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Abstract 
State of health (SOH) is a key parameter of lithium-ion battery. As the battery ages an 

accurate SOH estimation plays a important role in battery management system 

(BMS). 
This thesis refers to a dataset from a laboratory test campaign conducted at LIM to train 

a LSTM network for estimating the SOH variation. The dataset is composed by 55 

charging-discharging cycles and each of them has 43 different usage profiles. In order 

to age the battery, the entire test cycle lasted for several months. SOH decayed from 

initial 100% to 82%. In order to test the robustness of the network it uses three different 

profiles: charging profile, pulse profile and polarized random walk profile. 

To catch the SOH degradation information, several features are computed from original 

voltage and current profile. They are state of charge (SOC), variation of state of charge 

(dSOC), state of energy (SOE), variation of state of energy (dSOE) and variation of 

voltage (dV).  

Move sliding window approach is used for feature extraction. This approach can 

smooth the data and reduce the total amount of data while preserving the data 

information, thereby increasing the training speed. 

LSTM is selected neural network for this thesis. Three different profiles were trained 

by LSTM and all achieved high accuracy. 

The last section is focused on the implementation in Simulink. In order to better match 

the real working conditions, PRW profile is selected for Simulink modeling. Finally, 

the developed SOH estimation algorithm is combined with SOC estimator. The SOH 

and SOC estimator can interact with each other and use each other's data as input values. 

The model gets accurate results on PRW profile and charging profiles. The overall 

accuracy is almost equal to 1.99% for SOH estimation. 
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Chapter 1. Introduction 

1.1 Growing demand for hybrid and electric vehicles 

With the continuous maturity of hybrid and pure electric vehicle technology and the 

increasingly expensive international oil prices. Customers' demand for new energy 

vehicles is increasing day by day. As figure 1 shows, sales of hybrid and pure electric 

vehicles increased sixfold from 2015 to 2020.  

 
Fig.1 Global BEV & PHEV demanding 

It is very important to be able to accurately estimate the SOH which is one of the most 

important parameters of the battery. First, it is directly related to the maximum available 

capacity of the battery. The calculation of many battery parameters depends on the SOH 

value, such as SOC. Secondly, due to huge battery usage, battery maintenance, 

scrapping problem must be taken seriously. The SOH states whether the battery has 

reached its expected life, which has great environmental significance. Third, with the 

continuous aging of the battery, the internal resistance continues to increase, and the 

internal structure is degraded and deformed, which will cause dangerous situations such 

as spontaneous combustion and explosion and pose a great threat to social security. 



 

This places new demands on battery technology. Accurate estimation of the battery's 

state of charge and state of health has become an important research topic. 

1.2 Aims and Objectives 

The goal of this thesis is to design a real-time estimator of SOH based on artificial 

intelligence network. To train the network, a relevant battery charge-discharge test 

cycle should be designed first to age the battery, and the features related to the SOH 

changing should be extracted from the current and voltage data obtained in the cycle. 

After filtering, smoothing and other post-processing operations, the features will be 

used for network training. In order to verify the robustness of the method, three different 

kinds of cycles are tested, and all of them get good results.  

Finally, in order to achieve the goal of real-time estimation, this work successfully 

established a Simulink model, and combined with the SOC estimator to form a 

combined network to estimate the two values of SOC and SOH at the same time. 

The project process can be divided into the following steps: 

1. Compare the different SOH calculation methods that exist and clarify the reasons for 

choosing an AI network. 

2. Design the corresponding battery charge and discharge test cycle to obtain data such 

as current, voltage and temperature. 

3. Perform data processing on the obtained data to obtain features for training the 

network. 

4. Perform noise reduction, smoothing and other post processing on the features to make 

them match the requirements of network training. 

5. Train the network and test it. 

6. Build a Simulink network and combine the SOC estimator to reach the real-time 

SOH and SOC estimation. 

 



 

1.3 Thesis outline 

This thesis is structured as follows. The chapter 1 gives an overview of the motivation 

and states the objective of the thesis. The chapter 2 explains the concept of SOH and 

the physical and chemical factors that cause SOH decay. Then compares the existing 

traditional SOH calculation methods and explains the reasons for choosing artificial 

intelligence networks. Chapter 3 will describe in detail the design of the test loop, the 

extraction of training features, noise reduction, and smoothing. Chapter 4 will describe 

the artificial intelligence network structure and the corresponding training parameters 

and training results. The chapter 5 will build the Simulink model and describe the 

working principle of the model in detail then gives a possible improvement approach. 

Chapter 6 will summarize and discuss the results of the work and give suggestions for 

optimization. Chapter 7 is a link to all references used in this thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 2. Literature review 

2.1 SOH introduction 

Li-ion batteries are electro energy storage system. The performance of Li-ion batteries 

can be deteriorated by the degradation of their electrochemical medium which can 

cause power fade. This is called battery ageing.  

State of Health (SOH) is the key parameter to measure the ageing phenomena. SOH 

describes the difference between a battery being used and a fresh battery considering 

the cell ageing. It is defined as the ratio of the maximum battery charge to its rated 

capacity. It is expressed as a percentage as below: 

                                              𝑆𝑂𝐻% =   (
𝑄𝑚𝑎𝑥

𝐶𝑟
) 100%                                   (1) 

Where Qmax/mAh is the maximum charge available of the battery. 

Cr is the rated capacity. 

There are several factors such as battery chemistry and manufacturing affecting the 

ageing. The point that the battery fails to produce enough energy and power for its 

specific application, is commonly defined as the End of Life (EOL). Typically, batteries 

are considered at EOL when their SOH drop below 80% of the initial value. Here we 

can introduce ageing mechanisms and the main factors affecting on it. 

 

2.2 Lithium-ion battery working principle and structure 

Lithium-ion battery is a rechargeable battery that mainly relies on the movement of 

lithium ions between the positive and negative electrodes to work. Lithium-ion batteries 

use an intercalated lithium compound as an electrode material. At present, the main 

common cathode materials used for lithium-ion batteries are lithium cobalt oxide 

(LiCoO2), lithium manganate (LiMn2O4), lithium nickelate (LiNiO2) and lithium iron 

phosphate (LiFePO4). 



 

 
Fig.2 Lithium-ion cell internal structure 

They are one of the most common types of rechargeable batteries in portable electronic 

devices, featuring high energy density, no memory effect, and only slow charge loss 

when not in use. In addition to consumer electronics, increasingly advanced lithium-

ion batteries are also gaining popularity and can be used in the military, pure electric 

vehicles, and aerospace. For example, lithium iron phosphate batteries are becoming a 

common replacement for lead-acid batteries, which have historically been used in golf 

carts and utility vehicles, but this new and efficient battery has been able to break 

through the Various shortcomings of lead-acid batteries, to achieve the goal of 

comprehensive replacement. 

 

2.2.1 Main advantages 

1. High energy density: It varies according to different electrode materials. Calculated 

by mass, it can reach 150-200Wh/kg (540-720kJ/kg); calculated by volume, it can 

reach 250-530Wh/L (0.9-1.9kJ/cm3). 

2. High open circuit voltage: It varies with different electrode materials, up to 3.3 ~ 

4.2V. 

3. High output power: it varies with different electrode materials, up to 300～

1500W/kg 

4. No memory effect: The lithium iron phosphate lithium-ion battery has no memory 



 

effect, the battery can be charged and discharged at any time without being 

discharged, and it is easy to use and maintain. 

5. Low self-discharge: <5%～10%/month. Due to the monitoring circuit of the 

intelligent lithium-ion battery, the operating current of this monitoring circuit is 

even higher than the self-discharge current. 

6. Wide operating temperature range: it can work normally between -20℃～60℃. 

7. Fast charging and discharging speed 

 

2.2.2 Main shortcomings 

1. Over discharge: During over discharge, the excessively embedded lithium ions will 

be fixed in the lattice and cannot be released any more, resulting in accelerated 

shortening of life. Deep discharge (discharge when the voltage is less than 3.0V) is 

more likely to damage the battery. Therefore, it should be avoided to store when 

SOC is low. This process can be described by the following equation: 

𝐿𝑖+ + 𝑒− + 𝐿𝑖𝐶𝑜𝑂2 → 𝐿𝑖𝑂2 + 𝐶𝑜𝑂 

2. Overcharge: During overcharge, the electrode deintercalated too much lithium ions 

which can lead to damage for a long time, thereby irreversibly destroying the battery 

performance. Cars are often designed with a charging limit of about 70% based on 

this feature. Some products even recommend keeping it below 50% daily.  The 

equation is: 

𝐿𝑖𝐶𝑜𝑂2  →  𝐿𝑖+ +  𝐶𝑜𝑂2 + 𝑒− 

3. Aging: Unlike other rechargeable batteries, lithium-ion batteries will inevitably 

degrade during the use cycle (Cycle aging). Even if they are stored and not used, 

their capacity will decrease (Calendar aging).  



