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Abstract 
In the current technologically advancing world, the role of data science and data analytics has 

been increasing throughout the last decade. Machine learning has become increasingly 

important in different disciplines and its application spheres include also the petroleum 

industry. There have been studies that revealed how the operational parameters affect the 

production and well performance which leads to more and more studies to be dedicated to 

them. One of the methods to predict the production and well performance for the future and its 

potential lifespan, especially in the decline phase is the decline curve analysis. This study 

involves an investigation of the relationship between operational parameters and decline curve 

characteristics based on the dataset consisting of 53 shale gas wells data provided by SPE. Via 

use of well data, decline curves were fit onto the production history for all 53 shale gas wells, 

and decline curve characteristics (which are qi, Di, b) were obtained accordingly. As a main 

subsequent step, the development and application of different machine learning algorithms 

such as Multiple Linear Regression and a tree-based method of Random Forest, has been 

performed for the determination of prediction models using operational parameters as an input 

and decline curve characteristics as an output. As the additional second part of the project, new 

predictive models of aforementioned types were developed for the prediction of the cumulative 

production after 0.5 and 1 year. The conclusion reached regarding the relationship between 

operational parameters and decline curve characteristics is that there is some correlation 

although the lack of data has complicated the decision-making procedure a lot. With a much 

higher amount of data, it would have been more precise to define to what extent the correlation 

is. When it comes to the comparison between the distinct types of models, it has been concluded 

that Random Forest model performed better wholistically despite in the second part of the 

study, the Linear Regression model outperformed the former one. Furthermore, feature 

importance analysis was conducted to disclose the influence level of input parameters on the 

output ones after the predictive models have been developed. Parameters making the most 

significant contribution to the results were different based on the case being analysed. 
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Chapter 1: Introduction 
Since the time when oil and gas has become a significant source of energy supply, a huge 

amount of works has been dedicated to estimate, predict and investigate the relationship 

between major parameters contributing to the performance of petroleum reservoirs. After 

several years of petroleum extraction when the production started to demonstrate declining 

behavior, back to 1944, a review of the development of decline-curve analysis has been 

suggested by J. J. Arps. The mathematical correlations between cumulative production, time, 

production rate and decline parameters have been studied and common sorts of decline curves 

have been discussed. (J. J. Arps, 1944) 

From the end of 1980s, the substantial contribution to energy supply by shale gas has been 

considerable with the aid of hydraulic fracturing and horizontal wells. Challenges in predicting 

the shale gas production arise because of complicated fracture networks and complex 

mechanisms (gas slippage and gas desorption) in shale. Decline Curve Analysis is known for 

its cons being efficient and simple in the forecast of hydrocarbon production despite the 

flexibility of several simulation techniques as well as analytical models. Currently, the energy 

supply by natural gas constitutes a quarter of the total energy consumption around the globe, 

which is illustrated in the Figure 1 below. (Lei Tan, Lithua Zuo and Binbin Wang, 2018) 

 

Figure 1. Map of world energy consumption in terms of shares by energy sources. (Lei Tan, 

Lithua Zuo and Binbin Wang, 2018) 

Recently, data-driven models and big data analytics have become significant, specifically, in 

regard to the analysis of production behaviour in petroleum reservoirs. The acquisition and 
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management of various large volume data, and utilizing statistical learning methods to explore 

the data and reveal unseen relationships and associations in complex and huge multivariate 

datasets are demonstrating the mounting application of big data and data science concepts as 

new technologies develop from day to day. In order to better understand and optimize 

performances of unconventional reservoirs, the ultimate purpose is the development of data-

driven perceptions in the sphere of oil and gas industry. Nevertheless, due to usage of ‘black 

box’ algorithms and statistically heavy vocabulary, the topic of data analytics is remaining 

indefinite to engineers in the oil and gas industry regardless of its achievements in the well-

known spheres such as cyber security, marketing and medicine. (Srikanta Mishra & Luan Lin, 

2017) 

Petroleum industry is facing different problems and challenges when it comes to dealing with 

data and its processing. There is a need for appropriate technical analysis of the database in 

order to improve the performance in oil and gas industry. At this point, machine learning (ML) 

and artificial intelligence (AI) techniques emerge to tackle such problems showing promising 

accomplishments and benefits in efficiently providing numerical computations and capability 

to store high-volume data. To inspire the use of data mining and analytics, supervised and 

unsupervised learning, AI and other methods, a framework is organised. Stages used in ML are 

illustrated in the following figure, Figure 2. (A. Sircar, K. Yadav, K. Rayavarapu et al., 2021) 

 

 

 

 

Figure 2. Stages involved in ML. (A. 

Sircar, K. Yadav, K. Rayavarapu et 

al., 2021) 
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Chapter 2: Literature Review 
As unconventional reservoirs have a significant role in production of hydrocarbon (HC) in US, 

in the B. Nelson et al. (2014) work, several decline-curve analysis (DCA) models were 

discussed and proposed for such reservoirs, specifically analysing Marcellus shale formations. 

The reliability and applicability of different DCA models, such as Arps, PLE and Duong 

models, were taken into consideration. This study has brought about a method developed to 

evaluate DCA model parameters for the prediction of the production relying on the production 

history. The work has revealed that the Arps model is also applicable and reliable to fit the 

decline curves. R-squared (R2) value of 0.98 for Arps model has been accomplished. It has 

been concluded in the study that Arps hyperbolic type decline curve, which is one of the 

simplest techniques, has provided consistent prediction results, too. (B. Nelson et al., 2014) 

Later, in 2021, a study by Sulaiman A. Alarifi involved an all-inclusive productivity outline 

and analysis comprising 1216 abandoned wells from different shale formations in the US. The 

study reports the use of two DCA techniques for the history match of production data utilizing 

least-squared fitting approach to identify best fit parameters for further predicting the 

production reliably. By the conduct of the history matching process, the study exposed that 

matches of high accuracy between two DCA techniques and actual production data have been 

achieved with a correlation coefficient being equal to 0.99. Two DCA methods used were Arps 

hyperbolic type decline curve and SEPD model. These DCA models were applied for different 

early production durations such as 0.25, 0.5, 1 and 2 years having a major target of evaluation 

of optimal parameters for further predictions and estimation of estimated ultimate recovery 

(EUR) for those formations like Haynesville, Eagle Ford and etc. The outcome obtained, 

specifically for 6 months and 1 year was high enough having correlation coefficients varying 

from 0.85 up to 0.94 for Arps decline method, which demonstrated that hyperbolic decline 

results are promising in the matching procedure. (Sulaiman A. Alarifi, 2021) 

Throughout the literature, for example, in Wilson (2015), several decline-curve analysis 

models – such as Arps, PLE, Duong, and SEPD – have been studied and contrasted for 

unconventional reservoir. The conclusions made were towards the idea that most DCA 

techniques generate great results with regard to history matching up to 4-8 years, however, they 

differ quite enough when it comes to forecasting. (Sulaiman A. Alarifi, 2021) 

As new technologies and methodologies emerge in the recent years, more and more studies and 

papers are being dedicated to the application of machine learning, especially in the oil and gas 
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industry. In another study conducted in 2021, Gang Hui and his colleagues have investigated 

hundreds of wells in an unconventional resource of shale gas in Canada, to analyze shale gas 

production through machine-learning techniques making the conduct comprehensive adding 

operational and geological considerations to the analysis. Thirteen operational and geological 

parameters have been taken into account as input while targeting to estimate 1-year production 

utilizing four ML methods consisting of linear regression, neural network and two tree-based 

approaches. The results of the study revealed that parameters mostly influencing the production 

were mass of total proppant used, permeability, gas saturation, porosity, stage quantity, 

pressure of formation, horizontal length and etc. The outcome of the machine learning methods 

has shown quite high results with the highest outcome in case of Extra Trees technique showing 

R-squared (R2) value equal to 0.81. (G. Hui et al., 2021) 

In addition, in the study Y. Li et al. (2017), different types of machine learning methods have 

been used to forecast production and to obtain decline curve fit parameters based on production 

data matching. Neural network (NN) approach has been utilized to investigate the relationships 

and certain patterns of reservoir and hydraulic fracture characteristics with decline curve ones. 

The fit of production data obtained through NN method gave high-accuracy results of mean 

squared estimation and R value equal to 0.013 Mscf/D and 0.92, respectively. (Y. Li & Y. Han, 

2017) 

In conclusion, there are sufficient number of studies dedicated on the analysis and comparison 

of different decline-curve analysis models resulting in applicability of Arps DCA model with 

a hyperbolic exponent (b) being higher than 1 when required. There are a few papers published 

in the recent years involved in the investigation and prediction of the production data based on 

data analytics and machine learning techniques providing quite high outcome in accuracy. 

However, there is still a need for the investigation of the correlation between 

operational/reservoir parameters and DCA characteristics. As the world technology develops, 

the application of ML and NN becomes of indisputable significance and studies using such 

technological developments could make improvements and contribution to the entire science. 

2.1 Exploratory Data Analysis (EDA) 
In the current world of growing data, it is not quite trivial to manually process the data. To 

reach even a deeper understanding, data analytics and visualization programs come in to 

support. The programming language Python having an easy-to-follow syntax becomes a 

powerful open-source tool as alternative to conventional applications and methods. 
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Exploratory Data Analysis (EDA) comprises summarizing the data taking into consideration 

the major characteristics and visualizing them through appropriate representation. A fast 

description of the dataset in terms of row/column numbers, data type, data missing and 

preview; as well as visualizing distributions through histograms, bar charts and box plots, 

correlations and their calculation are performed via EDA. (K. Sahoo et al., 2019) 

EDA has been used in several research studies for production prediction and optimization. In 

the research study of J. Schuetter & S. Mishra et al. (2018), EDA has been mentioned as a 

standard initial step in exploring the dataset, and EDA has been performed by examining 

predictors and response variables with a representation of pairwise scatterplots to identify if 

there is any effect of input variable on the output ones. The scatterplot matrix, shown in the 

Figure 3, illustrates possible correlations between predictors and response parameters, as well 

as among input variables themselves, providing empirical histograms for parameters on the 

diagonal.  

 

               Figure 3. The matrix of scatterplots. (Schuetter & Mishra et al., 2018) 
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In a similar way, a couple of studies, which are Jebb, A. T., et al. (2016) and K. Sahoo & A. K. 

Samal et al. (2019), includes performing EDA through the application of univariate and 

bivariate analysis to visualize and understand the variables separately as well as their 

relationship by means of box, group, scatter and distribution plots, which is represented in the 

following figures (Figures 4, 5, and 6). 

 

           Figure 4. Box plots from EDA. (K. Sahoo & A. K. Samal et al., 2019) 

 

 

      Figure 5. Group-means plot from EDA. (Jebb, A. T., et al., 2016) 
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       Figure 6. Combined scatter and distribution plots from EDA. (Jebb, A. T., et al., 2016) 

Nevertheless, techniques applied in the aforementioned studies are instances of the possible 

methods, providing graphical representations. Assessing distributions of variables and 

investigating huge correlation matrices including coefficients are examples of several ways 

used in EDA procedures. The majority of such methods are discussed and analyzed in the 

following chapters. 

2.2 Predictive Input-Output Modelling 
In several studies such as M. Kuhn et al. (2013) and J. Schuetter et al. (2018), predictive input-

output modelling is defined to be a development of a math-based tool or a model accomplishing 

precise predictions.  

