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ABSTRACT 

 

The aim of this study is the regionalization of the parameters of a hydrological model (TUWmodel) for 

the Piedmont region, through an innovative procedure involving machine learning techniques 

(HydroPASS) for estimation of runoff at ungauged locations. The regionalization is performed by the 

determination of a regional functional relationship between model parameters and a selected set of 

descriptors (CDs) over a reference grid (resolution around 12 𝑘𝑚) without any a priori assumptions 

about the function itself. The first part of the study involved the determination of the needed input 

data to then move to the actual application of the algorithm. The climate data (Precipitation, mean 

temperature, and PET) over the grid (from 1961 to 2021) have been obtained from ARPA Piemonte 

and simple calculations just like the discharge observations at 127 gauged stations. This information 

has been used to perform the local lumped calibrations of the TUWmodel parameters for each 

catchment (DE algorithm), resulting in an average Kling-Gupta efficiency (ME) of 𝟎. 𝟖𝟔. The 52 

selected descriptors, evaluated for both the catchments and the reference grid, are instead divided 

into to five groups (climate, morphology, land use, soil, and curve numbers). After the application of 

the regionalization algorithm, the searched distributed parameters have been obtained resulting in a 

distributed Kling-Gupta efficiency (ME) of 𝟎. 𝟕. Further analysis shown the flexibility of the 

regionalization procedure when provided with more limited number of CDs, resulting in similar, not 

degraded, efficiencies. The newfound distributed parameters have then been applied for the 

reconstruction of five historical flooding events (1994, 2000, 2008, 2016, 2020) over the Piedmont 

region. The model, despite presenting some limits in the quality of the observed data discussed in the 

thesis, performed reasonably well resulting in coherent simulations, both spatially and temporary, at 

ungauged locations, in agreement with the descriptions contained in the official reports redacted by 

the local authorities.  
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1. INTRODUCTION 

 

1.1 Continuous discharge estimation and regionalization 

“Hydrology is the branch of science concerned with the properties of the earth's water, and especially 

its movement in relation to land”. Part of this science is the continuous streamflow estimation. 

Streamflow (i.e., the amount a water flowing, in a precise cross section, in a channel or river) is 

monitored and observed at gauged locations but can only be estimated, reconstructed, or forecasted 

in ungauged ones. Discharge timeseries are of fundamental importance in many fields of practice, 

ranging from ecology to engineering: hydrological signatures derived by such data are for example 

used in the design of all critical infrastructure (reservoirs, drainage systems) to be able to sustain 

events with different return periods, just like for the definition of legislative frameworks to prevent 

and face damages caused by flooding events, to name a few. Despite the necessity of such 

information, most rivers and stream reaches and tributaries in the world are ungauged or poorly 

gauged (Sivapalan et al. 2003; Young 2006; Mishra and Coulibaly 2009). An ungauged or poorly 

gauged basins are, according to Sivapalan et al. (2003), the ones with inadequate records, both in 

terms of quality and quantity with respect to a variable of interest (the same concept can be applied 

outside the strict hydrology, like for temperature measurements). In this context, of fundamental 

importance is the possibility and capability of reconstruct, starting from the available observation at 

gauged location, streamflow timeseries where there is not a monitoring network (PUB – Prediction 

Ungauged Basins, see “Runoff Prediction in Ungauged Basins”, Gunter Bloschl, 2013). Currently 

reconstructions and forecasts are mainly realized relying on the utilization of conceptual and semi-

distributed models (Tara Razavi et al., 2013). A conceptual model reproduces the hydrological 

processes in a simplified way, schematizing the processes without directly solving physical equations: 

each model is characterized by several parameters that can be tuned (calibrated) to modify the 

resulting output. A full classification and description of the possible models will be provided in chapter 

4: for the moment, our interest is to review the different historical approaches to the regionalization 

process and then introduce the innovative methodology on which this entire work is based on.  

Blöschl and Sivapalan (1995) defined as regionalization the process of transferring the information 

from one catchment to another, a procedure that can provide good results if the catchments are in 

some sense similar. The transferred information can be of different nature; in our case it will be the 

model parameters. Indirectly this definition implies that the regionalization process relies on a very 

strict assumption: the gauged and ungauged catchments should be in a homogeneous region. In other 

words, it is assumed that similar conditions (climate, topography, land use, etc…) will generate a 

similar response no matter where we are inside the area of study. Due to the lack of observations 
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(used to calibrate the model in the gauged location), a regionalization procedure is universally 

recognized as a challenge which outcomes success are often limited. 

 

1.2 Regionalization approaches 

A general and simplified form of regional model can be the following, as proposed by Wagener and 

Wheater (2006): 

 

𝜃𝐿 = 𝐻𝑅(𝜗𝑅|𝛷) + 𝑣𝑅      (𝑒𝑞. 1.1) 

 

Where 𝜃𝐿 is the hydrological variable of interest at the ungauged site, 𝐻𝑅 is the regional functional 

relationship for the same variable, 𝜗𝑅 are sets of the variable of interest at gauged location and 𝛷 a 

set of catchment attributes. 𝑣𝑅 is the error term. In other words, a function between model 

parameters and attributes (in this work they will be called catchment descriptors, CDs) is derived 

starting from the gauged catchments (where parameters can be calibrated). The same found relation 

is then applied where only attributes are available to predict parameters for the reconstruction of 

discharge data at ungauged sites. 

 

 

 

 

 

 

 

 

 

 

GAUGED 

PARAMETERS ATTRIBUTES 

UNGAUGED 

??? ATTRIBUTES 

𝑅𝐹𝑅 

Figure 1 - "Conceptual scheme of regionalization, in which regional functional relationships (RFR) are sought to derive 
hydrological model parameters for ungauged catchments from those estimated in gauged catchments" 
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Five general steps can be identified for the definition of a regional functional relationship (from now 

on 𝑅𝐹𝑅): 

- Definition at the gauged location of the hydrological variable (or variables) to be regionalized. 

In case of model parameters, a calibration must be conducted (see chapter 4). 

-  Collection and definition of the catchment descriptors (attributes) at gauged and ungauged 

sites: not always the data needed for their computation, generally in form of indices or shares 

(like for land use), are available or easily accessible. Moreover, the discussion about which CDs 

and in which number are needed for a good regionalization is still an open question without 

a clear answer. Often the selection is initially guided by intuition or by the reasoning about 

the main hydrological processes at the base of runoff generation. 

- Development of the 𝑅𝐹𝑅: here different approaches can be used to obtain the function 

needed to connect hydrological variable and descriptors (see chapter 6). 

- Run a validation procedure: mathematically a 𝑅𝐹𝑅 will always be found after the first three 

steps, but such function may still not be suitable for the regionalization applications. Before 

applying the regional model, the relation is tested in different ways: the most used method is 

the one-out cross validation where each basin is, in turn, considered fictionally ungauged to 

obtain a simulated flow, but still comparable with observed data with an objective function. 

If the validation procedure gives acceptable results, the regional model can be applied to real 

ungauged catchments. 

- Perform an uncertainty analysis about the obtained hydrological variables at ungauged 

locations. 

The third step is where the major differences can be introduced from a method to another, changing 

the actual strategy used to determine the regional function relationship: 
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Figure 2 - Schematic of two main classes and subdivisions of continuous streamflow regionalization methods (Tara Razavi et 
al., 2013) 

 

Inside the model-dependent approaches, the first, and simpler, to have been used are the arithmetic 

mean and the spatial proximity. Both do not directly require the definition of catchment descriptors, 

transferring the model parameters by mean of simple averages. In arithmetic mean the parameters at 

gauged location are averaged and the mean is used at the ungauged sites. The mean can be done 

globally on all the available basins or locally considering just the surrounding catchments. In spatial 

proximity is instead utilized an interpolation technique that is function of the geographic location of 

the ungauged with respect to the gauged catchments (like a weight to give more importance to the 

closest basins). Kriging is by far the most used and successful method of this kind. 

A third class of approaches that still does not directly use the descriptors are the scaling relationships. 

The variables are scaled to sub-catchment areas assuming that the streamflow contribution from each 

sub-catchment to the total catchment yield is proportional to a ratio of the catchment area or other 

attributes (Schreider et al., 2002). 

Physical similarity approaches subdivide gauged and ungauged catchments in sub-groups depending 

on their descriptors. Basins with similar descriptors are grouped together (the similarity is determined 

with multivariate statistics analysis). Then, for each group, starting from the hydrologic variable at the 

gauged locations, a regional relationship (for example again with a simple arithmetic mean) is found 

and applied to all ungauged sites of the same group. 
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More sophisticated approaches are instead the regression methods: linear or non-linear relations 

between descriptors and parameters can be used. The main idea is to select a priori which CDs are 

more important and the structure of the 𝑅𝐹𝑅. Using the available information at gauged locations 

such relation is then tuned to give the best performance. At the same time, as already stated, 

identifying which descriptor is more relevant than another is difficult, and more than one set of 

descriptors can be combined to well represent the observations. Regression methods are indeed a 

powerful tool but limited by their intrinsic fixed structure already decided before the regionalization 

even starts. 

Despite different methods can result in different outcomes, in different regions, all have been used 

with discrete success. Inside this framework, in 2020, Merz at al. in their article “Parameters’s control 

of distributed catchment models; how much information is in conventional catchment descriptors?” 

proposed a new innovative approach to tackle the problem of regionalization. Their proposed 

algorithm, HydroPASS (Parameter Set Shuffling), follows the idea of regression methods, but do not 

require a priori assumptions about the CDs used and about the relationship between model 

parameters and catchment descriptors. On the contrary such relation, and so the structure of the 𝑅𝐹𝑅 

are derived by the same algorithm during the regionalization by mean of machine learning techniques. 

The great advantage of this new methodology is the fact that it does not rely on choices just made 

based on experience or intuition. Such decisions may in fact reveal wrong: catchment descriptors 

relative importance can change with scale and region and so is difficult to find a single structure always 

working. Moreover, in literature (like Bloschl et al., 2013) there are several studies that report that in 

regionalization studies, unambiguous relationship, even in the same area, cannot be found. A full 

description of the algorithm will be provided in chapter 6; for the moment, in the next paragraph the 

goal of this study and the framework adopted to achieve it are detailed. 

 

1.3 Scope and operational framework 

In the following study the objective is the application of the regionalization procedure proposed by 

Merz et al. on the Piedmont region, in the north-west part of Italy, starting from the available 

discharge data at some gauged locations and from open-source databases for the calculation of the 

catchment descriptors. The obtained regional functional relationship will then be applied on a grid of 

HUs (hydrological units) to simulate historical floods that struck the area in the past and to obtain a 

spatially detailed reconstruction of the river discharges during those events.   
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Figure 3 - Flow Chart with sections of the study. Raw climatological data and manipulation (yellow, chapter 3), Observed 
discharge data (green, chapter 3),  local lumped calibration (orange, chapter 4), descriptors determination (light blue, 

chapter 5), and HydroPASS application (red, chapter 6) 

 

The proposed flow chart (Figure 3) follows the general regionalization procedure already described in 

the previous paragraph. Some elements are interconnected and are necessary both directly inside the 

regionalization routine and for the definition of other required HydroPASS input  elements. The colors 

have been used as far as possible to group together single aspects of the study as they will be described 

in detail in the following chapters: 

a) A first section (in yellow) is dedicated to the manipulation of raw climatological data to obtain 

the required climate input in the desired format. In this section is also determined the 

reference grid over which most of the parameter and indices of the entire work will be 

referred to (Chapter 3). 
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b) The second section, composed by the single green box, is about the observed discharge 

timeseries over the gauged catchments. No heavy manipulation where needed on them 

(Chapter 3). 

c) The following section (orange) is the one related to the determination of the local lumped 

parameters for the gauged catchments for the regionalization. Apart from the obtainment of 

the parameter sets, inside there is also a dedicated box about the analysis of the quality of 

such calibrations (efficiency by class, capability of reconstructing hydrological signatures, 

parameters uncertainty and equifinality) (Chapter 4). 

d) The fourth section (light blue) contains all the calculations for the catchment descriptors 

utilized. Despite the name, here are calculated the descriptors also for each HU of the 

distributed regional model (Chapter 5). 

e) The last section (red) is the application of the algorithm with machine learning techniques, the 

analysis of the obtained outcomes and the application of the distributed regional model for 

floods reconstruction over the Piedmont region (Chapters 6 and 7). 

At the beginning of each chapter (or whenever needed) a cropped and compacted version of this flow 

chart will be reported to recall where we are and focus the attention on the steps currently discussed 

for a better comprehension. 

Before starting with the description of the procedure, still follows a short second introductory chapter 

about the main software and environment utilized for all the computations reported afterward. On 

few occasions, other software has been used for some individual operations; they will not have a 

dedicated introduction but will be opportunely cited whenever they have been utilized. 
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2. THE R ENVIRONMENT 

 

 

 

 

 

 

 

 

 

 

 

 

2.1 General description 

The entire work and results provided, starting from chapter 3, have been obtained inside the R 

environment. R is a language (production of codes and scripts through the implementation of 

functions and commands) implemented in the first 1990’s by Robert Gentleman and Ross Ihaka at the 

University of Auckland. This language is strictly related to a previous language called S for Statistical 

Computing, invented by John Chambers, Rick Becker, and others at Bell Labs in the mid-1970s and 

made available later in the 1980s. Since the beginning of the development of the R project in 1995 it 

was decided to establish it as a free and open-source software, without any need for a particular 

license for its use and results publication. After a first period of development under the work of the R 

core group (a group of core members having access to the source code) a first public release was made 

available in February 2000. Despite many researchers refer to R as a statistical system, the developers 

in the official “Introduction to R” prefer the definition of an environment “within which many classical 

and modern statistical techniques have been implemented”. The term “environment” is intended to 

characterize it as a fully planned and coherent system, rather than an incremental accretion of very 

specific and inflexible tools. In fact, R is famous not only for the statistical analysis it can support, but 

also for the graphical tools made available for the realization of quality plots. Base R includes an 

effective data handling and storage facility, operators for calculation on arrays (in particular, matrices), 

a collection of intermediate tools for data analysis, graphical facilities for data display and the 

programming language itself for the implementation of conditionals, loops, and cycles. 
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One, if not the most, powerful advantages of using R, is the extended possibility of expanding the 

available functions and tools inside the software with the installation of external packages: a package 

is nothing more than a collection of additional functions and/or functionalities as developed by 

independent authors who decided to spontaneously contribute to the growth of the open-source 

software. Also, the base functions contained in base R are stored inside the so-called standard 

packages, automatically loaded when the software is booted. Another set of packages (the 

recommended packages) are also already present in base R, but not automatically loaded. Any 

additional package must instead be first downloaded and installed from one of the official sources 

with the function “install.packages” (the biggest repository is CRAN – Comprehensive R archive 

network) and then loaded for the use with the dedicated function “library”. 

The realization of an R package must follow some quite strict rules to meet the needed requirements 

for a fast and easy usability by the users. In its more limited form, a package (that in practice is a 

directory) contains the actual code for the added functions (inside a directory named R), the 

description of the package (with information like name, version, authors, and other metadata) inside 

a plain text file with no extension and a brief description of the function included (that can be 

visualized with the “help” command in the software). Other additional elements can be present (and 

must be present to be compliant with the requirements to be published in CRAN) like example data 

or indications to required or suggested complementary packages, but they will not be here described 

in detail. A full description for the creation of a complete package can be found in the “Writing R 

extension” official guidelines. 

 

2.2 R Studio 

It must be noticed that R is a language and as such does not possess per se a graphical interface 

(working from line command as the LINUX operative system). Being the calculation mostly been 

conducted on a device using the Windows operation system, an additional software has been used. R 

Studio is an integrated development environment for R that adds a full graphical interface for an easier 

and more direct use (not different from other software like MATLAB or Octave). In details it introduces 

a console to write and modify the code, a syntax-highlighting editor plus tools for plotting (with a 

direct visualization), debugging and workspace management. 
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Figure 4 - R Studio environment subdivision 

 

The use of this supporting interface was not mandatory, but indeed very useful. Nevertheless, the use 

of R from command line has been used at two different points: first, for the local lumped calibrations, 

then for the application of HydroPASS. In these two cases in fact the computational power (and so the 

required time) needed for the completion of the operations was so high that the use of my own 

personal device was insufficient. A remote access to better machines (that mounted not Window, but 

LINUX as operative system) was needed to complete the calculations in a reasonable timeframe. 

From now on, no full description of the R codes used for the different steps described below will be 

provided to not dwell too much the length of this thesis (with a single exception later in chapter 6). 

Only the main functions and external packages used will be underlined whenever needed. After the 

conclusions in chapter 8 just the three main scripts for the core steps of this work, fully commented, 

will be appended to be copy pasted as template if anyone will ever need to reproduce them. 
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3. CLIMATOLOGICAL DATA AND DISCHARGE OBSERVATIONS 

 

 

 

 

 

 

 

 

 

 

3.1 OI (optimum Interpolation) database and reference grid 

The first element required to proceed both with the local lumped calibrations (chapter 4) and the 

application of the HydroPASS algorithm (chapter 6) is the definition of some input climate variables 

over the region of interest. For this specific work such variables are the mean temperature (𝑇𝑚), the 

potential evapotranspiration (𝑃𝐸𝑇), and the precipitation (𝑃). Note how additional input data 

(especially snow cover in the alpine region), may be also included. The data needed have been 

obtained from the OI (Optimal Interpolation) database of ARPA Piemonte 

(http://www.idrologia.polito.it/web2/open-data/cd_Dati_Regione_Piemonte/50_anni_dati_meteo_ 

Piemonte/index.htm). 

The database is mainly based on the “optimal interpolation” technique to obtain, starting from 

scattered (spatially speaking) and heterogeneous (different measuring instruments with different 

time resolutions) information, a complete and homogeneous dataset over the nodes of a regular grid. 

The main idea is that only the closest measurements to each node can significantly influence its final 

value in the grid. The values over the grid 𝑥𝑎 are obtained with a linear relationship between the 

background value at each node 𝑥𝑏 and the difference between the observed and the background 

values at each measurement point (𝑦0 − 𝑦𝑏) properly weighted through a matrix 𝐾: 

 

𝑥𝑎 = 𝑥𝑏 + 𝐾(𝑦0 − 𝑦𝑏)                                  (𝑒𝑞. 3.1) 

𝐾 = 𝐺(𝑆 + 𝑂)−1                                              (𝑒𝑞. 3.2) 

 

http://www.idrologia.polito.it/web2/open-data/


   

12 
 

Where 𝐺 is the covariance matrix between the error of the background field on the nodes and the 

background field over the measuring station’s locations, 𝑆 is the covariance error matrix for all the 

possible couples of measuring station’s locations, and 𝑂 is covariance error matrix of the observation. 

As background data, depending on the climatological data, different sources have been used: for 

temperatures a downscaling of the ERA-40 elaborated by the ECMWF (European Centre for Medium 

range Weather Forecast) has been utilized for the period 1957-2001, while a different set again from 

the ECMWF has been used for the following years. For precipitation it has not been possible to rely on 

a model as background, and so it has been calculated starting from the same observation with a 

detrending procedure. 

The resolution (spatial and temporal) of the resulting homogeneous database has been selected 

starting from considerations about the available observation locations and data availability. Two data 

sources have been introduced in the optimal interpolation: 

a) A manual and mechanical monitoring network SIMN 

b) A telemetry network managed by Arpa Piemonte 

The resulting optimal spatial resolution is of 0.125° (approximately a pixel on the ground of 12𝑥12 𝑘𝑚) 

and for the following elaboration a daily time resolution has been used. The grid consists of 500 pixels 

over the regional area of Piedmont. The original reference system of the raster data, as downloadable 

from the ARPA Piemonte website, was WGS84 (a geodetic reference system), while  the current 

project uses a cartographic projection in WGS84-UTM32. The use of a different reference system 

opens to a delicate problematic: the original raster files should be also reprojected to the new 

reference system, but in doing so a proper interpolation method should be selected. Common 

strategies are “closest neighbor” or “bilinear interpolation”. The approximations introduced during 

this procedure are the bigger the coarser is the resolution of the raster file. Having in our case a very 

coarse grid, this approach has been avoided. What has been done instead is a reprojection of the grid 

with a direct association of the original values of the raster files without any interpolation. In simple 

words the values of, for example, pixel-1 in WGS84 have been maintained unmuted and passed to 

pixel-1 in UTM32 and so on for all cells. 

The reprojection of the grid from the first to the second reference system has been performed directly 

in the R environment with the package “raster” that introduce useful functions to manipulate 

reference systems and reproject raster and vector objects (in particular the function “SpTransform”): 
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Figure 5 - Grids in WGS84 (left) and UTM32 (right) 

 

It can be noticed how the upper part of Canton-Ticino is not covered by the adopted grid. As examples, 

the spatial distribution of the climate variables on the 07-01-1997 and the timeseries for pixel-77 are 

reported in Figures 6 and 7: 

  

Figure 6 - Spatial distribution of Precipitation, Maximum temperature, and Minimum 
temperature on 7th January 1997 
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Figure 7 - Full precipitation, maximum temperature, and minimum temperature 
timeseries for pixel 77 
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The available timeseries extended across more than sixty years, starting from the 1st of December 

1957 to the 22nd of August 2021. 

