.1 – Analysed SDOF system. 
 

Parameter Value 
Mass m 0.06  kg 

Linear stiffness k1 1500 N/m 
Quadratic stiffness k2 -104 N/m2 

Cubic stiffness k3 106 N/m3 
 
While the chosen initial conditions are still: 
 

Table 2.3.1.2 – Initial condition for the analysed SDOF system. 
 

Parameter Value 
0x  0.002 m 

0x  0 m/s 
 
What happens to the simulations is shown in Figure 2.3.1.1 to 2.3.1.4. 
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Figure 2.3.1.1 – State plane with linear spring with ζ = 0.01 
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Figure 2.3.1.2 – State plane with linear, damped (ζ = 0.01)  
hardening cubic spring (left) and softening cubic spring (right). 
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Figure 2.3.1.3 – State plane with linear, quadratic and positive cubic springs with ζ = 0.01. 
 
The same state plane can be obtained also for the SDOF system with a high dissipative term. 
It is not reported the state plane for the system with the linear and cubic springs, since the only 
difference is that the oscillations expire in a faster way because of the damping. 
 
 
2.3.2 Frequency response curves for damped SDOF 
 
It is critical to analyse the frequency response function of the system with linear and cubic springs 
and variable damping in order to have the typical jump phenomenon displayed in Figure 2.3.2.1. 
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Figure 2.3.2.1 – Envelope of positive maximum displacements in time domain of  
stiffening cubical and damped system (left) and detail (right). 

 
The jump phenomenon is much less evident as the damping factor grows, Furthermore, the 
oscillations after the jump are fewer than the blue one, while ζ = 0.05 totally deletes the oscillations 
after the jump. 
Note that the initial oscillations owed to solution of the homogenous associated are eliminated 
thanks to a damping 100 times bigger in the first second of simulation. Even the transitory after the 
jump could have been cancelled but is crucial to show how the dissipative terms deletes it, instead. 
Another kind of visualisation of this issue is the one of Figure 2.3.2.2, which is the displacement 
time history. For the stiffening case the sweep is inverted in order to reproduce the typical 
backbone. 
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Figure 2.3.2.2 – Displacement time history of a damped (ζ = 0.02) 
with cubic hardening spring (left) and cubic softening spring (right). 

 
Note that the two graphs are almost the same with only the difference that the zone with slow 
oscillations caused by low frequencies is on the opposite side since the sweep is executed in 
opposed directions. 
 
As regards the frequency response curves, it is legit to think that higher value of damping will 
totally cancel the backbones and the jump phenomena. This effect is verified in Figure 2.3.2.3. 
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Figure 2.3.2.3 – Envelope of positive maximum displacements in time domain  
of a cubic stiffness system with various values of damping. 
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2.4 Time-frequency analysis of a damped SDOF nonlinear system 
 
A further step is to analyse the time-frequency content of the free systems seen in § 2.2 with two 
approaches: 

• use of the routine “TimeFreq”, which is based on the Fast Fourier Transform (FFT); 
• use of the wavelet approach. 

 
Both the techniques have a 3D plot as output that is basically a succession of Frequency Response 
Functions in time. This can easily become a 2D explanatory plot in a plane that has time and 
frequency respectively as abscissa and ordinate whereas the intensity of the response is represented 
with a colour scale. 
The main difference of the two methods is that the former has constant frequency sample fs and 
delta-time sample Δt (because Δt = 1/fs) while the latter, as the frequency increases, is able to 
decrease the delta-time sample Δt and therefore can catch more instantaneous phenomena. 
 
The data analysed are obtained with a damping factor ζ = 0.005, a simulation time T = 10 s and 
fs = 104 Hz. 
The first case is the linear system excited with x0 = 10 mm and ẋ0 = 0 m/s. In Figure 2.4.2 is 
displayed the comparison of the two approaches as well as the parameters to set in order to have a 
good graph using a tool called ACc, developed by Prof. Bonisoli and Paolo Cavallaro. From now 
on, every wavelet analysis will be accompanied by a screenshot of the ACc settings. 
 

 
 

Figure 2.4.1 – Time-history for the linear system. 
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Figure 2.4.2 – Linear system: comparison between time-frequency content  
FFT (up-left) and wavelet (up-right) with ACc settings (low). 

 
As can be seen, both the approaches highlight the natural frequency of the system, which is 
25.16 Hz. 
 
As regards the hardening system, it is excited with x0 = 10 mm and ẋ0 = 0 m/s and in Figure 2.4.3 is 
reported the time history and in Figure 2.4.4 are reported the results. 
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Figure 2.4.3 – Time-history for the hardening system. 
 

 
 

Figure 2.4.4 – Hardening nonlinear system: comparison between time-frequency content 
FFT (up-left) and wavelet (up-right) with ACc settings (low). 



 69 / 116 

It is visible that the natural frequency decreases in time, as the oscillation amplitude reduces, 
showing a hardening behaviour. Since FFT analysis only captures a mean value of the instantaneous 
frequencies, it is not able to catch the gradual return to the fundamental frequency as precisely as 
the wavelet method does. For the same reason, wavelet approach is more accurate in detecting the 
initial oscillation frequency than FFT. Moreover, there is a distinction in the third superharmonic of 
the fundamental, which disappears after about 7 s in the left analysis and 5 s in the right one. That is 
because FFT is only able to catch the mean values of the oscillation frequencies in a Tw of 2 s 
therefore phenomena last more than the wavelet approach. Furthermore, for the same reason, the 
frequencies detected by FFT are always lower. At the end, it is logic stating that the wavelet 
approach is more appropriate to catch located-in-time phenomena. 
 
The softening system is excited with x0 = 3 mm and ẋ0 = 0 m/s due to instability reason. The time-
history is reported in Figure 2.4.5 and in Figure 2.4.6 are reported the results of the frequency 
analysis. 

 
 

Figure 2.4.5 – Time-history for the softening system. 
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Figure 2.4.6 – Softening nonlinear system: comparison between time-frequency content 
FFT (up-left) and wavelet (up-right) with ACc settings (low). 

 
Here it is clear a light softening behaviour in both the cases as well as the third superharmonic of 
the fundamental. Moreover, the frequency values in the wavelet method are higher than the ones of 
the spectrogram. 
 
In the last configuration, i.e. a nonlinear quadratic system with k2 = -105N/m2 and k3 = 108N/m3 
excited with x0 = 10 mm and ẋ0 = 0 m/s, time-history and the time-frequency contents are shown 
respectively in Figures 2.4.7-8. 
 



 71 / 116 

 
 

Figure 2.4.7 – Time-history for the quadratic system. 
 

 
 

Figure 2.4.8 – Quadratic nonlinear system with positive cubic springs: 
comparison between time-frequency content  

FFT (up-left) and wavelet (up-right) with ACc settings (low). 
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The fact that there is a strong nonlinear contribution coming from positive Duffing spring makes the 
system behave in a hardening way. This fact is confirmed by the fact that the third superharmonic is 
much more evident than the second one. Even here can be done the same observations of 
Figure 2.4.2. 
 