 

2.2.3 Electrochemistry 

Like all chemical batteries, lithium-ion batteries are made up of three parts: a positive 

electrode, a negative electrode, and an electrolyte. Both process of lithium ions entering 

the positive and negative electrode material is called "intercalation", and the process of 

leaving is called "deintercalation". The following equations exemplify the chemistry. 

The positive electrode (cathode) half-reaction in the lithium-doped cobalt oxide 

substrate is:  

𝐶𝑜𝑂2 + 𝐿𝑖+ + 𝑒− ⇆ 𝐿𝑖𝐶𝑜𝑂2 

The negative electrode (anode) half-reaction for the graphite is  

𝐿𝑖𝐶6 ⇆ 𝐶6 + 𝐿𝑖+ + 𝑒− 

The full reaction is: 

𝐿𝑖𝐶6 + 𝐶𝑜𝑂2 ⇆ 𝐶6 + 𝐿𝑖𝐶𝑜𝑂2 

 

2.3 Physical factors affecting on cell aging. 

According to the recent research, there are three ageing modes [1]: the loss of lithium 

inventory (LLI); the loss of active material (LAM); the increasing of cell internal 

resistance.  

LLI is mainly caused by the consumption of Li-ions by side reactions, such as on the 

surface of the negative electrode it can forms some solid electrolyte interface (SEI) [2]. 

This will irreversibly consume Li-ions.  

LAM is commonly caused by two factors. The first one is the structural changing of 

electrodes due to volume changes during life cycle. These include mechanical stress, 

particle cracking and reducing the density of lithium storage sites. The second factor is 

that the chemical decomposition and dissolution reactions [3]. The figure.3 shows the 

ageing factors and their effects. 

 



 

 
Fig.3 Ageing factors during usage 

  High Temperatures: It can accelerate side reactions, including SEI layer growth rates 

on the anode, this cause faster LLI and cell resistance increase [4].  

  Low Temperatures: Slow down the transport of Li ions in both electrodes and in the 

electrolyte. The electrolyte meets the graphite electrode, attempts of fast charging at 

low temperatures may thus create crowding of Li ions. This may form lithium dendrites 

and it will penetrate the separator thus cause a short circuit.  

  Over-charge/discharge: When a cell is overcharged, the cathode is over-delithiated 

and the anode is over-lithiated. The cathode material suffers from irreversible structural 

change when over-delithiated [5], followed by the dissolution of transition metal ions 

and active material decomposition [6]. Overcharging the cell can also generate 

significant heat, due to Joule effect [7].  

  High currents: High charge and discharge currents can cause localized overcharge 

and discharge to occur, leading to the same degradation reactions as generalized 

overcharge and over discharge. High current also generates more Joule heat which can 

cause ageing related to temperature problems.  



 

  Mechanical stresses: Cells are subjected to stress from different sources, such as 

manufacturing, electrode material expansion during operation, gas evolution in 

mechanically constrained cells and external loading during service. When stress 

exceeds the limit, the cell structure will be changed, and this can cause the failure. 

 

 

2.4 SOH estimation methods overview 

In this section we will discuss the main SOH analysis methods. In the first part we will 

discuss the traditional methods. Neural network approach will be discussed in the 

second part. 

The model-based methodologies are highly dependent on mathematical physics models 

of the internal structural of the battery to estimate SOH. Various models such as the 

empirical models, electro circuit model can be applied for these approaches. Internal 

resistance and maximum capacity are often used as important parameters for it. 

In this research [8], the author is using a physical-based model to predict SOH. Internal 

resistance-based model [9] is also be developed for SOH prediction. This research 

reported “Incremental capacity analysis (ICA) [10]” approach which is based on 

capacity and voltage. Other approaches such as dual adaptive H infinity filter [11] is 

also used for SOH estimation. The drawbacks of model-based approaches are very 

intuitive: they are highly sensitive to noise and parameter deviation. One the battery 

system becoming large and complicated, the creation and tuning of mathematical 

physics model would be a huge challenge. 

To overcome the noise sensitivity, some filters like Kalman filter and particle filters are 

often used. Although it can solve the problem in some way, it increases the complexity 

and computation demand of the model.  

Machine learning approaches can totally completely overcome this problem. It directly 

learns the features of the provided data. This approach completely skips the physical 

model creation and tuning thus it have a overwhelming advantage to deal with large 



 

and complex system. According to different neural network, it could intrinsically have 

filter effect. Such like recurrent neural networks (RNNs) and long short-term memory 

(LSTM), they can memorize the data history thus automatically avoid the noise 

affection. Other sort of machine learning structural such as support vector machine 

(SVR) [12], multilayer perceptron algorithm [13], K-means clustering algorithm [14] 

are also used for SOH estimation. 

Although machine learning approaches can mostly solve the conventional problem, 

they also have drawbacks. As we know these approaches are data-driven, it has a high 

requirement of training dataset. It requires the test profile can provide sufficient 

information so that to extract the features. The dataset should also cover whole using 

life of the battery so it can provide enough information among every SOH value. The 

acquisition of a such dataset takes a lot of time (several months even a year). The quality 

of the dataset is also important for model training. Less error is in dataset, better model 

quality it can get.  

In the following sections, it will be discussed the ICA approach and LSTMs-based 

RNNs approach. 

 

2.4.1 Incremental Capacity Analysis (ICA) 

Incremental capacity analysis is a method that analyze the cell from electrochemical 

side. It can provide information about the internal cell state by voltage and current 

curves. The equation of ICA is as below: 

 

                          𝐼𝐶𝐴(𝑈𝑐𝑒𝑙𝑙) (
𝐴ℎ

𝑉
) =  

𝑑𝑄(𝑈𝑐𝑒𝑙𝑙)(𝐴ℎ)

𝑑𝑈𝑐𝑒𝑙𝑙(𝑉)
               (2) 

 

Where Q is charged capacity and Ucell is the cell voltage. According to the research of 

Dubarry et al [15]. each peak in the ICA curve has a unique shape, intensity and position, 

it represents a unique electrochemical process occurs in the cell. For this consideration, 

when the aging phenomena take into place, it will influence the shape if ICA curve thus 



 

it can be analyzed. According to Elie Riviere et al. [16] the following ICA curve can 

represent this feature. 

 

Fig.4 ICA curve for different batteries 

There are three main peaks on IC curve, corresponding to the three voltage plateaus on 

the cell voltage versus stater of charge Ucell = f(SoC) curve. In order to analyze ICA 

curve, the evaluation of the features of interest include peak height, area, position, these 

allows conclusions to be made regarding the capacity and changes in the internal 

resistance of a battery cell. ICA is suitable for non-destructive SOH determination as it 

only needs current, voltage data. The computing of the IC curve and the evaluation of 

the battery SOH also require a low computing effort, which is an advantage over model-

based methods like equivalent circuit models that are obtained using electrochemical 

impendence spectroscopy (EIS). More information about alternative SOH estimation 

techniques can be found, for example, in an article by Berecibar et al. [17] 

SOH estimator can use various peak as data. For example, the third peak. It can be 

easily seen that the area under ICA curve is the cell capacity between two voltage limits: 

                    ∫ 𝐼𝐶𝐴(𝑢)𝑑𝑢
𝑢2

𝑢1

=  ∫
𝑑𝑄(𝑢)

𝑑𝑢
𝑑𝑢 = 𝑄(𝑢2) − 𝑄(𝑢1)

𝑢2

𝑢1

                   (3) 

After calculate ICA area (variation of capacity), the SOH value can be calculated by 

following equation: 



 

                       𝑆𝑂𝐻(𝑖𝑛%) =  
𝐼𝐶𝐴 𝑎𝑟𝑒𝑎 (𝐼𝑛 % 𝑜𝑓 𝑛𝑒𝑤 𝑐𝑒𝑙𝑙 𝑎𝑟𝑒𝑎) + 𝛼

𝛽
               (4)     

Where α and β are two sensitive parameters need to defined according to different 

robust test. For example, the temperature and charging current have different α and β 

value.  