 

3.2 Mean temperature and potential evapotranspiration 

From the OI database the available data were the maximum daily temperatures (𝑇_ max), the 

minimum daily temperatures (𝑇_ min) and the precipitations (𝑃). If the latter is already one of the 

three climate variables needed as stated at the beginning of the chapter, the other two must still be 

elaborated to obtain what is needed: the daily mean temperature 𝑇𝑚𝑒𝑎𝑛 can be easily obtained just 

by averaging the daily minimum and maximum temperatures. A different procedure must instead be 

followed for the potential evapotranspiration 𝑃𝐸𝑇: no direct measurements have been performed, 

and the necessary data have been obtained as result of an indirect procedure. Different approaches 

and empirical equations are listed in scientific literature to infer the 𝐸𝑇 starting from other 

climatological data: 

a) Radiation-based approaches require the mean average temperature and the solar 

incoming radiation; they are considered good in humid environments but not so reliable 

in arid ones. 

b) The Penman-Monteith equation is the reference methodology applied by many 

international agencies (i.e., FAO -> Food and Agriculture Organization) and provides the 

optimal and most reliable results: 

 

 

𝐸𝑇0 =
∆(𝑅𝑛 − 𝐺) + 𝜌𝑎𝑐𝑝(𝛿𝑒)𝑔𝑎

(∆ + 𝛾(1 + 𝑔𝑎/𝑔𝑠))𝐿𝑣

           (𝑒𝑞. 3.3) 

 

 

The major downside of this methodology is the huge amount of data not easily gettable 

required for the computation like the ground heat flux 𝐺 or the conductivity of stomata 

𝑔𝑠 

 

c) The Blaney-Criddle equation is the preferred approach when not all the data for the 

correct application of the Penman-Monteith equation are available. More specifically it 

only requires the mean air temperature for a correct implementation. Given its coarse 

accuracy it is suggested for long term application (at least on a monthly timescale) 
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Considering our conditions, the preferred choice has been the application of the Blaney-Criddle 

equation following the indications and guidelines provided by 𝐹𝐴𝑂: 

 

𝐸𝑇0 = 𝑝(0.457 ∗ 𝑇𝑚𝑒𝑎𝑛 + 8.128)            (𝑒𝑞. 3.4) 

 

Where 𝐸𝑇0 represents the reference crop evapotranspiration, 𝑝 the mean daily percentage of annual 

daytime hours and 𝑇𝑚𝑒𝑎𝑛 the mean temperature. For the determination of the monthly 𝑝 values inside 

the same guidelines the following table is provided for a correct evaluation: 

 

 

Table 1 - Mean daily percentage of annual daytime hours for different latitudes 

 

For a latitude of ~45° north (somehow an average of the Piedmont regional territory) 𝑝 ranges from 

a minimum of 0.2 in the months of January and December to a maximum of 0.35 in the month of 

June. It must be underlined how this equation, particularly in “extreme” environments, has the 

tendency to overestimate or underestimate (in some cases considerably, up to 20/30%)  the real 

evapotranspiration. Now because Italy is not considered a region exposed to “extreme” climate, we 

can reasonably assume this is not our case, but considerations and questions should eventually be 

posed while analyzing the results. Like for the original climate data, in Figure 8 is reported the 

timeseries of the 𝑃𝐸𝑇 for pixel-77: 



   

17 
 

 

Figure 8 - Full timeseries of the potential evapotranspiration (PET) for Pixel-77 

 

 

3.3 Observed discharge and catchments description 

 

 

 

Together with the climatological data, the second observation variable needed for the HydroPASS 

algorithm are the observed discharges for the gauged catchments considered over the regional 

territory. The shape files of the catchments analyzed inside this work have been recovered from 

“Atlante dei bacini imbriferi piemontesi” (Gallo, E., Ganora, D., Laio, F., Masoero, A., Claps, P., 2013) 

and consist of 197 boundaries in vector format already projected in the UTM32 reference system (and 

so coherent with the reference system of the entire project) as reported in Figure 9: 
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Figure 9 - Catchment boundaries Piemonte and Valle d'Aosta regions 

 

A catchment (also called drainage basin) is defined as any area on land where precipitation is collected 

and drains towards a single common outlet. Following this definition, a catchment does not present, 

in general, any constrains about the number of inlets it may present. As will be better explained in 

chapter 4, inside the hydrological model selected for the local lumped calibrations the inter-

catchment water routing is not considered (it is only the intra-basin routing), disregarding the 

movement and timing of flow from an upstream to a downstream basin. To be coherent with the 

model, our catchments, still obeying to the standard definition of having a single outlet, present an 

additional constrain of never receiving water from any basin upstream. 

To make this concept clear is here reported a simple example case of an allowed configuration: 

 

 

4. 

 

4. 

2. 

 

2. 

3. 

 

3. 

1. 

 

1. 
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Basin 1 does not receive water from upstream; basin 2 (maybe not clear from the image but 

delimited by the red AND the purple boundaries) also has no inlets and so on (catchment 3 is 

delimited by the blue + red + purple boundaries and catchment 4 by the orange + blue + red 

+ purple ones). A configuration like this, constituted by “concentrical” areas, satisfies both the 

single outlet and the zero-inlet condition. In mathematical terms, in case of a simple linear 

succession of basins like the one in the explanatory case above, the following relation must be 

satisfied: 

 

𝐶𝑚 ⊃ 𝐶𝑖      ⩝ 𝑖 = 1: 𝑛                      (𝑒𝑞. 3.5) 

𝑤𝑖𝑡ℎ 1 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚 𝑎𝑛𝑑 𝑛 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚 𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡𝑠 

 

Information about each outlet location and additional data (ID codes, names, area, and some 

statistical information) have been again retrieved from the “Atlante dei bacini imbriferi Piemontesi” 

(Gallo et al., 2013). The information about the area (expressed in squared kilometers), has been of 

fundamental importance to convert the discharge data from 𝑚3/𝑠 to 𝑚𝑚/𝑑. This conversion has 

been necessary to make the runoff dimensionally coherent with precipitation and evapotranspiration 

data, already expressed in 𝑚𝑚/𝑑. The discharge timeseries have been obtained merging the available 

data downloadable from the ARPA Piemonte website with additional data covering the Valle d'Aosta 

region. 

These timeseries are very heterogeneous, in the sense that some are limited to few years while other 

are comprehensive of historical data, some are mostly complete, others present huge gaps due to 

interruptions or malfunctioning of the monitoring systems. These differences will play a role once 

again in the local lumped calibration as explained in further details in chapter 4. Moreover, discharge 

observations were available only for 127 of the 197 catchments identified before. In Figures 10 and 

11 are reported a map of the catchments with the location of all the outlets and a couple of examples 

of raw discharge timeseries: 
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Figure 10 - Map of the catchment’s outlets in UTM32 projection with reference grid 
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Figure 11 - Examples of a complete discharge timeseries (above), historical discharge timeseries (middle), 

and incomplete discharge timeseries (bottom) 
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4. LOCAL CALIBRATIONS 

 

       

 

 

4.1 Hydrological models classification 

In literature various models are proposed to face and “tackle” hydrological problems, in particular the 

rain-runoff correlation and prediction that constitutes one of the hardest challenges in environmental 

prevision and forecast. “This is due to the spatial and temporal variability of topographical 

characteristics, rainfall patterns, and the number of parameters to be derived during the calibration” 

(Nandakumar & Mein, 1997). 

“Hydrologic models can be classified into categories based on the presence of random variables, their 

distribution in space, and temporal variation” (Chow, Maidment, & Mays, 1988): 

1. DETERMINISTIC MODELS: they are defined as models that produce always the same outputs 

given the same inputs. They can be further subdivided as: 

 

a) LUMPED MODELS: “a lumped model is generally applied to a single point or a 

region without dimension for the simulation of various hydrological processes” 

(Niel, Paturel, & Servat, 2003). The parameters represent a sort of average of the 

characteristics of the entire catchment considered. Among the major advantages 

there is their simplicity and as consequence the lighter computational power (and 

so time) required for the simulations. 
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b) SEMI-DISTRIBUTED MODELS: the catchment is here subdivided in Hydrologic 

Response Units (HRUs) based on considerations related to land cover, soil types 

and other parameters. The simulation is performed on each unit individually. 

c) DISTRIBUTED MODELS: “It considers the hydrological processes taking place at 

each grid and defines the model variables as functions of the space 

dimensions“(Beven, Warren, & Zaoui, 1980; Feyen, Vázquez, Christiaens, Sels, & 

Feyen, 2000). 

 

2. STOCHASTIC MODELS:  they are models with embedded a component of randomness due to 

which for the same input data multiple outputs can be obtained. 

“Hydrological models can be also classified according to whether the hydrological processes are 

described as conceptual, empirical, or fully physically based” (G.S. Dwarakish,B.P. Ganasri, 2015). In 

the case of empirical models, no physical transformation function is directly introduced, but rather 

the relations between precipitation and runoff are established starting from the data themselves. 

Conceptual models are a simplification of the real physical processes that rule the rainfall-runoff 

transformation through a set of equations: such equations are generally derived by empirical 

observations of the real phenomena happening over a catchment. Last the physically based models 

are constructed upon differential equations that aim to mimic as rigorously as possible the physical 

phenomena controlling the runoff generation. A schematic representation of the described 

classification is reported in Figure 12: 

 

 

Figure 12 - Schematic representation of  the hydrological models classification (G.S. Dwarakish,B.P. Ganasri, 2015) 
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4.2 TUWmodel 

Inside the presented framework, a choice of one hydrological model was necessary as one of the main 

elements that would have influenced the outcome of the entire procedure. In the original article by 

Merz et al. of 2020 (already cited in the introduction), the selection fell on the SALTO (Same Like The 

Others) model, a deterministic distributed conceptual model with 15 parameters that uses daily 

timeseries of precipitation, potential evapotranspiration and air temperature as inputs. Despite in 

many parts of this work we have tried to remain as close as possible to the original study, the use of 

SALTO resulted, after some initial attempts, in weak calibration outcomes. Being the quality of the 

local catchments calibration like a starting point for the HydroPASS algorithm, after which the overall 

efficiency will inevitably reduce, it was unacceptable the idea of starting already from bad results. The 

reason behind the poor performance of this model is to be probably attributed to the region we are 

trying to apply the methodology to: the model was originally developed to investigate German 

catchments, in a non-mountainous area where the influence of snow and solid precipitation have a 

lower influence on the hydrological cycle. In an Alpine region like the one here considered, a different 

model developed and structured to better account for this major difference was more suitable. 

Following this consideration, the model selected has been TUWmodel, a lumped conceptual rainfall-

runoff model (that can also run in a semi-distributed mode) developed at the Vienna university of 

technology following the structure of the HBV model. The model runs on a daily (like in our case) or 

shorted timeframe for the input and output data and consists of a snow routine, a soil moisture 

routine, and a flow routing routine. The description of the model reported below follows the Appendix 

A of “Uncertainty and multiple objective calibration in regional water balance modelling: case study in 

320 Austrian catchments” (J. Parajka, R. Merz and G. Bloschl, 2007). 

 

A) SNOW ROUTINE 

This first component of the model is based on a simple “degree-day” snow melt and accumulation 

concept. The daily precipitation 𝑃 is partitioned in liquid (rain) and solid (snow) depending on the 

mean air temperature 𝑇𝐴 at the current timestep of the simulation and the relative “position” with 

respect to two reference temperatures 𝑇𝑅 (rain temperature) and 𝑇𝑆 (snow temperature): 

 

𝑃𝑅 = 𝑃          𝑖𝑓 𝑇𝐴 > 𝑇𝑅                           (𝑒𝑞 4.1𝑎) 

𝑃𝑅 = 𝑃 ∗
𝑇𝐴 − 𝑇𝑆

𝑇𝑅 − 𝑇𝑆
    𝑖𝑓 𝑇𝑆 < 𝑇𝐴 < 𝑇𝑅    (𝑒𝑞. 4.1𝑏) 
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𝑃𝑅 = 0       𝑖𝑓 𝑇𝐴 < 𝑇𝑆                              (𝑒𝑞. 4.1𝑐) 

  𝑃𝑆 = 𝑃 − 𝑃𝑅                                               (𝑒𝑞. 4.1𝑑)  

 

The melting process instead starts when the mean air temperature 𝑇𝐴 overcomes the melting 

temperature threshold 𝑇𝑀: 

 

𝑀 = (𝑇𝐴 − 𝑇𝑀) ∗ 𝐷𝐷𝐹     𝑖𝑓 𝑇𝐴 > 𝑇𝑀 𝑎𝑛𝑑 𝑆𝑊𝐸 > 0                 (𝑒𝑞. 4.2)               

 

Where 𝑀 is the amount of melt water per time step, 𝐷𝐷𝐹 is a degree-day factor and 𝑆𝑊𝐸 is the 

snow water equivalent. Of course, melting can only happen when there is water stored in solid 

form. Moreover, the 𝑆𝑊𝐸 at each timestep is corrected through an additional parameter (snow 

correction factor 𝑆𝐶𝐹) accounting for the catch deficit of the precipitation gauges during snow fall 

following the relation: 

 

          𝑆𝑊𝐸𝑖 = 𝑆𝑊𝐸𝑖−1 + (𝑆𝐶𝐹 ∗ 𝑃𝑆 − 𝑀) ∗ ∆𝑡                       (𝑒𝑞. 4.3)         

 

With ∆𝑡 a timestep of one day. In total five parameters are used to describe this first routine 

(𝑇𝑅 , 𝑇𝑆 , 𝑇𝑀, 𝐷𝐷𝐹, 𝑆𝐶𝐹). 

 

B) SOIL MOISTURE ROUTINE 

This second routine describes changes in the moisture content of the basin and runoff 

generation. The first of the two is describes as: 

 

 

                  𝑆𝑆𝑀,𝑖 = 𝑆𝑆𝑀,1−𝑖 + 𝑃𝑅 + 𝑀 − 𝐸𝐴                           (𝑒𝑞. 4.4)         

 

 

𝑆𝑆𝑀 represents the soil moisture at each time step at a top-soil layer as the balance between 

the soil moisture at the previous timestep, the additional rain plus melt water, minus the 

actual evapotranspiration. It is the top-soil layer to contribute to runoff generation. The actual 

evaporation 𝐸𝐴 is determined starting from the potential evapotranspiration 𝑃𝐸𝑇 following 

the following linear function: 

 

 



   

26 
 

𝐸𝐴 = 𝑃𝐸𝑇 ∗
𝑆𝑆𝑀

𝐿𝑃
      𝑖𝑓 𝑆𝑆𝑀 < 𝐿𝑃                (𝑒𝑞. 4.5𝑎) 

      𝐸𝐴 = 𝑃𝐸𝑇            𝑖𝑓 𝑆𝑆𝑀 ≥ 𝐿𝑃                (𝑒𝑞. 4.5𝑏) 

 

 

𝐿𝑃 is a parameter controlling the limit for potential evaporation 𝑃𝐸𝑇. 

The direct contribution of rain and water melt to runoff is expressed through a non-linear 

relation controlled by two additional parameters: 

 

 

∆𝑆𝑈𝑍 = (
𝑆𝑆𝑀

𝐹𝐶
)

𝛽

(𝑃𝑅 + 𝑀)                                   (𝑒𝑞. 4.6)      

 

 

Where ∆𝑆𝑈𝑍 is the contribution of rain and snow melt to runoff, 𝐹𝐶 is the maximum soil 

moisture storage and 𝛽 is a non-linear parameter that controls the characteristics of runoff 

generation. When the ration between 𝑆𝑆𝑀 and 𝐹𝐶 is equal to 1 (the soil il fully saturated), all 

the melt water and precipitation contributes directly to runoff generation. In total we have 

three additional parameters. 

 

C) RESPONSE AND TRANSFER FUNCTION ROUTINE 

 

The last component of the model deals with runoff routing inside the catchment on the 

hillslopes and consists of two reservoirs representing two soil layers. The state of each 

reservoir, at each timestep (i.e., the water stored in them), are 𝑆𝑈𝑍 for the upper zone and 

𝑆𝐿𝑍 for the lower zone instead. The water balance of the upper reservoir is influenced by the 

direct inflow due to precipitation and water melt already described ∆𝑆𝑈𝑍 and by three 

outflows: the first with a fast storage coefficient 𝐾1, the second representing soil percolation 

to the lower zone controlled by a constant percolation rate 𝐶𝑝, and the third (active only when 

the storage in the upper zone overcome a specific threshold 𝑙𝑠𝑢𝑧) controlled by a different 

storage coefficient 𝐾0. The balance of the lower zone is instead determined by the input 

percolation from the upper layer plus an outflow controlled by a slow storage coefficient 𝐾2. 

The sum of the three outflows controlled by the storage coefficients determines the total 

runoff 𝑄𝐺. This is then routed by a triangular transfer function representing the runoff routing 

in the streams: 
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𝐵𝑄 = 𝐵𝑀𝐴𝑋 − 𝐶𝑅𝑄𝐺        𝑖𝑓 (𝐵𝑀𝐴𝑋 − 𝐶𝑅𝑄𝐺) ≥ 1                   (𝑒𝑞. 4.7)  

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝐵𝑄 = 1          

 

 

Where 𝐵𝑄 is the base of transfer function, 𝐵𝑀𝐴𝑋 is the maximum base at low flows and 𝐶𝑅 is 

a free scaling parameter. With the seven parameters of this last routine the total parameters 

to be calibrated for the model rises to fifteen. 

 

 

Figure 13 - Conceptual description of TUWmodel structure (Rui Tong, Juraj Parajka, 2020) 

 

 

4.3 Local lumped calibrations – DEoptim 

The main aim of this section is the determination, for each of the gauged catchments presented in the 

paragraph 3.3, of the best set of the 15 lumped parameters that can better reconstruct the observed 

discharge timeseries at the outlets. In optimization processes with best is intended the set of 

parameters that maximize (or minimize in some cases) an objective function appositely constructed 

to verify the performance of the model. To perform such operation different methods can be applied 

as well as different model efficiency function can be utilized inside such methods. For the current work 

a Differential Evolution (DE) algorithm, as described by Muller et. al in 2011, has been utilized: it is an 

evolutionary global optimization implemented inside the R environment through the specific package 
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“DEoptim” first published by David Aria back in 2021. Differential evolution falls within the genetic 

optimization algorithms “in which members of the population are represented with floating point 

numbers, and the population is transformed over successive generations using arithmetic operations” 

(Mullen, 2011). One of the main advantages of DE is the fact that it does not require the 

differentiation of the objective function and can so be successfully applied to all the cases when the 

latter is noisy, stochastic, non-continuous or non-differentiable. On the other hand, 𝐷𝐸 may result 

inefficient whenever the objective function is indeed differentiable and “smooth”; in those cases, a 

standard derivative-bases approach would reach better results. 