The major purpose of the applications in oil and gas field moving forward after EDA is the 

predictive model building. The forecast of cumulative production in unconventional reservoirs 

using operational parameters has been performed in this work creating particular types of 

regression models, fitting model parameters in order to estimate how the goodness of the model 

is assess the ability to accurately predict the future data. Utilizing the available data, it is 
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possible to forecast well performance in case the model fits well. (S. Mishra & M. Zhong et 

al., 2015) 

In the work of J. Schuetter et al., (2018), a thorough investigation has been conducted to analyze 

relatively the advantages and cons of predictive modelling techniques. The decision-making 

process to select the type of model to be used is not obvious and satisfaction by training dataset 

is required in some models. Some modelling methods with consideration of regression and 

classification problems such as Ordinary-Least-Squares (OLS) regression, decision trees, 

Random Forest (RF), Support Vector Regression and Gradient Boosting Machine (SVR and 

GBM) have been analyzed in this paper and a detailed explanation is given in the following 

chapters. (J. Schuetter et al., 2018)  

Moreover, in the study of S. Mishra & M. Zhong et al. (2015), the distinct forecasting abilities 

of predictive models have been discussed and the results reveal that the outcome of predictions 

can be different and sometimes even contradictory based on datasets. The results have shown 

that tree-based techniques like RF and GBM were less time-requiring in terms of initial 

processing and less susceptible to the quality of data providing also better results in predictions. 

2.3 Variable Importance Analysis and Model Evaluation 
The estimation of the goodness of model fit is one of the uppermost aspects to be considered 

in the model selection procedure and its significance is sometimes disregarded. Plotting the 

output predicted by the model versus the actual data using scatterplots is a conventional method 

to assess the goodness-of-fit. A highly acceptable fit to the training data is achieved when all 

points are situated close to the 45-degree line meaning one-to-one correspondence of the actual 

values to the predicted ones, which is demonstrated in the Figure 7 (left plot). Nevertheless, 

this is not necessarily meaning if the model will work well also for the future data because 

there is a concept of overfitting when the model tries extremely to fit the training data achieving 

a reduced flexibility for new datasets. The example of overfitting is demonstrated in the Figure 

7 (right plot). (S. Mishra & M. Zhong et al., 2015) 
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Figure 7. Model evaluation on training data (left plot) and model fit (right plot). (S. Mishra & 

M. Zhong et al., 2015) 

Furthermore, there are several different techniques to evaluate and measure the model fit. Some 

commonly utilized metrics to quantify the goodness-of-fit have been provided in the study of 

S. Mishra & L. Lin, (2017) which are Average Absolute Error (AAE), Mean Squared Error 

(MSE), and R-squared. Such metrics are conceptually similar in assessment of the prediction 

quality of the model. Evaluation metrics are thoroughly analyzed and the underlying basis is 

discussed in the methodology chapter. After models have been assessed and selection process, 

the variables affecting the model and the results are required to be identified through Variable 

Importance Analysis (VIA).  

In the majority of cases, VIA is specific for a model and the expression of corresponding 

metrics can be relative or absolute. Variable influence is measured relatively in Random Forest 

models which comprises the method calculating the change in RMSE (Root Mean Square 

Error) when a variable is introduced provided that the other parameters are kept unchanged. 

The meaning of this procedure is that it reveals to what extent the model and the results are 

affected by a predictor when it is removed or added thereby determining the strength of a 

parameter. (S. Mishra & L. Lin, 2017) (J. Schuetter et al., 2018) (S. Mishra & M. Zhong et al., 

2015) 
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Chapter 3: Problem Statement 
With the development of the technology, unconventional resources of petroleum have become 

increasingly important in the recent years. More and more studies are conducted to analyse 

significant parameters, to match the production history efficiently and to predict accurately 

future production using different models. There is considerable amount of research on different 

decline-curve analysis models and decline curve fitting. However, there is some insufficiency 

in the number of studies investigating correlation of operational parameters and DCA 

characteristics. To improve the situation there is a need for additional studies and for 

identification of main driving parameters.  

Several research works have focused on the analyzing and comparison of distinct DCA models 

such as L. Tan et al. (2018), B. Nelson et al. (2014), S. A. Alarifi (2021) further predicting the 

production. Nevertheless, these studies do not include use of different machine learning 

techniques when it comes to the forecast. There are some studies involving the utilization of 

ML methods to predict the production, for instance G. Hui et al. (2021), Y. Li et al. (2017), S. 

Mishra et al. (2017), A. Sircar et al. (2021), but they are mainly centered on K-Means 

Clustering, K-Nearest Neighbor, and Neural Network methods. It is still required to apply 

regression and tree-based methods to obtain a comprehensive understanding of the situation 

regarding the application of up-to-date technology to oil and gas industry.  

The problems of insufficient studies and issues related with the situation of the research in these 

fields have become an incredible inspiration in making the decision to conduct new research 

trying to achieve more understanding of the correlation between operational parameters (such 

as amount of total proppant used, gas saturation, reservoir temperature, sandface temperature, 

stages, clusters and etc.) and DCA characteristics (qi, Di, b) through use of ML models. In the 

following sections, the full list of those parameters has been indicated. Moreover, the second 

part of this study incorporates the use of same machine learning methods to forecast the 

estimated ultimate recovery (EUR) after six months and one year. According to our knowledge, 

such analysis of aforementioned type using shale gas wells would be one of first studies. 

 

 

 



21 
 

3.1 Research Question and Objectives  
Investigation of the relationship between operational parameters are decline-curve 

characteristics, and to forecast cumulative production based on shale gas wells from different 

formations are the major goals of this study. In order to perform these objectives, the first duty 

is to fit decline curves to production history of all 53 wells both manually and through Excel 

SOLVER software, and obtain Arps hyperbolic decline-curve parameters which are 

Hyperbolic Exponent (b), Nominal Decline Rate (Di) and flow rate (qi). Afterwards, two 

different ML methods (Multiple Linear Regression, Random Forest) are applied to analyze the 

correlation taking operational parameters – indicated in Table 2 in the following section – as 

input, and predicting DCA constants (qi, Di, b) as output. 

The aims of study have been listed below in the following way: 

❖ Fitting decline curves for all wells 

❖ Obtaining DCA constants manually and by Excel SOLVER 

❖ Creating a dataframe with operational and DCA parameters  

❖ Performing univariate and multivariate data analysis to reveal any patterns 

❖ Quantification of correlation and creation of correlation matrix between independent 

and dependent variables 

❖ Forecasting DCA constants using ML models 

❖ Performing Variable Importance Analysis (VIA)  

❖ Creating a new dataframe based on operational parameters and actual cumulative 

production values 

❖ Forecasting EUR for 0.5 and 1 year duration using ML models 

❖ Performing VIA 

Regarding research questions have been emphasized below in the following way: 

▪ Is there a correlation between input and output parameters? 

▪ To what extent is the relationship? 

▪ What is the prediction accuracy of ML models? 

▪ Is the data available sufficient for the analysis conducted? 

▪ Which are the major driving parameters influencing the results? 

▪ Does the addition of different formations into the investigation change the results? 

▪ What is the precision of the EUR forecast? 

▪ What variables affect considerably the prediction outcome? 
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3.2 Description of the Dataset 
The dataset used in this study has been provided by SPE Dataset Repository which includes 

spreadsheets with data from 53 shale gas wells collected from 5 different formations collected 

from unconventional reservoirs in the United States. Five different formations are Eagle Ford, 

Haynesville Shale, Bossier Shale, Marcellus, and Marcellus-Upper. The number of wells in the 

dataset corresponding to each formation is given in the Table 1 below. Well data, deviation 

survey, production data, calculated data and essential graphs have been provided in each 

spreadsheet of wells in the dataset. 

Formations Number of wells in the dataset 

Eagle Ford 11 

Haynesville Shale 14 

Bossier Shale 1 

Marcellus 11 

Marcellus-Upper 16 

Table 1. Number of wells provided in the dataset for each formation 

There are several parameters listed in the well data of each well from which 25 relevant 

characteristics have been selected to create the main dataframe. These variables are given in 

the following Table 2. 

 Selected relevant parameters Units of measurement 

1 Lease - 

2 Well Number - 

3 State - 

4 Formation / Reservoir - 

5 Initial Pressure Estimate psi 

6 Reservoir Temperature degree F 

7 Net Pay ft 

8 Porosity - 

9 Water Saturation - 

10 Oil Saturation - 

11 Gas Saturation - 
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12 Gas Specific Gravity - 

13 CO2 N/A 

14 N2 N/A 

15 TVD ft 

16 Spacing N/A 

17 Number of Stages - 

18 Number of Clusters - 

19 Number of Clusters per Stage - 

20 Amount of Total Proppant lbs 

21 Lateral Length ft 

22 Top Perforation ft 

23 Bottom Perforation ft 

24 Sandface Temperature degree F 

25 Static Wellhead Temperature degree F 

Table 2. List of selected relevant parameters from well data 

Moreover, in the calculated data sheets of spreadsheets, corresponding gas volume, gas 

production and time have been provided in the dataset. 

3.3 Overall Workflow Plan 
A general summary of the procedure utilized to accomplish the research goals and to find 

answers to questions raised is illustrated in the Figure 8 provided below. The procedure is 

highlighted considering the framework of data analytics based on statistical and machine 

learning techniques. 
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Figure 8. Brief summary of the procedure followed throughout the study. 

 

 

 

 

 

 

 

 

 

 

 

 

• Actual production rate vs time dependencies are 
generated for all wells 

• Decline curves are fit to the production history
• DCA constants are obtained

Fitting Decline Curves

• Generation of dataframes with input and output 
parameters

• Performing univariate and multivariate analysis
• Quantification of the correlation

Exploratory Data Analysis 
(EDA)

• Two ML techniques are used to predict DCA 
parameters and same methods to forecast EUR 
after 0.5 and 1 year time duration

• Estimating the accuracy of models by specific 
assessment metrics   

Building predictive machine 
learning models

• Determination of key variables influencing the 
results

VIA (Variable Importance 
Analysis) 
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Chapter 4: Methodology 
4.1 Approach of the Methodology 
The goals in the current research study are to investigate the relationship between operational 

and DCA parameters, to predict cumulative gas production after some time duration, and to 

identify key variables for each model built for unconventional reservoirs. The software 

programs utilized in this analysis are Excel, Excel SOLVER machine and Python. The 

methodology considered to find answers to the research problems is based on data analytics 

and statistical learning. The data analytics cycle starting from data and ending up with 

evaluation and visualization has been provided in the Figure 9. 

 

Figure 9. Data Analytics cycle. (I. Tanriverdi, 2021) 

 

4.2 Decline Curve Analysis (DCA) 
A graphical method utilized for the analysis of production rate declines and prediction of future 

performance of oil and gas wells is called Decline Curve Analysis (DCA). Reservoir pressure 

decrease, change in volumes of produced hydrocarbons are some of causes for the decline of 

oil and gas production rates. To fit a line to historical production performance constitutes the 

basis of the DCA. Since its introduction in the 1940s, decline curve analysis has been one of 

the most used approaches for estimating the production potential of wells for the future. The 

decline features of wells in a field may be identified and extrapolated to estimate oil and gas 
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reserves. Based on current trends, the approach is simple and is presently utilized to assess the 

future potential of oil and gas wells in both conventional and unconventional reservoirs. Oil 

and gas wells demonstrate a distinct diminishing pattern in rates when a reservoir is drained 

throughout production, which may be extrapolated for the future and examined to get important 

information. (A. Satter & G. M. Iqbal, 2015) 

4.2.1 Advantages of DCA 

The pros of DCA are listed in the following way: 

➢ Based on the simple but yet powerful approach of empirical modelling. History 

matching and extrapolation are performed using graphical methods. 