 
2.5 Conclusions 
 
This chapter has the aim to introduce the theme of nonlinear properties of mechanical structures in 
the thesis. They are initially synthetically exposed in Table 2.1.1 and then are deepened with the 
help of books. Afterwards, a simple SDOF system is created in MATLAB and many simulations 
are performed in Simulink specifically to recreate and analyse the features debated in the previous 
pages. 
This is preparatory for the final chapter of the work, where are carried out experimental tests on a 
beam system and several proofs of nonlinearities are present and examined. 
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3. Nonlinear beam dynamics 
 
An example of nonlinear system is experimentally analysed in § 3. It is a cantilever Euler-Bernoulli 
beam with a lumped mass at one end. It has four configurations: 

1. two pairs of two permanent magnets acting in repulsion. This introduces a nonlinearity owed 
to the unsymmetric characteristic of the force carried out by these elements; 

2. two pairs of two permanent magnets acting in attraction. This introduces a nonlinearity 
owed to the unsymmetric characteristic of the force carried out by these elements; 

3. a non-holonomic constraint that acts like a pin located at a certain distance from the clamp. 
This introduces a nonlinearity owed to the contact of the beam with the introduced new 
constraint; 

4. the simple and typical clamped-free beam. Even here a nonlinearity can be present due to a 
big initial condition displacement which does not allow the small-oscillation simplification. 

 
Therefore, the experimental activity on this component aims to characterise its vibrational 
properties in the all the configurations and duplicate what had been discovered in [9]. 
 
The experimental test was performed at Torino and post-processed until 2022-09-21 on which the 
main activity was concluded. Moreover, the experimental tests are divided into 2 campaigns on the 
base of the used lasers: 

1. performed in 2022-06-27 with the use of two point-lasers of the type LK-H082 and LK-
H152, and a laser profiler LJ-X8900 that has the possibility to monitor the displacement of 
more than ten points of the beam; 

2. performed in 2022-07-05 with the use of three point-lasers of the type LK-H082 and LK-
H152. 

 
This report is mainly devoted to the 2nd campaign apart from section § 3.3, where are analysed 3 
tests executed in 2022-06-27. 
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3.1 Experimental setup 
 
The nonlinear analysis is performed adopting three conditions: 

1. two pairs of two permanent magnets acting in attraction; 
2. two pairs of two permanent magnets acting in repulsion; 
3. a non-holonomic constraint that acts like a pin located at a certain distance from the clamp; 
4. the simple and typical clamped-free beam. 

 
In Figure 3.1.1 shows the setups of the system in the 2nd campaign because it is the most complex. 
The 1st and 2nd configurations are equal apart from the way the magnets are acting. 
 

 
 

Figure 3.1.1 – Overview of the experimental setups of 2nd campaign. 
 
The 1st set of tests differs from the 2nd for the absence of L3 and the position of the magnets with 
respect to the reference system. 
In Figure 3.1.2 and Figure 3.1.3 are highlighted the most important dimensions of the test rig in 
conditions 1 (in configuration 2 the 30.5 mm dimension changes accordingly to Table 3.1.2.2) and 3 
as well as the used reference system. 
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Figure 3.1.2 – Sketch of the nonlinear system in configurations 1 and 2 of 1st campaign, 
relevant dimensions are in millimeters. 

 

 
 

Figure 3.1.3 – Sketch of the nonlinear system in configuration 3 of 1st campaign, 
relevant dimensions are in millimeters. 

 
As regards configuration 4, the system is the same with only the presence of the cantilever beam 
and the lumped mass at the right end. In Figure 3.1.4 there is a detail of the method used to fix the 
magnets to the support and a view from the top. Later these three magnets will be called as 
“Constraint magnets”. 
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Figure 3.1.4 – Detailed views of the magnets used in configurations 1 and 2. 
 
The excitation of the structure is performed with a wire that can be in two different positions: 

• the hole near the lumped mass located at 493 mm from the clamp; 
• the hole located at 295 mm from the clamp. 

 
The reason of that is two excite separately the first two typical bending vibration modes of Euler 
beams: in particular the former introduces the system in a static deformation equivalent to the 1st 
mode shape and the latter to the one of the 2nd bending mode shape. 
In order to excite the structure with only a non-null initial displacement the wire is tensed with one 
hand until the desired initial condition (IC) is reached with the help of the displacement of the laser 
L1 displayed in Test.Lab. Then the wire is locked and finally cut by a pair of scissors that permits to 
have null initial velocity thanks to the instantaneity of the action. Moreover, this choice has the 
advantage of being easily repeatable. 
In addition to that it is important the tense the wire along the middle transversal plane of the beam, 
because in this way the torsional modes of the structure are not excited. 
In Figure 3.1.5 is shown how the initial conditions are set. 
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Figure 3.1.5 – View of the method to excite the system with the desired initial condition. 
 
It is crucial to examine some aspects of the two used constraints. 
As regards the clamp, it is made up by two steel parts secured by two screws. A great torsional 
stiffness is given by the four threaded rods that properly lock the system. Furthermore, the fact that 
the fastenings of the beam are located outside the area of the contact between the block and the 
extrusion bar makes the clamp more ideal and because the contact does not give more stiffness to 
the constraint. 
While the non-symmetric constraint has the attention that the contact with the beam includes all the 
length of the rounded edge as shown in Figure 3.1.6. 
 

 
 
Figure 3.1.6 – Clamp (left), non-holonomic constraint non in contact (centre) and in contact (right). 
 
The lasers measure the displacement of three points, that are, according to the reference system 
shown in Figure 3.1.3: 

1. a point between the two constraints (x = 210 mm); 
2. a point right before the non-holonomic constraint or the permanent magnets (x = 390 mm); 
3. a point at the end of the beam on the lumped mass (x = 545 mm). 
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As said before, also a laser profilometer LX-J8900 is utilised in the 1st campaign. It is positioned at 
distance of 980 mm and fastened with a specific support to a table near the TestRig. It monitors the 
displacement of 12 fixed points, like displayed in Figure 3.1.7. 
When the profilimeter was used, the TestRig only contained L1 and L2, because L3 had been added 
in the 2nd campaign. 
 

 
 

Figure 3.1.7 – Measured points of the blade laser highlighted with a yellow mark. 
 
The 2nd node is 65 mm far from the 1st one, that represent the clamp. Point 1 was not set at the end 
of the steel block of the clamp because the constraint is not ideal and maybe during the beam 
oscillation a little variation of the z-displacement at x = 0 mm position could happen. 
Point 2 to 11 are progressively separated by a 40 mm distance, while the last point measures the 
displacement of the same point were the laser LK-H152 is pointed and so has a distance from the 
11th node of 65 mm. 
These points will have a proper name with a progressive number in paragraph § 3.3.3. 
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3.1.1 Experimental test definition and hardware 
 
The 1D laser used are called L1, L2 and L3 according to Figure 3.1. 
They are of the type LK-H082 and LK-H152 and shown in Figure 1.1.1, in which the clamp is on 
the left side. 
 

 
 

Figure 3.1.1.1 – Details of the lasers in configuration 3. 
 
One crucial feature of these devices is that the range of motion of the measured points must stay 
within a certain range d indicated in the data sheet. Indeed their position has been decided on the 
base of the fact that the displacement of the point of the beam grows as the distance from the clamp 
increases. 
The range of the measured motion of the lasers is described in Table 3.1.1.1. 
 