 

2.4.2 Differential thermal voltammetry (DTV) analysis 

One of the important tools of SOH computing technology is DTV. It combines 

temperature measurement and ICA analysis. During discharge and charge, the DTV 

detects the cell surface temperature and plots temperature versus voltage (dT/dV). The 

main goal of DTV is to analyze the entropy-related information changes during battery 

operation. The study showed that as the battery ages, the position and amplitude of the 

peaks of the entropy curve change, like what the curve of a conventional ICA would 

represent. 

The peak of the largest DTV change can be used to determine the aging of the battery. 

The analysis found that the position and height of the peaks changed significantly as 

the internal resistance of the cell increased. Generally, DTV can achieve higher C rate 

charge and discharge tests than traditional ICA. Another benefit of DTV is isothermal 

control of the battery, as it only affects the results if the temperature is significantly 

higher than the ambient temperature. This makes the experiments operationally easier 

and less expensive. 

 

2.4.3 Differential mechanical parameter (DMP) analysis 

The stress-strain parameters of the battery can also be used as the parameters for SOH 

analysis. According to the working principle of lithium-ion batteries, the 

intercalation/deintercalation process of lithium ions in electrode materials is related to 

the volume change and internal stress of the battery. Mechanical stress in the internal 



 

structure of the cell is the result of electrode expansion against the constraints which is 

normal to the electrode plane. This stress can be measured by sensors mounted on the 

cell surface. Recent studies have found that this stress-SOH relationship is due to the 

growth of SEI, so dε/dQ, and its second derivative, or dε/dV, can be analyzed to obtain 

a curve like the ICA analysis.  

Table 1 summarized the features and estimation methods used for those traditional SOH 

estimation methods. 
Differential 

analysis 

Current rate Features Battery 

chemistry 

Ref 

IC 

IC 

IC 

IC 

IC 

DV 

DV 

C/10 

C/2 

1C 

C/2 

C/20 

C/5 

1C 

Peak height 

Peak position 

Peak area 

Peak height 

Peak position 

Regional cap. 

Location 

interval 

LFP 

NMC 

NMC 

LFP 

NMC 

LFP 

LFP 

Jiang et al. 

[18] 

Li et al. [19] 

Tang et al. [20] 

Weng et al. 

[21] 

Zhang et al. 

[22] 

Berecibar [23] 

Wang et al. 

[24] 

Table 1 Features and estimation methods for traditional SOH estimation 

Table 2 shows the advantages and disadvantages for each method. 
Methods Advantages Disadvantages 

ICA analysis 1. Easy to monitor, only 

needs two parameters 

2. Can be applied to 

different types of cells. 

1. Limited to low current 

rate. 

2. Sensitive to measurement 

noise 

 

3. Influenced by the 

operation temperature 

 

DTV analysis 1. Easy, only needs two 

parameters 

1. Needs additional and 

calibrated temperature 



 

2. Can be used for 

monitoring cells in 

parallel. 

sensors 

2. Sensitive to testing 

temperature variations 

DMP analysis 1. Can be applied for cells 

with a high initial SOC. 

2. Not limited to low and 

constant current rates. 

3. Applicable to high current 

rates. 

1. Needs additional 

equipment for the 

mechanical parameter. 

2. Not applicable to cells 

constrained with hard 

covers 

3. Difficult for online 

application 

Table 2 Advantages and disadvantages for traditional methods 

 

2.5 Introduction of neural networks 

2.5.1 Basic components and structure of FNNs 

As table 2 shows above, traditional methods have lots of limitations and they are 

hardly applicable for online real-time application. 

Neural network is a new technique raised up in recent years, thanks to the quick 

development of hardware (CPU/GPU). The most basic function of a neural network is 

to learn features from the input data (such as text, pictures, signals etc...) and give its 

predictions. 

 

 

 

Perceptron: 

The basic unit of a neural network. perceptron can be considered as a mathematical 

mapping, it does some math calculation to the input, and produces one output, figure.5 

shows a structure of Neuron. 

 



 

 

Fig.5 Neuron structure 

The mathematical operation is the following expression, as eq5 shows: 

                                                   𝑓(𝑥) = ∑ 𝑤𝑖𝑥𝑖 + 𝑏 = < 𝑤, 𝑥 >

𝑖

                                      (5) 

Where w is weighting factor and b is bias. x1 to x5 are five features of the task. 

Perceptron adjusts themselves to minimize the loss function until the model get a very 

high accuracy. Learning process is to estimate the parameters w and b.  

 

Hidden layers 

In neural networks, a hidden layer is positioned between the input and output layer. In 

hidden layers the functions apply weights to the inputs then directs them through an 

activation function as the output. The hidden layer gives nonlinearity to the inputs.  

 
Fig.6 Structure of Neural network 



 

Activation functions 

Activation function is usually located in the end of hidden layer, before the output layer. 

It turns the network from a simple linear matrix transformation to a complex nonlinear 

transformation thus increase the learning capability of the network. 

Activation function is like a gate that checks if an incoming value is greater than 

threshold value. If the value is large enough, the activation function activates, otherwise 

it does nothing. 

The table 3 shows some common activation functions: 

 

Table 3 Different activation functions 

 

 

Fully connected layers: 

As mentioned above. A neural network architecture is composed by means of 

perceptron. Each individual perceptron consists of a function. In fully connected layers, 

the neuron applies a linear transformation to the input vector through a weight’s matrix.  



 

 
Fig.7 Fully connected layer 

 

 

Gradient Descent: 

Training process need to minimize the loss function by estimating weighting factor and 

bias. Gradient descent is designed for this aiming.  

A gradient simply measures the change in all weights regarding the change in error. It 

can be considered as a slop function (derivative function). The higher the gradient, the 

steeper the slope and the faster a model can learn.  

 
 



 

Fig.8 Gradient descent path 

As figure.8 shows, the closed line represents contour line. The gradient descent starts 

from x0. At x0, it finds the steepest step to reach x1, then the function finds the steepest 

step to descent from x1 to x2 and so on. This process can be expressed by eq6 

 

                                                             𝑏 = 𝑎 − 𝛾∇𝑓(𝑎)                                                     (6) 

In eq6, b is the new value after descent, a represents the current value. The minus sign 

refers to the minimization part of gradient descent. 𝛾 is the learning rate, it determines 

the step length of each descent. df(a) is the direction of the steepest descent. It is crucial 

that to choose an appropriate learning rate 𝛾. Small learning rate can cause a very slow 

descent speed, thus, increase training time. Large learning rate can make network not 

reach the local minimum because it bounces back and forward between the convex 

function. Figure.9 shows these conditions. 

 
Fig.9 Influence of a not appropriate learning rate 

2.5.2 Recurrent neural network  

A recurrent neural network (RNN) is a type o artificial neural network which uses 

sequential data or time series data. These deep learning algorithms are commonly used 

for ordinal or temporal problems, such as language translation, natural language 

processing (nlp), speech recognition, and image captioning. They are incorporated into 

popular applications such as Siri, voice search, and Google Translate. 

Traditional deep neural networks consider that inputs and outputs are independent 

from each other. RNN can take information from prior inputs to influence the current 



 

input and output, thus the memory. Figure 10 shows RNN and normal FNN 

architecture.  

 

Fig.10 RNN and FNN architecture 

We can process a sequence of vectors x by applying a recurrence formula at every time 

step: 

                                                ℎ𝑡 =  𝑓𝑊(ℎ𝑡−1, 𝑥𝑡; 𝜃)                                                 (7)   

                                         

 ℎ𝑡 is new state; 𝑓𝑊 is a certain function with parameters W; ℎ𝑡−1 represent old state 

and 𝑥𝑡 is the input vector at a certain time step. 𝜃 is the set of parameters. Training 

of the RNNs is training 𝜃.  