➢ Being an intuitive and rapid technique in predicting future production and ultimate 

recovery. Less time-consuming as in some instances, it is possible to conduct analysis 

of hundreds of wells in a short time duration. 

➢ To accurately forecast future performance, DCA can include application of multiple 

modelling in distinct phases of production.  

➢ Recognizing different flow regimes in complicated geological settings, for example, 

tight shale with natural and induced fractures has become one of recent advances in 

DCA. 

➢ Cash-flow analysis for a well or field is eased as predictions for annual and monthly 

production are available. 

➢ Possibility to apply not only for an individual well but also for the field as an aggregate 

trend. With an inclusion of all producing wells, the ultimate recovery can be computed 

for the entire field.   

➢ It is also possible to predict water cut for a well based on the trend. 

➢ Flexibility of the analysis makes it feasible to conduct further analysis in case of 

unanticipated trends. 

➢ Not resource intensive as reservoir simulation. In a relatively short period of time, the 

analysis can be performed through use of available software. (A. Satter & G. M. Iqbal, 

2015)  
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4.2.2 Assumptions in Traditional DCA 

Traditional DCA application to conventional reservoirs has several assumptions as listed 

below: 

• The well is produced by depletion drive mechanism. Production rate may decline in an 

unidentifiable manner due to water/gas injection, water flux from aquifer, or presence 

of gas cap. 

• The flow regime concerned is BDF (boundary-dominated flow). 

• The well is producing from its own drainage area without interfering with others. 

• The well is producing at constant BHP (bottom-hole pressure). This condition may not 

be observable in reality. (A. Satter & G. M. Iqbal, 2015) 

4.2.3 Limitations 

The technique is applicable in case a recognizable trend of declining production rate can be 

observed despite being a simple and straightforward method. Enough well rate data (from 

several months to a year) is required for the analysis to confidently forecast future performance. 

However, for some instances, the trend may not be identifiable because of fluid injection to 

reservoir for pressure maintenance processes, two-phase flow, hydraulic fracturing, 

stimulation, water breakthrough and etc. (A. Satter & G. M. Iqbal, 2015) 

The emergence of unconventional resources, such as shale gas reservoirs, has revealed that 

classic decline curve analysis is insufficient for estimating ultimate recovery or reserves. The 

fluid flow properties of shale gas can differ significantly from those of conventional gas 

production. Shale has extremely low permeability, and production occurs through a vast and 

complicated network of induced and natural fractures. It is critical to detect the presence of 

distinct flow regimes (linear, transient, boundary dominated) over the productive life of the 

well. The decline pattern of wells produced from shale formations, as usually noted, alters 

substantially after the first phase of production. Extrapolating the features of the first decline 

to the economic limit of the well in the future may result in overestimating or underestimating 

the final recovery. (A. Satter & G. M. Iqbal, 2015) 

4.2.4 Review of Different DCA Models 

According to past performance, DCA models forecast future rates and are empirical models. 

Through determination of one or more unknown constants in the formula, a best fit is required 

by the model using mathematical and graphical methods. Well-known DCA model types are 

exponential, harmonic and hyperbolic decline curves. These models are jointly called Arps 
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model where exponential and harmonic decline curves are the specific cases of the hyperbolic 

model (b=0 is exponential, b=1 is harmonic). Unconventional reservoir analysis has become a 

reason for the modification of traditional DCA models in recent years. Some new models such 

as SEDM/SEPD (Stretched Exponential Decline Model), Duong, Modified Hyperbolic 

Decline, PLE (Power Law Exponential) have obtained a popularity in the application of decline 

curves for shale gas reservoirs. The examples of different decline curve model applications 

have been provided in the following Figure 10. (M. Meyet et al., 2013) (A. Satter & G. M. 

Iqbal, 2015) 

 

Figure 10. DCA using different types of decline curve models. (Y. Yuan et al., 2020) 

Arps Decline Model  

Based on Arps (1945), traditional DCA models are often mentioned as Arps model. The general 

formulae relating production rate and time with decline rate is expressed in the following way: 

𝐷 = 𝑘𝑞𝑏 = −
1

𝑞

d𝑞

d𝑡
  

where t is production time period, q is production rate of well, D is instantaneous decline rate, 

k and b are constants based on decline characteristics. Traditional DCA is divided into 3 types 



29 
 

depending on the b value in a way such that b=0 shows exponential decline, b=1 is defined as 

harmonic decline and others values of b (0<b<1) correspond to hyperbolic decline which is the 

generalized form. It is worth to mention that in the modern DCA when dealing with 

unconventional reservoirs, the hyperbolic DCA also include values of b greater than 1. 

Overestimation and underestimation of reserves may be observed when using classic 

hyperbolic decline with b greater than 1, however, according to several research studies 

mentioned in the previous chapters, the quality of fitting decline curves is affected very little 

by that. (L. Tan et al., 2018) (A. Satter & G. M. Iqbal, 2015) 

SEDM/SEPD Model 

Valko (2009) has suggested SEDM model to evade the arbitrariness related with estimations 

for long time periods in modified hyperbolic model. The relationship of production rate versus 

time is given in the following equation: 

   𝑞 = 𝑞0 exp [− (
𝑡

𝜏
)

𝑛

] 

where q0 = parameter of initial production rate, q is production rate varying with time, n and τ 

are exponent and time-characteristic parameters. (S. Mishra, 2012) 

The cumulative gas production (Gp) is obtained through integration and expressed as follows: 

𝐺𝑝 =
𝑞0𝜏

𝑛
{Γ [

1

𝑛
] − Γ [

1

𝑛
, (

𝑡

𝜏
)

𝑛

]} 

where Γ is incomplete gamma function (M. Abramowitz & I. A. Stegun, 1972) (S. Mishra, 

2012) 

An example dependency plot of SEDM has been provided in the Figure 11 below. 
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                  Figure 11. Plot of SEDM/SEPD model. (A. Satter & G. M. Iqbal, 2015) 

Duong Model 

Based on an empirical equation according to which the log-log plot of q/Gp versus t is a straight 

line, the Duong model is expressed by the formula below provided by the author Duong (2011): 

𝑞

𝐺𝑝
= 𝑎𝑡−𝑚 

where m is slope of log-log plot and a is intercept coefficient. The derived equations of 

cumulative production and production rate have been given below, respectively. 

𝐺𝑝 =
𝑞𝑖

𝑎
𝑒

𝑎
1−𝑚

(𝑡1−𝑚−1) 

𝑞 = 𝑞𝑖𝑡−𝑚𝑒
𝑎

1−𝑚
(𝑡1−𝑚−1) 

According to Lee (2012), a good fit to the data from field is also achieved using the Duong 

model and can be a worthy substitute to the Arps hyperbolic decline model. (L. Tan et al., 

2018) (S. Mishra, 2012) 

The plot of dependence in Duong model is given in the following Figure 12. 
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 Figure 12. Plot of Duong model. (A. Satter & G. M. Iqbal, 2015) 

PLE Model 

A different approach has been proposed by Ilk et al. (2008) to express b parameter equation of 

which is provided as follows: 

𝑏 = 𝐷∞ + 𝐷1𝑡−(1−�̂�) 

 

where �̂� is exponent of time, D1 and D∞ are decline constants at initial and infinite time. The 

derived equation of the production rate is represented below: 

𝑞(𝑡) = �̂�𝑖𝑒
[−𝐷∞𝑡−�̂�𝑖𝑡�̂�] 

where �̂�𝑖 is initial decline constant, and �̂�𝑖 is rate ‘intercept’. The relation between decline 

constants and the exponent of time is as follows: 

�̂�𝑖 =
𝐷1

�̂�
 

This model shown here is referred as PLE model, uses power law approximation and bases on 

Arps decline model. This model has also wide applications in shale gas wells as Duong model. 

(L. Tan et al., 2018) 
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4.2.5 Fitting Decline Curves 

Decline-curve analysis is the preferred method to use in the investigation of declining behavior 

of the production and its forecast mainly due to simplicity, effectiveness and requirement of 

much less data compared to other methods. First of all, to fit decline curves there is a need to 

calculate actual gas production rate to generate its dependency versus time. In order to do so, 

gas volume produced and time values are used which were provided in each spreadsheet. After 

actual gas production rates for all wells have been calculated, predicted production rates based 

on Arps hyperbolic decline curve model are also calculated using the equation 1 provided 

below. 

𝑞 = 𝑞𝑖(1 + 𝑏𝐷𝑖𝑡)−
1

𝑏       (1) 

In the equation 1, q is the predicted gas production rate, qi is one of DCA characteristics 

selected for the better matching, b is the hyperbolic exponent (second DCA parameter), and Di 

is the nominal decline rate (third DCA parameter). 

Actual and predicted gas production rates versus time graphs have been plotted considering 

that the predicted rate involves the interval of time when an apparent decline is observed in the 

actual data based on the DCA rules. Afterwards, absolute squared errors (ASE) for each time 

value are calculated based on actual and predicted production rates using the equation 2 

provided below. 

𝐴𝑆𝐸 = (𝑞𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑞𝑎𝑐𝑡𝑢𝑎𝑙)2               (2) 

In the equation 2, ASE is the absolute squared error calculated for time value, qpredicted is the 

predicted gas production rate, and qactual is the actual gas production rate. Then, decline curve 

is fitted to the production history, firstly, using Excel SOLVER software. This software allows 

to obtain a relatively desired decline curve based on the constraints set. The major limitation 

for this software is selected to be sum of squared errors (SSE) or similarly called residual sum 

of squares (RSS). The sum of squared errors is calculated based on the equation 3 given below, 

which is also the sum of absolute squared errors obtained from equation 2.  

𝑆𝑆𝐸 𝑜𝑟 𝑅𝑆𝑆 = ∑ (𝑞𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖 − 𝑞𝑎𝑐𝑡𝑢𝑎𝑙,𝑖)
2𝑛

𝑖     (3) 

In the equation 3, RSS is the residual sum of squares, qpredicted,i is the predicted production rate 

for each time value, and qactual,i is the actual production rate for each time value. The objective 

of the Excel SOLVER is set to minimize the RSS using decline curve parameters. However, 
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the match obtained from the software is not the desired one, so to achieve a reasonably better 

match, slight manual adjustments are made. After obtaining the desired decline curve fit, the 

corresponding DCA constants are saved for the upcoming step. In the following Figure 13, the 

qualitative Excel SOLVER environment with objective setting window is provided. 

 

Figure 13. Excel SOLVER environment. 

