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Abstract 

In recent years, laws and regulations on vehicle emissions have become increasingly stringent 

in various countries, leading to the gradual replacement of internal combustion engine 

vehicles by electric vehicles (EVs) and hybrid electric vehicles (HEVs) as the mainstream. 

To ensure optimal management and safe operation of the battery, a battery management 

system (BMS) is introduced to estimate the state of the battery through two basic parameters: 

State of Charge (SOC) and State of Health (SOH). Due to the complex chemical reaction 

inside the battery and the aging phenomenon caused by frequent use, it is difficult to clearly 

observe the status of the battery, so estimating SOC and SOH in real time becomes a 

challenge.  

This  thesis  presents a novel  methodology   based   on   Artificial  Intelligence. Feed forward 

neural network (FNN), Long short-term memory (LSTM) and Nonlinear autoregressive 

neural network with external input (NARX) are taken into SOC estimation performance 

comparison, then the best neural network is chosen and applied to a specific Li-ion battery 

module. Through the aging characteristics (specific SOH decreasing range) of this module, 

three different network classification options are constructed (1-Class,3-Class and 5-Class) 

and incorporated into SOC subsystems. These SOC subsystems are combined with SOH 

subsystem respectively, for estimating both SOC and SOH. Finally, comparison between 

these three combined options is implemented. 

The developed method is able to achieve on-board and real-time functionality. The results 

and experiments prove that this methodology is not only feasible, but also has excellent 

performance of fast and accurate estimation with compared to other state-of-the-art 

methodologies. 
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1 Introduction 

Recently, the automotive industry has been giving more and more attention to sustainability 

with the aim of mitigating the negative impact of vehicle mobility on the environment. 

OEMS have focused their efforts on developing advanced powertrain architectures in 

response to ever more stringent CO2 emissions regulations. Based on solutions using an 

battery electric vehicle(BEV) or an internal combustion engine (ICE) combined with electric 

motor. It is now established as a reliable alternative to conventional powertrains.  

A large number of BEV drivers commonly suffer from range anxiety. The main parameters to 

be evaluated for proper battery monitoring are the available energy remaining in the battery 

pack, known as the state of charge (SOC), and the degradation of the battery (SOH). These 

two states cannot be measured directly because the technology to create a sensor that acts as a 

fuel gauge does not exist. Therefore, we need to employ some corresponding estimation 

techniques. 

SOC: State of charge (SOC) is an important indicator for assessing the remaining capacity of 

the battery. An accurate SOC estimation is crucial for ensuring the safe operation of lithium 

batteries and preventing from over-charging or over-discharging in battery pack of EV. As 

well as implement corresponding control strategy, in order to obtain lower energy 

consumption and better performance of the vehicle. 

 
Fig.1.1 Dynamic SOC display  

𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶𝑡−1 ± ∫
𝐼𝑏𝑎𝑡𝑡

𝐶𝑏𝑎𝑡𝑡
𝑑𝑡 



SOH: While State of health (SOH) is another important indicator that characterizes the actual 

available capacity of the battery and its degradation state, which also has an important 

reference value in evaluating the health level of the retired battery and the estimation of the 

driving range. With the aging phenomenon of the battery caused by the daily use of the 

battery, the nonlinear characteristic of the battery is also significantly affected. Each small 

segment of SOH corresponds to different characteristics and will affect the estimation of 

SOC(shown in fig.3). If the estimates of these two parameters are not combined, each of them 

will cause a particularly large deviation. 

 
Fig.1.2 Dynamic SOH display  

𝑆𝑂𝐻 =
𝑄𝑚𝑎𝑥

𝑄𝑛𝑜𝑚𝑖𝑛𝑎𝑙
 

 
Fig.1.3 Non-linear relationship between the battery parameters and SOC/SOH [1] 

 

 

 



The content is divided into 3 steps: 

1. SOC estimation Networks comparison, which includes Feed forward neural network 

(FNN), Long short term memory (LSTM) and Nonlinear autoregressive neural network 

with external input (NARX). In this step, each networks’ RMSE error, ground truth error, 

and single cycle training time are taken into account. Some additional robustness analysis 

are applied such as addition noise, and wrong start ground truth value. 

2. The best performance network is taken from the previous step and then training with 

another specific battery module(LIM battery test plan dataset). This dataset considered 

battery SOH variation, and it can be used for training both SOC network and SOH 

network. Due to high non-linear behavior and aging phenomenon of Lithium battery 

module, simultaneous estimation of two parameters becomes challenging. In order to get 

lower error due to the internal chemical changes caused by aging. Different SOC 

estimation classes dedicated to corresponding SOH are introduced:1-class SOC network 

with additional SOH input, 3-classes SOC networks triggered by corresponding SOH 

value, 5-classes SOC networks triggered by corresponding SOH value. SOH value goes 

from 100% (new battery) to 80% (scrap and recycling thresholds). In the end, high 

performance SOC networks for different classes are taken to the next combination step. 

3. In the process of combination estimation, the system is separated into two parts: The 

SOC part received inputs (current, voltage and temperature) measured from sensors and 

output the SOC value precisely. The SOH part received the estimated SOC and current, 

voltage as inputs, then output the SOH value. This SOH will be fed back to SOC part , in 

order to get a real-time loop system that continuously output these two values. 

Through continuous practice and with compared to other state-of-the-art methods, The result 

shows that we have achieved relatively low error(SOC estimating overall RMSE error~1%-

3%, SOH estimating RMSE error~1%-2%), both of these errors are lower than results of 

other studies.  

 
  



2 SOC estimation State-of-the-art analysis 

Although electric vehicles have been in mass production for many years, the technology for 

battery SOC estimation is actually still far from mature. 

Although there are many estimation methods, all of them have certain shortcomings. Kalman 

filter or neural network are mostly in the paperwork stage. In practical applications, the 

correction is usually done by adding some influence factors to Ampere-hour method. The 

battery SOC estimation methods are introduced in the following sections. 

2.1  Ampere-Hour Integration 

The Ampere-Hour Integration (AHI) method is the simplest SOC estimation method. 

According to the definition of quantity of electricity , the electricity consumed by the battery 

in a period of time can be obtained by directly integrating the current, as shown in equation 

below: 

𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶𝑡−1 ± ∫
𝐼𝑏𝑎𝑡𝑡

𝐶𝑏𝑎𝑡𝑡
𝑑𝑡 

𝑆𝑂𝐶𝑡 is the value of state of charge at time t, 𝐼𝑏𝑎𝑡𝑡 is the current flows in the circuit during 

charging/discharging phase. 𝐶𝑏𝑎𝑡𝑡  is the nominal capacity of the lithium battery, or the so 

called the maximum capacity of the battery we use. 𝑡 is the current time discrete, while 𝑡 − 1 

is the previous time discrete. 

The disadvantage of the AHI method is that it is an open-loop estimation system, and this 

type of system often does not have the ability to correct the error of the initial value and the 

ability to adjust the error caused by noise and measurement deviation. Since the measurement 

devices and sensors have small measurement errors (tenths of a percent), however, these 

errors accumulate over time (integration process), and will eventually cause a relatively large 

error. An improved method is to use the adaptive Kalman filtering method for initial value 

calibration [2], and use the set threshold value to switch the estimation between the AHI 

method and the filtering method [3]. This method can overcome the estimation error caused 

by the initial value and speed up the calculation, but due to the long-term calculation of the 



AHI method, it is still difficult to overcome errors caused by noise and measurement bias. 

2.2  Open circuit voltage 

Open-circuit voltage (abbreviated as OCV or VOC ) is the difference of electrical potential 

between two terminals of a device when disconnected from any circuit. There is no external 

load connected. No external electric current flows between the terminals [4]. 

At a certain temperature, there is a one-to-one numerical relationship between the SOC and 

OCV of the battery, so the SOC can be estimated by obtaining the OCV-SOC curve (shown in 

Fig.2.2.1) 

 

Fig.2.2.1 OCV-SOC curve at room temperature [5] 

Since the acquisition of OCV data often requires a long period of rest, it is difficult to carry 

out the OCV method in real time estimation of SOC. The particularity of the OCV-SOC curve 

leads to the limitation of using OCV for SOC estimation. If the OCV-SOC curve of the 

battery has an obvious flat range (just take the example of Fig.2.2.1,and marked in Fig.2.2.2). 

In this range, even if the SOC changes in a large range, the numerical change reflected in the 

OCV is small, which leads to a large SOC estimation error even a small OCV error. 



 

Fig.2.2.2 Non-precise range in OCV-SOC diagram 

2.3  Equivalent circuit model 

Before applying some additional algorithms (except artificial intelligence), we first need to 

build up a model to describe the electrochemical reaction and its characteristics of the battery. 

The models of lithium-ion batteries can be divided into electrochemical models and 

equivalent circuit models. Here we mainly establish the equivalent circuit model and give an 

example. 

Battery modeling is extremely challenging due to the high level of non-linearity of 

electrochemical processes. Battery model depends on : SOC, Temperature, Ageing, Current 

direction, Charging/Discharging rate. 

There are four typical equivalent models for lithium batteries: Rint model, PNGV model, 

GNL model and Thevenin model [6]. Where the most employed models used for system-level 

simulations of HEVs/EVs are Thevenin-based circuital models. Since Thevenin model has 

the most convenient voltage calculation than the other three models and the error is lower.  

So, in this part of state-of-the-art analysis, Thevenin model is chosen as the equivalent circuit 

model for lithium batteries.  