Now follows a short description of the evolutionary algorithm starting from the determination of the 

space of the possible solutions and the size of the population. The first is determined by an upper and 

lower boundary for each of the 15 parameters of TUWmodel as reported in Table 2: 

 

PARAMETER LOWER BOUNDARY UPPER BOUNDARY 

𝑺𝑪𝑭 [−] 0.9 1.5 

𝑫𝑫𝑭 [𝒎𝒎/°𝑪/𝒅𝒂𝒚] 0 5 

𝑻𝑹 [°𝑪] 1 3 

𝑻𝑺 [°𝑪] −3 1 

𝑻𝑴 [°𝑪] −2 2 

𝑳𝑷 [−] 0 1 

𝑭𝑪 [𝒎𝒎] 0 600 

𝜷 [−] 0 20 

𝑲𝟎 [𝒅𝒂𝒚𝒔] 0 2 

𝑲𝟏 [𝒅𝒂𝒚𝒔] 2 30 

𝑲𝟐 [𝒅𝒂𝒚𝒔] 30 250 

𝒍𝒔𝒖𝒛 [𝒎𝒎] 1 100 

𝑪𝒑 [𝒎𝒎/𝒅𝒂𝒚] 0 8 

𝑩𝑴𝑨𝑿 [𝒅𝒂𝒚𝒔] 0 30 

𝑪𝑹 [𝒅𝒂𝒚𝒔𝟐/𝒎𝒎] 0 50 

 

Table 2 - Upper and lower boundaries for TUWmodel parameters 
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The second (𝑁𝑃) can be selected by the user. Once selected the size of the population, at the first 

generation a number of 𝑥- dimensional vector (where 𝑥 is the number of parameters) equal to the 

number of individuals is randomly generated inside the space of the possible solutions: 

 

 

 

 

 

 

 

 

 

 

To pass from a generation to the successive, each vector of the previous generation is “differentially 

mutated”. The new potential “mutant” parameters vector is created by choosing at random three 

vectors of the current population (𝑥𝑟0,𝑔,  𝑥𝑟1,𝑔, 𝑥𝑟2,𝑔 with 𝑔 indicating the current generation) applying 

the following equation (here as reference let us assume to mutate the first individual of the first 

generation): 

 

𝑣1,1 = 𝑥𝑟0,𝑔 + 𝐹( 𝑥𝑟1,𝑔−, 𝑥𝑟2,𝑔)        (𝑒𝑞. 4.8) 

 

Where 𝐹 is a positive scaling factor usually lower than 1. After the first mutation, the resulting mutant 

parameters vector can be further modified following the same approach until: 

 

𝑟𝑎𝑛𝑑 > 𝐶𝑅 

 

Where 𝑟𝑎𝑛𝑑 is a random number extracted from a uniform distribution 𝑈(0,1) and 𝐶𝑅 is a crossover 

probability ∈ [0,1]. The final mutant vector may still be unacceptable because the equation 4.8 does 

not guarantee that the resulting parameters are still inside the upper and lower boundaries defining 

… 
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the valid solutions space. In these cases, the not admissible elements of the vector are reset in the 

following way: 

 

𝑣𝑗 = 𝑢𝑝𝑝𝑒𝑟𝑗 − 𝑟𝑎𝑛𝑑 ∗ (𝑢𝑝𝑝𝑒𝑟𝑗 − 𝑙𝑜𝑤𝑒𝑟𝑗)         𝑖𝑓 𝑣𝑗 > 𝑢𝑝𝑝𝑒𝑟𝑗      (𝑒𝑞. 4.9𝑎) 

𝑣𝑗 = 𝑙𝑜𝑤𝑒𝑟𝑗 + 𝑟𝑎𝑛𝑑 ∗ (𝑢𝑝𝑝𝑒𝑟𝑗 − 𝑙𝑜𝑤𝑒𝑟𝑗)        𝑖𝑓 𝑣𝑗 < 𝑙𝑜𝑤𝑒𝑟𝑗      (𝑒𝑞. 4.9𝑏) 

 

Where the index 𝑗 denotes the position inside the mutant vector of the element overcoming the 

boundaries. Finally, the new vector is used to evaluate the objective function: if the computed value 

is lower than the one of the original parameters vector from the previous generation, the new one 

substitutes it. The same procedure is applied to all the 𝑁𝑃 vectors of the generation and for all the 

generations until the maximum number of iterations decided by the user have been reached (in this 

case the best solution is the one of the members of the current population that minimize the most 

the objective function), or when a threshold value of model efficiency has been achieved by any 

individual of any generation. There is still a third possibility in case the algorithm is unable to improve 

the solution of the previous generation of a selected threshold: here the optimization algorithm stops, 

and as best solution is considered the better found till that point. 

A final note is about the reproducibility of the results: being the starting guess at the first iteration 

performed in a random way, starting from the same input data, different outputs may be reached. It 

is also possible that for a given calibration, what is reached is not the global minimum of the objective 

function, but a local one. The only way to increase the probability of not remaining stuck in a local 

solution, is to perform more than one calibration attempt hoping to reach new and better calibrations. 

 

4.4 Local lumped calibrations – application and objective function 

Moving to our specific case, the lumped calibration of the 127 catchments having observed discharge 

timeseries as described in chapter 3 has been performed following the approach: 

a) Determination of the objective function for the evaluation at each generation of the 𝑀𝐸 

(Model Efficiency). This function is the same for all catchments.  

b) Extraction, for the current catchment under calibration of what, from now on, will be referred 

to as “train topology”. Different weights (from 0 to 1) are attributed to different pixels. They 

quantify the proportion of the pixels that cover the catchment of interest. 
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c) Extraction from the climate input data (𝑇𝑀𝐸𝐴𝑁, 𝑃 and 𝑃𝐸𝑇) only of the pixels covered by the 

catchment considered (only the pixels with a weight greater than 0). 

d) Application of the 𝐷𝐸 algorithm with the “DEoptim” package inside R for the determination 

of the model parameters. Being the calibration lumped the sets found for each basin are 

representative of the average conditions over the entire covered area. For each generation 

the sets of parameters are tested with the direct application of TUWmodel to determine a 

simulated discharge timeseries used inside the objective function with the observed discharge 

data to obtain a model Efficiency (𝑀𝐸). It is an iterative process to refine the solution 

proceeding with successive generation till the determination of the optimal solution. 

“Model performance criteria are often used during calibration and evaluation of hydrological models 

to express in a single number the similarity between observed and simulated discharge” (Gupta et al., 

2009). The model efficiency here utilized is the Kling-Gupta efficiency, first developed in 2009 and 

then proposed in a revised version in 2012 by Gupta et al. It is based on the decomposition of an older 

metric, the Nash-Sutcliffe efficiency (𝑁𝑆𝐸, Nash and Sutcliffe, 1970), into its constitutive components:  

 

𝑁𝑆𝐸 = 1 −
∑ [𝑄𝑠𝑖𝑚(𝑡) − 𝑄𝑜𝑏𝑠(𝑡)]2𝑡=𝑇

𝑡=1

∑ [𝑄𝑜𝑏𝑠(𝑡)𝑡=𝑇
𝑡=1 − 𝑄𝑜𝑏𝑠

̅̅ ̅̅ ̅̅ ]2
             (𝑒𝑞. 4.10) 

 

Where 𝑇 is the total number of time steps, 𝑄𝑜𝑏𝑠 the observed discharge, 𝑄𝑠𝑖𝑚 the simulated discharge 

and 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅  the mean of the observed discharge. 

The 𝐾𝐺𝐸 metric is composed by three distinct elements, representing different statistics of the two 

compared data series: the Pearson product-moment correlation coefficient (𝑟) which optimal possible 

value equal to 1, the ratio between the mean of the simulated and observed data (𝛽) again equal to 

1 in case of a perfect match, and the so-called variability ratio (𝑣𝑟) that can be computed using the 

standard deviation (𝛼) or the coefficient of variation (𝛾) of the two series: 

 

𝐾𝐺𝐸 = 1 − 𝐸𝐷 

𝐸𝐷 = √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2)       𝑜𝑟      𝐸𝐷 = √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛼 − 1)2)  

                                                     𝛽 =
𝜇𝑆𝐼𝑀

𝜇𝑂𝐵𝑆
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        𝛾 =
𝐶𝑉𝑆𝐼𝑀

𝐶𝑉𝑂𝐵𝑆
       𝑜𝑟       𝛼 =

𝜎𝑆𝐼𝑀

𝜎𝑂𝐵𝑆
     (𝑒𝑞. 𝑠𝑒𝑡 4.11)    

 

The Kling-Gupta efficiency can range between -𝑖𝑛𝑓 and 1, where unity indicates perfect agreement. 

To be clear, the actual model efficiency utilized is the negative efficiency (–𝐾𝐺𝐸) because the 𝐷𝐸 

algorithm is constructed to minimize, and not maximize, the objective function. The negative Kling-

Gupta ranges between −1 and +𝑖𝑛𝑓. In literature values of the 𝐾𝐺𝐸 are considered good (and so able 

to well simulate the observed discharge) if they are at least greater than 0, but preferably higher and 

closer to 1. Rogelis et al. (2016) considered model performance to be poor if comprised between 0 

and 0.5. The assumption of zero as reference value to separate good and bad values derives from the 

original 𝑁𝑆𝐸 where it corresponds to use the mean flow as benchmark predictor; nevertheless, other 

authors showed how for the Kling-Gupta using the mean flow as a predictor result instead in a value 

of 1 − √2 ≅ −0.41. “Thus, KGE values greater than −0.41 indicate that a model improves upon the 

mean flow benchmark even if the model’s KGE value is negative” (Knoben, W. J. M., Freer, J. E., and 

Woods, R. A.: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta 

efficiency scores, 2019). 

Inside the R environment the KGE and its component have been calculated directly through the 

utilization of the additional package “hydroGOF” (version 0.4-0, 2020) created and maintained by 

Mauricio Zambrano Bigiarini. 

Regarding the “train topology” instead, the “sf” R package has been used. It is an additional package 

of functions that like “raster” introduces numerous ways of manipulating raster and vector elements. 

Differently from “raster” some more direct and intuitive functions for the manipulation of shape files 

are coded. First, the original vectors file of the catchment’s boundaries (Figure 9) and of the grid 

(Figure 5) have been exported in .shp format (package “rgdal”) and reimported with the “sf” import 

function (“st_read”) inside the R environment. Then the intersection of the two has been calculated 

(“st_intersection”) to obtain the area (expressed in 𝑚2) of each pixel touched by the catchments. To 

summarize the results the additional function “summarize” form the “tydiverse” package has been 

utilized.  

As stated above, the desired “train topology” must be expressed in percentage terms. To do so is 

needed particular attention. The original grid in WGS84 from the OI database was regular, with all the 

pixels having the same exact dimension. After the reprojection in UTM32, the new pixels are no regular 

anymore, being slightly affected by deformations; as direct consequence, the area of each single pixel 

is different from the one of the neighbors, as it decreases moving eastward and increases moving 
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southward. To account for this aspect, the area of each single pixel has been evaluated starting from 

the grid shape file (function “st_area”) and each weight then accordingly normalized: 

 

𝑊𝑖,𝑗[%] = 𝑊𝑖,𝑗[𝑚2]/𝐴𝑖[𝑚2]      (𝑒𝑞. 4.12) 

 

Where the index 𝑖 identify the pixel and the index 𝑗 identify the catchment. In Figure 14 is reported a 

visual example for the POCM catchment:  

 

 

 

 

 

 

 

 

 

 

 

 

 

Some final considerations must be done about the methodology and application of the local 

calibration: the first one is still related to the grid; as already visually clear from Figure 5, not all the 

500 pixels composing the grid intersect at least one of the catchments of the area considered for the 

analysis. To reduce the dimension of the datasets used inside the model, the climatological data 

related to such pixels have been removed and a grid containing just 305 pixels (see Figure 15) have 

been maintained moving forward. No changes in terms of internal pixels numeration have been 

caused by this operation (just the first pixel of the new grid is pixel-16 and not pixel 1, and the final 

pixel is not pixel-500 but pixel-488): 

Figure 14 - Example of "Train topology" [m^2 and %] for the POCM 
catchment 
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Figure 15 - Grid in UTM32 reduced to 305 pixels 

 

The second comment is about the years considered for the analysis: despite the availability of data 

starting from 1957 arriving to 2021, it has been made the choice of limiting them to the period 

between the 1st of January 1961 and the 31st of December 2020  (exactly 60 years of data). The next 

comment is about the objective function: TUWmodel recreates the simulated discharge for all the 60 

years; as described previously in the model structure, elements like the moisture content in the upper 

zone are influenced at each timestep by the value at the previous one. At the beginning of the 

simulation (first time step or time zero), no water was stored and the content at the second timestep 

was just the results of the balance of precipitation, water melt and evapotranspiration. This fist values, 

as well as all the first period of the simulation, are not realistic because biased by nonrealistic initial 

conditions. To avoid wrong, unmeaningful or partially biased evaluation of the 𝑀𝐸, a first period of 

each simulated timeseries of 303 days (the warmup period) has been neglected from the 

computation. Also, all the eventually present days related to missing values (𝑁𝐴) inside the observed 

discharge have been neglected while computing the ME. 
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The next point is related to the simulated results used inside the objective function for the 

determination of the 𝑀𝐸: TUWmodel is not only able to simulate discharge, but also other timeseries 

like soil moisture content and notably snow cover. In a mountainous region like the Alpine area snow 

accumulation could be a useful and meaningful parameter to be introduced while assessing the 

efficiency of the model reconstruction capability. Having available also snow cover observation 

timeseries could enable this additional comparison introducing modification in the objective function 

like 𝑀𝐸 = 0.5 ∗ 𝐾𝐺𝐸 + 0.5 ∗ 𝐴𝐷𝐷, with ADD as an additional index related to the snow water 

equivalent as calculated by the model and the observed snow cover. Such choice is certainly possible, 

but we decide to concentrate on the simplest case without it. 

Finally, are here briefly reported the settings utilized for the DE algorithm: a dimension of the 

population of 50 (default value), a maximum number of iterations (generations) of 200, a relative 

convergence tolerance of 10−3 applied after at least 10 generation has passed. 

 

4.5 Local lumped calibrations – Results and not calibratable basins 

The local calibration process has been in most cases successful, but not always possible. Some gauged 

catchments had an observed discharge timeseries only historical and prior to 1961. In those cases, 

the whole procedure has not been possible due to the missing of an overlapping time period longer 

than 303 days (the warmup period) with the simulated discharge series. Overall, the calibration has 

been possible for 117 basins. A rough classification of the goodness of the calibrations has been made 

arbitrarily using the following criteria: 

 

𝐺𝑜𝑜𝑑 𝑖𝑓 𝑀𝐸 ≥ 0.85 

𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑖𝑓 0.85 > 𝑀𝐸 ≥ 0.75 

𝐵𝑎𝑑 𝑖𝑓 𝑀𝐸 < 0.75 

 

As already stated during the initial presentation of the KGE, also a value of 0.6 (even below the lower 

threshold here considered) is far above the mean flow benchmark 0f ≅-0.41, but to hope in good 

results after the application of the regionalization routine, the highest the MEs of the calibration used 

as input the better. The output obtained after the DEoptim optimization was in the following format: 
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a) A first object called “optim”: inside this element were contained the information about the 

best result (ME and parameter) of the entire calibration together with the number of 

generations that have been necessary to reach such result. 

b) A second object called “member”: inside this second element are contained many useful 

information and data about the different intermediate results obtained through the 

calibration. The best intermediate results (ME and parameters) found at each generation are 

saved and recoverable. 

This additional aspect must be clarified: the HydroPASS algorithm need not only a single set of 

parameters for each basin, but a higher number of possible solutions, possibly with the highest 

possible ME. Thankfully inside “member” all the needed information is already available. In general, 

we decided to utilize at least 30 sets of parameters for each catchment possibly with a ME greater 

than 0.7. Now three possible situations presented: 

1. After the calibration has ended, at least 30 generations had been evaluated for the considered 

catchment and all of them had as best individual of the population a set of parameters with 

ME sufficiently high. This is the best-case scenario where no further steps were needed. 

2. After the calibration has ended, at least 30 generations had been evaluated but less than 30 

presented as best individual a set of parameters with sufficiently high ME. Here the adopted 

strategy has been to run a second time (or more if necessary) the calibration with the same 

settings. Remember in fact that the DE algorithm is stochastic and not deterministic; in other 

words, starting from the same initial conditions, the results of the calibration are always 

different and so utilizable without any risk of repetitions. 

3. After the calibration has ended, the best solution presented a very poor ME. In all these cases 

the same procedure as in case 2 has been applied but with scarce results. Despite the 

possibility that the first calibration remained stuck inside a local minimum far from the global 

one, also in all the successive attempts the result never improved substantially. These basins 

will be discarded in the preparation of the HydroPASS algorithm. 

A map showing the spatial distribution of the 117 calibrated basin with their relative performance is 

reported in Figure 16: 
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Figure 16 - ME distribution for the best lumped calibration of the catchments 

 

Just from a visual inspection some hypothesis about the low efficiently calibrated basins can be 

proposed: most of such catchments are in mountainous areas along the Alps or south along the 

Apennines. The reduced ME can be probably related to the high dominance of snow in the hydrological 

processes; a different objective function also accounting for how good the model is or not to 

reconstruct snow cover (like the one proposed in 𝑒𝑞. 4.12) could probably improve performance in 

these locations. Regarding instead the mid value basins there is not an immediate clear possible cause: 

maybe is just a matter of the model or maybe it can be related to the observed discharge, in some 

cases limited to few years or with long gaps between two continuous and complete time periods. 

Nevertheless, overall, we can observe how most of the catchments show a good calibration, for sure 

inside the moderate or good range values. A global indication of the distribution of the ME is instead 

provided in Figure 17 with the eCDF (empirical cumulative distribution function) and the relative 

boxplot: 

𝑀𝐸 ≥ 0.85 

 

𝑀𝐸 ≥ 0.85 

0.85 < 𝑀𝐸 ≤ 0.75 

 

0.85 < 𝑀𝐸 ≤ 0.75 

𝑀𝐸 < 0.75 

 

𝑀𝐸 < 0.75 

𝑁𝑜 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 

 

𝑁𝑜 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 
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Figure 17 - Empirical cumulative distribution function and boxplot of the lumped ME 

 

The distribution of the lumped MEs is generally good, with a mean around 0.86, the 25-percentile 

around 0.8 and the 75-percentile around 0.89. Moreover, from the boxplot is again visible how the 

low calibration values are considered outliers, supporting the idea that they are present because they 

belong to a different distribution, like a subgroup of snow dominated catchments.  
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4.6 Additional analysis on the simulated discharge and lumped parameter sets  

The ME is a single number that synthetize the performance of the simulated discharge series with 

respect to the observed one, but a wider overview of the ability of the model to reconstruct the 

original data can be explored with some additional analysis. For all the 117 calibrated catchments 

a “card” has been created containing all these additional information. For reference are now 

reported a brief description of the methods and assumptions made to obtain the graphs for the 

VARPO basin. A full collection for all the basins is made available in Attachment 1. 

 

A) HYDROGRPH OF THE OBSERVED AND SIMULATED DISCHARGE 

 

 

A simple visual comparison between the observed and simulated discharge (𝑚3/𝑠) as 

obtained applying in lumped form TUWmodel with the best available set of parameters. The 

simulated series is always complete (60 years), while the observed one is of course limited to 

the available data. Here the timeframe reported is always the one of the observed timeseries. 

Overall, the match is quite good as expected by a moderately high model efficiency of 0.84, 

also during the peaks of discharge in correspondence to flood events. Nevertheless, it must 

be considered how for the basins with lower 𝑀𝐸 the matching is, reasonably, worst. 
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B) MEAN ANNUAL DISCHARGE  

 

 

 

The mean annual discharge is simply calculated as the average flow at the monitored outlet over 

a year. Here are reported for the full 60-years’ timeframe in 𝑚3/𝑠. Here is considered the calendar 

year, but another very diffuse approach is instead to consider hydrological years (in Piedmont it 

starts at the beginning of October and ends at the end of September).  

 

𝑄𝑦,𝑖
̅̅ ̅̅ ̅ =

∑ 𝑄𝑗,𝑖
365
𝑗=1

365
     (𝑒𝑞. 4.13) 

 

Where 𝑖 indexes the specific year and 𝑗 the specific day of the year. For the simulated discharge 

the computation of the average was never a problem being the series always complete and 

without missing values. For the observed series some specifications are instead needed: a year 

has been included in the analysis only if the number of missing values (NA) was lower than 65 (or 

in other word if at least 300 days of observation were available for the year considered). 

Otherwise, the mean has not being evaluated because considered possibly not representative of 

the real annual average conditions. It was a common condition at the beginning and the end of 

the monitoring period just like in the middle whenever any interruption of the data recording was 

present. Overall, being here analyzed a mean statistic and not one related to the extremes, it can 

be observed how the reconstructed timeseries fully manage to recreate a reliable model of the 

real field conditions. To give a better idea of the global performances across all the catchments 

some simple boxplots have been produced: 
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Figure 18 - Boxplot of the average absolute relative error for the annual mean discharge. All catchments (top-right), by 
catchments area (top-left), by available years of observation (bottom-right), by maximum ME (bottom-left) 

  

The box plots have been constructed considering the average of absolute values of the relative 

errors between the observed averages and the simulated ones for each 𝑖-year and each 𝑗-

catchment: 

 

|𝑒𝑟𝑟𝑟𝑒𝑙𝑖,𝑗
| =

|𝑄𝑎,𝑠𝑖𝑚,𝑖,𝑗 − 𝑄𝑎,𝑜𝑏𝑠,𝑖,𝑗|

𝑄𝑎,𝑜𝑏𝑠,𝑖,𝑗
∗ 100     (𝑒𝑞. 4.14) 

 

The empty dots represent outliers, the thick line the median, the extremes of the plot the first 

and third quantiles and the upper and lower lines the maximum and the minimum. The first 

one (top-left of the image) considers all the catchments together reporting a median around 

15%. All the other plots subdivide the basins into categories based on three different criteria 

as reported in the Table 3: 
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CRITERION GROUP 1 GROUP 2 GROUP 3 GROUP 4 

CATCHMENT AREA 
𝐴 ≤ 126 𝑘𝑚2 

(29) 
126 𝑘𝑚2 < 𝐴 ≤ 250 𝑘𝑚2 

(29) 
250 𝑘𝑚2 < 𝐴 ≤ 801 𝑘𝑚2 

(29) 
𝐴 > 801 𝑘𝑚2 

(30) 

BEST MODEL 
EFFICIENCY 

𝑀𝐸 ≤ 0.8 
(26) 

0.8 < 𝑀𝐸 ≤ 0.85 
(24) 

0.85 < 𝑀𝐸 ≤ 0.89 
(39) 

𝑀𝐸 > 0.89 
(28) 

AVAILABLE YEARS OF 
OBSERVATIONS 

𝑁° ≤ 10 
(20) 

10 < 𝑁° ≤ 16 
(30) 

16 < 𝑁° ≤ 18 
(37) 

𝑁° > 18 
(30) 

 

Table 3 – Catchments subdivision based on three criteria (in parenthesis number of elements per group) 

 

The extremes for the intervals in each categorization have been selected to obtain, as far as 

possible, equal populated classes. In general, it can be observed some clear trends: looking at 

the catchment area the median is nearly the same in all groups (just slightly lower for the 

biggest basins), while the spread around the mid value clearly decreases for larger catchments. 