In vanilla RNN, 𝑓𝑊 is usually a ‘tanh’ function. Thus ℎ𝑡 can be written as: 

 

                                      ℎ𝑡 = tanh(𝑊ℎℎℎ𝑡−1 + 𝑊𝑥ℎ𝑥𝑡; 𝜃)                                    (8) 

 

                                                       𝑦𝑡 =  𝑊ℎ𝑦  ℎ𝑡                                                         (9) 

Feedforward networks map one input to one input while RNN do not have this 

constraint. There are several different types of RNNs: 

One-to-One:  



 

 

Fig. 11 One-to-One RNN structure 

  

One-to-Many 

 
Fig. 12 One-to-Many RNN structure 

Many-to-One: 

 
Fig. 13 Many-to-One structure 



 

 

Many-to-Many: 

 

Fig. 14 Many-to-Many structure 

Recurrent neural networks utilize ‘backpropagation through time (BPTT) algorithm’ to 

determine the gradients. The concept of BPTT is the same with respect to conventional 

backpropagation: the model correct itself by calculating errors from output layer to its 

input layer. But the difference between BPTT and conventional one is that BPTT sums 

error at each time step while conventional approach does not need to sum errors. This 

is because conventional approach does not need to share parameters in each layer (they 

do not have memory).  

To explain it will, we can write a recurrence relation to show the iteration chain. 

 

 ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡; 𝜃) = 𝑓(𝑓(ℎ𝑡−2, 𝑥𝑡−1; 𝜃), 𝑥𝑡; 𝜃)  = 𝑓(… 𝑓(ℎ0, 𝑥1; 𝜃), … 𝑥𝑡; 𝜃)   (10) 

 

To train the network means to train 𝜃. This means during the propagation it needs to 

compute all hidden states ℎ1, ..., ℎ𝑡 to calculate the gradients of the network, so it is 

called BPTT.  

When vanilla RNNs operate BPTT to train itself, there will be two problems: “Gradient 

exploding” and “Gradient vanishing”. These problems are usually caused by 



 

inappropriate gradient size setting. When the gradient is too small, it continues 

becoming smaller thus the speed of gradient descent is getting slower and slower. At 

the end the algorithm will no longer learning. Gradient Exploding occur when the size 

of gradient is too large. In this case, the gradient will grow too large (in some case it 

will tend to NaN).  

From eq10 we can derive a matrix equation to explain this problem: 

 

ℎ𝑡   = 𝑓(… 𝑓(ℎ0, 𝑥1; 𝜃), … 𝑥𝑡; 𝜃) = 𝑊𝑇(… 𝑊𝑇ℎ0 … ) = (𝑊𝑡)𝑇ℎ0 = 𝑄𝑇Λ𝑡𝑄0 (11) 

 

Repeated application of the same weighting parameter through all hidden layer leads 

to the eigenvalues Λ of the parameters to be raised to t, that is the length of the 

sequence. This means, as the iteration operating, eigenvalues Λ smaller than 1 is lead 

to vanishing eigenvalues to 0 while eigenvalues larger than 1 is led to exploding 

eigenvalues. 

 

 

2.5.3 Long Short Term memory (LSTM) 

As it has been mentioned in 4.2.3, RNNs have gradient vanishing and exploding 

challenge. To overcome this, long short-term memory has been developed. LSTM 

allows the network to remember longer sequences. They are using gate unit to avoid 

the problem.  

LSTMs are most widely used structure of RNNs. Figure.15 gives a basic structure of 

LSTM. 



 

 
Fig.15 LSTM structure 

 

The core of LSTMs is the state of cell, as shown in figure.16 red line. 

 

Fig.16 

The gate unit is shown in figure.17. They are a way that optionally let information 

through. They are a sigmoid neural net layer and a pointwise multiplication operation. 

 



 

 
Fig.17 Gate unit 

The sigmoid function can only output numbers between zero and one depending on if 

the signal is large enough to activate it. A value of zero simply means “nothing can 

pass” while a one value means “everything can pass”. The LSTMs has three of these 

gates to control the cell state.  

 

2.5.4 A walk through step-by-step in LSTM 

As shown in figure.18 the first step of LSTM is to let sigmoid layer decide if the 

information can throw aways from the gate. This sigmoid layer is also called “forget 

gate layer”. It outputs 1 or 0 to Ct-1 depends on ht-1 and xt value. 1 stands for “add ht-1 

and xt value into Ct-1” while 0 stands for “completely get rid of this”. Eq12 can express 

this procedure. 

                                             𝑓𝑡 =  𝜎(𝑊𝑓 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                        (12) 



 

 

Fig.18 

The second step is to decide if ht-1 and xt are going to be memorized. As figure.19 shows, 

sigmoid function (known as “input gate layer”) is deciding the operation. Then a tanh 

function creates a new vector Ct’. Then Ct’ will multiply it, which is the output of input 

gate layer. Since sigmoid can only output 1 or 0, this multiplication is deciding the final 

value is Ct’ or 0 thus if it should be added into cell state. Eq13 and eq14 also express 

this procedure. 

 
Fig.19  

 

                                             𝑖𝑡 =  𝜎(𝑊𝑖 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                        (13) 



 

 

                                         𝐶′𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝐶 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)                                  (14) 

 

The third step is to upgrade cell state Ct-1 to Ct (shown as figure.20). This procedure is 

done by previous calculation. Two sigmoid layers decide if the new value should be 

added into cell state. Eq15 can represent it.  

 

                                                     𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡 + 𝑖𝑡 ∗ 𝐶′𝑡                                              (15)  

 
Fig.20 

The final step is to decide what it is going to be output (figure.21 and eq16,17). Cell 

state is firstly applied by a tanh function so that push its value between -1 and 1. Then 

the third sigmoid layer applies to input to give Ot, according to the elements in vector 

Ot (1 or 0), network decide which element of the cell state should be output.  



 

 
Fig.21  

 

                                             𝑜𝑡 =  𝜎(𝑊𝑜 ∗ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                        (16) 

                                                    ℎ𝑡 =  𝑜𝑡 ∗ tanh (𝐶𝑡)                                                  (17) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 3. SOH estimation methodology 

In this section the working principle and steps of the whole project will be described in 

detail, and a comparison and discussion of the results will be given at the end. 

Here figure.22 shows a flow chart to explain it better. 

 

 
Fig.22 Model flow chart 

Training process start with data acquisition phase. During this phase a test bench was 

operated a well-designed charging/discharging profile to age the cells. Current, voltage 

and temperature profile were collected as training data.  

During feature generation phase. Some features were extracted from raw data. To do 

this, move sliding window approach has been applied. To test the robustness of the 

model, training data were collected from cell #3 while validation data were collected 

from cell #1. 

Network training phase aimed to construct the neural network structure and train it with 

different group of parameters to get the lowest RMSE.  

The last phase is the implementation on Simulink. Since in previous phase was already 

got a well-trained network. This phase is to replicate the whole model into Simulink 

and reach the real time application requirement.  

 



 

3.1 Battery introduction 

The battery cell used for data acquisition is Sony Murata US18650vtc6.  

 
Fig.23 Sony Murata US18650vtc6 cell 

This battery has the following parameters and characteristics. 
Nominal Capacity at 

0.2ItA 

3120mAh 

11.23Wh 

Discharge 

2.0V cat off at 23℃ 

Rated Capacity at 0.2ItA 3000mAh 

10.8Wh 

Discharge 

2.0V cut off at 23℃ 

Capacity at 1ItA 2850mAh 

10.12Wh 

Discharge 

2.5V cut off at 23℃ 

Capacity at 10ItA 2700mAh 

9.18Wh 

Discharge 

2.5V cut off at 23℃ 

Nominal Voltage 3.6V  

Internal Impediance 13mΩ Measured by AC1kHz 

Cycle performance 53% Min. Of initial 

capacity at 300 cycles 

10A discharge 

Table 4 Parameters of cell VTC6 

 

The standard charge condition for this battery is: 
Charge method Constant current/Constant voltage 

Charge Up Voltage 4.2±0.05V 

Charge Current 3.0A 

Charge Time 2.5h 

Ambient Temperature 23℃ 



 

Table 5 Standard charge condition of Sony Murata US18650vtc6 

 
Fig.24 Charge characteristics of Sony Murata US18650vtc6 

 

 

Fig.25 Discharge characteristics of Sony Murata US18650vtc6 



 

The raw data is acquired from a test bench. The test bench has six VTC6 cells connected 

in series. Elithon cell boards aimed for cell voltages measurement while three LM35 

Texas instrument temperature sensors measure the temperature profile. Considering the 

safety problem, an Elithion (Lithulmate) BMS and an emergency stop device are also 

connected on the test bench. An Arduino Mega board is connected via LAN to a PC to 

acquire the measured data.  

 

Fig.26 Experimental setup for data acquisition 

 The experiment is under a controlled ambient temperature condition (25 Celsius 

degree). Between each test phase the cells are cooled by natural convection with a 

certain air circulation in the room. The room temperature dose not influenced by cells. 