 
Fig.2.3.1 Most detailed battery Thevenin circuital model [7] 

In this model, main parameters are: 

𝑉𝑜𝑐= 𝑂𝐶𝑉 = Open-Circuit Voltage = voltage source depending on the SOC and temperature 

𝑅0.𝑐ℎ/𝑅0.𝑑𝑖𝑠= total internal series resistance for charging/discharging that are dependent on 

the SOC and temperature 

𝑅𝑠𝑑=resistance that represents the battery self-discharging 

𝑅𝑘.𝑐ℎ/𝑅𝑘.𝑑𝑖𝑠, 𝐶𝑘.𝑐ℎ/𝐶𝑘.𝑑𝑖𝑠,(𝑘 = 1,…𝑛) = RC groups modeling the voltage transients due to 

the chemical reactions, all resistances are depending on the SOC and temperature 

𝐷𝑘.𝑐ℎ/𝐷𝑘.𝑑𝑖𝑠(𝑘 = 0,…𝑛) = ideal bidirectional switches (diodes) conducting the 

charging/discharging currents 

 

Fig.2.3.2 Battery voltage characteristics 

In Fig.5 we can see: Typical variations of the 𝑉𝑂𝐶(𝑆𝑂𝐶)|𝑇=𝐶𝑇 and battery output voltage 𝑉𝑏𝑎𝑡 

for a step variation of the battery current 𝐼𝑏𝑎𝑡 . The battery voltage variation for a step 

variation of battery current exhibits a waveform with two different time constants. In this way, 

we would get a simplified second-order model with two RC networks having two different 

time constants:  

𝜏1 = 𝑅1 ∙ 𝐶1            𝜏2 = 𝑅2 ∙ 𝐶2 



 

Fig.2.3.3 Simplified battery Thevenin circuital model 

 

Fig.2.3.4 SOC variation and self-discharge circuit 

𝐶𝑞(𝐹) = 3600 ∙ 𝑄𝑟𝑎𝑡𝑒𝑑 ∙ 𝐾𝑇𝑒𝑚𝑝 ∙ 𝐾𝐶𝑦𝑐𝑙𝑒 

Where: 

𝑅𝑠𝑑= self-discharging resistance (if unknown, set to tens of 𝑘𝛺 or eliminate) 

𝑄𝑟𝑎𝑡𝑒𝑑= rated capacitance  

𝐾𝑇𝑒𝑚𝑝= corrective gain depending on the temperature (1 if unknown)  

𝐾𝐶𝑦𝑐𝑙𝑒 = corrective gain depending on the number of battery cycles (1 if unknown) 

Then we can have the relationship between 𝐼𝑏𝑎𝑡 and 𝑉𝑠𝑜𝑐( In Simulink form): 

 

Fig.2.3.5 Simulink form of SOC variation and self-discharge circuit 



 

Fig.2.3.6 Second order Thevenin battery electrical model 

As Fig.8 shows above, Battery electrical model includes a voltage source, a resistance and 

two RC networks, Open circuit voltage 𝑉𝑜𝑐 depend on the SOC and on the temperature(𝑉𝑜𝑐 is 

a rated parameter of a battery pack and should be provided by the battery manufacturer), 

Typically, the 𝑉𝑜𝑐  is provided as Look-Up-Tables (LUTs) or as multiple curves 

(corresponding to different temperatures) using polynomial interpolation with respect to SOC. 

Then we can have the relationship between 𝑉𝑜𝑐 and 𝑉𝐵𝑎𝑡( In Simulink form): 

 

Fig.2.3.7 Simulink form of Battery electrical model 

𝑉𝑏𝑎𝑡  =  𝑉𝑜𝑐[𝑆𝑂𝐶(𝑡)] −  𝑉0 − 𝑉1 − 𝑉2 

𝜏1 = 𝑅1 ∙ 𝐶1    𝜏2 = 𝑅2 ∙ 𝐶2 

After combining Fig.7 and Fig.9, we can have a complete simplified Thevenin battery 

electrical model, where 𝐼𝑏𝑎𝑡 is the input, 𝑉𝑏𝑎𝑡 is the output, the complete block in the middle 

acts as a precise transfer function: 



 
Fig.2.3.8 Final simplified Thevenin battery electrical model 

The parameters of the cells/modules or battery packs can be identified with experimental 

procedures. The most employed one is the discharging with current pulses having known 

amplitudes 𝐼𝑃𝑙𝑢𝑠𝑒. 

The parameters are identified by measuring the battery voltage, the first step is due to the 

internal resistance 𝑅0. And The voltage after a sufficient relaxation time (>5 ⋅𝜏2) is the 𝑉𝑂𝐶. 

As the Fig.11 shows below: 

 

Fig.2.3.9 Battery voltage characteristics 

 



After knowing the equivalent circuit model, we could compute SOC based on the known 

current 𝐼𝑏𝑎𝑡: 

𝑆𝑂𝐶(𝑡)  =  𝑆𝑂𝐶(𝑡 − 1) − ∫
𝐼𝑏𝑎𝑡(𝑡)

𝐶𝑞
𝑑𝑡       (1) 

After knowing the value of SOC, from the equation in Fig.9, we could evaluate the output 

𝑉𝑏𝑎𝑡 at any given time: 

𝑉𝑏𝑎𝑡  =  𝑉𝑜𝑐[𝑆𝑂𝐶(𝑡)] −  𝑉1(𝑡) − 𝑉2(𝑡) − 𝐼𝑏𝑎𝑡(𝑡) · 𝑅0       (2) 

Discretizing Equations (1) and (2), the state-space equation of the second-order RC 

equivalent circuit model is as follows: 

𝑥(𝑘 +  1)  =  𝐴 ·  𝑥(𝑘)  +  𝐵 ·  𝑢(𝑘)  

𝑦(𝑘)  =  𝐶 ·  𝑥(𝑘)  +  𝐷 ·  𝑢(𝑘)           (3) 

Where from the equation (3):  

                        𝑥(𝑘)  =    [ 

𝑆𝑂𝐶(𝑘)
𝑉1(𝑘)
𝑉2(𝑘)

]                 𝑢(𝑘) =  𝐼𝑏𝑎𝑡(𝑘)          𝑦(𝑘)  =  𝑉𝑏𝑎𝑡(𝑘) 

𝐴 = [

1 0 0

0 e
−∆t

𝜏1(𝑘) 0

0 0 e
−∆t

𝜏2(𝑘)

]          B= 

[
 
 
 
 

−∆t

𝐶𝑞

𝑅1(𝑘) ∙ (1 − e
−∆t

𝜏1(𝑘))

𝑅2(𝑘) ∙ (1 − e
−∆t

𝜏2(𝑘))]
 
 
 
 

 

𝐶 =   [
𝜕𝑉𝑜𝑐𝑆𝑂𝐶(𝑘)

𝜕𝑆𝑂𝐶(𝑘)
−1 −1 ]                     𝐷 =  −𝑅0 

∆t is the interval of sampling time, 𝜏 represents the time constant, 𝜏1 = 𝑅1 ∙ 𝐶1    𝜏2 = 𝑅2 ∙ 𝐶2  

2.4 Kalman filter  

The Kalman filter is an efficient autoregressive filter, which can estimate the state of a 

dynamic system in the combined information of many uncertain situations. It is a powerful 

and versatile tool. Its author, Rudolf E. Kalman, during a visit to NASA's Ames Research 

Center, found that this method could help solve the Apollo program's orbit prediction 

problem, and later NASA did in the Apollo spacecraft's navigation system. This filter is also 



used. In the end, the spacecraft sailed to the moon correctly, completing the first moon 

landing in human history. 

|For this filter, we can almost conclude that Kalman filter can make well-founded  prediction 

about what the system is going to behave in the next step, as long as there are dynamic 

systems with uncertain information. Even in the presence of noisy disturbance, Kalman filter 

is usually very good at figuring out what is going on and finding imperceptible correlations 

between phenomena. 

This makes Kalman filter ideal for systems that are constantly changing. It also has the 

advantages of a small memory usage (only the previous state needs to be retained) and speed, 

making it ideal for real-time problems and embedded systems. 

 
Fig.2.4.1 Schematic of Kalman filter [8] 

Step-by-step guide 
Step1 Building the model: 
First, we should make sure that the Kalman filter conditions fit our problem. 

Let's remember the two typical equations of the Kalman filter: 

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝑊𝑘−1     (1) 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘                         (2) 

(1) implies that each 𝑥𝑘 can be represented by a linear stochastic equation. Any 𝑥𝑘 is a linear 

combination of the value of its previous state plus the control signal 𝑢𝑘 and the processing 

noise 𝑊𝑘−1. In most cases, it is not necessary to control the signal 𝑢𝑘 . 

(2) tells us that any measured value (here we are not sure if it is accurate) is a linear 



combination of the current state signal value and the measurement noise, which we default to 

a Gaussian distribution. The processing noise and measurement noise in these two formulas 

are considered to be statistically independent. 

The coefficients A, B and H in the equations are matrices of general form. But in most signal 

processing problems, we use models where these coefficients are just numerical values. And 

when these values change from state to state, most of the time we can assume they are 

constants. If we are sure that our system fits this model (as most systems do), then only the 

mean and standard deviation of the estimated noise function 𝑊𝑘−1 and 𝑣𝑘 are left. We know 

that in real life, no signal is purely Gaussian distribution, but we can make assumptions by 

approximating. 

Here we always have to keep in mind: “The more accurate the noise parameters, the better 

estimates we can get". 

Step2 Start processing: 

If we successfully fit our model to the Kalman filter, the next step is to determine the 

necessary parameters and initial values. 

We have two different sets of equations: time update (prediction) and measurement update 

(correction). Both sets of equations are applied to the 𝐾 state: 

 
Fig.2.4.2 Time update and measurement update [9] 

Step3 Iteration: 

After we have gathered all the information we need, we start the process and now we can 

iterate the estimation. We must keep in mind that the estimate of the previous state will be the 

input to the estimate of the current state. 



 
Fig.2.4.3 The Kalman Filter operates in a “predict – correct” loop [10] 

Here, a priori estimate refers to a rough estimate before measurement update correction. Here 

we use the prior in the measurement update formula. 

In the measurement update formula, we find an estimate of 𝑥 at state 𝑘, and found the value 

needed for state 𝑘 + 1 estimation. 

The Kalman gain 𝐾𝑘 we compute is not needed in the next iterative step. The 𝐾𝑘 value we 

evaluate during the measurement update phase is also called the posterior value. 

2.5  Artificial Intelligence (Artificial Neural Network (ANN)) 

Artificial Neural Network (ANN), abbreviated as Neural Network (NN), is a mathematical 

model based on the basic principles of neural networks in biology, and after understanding 

and abstracting the structure of human brain and the response mechanism of external stimuli, 

it simulates the processing mechanism of complex information by the nervous system of 

human brain based on theoretical knowledge of network topology. Characterized by parallel 

distributed processing capability, high fault tolerance, intelligence and self-learning, this 

model combines the processing and storage of information and has attracted attention in 

various disciplines with its unique knowledge representation and intelligent adaptive learning 

capability. It is actually a complex network with a large number of simple components 

interconnected, with a high degree of nonlinearity, capable of complex logical operations and 

systems realized by nonlinear relationships [11]. 