Table 3.1.1.1 – Laser characteristics. 
 

Label Product name Distance D [mm] Range d [mm] Sensitivity S 
[mV/mm] 

L1 LK-H152 150 ±40 250 
L2 LK-H082 80 ±18 555.56 
L3 LK-H082 80 ±18 555.56 

 
The lasers are connected to a Siemens SCADAS and their sensitivity S must be set in the software 
Test.Lab in compliance to the margin of error V = 20 V of the output voltage, corresponding to 
±10 V. Therefore the sensitivity is computed as: 
 

 
2

S
d
V

=  (3.1.1) 

 
 

L1 

L2 L3 
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3.1.2 Geometry and weight of the used tools 
 
When one has to deal with this experimental test should always remember to check the weights of 
the used objects. 
In this case, they were measured with KERN ALJ 220-4NM and METTLER PM34-K DeltaRange 
and the results are shown in Table 3.1.2.1. 
 

Table 3.1.2.1 – Weight and property of used object. 
 

Item Volume 
[mm3] 

Weight 
[g] Material Density 

[kg/m3] 

Young 
modulus 

[GPa] 

Poisson 
ratio 
[-] 

Constraint base 38.147·104 2990.5 Steel 7800 200 0.3 
Constraint plate 2.4756·104 193.1 Steel 7800 200 0.3 

Screws & washers 0.2615·104 20.4 Steel 7800 200 0.3 
Total 

Constraint 40.884·104 3204.0 Steel 7800 200 0.3 

Beam (600×30×3) 5.3386·104 144.1 Aluminium 2699.2 69 0.33 
Big disks 2.4726·104 203.37 Steel 8225.0 200 0.3 
Fasteners 0.1219·104 9.51 Steel 7800 200 0.3 

Total 
Lumped mass 2.5945·104 212.88 Steel  200 0.3 

Beam magnets 
(#2 Ø12h4) 904.779 7.1 NdFeB 

magnet 7800 200 0.3 

Constraint magnets  
(#2 Ø12h4 

and #1 Ø8h8) 
1709.026 13.3 NdFeB 

magnet 7800 200 0.3 

 
Notes: 
 

• the volumes of “Constraint base”, “Constraint plate”, “Screws & washers”, “Fasteners” 
“Beam magnets” and “Constraint magnets” are computed indirectly from the weight and 
density; 

• the volume of “Beam” is computed directly thanks to the dimensions reported in 
Figure 3.1.3 and considering 2 holes Ø5.5 and 1 hole Ø10. 

• the volume of “Big disks” is computed directly thanks to the dimensions reported in 
Figure 3.1.2.1; 
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Figure 3.1.2.1 – Detail of one big disk making up the lumped mass. 
 

• the volumes of “Total Constraint” and “Total Lumped mass” are calculated with the sum of 
their elements. 

 
In Figures 3.1.2.2-4 are presented the photos of the weighings. 
 

 

https://context.reverso.net/traduzione/inglese-italiano/weighing
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Figure 3.1.2.2 – Weighings of the clamp. 
 

 
 

Figure 3.1.2.3 – Weighings of the beam. 
 

 
 

Figure 3.1.2.4 – Weighings of the lumped mass. 
 

https://context.reverso.net/traduzione/inglese-italiano/weighing
https://context.reverso.net/traduzione/inglese-italiano/weighing
https://context.reverso.net/traduzione/inglese-italiano/weighing
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The dimensions of the used magnets are Ø12 h4 and Ø8 h8, where Ø stands for diameter and h for 
height. 
Moreover, it can be useful to have a Table with every important point in terms of the Test Rig. 
 

Table 3.1.2.2 – Geometry of I/O points. 
 

Identifier Exp. 
point 

Model 
node x [mm] y [mm] z [mm] 

Lumped mass centre P1 156 529 0 0 
Non-holonomic constraint P2 142 399 0 -3.5 

Magnets centre in configuration 1 P3A - 420 0 -30.5 
Magnets centre in configuration 2 P3R - 420 0 -34.23 

Clamp P4 100 0 0 0 
Hole near lumped mass  

(1st mode excitation point) P5 near 152 493 0 0 

Middle hole 
(2nd mode excitation point) P6 131 295 0 0 

Laser L1 
(mass) L1 

between 
157 and 

158 
545 -2 -1.5 

Laser L2 
(contact, non-holonomic constraint, 

magnets) 
L2 141 390 2 -1.5 

Laser L3 
(internal point) L3 122 210 -7.5 -1.5 

 
Model nodes come from the numerical simulations made in § 3.4. 
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3.1.3 Acquisition parameter settings 
 
In LMS Test.Lab the parameters are displayed in Figure 3.1.3.1. The time acquisition changes at 
every experimental test and so it is not displayed. 
 

 
 

Figure 3.1.3.1 – Test.Lab parameters. 
 
Notes, according to the nomenclature used in [10]: 
 

• the sampling frequency is fs = 2* fb = 2*8192 = 16384 Hz; 
• the delta-time sample is Δt = 1/16384 = 6.1035·10-5 s; 
• setting fs/2 = 8192 Hz → direct relationship is Δt = 1/(2*8192) = 6.1035·10-5 s; 
• e.g. case 1, BD2 (Table 3.2.1.1): acquisition time is 80 s, but the acquisition history starts 

from t1 = 3.92179·10-5 s and ends at tN = 83.999972 s. This enlargement of the time history 
is due to the future windowing of the signals and comes from the parameter “frequency 
resolution” of Figure 1.3.1, that is 0.25 Hz and corresponds to 4 s. This time is equally 
splitted and added at the start and at the end of the acquisition resulting in -2 s and 82 s, that 
are then translated into the values t1 and tN of the previous lines. The samples (number of 
lines in Test.Lab) are N = 1376256; 

• relationship between 1st and last sample is tN = t1 + (N-1)·Δt. 
 
More details are shown in Figure 3.1.3.2. 
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Figure 3.1.3.2 – Example of a Test.Lab acquisition. 
 
It can be seen the values of t1, t2, tN, tN-1, that are consistent with the notes and the delta-time sample 
Δt. 
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3.2 Experimental data 
 
Various tests have been carried out with different configuration of the TestRig and IC. Moreover, 
also the static deformations of the beam are calculated with the use of the lasers. 
 
 
3.2.1 Experimental static and dynamic tests 
 
In Table 3.2.1.1 are displayed the important data of the experimental tests. In the column 
“Description” are also written the points used to excite the motion of the beam and the type of test. 
 

Table 3.2.1.1 – Experimental tests layout of 2nd campaign. 
 