Three temperature sensors are installed on the surface of cell 1, 3, 4. 

3.2 Test cycle introduction and training dataset selection 

To age the cell, the main test cycle is composed by five different profiles: Charging 

profile; Discharging profile; Pulse profile; Polarized random walk profile. Random 

walk profile.  

 

3.2.1 Charging profile 

Cycle starts with 0% SOC and with C/2 charging rate. In this experiment, all charging 

phases were fully charged, and all had the same C rate. 



 

 

 

 

Fig.27 I,V,T profile of Charging phase 

 

3.2.2 Discharging profile 

Discharging phase start from 100% SOC aimed to fully discharge the battery. In some 

phase in order to simulate the real conditions, fully discharging can be done during two 

phases.  

 

 



 

 

 

Fig.28 I,V,T profile of discharging phase 

 

3.2.3 Pulse profile 

This process is still a discharge, but with a very large dynamic range. This setting can 

best reflect the operation of the battery pack under the condition of regular dynamic 

power demand.  

 



 

 

Fig.29 I,V,T profile of Pulse phase 

3.2.4 Polarized Random Walk profile 

This process is still discharge, but unlike pulse phase, in addition to the highly 

dynamically power requirements, a small amount of charging characteristics is added 

while ensuring overall phase is discharge. The appearance of charge and discharge is 

an irregular random signal. This phase can simulate the real use situation and has a high 

practical reference significance. 

 

 

 



 

Fig.30 I,V,T of PRW phase 

3.2.5 Random Walk profile 

The random walk algorithm is used to generate random signals without any regularity, 

which is used for the aging battery. The sequence of the charging and discharging 

process and the magnitude of the current are completely random. The SOC remains 

unchanged throughout the random walk process 

 

 

 

Fig.31 I,V,T profile of RW phase 

All these 5 cycles are combined with a certain ordinary as follow: 



 

 
Fig.32 Test cycle 

This cycle is composed by 43 phases. In figure there are only action phases, between 

each action phases a break phase has been inserted to cool down the cell.  

Because SOH has a very low dynamic, this test cycle has been operated for 55 times. 

The whole experiment lasted for several month. 

After all these operations, the SOH reduced from 100% to almost 82%. All acquired 

data are saved in 2763 files which can be processed by MATLAB. Figure.33 shows a 

small part of these data. 

 
Fig.33 A part of all data 

The training dataset of the network are “charging profile”, “pulse profile” and 

“polarized random walk profile”. There are two main reasons for select these three 

profiles. 

First, to train a neural network the ground truth (label) value is necessary. As eq1 shows, 

to compute SOH it is necessary to know Cr for each test cycle since it varies from initial 



 

value to a reduced value. Due to cycle design, not all phases are complete charging or 

discharging phase. These phases are complete charging/discharging profile, so it 

supports the calculation of SOH ground truth value. Therefore, the thesis will use a 

specific phase to represent the aging caused by all 43 phases. This is a compromise of 

data. 

Second, these phases represent three different usage condition. Training on these three 

training sets can well verify the robustness of the network, thereby increasing the 

reliability of the experimental results.  

It must be highlighting why the PRW phase was chosen instead of the RW phase as the 

training dataset. The purpose of RW phase is to age the battery, due to the signal is 

highly random, the features changing brought about by the reduction of SOH will be 

covered by random noise, so it is impossible to extract useful information from this 

cycle for network training. Moreover, in the real operating conditions, the charging of 

the electric vehicle during driving is brought by the energy recovery system. Although 

the charging provided by this system is random, the SOC is constantly decreasing, 

which is different from the RW phase (RW required SOC remains constant). Therefore, 

the PRW phase will be used as the training dataset instead of the RW phase.  

 

3.3 Feature introduction 

Feature generation is a pivotal step for the training process.  Feature processing can 

highly influence the performance of network. It is necessary that to choose the high 

relevant and precision features as training dataset. Figure.34 summarized different 

feature variables for model training. They are divided into four perspectives, including 

incremental calculation, time, envelope area, and model parameters. The detailed 

procedure of these health features is expounded below [25].  



 

 
Fig.34 Feature summary   

 

 

3.3.1 Incremental calculation-based features 

As mentioned above, IC curve is an effective tool to measure battery capacity loss. As 

the battery aging, total capacity, peak value, peak value position and valley value will 

change regarding to the SOH reduction. These variations can be seen as indicators for 

SOH changing.  

 

Fig.35 IC feature changing regarding to SOH reduction 

But this approach needs to wait to a certain time point to let the peak value appears. 

This means that it cannot be used for real time application. Considering this drawback 

this kind of features are not selected for the thesis.  

 

 



 

3.3.2 Time-based and envelope-based features 

It has the same drawback as IC-based features. To get the features it needs to wait for 

CC and CV charging phase finishing. This limitation makes it cannot be used for real 

time application methods.  Same situation for envelop-based features, it cannot be used.  

 

3.3.3 Snapshot-based features 

This features extraction method is based on a snapshot approach: move sliding window. 

This extraction approach can periodically generate the features which is a well match 

with real time application requirements.  

Move sliding window can real-time trace battery states without waiting for specific 

features to appear (peak value, peak position etc.) 

Here I would like to introduce the move sliding window working mechanism.  

 

Fig.36 Move sliding window mechanism 

The working principle is illustrated in figure.36 using the current-time graph as an 

example. To apply this approach a window width (delta) should be firstly defined. 

Considering the data length and training time this value is set to 120 sample points (60 

seconds). The buffer size is a compromised chosen to minimize the noise and error of 

raw d When the window covers a part of data, calculate the corresponding feature 



 

among this window (Feature group 1). Then the window slides to the next position and 

extracts the feature group 2. With this algorithm the following feature group can be also 

estimated.  

Available features are SOC, dSOC, SOE, dSOE, dV. These features are the parametric 

variables of the cell that show the strong correlation with cell degradation. They can be 

summarized in table 6   
Features Unit 

ΔV [V] 

SOC [%] 

ΔSOC [%] 

SOE [Wh] 

ΔSOE [Wh] 

Table 6 Training features 

These features can be computed from MATLAB script. It will introduce the calculation 

method and code script in detail.  

 

3.3.3.1 SOC and dSOC estimation 

SOC is an important parameter. Many variables and other parameters are dependent on 

it. The definition of SOC is the percentage of charge in a cell with respect to the 

maximum cell capacity. SOH is relevant to SOC and without knowing SOH, it is 

impossible to know the true value of SOC since SOH reduction influences the 

maximum capacity of the cell. The estimation of SOC is done by ‘Ampere-hour integral 

method’.  Eq 18 show the calculation method.  

                                              𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶(𝑡0) +
∫ 𝑖(𝑡)𝑑𝑡

𝑡

𝑡0

𝐶𝑚𝑎𝑥
                                     (18) 

To calculate SOC, it is necessary to estimate Cmax which is the maximum capacity of 

the battery for a certain cycle. It should be updated at each cycle since SOH is 

continuously reducing. By updating Cmax, it can guarantee that SOC is always between 

the range of 0%-100% but the slop changes.  this value is also computed by using 

Ampere-hour integral method. Eq 19 shows this process: 



 

                                                       𝐶𝑚𝑎𝑥 =  ∫ 𝑖(𝑡)𝑑𝑡
𝑡𝑒𝑛𝑑

0
                                                   (19) 

The results are: 

 
Fig.37 Maximum capacity for each cycle 

 

And dSOC can be calculated as 

                                                  𝑑𝑆𝑂𝐶 = 𝑆𝑂𝐶(𝑡) − 𝑆𝑂𝐶(𝑡0)                                        (20) 

Figure.38 and figure.39 shows the SOC and dSOC profile. 

 

 



 

 

Fig.38 SOC profile for each phase 

 

 

 

Fig.38 dSOC for each profile 

 

 

3.3.3.2 SOE and dSOE estimation 

As figure.38 shows above, at the upper and lower extreme, the dSOC curve has a large 

nonlinearity which can influence the network training.  