 

4.3 EDA (Exploratory Data Analysis) 
EDA is, principally, a technique to observe the communication of the data apart from testing 

hypothesis and formal modelling. Meaningly, EDA is the analysis to investigate what exactly 

the data can tell us. The statistical properties of datasets – these are analyzed by EDA – are 

summarised through a focus on 4 core aspects such as central tendency measurements (the 

mode, mean and median), spread measurements (variance and standard deviation), distribution 

shapes of the dataset, and outlier presence. The key concepts of the EDA have been described 

in the following sections. Data visualisation and data analysis are being broadly utilized at each 

phase of the ML process. In the stage of data exploration, the properties, size and contents of 

the dataset cab be known. Any missing part of the data and correlations among the data can be 



34 
 

found. The use of data in tabular form and understanding the properties constitute the data 

visualisation. (W. L. Martinez et al., 2017) 

The graphical equivalent to the traditional numerical EDA is the graphical EDA which are 

basically same as both are used in analysis of datasets to overall obtain the statistical properties 

in terms of 4 main characteristics: the distribution shape, measurements of central tendency 

and spread, and the presence of outliers. The categorization of graphical EDA includes 

univariate, bivariate and multivariate analysis. (K. Sahoo & A. K. Samal et al., 2019) 

After decline curve parameters have been obtained for all wells using decline curve fitting, a 

dataset including input parameters mentioned while describing the dataset in the previous 

chapters, and 3 variables (qi, Di, and b) has been built for EDA.  

4.3.1 Univariate Analysis 

Univariate analysis in EDA represents some sort of a summary of the raw dataset and considers 

only 1 variable at a time. Cumulative and probability density distributions, box plots, 

histograms and violin plots are instances of univariate type of analysis in EDA. Some of such 

plots are discussed in this section. (W. L. Martinez et al., 2017) (K. Sahoo & A. K. Samal et 

al., 2019) 

Histograms 

Histogram is one of the means of describing and graphically summarising the dataset through 

visual transmission of its distribution utilizing vertical bars. Histograms can be used in analysis 

of massive datasets due to the ease of creating them and being computationally practicable. In 

the case of a histogram, the whole range of values of a parameter is divided into several 

intervals and they are used for the continuous data. The representation of a histogram as a 

frequency distribution takes place via rectangles areas of which represent frequencies 

accordingly, widths of which correspond to the class interval, and heights of which signify the 

density of appearance in the data. (W. L. Martinez et al., 2017)  

Generally, histograms are graphed in a way that: 

• It is possible to have empty bins depending on the distribution of the data. 

• The quantity of bins is user-dependent. 

• Bins should have equal widths. 

• In case of an absent empty bin, there should not be empty spaces between bars. (P. 

Bruce et al., 2020) 
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An example of a histogram has been provided in the following Figure 14.  

 

Figure 14. A histogram. (W. L. Martinez et al., 2017) 

Boxplots 

Through the use of boxplots, a beneficial graphical representation of the data concentration can 

be obtained. A boxplot reveals the symmetry, central tendency, skew and outlier data. 5 values 

constitute the main part of the boxplot, which are the first and third quartiles, the minimum and 

maximum values, and the median. Such values are used to compare the closeness of the data 

to them. (K. Sahoo & A. K. Samal et al., 2019) 

Boxplots are also called as box and whisker diagrams and used for several years, being an 

effective way of visualization of the statistics summary, studying the distributions, and 

supplying multivariate representations with univariate information. Some properties and 

characteristics of boxplots have been highlighted by Benjamini (1988) in the following way: 

1. Potential outlier data about the observations can be displayed by boxplots. 

2. Possible alongside display of several boxplots for a better comparison of different 

datasets. 

3. Statistics defining the data are presented in a style that gives information about the 

sample's skewness, spread, location, and longtailedness. 

4. Ease of understanding and interpretation. 

5. Ease of construct and display. (P. Bruce et al., 2020) (W. L. Martinez et al., 2017) 

An example of a boxplot has been provided in the Figure 15 below. 
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        Figure 15. A boxplot. (P. Bruce et al., 2020) 

A detailed representation of a boxplot with components is given in the following Figure 16. 

 

 

 

Figure 16. A boxplot with components. (K. Potter, 2006) 

4.3.2 Bivariate Analysis 

In order to understand the relationship between 2 parameters or between one variable and the 

major goal parameter and to analyse the correlation, bivariate type of EDA is being used. There 
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are several ways to display such an analysis. Scatterplots, boxplots, violin plots, scatterplots 

with distributions are some of the tools to do so. (K. Sahoo & A. K. Samal et al., 2019) 

Measure of Correlation 

Inspecting the relationship among input variables, and between predictors and the target is 

included in modelling procedures of EDA. The relationship can be positive and negative 

depending the correlation of high and low values. The correlation coefficient, which is also 

called as Pearson’s correlation coefficient is a measure of to what extent the relationship 

between associated parameters is. This coefficient takes values in the range of -1 and 1. The 

equation defining the correlation coefficient has been provided in the following formulae. (P. 

Bruce et al., 2020) 

𝑟 =
∑ (𝑥𝑖 − �̅�) ∗ (𝑦𝑖 − �̅�)𝑛

𝑖=1

(𝑛 − 1) ∗ 𝑠𝑥 ∗ 𝑠𝑦
 

Where 

n is sample size 

xi and yi are individual sample points with index i 

�̅� and �̅� are means of samples expressed as:  �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  ; �̅� =

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  

sx and sy are standard deviations expressed as: 𝑠𝑥 = √
1

𝑛−1
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1  ; 𝑠𝑦 =

√
1

𝑛−1
∑ (𝑦𝑖 − �̅�)2𝑛

𝑖=1   

n – 1 is the degree of freedom. 

Other forms of correlation coefficients, such as Spearman's rho and Kendall's tau, were 

proposed by statisticians a long time ago. These correlation coefficients are based on data rank. 

These estimates are resilient to outliers and can handle certain forms of nonlinearities because 

they deal with ranks instead of values. For exploratory research, data scientists should typically 

adhere to Pearson's correlation coefficient and its robust alternatives. Rank-based estimates are 

particularly appealing for smaller datasets and specialized hypothesis testing. (P. Bruce et al., 

2020) 
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Scatterplots 

A scatterplot is the kind of graph in which the values of two variables in the dataset are 

illustrated in the Cartesian coordinate system. It is a very common way to visualize the 

correlation of two parameters with measured data. The data is demonstrated as aggregations of 

points which are the records. The scatterplot can be drawn through use of x and y axis variable 

values. (K. Sahoo & A. K. Samal et al., 2019) (P. Bruce et al., 2020) 

A scatterplot example has been given in the Figure 17 below. 

  

    Figure 17. Examples of scatterplots. (P. Bruce et al., 2020) (W. L. Martinez et al., 2017) 

Scatterplots with Histograms 

In order to provide supplementary understanding and information to the bivariate analysis, 

there are beneficial functions in the software which add histograms to both x and y axes of the 

scatterplot allowing to understand the full picture with the combination of bivariate and 

univariate analysis. (W. L. Martinez et al., 2017) 

An example of a scatterplot with marginal histograms is shown in the Figure 18. 
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   Figure 18. A scatterplot with histograms. (Datavizpyr, 2020) 

4.3.3 Multivariate Data Analysis 

In order to understand the correlations among several fields of the dataset and identifying the 

relationships between a greater number of variables, multivariate data analysis is used. Pair 

plots, 3-D scatterplots, heat maps and 3-D surface plots, correlation and scatterplot matrices 

are mostly used instances of graphical EDA. (K. Sahoo & A. K. Samal et al., 2019) 

Building a correlation matrix demands the calculation of correlation coefficients for all pairs 

of variables. The correlation matrix is symmetrical relative to the diagonal so it would be 

sufficient to demonstrate whether left or right part relative to the diagonal. The correlation 

values on the diagonal should be equal to unity as they represent the relationship of a parameter 

with itself. (S. Mishra & A. Datta-Gupta, 2018) 

Displaying the scatterplots of each variable pairs in a collection of multivariate data 

having more than two parameters is frequently a great method to start examining the data. 

Unfortunately, the quantity of scatterplots rapidly gets overwhelming: with 10 variables, for 

instance, there are 45 graphs to analyze. Arranging the pairwise scatterplots in a square grid, 

also referred as a scatterplot matrix or a draughtsman's plot, might aid in examining all 

scatterplots simultaneously. (B. S. Everitt & G. Dunn, 2001) 

The examples of scatterplot and correlation matrices have been demonstrated in the following 

figures, Figure 19 and 20, respectively. 
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Figure 19. A scatterplot matrix. (B. S. Everitt & G. Dunn, 2001) 

 

Figure 20. A correlation matrix. (M. Britton, 2020) 
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4.4 Building Predictive Models 
After initial understanding and getting some deeper insights about the data by exploratory data 

analysis, building predictive models becomes the next significant step in the current study. In 

order to investigate the correlation between predictor/input and response/output, predictive 

modelling process is quite important as it also assists in forecasting the output. Such a 

procedure is performed through the use of machine and statistical learning techniques which 

this section is mainly focusing on. The application of supervised and unsupervised learning 

leads to understanding ‘what data wants to tell’ and extraction of essential trends and patterns, 

which is referred as ‘learning from data’. Generally, statistical learning problems are 

categorized into two groups of supervised and unsupervised learning. Basing on the input 

parameters, the forecasting of the response is the target of supervised learning. However, the 

outcome is missing in the unsupervised learning, and the goal is to analyse and determine the 

patterns and associations among the predictor values. (T. Hastie et al., 2008) 

In this study, the major method utilized is the supervised learning with the application of linear 

regression and random forest models. Firstly, linear regression and random forest models have 

been built to analyse the relationship between DCA constants and operational parameters. 

Random Forest model building involved also the modelling with and without consideration of 

the formation aspect. Consideration of formation aspect has been performed using dummy 

variables. For Linear Regression models, normalization of the data has been carried out. When 

it comes to the second part of the analysis, prediction of the cumulative gas production has 

been accomplished through building both linear regression and RF models for periods of 0.5 

and 1 year.   

4.4.1 Linear Regression 

Regression modelling is the most widely used one when it comes to the investigation of 

independent and dependent variables. When the correlation between the predictor and response 

is defined through linear equations, linear regression is applied. This model includes only one 

output parameter while the number of input parameters depends on the type of linear regression 

model. Simple linear regression involves one predictor but the multiple regression – also 

referred as OLS regression (Ordinary Least Squares) – includes several independent variables. 

(G. James et al., 2021) 

The multiple linear regression has been used in this study due to the plurality of predictors. 
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4.4.2 Simple Linear Regression 

Like its name, simple linear regression approach is quite straightforward as it forecasts 

quantitative variable of response Y taking predictor X as input. A nearly linear relation between 

Y and X is assumed, and this relationship is mathematically given in the following equation 4. 

(G. James et al., 2021) 

𝑌 ≈ 𝛽0 + 𝛽1 ∗ 𝑋      (4) 

where, Y is quantitative output, X is predictor, β1 is the slope, and β0 is the intercept. The 

equation 4, in other words, represents regressing Y onto X (or Y on X). In the equation 4, the 

two indefinite constants β1 and β0 are called as ‘coefficients’ or ‘parameters’ of the model. By 

means of the training data, these coefficients are estimated �̂�0 and �̂�1 which are used to predict 

the estimated �̂� using the equation 5 below. (G. James et al., 2021) 

�̂� = �̂�0 + �̂�1 ∗ 𝑥     (5) 

where, �̂� is the prediction of Y based on that X = x. The hat symbol ^ denotes that the value is 

estimated for a coefficient, parameter or response. (G. James et al., 2021) 

Practically, the model coefficients �̂�0 and �̂�1 are not known, and the data is utilized to compute 

these coefficients before they can be useful in predictions. Each observation pair contains the 

measures of X and Y represented as (x1,y1), (x2,y2), (x3,y3), … , (xn,yn), where n is the number of 

observations. The target is to get estimates of coefficients �̂�0 and �̂�1 so that the data available 

is fit well by the linear model. Fitting well means the resultant line is quite close to n points of 

data. Although there are several techniques to measure that ‘closeness’, the widely used 

approach is the minimization of least squares which is the method applied in the current study. 