#Test Label L1 [mm] L2 [mm] L3 [mm] Description Acquisition 
Time [s] 

1 BS1 +0.385 -1.72 -0.210 Static only beam - 
2 BS2 +0.385 -1.715 -0.21 Static only beam - 
3 BS3 +0.38 -1.715 -0.209 Static only beam - 

4 MaS1 +3.99 +0.57 +0.624 Static beam + attractive 
magnets - 

5 MaS2 +4.00 +0.57 +0.625 Static beam + attractive 
magnets - 

6 MaS3 +4.00 +0.57 +0.625 Static beam + attractive 
magnets - 

7 MaD1 -38.5 n/a ??? Dynamic beam + 
attractive magnets (P5) ~9 

8 MaD2 -29.53 n/a -6.598 (*) Dynamic beam + 
attractive magnets (P5) ~12 

9 MaD3 -29.5 n/a ??? Dynamic beam + 
attractive magnets (P5) ~11 

10 MaD4 -29.5 n/a ??? Dynamic beam + 
attractive magnets (P5) ~14 

11 MaD5 -20 ??? ??? Dynamic beam + 
attractive magnets (P5) ~10 

12 MaD6 -7.76 -6.583 (*) -1.904 (*) Dynamic beam + 
attractive magnets (P5) ~34 

13 MaD7 -7.7 ??? ??? 
Dynamic beam + 
attractive magnets 
(quasi-linear) (P5) 

~211 

14 MaD8 -2.8 ??? ??? 

Dynamic beam + 
attractive magnets 

(linearised behaviour) 
(P5) 

~244 

15 MrS1 -2.02 -3.17 -0.75 Static beam + repulsive 
magnets - 

16 MrS2 -1.99 -3.16 -0.755 Static beam + repulsive 
magnets - 

17 MrS3 -2.01 -3.155 -0.755 Static beam + repulsive 
magnets - 
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18 MrD1 -9 (*) ??? ??? 
Dynamic beam + 
repulsive magnets 

= MaD8 (P5) 
~105 

19 MrD2 -14 ??? ??? Dynamic beam + 
repulsive magnets (P5) ~206 

20 MrD3 -25.63 -17.54 (*) -5.802 (*) Dynamic beam + 
repulsive magnets (P5) ~125 

21 MrD4 -36 n/a ??? Dynamic beam + 
repulsive magnets (P5) ~167 

22 BD1 -35 n/a ??? Dynamic only beam 
(P5) ~80 

23 BD2 -25.3 -17.4 (*) -5.7 (*) Dynamic only beam 
(P5) ~84 

24 BD3 -10 ??? ??? Dynamic only beam 
(P5) ~84 

25 BD4 ??? ??? ??? Dynamic only beam 
1st(P5)-2nd modes (P6) ~77 

26 BD5 -6.54 (*) -2.26 (*) 1.93 (*) Dynamic only beam 
1st(P5)-2nd modes (P6) ~41 

27 CD1 -35 n/a ??? Dynamic beam + 
contact (P5) ~39 

28 CD2 -25 ??? ??? Dynamic beam + 
contact (P5) ~39 

29 CD3 -10 ??? ??? Dynamic beam + 
contact (P5) ~33 

30 CD4 -25.8 -17.7 (*) -5.8 (*) Dynamic beam + 
contact (P5) ~48 

31 CD5 ??? ??? ??? Dynamic beam + 
contact 2nd mode (P6) ~33 

32 CD6 -25 ??? ??? 
Dynamic beam + 
contact 1st(P5)-2nd 

modes (P6) 
~35 

 
Notes: 
 

• (*) means “data calculated thanks to the output of the time-histories”; 
• in BD5 the supposed L1 IC was -12 mm, but the real acquired measure is -6.54 mm; 
• tests that have “Static beam” in “Description” were performed to calculate the static 

deformation of the beam in the acquired point, so they have not a “Acquisition time”. 
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3.3 Post-processing results 
 
The data coming from Test.Lab are organised in a MATLAB struct which contains information 
about time sampling and the actual measurements of the lasers. Time is partitioned with a constant 
delta-time sample. With the use of the acquired data, it is also possible to fill the missing cells of 
Table 3.2.1.1 because in the making of the most of experimental tests, only the IC of the Laser L1 
has been controlled. In the post-process of the tests are analysed the time histories and the time-
frequency contents obtained with both FFT and wavelet method. 
Unfortunately, during the postprocessing of the 2nd campaign, it has been discovered that the data 
acquired by the point lasers are filtered with a low-pass filter that deletes all the information related 
to frequencies higher than 40÷45 Hz. This happened because of some settings of the devices that 
were not changed before the preparing of the test setup. Despite this certainly unwanted alteration 
of the measurements, the tests were analysed. 
Luckily, this filter did not happen for the profilometer acquisition, that will be deepened in § 3.3.3. 
 
 
3.3.1 Analysis of BD2, BD5 and CD4 
 
The first test regards configuration four and an excitation that strongly reproduces the classic 1st 
mode shape of a cantilever beam. Even if the IC of L1 is about -25.3 mm, it is not enough to cause a 
visible softening phenomenon that occurs when it is not possible to ensure the small-oscillation 
simplification. Indeed the time-frequency analysis of the measured signals show a continue line at 
about 3 Hz, which is the first natural frequency of the system, like can be seen in Figure 3.3.1.1. 
 

 
 

Figure 3.3.1.1 – Time-frequency contents of BD2. 
From left to right L1, L2 and L3 are displayed. 

 
To be more precise, with higher frequency resolution the 1st natural frequency is 2.97 Hz, as 
displayed in Figure 3.3.1.2. 
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Figure 3.3.1.2 – Zoom of time-frequency content of L1 of BD2. 
 
As can be seen there are two unexpected non-linearity symptoms: 

1. superharmonics in L1 multiples of 2.97 Hz, that disappear after about 50 s. This happens 
because from that instant on, the small-oscillation simplification can be done as a 
consequence of the decreased amplitude of the oscillations, as shown in Figure 3.3.1.3. This 
kind of phenomenon will be also visible in BD5 and another explanation will be written 
using Figure 3.3.1.11; 
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Figure 3.3.1.3 – Time-history of BD2 acquired displacements 
0-5 s (left) and 40-50 s (right). 

 
2. in the first 3 superharmonics of L2 and L3 it is clearly visible that the frequency 

contributions are alternated between the two lasers. But this is not imputable to the mode-
shape of 1st natural frequency since the hole beam moves in phase. Indeed it can be 
interpreted as the so-called “energy path”, which is a typical phenomenon of nonlinear 
structures that shows internal resonances. A detail of this can be found in Figure 3.3.1.4 
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Figure 3.3.1.4 – BD2 Time-frequency contents between 5 and 13 Hz 
of L2 (left) and L3 (right). 

 
In Figure 3.3.1.5 are shown the time-frequency analysis with the wavelet. 
 

 
 

Figure 3.33.1.5 – Time-frequency contents with wavelet of BD2. 
From left to right L1, L2 and L3 are displayed. 

 
The 3 acquisitions do not highlight any significant distinction but share a good vision of the 
softening effect owed to the big oscillations, that it presented in Figure 3.3.1.6. 
 



 91 / 116 

 
 

Figure 3.3.1.7 – Detail of the softening effect of BD2 L1. 
 
It is impressive to see how the wavelet analysis is more able to catch this effect than the FFT 
approach. 
 