A neural network is an operational model that consists of a large number of nodes (or neurons) 

interconnected with each other. Each node represents a specific output function, called the 



activation function. Each connection between two nodes represents a weighted value for the 

signal passing through the connection, called weight, by which the neural network simulates 

human memory. The output of the network depends on the structure of the network, its 

connections, weights, and activation functions. The network itself is usually an 

approximation of some algorithm or function in nature, or it may be an expression of a 

logical strategy. The idea of constructing neural networks is inspired by the operation of 

biological neural networks (As Fig.2.2.4 shows below). Artificial neural networks, on the 

other hand, combine the understanding of biological neural networks with mathematical 

statistical models and are implemented with the help of mathematical statistical tools. On the 

other hand, in the field of artificial perception in artificial intelligence, we enable neural 

networks to have human-like decision making abilities and simple judgments by means of 

mathematical statistics, an approach that is a further extension of traditional logical 

algorithms. 

 
Fig.2.5.1 A biological neuron in comparison to an artificial neural network [12] 

The lithium-ion battery is a highly complex nonlinear time-varying electrochemical system, 

which makes it difficult to find a simple model to describe its behavior in all operating 

conditions. The artificial Neural Network (ANN) approach allows to find the networks that 

are not influenced by any physical or chemical principle by simply finding relationships that 

can relate a given input to a given output. In this way, it is possible to establish direct 

relationships that correlate input measurements (current, voltage and temperature) with the 

target signals of interest (SOC/SOH). 



 

Fig.2.5.2 schema of ANN SOC estimator [13] 

For the future, with the continuous accumulation of battery dataset, the further improvement 

of current and voltage measurement accuracy, Artificial intelligence-based estimation 

methods have very high potential for application, the algorithm of SOC will be further 

combined with the whole vehicle controller in the direction of simple, efficient, accurate and 

low cost. 

3 SOC estimation networks performance 

comparison 

3.1 Networks’ concept introduction 

In this chapter, three types of networks are chosen. Each concept and architecture are 

different from the others. First, each networks’ basic concept is introduced, and then training, 

testing and analysis procedures for each of the networks are done. 

3.1.1 FNN (Feed Forward Neuron Networks) 

FNN, also as known as multi-layer perceptron (MLP). MLPs are one of the artificial 

intelligence methods in the sub-class of machine learning used in different fields such as 

system modeling, anomaly detection, classification applications [14]. The MLP consists of a 

series of structures called neurons that mimic the information processing and information 

acquisition capabilities of the human brain. MLPs are frequently used especially in modeling 

processes of systems with complex mathematical models [15]. 



 
Fig.3.1.1.1 Schematic of FNN  

As figure 1 shows above, there are three basic elements of a neural network: weights, biases, 

and activation functions. 

Weight (𝜔𝑖𝑗): The strength of the connection between neurons is represented by the weight, 

and the size of the weight represents the size of the possibility. 

Bias(𝑏𝑗): Bias is set to correctly classify samples and is an important parameter in the model, 

that is, to ensure that the output value calculated from the input cannot be activated casually. 

Activation function: plays the role of nonlinear mapping, which can limit the output 

amplitude of neurons within a certain range, generally between (-1~1) or (0~1). The most 

commonly used activation function is the log sigmoid function which maps numbers from (-

∞, +∞) to the range (0~1). And tan sigmoid function, which maps numbers from (-∞, +∞) to 

the range (-1~1). The sigmoid functions are given in Eq. (1) and Eq. (2). The neuron outputs 

in the layers are mathematically given in Eq. (3). 



𝑙𝑜𝑔𝑠𝑖𝑔(𝑢) = 
1

1+𝑒−𝑢
                         (1) 

𝑡𝑎𝑛𝑠𝑖𝑔(𝑢) = 
2

1+𝑒−2𝑢
− 1                (2) 

𝑦𝑗 =  ℱ(𝑢𝑗)  =  ℱ (∑ 𝜔𝑖𝑗𝑥𝑖  +  𝑏𝑗)          (3) 

3.1.2 LSTM (Long Short-Term Memory) 

Fig.5 shows the typical scheme of recurrent neural network (RNN). For an input sample 𝑥 =

 [𝑥1;  𝑥2; . . . ;  𝑥𝑛] where 𝑛  denotes the sequence length, RNN calculates the hidden state 

vector sequence ℎ =  [ℎ1;  ℎ2; . . . ;  ℎ𝑛] and output the sequence 𝑦 = [𝑦1;  𝑦2; . . . ;  𝑦𝑛] 

through iteration of the following equations from 𝑡 = 1 to 𝑛.  

 
Fig. 3.1.2.1 Illustration of recurrent neural network structure. 

ℎ𝑡 = 𝐻(𝑊𝑥ℎ 𝑋𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ)    (1) 

𝑦𝑡= 𝑊𝑥ℎℎ𝑡 + 𝑏𝑦                                 (2) 

where 𝑊  is the weight matrices and b denote the bias term. 𝑊𝑥ℎ  represents the weight 

matrix between the input and the hidden states, 𝑏ℎ denotes the hidden bias vectors, and 𝐻 is 

the non-linear activation function in the hidden layer [16]. 

LSTM (Long short-term memory) can be considered as an upgrade of RNN, it solves the 

problems of gradient disappearance, gradient explosion, and long-term dependence of RNN. 

The traditional RNN node output is determined only by the weights, bias, and activation 

function (Fig.5). An RNN is a chain-structure where the same parameters are used for each 

time discrete. The reason why LSTM can solve the long-term dependency problem of RNN is 

that LSTM introduces the gate mechanism to control the flow and loss of features. 



 

Fig.3.1.2.2 Details of LSTM  

The core part of LSTM is the part similar to the conveyor belt at the top in Fig.6. This part is 

generally called the cell state and it exists in the entire chain system of LSTM from beginning 

to the end.  

Here are explanations of LSTM equations:  

 𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 𝐶𝑡̃ 

𝐶𝑡   represents long term memory . 𝑓𝑡  is called forget gate, it represents which features of 

𝐶𝑡−1 are used to compute 𝐶𝑡. It is a vector with each element in the range [0,1].Where: 

𝑓
𝑡
= 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

    𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) 

 𝑖𝑡 is called the input gate, it is also a vector whose elements are in the interval [0,1], and it is 

also calculated by 𝑥𝑡and ℎ𝑡−1through the activation function 𝜎.  𝑖𝑡 is used to control which 

features of 𝐶𝑡̃ is used to update  𝐶𝑡 , in the same way as for 𝑓
𝑡
. 

Finally, in order to calculate the predicted value 𝑦̂𝑡 and generate the complete input for the 

next time discrete, we need to calculate the output of the hidden node ℎ𝑡. 



 𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

 ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) 

ℎ𝑡 is obtained from the output gate 𝑜𝑡 and cell state 𝐶𝑡, where 𝑜𝑡 is calculated in the same 

way as 𝑓
𝑡
 and 𝑖𝑡. 

3.1.3 NARX (Nonlinear autoregressive network with exogenous 

inputs) 

The nonlinear autoregressive network with exogenous inputs (NARX) is a recurrent dynamic 

network, with feedback connections enclosing several layers of the network. The NARX 

model is based on the linear ARX model, which is commonly used in time-series modeling. 

The defining equation for the NARX model is: 

𝑦(𝑡) = 𝑓(𝑦(𝑡 − 1), 𝑦(𝑡 − 2),… , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2),… , 𝑢(𝑡 − 𝑛𝑢)) 

where the next value of the dependent output signal 𝑦(𝑡) is regressed on previous values of 

the output signal and previous values of an independent (exogenous) input signal. You can 

implement the NARX model by using a feedforward neural network to approximate the 

function 𝑓 .A diagram of the resulting network is shown below, where a two-layer 

feedforward network is used for the approximation. This implementation also allows for a 

vector ARX model, where the input and output can be multidimensional [18]. 



 

Fig. 3.1.3.1 (a) Series–parallel (SP) mode (open-loop configuration) adopted during the training. (b) 

Parallel (P) mode (closed-loop configuration) adopted for the estimation when the network is 

deployed. HAF: hidden activation function. OAF: output activation function. w: weight. b: bias. [1] 

In our case, from the a), b) and the equation showed above, our  𝑦(𝑡) ∈ 𝑅 and 𝑢(𝑡) ∈ 𝑅 

denote the output (state of charge) and inputs (current, voltage, and temperature) of the 

NARX model at the discrete timestep 𝑛, respectively, 𝑑𝑥 and 𝑑𝑦 are the input and output 

memory delays used in the model, respectively, and 𝑓 is the activation function, usually 𝑡𝑎𝑛ℎ 

or 𝑙𝑖𝑛𝑒𝑎𝑟. 

During the training phase, mode a) is adopted as supervised training, SOC computed by 

coulomb counting are used as ground truth, this approach allows for learning and correcting 

parameters inside the network (𝑤, 𝑏), since the correction method mainly adopts gradient 

descent and backpropagation similar to FNN, an additional Levenberg–Marquardt(LM) 

algorithm is applied for optimizing the computing process of gradient descent. (The LM 

algorithm is a nonlinear optimization method between the Newton method and the gradient 

descent method. It is not sensitive to the problem of over-parameterization, and can 

effectively deal with the problem of redundant parameters, so that the chance of the cost 

function falling into a local minimum is greatly reduced.) 



While during the testing phase, mode b) is adopted as “closed loop condition”. There will be 

no ground truth and the predicted SOC value is fed back to the input. Further investigation 

such as “network wrong initial value” and robustness analysis will be discussed in the next 

step. 

3.2 Dataset introduction and training, testing methodologies for 

three types of networks  

In this chapter it is mainly focusing on the performance (training speed, SOC prediction error 

and loss function error) of three different machine learning/deep learning neural networks, 

which are FNN, NARX, LSTM. And finally, the one which has the best performance and its 

corresponding configurations are chosen in order to get into further updates. 

3.2.1 Specific dataset introduction: 

This specific dataset is measured by Dr.Vidal et.al [19], thanks to their long exploration, we 

could use this specific dataset for networks’ performance comparison. 

The energy cell we used is a Panasonic NCA18650PF cylindrical battery(Fig.3.2.1.1). The 

datasets for each battery were acquired using the lab equipment listed in Table 1, including 

Digatron Power Electronics battery cyclers with +/- 0.1% of full-scale voltage and current 

accuracy and thermal chambers with +/- 0.5 ⁰C temperature regulation accuracy. A schematic 

of the test bench and data logging system is presented in Fig. 3.2.1.2. 