The best fit is accomplished when RSS is minimized. A sample of fit in simple linear regression 

has been illustrated in the Figure 21, where grey vertical lines are denoting the residuals. 

Minimisation of least squares is performed using residuals and RSS defined through the 

equations 6, 7 and 8. (G. James et al., 2021) 

𝑒𝑖 = 𝑦𝑖 − �̂�𝑖                 (6) 

𝑅𝑆𝑆 = 𝑒1
2 + 𝑒2

2 + 𝑒3
2 + ⋯ + 𝑒𝑛

2     (7) 

𝑅𝑆𝑆 = (𝑦1 − (�̂�0 + �̂�1𝑥1))
2

+ (𝑦2 − (�̂�0 + �̂�1𝑥2))
2

+ ⋯ + (𝑦𝑛 − (�̂�0 + �̂�1𝑥𝑛))
2
  (8) 
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In order to minimize the RSS, such an approach selects �̂�0 and �̂�1 which are determined by the 

equations 9 and 10 provided below. The equations 9 and 10 are also referred as ‘least squares 

model coefficient estimates’. (G. James et al., 2021) 

�̂�1 =
∑ (𝑦𝑖−�̅�𝑛

𝑖=1 )(𝑥𝑖−�̂̅�) 

∑ (𝑦𝑖−�̂�)2𝑛
𝑖=1

     (9) 

�̂�0 = �̅� − �̂�1�̅�      (10) 

where �̅� and �̅� are the sample means expressed as �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  and �̅� =

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1  . 

 

 

        Figure 21. An example of Simple Linear Regression (SLR) fit. (G. James et al., 2021) 

 

4.4.3 Multiple Linear Regression  

To predict the response based on one input variable, the technique of simple linear regression 

is a beneficial approach. On the other hand, there are several more predictors in the practice. 

One of the solutions can be building several simple linear regression models to each predictor 

variable. However, there are several problems which make this approach to be unsatisfactory. 

When considering separate simple linear regression models, they ignore other predictors, and 

estimated coefficients become inappropriate. The better method is the extension of the simple 

linear regression to multiple variables. This is performed by assigning different coefficients to 

different predictors in a single regression model. Taking the number of predictors equal to p, 

in such a case, the multiple linear regression equation becomes as the following equation 11. 

(G. James et al., 2021) 
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𝑌 = 𝛽0 + 𝛽1 ∗ 𝑋1 + 𝛽2 ∗ 𝑋2 + 𝛽3 ∗ 𝑋3 + ⋯ +  𝛽𝑝 ∗ 𝑋𝑝 + 𝜖   (11) 

where, Xj and βj are j-th input and the quantitative relation between that input and response, 

respectively. The interpretation of  βj  is the mean influence on Y of a unit rise in Xj, maintaining 

all other inputs unchanged. Likewise in the simple regression, here the coefficients β0, β1, β2, 

… , βp are also unknown and should be estimated, and accordingly, the predictions are made 

through use of the equation 12 below. (G. James et al., 2021) 

�̂� = �̂�0 + �̂�1 ∗ 𝑥1 + �̂�2 ∗ 𝑥2 + �̂�3 ∗ 𝑥3 + ⋯ + �̂�𝑝 ∗ 𝑥𝑝   (12) 

The same least squares approach like in the simple linear regression is applied, and the model 

coefficients that minimize the RSS are chosen. The corresponding formulae of RSS has been 

provided in the equation 13. (G. James et al., 2021) 

𝑅𝑆𝑆 = ∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1 = ∑ (𝑦𝑖 − (�̂�0 + �̂�1𝑥𝑖1 + �̂�2𝑥𝑖2 + �̂�3𝑥𝑖3 + ⋯ + �̂�𝑝𝑥𝑖𝑝))2𝑛

𝑖=1      (13) 

The multiple linear regression fit with 2 predictors and one output variable represents a plane 

in 3-D which is chosen to minimize the RSS (vertical distance between red points and the 

plane). The sample of multiple linear regression fit is shown in the Figure 22. (G. James et al., 

2021) 

 

Figure 21. A sample of Multiple Linear Regression (MLR) fit. (G. James et al., 2021) 
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4.4.4 Ensemble Method of Random Forest 

Random Forest is one of the tree-based methods used in ML and statistical learning. An 

ensemble approach is a method of combining a lot of ‘building block’ models to get one very 

powerful potential model. An RF model is also one of supervised ML algorithms having the 

main basis of decision trees. (G. James et al., 2021) 

Random forest regression employs a "bagging" strategy. The model is a collection of basic 

regression trees, each with a number of splits based on predictor values. Based on a comparison 

of a given independent variable to a threshold value, each split indicates if an observation must 

take the right or left branch of the tree. The regression forecast is contained in the trees' terminal 

nodes, known as leaves. Each tree of the ensemble is being trained utilizing the training 

data bootstrap sample, and a random subgroup of the input variables is examined for each split 

in random forests. Because of this randomization, each regression tree can concentrate on 

subtly different parts of the predictor-response connection. In combination, the trees may 

transform the data into a strong tool for the prediction. (S. Mishra & M. Zhong et al., 2015) 

The RF model structure has been demonstrated in the following Figure 22. 

 

      Figure 22. Structure of Random Forest model. (C. Carranza et al., 2020) 
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4.5 Metrics for Evaluation 
In general, there are three commonly used evaluation metrics to determine the accuracy of the 

model, which are MAE (Mean Absolute Error), MSE (Mean Squared Error) and R-squared 

(R2). MSE is the mean size of residuals, meaningly, MAE is the magnitude representing how 

different in average the actual and predicted outputs are. (S. Mishra et al., 2017) 

The mathematical formula for MAE has been provided in the following equation 14. 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|𝑛

𝑖=1          (14) 

where, �̂�𝑖 and 𝑦𝑖 are predicted and actual response values, respectively. 

The concept of MSE is similar to MAE, however, MSE is the mean squared difference between 

the actual observations and their predictions. Therefore, the units of MAE are matching the 

units of parameters but in case of MSE, the units are squared. The formulae for MSE calculation 

is given in the equation 15 below. (S. Mishra et al., 2017) 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1      (15) 

In order to ease the interpretation of MSE, another often used metric is Root Mean Square Error 

(RMSE) which is easily computed by taking the square root of MSE, and has matching units 

with the variables in concern. The parameters mentioned above are desired to be as less as 

possible to obtain a good accuracy. (S. Mishra & A. Datta-Gupta, 2018) 

Another important metric is R2 which is the measure comparing residual sum of squared errors 

to the total sum of squared errors. The R-squared metric also provided a better understanding 

of the accuracy of the model because it is a proportion. It shows the variance proportion that 

can be explained by the model. R2 ranges in the interval of 0 and 1, meaning that it does not 

depend on the scale of the Y variable. The better accuracy of the model is achieved when R2 is 

closer to 1. The equation 16 given below shows the mathematical definition of the R-squared. 

(G. James et al., 2021) 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
= 1 −

∑(𝑦𝑖−�̂�𝑖)2

∑(𝑦𝑖−�̅�)
     (16) 

where TSS is the total sum of squares defined as  𝑇𝑆𝑆 =  ∑(𝑦𝑖 − �̅�). 

A popular strategy for model validation is to employ an independent test set in the form of 

wholly fresh data or a ‘hold-out’ section of the training dataset. In both circumstances, the 
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model may be fitted using the training portion of the dataset (usually 70-90% of the data) and 

afterwards evaluated on the independent test values (namely, the remaining 10-30% of the data) 

to determine the model's predictive ability for new data. K-fold cross-validation is another 

and a more robust option for model validation. (S. Mishra et al., 2017) 

 

4.6 Variable Importance Analysis (VIA) 
The absence of clear functional correlation between predictor and response variables as in case 

of complicated data driven models, to identify major input and output dependence with trivial 

evaluation is challenging. VIA is generally model-specific representing the uniqueness of 

algorithms in the model building. Different measures are being used for different models, for 

example, R2-loss, Gini importance and etc. The ‘R2-loss’ technique is a relatively 

straightforward method to determine key variables which is not stuck to any specific model. 

‘R2-loss’ is effective for any regression model and the reasoning behind this approach is to 

check how the model accuracy changes when one variable is removed. If a key parameter is 

absent then the accuracy should be reduced considerably. On the other hand, the removal of a 

relatively unimportant variable should lead to significant influence on the model accuracy. 

Measuring variable importance involves computation of pseudo-R2 for the initial model with 

all inputs and for the one without a predictor being in check. The difference between the two 

models is the R2-loss. The predictor having a greater impact, results in a bigger R2-loss. (S. 

Mishra et al., 2017) 

Example plots of variable importance have been given in the Figure 23. 
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      Figure 23. Examples of VIA plots. (T. Hastie et al., 2008) 
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Chapter 5: Results and Discussion 
The results section has been divided into two parts. In the first part, the results of DCA, 

preparation of a dataframe for EDA, results of EDA, predictive modelling concerning DCA 

characteristics, and the outcome of VIA have been provided. The second part involves the 

results of the dataframe preparation for predictive modelling, forecasting cumulative gas 

production after 0.5 and 1 year, results of modelling process, and outcome of the VIA, 

accordingly. 

5.1 Part 1: Fitting Decline Curves 
 In order to fit decline curves to the gas production history, there is a need for some calculation. 

Based on the data available in Excel spreadsheets and Arps hyperbolic decline concept 

(equation 1), actual and predicted production rates have been calculated for all 53 wells. The 

representative sample of the results for the well #1 has been provided in the Table 3 below.  

 Table 3. Some available and calculated data for the well #1. 

In the Table 3, the headings in bold are the calculated data, and others are some of available 

data from the given dataset. In order to obtain the predicted production rates and therefore ASE, 

reasonable initial guess for decline curve constants (qi, Di, b) have been made. After using 

Excel SOLVER provided with initial guess values and an objective to minimize RSS, the 

machine gives a decent fit with the actual production rate observations. Based on the behavior 

of the fitted curve depending on the constants, some slight manual corrections have been made 

in order to accomplish a good fit. It is worth to note that according to the rules of DCA, the 

Time (Days) Gas Volume Predicted Prod. Rate Actual Prod. Rate 

ASE 
(Absolute 
Squared 
Error) 

Days MMscf MMscf/d MMscf/d (MMscf/d)2 
1 0.145 0.3086 0.145 0.0268 
2 0.186 0.2980 0.186 0.0126 
3 0.231 0.2882 0.231 0.0033 
4 0.268 0.2791 0.268 0.0001 
5 0.261 0.2706 0.261 0.0001 
6 0.329 0.2627 0.329 0.0044 
… … … … … 

1088 0.000 0.0124 0.000 0.0002 
1089 0.000 0.0124 0.000 0.0002 
1090 0.000 0.0124 0.000 0.0002 
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fitting procedure covers the section or period of apparent decline. After some time periods in 

all wells, it can be observed from the plots that some performance boosting activities has been 

carried out. Such interval cannot be considered in DCA. The corresponding results of decline 

curve constants and SSE (or RSS) for the well #1 are given in the following Table 4. 

qi Di b SSE 

MMscf/d 1/d - (MMscf/d)2 

0.32 0.0371 1.2 0.33 

Table 4. DCA constants and RSS of the well #1. 