Concerning BD5, the excitation is provided through the tension of two wires coming from points P5 
and P6, in order to excite both the 1st and the 2nd natural frequencies of the system. 
Actually, this excitation results effective as can be seen the first seconds of acquisition and in 
Figure 3.3.1.8. 
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Figure 3.3.1.8 – Time-history of BD5 acquired displacements 
0-2 s (left) and 0.2-0.8 s (right). 
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It is clear how in the starting instants of motion, L3 moves in opposition of phase with respect to the 
other lasers. Moreover L3, has two high harmonic contributions: the one of the first mode like the 
rest of the beam and the one of the 2nd mode, because this mode shape particularly shows 
remarkable displacements of this point. 
As regards time-frequency contents, they confirm this interpretation. The results are shown in 
Figure 3.3.1.9. 
 

 
 

Figure 3.3.1.9 – Time-frequency contents of BD5. 
From left to right L1, L2 and L3 are displayed. 

 
It is possible to recognise the 2nd resonance frequency, appearing at 37.25 Hz, that is in agreement 
with Table 3.4.3. The value depends on the added lumped mass at the end of the beam. If no added 
mass is considered, from theory the 2nd resonance frequency should be 6.276 times the 1st one at 
2.97 Hz, hence at 18.64 Hz. 
This 2nd frequency is noticeable with the wavelet as well but with a minor precision, like can be 
seen in Figure 3.3.1.10. 
 

 
 

Figure 3.3.1.10 – Time-frequency contents with wavelet of BD5. 
From left to right L1, L2 and L3 are displayed. 

 
As regards the superharmonics, it is worth to analyse Figure 3.3.1.11, containing a zoom of the 
wavelet analysis and time history in a short time range. 
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Figure 3.3.1.11 – Detail of time-history and wavelet analysis for BD5 L3. 
 
It is clear that the instants when the presence of the superharmonics is more pronounced is when the 
beam has the maximum displacements, and it is near to the lasers. This could be a hint of the fact 
that the superharmonics are caused by the measurements themselves because the lasers acquire 
points that are on the surface of the beam, but these acquisitions are attributed to the point of the 
neutral plane. With a great probability, the questioned event would not have happened, if six lasers 
had been used, with three devices facing the other ones. In this way, the average on the acquisition 
could have been more exact and representative of the behaviour of the longitudinal axis of the 
beam. 
 
With the FFT approach, it can be spotted a typical nonlinear phenomenon: the linear combination of 
the resonances. To be more specific, there are two symmetric contributions (called “sidebands”) at 
±3 Hz (basically the value of the fundamental) distance from the 2nd natural frequency in L2 and 
L3, as can be seen in Figure 3.3.1.12. 
 

 
 

Figure 3.3.1.12 – Detail of BD5 L3 and combination of resonances. 
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The next experimental test to be analysed is CD4, which matters the 3rd configuration with an initial 
deformed shape that is related to the 1st cantilever beam mode shape. 
In Figure 3.3.1.13 is shown the time-history of the acquired displacements by the lasers in the first 
10 s of acquisitions and a detail of the initial instants. 
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Figure 3.3.1.13 – Time-history of CD4 acquired displacements 
0-10 s (left) and 0.3-1.3 s (right). 

 
It is evident that the initial parts of the signals have an oscillation frequency bigger than the 
remaining part. This happens because there is the contact with the non-holonomic constraint 
producing a mean major stiffness of the structure and therefore bigger mean resonance frequencies. 
For further details, the non-holonomic constraint produces an equivalent linearised system with 
higher resonance frequencies only for a part of the period where the additional contact acts, while in 
the other part the beam has no additional contact and its natural frequencies are lower. Due to the 
spectrogram approach a mean value of its natural frequencies can be captured. 
In addition to that, L3 appears to have two main harmonic contributions. 
To better understand these graphs, in Figure 3.3.1.14 are presented the time-frequency contents of 
this experimental test. 
 

 
 

Figure 3.3.1.14 – Time-frequency contents of CD4. 
From left to right L1, L2 and L3 are displayed. 

 
The analysis of Figure 3.3.1.14 should be splitted into 2 parts: 

• the first 15 s of acquirement: this zone appears to be transition zone where the main 
frequency contribution slowly changes from 4.5 Hz to 2.97 Hz. Moreover, a typical 
superharmonic that doubles the value of this main frequency is present. The contribution at 
14 Hz is not a superharmonics but it is the 1st natural frequency of configuration 3 (clamped-
pinned beam) and it is noticeable only in L1 and L3, since L2 is literally next to P2. 
Probably a lot of superharmonics of L3 are detected owing to a strong interaction between 2 
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or 3 natural frequencies of the two linearised systems involved. Furthermore, there also 
contribution of frequency for L3 that are bigger than 50 Hz, that are possibly related to the 
2nd mode of configuration 3, as can be seen in Figure 3.3.1.15. 
 

 
 

Figure 3.3.1.15 – Detail of CD4 L3. 
 

• the remaining part: the unique participating frequency is 2.97 Hz and its superharmonics are 
less significant. This event is increasingly remarkable as the measured point becomes nearer 
to the right end of the beam. That occurs because the values of the displacements 
progressively grow. 

 
The wavelet method is also utilised, and the results are shown in Figure 3.3.1.16. 
 

 
 

Figure 3.3.1.16 – Time-frequency contents wavelet method of CD4. 
From left to right L1, L2 and L3 are displayed. 

 
Here in L3 is visible the already discussed frequency at 14 Hz, the 2nd superharmonic of the 
fundamental where the contact is present and the evident decrease of the 1st natural frequency of the 
system. 
The frequency contents with this approach for L3 ends at about 40 Hz. 
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3.3.2 Analysis of MaD2, MaD5 and MrD3 
 
This part is dedicated to three experimental tests with the magnets. The first 2 are related to 
configuration 1 and the latter to configuration 2. 
 
Concerning MaD2, time-history is presented in Figure 3.2.1. 
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Figure 3.3.2.1 – Time-history of MaD2 acquired displacements. 
 
In this test, the three lasers highlight an in-phase deformed shape, that involves thinking that the 
beam moves according to its new 1st natural frequency, as supported by the fact that the excitation is 
only provided through point P5. 
The time-history is this short because after 1.2 s of oscillation the beam became stuck to the 
magnets. Moreover, in first seconds of acquisition L2 is in overload. 
Afterwards, time-frequency contents are exhibited in Figure 3.3.2.2. 
 

 
 

Figure 3.3.2.2 – Time-frequency contents of MaD2. 
From left to right L1, L2 and L3 are displayed. 

 
The marked frequencies are the natural frequencies in condition 1: as one would expect they appear 
to be slightly lower than the other cases because the attractive magnets make the period of 
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oscillation become higher and as a consequence a decrease of natural frequencies, resulting in a 
softening effect. 
 
The analysis with the wavelet method is displayed in Figure 3.3.2.3. 
 

 
 

Figure 3.3.2.3 – Time-frequency contents wavelet method of MaD2. 
From left to right L1, L2 and L3 are displayed. 