 
Fig.3.2.1.1 Panasonic NCA18650PF 



 
Table.1 

 
Fig.3.2.1.2 Schematic of the test bench and data logging system. 

The following list are main introductions of data characteristics: 

• A series of power profiles were calculated for an electric vehicle, including the 

standard UDDS, US06, LA92, and HWFET (or HW) drive cycles, as well as a series 

of “Mix” cycles consisting of randomized portions of the standard drive cycles. 

• The power profiles were scaled for a single cell in the pack. For the Panasonic cell, 

the drive cycles were modelled for a Ford F150 electric truck with a 35 kWh pack 

consisting of 3360 of the Panasonics cells. 

• The voltage, current, battery temperature, and ampere-hours were logged at 10 Hz, 

and the data were down sampled to 1 Hz.  



• At -10⁰C and -25 ⁰C, the voltage deviation under load for both cells is relatively high, 

making SOC estimation challenging. 

• for the Panasonic at -10⁰C and -25 ⁰C there is no charging current (positive current) 

during the drive cycles due to the manufacturer’s requirement that charging be 

performed only above 0⁰C.  

• About two-thirds of the data is used for training and one-third for testing 

  
Fig.3.2.2 Separated and combined dataset files  

Fig.3.2.2 shows how the datasets are separated, and the training datasets have following 
characteristics: 

• The dataset used was took from Vidal’s paper, the training data are 7X194280, and it 

is separated into 10 minibatches in order to train FNN  and LSTM. 

• For the NARX training phase, since the network does not accept minibatches data, so 

they are combined into one matrix: X10inone (7X194280) Y10inone(7X194280). 

The "X" data has 7 rows, where the data in each row is as follows: 

• { V, I, T, V_0.5mHz, I_0.5mHz, V_5mHz, I_5mHz}. 

• where V is voltage, I is current, T is temperature, and the _0.5mHz and _5mHz data is 

filtered with a 1st order low pass Butterworth filter. 

The "Y" data is state of charge calculated via coulomb counting. 

Figures below shows the whole training data, The type of each data is titled above it: 



 

 

 

 



 

 

 

 

 

 



From the original value and the two filtered values, for example: Voltage, V_0.5mHz filtered  

and V_5mHz filtered, we can see the higher the filtering frequency, the clearer the outline of 

data. If we input both of these data into the target network, this procedure may help the 

network remember more sturdy the overall trend of data. In the following step we will set { V, 

I, T} and {T, V_0.5mHz, I_0.5mHz, V_5mHz, I_5mHz} as two training options, in order to 

investigate the performance and characteristics of three types of networks. 

After introducing the training dataset, while the testing dataset has the following 

characteristics: 

• Testing data is separated into 15 batch of data with different temperature: 

   -20, -10, 0, 10, and 25degC. 

• For FNN and LSTM, we can select the number between 1 and 15 to choose the test 

data. 

• For NARX, the data is selected in the same way. 

• The testing data 3(25 degree) and 11(-10 degree) are chosen for testing performance 

display, in order to see if the model has obtained good temperature generalization 

ability (two testing data are shown in Fig.3.2.3 and Fig.3.2.4). 

 



 

Fig.3.2.3 characteristics of 3rd, 25degree-testing dataset 

 

 
Fig.3.2.4 characteristics of 11th, -10 degree-testing dataset 



3.2.2 Training and Testing 

Fig.3.2.3 and Fig.3.2.4 show every input and SOC characteristics of selected two testing data, 

when the data preparation is ready, training process can be start, we first follow some training 

procedures and sequences as following (Summarized in a Flow chart.1 below)： 

 

Flow chart.1 : Training and testing algorithm 

LSTM:  

• 3inputs(V, I, T) and 250/1000/3000 epochs respectively. 

• 5inputs{T, V_0.5mHz, I_0.5mHz, V_5mHz, I_5mHz}  and 250/1000/3000 epochs 

respectively. 

FNN: 

• 3inputs(V, I, T) and 250/1000/3000 epochs respectively. 

• 5inputs{T, V_0.5mHz, I_0.5mHz, V_5mHz, I_5mHz}  and 250/1000/3000 epochs 

respectively. 

 



NARX with an additional while loop(based on 25 and -10 degree/25 and 10 degree): 

• 3inputs(V, I, T). 

• 5inputs{T, V_0.5mHz, I_0.5mHz, V_5mHz, I_5mHz}. 

Each network is trained for 20-30 times until it gets a relatively good result. 

3.3 Results and performance comparison 

In this section, the configurations and results of every training options based on different 

network have been analyzed, realize network performance comparison. Based on network 

characteristics, network optimization is realized, and a new round of performance comparison 

is performed for the optimized network. 

3.3.1 Configurations and results 

LSTM configurations: 

 

 

 

 

numResponses = 1;  % number of output expected from the NN, in 

this case the output is SOC 

Epochs  =   250;   % maximum number of epochs, after reaching 

this value the training will stop 

% Epochs are set to 250/1000/3000  

LearnRateDropPeriod = 2000; 

InitialLearnRate=0.01;    %initial Learning rate value 

LearnRateDropFactor=0.85; % after each "LearnRateDropPeriod", the 

learning will be multiplied by "LearnRateDropFactor" number 

validationFrequency = 3; 

 

layers_LSTM = [sequenceInputLayer(numFeatures) 

    lstmLayer(10,'OutputMode','sequence') 

    fullyConnectedLayer(numResponses) 

    clippedReluLayer(1) 

     regressionLayer]; 
 



Results of LSTM (3 inputs): 

3000 Epochs: 25 degree testing (upper) and -10 degree testing (lower) 

 

 

 

 

The results are shown from figures above, the LSTM network can work properly even there 

are just 3 inputs, but the estimated results have large oscillation and the RMSE% error 

behaves decreasing when the number of epochs goes from 250 to 3000. The network has best 

performance when the number of epoch equals to 3000 (shown in 3000 Epochs figures).  

 

 



Results of LSTM (5 inputs): 

3000 Epochs: 25 degree testing (upper) and -10 degree testing (lower) 

 
LSTM performs much better when the inputs are 5: {T, V_0.5mHz, I_0.5mHz, V_5mHz, 

I_5mHz}, the oscillations are reduced and the network performs much stable, the root mean 

squared error percentage (RMSE%) is around 2%~3%. 



FNN Configuration: 

Results of FNN (3 inputs): 

3000 Epochs: 25 degree testing (upper) and -10 degree testing (lower) 

 

 

numResponses = 1;  % Number of output expected from the NN, in 

this case the output is SOC 

Epochs  =   250;   % Maximum number of epochs, after reaching 

this value the training will stop 

% Epochs are set to 250/1000/3000  

LearnRateDropPeriod = 2000; 

InitialLearnRate=0.01;    %Initial Learning rate value 

LearnRateDropFactor=0.85; % After each "LearnRateDropPeriod", the 

learning will be multiplied by "LearnRateDropFactor" number 

validationFrequency = 3; 

 

layers_FNN = [sequenceInputLayer(numFeatures) 

    fullyConnectedLayer(21)  

    reluLayer 

    fullyConnectedLayer(19)  

    reluLayer 

    fullyConnectedLayer(numResponses) 

    reluLayer 

    regressionLayer]; 
 



 

 

The training speed of FNN is much faster with compared to LSTM (4 times faster), but from 

the figures above, the estimated result performs large oscillation, as well as very poor 

performance in minus temperature. Considering the real application scenarios, the large 

oscillation SOC values (shown in Results of FNN (3 inputs)) are not acceptable even though 

the overall RMSE% error is not so high. Because the SOC is going to be monitored on the 

dashboard of the applied vehicle, the large oscillation results will lead to a very bad 

perception and annoying the driver and passengers, then lead to some wrong decision based 

on wrong SOC value. 

 

 

 

 

 

 

 

 

 

 



Results of FNN  (5 inputs): 

3000 Epochs: 25 degree testing (upper) and -10 degree testing (lower) 

 

 

 

 

When the inputs are 5{T, V_0.5mHz, I_0.5mHz, V_5mHz, I_5mHz}, The performance 

becomes much better with compared to 3 inputs (V, I, T). While the training time remains 

nearly the same. The root mean squared error percentage (RMSE%) is around 3%~4%.  

When filtered current and voltage are feasible, or the original data behaves as low oscillation, 

FNN network is recommended since its faster and it has relatively high performance. 



NARX configuration and additional loop: 

 
Flow chart.2: Logic of additional algorithm for NARX 

Since NARX net is trained based on another toolbox (Machine learning toolbox), an 

additional training loop is introduced to the code, in order to get a relatively stable and high 

performance network. Max error and min error are set by user in a while loop, number of 

hidden layers is obtained by a rand[5 20] code, and the net converges better when the number 

equals to 15-18. 

inputDelays = 1:2;  

feedbackDelays = 1:2; 

hiddenLayer = randi([12 20],1,1); 

net = narxnet(inputDelays,feedbackDelays,hiddenLayer, 

'open',trainFcn); 

    net.trainParam.lr=0.01; 

    net.divideParam.trainRatio = 70/100; 

    net.divideParam.valRatio = 15/100; 

    net.divideParam.testRatio = 15/100; 

    net.trainParam.epochs = 3000; 

    net.trainParam.min_grad = 9e-12; 

    net.trainParam.max_fail = 200; 

    net.trainParam.goal = 9e-12; 
 

 



Results of NARX (3 inputs): 

3000 Epochs: 25 degree testing (upper) and -10 degree testing (lower) 

 

 

 

 

 



Since the training process stopped when the validation number reach the target value (shown 

in Fig.3.3.1.1): 

 
Fig.3.3.1.1 Process of training for NARX 

When the validation error increases for a specified number of iterations 

(net.trainParam.max_fail), the training is stopped, and the weights and biases at the minimum 

of the validation error are returned. In this way, the number of epochs and training time of 

every single training phase are not fixed (Training is finished before reaching the target 

number of epochs).  