Regarding the years of observations, a similar trend can be identified, lowering the median 

(more evidently than before) and reducing the spread with the increase of the data 

availability; last, looking at the ME, the results are the most obvious, showing  a clear 

improvement of the model performance in reconstruction the annual averages moving 

towards higher values. 

 

C) REGIME CURVES 

 

 

 

Again, also in this case is analyzed a mean statistic, but now over a seasonal timescale. The regime 

curve is defined as the set of monthly averages [𝑚3/𝑠], each computed over the entire 

observation period. To obtain a meaningful result, possibly a high number of years of 

measurements are needed (around 30); in hydrology, unfortunately, having such long timeseries 

of discharge is not so common. In this case, for the first time, in the graph are represented three 
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curves and not just two. The blue one is related to the observed data, the red one 

(“𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝑡𝑜𝑡”) is related to the simulated series over the full 60-year period; this means that 

also years where there were not actually observations have been introduced in the calculation. 

Lastly the purple one is instead still related to the simulated discharge but limited to the years 

overlapped with the observations: 

 

𝑄𝑚,𝑖
̅̅ ̅̅ ̅̅ =

∑ 𝑄𝑖,𝑘
𝑘
𝑗=1

𝑘
     (𝑒𝑞. 4.15) 

 

Whit 𝑖 indexing the month, 𝑗 the day of the month and 𝑚 = 28,29,30,31 depending on the month 

and on leap years. It can be easily seen, and it is a common feature across all the catchments, how 

the total simulated series apparently does not reproduce correctly the monthly hydrological 

behavior, but when the timeframe is reduced, the matching improves significantly. Again, overall, 

the correspondence seems quite good, even if slightly worse than for the annual averages. Also, 

in this case a wider overview for all the catchments can be provided looking at some additional 

boxplots: 

 

 

 

 

Figure 19 - Boxplot (all catchments) of the average absolute relative error of the monthly discharge 
between observed and total simulated (above) and limited simulated (below) discharge 
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Figure 20 - Boxplots of the average relative error of the monthly discharge between the observed and total simulated 
(above) and limited simulated (bottom) discharge [Catchment Area]  
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Figure 21 - Boxplots of the average relative error of the monthly discharge between the observed and total simulated 
(above) and limited simulated (bottom) discharge [Years of observation] 
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Figure 22 - Boxplots of the average relative error of the monthly discharge between the observed and total simulated 
(above) and limited simulated (bottom) discharge [Model Efficiency]  
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These graphs are subdivided, as the previously showed for the mean annual discharge, in the three 

groups (Figures 20-21-22), plus the one showing the overall statistic of the catchments all together 

(Figure 19). Additionally, the analysis has been divided for each month to better represent the 

seasonal response of the model. On one hand the same general trends as already presented before 

for the three criteria are present, with an improved performance increasing the area of the basins, the 

number of available years of data and the ME. On the other hand, another trend is apparently present: 

the months from June to October are seemingly worst reconstructed (higher median of the relative 

percentual differences) and present a wider spread around the mid value. This trend is more evident 

where it is additionally combined with one of the unfavorable grouping conditions. It is not the goal 

of this thesis to investigate the reasons behind such model behavior, but an improvement in this 

direction (modifying something inside the model itself) could reduce the differences, increasing the 

ME and, overall, the performance of the following HydroPASS algorithm. As usual the limited 

simulated discharge timeseries obtain a better match than the 60-years ones. 

 

D) ANNUAL PEAK DISCHARGE 

 

 

 

It a simple comparison between the highest daily discharge recorded in the observed data and 

what in the same years has been simulated with TUWmodel [𝑚3/𝑠 ]. Talking about extremes 

(that are intrinsically more difficult to reproduce through a model) the matching is evidently 

worst, but nevertheless there is still accordance for most of the years: when a peak flow has 

been recorded in the original data, a peak is generally present also in the simulated series, even 

if not necessarily with the same magnitude (but nevertheless there is a common reconstructed 

trend). 
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E) MEAN ANNUAL FLOW DURATION CURVE (FDC) 

 

 

 

A FDC (flow duration curve) is a curve that represents the percentage of times that a given 

discharge value is exceeded. In one way is very similar conceptually to a CDF (cumulative 

distribution function) that instead represents the probability of non-exceedance. To make an 

example in the graph above for a value of 10 𝑚3/𝑠 we can read on the  horizontal axis a value of 

around 65 days, meaning that on average we expect during a representative year to see a flow 

rate greater than 10 𝑚3/𝑠 for 65 days. On the x-axis here is not reported properly a probability, 

but the number of days in a year. An equivalent curve directly expressing the probability of 

exceedance can be obtained simply by normalizing the values on the  horizontal axis by 365 

(ranging in this way from 0 to 1). In this specific case is reported a mean annual flow duration 

curve, just one of the possible FDCs: it is constructed starting from the annual flow duration curves 

of the single individual years. An annual flow duration curve is obtained simply by ordering in 

descending order all the discharged observed in a year. Let us make a concrete example: for the 

VARPO catchment data of the years from 2002 to 2020 were available; for each of the 19 years 

an annual FDC is constructed by ordering the observed discharge values in decreasing order. In 

this way ordered series of 365 measurements are obtained. The mean annual FDC for the basin is 

obtained by averaging the first values of each curve, the second values and so on till the 365th 

values. The same exact reasoning can be done for the simulated timeseries, again distinct into the 

“total” series (60 years) and the “limited” series (same number of years of the observation). It 

must be specified how while calculating the annual FDC of the individual years, in case more than 

65 missing (NA) or non-valid values were present, the entire year has been neglected and taken 

out from the mean computation. Similarly, to what already observed for the regime curves (even 

if in the specific case of the VARPO basin in not that evident), the limited timeseries is able to 
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better approximate, in most cases with good results, the signature of the observed discharge. The 

total simulated timeseries struggles instead more. 

 

F) PARAMETERS SETS COMPARISON /EQUIFINALITY 

The last analysis about the model performance has been conducted on the parameters sets found 

for each catchment. As already described, 30 parameters sets have been obtained for each basin 

to be used as input element for the HydroPASS algorithm.  

The graphs reported in Figures 23 and 24 have been produced to assess the issue of model 

parameters uncertainty and equifinality. “The term equifinality was used for the first time in the 

field of hydrological modelling by Beven (1975) who lately proposed in 1993 a concept of 

equifinality for model evaluation and uncertainty analysis” (Equifinality and Flux Mapping: A New 

Approach to Model Evaluation and Process Representation Under Uncertainty, Sina Khatami et al., 

2019). Within hydrological literature parameter equifinality and uncertainty are treated similarly 

and interchangeably. Parameter uncertainty means that there is no certain/true parameter set 

and it is eventually represented probabilistically as parameter distributions. More than one 

parameter set can be accepted and can result in a similar ME. This uncertainty derives from the 

intrinsic ill posedness and ill conditionedness of environmental models (Beck, 2002; Beven, 2006). 

Generally, parameters uncertainty is investigated by searching multiple valid sets by meaning of, 

for example, Monte-Carlo simulations. In our case, considering the already availability of 30 sets 

per basin, the equifinality can be investigated without any further computations. Below are 

reported two graphs: the first shows the best 10 normalized parameter sets (highest ME) with the 

indication of the mean model efficiency obtained considering the best 20 out of 30 sets. The 

normalization of each individual model parameter has been done following the relation: 

 

𝑃𝑖,𝑗,𝑘,𝑛𝑜𝑟𝑚 =
𝑃𝑖,𝑗,𝑘 − 𝑃𝑖,𝑚𝑖𝑛

𝑃𝑖.𝑚𝑎𝑥 − 𝑃𝑖,𝑚𝑖𝑛
∗ 𝑀𝐴𝑋𝑠𝑐𝑎𝑙𝑒     (𝑒𝑞. 4.16) 

 

Where 𝑃𝑖,𝑗,𝑘,𝑛𝑜𝑟𝑚 is the 𝑖-normalized parameter (𝑖 ranges between 1 and 15) of the 𝑗-set of the 

𝑘-catchment, 𝑃𝑖,𝑗,𝑘 is the original parameter, 𝑃𝑖,𝑚𝑖𝑛 and 𝑃𝑖.𝑚𝑎𝑥 are the minimum and maximum 

boundary of the 𝑖-parameter (see Table 2) and 𝑀𝐴𝑋𝑠𝑐𝑎𝑙𝑒 represents the maximum value the new 

normalized parameter can assume in the new scale (from 0 to 𝑀𝐴𝑋𝑠𝑐𝑎𝑙𝑒 = 1 in this specific case). 

In other words, the closer the new normalized parameter is close to zero, the closer is the inferior 
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limit of the possible admissible values, the closer it is to one the closer it is instead to the upper 

limit:  

 

Figure 23 - Normalized Parameter sets (VARPO) 

 

It can be noticed how the different sets, despite being all valid and with extremely similar ME (for 

the VARPO basin are nearly coincident, in other cases not necessarily), does not seem to 

concentrate consistently along precise values (even if small subsets of parameters seem to follow 

very similar parameterizations). Seemingly, the parameters, if opportunely combined, are always 

able in some way to well perform and reconstruct the observed discharge. A different trend will 

be observed after the application of the HydroPASS algorithm (see chapter 6). Moreover, in some 

cases the parameters are extremely close, if not coincident, with the upper and lower limits; this 

is probably due to the DE algorithm strategy to correct, after vector mutation, the value exceeding 

the allowed boundaries (𝑒𝑞. 4.9𝑎 and 𝑒𝑞. 4.9𝑏). 

The second graph reports instead for the 15 model parameters their probability distribution, using 

all the 30 available sets, through boxplots: 
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Figure 24 - Local lumped parameter distributions (VARPO) 

 

In this way is clearer how the equifinality is very strong for some parameters like 𝑇𝑟, 𝑇𝑠, 𝐿𝑝𝑟𝑎𝑡 or 

𝑐𝑟𝑜𝑢𝑡𝑒, while for other (especially 𝐷𝐷𝐹, 𝑙𝑠𝑢𝑧 and 𝑐𝑝𝑒𝑟𝑐) the value concentrated around a specific 

value. For these last cases it seems that a stronger correlation, underlying a clear physical 

relationship, is present (at least for the VARPO catchment). The same cannot be stated for the 

remaining parameters. Moreover, other basins, despite showing a similar behavior, may do it with 

different parameters. For a full compendium of all the other catchments see Attachments 2 and 

3. 
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5. CATCHMENT DESCRIPTORS 

 

 

 

5.1 Descriptors selection 

The last remaining input element to the HydroPASS algorithm still to be discussed are the descriptors. 

A physical descriptor, that here will be differently denoted in case it is referred to a grid pixel or to a 

specific basin, is a single number (dimensional or dimensionless) that synthesize a facet of the 

territory. Other interchangeable terms that can be found in literature are characteristics or attributes 

(“Technical research report - volume IV - physical catchment descriptors”, Paul Mills, Oliver Nicholson 

and Duncan Reed, 2014). For simplicity in the following paragraphs the descriptors will be denoted 

simply with CD (Catchment Descriptors, even if in this paragraph will be only calculated over the 

reference grid pixels). The great advantage of a CD is the possibility to summarize in a simple and 

direct way features sometimes rather complex; this gave us indications about the difference between 

pixels or catchments upon which, in the following chapter, the application of the machine learning 

technique will be based. 

In literature there are a multitude of different CDs that can be calculated, and the list could go on 

forever. A choice of a reduced number of CDs was needed: the selection of the set of CDs has been 

based, when possible, given the available data, on what Merz et al. did in their original article 

published in 2020. In the end, a subset of that original list has been here adopted, plus some additional 

CDs not originally present, as reported in the Table 4: 
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GROUP LABEL UNITS DESCRIPTION 

CLIMATE CL_MAP (1) 𝑚𝑚 Long-term mean-annual precipitation 

CL_MAT (2) °𝐶 Long-term mean-annual temperature 

CL_PET (3) 𝑚𝑚 Long-term mean-annual evapotranspiration 

CL_PETovP (4) − Aridity index 

CL_Psum2win (5) − Ratio of long-term summer precipitation 

and winter precipitation 

CL_R50 (6) 𝑚𝑚

/𝑑𝑎𝑦 

Long-term median maximum daily 

precipitation 

CL_R95 (7) 𝑚𝑚

/𝑑𝑎𝑦 

Long-term 95th percentile of maximum 

daily precipitation 

CL_dRD2D (8) 𝑚𝑚 Long-term mean absolute difference of 

rainfall amount between two consecutive 

days 

MORPHOLOGY 

AND 

TOPOGRAPHY 

MP_mean_dem (9) 𝑚 𝑎𝑠𝑙 Mean elevation 

MP_CV_dem (10) − Coefficient of variation of elevation in the 

catchment 

MP_mean_slope (11) % Mean slope 

MP_mean_aspect (12) ° Mean aspect 

LAND USE LD_smallveg (13) % Percent of the pixel covered with 

herbaceous, little or no vegetation, and 

open spaces 

LD_agri (14) % Percent of the pixel covered with 

agricultural areas 

LD_wetland (15) % Percent of the pixel covered with wetlands 

and lakes 

LD_urban (16) % Percent of the pixel covered with artificial 

surfaces 

LD_forest (17) % Percent of the pixel covered with various 

types of forests 

CURVE 

NUMBERS 

CN1 (18) − Curve number 1 

CN2 (19) − Curve number 2 

CN3 (20) − Curve number 3 

SOIL PHYSICAL 

AND WATER 

PROPERTIES 

S_SILT (21) % Mean fraction of silt in subsoil (30-100 cm) 

T_SILT (22) % Mean fraction of silt in topsoil (0-30 cm) 

S_SAND (23) % Mean fraction of sand in subsoil (30-100 

cm) 

T_SAND (24) % Mean fraction of sand in topsoil (0-30 cm) 

S_CLAY (25) % Mean fraction of clay in subsoil (30-100 cm) 

T_CLAY (26) % Mean fraction of clay in topsoil (0-30 cm) 
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S_GRAVEL (27) % Mean fraction of gravel in subsoil (30-100 

cm) 

T_GRAVEL (28) % Mean fraction of gravel in topsoil (0-30 cm) 

S_REF_BULK_DENSITY 

(29) 

𝑘𝑔/𝑑𝑚3 Mean Bulk Density of subsoil (30-100 cm) 

T_REF_BULK_DENSITY 

(30) 

𝑘𝑔/𝑑𝑚3 Mean Bulk Density of topsoil (30-100 cm) 

AWC_LARGE (31) % Percent of pixel with large (125-150 mm/m) 

available water content (FAO, 2006) 

AWC_MED (32) % Percent of pixel with medium (75-125 

mm/m) available water content (FAO, 

2006) 

AWC_SMALL (33) % Percent of pixel with small (15-75 mm/m) 

available water content (FAO, 2006) 

IL_TOP (34) % Percent of pixel with impermeable layer 

located within 80 cm of soil profile 

IL_MED (35) % Percent of pixel with impermeable layer 

located within 80-150 cm of soil profile 

IL_DEEP (36) % Percent of pixel with no impermeable layer 

located within 150 cm of soil profile 

SWR_NOTWET (37) % Percent of pixel with dominant annual 

average soil water regime class: not wet 

within 80 cm for over 3 months and not wet 

within 40 cm for over 1 month 

SWR_MEDIUMWET 

(38) 

% Percent of pixel with dominant annual 

average soil water regime class: wet within 

80 cm for 3 -6 months, but not wet within 

40 cm for over 1 month 

SWR_WET (39) % Percent of pixel with dominant annual 

average soil water regime class: wet within 

80 cm for over 6 months, but not wet 

within 40 cm for over 11 months 

SWR_TOTALWET (40) % Percent of pixel with dominant annual 

average soil water regime class: wet within 

40 cm for over 11 months 

T_TEXTURE_COARSE 

(41) 

% Percent of pixel with coarse topsoil texture 

T_TEXTURE_MEDIUM 

(42) 

% Percent of pixel with medium topsoil 

texture 

T_TEXTURE_FINE (43) % Percent of pixel with fine topsoil texture 

S_USDA_CLAY (44) % Percent of pixel with clay subsoil according 

to USDA classification 

T_USDA_CLAY (45) % Percent of pixel with clay topsoil according 

to USDA classification 
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S_USDA_SAND (46) % Percent of pixel with sand subsoil according 

to USDA classification 

T_USDA_SAND (47) % Percent of pixel with sand topsoil according 

to USDA classification 

S_USDA_SILTLOAM 

(48) 

% Percent of pixel with silt and loam subsoil 

according to USDA classification 

T_USDA_SILTLOAM 

(49) 

% Percent of pixel with silt and loam topsoil 

according to USDA classification 

DRAINAGE_LARGE (50) % Percent of pixel belonging to “excessive” 

and “well” drainage class. Soil drainage 

classes are based on the guidelines from 

FAO (2006): 

DRAINAGE_MED (51) % Percent of pixel belonging to “moderate” 

and “imperfect” drainage class. Soil 

drainage classes are based on the 

guidelines from FAO (2006): 

DRAINAGE_SMALL 

(52) 

% Percent of pixel belonging to “poor” and 

“very poor” drainage class. Soil drainage 

classes are based on the guidelines from 

FAO (2006): 

 

Table 4 - Catchment descriptors (label, units, and description) 

 

Each of the reported CD was to be calculated over the reference grid used for the project. Depending 

on the original data used, case by case it was convenient to work directly in UTM32 or, like how already 

done for the climate data, in WGS84, referring then the results to the reprojected grid (see paragraph 

3.1). The application of one or the other strategy has been used to reduce as much as possible the 

reprojection of raster files and the introduction of unnecessary interpolations. Starting from the 

following paragraph, a more detailed overview of the CDs (source data and methodology), following 

the classification reported in Table 4, will be provided. 

 

5.2 Climate descriptors 

The first subcategory of CDs is the one related to the climate characteristics. For all of them the original 

data needed were the precipitation (𝑃), temperature (𝑇𝑚𝑒𝑎𝑛) and evapotranspiration (𝑃𝐸𝑇) already 

presented in paragraphs 3.1 and 3.2. All these data were in WGS84 and so the results have been then 

referred to the grid in UTM32 without any need of further interpolations. The CL_MAP [mm], CL_MAT 
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[°C], CL_PET [mm] are all calculated following the same approach: they are long term averages of the 

corresponding climatic variable obtained as: 

 

𝐶𝐿_𝑀𝐴𝑃𝑖 = 𝑃�̅� ∗ 365.25    (𝑒𝑞. 5.1𝑎) 

𝐶𝐿_𝑀𝐴𝑇𝑖 = 𝑇�̅� ∗ 365.25    (𝑒𝑞. 5.1𝑏) 

𝐶𝐿_𝑃𝐸𝑇𝑖 = 𝑃𝐸𝑇𝑖
̅̅ ̅̅ ̅̅ ∗ 365.25    (𝑒𝑞. 5.1𝑐)      

 

Where the index 𝑖 denotes the pixels and the �̅� variables the averages over the 60-years reference 

period (excluding missing values). 

The aridity index CL_PETovP [-] (Budyko, 1974) is defined by the ratio of the mean annual potential 

evapotranspiration and mean annual precipitation just showed. It is basically the reciprocal of the 

aridity index as adopted in 1992 by the UNEP (united nations environment programme). 

 

𝐶𝐿𝑃𝐸𝑇𝑜𝑣𝑃𝑖
=

𝐶𝐿_𝑃𝐸𝑇𝑖

𝐶𝐿_𝑀𝐴𝑃𝑖
     (𝑒𝑞. 5.2) 

 

The Budyko index is a measure of the dryness of an environment. Values lower than 1 indicates an 

energy-limited system (water availability but not enough energy to evapotranspire it all), while values 

higher than 1 on the other hand indicates water-limited systems (enough energy to potentially 

evapotranspire more water than the available one). 