 
The decrease of the natural frequency is clearly noticeable here as well. Moreover, the wavelet 
analysis better highlights the superharmonics when the beam oscillates. 
As regards L3, it can be noticed something related to when the structure hits and leaves the 
magnets: in the instants of contact the beam can be assimilated to a clamped-pinned beam and so a 
frequency of 16.75 Hz, that incredibly resembles the first natural frequency of configuration 3 
(Table 3.4.3), is visible. This frequency content also continues when the magnets are attached. 
While, in the part of the oscillation when the beam is not attached to the magnets, a heavy line at 
about 36 Hz is present, constituting the 2nd resonance frequency of configuration 3. The values 
described are probably different from the ones of Table 3.4.3 because of the presence of the 
magnets. 
This kind of alternated frequency contents will be deepened in § 3.3, when the analysis of a 
configuration 3 test of the first campaign is analysed. 
The peak visible in L2 at about 0.4 s is related to the overload phenomenon, as the time-history of 
Figure 3.3.2.1 confirms. 
 
As regards test MaD6, the given IC was intended to do not make the beam attach to the magnets in 
order to observe the aspects of a long oscillation time. Some of these features are visible in the 
time-history of Figure 3.3.2.4 
 

 
 

Figure 3.3.2.4 – Time-history of MaD6 acquired displacements 
0-32 s (left) and 20-30 s (right). 



 98 / 116 

 
Here it is evident the phenomenon of the drift, that makes the points of the beam to oscillate around 
a value that is not 0 mm. This effect is clearer for L1, since the oscillations are bigger. 
Time-frequency contents are highlighted in Figure 3.3.2.5. 
 

 
 

Figure 3.3.2.5 – Time-frequency contents of MaD6. 
From left to right L1, L2 and L3 are displayed. 

 
Every laser shows a strong superharmonic of order 2 of 1st natural frequency, which can be spotted 
more precisely, and it is 2.3 Hz. The fact that only the superharmonics of pair order are present, was 
predictable due to the deep asymmetry of the system. Moreover, the “energy path” is visible but in 
minor way than BD2. 
 
Even the wavelet method catches the strong 2nd superharmonic in every laser, like shown in 
Figure 3.3.2.6. 
 

 
 

Figure 3.3.2.6 – Time-frequency contents wavelet method of MaD6. 
From left to right L1, L2 and L3 are displayed. 

 
The value of the natural frequency is 2.16 Hz in wavelet as can be seen in Figure 3.3.2.7. 
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Figure 3.3.2.7 – Zoom of wavelet analysis of MaD6 L1. 
 
The last test to deepened in this paragraph is MrD3, that involves repulsive magnets, i.e. 
configuration 2. 
What is expectable to notice in the time-histories is an opposite drift of the trajectory with respect to 
condition 1. 
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Figure 3.3.2.8 – Time-history of MrD4 acquired displacements 
0-10 s (left) and 80-90 s (right). 

 
While the time frequency analysis in Figure 3.3.2.9 shows a hardening phenomenon indeed the 1st 
natural frequency becomes 3.27 Hz while in configuration 4 is 2.97 Hz. Moreover a strong presence 
of the superharmonics, especially the 2nd order one, is remarkable. 
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Figure 3.3.2.9 – Time-frequency contents of MrD3. 
From left to right L1, L2 and L3 are displayed. 

 
As concerns the wavelet, the results are shown in Figure 3.3.2.10. 
 

 
 

Figure 3.3.2.10 – Time-frequency contents wavelet method of MrD3. 
From left to right L1, L2 and L3 are displayed. 

 
The 2nd harmonic is visible, as well as a natural frequency that is bigger than configuration 4, that is 
shown in Figure 3.3.2.11. 
 



 101 / 116 

 
 

Figure 3.3.2.11 – Zoom of wavelet analysis of MrD3 L1. 
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3.3.3 Analysis of 1st campaign 
 
It is useful to describe how the setups changes moving back to this configuration. 
L1 and L2 are the same of campaign 2. 
The important points are reported in Table 3.3.3.1. 
 

Table 3.3.3.1 – Geometry of I/O points of 1st campaign. 
 

Identifier Exp. 
point 

Model 
node x [mm] y [mm] z [mm] 

Lumped mass centre P1 156 529 0 0 
Non-holonomic constraint P2 142 399 0 -3.5 

Magnets centre in configuration 1 P3A - 420 0 -43.4 
Clamp P4 100 0 0 0 

Hole near lumped mass  
(1st mode excitation point) P5 near 152 493 0 0 

Middle hole 
(2nd mode excitation point) P6 131 295 0 0 

Laser L1 
(mass) L1 

between 
157 and 

158 
545 -2 -1.5 

Laser L2 
(contact, non-holonomic constraint, 

magnets) 
L2 141 390 2 -1.5 

LP1 LP1 201 -25 0 -1.5 
LP2 LP2 104 40 0 -1.5 
LP3 LP3 108 80 0 -1.5 
LP4 LP4 113 120 0 -1.5 
LP5 LP5 117 160 0 -1.5 
LP6 LP6 121 200 0 -1.5 
LP7 LP7 125 240 0 -1.5 
LP8 LP8 129 280 0 -1.5 
LP9 LP9 134 320 0 -1.5 
LP10 LP10 138 360 0 -1.5 
LP11 LP11 142 400 0 -1.5 
LP12 LP12 146 440 0 -1.5 
LP13 LP13 150 480 0 -1.5 

LP14 LP14 
between 
157 and 

158 
545 0 -1.5 

 
Note: 

• z coordinate of P3A has been calculated in the postprocessing since a measurement of the 
static deformation of the magnets had not been done. The calculus exploited the fact that the 
laser L2 kept on staying at a distance of 80 mm from the beam in the 2 configurations. 
Moreover, the static offset of the laser has been calculated using MATLAB function DigFilt 
and the vertical extrusion beam containing the constraint magnets moved towards the beam 
of 10 mm in the 2nd campaign. 
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• the acquisition of the profilometer last for 20 s. The desired IC is set with the use of the 
point laser, as described before. 

 
The analysed experimental tests are displayed in Table 3.3.3.2. 
 

Table 3.3.3.2 – Experimental tests layout of 1st campaign. 
 

#Test Label L1 [mm] L2 [mm] Description Acquisition 
Time [s] 

1 CD1 -18.53 -11.4 (*) Dynamic beam + 
contact (P5) 20 

2 MaD1 -19.68 -11.99 (*) Dynamic \beam + 
attractive magnets (P5) 20 

3 BD1 -15.8 -9.63 (*) Dynamic only beam 
(P5) 20 

 
The first test to be deepened is CD1. Just by taking a look at the time-histories acquired it is evident 
that the data coming from the point lasers are filtered, as can be seen in Figure 3.3.3.1. Only the 
profilometer acquisition will be deepened because of this. 
 

 
 

Figure 3.3.3.1 – Comparison of the time-histories of CD1. 
In a clockwise direction are respectively displayed profilometer and point laser acquisitions and a 

zoom of the starting instants of their measurements. 
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The fact that L1 has the first oscillation peak different from LP14 is owed to the imperfect 
contemporaneous beginning of the acquisition of the devices. 
The 2nd distinction between the 2 time-histories is the different envelop that goes through the 
maximums of the oscillations of  LP14 (left) and L1 (right). The reason of that is the unwanted 
filtering phenomenon that marked the point laser acquisitions. 
As regards the time-frequency contents, it is worth to remind that the points are called LP14 and 
LP11 and are not exactly coincident with L1 and L2. 
 