 

To minimize this effect, it is necessary that introduce energy state to correlate. State of 

energy (SOE) is the integral of voltage and current over time, which can be defined by 

eq 21  

                                                   𝑆𝑂𝐸(𝑡) =  ∫ 𝑣(𝑡)𝑖(𝑡)𝑑𝑡  
𝑡

𝑡0

                                 (21)   

And dSOE can be computed as: 

                                                    𝑑𝑆𝑂𝐸(𝑡) = 𝑆𝑂𝐸(𝑡) − 𝑆𝑂𝐸(𝑡0)                             (22) 

The results are as follow: 

 

 

 

Fig.39 SOE profile for different phase 



 

 

 

 

Fig.40 dSOE profile for different phase 

 

3.3.3.3 dV estimation 

From electric circuit point of view, the terminal voltage is a summary of three 

components: open-circuit voltage (Voc) which is a equilibrium voltage and it’s a 

function of SOC; Polarization voltage (Vp) which is the representation of voltage 

dynamics and ohmic voltage (Vohm) which implies the reduction of energy state due to 

the capacity degradation. Eq 23 shows this relationship: 

                                   𝑉(𝑡) = 𝑉𝑜𝑐(𝑆𝑂𝐶(𝑡)) + 𝑉𝑝(𝑡) + 𝑉𝑜ℎ𝑚(𝑡)                   (23) 

Theoretically, in lithium-ion battery, terminal voltage drops quicker following the 

reduction of SOH. This also cause a faster charge and discharge speed as cell ages. 

The computation results are as follow: 



 

 

 

 

Fig.41 dV profile of different phase 

3.4 Feature standardization  

Standardization of training data is a very important post-processing step. As shown in 

table 6, between different features, their values are very different, and their units are 

also different. If these data are directly put into the network for training, the features 

with large numbers will have a greater impact on the weight matrix of the network, and 

vice versa. This will cause the network to not treat each feature equally, thus resulting 

the training failure. 

To solve this problem, the data must be standardized. In this thesis, the data is 

standardized by using the ‘z-score’ function.  

 

 



 

3.4.1 Introduction of z-score 

For a variable x with mean μ and deviation σ, the z-socre of a value x is [19] 

                                                           𝑧 =  
(𝑥 − 𝜇)

𝜎
                                                        (24) 

 

For sample data with mean X and standard deviation S, the z-score of a data point x is  

                                                           𝑧 =  
(𝑥 − 𝑋)

𝜎
                                                        (25) 

z-scores measure the distance of a data from the mean in terms of the standard deviation. 

This is so called ‘standardization’ of a data. The standardization data set has mean 0 

and standard deviation 1, and retains the shape properties of the original data set (same 

skewness and kurtosis),  

 

Since the operation of z-score is based on mean value and deviation, in order to obtain 

complete and continuous data with the same degree of shape scaling standardization 

can only be used for all feature data in the training set. This operation can be used only 

in offline training process. Thanks to z-score also has a parameterization function, 

which enables it to be used in real-time computing systems.  

In the process of offline training, the mean value and deviation of all features can be 

saved in advance, and the MATLAB function module can be built in Simulink 

according to the eq 25 to realize real-time standardized operation. This part of the 

content will be detailed in the next chapters. 

Figure.42 to figure.43 shows features after standardization process. It can be clearly 

observed that the value of them has been scaled into the same magnitude. This ensures 

that the network learns equally for all features.  

  



 

 

 

 

Fig.42 Standardized SOC feature 

 

 



 

 

Fig.43 Standardized dSOC feature 

 

 

 

 

 

Fig.44 Standardized SOE feature 



 

 

 

 

Fig.45 Standardized dSOE feature 

 

 

 



 

 

Fig.46 Standardized dV feature 

 

3.5 SOH ground truth value estimation  

To train the network, the SOH ground truth (label) is also necessary. This part will 

explain the estimation process of this value.  

As it has been defined in section 1, the most critical step for SOH estimation is to 

calculate the maximum capacity for each cycle. This value has been computed in 

section 5.3, then following the eq 1 we can compute SOH ground truth value.  

 
Fig.47 SOH ground truth value 

However, due to the inevitable measurement error, it can be clearly seen that the 

original SOH data is not monotonically decreasing but has many fluctuations. As the 

reference value used for network training, the SOH must be accurate and eliminate all 

noise and errors as much as possible. Although the Butterworth filter used above can 



 

filter the noise which is higher than a specific frequency, it cannot play the role of data 

continuity. Therefore, a high-order polynomial regression method is used to obtain a 

smoothed curve. The polynomial regression algorithm can be described by the 

following formula: 

                            𝑦(𝑥, 𝑤) =  𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + ⋯ + 𝑤𝑀𝑥𝑀 =  ∑ 𝑤𝑗𝑥𝑗𝑀
𝑗=1       (26)        

Using MATLAB’s curve fitting toolkit, it is easily to perform polynomial regression 

calculations to determine the value of the polynomial coefficient wj. Table 7 shows 

these coefficient results: 

 

Table 7 Regression parameters 

 

The regression curve is shown in figure.48 as follow: 

 
Fig.48 SOH regression curve 



 

As pointed out in Section 5.2, in order to compromise the data structure, this thesis 

uses a specific phase to replace the aging effect caused by all phases. Considering that 

the dynamics of SOH is actually very low, in a phase, the change of SOH is almost 

null. Although this thesis uses a compromise strategy, in order to be more realistic, 

the invariance of SOH during a single phase will be preserved. Therefore, the SOH 

curve must also be stepped: 

 
Fig.49 Stepped SOH ground truth 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Chapter 4. Network structure and training results 

 4.1 LSTM network structure and training parameters 

As shown in figure.50, the network structure is as follows. First, the input features are 

reshaped into cells, which are directly input into the LSTM layer, and then go through 

the fully connected layer and the regression layer to get the SOH result.  

 

Fig.50 LSTM network structure 

The definition of the entire network and training process is done using Matlab's deep 

learning network toolbox. To better explain the network structure, here is the 

corresponding code.  

 

numFeatures = 5; %Number of features 

numHiddenUnits = 10; 

numResponses = 1; %Number of outputs, 1 SOH value. 

maxEpochs = 5000; 

miniBatchSize = 100; 



 

LSTM = [ ... 

    sequenceInputLayer(numFeatures) 

    lstmLayer(numHiddenUnits,'OutputMode','last') 

    fullyConnectedLayer(numResponses) 

    regressionLayer]; 

options = trainingOptions('adam', ... 

    'ExecutionEnvironment','cpu', ... 

    'MaxEpochs',maxEpochs, ... 

    'MiniBatchSize',miniBatchSize, ... 

    'GradientThreshold',1, ... 

    'Verbose',false, ... 

    'Plots','training-progress'); 

%%Training 

net = trainNetwork(XTrain,YTrain,LSTM,options); 

delete(findall(0)) 

The training parameters setting are as follow: 
numFeatures Number of features used for training. 

numHiddenUnits Number of LSTM layers. 

numResponse Number of estimation value (one in this 

case). 

maxEpochs Number of epochs for entire training. 

miniBatchSize Number of mini batch size for gradient 

descent process. 

Table 8 Training parameter explanation 

The training process uses five different features, so ‘numFeatures’ is set to 5. The 

number of LSTM layers can be set differently. The more layers, the longer the training 

time and the stronger the learning ability, but the more prone to overfitting. The 

maximum number of epochs is the total training amount. The minimum batch size 

defines the amount of data processed by the gradient descent algorithm each time. The 



 

larger this parameter is, the larger the amount of data involved in the gradient descent 

each time, and the slower the gradient descent operation will be.  

These parameters were randomly set within reasonable intervals, and the entire training 

process took several weeks to find the best training results. 

Figure.51 shows the window of the training process. 

 
Fig.51 Training process 

 

4.2 Training Results  

Training results for charging, pulse and prw phase are as follow: 

 

Fig.52 Charging phase result 

 



 

 

Fig.53 Pulse phase result 

 

 

Fig.54 PRW phase result 

 

 

Table 9 RMSE and Maximum error comparison 

It should be noted that for the charging cycle, since the charging strategy changes from 

CC (constant current) to CV (constant voltage) when the SOC is about 65%, the current-
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voltage curve changes abruptly here, which has a huge impact on the training of the 

network. Therefore, the charging cycle should have the best training result, but it was 

affected by this factor, it performed poorly. Considering what was mentioned in 5.5, 

the SOH should theoretically keep invariance within a single cycle. Therefore, it can be 

speculated that if only the CC stage is used for training, the most precise results to the 

SOH ground truth will be obtained. Figure.55 shows the result only using CC strategy.  