CL_Psum2win quantify the difference between the long-term summer and winter  precipitations. It is 

calculated as the ratio between the two. The summer period at our latitudes extends from May to 

October, while the winter period from November to April (in a two seasons calendar subdivision): 

 

CLPsum2wini
=

∑ 𝑃𝑗,𝑖
̅̅̅̅

𝑠𝑢𝑚𝑚𝑒𝑟

∑ 𝑃𝑘,𝑖
̅̅ ̅̅

𝑤𝑖𝑛𝑡𝑒𝑟

     (𝑒𝑞. 5.3) 

 

Where 𝑗 and 𝑘 ranges from 1 to 6. Each individual monthly long term precipitation average is 

calculated with a similar equation to 𝑒𝑞. 5.1. 
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The long-term median maximum daily precipitation CL_R50 is calculated considering the maximum 

daily precipitation for each available year and then applying the median operator: 

 

𝐶𝐿𝑅50𝑖
= 𝑚𝑒𝑑𝑖𝑎𝑛(𝑃1,𝑖, … , 𝑃𝑗,𝑖)    (𝑒𝑞. 5.4)  

 

With 𝑖 denoting the pixel and 𝑗, ranging from 1 to 60, the available years of data. CL_R95 follows a 

similar approach for the determination of the long-term 95th percentile of maximum daily 

precipitation; for each pixel the long-term precipitation of each year is evaluated, and the value 

corresponding to the probability of non-exceedance of 95% is selected (or the same the values 

corresponding to the probability of exceedance of 5%): 

 

𝐶𝐿_95𝑅𝑖 = 95𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒(𝑃1,𝑖, … , 𝑃𝑗,𝑖)    (𝑒𝑞. 5.5) 

 

Lastly, for the climate descriptors, CL_dRD2D. The long-term mean absolute difference of rainfall 

amount between two consecutive days, as the name suggest, is evaluated by calculating, for each pair 

of consecutive days, the absolute value of their difference, and then applying the mean operator to 

the new obtained data series. A simplified explanatory example is here reported: 

 

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 → 1     2     2     4     1 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 → 1     0     2    -3 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 → 1     0     2     3 → 𝑚𝑒𝑎𝑛 = 1.5 

 

For each of the eight climate descriptors the corresponding distribution map over the original OI grid 

in WGS84 is reported in Figures 25-26. Please note that the choice to represent the maps in WGS84 

is only for graphical convenience: remember that the reference system used for the calculation is 

always UTM32 (the same also apply for all the other descriptors’ classes). 
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5.3 Morphology and topography descriptors 

Four distinct CDs belong in this group. The base data to calculate them was a DTM (digital terrain 

model); the one used in this project is a raster file, in coordinate reference system WGS84, with 

squared cells with a resolution of 0.00083° (around 90𝑚 on the ground) downloaded from 

ErthEnv-DEM90 digital elevation model (Robinson at. al, 2014). The evaluation of MP_mean_dem 

and MP_CV_dem followed the same approach just changing the function used; the main 

difference with respect to the climate CDs is that here the resolution of the raster file and of the 

reference grid are not the same. Specifically, the resolution of the DTM is higher than the one of 

the pixels of the grid, and so in each reference cell of the model fall more than one cell of the 

raster. The calculation of the descriptors for each cell passed through the determination of the 

subset of cells of the DTM falling into each pixel, then averaging or applying a different function 

to them. Such operation inside the R environment has been easily performed with the dedicated 

function of the “raster” package “extract”: 

 

 

 

 

 

 

 

 

   𝑀𝑃_𝑚𝑒𝑎𝑛_𝑑𝑒𝑚𝑖 =
∑ 𝐸𝑗,𝑖

𝑛
𝑗=1

𝑛
            (𝑒𝑞. 5.6𝑎) 

𝑀𝑃_𝐶𝑉_𝑑𝑒𝑚𝑖 =
𝜎𝑒,𝑖

𝑀𝑃_𝑚𝑒𝑎𝑛_𝑑𝑒𝑚𝑖
     (𝑒𝑞. 5.6𝑏) 

 

With 𝑗 indicating the subsets of DTM cells for each grid pixel 𝑖, and 𝜎𝑒,𝑖  the standard deviation of 

the elevation of the pixels. As usual eventual missing values are neglected from the computation. 

The remaining two descriptors are the one related to the slope and the one related to the aspect. 

The slope is a measure of the steepness of a digital terrain model, calculated through the elevation 

differences of adjacent cells; the lower the slope (expressed in %) the flatter the terrain. Positive 

Figure 27 - DTM (90m) with and without reference grid (WGS84) 
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or negative values of the slope indicates instead the direction of the terrain inclination. The aspect 

[°], also called exposure, is instead the measure of the compass direction (or azimuth) that a 

terrain surface faces. Such calculations can be performed directly inside R with the external 

package “rgrass7” that introduces an indirect access to the GRASS toolbox of QGis. For simplicity 

has been decided to directly work inside QGis instead. The obtained raster files of slope and aspect 

have then been imported again in R to perform (as for the elevation and coefficient of variation) 

the extraction of the cells subsets and the calculation of the mean values as descriptors: 

 

 

 

 

 

 

 

 

𝑀𝑃_𝑚𝑒𝑎𝑛_𝑠𝑙𝑜𝑝𝑒𝑖 =
∑ 𝑆𝐿𝑂𝑃𝐸𝑗,𝑖

𝑛
𝑗=1

𝑛
          (𝑒𝑞. 5.7𝑎) 

𝑀𝑃_𝑚𝑒𝑎𝑛_𝑎𝑠𝑝𝑒𝑐𝑡𝑖 =
∑ 𝐴𝑆𝑃𝐸𝐶𝑇𝑗,𝑖

𝑛
𝑗=1

𝑛
     (𝑒𝑞. 5.7𝑏)

Figure 28 - Slope and Aspect maps (WGS84) 
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5.4 Land use descriptors 

The definition of the five land use descriptors has started from the data contained into the CORINE 

Land Cover (CLC) database. Such inverntory started in 1985 and have seen uptadates in the 

following years till the last version released in 2018 (with a time consitency ranging between 2017 

and 2018), here used as data source. In this last version the data have been collected with 

satellites, specifically Sentinel-2, with the additional use of Landsat-8 for gap filling. The land is 

subdivided and categorized into 44 classes covering 39 different European nations: 

 

 

Figure 30 - CORINE 2018 subset (Italy, Spain, and central Europe) 

 

The original raster file reference system in this case was in Lambert (LAEA Europe also called ETR89-

extended) with a resolution of 100𝑥100𝑚, different from the UTM32 of our project; moreover, it was 

also different form WGS84 often used to avoid the reprojection of values. In this case the reprojection 

was unavoidable, and so the raster file has been transformed directly into UTM32. Such reprojection 

implies a method for the interpolation of values; here the simple “closest neighbor” approach has 

been used (the resolution of the original file was high enough to not commit big mistakes during this 

operation). The new raster maintained the same resolution of the original. The file has then been 

cropped and limited on the area of study. 

The last step before the calculation of the land-use CDs is the reclassification of the database. As 

already explained at the beginning of the paragraph, the CORINE database subdivides the territory in 
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44 classes, but we have only 5 descriptors. The reclassification has been performed following the 

subdivision reported in Table 5: 

 

ORIGINAL CLASS 
ORIGINAL 

ID 
NEW CLASS RECLASSIFIED ID 

Continuous urban fabric 1 

URBAN 1 

Discontinuous urban fabric 2 

Industrial or commercial units 3 

Road and train network and 
associated land 

4 

Port areas 5 

Airports 6 

Mineral extraction sites 7 

SMALLVEG 2 

Dump sites 8 

Construction sites 9 

Green urban areas 10 

Sport and leisure facilities 11 

Beaches dunes sands 30 

Bare rocks 31 

Sparsely vegetated areas 32 

Burnt areas 33 

Glaciers and perpetual snow 34 

Non-irrigated arable land 12 

AGRI 3 

Permanently irrigated land 13 

Rice fields 14 

Vineyards 15 

Fruit trees and berry plantations 16 

Olive groves 17 

Pastures 18 

Annual crops associated with 
permanent crops 

19 

Complex cultivation patterns 20 

Land principally occupied by 
agriculture with significant areas 

of natural vegetation 
21 

Agro-forestry areas 22 

Broad-leaved forest 23 

FOREST 4 

Coniferous forest 24 

Mixed forest 25 

Natural grasslands 26 

Moors and heathland 27 

Sclerophyllous vegetation 28 

Transitional woodland-shrub 29 

Inland marshes 35 

WETLAND 5 
Peat bogs 36 

Salt marshes 37 

Salines 38 
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Intertidal flats 39 

Water courses 40 

Water bodies 41 

Coastal lagoons 42 

Estuaries 43 

Sea and ocean 44 
NODATA NA 

NODATA - 
 

Table 5 - Corine riclassification scheme 

 

For each new class is important to recall the related CD description reported in Table 4: for example, 

inside the smallveg class are included not only the low form of vegetation, but also many tiles of bare 

soil in the original raster file that barely have anything in common with the vegetation at all (like the 

permanent glaciers or the bare rocks). It is also important to underline how the sea and ocean tiles (in 

our area in the south), originally classified as a separate category, in the new reclassification are joint 

with the tiles where no information was instead already available and not collocated, as one could 

expect, inside the wetland class. The new reclassified raster file is reported below: 

 

 

Figure 31 - Reclassified CORINE land use (UTM32) 

 

 

The five CDs are all calculated following the same approach: like for the elevation ones, being the 

resolution of the raster file higher than the grid in UTM32 (and so there are more cells of the raster 

per pixel of the grid), the “extract” function has been used to obtain the subsets of raster cells 
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contained inside each grid pixel. The indicators are expressed as percentage with respect to the total 

non-NA (non-missing value) cells of each subset: 

 

𝐿𝐷𝑢𝑟𝑏𝑎𝑛𝑖
=

∑ 𝑐𝑒𝑙𝑙1,𝑖

∑ 𝑐𝑒𝑙𝑙𝑖
∗ 100         (𝑒𝑞. 5.8𝑎) 

𝐿𝐷𝑠𝑚𝑎𝑙𝑙𝑣𝑒𝑔𝑖
=

∑ 𝑐𝑒𝑙𝑙2,𝑖

∑ 𝑐𝑒𝑙𝑙𝑖
∗ 100     (𝑒𝑞. 5.8𝑏) 

𝐿𝐷𝑎𝑔𝑟𝑖𝑖
=

∑ 𝑐𝑒𝑙𝑙3,𝑖

∑ 𝑐𝑒𝑙𝑙𝑖
∗ 100            (𝑒𝑞. 5.8𝑐) 

𝐿𝐷𝑓𝑜𝑟𝑒𝑠𝑡𝑖
=

∑ 𝑐𝑒𝑙𝑙4,𝑖

∑ 𝑐𝑒𝑙𝑙𝑖
∗ 100          (𝑒𝑞. 5.8𝑑) 

𝐿𝐷𝑤𝑒𝑡𝑙𝑎𝑛𝑑𝑖
=

∑ 𝑐𝑒𝑙𝑙5,𝑖

∑ 𝑐𝑒𝑙𝑙𝑖
∗ 100      (𝑒𝑞. 5.8𝑒) 
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5.5 Soil descriptors 

“Soil information, from the global to the local scale, has often been the one missing biophysical 

information layer. The lack of reliable and harmonized soil data has considerably hampered […] 

environmental impact studies.” (Harmonized World Soil Database, FAO, 2009). Such shortage of 

information has been faced by FAO (Food and Agriculture Organization of the United Nations) and 

IIASA (International Institute for Applied Systems Analysis) that combined the vast number of regional 

and national data together with the already existing digital soil map of the World into the new 

Harmonized World Soil Database (HWSD). The source data have been retrieved from this database, 

specifically from the version 1.2. This data has been converted in a series of raster layers, importable 

in R, already with reference system WGS84 and cropped over the region of interest. The soil CDs here 

considered are most of the descriptors (32 out of 52) and so it will be impractical to report each single 

original raster layer and final map as for the previous cases. For this reason, the description will be 

limited to the main calculation strategies and data, while for a complete compendium of the remaining 

information it is possible to refer to the Attachment 4 (maps and visual information) and Table 5 (CDs 

descriptions). Moreover, in the following formulas the indices from 21 to 52 will be used to indicate 

each descriptor following the order again of the list in Table 4. 

The first eight CDs are related to the volumetric percentual abundance (%𝑣𝑜𝑙) of particles following 

the conventional grain size classification, distinguishing the topsoil (0 − 30 𝑐𝑚) from the subsoil (30 −

100 𝑐𝑚):  

 

Table 6 - ISO standard 14688-1:2002 for soil classification based on grain size 
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The original raster layers ware already composed by a percentual indication for each cell; the 

descriptor have been then simply calculated as the average of the subsets related to each pixel of the 

reference grid (neglecting as usual missing values): 

 

𝐶𝐷21𝑡𝑜28,𝑖 =
∑ 𝑉21𝑡𝑜28,𝑖

𝑁𝑖
     (𝑒𝑞. 5.9) 

 

With 𝑁𝑖  the number of non-NA cells in the 𝑖-subset and 𝑉𝑖 the values assumed by the cells of the 

subset.  

Next are the reference-bulk densities (also called apparent or volumetric densities) of topsoil and 

subsoil (𝑘𝑔/𝑑𝑚3). They are defined as the mass of the soil particles divided by the total volume 

(particle volume, inter-particle volume and internal pore volume) they occupy. Again, the descriptors 

are calculated with a simple average of the raster layer cells belonging to the same pixel subset (from 

now on the formula is not reported anymore).  

Then there are three descriptors for three classes of Available Water Content (AWC): the available 

water storage capability is expressed in 𝑚𝑚/𝑚 and the following classes are used (Harmonized World 

Soil Database, 2009): 

 

CLASS AWC (𝑚𝑚/𝑚) 

1 150 

2 125 

3 100 

4 75 

5 50 

6 25 

7 0 

 

Table 7 - AWC classes (HWSD, 2009) 

 

In these cases, the descriptors are about the percentage of pixels having a LARGE (150 −

125 𝑚𝑚/𝑚), MEDIUM (75 − 125 𝑚𝑚/𝑚) or SMALL (15 − 75 𝑚𝑚/𝑚) available water content. The 
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raster layer associates to each cell the relative class code from Table 7, and the CDs have been 

evaluated as: 

 

𝐶𝐷31,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 1,2)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.10𝑎) 

𝐶𝐷32,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 3,4)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.10𝑏) 

𝐶𝐷33,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 5,6)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.10𝑐) 

 

With 𝐶𝑖 indicating the number of cells per subset meeting the condition in parenthesis. Non 

considering in any of the three cases class 7, the sum of the three descriptors is not necessarily 100%. 

The IL (impermeable layer) descriptors indicate the presence or absence of permeable layers along 

the soil profile expressed as percentages. The layer associates to each cell a number ranging from 0 

to 4 following the indications in Table 8: 

 

 

Table 8 - Impermeable Layer (IL) classification scheme (HWSD, 2009) 

 

𝐶𝐷34,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 3,4)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.11𝑎) 

𝐶𝐷35,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 2)

𝑁𝑖
∗ 100        (𝑒𝑞. 5.11𝑏) 

𝐶𝐷36,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 1)

𝑁𝑖
∗ 100        (𝑒𝑞. 5.11𝑐) 

 

An analogous approach is used also for the calculation of the SWR (Soil Water Regime) related 

descriptors that indicate the dominant average soil water regime of the soil profile. Also, here a 

classification has been performed inside the HWSD: 
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Table 9 - SWR (Soil Water Regime) classification scheme (HWSD, 2009) 

 

𝐶𝐷37,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 1)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.12𝑎) 

𝐶𝐷38,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 2)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.12𝑏) 

𝐶𝐷39,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 3)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.12𝑐) 

𝐶𝐷40,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 4)

𝑁𝑖
∗ 100       (𝑒𝑞. 5.12𝑑) 

 

The topsoil textural characteristics are summarized by the next three CDs. They refer to the simplified 

textural classes used in the Soil Map of the World (FAO/UNESCO, 1970-1980). In the official material 

describing the database is specified how considering the small scale of the map, just three classes 

were considered: coarse textured (sands, loamy-sands, and sandy-loams with less than 18% clay and 

more than 65% sand, code 1), medium textured (sandy-loams, loams, sandy-clay-loams, silt-loams, 

silt, silty-clay-loams, and clay-loams with less than 35% clay and less than 65% sand; the sand fraction 

may be as high as 82% if a minimum of 18% of clay is present, code 2), and fine textured (clays, silty-

clays, sandy-clays, clay-loams and silty—clay-loams with more than 35% clay, code 3). As for the 

previous cases the calculation has been performed like: 

 

𝐶𝐷41,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 1)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.13𝑎) 

𝐶𝐷42,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 2)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.13𝑏) 

𝐶𝐷43,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 3)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.13𝑐) 

 

The following six descriptors are the ones related to the USDA (U.S. Department of Agriculture) 

classification. Three are for the topsoil, three for subsoil. Such classification is based on a triangular 

diagram having at the three vertices the 100% by weight of one between clay (less than 0.002 𝑚𝑚), 
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sand (between 0.002 and 0.05 𝑚𝑚) and silt (between 0.05 and 2 𝑚𝑚) following again the ISO-

standard 14688-1 about grain size distribution already used previously. Moving along the sides of the 

triangle (depending on the reciprocal percentages of the components), it is possible to identify a single 

point inside it, which has associated a unique class: 

 

 

 

 

 

 

𝐶𝐷44,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 1,2,3,8)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.14𝑎) 

𝐶𝐷45,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 1,2,3,8)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.14𝑏) 

𝐶𝐷46,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 12,13)

𝑁𝑖
∗ 100      (𝑒𝑞. 5.14𝑐) 

𝐶𝐷47,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 12,13)

𝑁𝑖
∗ 100      (𝑒𝑞. 5.14𝑑) 

𝐶𝐷48,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 4,5,6,7,9,10,11)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.14𝑒) 

𝐶𝐷49,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 4,5,6,7,9,10,11)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.14𝑓) 

 

The last set of three CDs is the one describing the drainage classes as defined in the FAO 2006 

guidelines. The possible classes are six: excessive, well, moderate, imperfect, poor and very poor. As 

Figure 33 - USDA textural triangle and classes classification (HWSD, 2009) 
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usual the related raster layer associates to each cell a value from 6 to 1 to classify them into one of 

the six: 

 

𝐶𝐷50,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 5,6)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.15𝑎) 

𝐶𝐷51,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 3,4)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.15𝑏) 

𝐶𝐷52,𝑖 =
∑ 𝐶𝑖 /(𝑉𝑖 = 1,2)

𝑁𝑖
∗ 100     (𝑒𝑞. 5.15𝑐) 

 

 

5.6 Curve numbers 

The final group of descriptors utilized in this work are the curve numbers (CN). The curve numbers 

were developed inside the so-called SCS-CN method by the USDA Natural Resource Conservation 

Center; such method is utilized to approximately determine the amount of directly generated runoff 

from a rainfall event over an area. The method can be formulated as follows: 

 

𝑄 = {

       0            𝑓𝑜𝑟 𝑃 ≤ 𝐼𝑎

(𝑃 − 𝐼𝑎)2

𝑃 − 𝐼𝑎 + 𝑆
 𝑓𝑜𝑟 𝑃 > 𝐼𝑎

     (𝑒𝑞. 5.16) 

 

Where 𝑄 is the generated runoff, 𝑃 is the rainfall precipitation, 𝐼𝑎 is the so-called initial abstraction 

and 𝑆 is the maximum potential soil moisture retention after runoff begins. It is generally assumed 

that the initial abstraction can be calculated as: 

 

𝐼𝑎 = 0.2𝑆     (𝑒𝑞. 5.17) 

 

Practically the missing parameter that must be evaluated for the application of the SCS-CN method is 

𝑆. The empirical relation to do so directly involves the CN: 
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𝑆 =
25400

𝐶𝑁
− 254     (𝑒𝑞. 5.18) 

 

A curve number is an empirical number, that ranges from 30 to 100, from low runoff potential to 

high runoff potential, that depends on several parameters: in first place on the soil type; there are 

four categories (from class A to class D) with different soil infiltration capacities: 

 

 

Table 10 - Soil types for the CNC-CN method 

 

The second parameter is the land use: the same soil typology, if used for agricultural purposes or 

covered by an impermeable road, will present completely different infiltration properties. Finally, 

the moisture class: depending on the season and the amount of rainfall fallen in the previous five 

days, one of three possible outcome is selected; each of these results is identified by a different 

curve number (CN1, CN2 or CN3). In case there are the condition to be in class I or III, the values are 

determined starting in any case from the value for moisture class II: 

 

 

Table 11 - Determination of the moisture class 
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Figure 34 - Conversion diagram from class II to classes I and III 

 

For the first step (the determination of the soil type) a classification has been conducted based on the 

volumetric percentual composition of clay, sand, and silt (the data are again the one from the HWSD 

already used in the previous paragraph) employing the following sets of conditions: 

 