 

 

 

 

 

 

 

 

 

 

 

 

 

net.trainParam.max_fail = 200; 

net.trainParam.epochs = 3000; 
 



NARX with 5 inputs (Train based on 25 and -10 degrees): 

 

 

 

 

 

 



NARX with 5 inputs (Train based on 25 and 10 degrees): 

 

 

 

 

 



 

Fig.3.2.5  Different temperature based NARX comparison  
Fig.3.2.5 implements the comparison between two different temperature data based training 

results. These results are taken from the above performance figures. 

Training by 25° and 10°  (better positive temperature performance): Training process is 

stopped when the test error on 25 degree and 10 degree reach the goal. 

Training by 25° and -10° (better generalization by wide temperature range): Training process 

is stopped when the test error on 25 degree and -10 degree reach the goal. 

From these comparison we can see that in order to make the NARX net has better robustness 

in order to withstand the wider testing temperature, the second choice which is ‘Training by 

25° and -10°’ is suggested. After finishing each training option and getting the results of three 

different networks, the first gross performance comparison can be done. 
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Fig.3.2.5 First comparison  

From the first comparison (Fig.3.2.5) we can see that the NARX net is improved the most 

when the input number changes from 3 to 5. And the performance depends strongly on the 

testing data (different testing data and temperature) we put in the while loop, Considering the 

non-stable convergence behavior (not only the performance, but also the training time) of the 

previous NARX, the structure development is mandatory, in order to get a relatively stable 

NARX net when applying training every time. 

3.3.2 Network optimization 

Since we just focused on test3 (25 degree) and test11 (-10degree)/test3 (10degree), changing 

the number of inputs to see the results in a simple way, we can have a gross perception of 

each networks performance on effect of inputs and different temperatures. 

In order to apply it on real scenarios, we have to make higher the networks’ generalization, 

obtain higher robustness. So we are going to change the networks’ structure and consider 

overall RMSE (mean RMSE between 15 different testing data) to obtain better performance. 
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FNN optimization: 

Since FNN/LSTM and NARX are trained by different AI toolbox (machine learning toolbox 

and deep learning toolbox), and machine learning toolbox for NARX is feasible for training 

FNN, so an effective comparison between two different toolbox is necessary.  

In this optimization step, an additional FNN is trained by machine learning toolbox, by the 

same data fed to NARX network, and the performance is recorded in the performance 

comparison section. 

Transform FNN to machine learning toolbox and compare to other networks: 

Put a same structure into machine learning toolbox, but the input data is the whole data 

without separating into minibatches (the same data used in NARX):  

 

Fig.3.2.6 FNN in the machine learning tool box 

Change activation functions of FNN from ‘tanh’ into ‘Relu’, change some other 

hyperparameters: 

net.trainParam.lr=0.01; 

net.trainParam.epochs=3000; 

net.layers{1}.transferFcn='poslin' 

net.layers{2}.transferFcn='poslin' 
 

layers_FNN = [sequenceInputLayer(numFeatures) 

    fullyConnectedLayer(21)  

    reluLayer 

    fullyConnectedLayer(19)  

    reluLayer 

    fullyConnectedLayer(numResponses) 

    reluLayer 

    regressionLayer]; 
 



Test the network on all the testing data, and compute an overall RMSE% (RMSE% mean 

value), to see if the model has a robust generalization: 

 

Fig.3.2.7 RMSE% for each different testing data and RMSE% mean 

Same procedure applied to LSTM and FNN in deep learning toolbox 

Hyperparameters and results for FNN: 

Test the network on all the testing data, and compute an overall RMSE% (RMSE% mean 

value), to see if the model has a robust generalization:  

 

Fig.3.2.8 RMSE% mean of FNN 

 

 

numResponses = 1;  % number of output expected from the NN, in 

this case the output is SOC 

Epochs  =   250;   % maximum number of epochs, after reaching 

this value the training will stop 

% Epochs are set to 250/1000/3000  

LearnRateDropPeriod = 2000; 

InitialLearnRate=0.02;    %initial Learning rate value 

LearnRateDropFactor=0.85; % after each "LearnRateDropPeriod", the 

learning will be multiplied by "LearnRateDropFactor" number 

validationFrequency = 3; 

layers_FNN = [sequenceInputLayer(numFeatures) 

    fullyConnectedLayer(21)  

    reluLayer 

    fullyConnectedLayer(19)  

    reluLayer 

    fullyConnectedLayer(numResponses) 

    reluLayer 

    regressionLayer]; 
 



Hyperparameters and results for LSTM: 

Test the network on all the testing data, and compute an overall RMSE% (RMSE% mean 

value), to see if the model has a robust generalization: 

 

Fig.3.2.9 RMSE% mean of LSTM 

NARX optimization 

Since there are many noises and oscillations inside each input data, too long series input time 

delays may introduce the noise and oscillations into the network again, this causes the 

negative effect for parameters inside the network and it may not perform very well. 

For this reason, we have to remove the input delay and change it to ‘0:1’, and just take one 

output value to feedback, so change feedback delay to ‘1’. 

 

Fig.3.2.8 NARX with ‘0:1’ input delay and ‘1’ feedback delay 

numResponses = 1;  % number of output expected from the NN, in this 

case the output is SOC 

Epochs  =   250;   % maximum number of epochs, after reaching this 

value the training will stop 

% Epochs are set to 250/1000/3000  

LearnRateDropPeriod = 2000; 

InitialLearnRate=0.02;    %initial Learning rate value 

LearnRateDropFactor=0.85; % after each "LearnRateDropPeriod", the 

learning will be multiplied by "LearnRateDropFactor" number 

validationFrequency = 3; 

 

layers_LSTM = [sequenceInputLayer(numFeatures) 

    lstmLayer(10,'OutputMode','sequence') 

    fullyConnectedLayer(numResponses) 

    clippedReluLayer(1) 

    regressionLayer]; 
 



In order to optimize the network, we put RMSE_mean into the while loop, in order to get a 

better global generalization network. 

 
Fig.3.2.7 RMSE% for each different testing data and RMSE% mean 

Testing result for datasets corresponding to different temperature: 

 

 

 



 
 

3.3.3 Second performance comparison 
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NARX network has the dominating performance among 4 networks (two FNN networks), the 

mean RMSE% ~0.3%, the single training time~1000 seconds (for 3000 epochs). It has not 

only really low error, but also fast speed (lightweight). For further exploration, NARX 

network is selected as the optimal SOC estimation network. 
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4 SOC estimation considering SOH 

Based on the SOC estimation comparison from Chapter 3, a high performance network for 

estimating SOC is obtained. While if we consider the real-time and realistic application for 

Electric or hybrid electric vehicles, the parameter SOH should not be ignored. Fig.3 shows 

the non-linear relationship between SOC and SOH. In fact, if SOH is considered for SOC 

networks, the estimation could be more precise (SOC network only work on its dedicated 

SOH). In the Chapter.4, a new specific dataset is used, which include many different battery 

sampling phases. Some of the phases are created for accelerating battery aging, the intention 

is to take advantage of some of the characteristics after aging. In this way, this dataset is 

suitable for both SOC and SOH networks, and actually they are two parts that cannot be 

separated from each other. 

4.1 Specific dataset introduction and selection 

The data used for the experiments were acquired from an in-house developed test bench. The 

battery module which connected to the test bench is consists of six battery cells connected in 

series is. And the cell voltage is measured using Elithion battery plates (Equipment showed in 

Fig.4.1.1). 

 
Fig.4.1.1 Experimental setup for data acquisition from lithium-ion batteries connected in series [20] 

 



Two LM35 Texas Instrument temperature sensors are used to measure the cell surface 

temperature. The Elithion (Lithulmate) BMS is mounted on the test bench to increase the 

security of the acquisition process. An Arduino Mega board is connected via LAN to a 

dedicated PC, which is then used to acquire the measurement data. From the safety point of 

view, the system is equipped with an emergency stop device as an additional safety measure.  

The battery cell used in this section is Sony Murata US18650VTC6 (Fig.4.1.2): 

  

Fig.4.1.2 Sony Murata US18650VTC6 

The composition of the acquired data is shown in the flow chart of the following figure (Fig 

4.1.4). The entire test plan is repeated 55 times to observe the battery aging phenomenon. It 

means in these 43 different phases, each of which will be repeated 55 times. 

The battery test plan can be simplified into repeatedly Charging-Discharging phases (green 

block represents Charging phase, while red block represents Discharging phase, shown in 

Fig.4.1.3) The load profiles are either charge or discharge phase or a sequence of charge and 

discharge as in the dynamic load profile. In the later stages of phase, a special algorithm 

called Random Walk is applied to two dedicated phases, which are 37: discharging polarized 

random walk and 41: charging random walk. 

Random Walk (RW), also known as random wandering or random walking, is a mathematical 

statistical model consisting of a sequence of trajectories, each of which is random. It can be 

used to represent irregular forms of variation, as in the case of a random process record 

formed by a person's drunken and disorderly walk. Therefore, it is the basic statistical model 

for recording random activities. The data which random walk algorithm is applied is shown 

in (Fig.4.1.3). 



 
Fig.4.1.3 Phase 37: PRW (left) and Phase 41: RW (right) 

 

Fig.4.1.4 Sony Murata US18650VTC6 simplified test plan 

When we get into details of the test plan (Fig.4.1.5), the profiles include different 

charging/discharging rate(5/C,2/C,C), constant CC (1.675A) -CV (0.35A) charging current, 

constant discharging voltage (2.5V). The specific parameter for Phase 37-PRW is: 5A for 60 

seconds, 4.2V/3V to 2.5V. And for Phase 41-RW is: 5A current for 300 seconds, 4.2V/3V. 

From the network performance and generalization point of view, the SOC estimation network 

is required to estimate both charging and discharging profiles. 

From the realistic use of vehicles, during the charging, vehicles are usually parked in fixed 

locations, such as charging stations, garages at home. So the charging phase is usually a 

stable process, without any discharging profiles or any rapid-change/pulse of currents/voltage. 

In this way, a pure charging phase (CC-CV) will be selected for training the network, in order 



to let the network identify and estimate the charging process, from 0% to 100% SOC. 

In the opposite way, the discharging phase of a vehicle is usually an uncertainty process, 

Complex working conditions and unexpected factors, such as sudden acceleration and sudden 

braking, may occur at any time. Also for electric vehicles, regenerative braking (Current 

flows in the opposite direction, SOC increases corresponds to Fig.1 and coulomb counting 

equation) is an important function that cannot be ignored. So the discharging process, or the 

working process of an EV, is definitely not a pure discharging process. For this consideration, 

a complex discharging phase should be selected for network. 