In Figure 3.3.3.2, that includes the time-frequency contents of CD1, which is equivalent to 
experimental test CD4 of 2nd campaign, it is more visible the 1st frequency transition that occurred 
in Figure 3.3.1.9. Also in Figure 3.3.3.2 the superharmonics of the fundamental are visible. 
 
 

 
 

Figure 3.3.3.2 – Time-frequency contents of CD1 with high frequency resolution (k = 13). 
From left to right LP14 and LP11 are displayed. 

 
Here happens something unexpected, that is the 1st natural frequency becomes 3.5 Hz when the 
contact is not more present. This value is also noticeable in all the acquisitions with this laser and is 
in high contrast to 2.97 Hz that has been detected with the other 1D lasers. Also for the 1st 
campaign, the 1D lasers show a 1st natural frequency of 2.97 Hz and the time-frequency analysis are 
not reported for sake of brevity also. 
 
Moreover if the time-frequency transform is applied with lower frequency resolutions and therefore 
more probability to identify more instantaneous phenomena, it can be seen a strange increase of the 
natural frequency at about 7 s. 
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Figure 3.3.3.3 – Time-frequency contents of CD1 with low frequency resolution (k = 12). 
From left to right LP14 and LP11 are displayed. 

 
Instead, the wavelet analysis is reported in Figure 3.3.3.4. 
 

 
 

Figure 3.3.3.4 – Time-frequency contents of CD1 wavelet method (k = 12). 
LP14 (up-left) and LP11 (up-right) with their ACc settings (low). 

 
Even here, the frequency contents are slightly higher than the ones of the LK lasers and the 
instantaneous peak at 7 s is present as well. In order to better understand this analysis, it is needed a 
zoom on the first 4 s of LP11, present in Figure 3.3.3.5. 
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Figure 3.3.3.5 – Zoom of wavelet analysis of CD1 LP11 and its settings in ACc. 
 
Here there are the evidence of the first 3 natural frequencies of the system in configuration 4, i.e. 
2.97, 38.75 and 117.9 Hz, as declared in Table 3.4.3. The value of 28.49 Hz is perhaps related to 
internal dynamic of the beam during the instants of the contact. The highlighted dot at 5.036  Hz is 
the representation of the first natural frequency of configuration 4 like what is written after 
Figure 3.3.3.6 could explain. 
 

 
 

Figure 3.3.3.6 – Instants of contact. 
 
In the picture it is visible that the contact of the beam with the non-holonomic constraint during the 
first fully acquired oscillation lasts from 0.153 s to 0.2 s while the swinging end at 0.368 s. 
Therefore the value of 5 Hz may derive from the Equations 3.3.3.1 and 3.3.3.2. 
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 ( )2.97 13.88 1 5.36x x+ − =  (3.3.3.1) 
 
Which is a weighted average of the values of the fundamental frequencies of the configurations 4 
and 3 respectively. x is computed with the instants marked in Figure 3.3.3.6 and is equal to: 
 

 0.368 0.2 78.1%
0.368 0.153

x −
= =

−
 (3.3.3.2) 

 
Concerning the 10.07 Hz frequency, it is surely the 2nd superharmonic of the fundamental since 
10.07 is basically the double of 5.36 Hz. It is normal to have superharmonic of pair order even if a 
magnet is not present, indeed this contribution comes the truncation of the displacement when there 
is the contact. 
 
Since the measured point is in correspondence to the non-holonomic constraint, it is not expected to 
see a frequency contents of 13.88 Hz, that is the 1st natural frequency of configuration 3, because 
LP11 does not move in this particular configuration. Different is the case for LP14, whose 
frequency contents is shown in Figure 3.3.3.7. 
 

 
 

Figure 3.3.3.7 – Zoom of wavelet analysis of CD1 LP14 and its settings in ACc. 
 
As one could predict, a strong black line around 14 Hz is present, but also a contribution deriving 
from the 3rd superharmonic can be imagined. Even here the 2nd superharmonic is visible. 
 
As regards MaD1, the time-histories are basically equal, as shown in Figure 3.3.3.8. That means 
that the frequency contents have relatively small values. 
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Figure 3.3.3.8 – Comparison of the time-histories of MaD1. 
From left to right profilometer and point laser acquisition are displayed. 

 
The spectrogram for this test is contained in Figure 3.3.3.9. 
 

 
 

Figure 3.3.3.9 – Time-frequency contents of MaD1. 
From left to right LP14 and LP11 are displayed. 

 
The only 2 visible nonlinear effects are the presence of the 2nd superharmonic of the fundamental 
and the softening effect that derives from the decreasing amplitudes of the oscillations and therefore 
the decreasing interactions of the magnets. 
 
The wavelet method is displayed in Figure 3.3.3.10. 
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Figure 3.3.3.10 – Time-frequency contents of MaD1 wavelet method 
LP14 (up-left) and LP11 (up-right) with their ACc settings (low). 

 
Just by looking at LP11, it can be noticed a superharmonic of the 3rd order in the first 4 seconds. 
This is the confirmation that a nonlinear magnetic force in the equation of motion, if developed up 
to the 3rd term, completely describes the action of the magnet. 
The 3rd harmonic can be seen more easily seen in Figure 3.3.11, where the wavelet method is 
applied to the derivative of the measured signal LP11. The motivation of that is the fact that the so-
called “Mobility FRF” (velocity/input) has a slope after its peaks of about 20 db/decade whereas the 
“Receptance FRF” (displacement/input) has a 40 db/decade inclination. Thus the frequency 
contents of the former have many more dark zones than the ones of the latter and the frequency 
between 10 Hz, i.e. of the third harmonic becomes more visible. 
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Figure 3.3.3.11 – Time-frequency contents of MaD1 wavelet method 
for the derivative of LP11 (left) with their ACc settings (right). 

 
For what BD1 concerns, the analysis of the 1st campaign highlights the same aspects already 
discussed after Figure 3.3.1.7 therefore is not reported for sake of brevity. 
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3.4 Experimental comparison 
 
Last step is to simulate the structure with Lupos in order to have a correspondence of the natural 
frequency in configurations 3 (clamped-pinned) and 4 (clamped-free), which are respectively the 
one with non-holonomic constraint and the one with the only cantilever beam. The representations 
of these setups are shown in Figure 3.4.1. 
 

 
 

Figure 3.4.1 – Representations of configurations 4 (left) and 3 (right). 
 
The material properties of the elements are chosen accordingly to Table 3.1.2.1 and shown in 
Table 3.4.1. 
 

Table 3.4.1 – Lupos material properties. 
 

Item Material Density 
[kg/m3] 

Young 
modulus 

[GPa] 

Poisson 
ratio 
[-] 

Constraint base Steel 7800 200 0.3 
Constraint plate Steel 7800 200 0.3 
Bosch profiled Steel 2700 69 0.33 
Non holonomic 

constraint Steel 2700 69 0.33 

Beam Aluminium 2699.2 69 0.33 
Lumped mass Steel 8300 200 0.3 

 
The density of the lumped mass is chosen to be 8300 kg/m3 instead of 8225 kg/m3 in order to take 
into account the weight of the fasteners. 
 