{
𝑆𝑠𝑎𝑛𝑑𝑖

≥ 70   𝑎𝑛𝑑   (𝑆𝑐𝑙𝑎𝑦𝑖
+ 𝑆𝑠𝑖𝑙𝑡𝑖

) ≤ 30

𝑇𝑠𝑎𝑛𝑑𝑖
≥ 70   𝑎𝑛𝑑   (𝑇𝑐𝑙𝑎𝑦𝑖

+ 𝑇𝑠𝑖𝑙𝑡𝑖
) ≤ 30

   →    𝐶𝑙𝑎𝑠𝑠 = 𝐴 

{
𝑆𝑠𝑎𝑛𝑑𝑖

≥ 50   𝑎𝑛𝑑   (𝑆𝑐𝑙𝑎𝑦𝑖
+ 𝑆𝑠𝑖𝑙𝑡𝑖

) ≤ 50

𝑇𝑠𝑎𝑛𝑑𝑖
≥ 50   𝑎𝑛𝑑   (𝑇𝑐𝑙𝑎𝑦𝑖

+ 𝑇𝑠𝑖𝑙𝑡𝑖
) ≤ 50

   →    𝐶𝑙𝑎𝑠𝑠 = 𝐵 

{
𝑆𝑠𝑎𝑛𝑑𝑖

≥ 20   𝑎𝑛𝑑   (𝑆𝑐𝑙𝑎𝑦𝑖
+ 𝑆𝑠𝑖𝑙𝑡𝑖

) ≤ 80

𝑇𝑠𝑎𝑛𝑑𝑖
≥ 20   𝑎𝑛𝑑   (𝑇𝑐𝑙𝑎𝑦𝑖

+ 𝑇𝑠𝑖𝑙𝑡𝑖
) ≤ 80

   →    𝐶𝑙𝑎𝑠𝑠 = 𝐶 

{
𝑆𝑠𝑎𝑛𝑑𝑖

≥ 10   𝑎𝑛𝑑   (𝑆𝑐𝑙𝑎𝑦𝑖
+ 𝑆𝑠𝑖𝑙𝑡𝑖

) ≤ 90

𝑇𝑠𝑎𝑛𝑑𝑖
≥ 10   𝑎𝑛𝑑   (𝑇𝑐𝑙𝑎𝑦𝑖

+ 𝑇𝑠𝑖𝑙𝑡𝑖
) ≤ 90

   →    𝐶𝑙𝑎𝑠𝑠 = 𝐷 

 

In case of cells that do not satisfy any of these four conditions (generally is the case for missing data 

about the granulometry shares of the subsoil), the pixel is left empty with a NA. The second step is the 

accounting of the land use; to do so a reference table from “Carta del Curve Number Regionale” 

(Agenzia Regionale per la Protezione dell’Ambiente della Sardegna – ARPAS, 2019) has been used. It 

has been decided to utilize such reference mainly for two reasons: first, it is a document applied yes 

in a different region of Italy, but still closer to our area then other reference that could be found in 

literature; second, and probably the most relevant, this table was used in a project relying on similar 
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data from CORINE, like the one used inside this work. So, it has been easy to utilize such reference 

thanks to a direct correspondence between land use classes of Table 5 with the one reported in Tables 

12-13: 

 

 

Table 12 - Land use classes to CNs depending on soil class – Part 1 (ARPAS, 2019) 
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Table 13 - Land use classes to CNs depending on soil class – Part 2 (ARPAS, 2019) 

 

At this point for each cell has been obtained the CN2. The CN and CN3 for the different moisture 

classes are instead calculated with the following formulas, that analytically execute the transformation 

in Figure 30: 

 

𝐶𝑁 =
𝐶𝑁2

2.3 − 0.013𝐶𝑁2
     (𝑒𝑞. 5.19𝑎) 

𝐶𝑁3 =
𝐶𝑁2

0.43 + 0.0057𝐶𝑁2
     (𝑒𝑞. 5.19𝑏)         

 

The actual CDs over the reference grid has been finally calculate with the usual average over the 

subsets. In Figure 35 are reported the final maps for the three curve numbers:
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6. HydroPASS 

  

 

 

6.1 Theoretical description 

In this chapter will be provided a deeper description of what is the core of the entire work, the 

HydroPASS algorithm. Before entering in the details is a good idea to recap the input data described 

in the previous three chapters and the main idea behind the regional optimization strategy and to 

introduce some notations for a better and clear comprehension of the formulas described below. 

The main idea behind HydroPASS is the determination of a REGIONAL FUNCTIONAL RELATIONSHIP 

between catchment descriptors and model parameters: starting from the lumped set of parameters 

obtained in chapter 4 and the descriptors calculated over the same basins, a relation is found; then it 

is applied inversely to obtain, starting from the descriptors evaluated over the grid (chapter 5), the 

distributed model parameter sets over the same pixels. Of all the elements listed above, everything 

has already been described in detail, with the only exception of the descriptors for the catchment. 

They are nothing else than the average of the same indicators evaluated over the grid but weighted 

with the weight of the individual pixels touched by each basin. Such weights have been already used 

previously and are contained in what was called “train topology” and so: 

 

𝐶𝐷𝑐,𝑖 = 𝐶𝐷𝑔,𝑗 ∗ 𝑊𝑗,𝑖     (𝑒𝑞. 6.1) 

 

With 𝐶𝐷𝑐,𝑖 the descriptor for the 𝑖-catchment, 𝐶𝐷𝑔,𝑗 the descriptor over the 𝑗-pexel of the grid and 

𝑊𝑗,𝑖 the weight of the 𝑖-catchment for the 𝑗-pexel. A simpler alternative way could have been to just 
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consider an average of the CDs values of the pixel touched by a catchment, without accounting for the 

weights; this second approach can be used with small or negligible differences if the resolution of the 

reference grid is higher. In our case it could have caused some noticeable effect. In Table 14 it is 

instead reported the notation that will be utilized for the reminder of the chapter: 

 

Descriptor over the grid 𝑪𝑫𝒈 

Descriptors over the catchments 𝐶𝐷𝑐 

Train topology/Weights 𝑊 

Model parameter sets over the grid 𝑃𝑎𝑟𝑔 

Model parameter sets over the catchments 𝑃𝑎𝑟𝑐 

 

Table 14 - Notation 

 

Following the description provided in the original article by Merz et al. in 2020, the HydroPASS 

algorithm is composed by 5 iterative steps: 

1. Selection of locally calibrated parameters sets to be used for regionalization: in this first step, 

for each catchment, a set of parameters 𝑃𝑎𝑟𝑐 among the ones considered “good” is randomly 

selected from a pool and then used for the regionalization. The selection of the criteria 

following which a parameter is considered good or not is not fixed and can be selected by the 

users. In the original article a set was considered selectable if its 𝑀𝐸 > 0.95 ∗ 𝑀𝐸𝑚𝑎𝑥,𝑖 (or in 

other words if it belonged to the best 5% of the available parameter for the specific basin). In 

our case the selection has been made differently: we have considered as good catchments, 

and not parameters, all the ones which presented a 𝑀𝐸𝑚𝑎𝑥 > 0.8 and all the 30 sets obtained 

for such basins as good sets eligible for the random selection. Applying this criterion, of the 

117 catchments originally calibrated, only 91 have been kept inside HydroPASS. 

 

2. Regionalize parameters by means of machine learning techniques: this second step represents 

the core of the entire algorithm. Starting from the parameter sets randomly drawn in step 1, 

also using the catchment descriptors 𝐶𝐷𝑐 of the same 91 basins and computation intelligence 

tools, a regional functional relationship is determined. The main point behind this application 

is that the machine learning tool does not need any a priori assumption about the relation 

between descriptors and model parameters, differently from some conventional 

regionalization approaches. In the original article, just like in this work, the so-called “random 
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forest” has been used: it is a variant of three-based models already successfully applied in 

other field of hydrology in the past, e.g., to predict hydrological signatures (Addor et al., 2018; 

Snelder et al., 2009).  

 

The “random forest” is nothing more than a collection of “trees” that aggregates all their 

individual results: a “tree” is constructed starting from an original data space (in our case the 

random 𝑃𝑎𝑟𝑐 and the 𝐶𝐷𝑐) by recursively splitting it into two branches. Generally, the splitting 

rule is if a selected 𝐶𝐷𝑐 is smaller or larger than a threshold. The splitting criteria (which 𝐶𝐷𝑐 

and which threshold) is selected by the artificial intelligence in such a way “to minimize the 

variability of the model parameters in each of the two generated subgroups” (Merz et al. 

2020). Each individual tree is constructed starting from a subsample of the original data space: 

the subsamples are generated with a bootstrap sampling; only around two thirds of 𝐶𝐷𝑐/𝑃𝑎𝑟𝑐 

data are used for an individual tree, while the other third (also called Out-of-Bag observations) 

is left out. In R this operation is performed using the “rpart” package. Overall, the subset of 

each tree is partially different from any of the other, resulting each time in a different result. 

The splitting in branches terminates when  a minimum terminal node size is reached. Each 

forest is composed by 200 trees:  

 

 

Figure 36 - Schematic of a decision tree (Drivers of economic and financial integration: A machine learning approach, Amir 
Akbari et al., 2020) 

 

At the end of step 2 is obtained, through the “random forest”, what will be from now on called 

temporary regional functional relationship (𝑅𝐹𝑅𝑡𝑒𝑚𝑝). It is defined as temporary because it is 
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not necessarily, and probably will not be, being only at the first iteration, the definitive 

relationship at the end of the PASS algorithm: 

 

𝑅𝐹𝑅𝑡𝑒𝑚𝑝 = {

𝑃𝑎𝑟𝑐,1 = 𝑓1(𝐶𝐷𝑐,1, … , 𝐶𝐷𝑐,52)
…
…

𝑃𝑎𝑟𝑐,15 = 𝑓15(𝐶𝐷𝑐,1, … , 𝐶𝐷𝑐,52)

     (𝑒𝑞. 6.2) 

 

3. Improve identification of satisfactory regional functional relationships: this third step is 

considered optional but proven useful to speed up the determination of better 𝑅𝐹𝑅. Once 

the temporary regional functional relationship 𝑅𝐹𝑅𝑡𝑒𝑚𝑝 has been determined at the end of 

step 2, it is applied to calculate, starting from the 𝐶𝐷𝑐, the so-called “predicted lumped model 

parameters” 𝑃𝑎𝑟𝑐𝑝,𝑛 for each catchment: in simple terms, these new parameters compose a 

new set for each catchment following the regionalization rule. After that, for each basin, a 

new parameters’ set from the pool of “good” set is again selected but this time not randomly: 

the most similar set to the predicted one is extracted. Such assessment is done evaluating the 

distance, for each set of each catchment, between the original parameters vector and the 

predicted parameter vector for the relative catchment. The most similar is the one with the 

smaller Euclidean distance: 

 

𝑑𝑖𝑠𝑡𝑖 = ∑(𝑃𝑎𝑟𝑐,𝑛 − 𝑃𝑎𝑟𝑐𝑝,𝑛)2

15

𝑛=1

     (𝑒𝑞. 6.3) 

 

The new selection of 𝑖 parameter sets is then reintroduced in the machine learning “random 

forest” routine. A new 𝑅𝐹𝑅𝑡𝑒𝑚𝑝 is determined and step 3 can be repeated. The number of 

times this iterative step is conducted can be freely selected. 

4/5. Predict regionally consistent parameters for the lumped and distributed model/run the 

distributed model using regional parameter sets: the 𝑅𝐹𝑅𝑡𝑒𝑚𝑝 obtained after steps 2 and 3 is 

then applied to calculate the predicted lumped and distributed (over the grid) parameter sets, 

𝑃𝑎𝑟𝑐𝑝 and 𝑃𝑎𝑟𝑔𝑝, using 𝐶𝐷𝑐 and 𝐶𝐷𝑔 respectively . With the predicted lumped sets of the 

catchments two operations are performed: first, the local ME is evaluated for each basin; this 

is done in the same way as in chapter 4, using TUWmodel in a lumped way and with objective 
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function the Kling-Gupta efficiency. To do so inside the HydroPASS algorithm also the observed 

climate data over the reference grid for the usual 60-years and the observed discharges for all 

the utilized catchments must be provided. The average 𝑀𝐸̅̅̅̅
�̅�𝑢𝑚𝑝𝑒𝑑 is the mean of all the 

obtained model efficiencies. The second operation is an update of the parameters set pool for 

the extraction in step 1: “The PASS method test which combination of good local parameter 

sets gives the best regional prediction. Hence, the approach strongly depends on the 

availability for each catchment of a sufficient number of good, lumped parameter sets” (Merz 

et al., 2020). To update and increase the available number of sets for each basin, the following 

check is performed: if the predicted lumped set for a catchment well performs (i.e., it has a 

good, lumped ME), it is added to pool. The assessment of what good means in this case follows 

the conditions: 

 

{
𝑀𝐸𝑝,𝑖 > 0.95 ∗ 𝑀𝐸𝑚𝑎𝑥,𝑖

  𝑅2 < 0.95 ⩝  𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑠𝑒𝑡𝑠 𝑜𝑓 𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡 𝑖
     (𝑒𝑞. 6.4) 

 

The first condition is an actual performance limit; the second one is to avoid that two sets too 

similar are introduced in the selection pool. Otherwise, during the next iterations at step 1, 

with increasing probability each time, two nearly identical parameter sets could be extracted, 

limiting the efficiency of the “random forest” and so of the 𝑅𝐹𝑅𝑡𝑒𝑚𝑝 determination. 

With the distributed sets over the grid a similar procedure is conducted, with a simple 

difference. Distributed parameter sets means that now we have a vector with the 15 

TUWmodel parameters for each pixel of the reference grid. Each pixel can also be considered 

as a HU (hydrological unit). TUWmodel must now be run in a distributed way: it means 

evaluate the generated discharge over a catchment by summing all the generated discharge 

contribution of each HU touching the catchment itself, opportunely weighted. Inside R the 

same “TUWmodel” package is used, with the only difference that the input parameter sets are 

no more a single vector, but a matrix with 𝑖-columns (parameter) and 𝑗-rows (pixel over the 

basin): 

 

𝑄𝑠𝑖𝑚 = ∑ 𝑄𝑠𝑖𝑚,𝐻𝑈,𝑚

𝑗

𝑚=1

     (𝑒𝑞. 6.5) 
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The simulated discharge is then compared with the observed discharge for the catchment 

considered through the same objective function and a distribute model efficiency (𝑀𝐸𝑟𝑒𝑔) is 

determined. The average distributed efficiency (𝑀𝐸̅̅̅̅̅
𝑟𝑒𝑔) is again simply the average of all the 

basin distributed efficiencies. 

 

6. Repeating steps 1-5 to improve 𝑀𝐸̅̅̅̅̅
𝑟𝑒𝑔: the previous steps are repeated several times to 

improve the regional distributed efficiency, searching for better 𝑅𝐹𝑅𝑡𝑒𝑚𝑝 and improving 

observation reconstruction. The iterations following the first one can rely on the updated 

parameters’ sets pool for selection from step 3). After the last iteration of the algorithm, the  

temporary regional functional relationship 𝑅𝐹𝑅𝑡𝑒𝑚𝑝 will be considered the definitive one 

(𝑅𝐹𝑅) representing the final regionalization model. 

 

 

Figure 37 - Flowchart of the Parameter Set Shuffling (PASS) method to derive regionally consistent parameters for 
distributed models (Merz et al.,2020) 

 

  



   

85 
 

6.2  Practical implementation and options 

Inside R the algorithm has been implemented with a specific function, appositely programmed. Notice 

how the same function is now available through the R package “HydroPASS”, recently made available 

and described inside the publication “HydroPASS: a newly developed R package to go through the 

regional calibration od distributed catchment models” (Pesce et al., 2022); nevertheless, the work here 

proposed has been developed before the publication, when the package was still under development. 

This will also be the only case in which a closer look to the R functions and their structure will be 

explicitly described: The structure of the function is the following: 

 

𝑃𝐴𝑆𝑆 < −𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑌, 𝑋. 𝑐𝑎𝑡, 𝑋. 𝑔𝑟𝑑, 𝑔𝑟𝑑2𝑐𝑎𝑡, 𝑚𝑜𝑑𝑒𝑙. 𝑒𝑓𝑓. 𝑓𝑛, 𝑙𝑜𝑤𝑒𝑟, 𝑢𝑝𝑝𝑒𝑟, 𝑃𝐴𝑆𝑆. 𝑜𝑝𝑡𝑖𝑜𝑛𝑠) 

 

The elements are the one already described above, just with different names: 𝑌 is a list of a dataframe 

containing the 30 lumped parameter sets for each catchment or the updated set pool from a previous 

PASS run, 𝑋. 𝑐𝑎𝑡 is a matrix or a dataframe of descriptors for each basin, 𝑋. 𝑔𝑟𝑑 is also a matrix or  a 

dataframe of descriptors, but in this case over the grid, 𝑔𝑟𝑑2𝑐𝑎𝑡 is the “train topology”, 

𝑚𝑜𝑑𝑒𝑙. 𝑒𝑓𝑓. 𝑚𝑒 is the objective function for the ME assessment both for the lumped and distributed 

model, 𝑢𝑝𝑝𝑒𝑟 and 𝑙𝑜𝑤𝑒𝑟 are vectors of the extremes boundary for each of the TUWmodel parameters 

(see Table 2) and last 𝑃𝐴𝑆𝑆. 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 is a vector containing the setting for the algorithm. Such options 

are managed by a second distinct function and are the following: 

 

𝑃𝐴𝑆𝑆. 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 = 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑚𝑎𝑥𝐿𝑜𝑜𝑝𝑠 = 100, 𝑛𝐺𝑟𝑜𝑢𝑝𝑠 = 10, 𝑅𝐸𝐺𝑙𝑜𝑜𝑝𝑠 = 5, 

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛. 𝑚𝑎𝑥. 𝑒𝑓𝑓. 𝑢𝑝𝑑𝑎𝑡𝑒 = 0.95, 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = ′𝑟𝑎𝑛𝑑𝑜𝑚′, 𝑜𝑝𝑡𝑖𝑚. 𝑠𝑢𝑏𝑠𝑒𝑡. 𝑐𝑎𝑡 = 0.7) 

 

𝑚𝑎𝑥𝐿𝑜𝑜𝑝𝑠 determine the maximum number of iterations (i.e., the times the 5 steps are executed) 

for each individual PASS run, 𝑛𝐺𝑟𝑜𝑢𝑝𝑠, as the name suggests, specifies the number of groups for the 

regional optimization. This is the first difference with the general scheme proposed by Merz et al.: 

instead of running the algorithm stand alone, a higher number of groups is used and managed 

individually or interacting the one with the others (see the reminder of the paragraph). 𝑛𝐺𝑟𝑜𝑢𝑝𝑠 

specify the number of times the improved identification of 𝑅𝐹𝑅 is performed in step 3, 

𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛. 𝑚𝑎𝑥. 𝑒𝑓𝑓. 𝑢𝑝𝑑𝑎𝑡𝑒 set the condition to add predicted lumped parameter sets to the draw 

pool (𝑒𝑞. 6.4), 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 decide between two possible running modes (“random” or “optim”) and last 
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𝑜𝑝𝑡𝑖𝑚. 𝑠𝑢𝑏𝑠𝑒𝑡. 𝑐𝑎𝑡 fix a parameter used inside the second running mode. All the option here indicated 

are default ones; to change them to different values, they must be specified inside the 𝑃𝐴𝑆𝑆 function. 

At the beginning of the algorithm run, 𝑛 different groups are set (in our case 10 as from default 

option); each group has associated a null starting model efficiency. Depending on the sampling mode 

two different strategies are applied: if the “random “ sampling is selected, what described in the 

general scheme happens; the sets are randomly selected at each iteration from a constantly updated 

pool of possible parameter sets, a 𝑅𝐹𝑅 is determined and a 𝑀𝐸̅̅̅̅̅
𝑟𝑒𝑔 efficiency is calculated. This 𝑀𝐸̅̅̅̅̅

𝑟𝑒𝑔, 

together with all the sets, parameters and ME used to obtain it, are saved in the output of the group 

with the currently lower ME, prioritizing the null ones. This implies that the first 10 of the 100 

iterations of a run just substitute the null ME with a valid value; from the 11th iteration moving forward, 

the worst solution found till that point is substituted by the new one. In case the new solution does 

not improve any of the existing 10 already saved, it is simply discarded (the only effect transferred to 

the following iterations is always the updating of the pool of parameter sets). 