After adjustment of manual corrections to the fitting, the final version of the fit has been fixed. 

The decline curve fit for the well #1 is demonstrated in the Figure 24 below. 

 

 Figure 24. Well #1 production rate versus time plot with decline curve fit. 

All the above procedure has been carried out for the whole dataset of 53 wells. The results of 

DCA characteristics obtained for all wells have been provided in the Table 5. In this table, the 

numbers of wells are corresponding well numbers provided in the given dataset. 
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The wells 
qi Di b SSE 

MMscf/d 1/d - (MMscf/d)2 

#1 0.32 0.0371 1.2 0.33 

#3 0.79 0.03 0.1 53.67 

#4 0.455 0.01 1.1 0.04 

#5 0.25 0.011 0.8 0.002 

#6 0.46 0.008 0.9 0.015 

#7 0.46 0.009 1.2 0.026 

#8 0.61 0.01 0.5 0.003 

#9 0.4 0.01 1.0 0.002 

#10 0.42 0.011 0.35 0.002 

#11 1.1 0.037 0.95 0.079 

#2 0.7 0.03 0.3 50.38 

#62 11 0.031 1.18 229.9 

#63 42 0.005 0.2 169.9 

#64 41 0.005 0.15 7090.1 

#65 20 0.006 0.55 381.2 

#66 30 0.005 0.9 79.2 

#67 78 0.008 0.1 151.9 

#68 40 0.003 0.1 159.1 

#69 180 0.009 0.1 103.5 

#70 100 0.005 0.3 38.9 

#71 36 0.004 0.1 2202.1 

#72 22 0.0032 0.5 345.3 

#73 31 0.003 1.2 445.3 

#74 24 0.0024 1.1 113.1 

#75 31 0.005 1.1 85.5 

#76 36 0.005 1.4 870.7 

#23 10.8 0.002 0.8 364.6 

#24 27 0.0035 0.3 39.5 

#25 79 0.013 1.3 2789.2 

#26 47 0.0165 1.35 96.2 
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#27 32 0.033 2.0 40.8 

#28 65 0.0067 0.16 12.5 

#29 72 0.008 0.47 74.4 

#30 43 0.01 1.4 264.3 

#31 42 0.01 1.4 57.6 

#32 63 0.003 0.46 377.6 

#33 142 0.022 0.9 142.1 

#34 30 0.011 0.8 65.9 

#35 25 0.01 0.72 12.1 

#36 38 0.01 1.3 37.5 

#37 27 0.0065 0.4 27.1 

#38 9.5 0.014 1.4 0.94 

#39 7.2 0.0049 0.85 1.2 

#40 8.5 0.006 1.1 0.81 

#41 24 0.012 1.1 40.7 

#42 40 0.022 1.5 24.4 

#43 35 0.01 0.7 640.4 

#44 40 0.0095 0.55 272.6 

#45 62 0.012 0.37 21.9 

#46 50 0.029 1.03 51.1 

#47 25 0.024 1.15 19.2 

#48 25 0.026 1.16 5.4 

#49 10 0.011 0.99 6.2 

Table 5. Decline curve constants and SSE of all 53 wells. 

The plots demonstrating decline curve fits for all wells have been provided in the Appendix 

section. 

It can be observed from the Table 5 that the values for the hyperbolic exponent b ranges from 

0.1 up to 2.0, which was consistent with the concepts about the constant b for unconventional 

reservoirs discussed in the previous sections. It is noteworthy to mention that nominal decline 

rate requires high accuracy in the fitting process as it takes values of lower order of magnitude 

from 10-2 to 10-4. For some wells, the SSE values obtained from fitting process are high because 
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of some mid-outliers which are not affecting the DCA in terms of core principles such as 

obtaining decline characteristics. 

5.2 Part 1: Exploratory Data Analysis 
Before passing to the EDA, there is a need to prepare a dataframe to analyze the correlations, 

data distributions, and etc. The dataframe is built based on the given dataset and the results 

obtained from DCA. The parameters in the dataframe are the variables in the Table 2 with the 

addition of three DCA parameters in the Table 5. The software being used to carry out the 

analysis is Python with the interactive computing platform of Jupyter Notebook. ‘Amount of 

Total Proppant’ and ‘Spacing’ columns in the dataframe had very few missing data. These 

missing points were fixed by taking the average of other values in the dataset, which is a well-

known reasonable approach discussed in the previous sections.  

5.2.1 Univariate Analysis 

Histograms and Boxplots of Response Parameters 

The univariate analysis of the response variables (qi, Di, b) has been performed through use of 

histograms, boxplots and barplots. The distribution of output variables has been provided with 

histograms in the Figure 25. In the Figure 25, the histograms also contain kernel density 

estimation (KDE) which performs kernel smoothing for density estimation. 

 

Figure 25. Histograms with KDE of response variables. 

It can be observed from the Figure 25 that the distribution of qi mainly ranges from 0 to 50 

MMscf/d, and values of Di mostly cover the interval from minimum values to nearly 0.017 1/d. 

However, the distribution of the hyperbolic exponent varies involving the whole range of 

values from minimum to maximum. The standard deviations of qi, Di and b in the sample 

dataset are 34.8 MMscf/d, 9.6*10-3 1/d and 0.46, respectively.  
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Figure 26. Boxplots for DCA constants. 

Same behaviours can be observed also in the boxplot graphs in the Figure 26. There are some 

outliers expected via boxplots for qi and Di values.  

Histograms and Boxplots of Input Variables 

Histograms of all quantitative independent variables have been provided in the Figure 27 

below. 
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Figure 27. Histograms of independent variables. 
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In the Figure 27, the distributions of all input parameters have been demonstrated. The empty 

bars of histograms mean that there is no data point corresponding to that value. The selection 

of the number of bars in the histogram is up to the user, and its shape changes depending on 

this number. It can also be observed that the data is varying a lot for some parameters. These 

observations can also be revealed by boxplots which is another way of representing the results 

of univariate analysis. The varying distributions both in input and output variables may be a 

sign of both weak and strong relationship, especially in different directions. The distributions 

through boxplots have been shown in the following Figure 28. 
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       Figure 28. Boxplots of independent parameters. 
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5.2.2 Bivariate Analysis 

In case of bivariate analysis, the correlations between different variable couples are 

investigated mainly using barplots and scatterplots. In the following Figure 29, the distributions 

of response variables depending on different formations have been plotted. 

 

 

Figure 29. Barplots of output variables grouped by formations.  

It can be noticed from the Figure 29 that qi values for ‘Eagle Ford’ formation range in very 

small quantities compared to others. It can also be seen that ‘Bossier Shale’ formation does not 

have a range as it includes only one data point (only one observation), which is consistent with 

the information from Table 1.  
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       Figure 30. Scatterplots of bivariate analysis for qi.  
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       Figure 31. Scatterplots of bivariate analysis for Di. 
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       Figure 32. Scatterplots of bivariate analysis for b. 
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The Figures 30, 31, and 32 represent the results of bivariate analysis performed through 

scatterplots taking output variables (qi, Di, and b) on the vertical axis and independent 

parameters on the horizontal axis. Figures 30, 31, and 32 correspond to the dependencies 

having qi, Di, and b on the vertical axes, respectively. It is quite complicated to observe the 

relationship between variables from the scatterplots. It can be observed that some parameters 

are correlated in positive direction and some in negative. In general, there is not a variable 

showing a considerably significant correlation. In total, the behaviour of input parameters 

shows from weak to moderate correlation. Another way to demonstrate this relationship is to 

determine Pearson’s correlation coefficients. These coefficients are provided in the Table 6 

below. 

 qi Di b 

Initial Pressure Estimate 0.175284 -0.334467 -0.338584 

Reservoir Temperature 0.114517 -0.273760 -0.344632 

Net Pay 0.238378 -0.126391 0.046275 

Porosity 0.494048 -0.295467 -0.238977 

Water Saturation -0.109858 0.225430 0.263085 

Oil Saturation -0.496790 0.357516 -0.051740 

Gas Saturation 0.497397 -0.399709 -0.026514 

Gas Specific Gravity -0.423410 0.440442 -0.111191 

CO2 0.147134 -0.313040 -0.318732 

N2 -0.144811 0.392584 -0.198843 

TVD 0.160340 -0.398895 -0.278664 

Spacing 0.111654 0.134081 0.164888 

Number of Stages 0.217520 -0.208061 -0.391688 

Number of Clusters -0.208726 0.177369 -0.313031 

Number of Clusters per Stage -0.458649 0.347045 -0.142994 

Amount of Total Proppant 0.149398 -0.082926 -0.419993 

Lateral Length 0.241357 -0.119021 -0.357321 

Top Perforation 0.178937 -0.396983 -0.283788 

Bottom Perforation 0.260044 -0.323025 -0.410221 

Sandface Temperature 0.104161 -0.269486 -0.345918 

Static Wellhead Temperature 0.421491 -0.299016 -0.234559 

  Table 6. Pearson’s correlation coefficients for bivariate analysis. 
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It can be observed from the Table 6 that the results of Pearson correlation provide that there is 

a moderate relation between Porosity, Gas Saturation, Static Wellhead Temperature and qi, in 

positive direction; and with Oil Saturation, Gas Specific Gravity, Number of Clusters per Stage 

in negative direction. For the other output variables, the correlations are different. There are 

also several weak relationships between input and output parameters. However, these analyses 

are subject to further investigation with predictive modelling. 

5.2.3 Multivariate Analysis 

The widely popular and effective tool for multivariate analysis is a heatmap with correlation 

coefficients. In the following Figure 33, the results of multivariate analysis have been provided 

in the form of a heatmap with correlation matrix.  

 

  Figure 33. Heatmap with correlation matrix from multivariate analysis. 

In can be seen from the Figure 33 that there are various types of correlation from weak to strong 

both in positive and negative directions. The diagonal in the heatmap should be disregarded 

because it shows the correlation of a parameter with itself which should always be equal to 1. 
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5.3 Part 1: Predictive Models and VIA 
While building predictive models, one of the main pre-processing procedures carried out is the 

normalization of the dataset. Normalization is a sort of scaling which scales the values to the 

range from 0 to 1 assigning the minimum value of a parameter equal to 0 and the maximum 

value as 1. The concept of normalization is very beneficial as the variables include the values 

with various orders of magnitude which may influence the prediction process.  

5.3.1 Multiple Linear Regression Models 

As the first predictive model, Multiple Linear Regression (Ordinary Least Squares) approach 

has been applied. After several iterations with models, an optimal train-test split of 0.2 has been 

decided. Train-test split equal to 0.2 means that 80 percent of the data for each variable 

constitutes the training data and 20 percent for test data. Test data is so-called untouched data 

which is used for model validation. The OLS (Ordinary Least Squares) model performs linear 

regression taking the quantitative parameters mentioned in the Table 2 as input and predicting 

qi, Di, and b as response. As the OLS model can have only one output variable, three different 

OLS models have been built with same input but different dependent variables. The scatterplots 

comparing the predictions of the model with actual values of the output parameter for three 

different models are illustrated in the Figure 34.  