 

Fig.55 Charging phase only with CC strategy 

 
Table 9 All phase comparison 
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Chapter 5. Simulink modeling implementation 

5.1 Simulink modeling overview 

5.1.1 SOH estimation model 

As mentioned in the introduction, the final step of this thesis is to implement the 

modeling of the SOH prediction system in Simulink. In order to achieve this goal, it is 

necessary to reproduce the idea in Simulink and realize the real-time feature extraction 

function. For this reason, it is necessary to give the macro structure of the model here, 

and to elaborate on the module structure and specific functions in the following chapters 

 
Fig.56 Simulink model flowchart for SOH only 

As the figure.56 shows. The raw data is first collected from the battery, and the SOC 

calculator uses the current data to calculate the SOC value and feed it into the feature 

extractor. The feature extractor will extract five features in real time and feed them into 

the network for SOH estimation.  

It should be noted that the feature extractor and SOH estimator do not work all the way 

but are controlled by a trigger mechanism. This is because a portion of the curve 

features would seriously interfere with the work of the SOH predictor. This part of the 

content will be detailed in the SOH and SOC combined network section. 

 



 

5.1.2 Combined model with SOC and SOH estimators 

Figure.57 shows the co-simulation model of SOH and SOC. In this model, the SOH 

and SOC computing modules interact with each other. The calculation results are 

mutual input signals. 

 

Fig.57 Combined network 

Since there are multiple computing modules in the joint network, the computing 

efficiency will be greatly affected. Therefore, an additional trigger mechanism is 

designed in the module, and the corresponding module is triggered only when the 

calculation is required to improve the operation speed. 

 

5.2 Simulink model of SOH estimator 

After successfully training the network, this chapter will build the Simulink model. The 

model completes the whole process from raw data processing to SOH calculation.  

The figure.58 shows the whole picture of the model. This article will explain the 

function of each module one by one. 



 

 

Fig.58 Overview of Simulink model 

Start from left side blocks. Voltage, current and SOC are three blocks of raw data. 

Although in training process SOC is a calculated feature, considering the combined 

network in next step, in this model SOC is treated as a known feature. Three buffers are 

placed after raw data block. The purpose of these blocks is to implement the move 

sliding window approach. Due to the intrinsic characteristic of the buffer blocks, they 

will only output these data after the internal space is filled, which perfectly match the 

characteristic of the move sliding window, so the buffer size is set to 120 data points, 

which is consistent with the window width setting during training phase.  

Next, the stored data will be sent into the feature extraction subsystem. Fix.xx shows 

the structure of the subsystem. 

 
Fig.59 Internal structure of feature extractor subsystem 



 

As in the training process, the current and voltage data are first fed into the ‘movmean’ 

function for noise reduction, and then fed into the corresponding MATLAB functions 

for feature extraction. 

All extracted features will be formed into a feature vector through the ‘mux’ block. 

Note that the order of features in this vector must be the same as during training. 

According to the characteristics of the ‘mux’ block, the features should be connected 

to the ‘mux’ from top to bottom according to the arrangement order of the features in 

the feature vector during training. 

The fused feature vector will be directly sent to the SOH module for calculation. For 

the SOH estimator works properly, a resettable and a triggered subsystems are used 

here. 

Figure.61 shows the resettable subsystem. This subsystem is aimed for resetting the 

initial condition of the network before it estimate SOH, thus, to make it works properly. 

It is triggered by a pulse generator. Figure.60 shows the pulse signal generated by it.  

 

Fig.60 Pulse generator signal 

Inside the resettable subsystem, the reset block is set with rising edge. This means, with 

such pulse signal, the subsystem is triggered to reset every 120 seconds.  

Figure.62 shows the internal structure of resettable subsystem. Inside it, another 

triggered subsystem is placed. This subsystem uses the falling edge of the pulse signal 

as trigger.  



 

 
Fig.61 Internal structure of resettable subsystem 

 

Fig.62 SOH estimator  

To summarize the working principle of the two-layer subsystem: the calculation of 

SOH occurs at the 120th data point. A system reset is required before each SOH 

calculation. Therefore, according to the pulse signal, at the 119th data point, the rising 

edge appears, resettable subsystem makes the system reset itself, and then at the 120th 

data point, the falling edge appears, triggered subsystem calculates the SOH value. The 

pulse generator repeats this signal every 120 seconds, and the model following this 

signal periodically.  

Different networks are selected inside ‘stateful predict’ block. By selecting charging, 

pulse and prw networks and feed the model with corresponding raw data, the model 

can estimate SOH for different phase.  

 

5.3 SOC and SOH combined model.  

The final goal of this thesis is to combine the SOC estimator for the computation of the 

two values.  



 

 

Fig.63 Combined model structure 

The structure of the SOH part is the same as described in the previous section. The 

following will introduce the structure and function of the SOC part. 

 

 
Fig.64 SOC estimator structure 

SOC estimator is a combination of three different individual network. Each of them is 

trained in a certain range of SOH condition. Class1 is under SOH>0.93; Class2 is under 

0.93>SOH>0.9 and class3 is under SOH<0.9.  

It has also designed 1 and 5class model as comparison. As figure.65 and figure.66 

shows below 



 

 
Fig.65 5 class model 

 

In this structure SOH is not an input of SOC but a judgment signal. As shown in above, 

SOH value is sent into a ‘if’ block as judgment. SOC networks are placed in three ‘if 

action subsystem’. A ‘merge’ block is used for SOC signal fusion.  

Therefore, the estimated value of SOH is used as the judgment signal of the SOC 

estimator, and the value of the SOC estimator is used as the input feature of SOH. The 

two systems are combined and realize the joint simulation. 

 

 
Fig.66 1 class model 



 

1 The class model is different from other structures in that it uses SOH as an input 

feature rather than a judgment signal. 

 

5.4 Model test scenario and results 

5.4.1 Simulation scenario description 

As mentioned above, the CC part of the charging phase will give the best SOH 

prediction results, and the PRW phase can best reflect the real working condition, so 

this thesis decided to reorganize the data set to realize the combination of charging and 

discharging. Figure.67 shows the new organization of dataset.  

 

Fig.67 Combined model test cycle 

Since the move sliding window used in the SOH part has a hysteresis of 120 data points, 

the SOC will assume SOH = 1 for the first 120 data points and use this value for 



 

calculations. When the first SOH value is calculated, it will be updated to the SOC 

estimator. 

It must note that although the organization of the data is a continuous charge-discharge 

cycle, considering that there is no signal indicating the end of the charge-discharge 

process in the original data, this thesis uses an equivalent substitution method for 

training. 

The process is, first 55 charge cycles are performed, and the model will get the SOC 

and SOH values for those cycles. Then 55 PRW discharges cycles are performed, and 

the SOH value used in those process is the value obtained in the corresponding charging 

process stored in advance. Although this method separates charge and discharge tests, 

its effect is completely equivalent to continuous charge and discharge. In the actual HIL 

test, since the signal of the end of the charging and discharging process can be obtained 

by using the CAN bus, the switch of the two networks can be easily defined. 

The working logic of the scenario is shown in figure.68  

 

Fig.68 Combined model working logic 

Another technique used here is so called “SOH interval extremes overlap”. This 

technique is to solve the sensitive increasing around the SOH interval extremes. 



 

Figure.69 shows this mechanism. Note that this is an exaggerated figure. The judgment 

numbers are just examples, not real one used in model.   

 
Fig.69 Explanation of training dataset overlapping. 

93% and 87% SOH is switching 

Narx1 is trained from 100% to 88% SOH. 

Narx2 is trained from 90% to 83% SOH. 

Narx3 is trained from 85% to 82% SOH. 

The extremes of SOH interval are overlapped. This technique can solve the computation 

error due to network incorrect switching. 

For example, A, B, C and D are four random SOH true value during the test. Each of 

them has a tolerance interval of error. It means that SOH could be any value during this 

interval. For A and C, the tolerances interval does not include 93% and 87% so there is 

no risk for incorrect switching of the network. However, with B and D, their tolerance 

intervals include switching point, and this can cause the switching of network, thus, it 

causes computation error if the extremes of training set do not overlap. 

For example, B should be computed by Narx1, but the tolerance can cause the network 

switches from Narx1 to Narx2. Due to the overlapping, Narx2 has the capability to 

compute B’s feature. This mechanism can solve the problem. 

Figure.70 to figure.73 give the comparison for updated and original judgment 

condition.  