In case the “optim” sampling is chosen instead, there are some differences. First, this second mode 

cannot be applied if all the 10 groups do not already have a valid value, requiring at least a previous 

run at “random” to be performed previously. At the beginning a random group is decided. The random 

selection during step 1 is not completely random: the parameter sets used to obtain the previous 

solution of the same group are partially substituted to obtain a new extraction partially correlated 

with the previous one. The number of substituted sets is calculated using the 𝑜𝑝𝑡𝑖𝑚. 𝑠𝑢𝑏𝑠𝑒𝑡. 𝑐𝑎𝑡 

option parameter: 

 

𝑁𝑠𝑢𝑏 = 𝑁𝑐𝑎𝑡 ∗ 𝑜𝑝𝑡𝑖𝑚. 𝑠𝑢𝑏𝑠𝑒𝑡. 𝑐𝑎𝑡     (𝑒𝑞. 6.6) 

 

In our case, maintaining the default option, of the 91 set, 64 are replaced. The sets to be substituted  

are selected randomly as randomly are selected the substitutive sets from the available pool. After 

that the algorithm proceeds normally evaluating the 𝑀𝐸̅̅̅̅̅
𝑟𝑒𝑔. In the “optim” case the confrontation is 

always only with the previous ME of the same group, and it is not compared with the others. In case 

it is an improvement, the new information is stored. This second strategy is generally used after the 

“random” one to optimize in a targeted ways single groups and previous solutions after a first general 

optimization, totally random, has been performed. 
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The output of the regionalization saved in each group have the following structure: 

 

 

 

 

 

 

 

 

 

 

 

Where 𝑜𝑣𝑒𝑟𝑎𝑙𝑙. 𝑒𝑓𝑓 is the mean of the distributed efficiencies obtained with the 𝑅𝐹𝑅, 

se𝑙𝑒𝑐𝑡𝑒𝑑. 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 is a matrix containing the sample parameter sets randomly extracted from the 

pool, and 𝑐𝑎𝑡. 𝑒𝑓𝑓. 𝑑𝑖𝑠𝑡 are two vectors containing all the ME obtained with the predicted catchment 

and distributed parameters. Inside 𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 (two matrices) are instead collected 

the sets of predicted parameters for each catchment (𝑐𝑎𝑡. 𝑝𝑎𝑟. 𝑝𝑟𝑒𝑑) and the distributed parameter 

sets over the reference grid 𝑔𝑟𝑑, 𝑝𝑎𝑟. 𝑝𝑟𝑒𝑑. This last matrix will be of fundamental importance in the 

next chapter for the application of the regionalization in the prediction of floods over ungauged 

locations. Additionally, another list (“𝑡𝑟𝑎𝑖𝑛. 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠. 𝑢𝑝𝑑𝑎𝑡𝑒𝑑”) stores the final updated 

parameter sets pool after the last iteration (and so containing all the possible useful sets). 

 

6.3 Adopted options and results 

The results reported in this paragraph have been obtained with the default PASS options; just a note 

about the sampling mode: a first 10 runs (1000 iterations) have been performed in “random” mode 

followed by an additional 10 runs (other 1000 iterations) in “optim” mode. The results are reported 

in Table 15: 

 

𝐺𝑟𝑜𝑢𝑝 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙. 𝑒𝑓𝑓  

𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑. 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝑟𝑒𝑔𝑖𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝑐𝑎𝑡. 𝑒𝑓𝑓. 𝑙𝑢𝑚𝑝 

𝑐𝑎𝑡. 𝑒𝑓𝑓. 𝑑𝑖𝑠𝑡 

𝑐𝑎𝑡. 𝑝𝑎𝑟. 𝑝𝑟𝑒𝑑 

𝑔𝑟𝑑. 𝑝𝑎𝑟. 𝑝𝑟𝑒𝑑 

Figure 38 – HydroPASS output data structure 
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Table 15 - HydroPASS results 

 

It can be seen, looking the distributed efficiencies, how for all 10 groups the resulting 𝑀𝐸̅̅̅̅̅
𝑟𝑒𝑔 is similar, 

ranging from 0.699 to 0.704. On the other hand, it is also evident, looking at the minimum and 

maximum values, the great spread of the results around the mean: in all cases some of the catchments 

shown a very poor distributed efficiency, while the best ones remained around or below a value of 

0.9. If it is true that a lower accuracy was expected after regionalization, it is also true that even the 

worst performing catchments possessed at least one parameter set whit 𝑀𝐸 > 0.8 after the original 

local lumped calibration, implying a complete mismatch between the local and regional modelling. 

Such a relevant decrease in the performances may be an indicator of the incapacity of the distributed 

model to correctly reconstruct the observed data in some basins. Looking instead at the predicted 

lumped regionalization efficiencies obtained using the 𝑅𝐹𝑅 with the 𝐶𝐷𝑐, the average is slightly 

better, and the spread is considerably more contained, without extremely low (but indeed low 

anyway) model efficiencies. A global view of the distribution of the model efficiencies for the best 

regionalization (group 5) is provided below with the confrontation between the eCDF of the original 

lumped efficiencies and the new predicted ones for the catchments (lumped regionalized efficiencies) 

obtained with PASS for the 91 considered basins: 
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Figure 39 - eCDF for the lumped calibrated ME and predicted local ME for the 91 catchments used inside HydroPASS 

 

We can see, as expected, how after regionalization the distribution shifted toward worst 

performances as shown by the median and the 25 and 75 percentiles. Nevertheless, despite some 

catchments that had a lumped local calibration with high performance now present an extremely low 

ME, overall, the performances for most of the basins are still good, with efficiencies greater than 0.6 

for more than half the catchments. 

Still talking about MEs, another aspect has been investigated: Merz et al., in their findings, reached 

the conclusion that is impossible to establish if a descriptor group (among the 5 listed in chapter 5) is 

essential for a good regionalization. Such hypothesis has been tested by running again the 

regionalization with PASS by leaving out of the input 𝐶𝐷𝑐 and 𝐶𝐷𝑔 one by one an entire group of 

descriptors (for a total of 5 additional regionalizations).  The same analysis has been here reproduced: 

each additional PASS regionalization has been done by using the same default options and doing 10 

runs (1000 iterations) in “random” mode. The choice to not use the 1000 additional iteration in 

“optim” mode is due to computational time requirements; consider in fact that every 100 iterations 

required between 1.3ℎ and the 2.5ℎ. 
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Figure 40 - eCDF comparison (predicted local) for different CDs subsets 

 

The results obtained for the Piedmont region agree with the outcomes reached for the German basins. 

Removing individual groups of catchment descriptors seemingly does not, or just marginally, influence 

the HydroPASS algorithm performances. This result has positive and negative consequences: on one 

hand it evidences how the current knowledge of the physical mechanisms behind runoff generation 

are still uncertain and as consequence is also uncertain the selection of critical descriptors that could 

be better related the hydrological processes for the definition of an optimal regional functional 

relation. The result of the comparison can be in fact only explained admitting that each descriptor 

class is not independent, but instead at least partially correlated, with some of the others. A simple 

example can be the climatological and the morphological descriptors: climate and morphology 

developed one in function of the other during geological timescales, embedding and sharing partially 

the same information. Another case are the CNs: they are defined incorporating information about 

soil classes and land uses, obviously shared with the analogous CDs classes. On the positive side there 

are instead the practical implications: if it is true that using something just because “it works” can be 

seen as a compromise, on the other hand such tools allow us to face problems always more complex. 

The awareness of the possibility to remove descriptors imply that also in conditions where such 𝐶𝐷𝑠 

cannot be practically calculated (missing of crucial information or databases) the algorithm can well 

perform anyway. A lower data requirement makes HydroPASS a powerful tool for the regionalization 

and application of distributed models also in hard conditions or locations with a low monitoring 
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network diffusion. Moreover, reducing the number of catchment descriptors can significantly 

decrease the computational time of the simulations. 

An additional final analysis that can be performed on the obtained output results is, similarly to what 

has been already done for the lumped calibrated parameter sets in chapter 4, an investigation about 

the equifinality. Together with the output data for every group, the predicted lumped parameters 

iteratively added to the draw pool for each basin are also saved. For each catchment the 10 best 

available sets (opportunely normalized, see 𝑒𝑞. 4.15) among them are analyzed and compared with 

the best 10 original local lumped calibrated sets. Like already done in chapter 4, only a reference 

example for the VARPO catchment is reported in Figure 41; a full compendium is available in 

Attachment 5: 

 

 

  

Figure 41 - Best original normalized parameter sets (above) compared with the best 10 normalized 
predicted parameter sets (below) 
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The predicted sets found by PASS have evidently a strongly reduced equifinality for many parameters 

if compared with the original ones, with a reduced spread and a higher concentration around average 

values. This result is interesting because it suggests that some sort of stronger relation between 

specific parameter values and ME is indeed present and PASS was able to find and exploit it. The 

reduced uncertainty indicates that some sort of physical relation can exist and that despite wide range 

of parameters can be able to reconstruct observed discharge, some correlation between better 𝑀𝐸 

and a smaller range is indeed possible. This aspect is not further investigated in this thesis but could 

be of great interest for a better understanding of the physical mechanisms behind hydrological 

processes. This behavior is general for all the 91 considered catchments. 

The second graph (Figure 42) shows instead the comparison of the parameters’ distributions with 

boxplots between the original and the predicted sets: 

 

 

Figure 42 - Model parameter comparison between calibrated and predictor sets (VARPO) 

 

From this comparison it can be better seen how few parameters, generally among the ones that 

presented a very low equifinality during the lumped local calibration, are in counter tendency with the 

others, showing an increase of spread around the central value. Few other parameters kept instead a 

similar uncertainty. This behavior is again general for most of the catchments. As usual, a complete 

collection for the other basins is available in Attachment 6. 



   

93 
 

As already stated in paragraph 6.1, the most important outputs of the regionalization are, in the end, 

the distributed parameter sets over the grid. This parameter sets can be used to run TUWmodel in a 

distributed way to simulate discharge over ungauged areas by summing the runoff generated upon 

every hydrological unit (HU) of interest. In the Figures from 43 to 46 are reported the maps of all 15 

distributed parameters as obtained in group 5 with the HydroPASS regionalization:
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6.4 Validation 

At the beginning of this thesis, in paragraph 1.2, the different steps of a regionalization procedure 

were listed, the last one being the validation process. A validation consists in verifying the temporal 

and spatial consistency of the obtained regionalization outside of the locations and years considered 

in the analysis to be sure of the robustness of the model obtained. It is a fundamental step for any 

application at ungauged sites: without it, it may be possible that the distributed model performs well 

only at gauged locations, but just outside of those areas, it completely misses out the predictions. In 

this work a specific validation procedure has not been conducted, but since an application is presented 

in the following chapter, some indications of the robustness of the HydroPASS procedure are here 

provided anyway, despite being obtained on partially different datasets and conditions. During the 

same period in which this thesis has been developed, a similar study has been conducted by Doctor 

Matteo Pesce at the DIATI department of Polito for his PhD thesis (still not published); the study area 

is the same with the same reference grid, but with some differences in the data. Together with the  

climatological data from the OI, additional information about snow cover were considered from 

MODIS product form terra and Aqua satellites. The same hydrological model (TUWmodel) was used, 

but with a different objective function accounting not only for the KGE, but also for a snow cover 

efficiency index. To test the spatial consistency of the regionalized model, the available gauged 

catchments were subdivided into two subsets; training catchments and verification catchments: the 

first were all the available catchment with an area lower than 1000 𝑘𝑚2 and with at least 5 local 

lumped parameters sets with 𝑀𝐸 > 0.75, used for the regionalization procedure with PASS (identical 

as the one described in this work). The remaining gauged catchments (validation catchments) have 

been used for the spatial validation. To test instead the temporal consistency, two different time 

frames have been considered: a calibration period from 2010 and 2020 (used for the regionalization), 

and a verification period from 2000 to 2010. The last difference regards the CDs used to determine 

the RFR: the 27 ETCCDI indices have been additionally introduced, but no CN have been used instead, 

for a total of 79 CDs. The results of the validation process are reported inside the article “Regional 

multi-objective calibration for distributed hydrological modelling: a decision tree-based approach” 

(Matteo Pesce et al., 2022) submitted to the IAHS (International association of hydrological science) 

but still under verification and not published yet: 
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Figure 47 - Model efficiency eCDF for calibration (a) and verification (b) periods for train and test catchments (Pesce at al., 
2022) 

 

As shown in Figure 47, considering the calibration period, in local calibration the median of the training 

and test catchments MEs was nearly the same, but after regionalization it was around 0.785 for the 

training and decreases to 0.700 for the test catchments. Moving to the verification period instead, 

the median of the distributed efficiency lowered to 0.740 for the training basins and increased to 

0.760 for the test ones. In general, they observed how for training and test catchments the median of 

the MEs were very close, with no significant degradation of the model performance between the two 

timeframes considered. “These results confirm the robustness of the methodology in parameter 

estimation across spatial and temporal scales” (Pesce at al. 2022). 

The results of this study can be also used to justify, even if not prove, the following reported 

application for flood reconstruction. The use of different catchment descriptors, as shown in 

paragraph 6.3, probably implies slightly differences in the overall results. The basins used inside the 

validation procedure also come from the same database, with few differences. The main issues may 

be the absence of snow data (we could expect worst results for a validation process without them), 

and the timeframe considered, being our three times larger. Nevertheless, the HydroPASS 

regionalization procedure has been proven to be flexible and robust, giving good optimism about the 

significance of the simulations reported in the following chapter 7.
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7.  DISTRIBUTED MODEL APPLICATION AND FLOOD RECONSTRUCTION 

One of the possible applications of the distributed model obtained after the regionalization is the 

reconstruction of past events by simulating discharges at ungauged locations. The idea is similar to 

the PUB (Prediction ungauged basins) hydrological studies with the main difference that with machine 

learning techniques multiple parameters sets for each catchment are used for the determination of 

the 𝑅𝐹𝑅 instead of just the best one. The main idea is to start from a great number of basins without 

observation to reconstruct a complete map over the regional territory of flooding events. Other 

choices different from floods could have been made; the decision has been guided by the extremely 

relevance of such events and their impact on the environment surrounding the river network. 

Additionally, it has been considered of interest the possibility to reconstruct complete maps of such 

episodes, especially for historical floods, when the monitoring network was smaller and less 

widespread (moreover in Italy, after the Law Bessanini of 1998, the monitoring network passed from 

the national to the regional level, generating holes in the data especially in the 90s). 

 

7.1 Data sources and catchment shape file manipulation 

The data used for this application have been obtained from the JRC (European Joint Resource Center) 

and consisted of two distinct collections: the first one is a collection of Italian basins shape files, the 

second a collection of river channels shape files related to the catchments of the first one. Being the 

data about the whole Italy, a first subset has been created to reduce the analysis only on the Piedmont 

region. This operation has been performed using again the R package “sf” already utilized previously 

in chapter 3. The same function “intersection” has been applied. The Region boundary vector file here 

used to intersect the JRC database has been directly downloaded from Geoportale Piemonte. This first 

operation has been conducted only on the basins; the river network has been modified differently in 

a later step. The JRC data were in Lambert reference system, and so have been reprojected in UTM32 

to be compliant with the project reference system. The map of the resulting basins is reported in 

Figure 48: 
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Figure 48 - JRC catchments Piemonte (UTM32) 

 

The density of the basins is way higher than of the one of the original shapes used for the local 

calibration and regionalization (here there are 638 distinct catchments) to have a capillary, and so 

more representative, reconstruction of the historical events. 

Before moving on, a second check must be done on the basins: for a correct application of the 

distributed model, we must be sure that all 638 catchments are contained inside the reference grid 

over which the distributed parameters have been calculated by the HydroPASS algorithm. If we add 

the grid to the plot, it can be immediately noticed how few catchments close to the boundaries of the 

grid are partially outside the external pixels: 

 

Figure 49 - JRC basins (in red partially external to the grid) (UTM32) 
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They have been removed for a new total of 633 different catchments. Remembering that our goal is 

to run TUWmodel, there is still the final and major problem to be addressed: as explained in chapter 

3, TUWmodel does not account for inter-basin water routing, and so admissible catchments for the 

simulations are the ones that satisfy the conditions reported in 𝑒𝑞. 3.5. The JRC catchments structure 

on the contrary imply the transfer of water downstream. To solve this issue, a variable from the 

attribute table of the catchments provided together with the geometry data, where additional 

information about each basin of the dataset is stored, has been exploited. The NextDown_ID attribute  

specifies the basin immediately downstream of each outlet, defining the overall inter-basin flow path. 

A new geometries collection is determined using the following procedure: 

1. A catchment is selected. 

2. It is checked if the ID attribute of the selected catchment corresponds to the “NextDown_ID” 

attribute of any other catchment of the subset. One of two possibilities can verify:  

a) The ID of the selected catchment does not correspond to any of the “NextDown_ID”; it 

means that it is an upstream catchment that does not receive water by any other basin, 

but only transfers water downstream. In this case the basin geometry is added unmodified 

to the new collection. 

b) The ID of the selected catchment corresponds to at least one of the “NextDown_ID” 

attributes of the other basins; in this case a vector is created, and the IDs of all the 

immediately upstream catchments found this way are added to it. Now iteratively the 

search for upstream basins for the new IDs is performed until an iteration when all the IDs 

added to the vector from the previous one fall in case A is reached. The new geometry 

(with associated the ID of the original selected one at the first iteration) is created merging 

all the areas of all the upstream basins found during the process. 

3. The procedure is repeated for all the basins. 

It follows a schematic example to better visualize the strategy: 

 

  

1. 

 

4. 

 

3. 

 

2. 

 Basin 1 does not receive water 

from upstream, thus the new 

geometry is: 

 

Basin 1 does not receive water 

from upstream, thus the new 

geometry is: 
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1. 

 

4. 

 

3. 

 

2. 

 Basin 2 does not receive water 

from upstream, thus the new 

geometry is: 

 

Basin 2 does not receive water 

from upstream, thus the new 

geometry is: 

1. 

 

4. 

 

3. 

 

2. 

 
Basin 3 receives water from 

basin 1, thus the new 

geometry is: 

 

Basin 3 receives water from 

basin 1, thus the new 

geometry is: 

1. 

 

4. 

 

3. 

 

2. 

 
Basin 4 receives water from 

basin 2 and 3. Basin 3 

receives water from basin 1. 

Thus, the new geometry is: 

 

Basin 4 receives water from 

basin 2 and 3. Basin 3 

receives water from basin 1. 

Thus, the new geometry is: 
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For the application of TUWmodel, as usual, together with the climatological data, we also need a new 

“train topology” for the new catchments just defined. It has been obtained analogously to what have 

been already done in chapter 3. 

The second subset (the one for the river network) has been created exploiting again another variable 

in the table of attributes of each basin and each river channel. The “ZHYD” attribute (indicating the 

identification number of the FEC – functional elementary catchment) has been used to extract from 

the original river databases only the sections contained inside at least one of the basins belonging to 

the newly obtained subset. The result is shown in Figure 50: 

 

 

Figure 50 - JRC basins and river network over Piemonte (UTM32) 

 

Of course, a denser river network is present on the mountainous areas where we are in a torrential 

environment while bigger rivers form downstream in the plains. It can be noticed how some rivers 

exceed the regional boundaries: this happens since in the database a river channel with a FEC ID may 

run also over different catchments, in these cases external ones. Simply cropping the network with 

the same region boundary shape file of “Geoportale Piemonte” already used above solves this 

graphical problem. 
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7.2 Historical flood reconstruction 

The simulations have been realized selecting specific 6-days periods where historically a flooding 

event struck the Piedmont region using the distributed parameter from Group 5, the one with best 

average regional ME, as presented in chapter 6. Five events have been reconstructed: the flood of 

1994 (3rd of November – 8th of November), of 2000 ( 13th of October – 18th of October), of 2008 (27th 

of May – 1st of June), of 2016 (22nd of November – 27th of November), and of 2020 (30th of September 

– 5th of October). The colors in the maps, like in Figure 52, have been assigned to the river channels 

depending on the simulated generated runoff values (𝑚𝑚/𝑑) with a color scale form light blue (low 

discharge) to red (high discharge). The descriptions of the events have been taken from the official 

reports downloadable from the ARPA Piemonte website (see bibliography). 

 

Flood 1994 

The flood in 1994 is today still considered as one of the most severe events in the history of Piedmont. 

The precipitations, initially continuous and of low intensity, started on the 2nd of November and 

continued in the following two days; on the 4th of November a great intensification started, interesting 

majorly the southern part of the region (close to the Ligurian Apennine), the municipality of Biella and 

the Langhe area. From a posterior analysis of the fallen precipitation three main phases of the event 

have been identified: 

- The first phase has interested mainly the south, close to the border with the Liguria region, on 

the 4th of November; peak precipitation over 150 𝑚𝑚 with intensities over 35 𝑚𝑚/ℎ 

(Ponzone, Alessandria) had been recorded by the fixed monitoring stations. Simultaneously 

intense precipitation had also been registered in the north, but with lower intensities and 

cumulative values around 100 𝑚𝑚. In the morning of the 5th of November, the precipitations 

reduced of intensity in the south. 

- During the second phase, on the 5th of November, the precipitations extended over the 

districts of Cuneo and Asti where the most struck basins have been the Tanaro, Bormida and 

Belbo. In the first hours of the morning (from 2.30 A.M. to 7.30 A.M.) the precipitation 

intensity had never gone below 20 𝑚𝑚/ℎ, while in the remaining of the morning they 

remained around 10-15 𝑚𝑚/ℎ to then again increase in the afternoon with peaks of over 35 

mm/h. After 9 P.M. the precipitations nearly stopped over all this area. Overall, more than 

200 𝑚𝑚 (in some case closer to 250) have fallen in less than 24 hours. 
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- The third and last phase involved mainly the Sesia and Pellice Valleys during the afternoon 

and the evening of the 5th of November, to reduce of intensity during the morning of the 

following day. On the 6th of November the precipitation completely stopped in the south, 

continuing with lower intensities, but relevant cumulative values in the northern sector of the 

region. 