The lumped mass is chosen to be a rod element as the clamp is modelled with two Timoshenko 
beams. 
Also the Bosch profiled making up the non-symmetric constraint is a Timoshenko beam element, 
but it is modelled with a hollow section that has the same area, flexional and axial behaviours of the 
real profiled. The difference between the simulated and actual part is the fact that the section of the 
former is 34.17x34.17 mm instead of the 40x40 mm of the latter [11]. 
The triangle making up the non-holonomic constraint is built with two tria shells and three quad 
shells, and a total of six nodes. 
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As regards the beam, it is discretised with Timoshenko beams as well. In particular, the free part has 
an elements every 10 mm while the locked portion is constituted by two 25 mm long elements. 
 
Concerning the border conditions (BCs), they are reported in Table 3.4.2. 
 

Table 3.4.2 – Border condition for the configurations 
 

Configuration 4 Configuration 3 
Node DOFs locked Node DOFs locked 
100 All 100 All 
201 All 201 All 
202 All 202 All 
401 All 401 All 
402 All 402 All 

- - 501 All 
- - 142 z-displacement 

 
That, in the clamped-free configuration corresponds to lock the constrained portion of the beam and 
the clamp. In addition to that, in configuration 3, the new BCs are the one relative to the base of the 
Bosch profile and the pin that recreates the contact between the beam and the non-holonomic 
constraint. 
 
The results of the modal analysis for bending in xz plane are reported in Table 3.4.3. 
 

Table 3.4.3 – Results of modal analysis. 
 

Mode Clamped-free [Hz] Clamped-pinned [Hz] Description 
1 2.973 13.88 First bending xz 
2 38.75 85.18 Second bending xz 
3 117.9 224.6 Third bending xz 
4 224.9 280.1 Fourth bending xz 

 
Even if the position of Table 3.4.3 in the thesis is at the very end of the work, they were used to 
justify and proper interpret the graphs of the frequency contents of previous chapter, especially of 
experimental test CD1 of the 1st campaign. The natural frequency at 2.97÷3 Hz is visible in most of 
the Figures displayed in the document and it is a solid confirmation of the quality of all the 
understandings made. 
 
 
3.5 Conclusions 
 
In this chapter, finally a real nonlinear system is taken into account. The majority of the nonlinear 
properties highlighted are visible thanks to the frequency content analyses. In particular the wavelet 
method is much more precise and able to catch instantaneous phenomena at relatively high 
frequency than the spectrograms owing to the decreasing time windowing needed to have a proper 
resolution as the frequency grows. 
Also there is an exceptional correspondence of the experimental and numerical values of the 
frequencies, which lends the work a certain prestige. 
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Conclusions 
 
 
Chapter § 1 of the work is the perfect representation of how difficult can be to obtain a satisfying 
result when one has to deal with discretising complex tridimensional automotive structures. In this 
specific case, many routines affected the final results: 

• PrismaticDiscretisation.m, where the nodes of an equispaced grid with different 
distances in the three dimension was created. In particular, the new routine is faster than the 
previous one; 

• Fea_simpler_Prismatic.m, where many of the generated nodes were deleted and only the 
ones near to the initial SW mesh survive. Many attempts to choose properly the “correction 
factor” were carried out and the best results came with the value of 1; 

• Hex_Mat_assign.m, where the right material properties were assigned to the surviving Hexs 
on the base of the material of the nearer Tets. The best way to treat the uncoupled Hexs is to 
attribute them the most diffuse features of the surrounding cuboid that have the material 
correctly assigned. 

 
Afterwards, in § 2, an overview of the foremost aspects of nonlinear systems was presented. The 
presence of the superharmonics of the fundamental frequency in their frequency content is surely 
one of them. Another important nonlinear characteristic is the hardening/softening phenomenon, i.e. 
the increase/decrease of the values of the natural frequencies happens when the amplitude of the 
oscillations grows. 
In order to better understand these properties various SDOF damped and undamped system were 
simulated in Simulink. The most complete equation of motion for this system is: 
 
 2 3

1 2 3 0mx cx k x k x k x+ + + + =  (C) 
 
The effects of variating one parameter at time were analysed. Due to the fact that k2 is always 
negative, instability problems could occur if the system was excited with a too intense IC.  
Moreover, it resulted that high damping made more complicated to spot nonlinear symptoms for the 
used system. 
The most appropriate tools used to deepen nonlinear system are: 

• Spectrograms: that are based on the FFT, representing structures with summation of sines 
and cosines. Certainly, a crucial parameter to be set concerning this method is the frequency 
resolution: the higher it is, the more efficient one is concerning the individuation of the 
precise values of the frequency contents. Vice versa, the advantage of having a sufficient 
low resolution is the increasing probability to identify more instantaneous phenomena; 

• Wavelet, which employs waves of various shapes and now are widespread in the word of 
compressing sounds. Here the consequences of varying an input parameter in MATLAB is 
way minor with respect to the former. 

 
The difference between the two tools is that the spectrograms have a constant delta-time sample Δt 
and only captures a mean value of the instantaneous frequencies and therefore are less able to catch 
instantaneous phenomena than the wavelet method. Indeed, the fact that its resolution increases for 
higher frequencies, does make it more suitable for nonlinear systems. 
 
The theoretical concepts of § 2 were eventually observed in two real experiment campaigns in 
chapter § 3, where a vibrating beam with various sources of nonlinearity. Unfortunately, the 
acquirements of the 2nd campaign had been marked with an unwanted low-pass filter that cancelled 
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the frequency contents of the test over 40÷45 Hz. Nevertheless, many nonlinear symptoms could be 
highlighted. 
The first analysed one was the softening effect owed to the increase of the oscillation period when 
the hypothesis of little oscillations could not be done, that had been spotted in Figure 3.3.1.7. 
Afterwards, the softening and hardening effects noticeable respectively with magnets in attraction 
and repulsion. Using a test of the first campaign also a validation of what (2.2.2.6) states, i.e. the 
fact that linearising the expression of a magnet force up to the 3rd order is completely enough to 
fully reproduce its behaviour. In order to make this, Figures 3.3.3.10-11 were produced to 
demonstrate that the maximum number of visible superharmonics of the fundamental is 3. 
As regards the test involving the non-holonomic constraint, the wavelet method was able to 
precisely correlate the resonance frequencies calculated using the Lupos simulation tool to the ones 
visible in the frequency contents. In particular, the first 3 frequencies related to the xz bending 
modes of the free cantilever beam are clearly visible in Figure 3.3.3.5. The fundamental one was not 
visible with the value of 2.97 Hz (Table 3.4.3), but with a weighted mean with the 1st natural 
frequency of the configurations with a clamped-pinned beam (setup 3) that considered the time 
duration of a complete oscillation and the instants of contact during the oscillation itself. This had 
been documented with the help of Figure 3.3.3.6. 
At the very end of the thesis, the details of the simulation of the systems were reported. It can be 
said that the frequency contents of the tests were analysed with the use of the final Table of the 
work, i.e. Table 3.4.3, whose topic is the list of the first 4 natural frequencies of system in 
configurations 3 and 4 concerning the xz bending modes. 
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