 

 

      Figure 34. Predicted output vs Actual response graph for three MLR models. 
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In case of an ideally perfect predictive model, one-to-one correspondence should be observed 

from the scatterplots, meaningly that the data points should align as a straight line with the 

slope of unity (or 45°). It can be clearly seen from the Figure 34 that there is a very poor one-

to-one correspondence between model predictions and actual values of response parameters. 

For the hyperbolic exponent b, it is absolutely not the case. Such a behavior is mostly related 

with the concept that the true relationship between the input and output variables may be 

strongly non-linear. The relative failure of the OLS model also suspects that the correlation is 

not strong so that the model fails to explain the occurred variance. Moreover, it is pivotal to 

mention that the lack of the data also has an influence on the results because the relationship 

may be so complex that just 53 observations may not be sufficient to discover it. As a 

supporting argument, evaluation metrics also confirm such a behavior. In the Table 7 below, 

evaluation metrics for each MLR model has been provided.  

Evaluation Metrics qi Di b 

MAE 0.14 0.20 0.27 

MSE 0.06 0.05 0.11 

RMSE 0.23 0.23 0.34 

R2 0.45 0.28 –0.32    

        Table 7. Evaluation metrics for three MLR models. 

It is obvious from the Table 7 that all three OLS models poorly predict the response variable 

as the R2 values for models of qi, Di, and b are equal to 0.45, 0.28, and –0.32, respectively. The 

low values of R-squared for models of qi and Di reveal that the models can poorly explain the 

variance in the data. The R-squared result for prediction of b is even negative, showing very 

poor prediction. By the definition, R-squared takes a non-negative value from 0 to 1. However, 

mathematically, a negative R-squared is impossible only in case if the predictions are 

performed on the trained/fitted data. However, the R-squared is usually evaluated for test data 

meaning that there is a possibility of a negative R2 when the RSS of the test data exceeds the 

TSS (Total Sum of Squares) of the trained data, meaning that the predictive ability of the model 

is very poor. The conclusions from the results of MLR application are confirming the weak 

correlations from bivariate and multivariate analysis. Furthermore, another reason for such 

results is the lack of data. For some models, the number of observations may not be enough to 

result in a good predictive model. In the following Figure 35, the density distribution plots of 

residuals for each model are given. From the Kernell density estimator, it can be seen that there 

is a poor normal distribution in residuals.  
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Figure 35. Distribution plots of residuals for three OLS models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Model coefficients of MLR models for qi and Di predictions. 

 

Model Coefficients for qi 
Lateral Length 4.19 
Top Perforation 3.28 
Sandface Temperature 0.36 
Water Saturation 0.24 
Porosity 0.18 
N2 0.13 
Gas Specific Gravity 0.11 
Static Wellhead Temperature 0.10 
Amount of Total Proppant 0.10 
Spacing 0.07 
Gas Saturation 0.07 
Initial Pressure Estimate 0.03 
Number of Clusters - 0.00 
Number of Stages - 0.14 
Oil Saturation - 0.17 
Net Pay - 0.23 
CO2 - 0.25 
Number of Clusters per Stage - 0.25 
TVD - 0.32 
Reservoir Temperature - 0.47 
Bottom Perforation - 4.74 

Model Coefficients for Di 
Lateral Length 10.22 
Top Perforation 9.71 
Number of Clusters 2.73 
Initial Pressure Estimate 1.07 
Net Pay 0.55 
Porosity 0.46 
Oil Saturation 0.41 
Gas Specific Gravity 0.36 
Spacing 0.03 
N2 - 0.07 
Water Saturation - 0.09 
Static Wellhead Temperature - 0.10 
Sandface Temperature - 0.14 
CO2 - 0.20 
Gas Saturation - 0.34 
Reservoir Temperature - 0.59 
Amount of Total Proppant - 0.64 
Number of Stages - 0.99 
Number of Clusters per Stage - 1.66 
TVD - 3.17 
Bottom Perforation - 12.68 
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                     Table 9. Model coefficients of MLR model for predictions of b. 

Variable importance analysis determines the key parameters for the predictive model, and the 

criteria to represent it in MLR models are the model coefficients of independent variables. 

From the Tables 8 and 9, it can be seen that ‘Lateral Length’ and ‘Top Perforation’ appear to 

be most important variables for all three models in the positive direction, and ‘Bottom 

Perforation’ in the negative direction. Generally, looking at the coefficients we can confirm 

weak to moderate influence of input parameters on the response, which is consistent with the 

results of multivariate and bivariate analysis. 

5.3.2 Random Forest Models 

In order to further investigate and analyse the situtation, Random Forest models have been built 

taking the same inputs and predicting the output variables as in the case of MLR model. 

However, in this analysis, it was decided to include also the ‘Formation/Reservoir’ parameter 

to the list of independent variables based on the fact that RF is tree-based method. Therefore, 

six RF models are built in order to explore the effect of the formation, meaningly two models 

for each response parameter with and without consideration of the formation. The 

Model Coefficients for b 
Top Perforation 2.76 
Lateral Length 1.99 
Number of Clusters 0.51 
Porosity 0.32 
Reservoir Temperature 0.25 
Static Wellhead Temperature 0.24 
CO2 0.18 
Number of Clusters per Stage 0.18 
Water Saturation 0.17 
Number of Stages 0.14 
TVD 0.12 
N2 0.10 
Spacing 0.06 
Oil Saturation 0.03 
Gas Specific Gravity 0.03 
Gas Saturation - 0.09 
Net Pay - 0.19 
Amount of Total Proppant - 0.85 
Initial Pressure Estimate - 1.00 
Sandface Temperature - 1.18 
Bottom Perforation - 2.69 
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‘Formation/Reservoir’ parameter consists of the names of the formations from which the wells 

are producing, so it is a categorical data. As we are dealing with quantitative analysis, there is 

a need to change them from categorical to numerical. To do so, the concept of dummy variables 

has been applied. In the Tables 10 and 11, the results of evaluation metrics of RF models 

without and with consideration of ‘Formation’ parameter are demonstrated respectively. 

Evaluation Metrics of RF qi Di b 

MAE 7.65 0.00 0.15 

MSE 124.26 2.20*10-5 0.04 

RMSE 11.15 0.00 0.21 

R2 0.86 0.56 0.77    

         Table 10. Evaluation metrics for three RF models without ‘Formation’. 

Evaluation Metrics of RF qi Di b 

MAE 7.00 0.00 0.17 

MSE 107.45 2.01*10-5 0.05 

RMSE 10.37 0.00 0.22 

R2 0.88 0.60 0.74    

    Table 11. Evaluation metrics for three RF models with ‘Formation’. 

It can be obviously observed from the Tables 10 and 11 that the results have significantly 

improved when RF approach is applied. The interpretation of the comparison should include 

the fact that the data in the case of MLR is normalized. The R2 has significantly increased 

meaning that the model can explain the majority of the variance. When it comes to the 

comparison between results of RF models with and without ‘Formation’ variable, it is worth to 

mention that inclusion of formation has improved the model in case of qi and Di. Nevertheless, 

this addition worsened the model for the prediction of b. The improvements in the results can 

also be concluded from the plots in the Figures 36 and 37 provided below. The data points in 

the scatterplots are more nearly located to the unity slope straight line than the messy 

distributions in the results of OLS models. 

Figures 38 and 39 provide the results of variable importance analysis. VIA in Random Forest 

approach is performed through use of Mean Decrease in Impurity (MDI) which is also called 

as Gini Importance. 
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Figure 36. Plots of Predicted response vs Actual output for three RF models without 

‘Formation’ consideration. 

 

Figure 37. Plots of Predicted response vs Actual output for three RF models with ‘Formation’ 

consideration. 

 

 

Figure 38. Variable Importance for output parameters without ‘Formation’. 



70 
 

 

 

Figure 39. Variable Importance for output parameters with ‘Formation’. 

According to VIA of RF models without taking ‘Formation’ parameter into account (Figure 

38), three most important parameters for the models are different. Reservoir Temperature, 

Sandface Temperature and Number of Clusters per Stage are the main independent variables 

for the model of qi. However, for Di and b two of three major features coincide which are 

Amount of Total Proppant and Gas Saturation. The VIA results of RF and OLS models differ 

from each other having only minor similarities. The results of RF models with the consideration 

of ‘Formation’ variable are approximately same with the case of without it. The results of both 

OLS and RF models reveal that there are also unnecessary variables almost not contributing to 

the predictions. 

5.4 Part 2: Preparation of the Dataset 
In the second part of the analysis, the cumulative gas production after 0.5 and 1 year have been 

predicted using same dataset and modelling techniques. The dataframe created for the 

predictive models consists of the same input parameters as in the part 1 but with different 

response variable being cumulative gas production after a certain period. The periods of 0.5 

and 1 year have been selected according to the availability of the data in the original SPE 

dataset. In the case of 0.5 year, all wells contain production data throughout the period of 183 
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days. However, for 1 year predictions, the well #3 had production data until 249th day. In order 

to fill the value in the dataframe prepared, the extrapolation principle have been used for this 

well. To do so, a second decline curve was fit to the last decline, and the value for Gp after 365 

days has been computed using the decline characteristics corresponding to that last decline. 

The equation utilized for this extrapolation is the Arps hyperbolic decline formula 

demonstrated in the equation 1 (see Methodology section). Fitting the second decline curve for 

the well #3 is performed in the same way likewise in the part 1 for the other wells. The decline 

curve fit for the well #3 is provided in the Figure 40 below. 

      

Figure 40. Well #3 production rate versus time plot with second decline curve fit. 

The DCA parameters obtained from the second decline curve fitting of the well #3 are provided 

in the Table 12. The results of extrapolation procedure led Gp after 1 year to be equal to 22.96 

MMscf which was very reasonable considering the behavior of the gas production.  

qi Di b SSE 

MMscf/d 1/d - (MMscf/d)2 

10200 0.086 0.092 0.1 

 Table 12. DCA constants and RSS of the well #3 after second decline curve fitting. 
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5.5 Part 2: Exploratory Data Analysis 
EDA performed for the second part is analogous in the concepts and methods to the EDA in 

the part 1.  

5.5.1 Univariate Analysis 

Histograms and Boxplots of Response Parameters 

The distributions of response variables through histograms and boxplots have been given in 

the Figures 41 and 42. 

 

Figure 41. Histograms with KDE of response variables for part 2. 

 

Figure 42. Boxplots of output parameters for part 2. 

From the Figure 41 and 42, it can be observed that the range of dependent variables is quite 

large, with means of Gp (cumulative gas production) at 0.5 year and Gp at 1 year being around 

2000 and 4000 MMscf, respectively. 

 

 



73 
 

5.5.2 Bivariate Analysis 

In the following Figure 43, the distributions of output variables depending on different 

formations have been plotted using barplots. 

 

 

   Figure 43. Barplots of output parameters for part 2 grouped by formations. 

It can be noticed from the Figure 43 that throughout the periods of time, ‘Eagle Ford’ formation 

has not been so productive as its values range in very low quantities. It can also be mentioned 

that ‘Bossier Shale’ formation does not have a range as it includes only one observation (only 

one data point), which is consistent with the information provided in the Table 1.  