 

Fig.4.1.5 Sony Murata US18650VTC6 test plan 

In the author’s continuous experiments, and considering robustness/generalization of the 

NARX net, the training dataset, as well as the testing dataset are selected (marked in figure 

4.1.5, green block represents training data, orange block represents testing data). Each data’s 

profile are shown below(Fig.4.1.6 and Fig.4.1.7). 



  

Fig.4.1.6 Phase 11(left) and Phase 13(right) used for training process 

  

Fig.4.1.7 Phase 35 (left) and Phase 37 (right) used for testing process 

The selection criterion is that to ensure that the data between training and testing does not 

overlap, and increase the challenge to the network as much as possible.  

Since there are six battery cells sampled in series, based on this criterion, the training data is 

taken from the first battery cell,  then the testing data is taken from the third battery cell. 

While Phase 11 (CC-CV pure charging) and phase 13 (CP pure discharging) dataset from the 

first battery cell are combined together for training. And Phase 35 (CC-CV pure charging) 

and phase 37 (Polarized random walk discharging) dataset from the third battery cell are 

combined together for testing. 

The reason that phases used for training/testing are close to each other (11-13, 35-37) is to 

avoid relatively large battery capacity variation because of capacity decay after running 

multiple phases. This will cause errors and lead to poor training results. For example, the first 

battery’s capacity after finishing phase 1 is not equal to the first battery’s capacity after 

finishing phase 41. 

 



The other reason for combined charging-discharging phase together is to avoid the rapid 

change of the dataset (the vertical lines appear in the Fig 4.1.8), due to the characteristic of 

NARX net’s time series memory, it will affect the network’s performance. At the same time, 

to avoid the rapid change of data, the combined charging-discharging profile is adjusted to 

0%-100%-0%. Even though some of the cycles’ SOC (end SOC for charging, start SOC for 

discharging) are not equals to 100%(For example: 1.02% or 99.8%).  

 

Fig 4.1.8 SOC ground truth profile of Phase 11 Cycle 1-3 (left) and Phase 13 Cycle 1-3 (right) 

In this way, Continuous charging-discharging profiles are built up for training and testing. 
The simplified dataset combination schematic is shown in Fig 4.1.9 below: 

 
Fig.4.1.9 Phase 11 and Phase 13 combined for training process 

 
Fig.4.1.10 Phase 35 and Phase 37 combined for testing process 



4.2 Training and testing methodologies  

The updated training and testing procedures (shown in Flow chart.3) are very similar to Flow 

chart.1 in Chapter.3.2.2, but considering the best NARX configuration (Fig.4.2.1) and new 

battery’s training/testing data (green and orange block discussed in 4.1): 

 
Fig.4.2.1 Best NARX network configuration 

 
Flow chart.3 : Training and testing algorithm for the specific battery module 

 

 

 



4.3 SOH interval assignment options and results  

As we mentioned before, if SOH is considered for SOC networks, the estimation could be 

more precise (SOC network only work on its dedicated SOH). After knowing the training and 

testing methodologies, in this section, we would like to separate the SOH ground truth 

(Fig.4.3.1) into many different classes, and then training and testing the network’s 

performance only on its dedicated SOH class range. 

 
Fig.4.3.1 SOH ground truth of 55 cycles 

From Fig.4.3.1 we can see SOH decrease from 1.0241 (Cycle 1) to 0.8238 (Cycle 55). Due to 

some uncontrollable sampling errors and the characteristics of the battery itself, the SOH 

profile is not pure linear, SOH value will also increase a little bit in some cycles. Since the 

overall decreasing trend is correct, we will not filter the SOH line to make it pure decreasing, 

because the SOH is computed from the cumulative capacity and maximum capacity, where 

the cumulative capacity is strongly depend on the current corresponding to its time discrete: 

So a slightly change of SOH may lead to very poor training and testing performance of the 

network. Due to these characteristics, the interval assignment is mainly based on approximate 

SOH range and the number of cycles, three different options are considered: 3-Class, 5-Class 

and 1-Class with an additional SOH input (V, I, T and SOH). 

for i=1:52 

    Capacity{i,1} = cumtrapz(meas{i,1}.time(:,1),meas{i,1}.Current(:,1))/3.6; 

end 
 



3-Class assignment: 

Class 1 : 1-17 Cycles    SOH: 100%~95% 

Class 2 : 18-34 Cycles  SOH: 95%-90% 

Class 3 : 35-55 Cycles  SOH: 90%-82% 

5-Class assignment: 

Class 1 : 1-11 Cycles    SOH: 100%~96% 

Class 2 : 12-22 Cycles  SOH: 96%-93% 

Class 3 : 23-33 Cycles  SOH: 93%-90% 

Class 4 : 34-44 Cycles  SOH: 90%-87% 

Class 5 : 45-55 Cycles  SOH: 87%-82% 

1-Class assignment: 

1-55 Cycles SOH: 100%-82% 

Based on these classes and cycles assignment, the training and testing process (section 4.2) 

will be done to each of them. The original data (55 cycles) will be separated and then merged 

into three/four columns (or three/four rows). Fig.4.3.2 shows an example of 3-class training 

and testing data. 

  

Fig.4.3.2 Training and testing data for the first class of 3-class option 

In Fig.4.3.2, phase11_13 means phase 11 and phase 13 are combined and used for training , 

while phase35_37 means phase 35 and phase 37 are combined and used for testing 

(Correspond to section 4.1). [Current, Voltage , Temperature] are placed as three rows, each 

line has been merged 17-cycle’s data. The ground truth SOC value has been calculate and 

extract as training and testing data. Then the output of NARX net will be compared to this 

ground truth during training and testing phase. The same procedure is applied to 5-class 

option. 

For 1-Class option, the fourth SOH input is needed. Since SOH value of each cycle is a single 

ground truth number, the SOH input data should be set to the same dimension as the other 



inputs (Fig.4.3.3), in order to implement training and testing properly(All the SOH values 

from the same cycle are set to the same value correspond to SOH ground truth, Fig.4.3.1. 

Testing SOH data is applied by the same procedure, since the SOH  estimation network is not 

available yet). 

 

 

Fig.4.3.3 SOH training and testing data used for 1-Class option 

After data organization is finished, training and testing are implemented. Then results and 

single training times for each option are shown below(Fig.4.3.4 and Fig.4.3.5): 

 
Fig.4.3.4 Single training time(per 1000 epochs) for each class from different option 
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Fig 4.3.5 Results of three options (expressed in RMSE%) 

From the results (Fig.4.3.5), we can see that the errors are relatively close to each other. (~3% 

error), from (Fig.4.3.4) we can see that the single training time of each class from different 

option is corresponding to the number of training data. And the time is recorded for each 

single class. (For example, the training time for the first class from 3-Class option is 12mins 

(1000 epochs), the total training time for 3-Class option could be 12𝑥3 = 36𝑚𝑖𝑛𝑠, 5-Class 

option could be 7𝑥5 = 35𝑚𝑖𝑛𝑠). 

From the gross comparison of Fig.4.3.4 and Fig.4.3.5 we cannot say which option is better or 

faster. In fact, these gross comparison are done without the SOH estimation network, in other 

words, without combination system. So the further exploration of network performance of 

three options will be done in the next chapter. 



4.4 Extract networks into Simulink models 

Before the effective network combination, the model pre-trained in Matlab needs to be 

exported to Simulink, so as to implement the combination and application of the two system 

(SOC estimation system and SOH estimation system) in a more intuitive block diagram.  

The code ‘genism’ is used to initialize the SOC network: 

Before the code ‘genism’ is used, a proper testing data should be fed to the network, in order 

to give the NARX network a ‘initial memory’, otherwise the network will not work in the 

correct way as it should be. For example: 

The NARX network ‘first _class_3_class_option’ is the pre-trained network for estimating 

SOC when SOH varies between 100%~95% (The range assignment is done based on section 

4.3). While the testing data ‘Testing35_37_Cycle_3’ is phase 35-37 combined data with only 

the third cycle. The purpose is to remind the network to start estimating SOC from ‘0%’, it 

[sysName,netName] = gensim(net,'InputMode','Workspace',...                                                                                        

'OutputMode','WorkSpace','SolverMode','Discrete');     

load("first _class_3_class_option.mat") 

load("Testing35_37_Cycle_3.mat") 

testingdata= Testing35_37_Cycle_3; %Cycle3 from Phase 35 and 37 

combined data 

Utest(1,:) = testingdata(1,:);     %Testing current 

Utest(2,:) = testingdata(2,:);     %Testing voltage 

Utest(3,:) = testingdata(3,:);     %Testing temperature 

SOC= testingdata(4,:);             %Testing SOC 

Y1 = SOC;                                        

x = tonndata(Utest,true,false); 

t = tonndata(Y1,true,false); 

net = closeloop(net)            %Close the NARX feedback delay 

loop for testing 

[xs,xi,ai,ts] = preparets(net,x,{},t); 

y=net(xs,xi,ai);                %Prediction SOC ouput 

[sysName,netName] = gensim(net,'InputMode','Workspace',... 

'OutputMode','WorkSpace','SolverMode','Discrete'); 

x1 = nndata2sim(x,1,1); 



then follows the trend corresponding to the dataset used to train the network. Which goes like 

0%-100%-0%. 

Actually the network initialization should be down based on the estimation strategy, because 

the network was trained so that it could estimate both charging and discharging phases. When 

it is used to estimate only the discharging phase, the loaded dataset should only include the 

data corresponds to SOC decreases from 100% to 0%.  For example, the dataset should be 

loaded as below: 

The loaded dataset ‘Testing37_Cycle_3’ is the dataset of phase 37, the third cycle. It is only 

consisting of PRW discharging data. In this way, the network is initialized by reminding it 

start from 100% SOC to 0%. Then it can be used for estimating only the discharging phase. 

The code ‘net = closeloop(net)’ have to be applied to close the NARX network’s feedback 

loop, which means there will be no supervised SOC ground truth value, the feedback SOC 

value is the SOC estimated output value from the last time discrete.  