          

Fig.70 Original conditional judgment from 3-Class NARX combination option 



 

  
Fig.71 Original conditional judgment result SOH RMSE%=2.41% SOC mean 

RMSE%=2.23% 

         

Fig.72 Updated conditional judgment from 3-Class NARX combination option 

  

Fig.73 Updated conditional judgment result SOH RMSE%=1.99% SOC mean 

RMSE%=0.87% 

5.4.2 Scenario test results 

 



 

 

 

 

 

 

Fig.74 1,3,5 class SOH and SOC test results 



 

 

Table 10 Performance comparison for three models 

From table 10 it is obvious that 1 class model has the worst performance. Due to SOH 

estimator and SOC estimator both have intrinsic errors, if SOH is as an input of SOC 

estimator the error of SOH will influence the performance of SOC estimator, and then 

SOH estimator itself will also be impacted. This model is too sensitive to the noise. 

Thus, it has the worst performance.  

Models with 3 and 5 class are relatively not so sensitive to error because in those 

structures SOH is not an input signal but a judgment. Theoretically, 5 class model 

should have a better performance than 3 class model. But more class means smaller 

SOH interval for each network, which can cause wrong SOC network selection, and 

this can explain why 3 class model is better than 5 class.  
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Table 11 Estimation time for three models 

Table 11 also shows the estimation time consumption for three models. It is obvious 

that 5 class model have most computation task to do so it has the longest time 

consumption while 1 class model only need to compute two neural networks, the time 

consumption for it is the shortest one.  

 

 5.5 Possible improvements for SOH estimator 

This section will introduce a filtering algorithm for result optimization. However, 

although this algorithm has achieved excellent results on a fixed training set, it lacks 

flexibility. In the end, this method is only used in the prediction of individual SOH and 

is not used in the combined model. 

 

5.5.1 Butterworth filter introduction 

Butterworth filter is the most famous filter among the filters designed by modern design 

methods. Because of its simple design and no obvious shortcomings in performance, it 

is easy to manufacture and achieve design performance. Among them, the Butterworth 

filter is characterized by the smoothest frequency response curve in the passband. 
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The transfer function of a Butterworth low-pass filter can be expressed as the square of 

the amplitude versus frequency as follows: 

                                       |𝐻(𝜔)|2 =
1

1 + (
𝜔

𝜔𝐶
)

2 𝑛 =
1

1 + 𝜀2 (
𝜔

𝜔𝑃
)

2𝑛                          (27) 

Among them, n is the filter order, ωc is the cut-off frequency, and ωp is the passband 

edge frequency.  

General speaking Butterworth filter is a low-pass filter that filters out high-frequency 

noise and preserves low-frequency signals. I would like to illustrate this principle with 

the following simple example. As figure.75 shows, we generate a random noise signal 

as raw input data. In the meanwhile, we perform the fast Fourier transformation to 

check the frequency domain’s distribution. Then we apply the Butterworth filter and 

set the cut off frequency is 100Hz. The bottom two images of figure.75 show the filter 

effect. From filtered FFT distribution all frequency higher than cut off frequency 

(100Hz) are filtered. And the distribution in time domain is much cleaner that the raw 

data.  

 

Fig.75 Butterworth filter 

In MATLAB, to use the Butterworth filter, it must first define two transfer function 

coefficients of the filter: ‘a’ and ‘b’. It can be defined by the following MATLAB 

function: 



 

                                                           [𝑏, 𝑎] = 𝑏𝑢𝑡𝑡𝑒𝑟(𝑛, 𝜔𝑛)                                        (28) 

                                                              𝑦 = 𝑓𝑖𝑙𝑡𝑒𝑟(𝑏, 𝑎, 𝑥)                                            (29) 

Where parameter n is the order of filter, 𝜔𝑛is cut off series, x is input data vector. 

The results of data smoothing are showed in section 5.4.2 

 

5.5.2 data smoothing 

After data cleaning and smoothing, and connect all 55 cycles together, the results are 

as follow. 

 

 

 

Fig.76 SOC profile after smoothing 



 

 

 

 

Fig.77 dV profile after smoothing 

 

 



 

 

Fig.78 dSOE profile after smoothing 

 

 

 

Fig.79 dSOC profile after smoothing 

 



 

 

 
Fig.80 SOE profile after smoothing 

 

 

 

5.5.3 Training result 

 

 
Fig.81 PRW phase training results 0.4035% 0.4535%MAX 



 

 

 
Fig.82 Pulse phase training results 0.3759, 0.3759max 

 

 
Fig.83 Charging phase training results 0.3418 0.3418 
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Table 12 RMSE and maximum error 

5.5.4 Simulink model 

The macro structure of the model is the same as before, but the MATLAB function is 

used to realize the construction of the Butterworth filter. make it available for online 

real-time computing 

 
Fig.84 Macro structure of the model 



 

 
Fig.85 Feature extractors with Butterworth filter 

The test result of Simulink model is bellow, which is the same result with MATLAB 

training process.  

 
Fig.86 Simulink test result for PRW phase. 



 

5.5.5 Limitations of this approach 

In the training process, in order to obtain the best filtering effect, the Butterworth filter 

must wait for all features to be extracted before filtering the features. 

Considering the Butterworth’s transfer function, it has been found through testing that 

if real-time filtering is to be implemented in this process, the order of the input data 

must be in strict one-to-one correspondence with the data order during training. This 

requirement can be explained as follow: 

 

Fig.87 Data order of Butterworth filter for real time application 

If the data arrangement in the training process is A, B, C, D. Then in real-time 

computing, in order to obtain the same result, the data order processed by Butterworth 

must be A, AB, ABC, ABCD. That is, when the next data is given, the previous data is 

also appended. This makes the data of the test set cannot be freely combined. That is, 

the test scenario described in Section 5.3 cannot be implemented. If the problem of this 

data combination can be further studied and solved, this approach can be then used for 

real-time calculation and greatly optimize the calculation results. 

 

 

 

 

 

 

 



 

Chapter 6. Conclusion 

To sum up, the estimation of battery state of health based on artificial intelligence 

network can achieve accurate results. This method completely avoids the modeling of 

the internal circuit of the battery by building an uncomplicated neural network. 

Compared to traditional methods, such as ICA, neural network-based estimation 

models can achieve real-time prediction capabilities without waiting for the end of the 

entire test cycle. This method has great advantages when the battery structure is 

complex and difficult to model. 

However, the implementation of this method relies on the acquisition of training 

datasets, a process that takes several months to achieve aging of the battery. 

Considering that the aging of the battery is divided into two types: calendar aging and 

cyclic aging, the months experienced in the entire test phase can only be evaluated by 

cyclic aging, and the calendar aging can only be obtained by waiting for a longer time. 

Therefore, this method has poor economy in the acquisition of training data. 

It is also found that the measurement accuracy of the dataset is also an important factor 

affecting the training results. In the initial data processing process, it has been found 

that there are many unreasonable huge errors in the data set. For example, as shown in 

figure.37, SOH showed a huge drop on the 32nd cycle. For another example, as shown 

in figure.28, during the discharge cycle, the current oscillated in an abnormal square-

wave-like manner, causing all other parameters measured throughout the cycle to 

deviate significantly from normal values. To deal with abnormal SOH value, it has been 

manually deleted the value of the 32nd cycle to ensure that it is not affected by it. For 

other errors, ‘move sliding window’ approach can filter them out.  

For the process of feature extraction. How to select the features with the highest 

correlation with battery aging is a key area of research. The five features selected in 

this thesis have already expressed this correlation well, but it is necessary to continue 

to study the features with better correlation. 



 

In the selection of neural network, LSTM is used in this thesis, mainly considering that 

LSTM has inherent advantages in processing time sequential data, which can eliminate 

the problems existing in traditional RNNs such as gradient vanishing and gradient 

explosion. According to table 9 LSTM shows a good learning capability with processed 

data.  

In the construction of the Simulink model, the main difficulty is to use the MATLAB 

function blocks to compile the real-time training process. In this step, the data 

processing sequence of Simulink must be examined and tuned to match the network 

design requirements.  

As for the use of Butterworth filter, although the conclusions in Section 5.4.3 have 

shown that this filter can greatly improve the training of the network, the main difficulty 

lies in its strict requirement of data consistency, which limits the test dataset’s 

combination. This method could be used if it can guarantee that the same cycle as the 

test set would be used in the actual test, but such a requirement is hardly practical. 

Therefore, the entire statement in Section 5.4 only illustrates the availability of 

Butterworth filter for improving the training results but does not mean it can be used in 

real time application.  
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