In the Figures 44 and 45, the scatterplots of dependent variables versus input parameters are 

illustrated. The results shown in these graphs are very similar to the scatterplots generated in 

the part 1. 
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                Figure 44. Scatterplots of bivariate analysis for Gp after 0.5 year.  
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     Figure 45. Scatterplots of bivariate analysis for Gp after 1 year.  
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 Gp after 0.5 year Gp after 1 year 
Initial Pressure Estimate 0.372175 0.382886 
Reservoir Temperature 0.293218 0.294997 

Net Pay 0.320618 0.327015 
Porosity 0.653933 0.664648 

Water Saturation -0.406605 -0.383847 
Oil Saturation -0.611986 -0.629827 
Gas Saturation 0.690122 0.700367 

Gas Specific Gravity -0.503962 -0.519237 
CO2 0.378362 0.387273 
N2 -0.182302 -0.188080 

TVD 0.385093 0.394408 
Spacing 0.064261 0.054388 

Number of Stages 0.455430 0.455516 
Number of Clusters -0.144434 -0.155400 

Number of Clusters per Stage -0.518263 -0.535324 
Amount of Total Proppant 0.195632 0.212880 

Lateral Length 0.447223 0.441113 
Top Perforation 0.414922 0.422815 

Bottom Perforation 0.546680 0.547035 
Sandface Temperature 0.279740 0.278131 

Static Wellhead Temperature 0.533500 0.559797 
    Table 13. Pearson’s correlation coefficients for bivariate analysis for part 2. 

Pearson’s correlation coefficients have been used for bivariate analysis and are shown in the 

Table 13. In contrast to the analogous analysis performed in the first part, here the majority of 

input variables are significantly correlated to the cumulative gas production. It can be obviously 

observed that Gas Saturation, Porosity and Oil Saturation are the most closely correlated to 

both outputs considering both positively and negatively directed relationships. 

5.5.3 Multivariate Analysis 

In the following Figure 46, the results of multivariate analysis have been provided through a 

heatmap with correlation matrix. The diagonal in the heatmap should be neglected because it 

displays the correlation of a parameter with itself which should always be equal to unity. The 

observations from the multivariate analysis confirm the judgements made throughout the 

bivariate analysis. 
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Figure 46. Heatmap with correlation matrix from multivariate analysis in part 2.  

5.6 Part 2: Predictive Models and VIA 
In the process of building a predictive model, normalization is an essential procedure and it 

concerns, especially, multiple linear regression models. In this section, the results of predictive 

models such as OLS and RF are discussed. The models take the same input variable as for the 

case in the part 1 but the output variables are different here. Thus, the overall process is 

conducted analogously with slight amendments. 

5.6.1 Multiple Linear Regression Models 

Similar to the modelling performed in the first part, MLR models have been built with a train-

test split of 0.2, meaning that the test data comprises the 20 percent of the total data. 

Nevertheless, the OLS models in this part try to predict cumulative gas production for half- and 

one-year periods. Taking into account that such type of models can deal with one output 

variable at a time, two MLR models are built and corresponding results of predicted versus 

actual data for both models using scatterplots are demonstrated in the Figure 47. 
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Figure 47. Predicted data vs Actual data plot for two MLR models in part 2. 

It can be seen from the Figure 47 that the one-to-one correspondence is not ideal but the data 

points are aligned quite good with the straight line of unity slope. The results can also be 

confirmed by the evaluation metrics provided in the Table 14. It is noteworthy to mention that 

the interpretation of results should also consider the normalization of the dataset as a pre-

processing step. 

Evaluation Metrics Gp after 0.5 year Gp after 1 year 

MAE 0.08 0.07 

MSE 0.01 0.01 

RMSE 0.11 0.10 

R2 0.88 0.90 

  Table 14. Evaluation metrics for two MLR models in part 2. 

The results of model evaluation given in the Table 14 reveal that both models have performed 

very good considering the R2 values as high as 0.88 and 0.90. This means that the models are 

able to explain the variance up to 90 percent. 

 

    Figure 48. Residuals distribution plots for both OLS models in part 2. 
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In the Figure 48, the density distribution graphs of residuals for both models are provided. The 

density distribution has the tendency to the shape of normal distribution but not formed 

completely which may be due to the small amount of test data on which the models are 

evaluated. 

Table 15. Model coefficients of two MLR models.  

VIA determines the major variables for predictive models, and the criteria to represent it in 

MLR models are the model coefficients of predictors. It can be observed From the Table 15 

that ‘Lateral Length’ and ‘Top Perforation’ appear to be most important parameters for both 

models in the positive direction, and ‘Bottom Perforation’ in the negative direction. 

5.6.2 Random Forest Models 

To further investigate and analyse the situtation, RF models are built which takes the same 

inputs and predicts the response variables as in the case of MLR models. In the Table 16, the 

evaluation metrics of Random Forest models have been given. 

 

Model Coefficients for Gp after 0.5 year Model Coefficients for Gp after 1 year 
Lateral Length 12.56 Lateral Length 7.80 
Top Perforation 9.55 Top Perforation 5.87 
Sandface Temperature 0.86 Number of Stages 0.65 
Number of Stages 0.79 Sandface Temperature 0.40 
Initial Pressure Estimate 0.33 Water Saturation 0.27 
Gas Specific Gravity 0.25 Gas Saturation 0.27 
Gas Saturation 0.22 Gas Specific Gravity 0.23 
Water Saturation 0.20 Initial Pressure Estimate 0.18 
Spacing 0.13 Spacing 0.16 
Porosity 0.12 Porosity 0.07 
N2 -0.04 N2 0.06 
Static Wellhead Temperature -0.15 Reservoir Temperature 0.03 
Number of Clusters -0.17 Static Wellhead Temperature -0.01 
CO2 -0.24 Number of Clusters per Stage -0.14 
Number of Clusters per Stage -0.27 Amount of Total Proppant -0.27 
Oil Saturation -0.32 CO2 -0.28 
Net Pay -0.34 Number of Clusters -0.31 
Amount of Total Proppant -0.49 Net Pay -0.40 
Reservoir Temperature -0.57 Oil Saturation -0.40 
TVD -1.47 TVD -0.97 
Bottom Perforation -14.96 Bottom Perforation -9.16 
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Evaluation Metrics of RF Gp after 0.5 year Gp after 1 year 

MAE 548 1058.9 

MSE 734405 2.6*106 

RMSE 857 1612 

R2 0.88 0.84 

  Table 16. Evaluation metrics for both RF models in part 2. 

Based on the results of RF models shown in the Table 16, the models are performing almost as 

good as OLS models. In general, Random Forest approach is considered as a more 

sophisticated technique compared to Linear Regression, meaningly, in the majority of cases 

former performs better than latter. Such results were observed in the part 1, however, in this 

case, the opposite took place. MLR models have better results in terms of performance which 

may be due to the possible linear relation between input and output. Nevertheless, both methods 

show good results close to 0.9, meaning that the 90 percent of variance can be explained by the 

models. The similarity of performances also can be deducted from the scatterplots of predicted 

values versus actual data provided in the Figure 49 below. 

   

  Figure 49. Graphs of Predicted values vs Actual data for both RF models in part 2. 
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Figure 50. Feature Importance for response parameters in part 2. 

Figure 50 shows the results of feature importance analysis. VIA in Random Forest approach is 

carried out using of Mean Decrease in Impurity (MDI) which is also called as Gini Importance. 

According to the feature importance analysis of RF models (Figure 50), the most important 

parameter for both models is ‘Gas Saturation’. The VIA results of RF and OLS models differ 

from each other having also some similarities such as the importance ‘Bottom Perforation’ 

parameter. The results of both RF and OLS models disclose that there are also unnecessary 

variables almost not contributing to the predictions. 
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Chapter 6: Conclusion 

In conclusion, this research study comprises the investigation of the correlation between 

operational/reservoir parameters and decline curve characteristics with additional predictions 

on cumulative gas production. The focus of the study is shale gas wells from different 

unconventional reservoirs. Exploratory techniques have been performed on the dataset of SPE 

to form an understanding of the patterns and features. After EDA has been carried out, 

statistical learning and different ML algorithms were applied to build predictive models for the 

estimation of the relationship and forecasting. The performance efficiency of the models was 

evaluated to observe the precision of the predictions and feature importance analysis were 

conducted to determine driving variables. 

The principal conclusions drawn from this research have been provided in the following way. 

1. The results of univariate, bivariate and multivariate analysis demonstrated that there 

was a correlation to some extent between some independent variables and output 

parameters.  

2. The metrics used to evaluate the models determined that in the most cases, the 

predictions of Random Forest models were much more accurate compared to OLS 

regression as the proportion of the explained variance was as high as up to almost 90 

percent for some models. The only exception is the modelling for predicting cumulative 

gas production after 1 year in which the OLS model outperforms the RF model. These 

results confirm the well-known power of random forest models in machine learning. In 

addition, MLR models for prediction of nominal decline rate and hyperbolic exponents 

showed very poor results. 

3. The driving parameters determined by VIA were generally different for different 

models with some similarities which confirms the feature importance analysis being 

model-specific.   

4.  Random_state feature (selects the data points randomly for train-test splitting) required 

in the model building process was generating different results of prediction accuracy of 

models. Another feature of models changing the results was the parameter ‘n’ in RF 

models which is deciding the number of trees used in the method. 

5.  An important issue in the results is the lack of data which is significant in data analytics. 

Only 53 observation points made the whole procedure very challenging because 
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generally, more data is used in statistical learning and having as more data as possible 

is always better for predictions. 

Recommendations for further research studies on these topics are as follows: 

❖ Studies including much more data points can be involved to enhance the analysis for 

deeper investigations. 

❖ The model features can be tuned for better results and their influence can be inspected. 

❖ Different decline curve models such as Duong, SEDM and PLE can be used for fitting 

decline curves and the influence on the results can be investigated. 

❖ Changes can be made to the list of operational and reservoir parameters to discover 

different correlations. 

❖ Other machine learning techniques, for example deep learning (Neural Network), can 

be used for deeper comparisons on the best performances. 
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Appendix 
In this part, decline curves fit to other 52 wells have been given. 

 

 

Figure A-1. Decline curve fit for the wells #2 (upper left), #3 (upper right), #4 (bottom left), #5 (bottom right). 
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Figure A-2. Decline curve fit for the wells #6 (upper left), #7 (upper middle), #8 (upper right), #9 (bottom left), #10 (bottom middle), #11 
(bottom right). 
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Figure A-3. Decline curve fit for the wells #23 (upper left), #24 (upper middle), #25 (upper right), #26 (bottom left), #27 (bottom middle), #28 
(bottom right). 
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Figure A-4. Decline curve fit for the wells #29 (upper left), #30 (upper middle), #31 (upper right), #32 (bottom left), #33 (bottom middle), #34 
(bottom right). 
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Figure A-5. Decline curve fit for the wells #35 (upper left), #36 (upper middle), #37 (upper right), #38 (bottom left), #39 (bottom middle), #40 
(bottom right). 
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Figure A-6. Decline curve fit for the wells #41 (upper left), #42 (upper middle), #43 (upper right), #44 (bottom left), #45 (bottom middle), #46 
(bottom right). 
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Figure A-7. Decline curve fit for the wells #47 (upper left), #48 (upper middle), #49 (upper right), #62 (bottom left), #63 (bottom middle), #64 
(bottom right). 
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Figure A-8. Decline curve fit for the wells #65 (upper left), #66 (upper middle), #67 (upper right), #68 (bottom left), #69 (bottom middle), #70 
(bottom right). 
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Figure A-9. Decline curve fit for the wells #71 (upper left), #72 (upper middle), #73 (upper right), #74 (bottom left), #75 (bottom middle), #76 
(bottom right). 

 