After extracting all the corresponding networks and initializing them correctly, we build them 

in Simulink according to the previous interval assignment (Section 4.3), the schematic shown 

in Fig.4.4.1, Fig.4.4.2 and Fig.4.4.3 below: 

load("first _class_3_class_option.mat") 

load("Testing37_Cycle_3.mat") 

testingdata= Testing37_Cycle_3;   %Cycle3 from Phase 37 data 

Utest(1,:) = testingdata(1,:);    %Testing current 

Utest(2,:) = testingdata(2,:);    %Testing voltage 

Utest(3,:) = testingdata(3,:);    %Testing temperature 

SOC= testingdata(4,:);            %Testing temperature 

Y1 = SOC; 

x = tonndata(Utest,true,false); 

t = tonndata(Y1,true,false); 

net = closeloop(net);            %Close the NARX feedback delay 

loop for testing 

[xs,xi,ai,ts] = preparets(net,x,{},t); 

y = net(xs,xi,ai);               %Prediction SOC ouput 

[sysName,netName] = gensim(net,'InputMode','Workspace',... 

'OutputMode','WorkSpace','SolverMode','Discrete'); 

x1 = nndata2sim(x,1,1); 



 

Fig.4.4.1 3-Class NARX network option 
 

 
Fig.4.4.2 5-Class NARX network option 



 
Fig.4.4.3 1-Class NARX network option 

The ‘if-action subsystem’ block is used to trigger the corresponding NARX network,  for 1-

Class NARX network option, an additional SOH should be added, in this case, the SOH value 

should be the same as the SOH value used for training, since the real-time SOH estimation is 

not available yet, the ground truth SOH is used as the estimated SOH. 

In this testing situation, the SOC estimation result behaves better than pure testing without 

any SOH ground truth, the further exploration without SOH ground truth will be shown in 

Chapter 5. 

5 SOC-SOH combination estimation system 

After getting good performance networks for each class and each option, while the other part 

“SOH estimation system by LSTM network” is ready. The SOC part and SOH part can be 

combined, based on the basic concept published by [1], the first trial of combination system 

is built up, then the simulation for the combined system is implemented. 



5.1 Concept build up 

 

Fig.5.1.1 Concept of combination system (3-class example) 

The updated concept is shown in Fig.5.1.1. At first, an initial SOH value should be given to 

the system, to let the estimation loop work properly. The first SOH initial value could be ‘1’, 

which means the battery start at full health condition. If the system starts at other specific 

conditions, the precise SOH value as initial condition is needed, in order to trigger the system 

in the right way. 

SOC selector is the ‘if-action subsystem’ mentioned above in section 4.4, the dedicated range 

used to select the corresponding SOC network can be set by the user, in the default setting, 

the range is the same as in section 4.3. In the further trials, the range can be changed to an 

appropriate value to guarantee the highest performance of the estimation system. 

When the SOC selector has chosen the right SOC estimator (NARX  network), at the same 

time current, voltage and temperature are fed into the chosen estimator, the real-time SOC 

will be the output. The block ‘merge’ is used to set output signal into one dimensional time 

series instead of three. The non-zero signal will be chosen and fed into ‘feature extractor’ 

block.  



The ‘feature extractor’ is the main functional subsystem that extract four important features to 

describe the battery aging phenomenon. The subsystem includes some buffers to cumulate 

input data, some Matlab functions to extract the needed parameters.  

The ‘feature extractor’ process the inputs[ SOC, I, V] to [SOC, dSOC, dSOE, dV]. Which are 

the needed input features of SOH estimator (LSTM network). Inside the SOH estimator, there 

can be two LSTM networks, which responsible for CC phase and CV phase respectively 

(Since the pure charging phase is consisted of CC-CV process). Due to some performance 

and combined functional reason, the network which only estimate the CC phase is chosen. 

Further details will be discussed in the following section. 

After getting the SOH estimation value, we can monitor both the SOC and SOH value, at the 

same time, the estimated SOH value will be fed back to the ‘SOC selector’, then the 

following SOH become the estimated value without any given ground truth (initial condition 

SOH value). The loop works properly until the end of the simulation time. 

5.2 Combination simulation trial 

After understanding the system concept , the Simulink models for different options are 

built(Fig.5.2.1, Fig.5.2.2, Fig.5.2.3): 

 
Fig.5.2.1 Combination system for 3-Class option 



 
Fig.5.2.2 SOC subsystem of combination system for 5-Class option 

The whole system remains nearly the same, while the SOC estimation system being more 

complicated, more if-action subsystems are used to cover 100%-80% SOH value 

 

Fig.5.2.3 Combination system for 1-Class option 

 



A SOH signal processing subsystem is needed when the output of SOH estimation system be 

the input of SOC estimation system, in order to get the right SOH signal value. (Shown in 

Fig.5.2.4) 

 

Fig.5.2.4 Details of signal processing subsystem 

The Matlab function block changes the SOH value to 1 when its zero at the beginning. 

Because the buffers in the SOH estimation systems need to cumulate the first 120 seconds to 

output the first group of features. These zero values will lead to wrong SOC network 

selection. (Code shown below). 

There should also be a ‘memory’ block to give an initial value ‘1’ to active SOC estimation 

system first, and then the SOC-SOH loop will work properly (Mentioned in section 5.1). 

‘Rate transition’ block is used to align if-act subsystem function and SOH output sampling 

rate, which is ‘1Hz’. 

Inside the SOH estimation system, the schematic shows like Fig.5.2.5, inside the LSTM 

network, there are two networks which estimate CC part and CV part respectively. In the 

actual simulation, there needs to be a judgment condition here to make the network switch 

from CC to CV, but in fact this condition depends on the actual application conditions 

(charging control of the charging pile), so we actually don't know when to switch from CC to 

CV. In addition, it has been proved by experiments that there is a possibility of a step SOH 

value in the conversion process of CC and CV, and we cannot guarantee that the last value 

estimated by the CC network is the same as the first value estimated by the CV network. 

Based on this situation, we decided to use only the CC part as the estimation network for 

function y = fcn(u) 

y=double(u); 

if u==0 

   y=double(1); 

end 



SOH (Shown in Fig.5.2.5). 

 
Fig.5.2.5 SOH step variation during prediction 

 
Fig.5.2.6 Subsystem with only CC part 

 
Fig.5.2.7 CC network inside the subsystem 

As shown in Fig.5.2.6 and Fig.5.2.7, the SOH network is consist of only CC part. When both 

SOC estimation system and SOH estimation system are ready, the simulation can be started. 

The system is tested by two different testing data, which are Phase 1-Cycle 3 and Phase 1-

Cycle 38, the purpose of choosing two different cycle is to test if it can work properly under 

different SOH conditions. For cycle 3, the initial SOH is equal to 1.0191. For cycle 38, the 

initial SOH is equal to 0.8817. Both of these SOH values are taken from the SOH ground 

truth, in order to trigger the right SOC network at the beginning of the simulation. 

Results are shown in Fig.5.2.8 and Fig.5.2.9: 



 

 

Fig.5.2.8 Phase1 Cycle 3 simulation results 

 

 

 

Fig.5.2.3 Phase1 Cycle 38 simulation results 

From these result we can see, the stability of SOH prediction process is strongly dependent 

on the prediction of SOC. As shown in Fig.5.2.8, before about 16000 seconds (the time 

before shifting to CV part), both SOC and SOH predictions are stable and precise, once the 

charging phase exceed CC part, SOH estimation network becomes oscillating since this SOH 

network is only suitable for CC. In this situation, we need to add a judgment block in order to 

let the SOH network stop estimating when it nearly reach the CV zone. (For example, SOH 

prediction stops when SOC>0.7).  



The other problem should be solved is shown in Fig.5.2.9. We can see both SOC and SOH 

becomes oscillating at about 1000 seconds, and the SOC value restart from about 0 at this 

point. This is mainly caused by the characteristics of SOC estimation network (NARX 

network). Since NARX has timeseries memory functions, in our application , it is set to start 

from 0 during charging phase. When the real-time estimated SOH value exceeds the assigned 

range of each SOC networks, the SOC estimation network will be changed from the current 

one to the other one (such as from Class 1 to Class 2). In this case, since the newly selected 

network has no previous timeseries memory, it re-estimates from 0. Although the input does 

not match the current estimate value, NARX has a tendency to correct toward the correct 

value, but it still has a huge impact on accuracy. Thus causes the poor performance of the 

whole system. Some corresponding solutions are mandatory to solve the problem described. 

5.3 Combination method update 

Due to the situation described in section 5.2, based on the characteristics of two parts during 

the first combination trial, the update estimation strategy is developed shown as Fig.5.3.1: 

 

Fig.5.3.1 Estimation strategy 

Based on the ground truth SOH value (shown in Fig.4.3.1), the SOH ground truth value only 

decreases a very small value(~0.5%) between two cycle. And we have approximated the SOH 

values of all phases in the same cycle to be equal. So the SOH value in a cycle, no matter 

which phase is applied, we can approximate it as constant. In this condition, the dynamic 

SOH output during a single cycle (synchronized with the output frequency of the SOC) is not 

needed, not only for stabilize the SOC estimation network, but also for obtaining a precise 



SOH estimation value (since SOH estimating process needs buffers to accumulative data). 

However, the change of SOC is a very fast process (compared to SOH), and SOC needs to be 

used as an input of the SOH estimation network, so SOC is still a dynamic output value, and 

it needs to be very accurate to prevent the SOH estimation network from doing wrong 

judgment. 

The new strategy is done by obtaining a fix SOH value at the end of each cycle, this SOH 

value is the trigger SOH value which used for SOC network selector in the next estimation 

cycle. At beginning an initial SOH ground truth value should be given in order to start the 

simulation cycle, the default value is equal to 1, which means it’s a full health battery at the 

beginning. If we want the cycle start at the other SOH value, a precise SOH value should be 

measured, in order to make the estimation system running in a proper way (Shown in 

Fig.5.3.2). 

 

Fig.5.3.2 Charging phase estimation flow 

 

 

 



The code for implementing multiple cycle simulations is shown as follows: 

A filtering operation is required for the SOH estimation network to estimate the PRW 

discharge phase, since the data has strong oscillation behavior (shown in Fig.4.1.7), it needs 

to be filtered to find the corresponding features .The filter used for this step is ‘Butterworth’ 

filter (same as section 3.2).  

Since Butterworth needs to filter the global data, in order to train a very high-performance 

SOH estimation network, but in our practical application, the cycle should be split and 

considered individually, rather than the global overall data (pure testing condition without 

%% Charging 

for i=1:length(meas) 

    Current_og{i, 1}=meas{i, 1}.Current; 

    Voltage_og{i, 1}=meas{i, 1}.Voltage(:,3); 

    Temperature_og{i, 1}=meas{i, 1}.Temperature(:,3); 

    simtime_og{i, 1}=length(meas{i, 1}.Current); 

SOC_GT_og{i,1}=SOC{i, 1};     

%Extract Current, Voltage , Temperature, simulation time and SOC 

ground truth of each cycle from the original data.  

end 

%% One charging cycle each time 

SOH_predict=1;  % Give an initial SOH data ground truth, default 

value =1 

i = 1 

for j=1:52      % The number of simulation cycle can be modified 

   Current=timeseries(Current_og{i, 1}); 

   Voltage=timeseries(Voltage_og{i, 1}); 

   Temperature=timeseries(Temperature_og{i, 1}); 

   SOC_GT=timeseries(SOC_GT_og{i, 1}); 

   simtime=cell2mat(simtime_og(i)); % Assign the original data to 

corresponding cycles 

   sim('Combined_net_3Class')  % Modify the model name:1,3,5Class 

   SOH_predict=double(ans.SOHout(simtime)); % Assign the 

predicted SOH value to the next cycle 

   SOH_saveresult(i,1)=SOH_predict;         % Save predicted SOH 

value of each cycle 

   error(i,1)=SOH_predict-SOH_p01(i,1); 

   SOC_abserror{i, 1}=ans.SOC_abserror;     % Compute estimation 

errors 

   i=i+1 

end 



ground truth) , if we apply each cycle through Butterworth filtering, the features obtained 

from each cycle are different, which will cause the performance of the SOH estimation 

network to be particularly poor. Because we cannot guarantee that the estimation methods of 

the two parts during the PRW discharging phase in the same way. So for the PRW discharging 

phase, we use the SOH estimated from the charging phase as the ground truth, for estimating 

the discharging SOC. In order to obtain stable and accurate SOC estimation results 

(Estimation flow shown in Fig.5.3.3). 

‘‘  

Fig.5.3.3 PRW discharging estimation flow 

5.4 Simulink update  

After knowing the updated system clearly, the simulation can be started, the updated 

Simulink model shown in Fig.5.4.1: 

 

 



 
Fig.5.4.1 The updated combined system (3-Class option) 

 
Fig.5.4.2 Introduce simulation time into Simulink 

The above figure shows the 3-Class option of updated system. Since the simulation time of 

each cycle is not constant, the stop time which equals to simulation time should be introduce 

into Simulink models, in order to let the stop time change with the changing of cycles 

(Shown in Fig.5.3.4). 

For the 5-Class option, only the SOC estimation subsystem is replaced by the 5-Class NARX 

network subsystems (Same as Fig.4.4.2). The other parts remain the same. For the 1-Class 

option, the system is shown in Fig.5.3.5. 

For the polarized random walk discharging estimation, the model is built based on the 

concept of Fig.5.3.3. Predicted SOH value is taken from the SOH estimation output of 

charging phase, and be input as the ground truth SOH in order to trigger the right SOC 

estimation networks (In Fig.5.3.3, SOH ground truth is ‘GT’). The rest part of the model is 

nearly the same with Fig.5.4.1, but without the SOH estimation system. It can be thought as 

the continue estimation for discharging when the charging phase is finished (The SOH value 

during the current phase is estimated). 

 In this case, we can decouple the charging and discharging phases, so that the charging and 

discharging process does not have to be continuous. In the real application, it is like the 



vehicle has been fully charged, but it has been connected to the charging pile and has not 

moved. When the user wants to drive, based on the estimated SOH during the charging period, 

the SOC state during the discharging period can be accurately estimated, and the SOH value 

(fixed value) will also be monitored on the screen. This SOH value will not change until the 

next charging phase.

 
Fig.5.4.3 The updated combined system (1-Class option) 

 
Fig.5.4.4 SOC estimation system for PRW discharging 

 

 

 

 



5.5 Result comparison 

The simulation of both charging and PRW-discharging of three options are done, SOC and 

SOH prediction results of all the cycles are shown below, while for the PRW-discharging 

prediction, a random cycle (here cycle 29 is selected, the selected cycle can be changed) is 

displayed in order to have a rough idea of how the discharge phase behaves. 

SOC and SOH  prediction results of 1-Class option (Charging) 

 

Cycle 29-SOC prediction results of 1-Class option (PRW discharging) 

 

 

 

 



SOC and SOH  prediction results of 3-Class option (Charging) 

 

Cycle 29-SOC prediction results of 3-Class option (PRW discharging) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



SOC and SOH  prediction results of 5-Class option (Charging) 

 

 

Cycle 29-SOC prediction results of 5-Class option (PRW discharging) 

 
In fact the combined system is composed of multiple parts (only for the case of 3-Class and 

5-Class). 

The performance of each individual sub-network also has an impact on the global 

performance because each network has an opportunity to estimate within its own SOH 

working range. Another factor is the SOC network selector assigned to each sub-network 

based on the input SOH value. A final influencing factor is the choice of cutoff value for SOH 

on the SOC estimation interval. Since the estimate of SOH is also fluctuating, but we chose 

the last cut-off estimate as the output, so the output SOH is obtained as: 

𝑆𝑂𝐻 𝑂𝑈𝑃𝑈𝑇 = 𝑆𝑂𝐻𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝑆𝑂𝐶𝑐𝑢𝑡−𝑜𝑓𝑓) 



The cutoff value of SOC also has a great influence on the final global result. 

For example, in 3-Class option, the final interval selection changes from Fig.5.5.1 to 

Fig.5.5.3, and the corresponding result also changes: 

          

Fig.5.5.1 Original conditional judgment from 3-Class NARX combination option 

  
Fig.5.5.1 Original conditional judgment result SOH RMSE%=2.41% SOC  mean_RMSE%=2.23% 

         

Fig.5.5.3 Updated conditional judgment from 3-Class NARX combination option 

  

Fig.5.5.4 Updated conditional judgment result SOH RMSE%=1.99% SOC  mean_RMSE%=0.87% 

In the end, the comparison of both simulation speed and performance is implemented. Shown 

in Fig.5.5.5 and Fig.5.5.6: 

 



 

Fig.5.5.5 Estimation time comparison of three options 

 

Fig.5.5.6 Estimation performance comparison of three options 
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6 Conclusion 

The central idea of this thesis is to develop a lightweight and accurate network for estimating 

the SOC of electric vehicle batteries, considering real application scenario and real-time 

estimation functionality. First, the SOC estimation method of the network is analyzed one by 

one, and the latest neural network method is adopted. 

Then three different kinds of neural networks are introduced and then trained separately. 

According to the performance and characteristics of the network itself, they are optimized 

respectively and then compared. The SOC estimation which performs best is finally selected 

for the next specified dataset. NARX has the best performance in this step and the 

corresponding mean RMSE% of all the testing data for the specific dataset is 0.29%. 

After the best network and optimal structure are determined, a new and more complex dataset 

is introduced, which can also be used for training the SOH network (LSTM), since it contains 

a series of features that can describe the aging phenomenon of the battery. After picking out 

the data most suitable for training SOC estimation, a training process similar to the previous 

one is implemented. In this step, the classification of the SOC estimation network for the 

SOH interval is also arranged at the end in order to achieve the best network performance to 

deal with the complex nonlinear aging characteristics. There are three classification options, 

among which is RMSE% ranging from 1.40% to 3.93%. 

Finally, the author's part (SOC estimation network) and the co-author's part (SOH estimation 

network) are put together. As a result, a combined estimation system based on the 

classification concept is built and then transferred to Simulink for construction. After 

overcoming the respective matching problems of the two parts, the combined system can 

simultaneously estimate SOC and SOH, two important parameters of BMS. 3-Class NARX 

combined with CC part LSTM has the best performance, SOC estimation RMSE% during 

charging phase is 87%, SOH estimation RMSE% during charging phase is 1.99%, SOC 

estimation RMSE% during PRW discharging phase is 2.63%. 

During this research process, some shortcomings and problems were also found, and there is 

potential for improvement in further follow-up research. 



Possible improvement  

Temperature range: 

In SOC estimation networks performance comparison (Chapter 3), the temperature range of 

this dataset varies from -20° to 25°, it covers a wide range of temperatures in order to 

improve the networks’ robustness. But such type of dataset does not show any aging features 

or phenomena, so it’s not enough for extracting the needed features. In other words, it cannot 

be used for training the LSTM network for SOH estimation. While in SOC estimation 

considering SOH in Chapter 4, another dataset is used instead of the previous one. The new 

dataset consists of a large number of different cycles which has very detailed description of 

some characteristic changes due to oxidation. It can not only be used for SOC network 

training, but also for SOH networks training. But the temperature variation of this specific 

dataset is limited. The temperature varies from about 17° to 28°, even if it has been 

considered the temperature variation corresponding to other parameters, it does not cover a 

lower temperature range like zero or the minus temperature. For further exploration, in order 

to achieve more robust performance of the SOC-SOH combined system and cover more 

corner cases, the lower temperature related data augmentation of this specific dataset is 

needed. 

Data sampling accuracy: 

Comparing the dataset used for Chapter 3 and that for Chapter 4, we can see the difference in 

accuracy between the two datasets. The dataset used for Chapter 3 has the overall accuracy of 

about 0.1% (from Table 1), while for the dataset used for Chapter 4, the accuracy is not 

mentioned. But from the dataset, such as SOH ground truth (Fig.4.3.1), the SOH is not 

linearly decreased, it increased a little bit in some specific cycles. This can cause a little 

inaccuracy when assigning the SOH classes for SOC estimation network. And the 

measurement bias of other parameters will also cause training fluctuations. 

SOC-SOH combination estimation for PRW discharging phase: 

Due to limited exploration time, the author of the SOC section and the author of the SOH 

section did not make further upgrades to the combined system for both SOC and SOH 

estimates for the PRW discharging phase. (In section 5.3, the system is done by feeding the 



SOH value estimated from charging phase, and only the SOC estimation network is working 

during the PRW discharging phase, because of the cycle matching problem of two networks 

due to filter application). 

Hardware testing 

These combined system models can be deployed and transferred into the hardware platform. 

The hardware in the loop (HIL) architecture can be connected to the original battery module, 

or the other module made by the same battery cells. The further HIL exploration can be done, 

in order to see the real application ability and performance. [22] 
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