Overall, such precipitation events had been considered exceptional, greatly overcoming the reference 

values all over the involved areas. On over around 40% of the regional territory, in the timeframe 

from the 5th to the 7th of November, has fallen more than 200 𝑚𝑚 of rainfall.  

 

 

Figure 51 – Isolines analysis of the observed cumulative rainfall from 4th of November 00 UTC to 7th of November 00 UTC 
(“Eventi alluvionali in Piemonte 2-6 Novembre 1994, 8 Luglio 1996, 7-10 Ottobre 1996”, Vincenzo Coccolo et al., 1998) 

 

The intense precipitations directly transformed in large discharge values in the river network, with 

subsequent flooding events in the surrounding areas: the basins in the south registered discharges (in 

some cases they have been only estimated) coherent with events with a return period of over 200 

years, for the western sector of the region with events with a return period of around 20 years, and 

for the north sector with event having a return period of 20 years (for the Sesia Basin) and of 200 

years (for the Dora Baltea Basin, after the confluence of Chiusella). A predisposing cause partially 

explaining such values were the conditions of the soil before the beginning of the intense rainfalls: in 

fact, in the second part of the month of October 1994, frequent precipitations occurred, creating high 

saturation conditions that helped the new precipitations to transform immediately into effective 
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runoff and to increase the water level. This fact can also be seen by the average water level at some 

stations on the 3rd of November before the event if compared with the average reference values as 

reported in Table 16: 

 

Table 16 - Hydrological characteristics of some significant stations (“Eventi alluvionlai in Piemonte 2-6 Novembre 1994, 8 
Luglio 1996, 7-10 Ottobre 1996”, Vincenzo Coccolo et al., 1998) 

 

 

 

 

50 𝑚𝑚/𝑑 0 𝑚𝑚/𝑑 > 100 𝑚𝑚/𝑑 
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Figure 52 – Regional simulation (TUWmodel) using the HydroPASS regionalized parameters of the flood event in 1994 
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Despite it is impossible to directly compare the simulated values with observation at the ungauged 

locations (no monitoring system installed), it can be observed how the reconstructed discharges are 

coherent with the historical description of the event and of the most damaged areas. Also, the 

temporal consistency seems to be respected: initially the highest discharges have been simulated in 

the south, then increasingly on the north, and reduces first on the south on the 7th and then on then 

north on the 8th. 

 

 Flood 2000 

The flood in the year 2000 (from the 13th to the 17th of October), differently from the one in 1994, 

interested mainly the north and west sectors of the region, affecting the southern part with a reduced 

intensity. At the beginning of the event, on the 13th of October, the first intense rainfalls involved the 

Verbano Occidentale and Sesia Valleys and Canavese area; nevertheless, most of the intense 

precipitations concentrated during the 14th and 15th wide spreading all over the Pellice-Po Valley, high 

Tanaro Valley, and Susa-Sangone Valley. The second part of the event, differently from the first, was 

partially influenced by a fraction of solid precipitation on the Alpine sectors, that contributed to slow 

down the generation of effective runoff and the hydrological response of the river network. Looking 

instead at the intensity of the precipitations, it resulted considerably high both for short (1,3, and 6 

hours) and long durations (12, and 24 hours). Generally, in the struck areas the intensity never went 

below 10 𝑚𝑚/ℎ, with frequent peaks over 20 𝑚𝑚/ℎ and in some cases above 40-45 𝑚𝑚/ℎ. 

Moreover, only in few locations the precipitation was discontinuous, being instead uninterrupted 

everywhere else. 

Considering the entire duration of the event, the highest cumulated rainfalls were recorded in 

Verbano Occidentale (747 𝑚𝑚 at the Bognanco Pizzanco station, 732 𝑚𝑚 at the Bognanco Lago 

Paione station), Sesia Valley (665 𝑚𝑚 at Boccioleto Ronchi station), Canavese and Lanzo Valleys 

(716 𝑚𝑚 at Ala di Stura station, 698 𝑚𝑚 at Piamprato station), and Sangone and Po Valleys (598 𝑚𝑚 

at Coazze station). In the Tanaro Valley, in the south, the highest peak was considerably lower 

(284 𝑚𝑚 at Briga Alta-Piaggia station). 

Moving instead to the hydrological response of the river network, considering the large areal 

extension of the intense precipitations, all the left tributaries of the Po River, till the Ticino River, 

experienced exceptional discharges and floods. The peak discharge of the Chisone River overcame the 

estimated values for a return period of 100 years and exceptional resulted also the value for the 

Sangone River, but no data were there available due to the failure of the monitoring station. In Turin 

the peak discharge was recorded in the morning of the 16th of October at a value of 2350 𝑚3/𝑠, higher 
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than the previous historical maximum of 2230 𝑚3/𝑠 recorded during the flood in 1949. Downstream 

of the city the discharge values increased due to the contribution of the Dora riparia, Stura di Lanzo, 

Malone and Orco Rivers. Also, for the Dora Riparia the recorded values represented one of the 

strongest ever recorded events with a peak of 700 𝑚3/𝑠 before the confluence with the Po River. The 

Tanaro Basin presented instead lower values than the one recorded during the flood in 1994, with 

peak values in Montecastello of 3000 𝑚3/𝑠 (in 1994 it was of 4800 𝑚3/𝑠). Some summarized 

hydrological information is reported in Table 17: 

 

 

  

Table 17 – Synthesis data relative to the more relevant hydrographs recorded between the 
13th -16th of October 2000 (“Evento alluvionale del 13-16 ottobre 2000 in Piemonte Analisi 
meteorologica e idrologica”, Direzione Regionale Servizi Tecnici di Prevenzione, 2001) 
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50 𝑚𝑚/𝑑 0 𝑚𝑚/𝑑 > 100 𝑚𝑚/𝑑 
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Figure 53 - Regional simulation (TUWmodel) using the HydroPASS regionalized parameters of the flood event in 2000 

 

Again, also for this second case the regionally simulated discharges seem to be coherent with the 

description of the historical event. The different magnitude between the west-north and south sectors 

is well reconstructed as well as the timing, with the most intense response concentrating on the 15th 

and 16th of October. 

 

Flood 2008 

The third event here described developed back in end of May of 2008, starting from the 27th till the 

30th of the month. Similarly to what happened during the flood of 1994, the intense precipitations 

during the event can be subdivided in three main phases: 

- During the first phase (relative to the 27th of May), the rainfall was generally moderate but 

locally intense in the Orco, Stura di Lanzo, Dora Riparia, Stura, and Pellice Basins (with peaks 

of 112.2 𝑚𝑚 fallen at Lago Agnel, Ceresole Reale, and 109.2 𝑚𝑚 at Rifugio Gastaldi, Balme).  
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- After an interruption during the morning and afternoon of the 28th of May, during the evening 

of the same day the second phase began lasting for all the 29th: the areas interested by the 

event extended to the municipality of Cuneo, while in the same basins of the first phase, it 

increased in intensity: at Lago Agnel were recorded 155 𝑚𝑚 while at Rifugio Gastaldi 

172.4 𝑚𝑚. In Grana and Stura di Demmonte Valleys (CU) even higher peaks were recorded in 

the localities of  Castelmagno (191.8 𝑚𝑚) and San Giacomo di Demonte (177.8 𝑚𝑚). 

- The third and last phase developed during the 30th of May. Here the intensity of the 

precipitation reduced, and the territory was interested only by residual rainfall. 

An additional factor contributed to the high impact of the precipitation during the event:  being in the 

summer season, the snow line was close to 3000 𝑚; in other words, most of the precipitation fallen 

in liquid form, and only a reduced fraction was stored in solid form as snow. Overall, considering the 

entire duration of the event, many stations along the Alpine and pre-Alpine areas of Piedmont (the 

one more severely struck) recorded cumulated values higher than 200 𝑚𝑚, with highest peaks in the 

Pellice Valley (425.8 𝑚𝑚 at Colle Barant) and Germanasca Valley (336.8 𝑚𝑚 in Massello).  

 

 

Figure 54 – Isohyets of cumulative precipitation for the entire duration of the flood of 2008 over the Piedmont region 
(“RAPPORTO PRELIMINARE SULL’EVENTO ALLUVIONALE DEL 28-30 MAGGIO 2008”, ARPA Piemonte, 2008) 

  



   

114 
 

From a statistical point of view the experienced rainfall resulted particularly critical looking at the 

duration of 12 and 24 hours, where they often overcame the reference values relative to a return 

period of 50 years, sometimes approaching the value for 100 years. 

Moving instead to the hydrological response, the rivers of the network more affected have been the 

one contained in the basins of the west-Alps, from the Susa to the Stura di Demonte Valley; here the 

highest criticalities took place. It is important to underline how in the period before the event (since 

April), continuous rainfalls interested the entire region, creating a partially saturate soil condition that 

favored the quick generation of effective runoff. 

Moderate (but indeed more limited) problems also developed in the Lanzo, Canavese and Dora Baltea 

Valleys. The first severe overflows were recorded in the morning of the 29th of May along the Dora 

riparia, Germanasca, Chisone and Pellice Rivers. The intensification of the precipitation during the 

second phase caused the additional floodings along the Toce, Sesia, Dora Baltea, and Orco Rivers. 

Exceptional events interested the valley in the municipality of Cuneo, where the rivers’ levels 

remained for an extended period above the critical values for the Varaita, Grana, and Stura di 

Demonte. Also in this case, the statistical analysis relative to the return period for the main affected 

location by the event are summarized in Table 18: 

  

 

Table 18 -Synthesis data about the return period of the observed discharges in the most affected sections during the flood 
event in the November 2008 in the Piedmont region (“RAPPORTO PRELIMINARE SULL’EVENTO ALLUVIONALE DEL 28-30 

MAGGIO 2008”, ARPA Piemonte, 2008) 
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50 𝑚𝑚/𝑑 0 𝑚𝑚/𝑑 > 100 𝑚𝑚/𝑑 
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Figure 55 - Regional simulation (TUWmodel) using the HydroPASS regionalized parameters of the flood event in 2008 

 

Good results have been obtained also in this third case: comparing the maps in Figure 55 with the 

map of cumulative rainfall during the event in Figure 54 it can be easily observed the good match in 

timing and position of the generated runoff. 

 

Flood 2016 

Between the 21st and 25th of November 2016 an intense precipitation event effected the Piedmont 

region interesting initially the municipalities of Cuneo and Alessandria close to the border with the 

Liguria region and afterward extending also to the municipalities of Biella, Vercelli, and Turin. The most 

intense rainfalls have been recorded on the 24th in the western sector of the region and in the south 

in the Tanaro Valley. The stations characterized by the highest precipitation recording have been 

Piaggia (CU, 633 𝑚𝑚), Ponte di Nava Tanaro (CU, 621 𝑚𝑚), and Calizzano (SV, 612 𝑚𝑚) in the high 

Tanaro Valley. In the high Po Valley, the rain gauge of the Barge (CU) station recorded 593 𝑚𝑚 while 

in the Stura di Lanzo basin 610 𝑚𝑚 were recorded by the monitoring station in Niquidetto (TO). These 

values represented for the single stations more than 50% of the total mean annual expected values. 
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Figure 56 - Isohyets of cumulative precipitation for the entire duration of the flood of November 2016 over the Piedmont 
region (“Gli eventi alluvionali in Piemonte – Evento del 21-25 novembre 2016”, ARPA Piemonte, 2018) 

 

At the stations majorly involved by the event the estimated return periods of the observed 

precipitations overcame the reference values for 50 years for a duration of 24 hours. In general, the 

statistical analysis reflected the characteristics of an event which return period increased with the 

duration as shown by the graphs relative to a couple of the most affected station (Niquidetto and 

Piaggia) in Figure 57: 

 

 

Figure 57 – Reference lines for return period of 5, 10, 20, 50 years compared to the observed data during the flood event of 
November 2016  for the stations of Niquidetto (TO) and Piaggia (CU) region (“Gli eventi alluvionali in Piemonte – Evento del 

21-25 novembre 2016”, ARPA Piemonte, 2018) 
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Differently for the other flood events here analyzed, the one of 2016 developed during a period when 

the snow line was never particularly high, enabling the formation of solid precipitation and deposition 

of snow over the montaneous areas. Initally the snow line was around 1600 𝑚 on the 21st of 

November to rise till 2300 𝑚 the next day till the 24th to then return around 1500 𝑚. Snow 

precipitation initially concentrated on the north and south sectors ad only in a second moment 

extended to the all region but with a lower intensity to then increased again on the wester sectors: 

 

 

Figure 58 – Cumulative fresh snow over the entire event of November 2016 over the Piedmont region (“Gli eventi alluvionali 
in Piemonte – Evento del 21-25 novembre 2016”, ARPA Piemonte, 2018) 

 

Considering instead the response of the river network the event produced discharges of extreme 

entity along the Tanaro River and more in general in all the rivers in the west basins and in the Po River 

till the city of Turin. The uppermost section of the Tanaro River experienced the first precipitations 

already on the 21st, but the real flood generated later the 24th with the increase of the intensity of 

rainfalls; most of the values recorded represented the new observed maximum, overcoming even the 

observation of 1994. The flood of the Po River has been generated by the superposition, nearly in 

phase, of the waves coming from the Pellice and Po Rivers at their confluence, forming a particularly 

severe discharge. After the city of Turin, additional water coming from the left tributaries (that 

individually did not present exceptional discharges) reinforced the runoff that reached downstream 

San Sebastiano (TO). To synthesize the effects over the most affected areas, in Table 19 are reported 

the results of the statistical analysis for some indicative stations: 
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Table 19 –Peak discharges and return periods for some significant stations relative to the flood event of November 2016 
(“Gli eventi alluvionali in Piemonte – Evento del 21-25 novembre 2016”, ARPA Piemonte, 2018) 

 

 

 

50 𝑚𝑚/𝑑 0 𝑚𝑚/𝑑 > 100 𝑚𝑚/𝑑 
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Figure 59 - Regional simulation (TUWmodel) using the HydroPASS regionalized parameters of the flood event in 2016 
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As for the previous events, the regionalized model reconstruction agrees with the description of the 

event as presented in the official reports. On the 22nd and 23rd of November the precipitation (and so 

the generated discharge) concentrated in the north and south sectors of the region to then extend to 

the western sector only afterward with peaks on the 24th of the month. A possible comparison for the 

fresh snow between the cumulative values in Figure 58 and the SWE produced by TUWmodel could 

be possible, but it goes beyond the scope of this study. 

 

Flood 2020 

The flooding event of the year 2020 has been a fast one, that started and concluded in a timeframe 

of just 48 hours. On the 1st of October was given a first warning (orange, following a traffic light 

coloring) for the following day, confirmed the following morning with a further forecasted 

intensification of the precipitations. The most intense rainfalls concentrated on the 2nd of October, 

interesting mainly the Biella, Vercelli, and Verbania municipalities and the surrounding areas (in the 

north) and the high Tanaro Valley (in the south, close to the border with the Liguria region). On the 3rd 

of October further intense precipitation kept interesting the Verbania areas.  

During the entire duration of the event strong winds were recorded, with gusts over 120 𝑘𝑚/ℎ. The 

peaks precipitations were recorded by the rain gauges of the monitoring network (cumulated from 

the 1st to the 4th of October) in the localities of Valstrona (more than 650 𝑚𝑚), Mergozzo (over 

600 𝑚𝑚) in the Verbania area, and in the localities of Limone Piemonte (close to 600 𝑚𝑚) and 

Garessio (more than 400 𝑚𝑚) in the high Tanaro Valley. Overall, the observed rainfalls overcame in 

these two days alone the 50% of the mean annual regional precipitations and total precipitation (over 

the region) on the 2nd of October represented the highest value since 1958 (when the historical series 

started). 
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Figure 60 – Cumulative rainfall (from the 1st  to the 4th of October 2020) over the Piedmont region (“Evento Alluvionale 2-3 
Ottobre 2020”, Regione Piemonte, 2020) 

 

The analysis after the event showed how the data recorded by most of the rain gauges in the involved 

areas represented an exceedance of the reference expected values of precipitation (for all rainfall 

durations) with a return period of 200 years, further underlying the exceptionality of the event. As 

reference is reported in Figure 61 the example for the Limone Pancani station: 

 

Figure 61 – Comparison between the reference values (for different duration and return periods) of precipitation and the 
observed rainfalls for the Limone Pancani station during the event of October 2020 (“Evento Alluvionale 2-3 Ottobre 2020”, 

Regione Piemonte, 2020)  
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The precipitations transformed into discharge in the rivers, causing flooding (of both the primary and 

the secondary network) and diffused damages all over the struck areas. In the Tanaro Valley the 

Tanaro River and its tributaries (Vermenagna and Corsaglia Torrents) overflowed: at many locations 

the water level overcame the danger level and in some of them (like Ponte Nava and Garessio) the 

recorded values were higher than the data registered during the floods of 2016 presented before. In 

the municipality of Verbania the main issues were related to the Toce River with overflows in the 

localities of Mergozzo, Ornavasso, Premosello, Chiovenda and Pieve Vergonte. In the municipality of 

Biella similar problems were caused by the Cervo, Elva, Strona and Sessera Torrents. Probably the 

most intense discharges were observed in the Sesia River in the municipality of Vercelli: the recorded 

values for the river (and for the Toce Torrent) were higher than the reference for a return period of 

200 years (closer to 500 years); here some of the most severe damages were recorded (collapse of 

bridges and destruction of embankments). Still in the province of Turin the Dora Baltea River 

overflowed and overcame the danger level. 

 

 

 

 

50 𝑚𝑚/𝑑 0 𝑚𝑚/𝑑 > 100 𝑚𝑚/𝑑 
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Figure 62 - Regional simulation (TUWmodel) using the HydroPASS regionalized parameters of the flood event in 2020 
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Comparing the simulated maps in Figure 62 with the distribution of cumulated precipitation in Figure 

60, it can be noticed the very good match between the two. Not only the areas involved have been 

precisely reconstructed, but also the very fast timing of the event is well represented: in the first two 

days before the event no precipitation was recorded, and the discharges quickly reduced in the two 

following days.  
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8. CONCLUSIONS 

The main goal of the study, as stated in the introduction, can be considered achieved, since the 

application of the regionalization procedure, through the HydroPASS algorithm, has been successful 

with results comparable with the ones obtained by Merz at al. in 2020. More in detail, starting from 

an average local lumped ME calibration of 0.86 (Figure 17), after regionalization a distributed ME of 

0.70 has been reached (Table 15). Such results can be considered satisfactory and potentially useful 

for practical, meaningful applications. During the analysis of the results of the regionalization 

procedure also a reduced equifinality of the model parameters with respect to the uncertainty 

obtained after the local calibration has been observed (Figure 24); in fact, most of the TUWmodel 

parameters, with few exceptions, greatly reduced their spread around their mean values (Figure 42). 

This result, despite still underlying a non-complete understanding of the hydrological processes 

controlling runoff generation, suggests how a stronger relationship between specific model 

parameters sets and good MEs could, indeed, exist. Moreover, the distributed model parameters for 

the Piedmont region, over the cells of the reference grid, result spatially coherent with the 

morphology and topography of the territory, further confirming the consistency of the procedure. This 

aspect is particularly clear looking for example at one of the routing related parameters (like croute - 

Figure 46) that assumes distinct higher values along the entire Alpine sectors where the slopes are 

higher. 

Nevertheless, some potential limits can still be underlined: they are mainly related to the local lumped 

parameter sets used for regionalization and to the data used for the calibration themselves, and only 

marginally to other aspects of the study. First, the observed discharges at the gauged locations were 

in many cases uncomplete (especially during the 90s), noisy or extremely short. Despite such problems 

made impossible the calibration for only 10 catchments out of the initial 127 available, they could 

have negatively influenced the MEs (for example see the influence of the number of years in Figure 

18). Being the local lumped model efficiencies the starting point of the regionalization procedure, they 

may have indirectly negatively influenced of some percentual points also the final distributed MEs. 

Second, still related to the results of the lumped local calibrations, some calibrated catchments, mainly 

concentrated along the regional mountainous sectors (Figure 16) presented considerably lower 

efficiencies than the other basins: the introduction of snow cover observations as input data and of a 

snow related index inside the model efficiency (to include in the ME score the capability of TUWmodel 

in reconstructing the SWE) could reduce such effect, improving the average quality of the calibrations. 
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The third and final limit of the local calibration has been already underlined in chapter 4 in the Figures 

from 19 to 22. Despite a good ability of the model to reconstruct the catchments’ hydrological 

signatures at the annual timescale, an apparent higher difficulty to do so at the seasonal timescale 

(during the summer-autumn months) has been instead encountered. Again, this aspect may be related 

to snow related processes and so the same fixes proposed for the previous issue may be helpful also 

in this case. 

The second biggest limit of this study is the absence of a specific validation procedure: as explained in 

chapter 6, Pesce at al. reported good validation results proving the robustness of the HydroPASS 

algorithm, but we cannot properly state the same exact outcome would also apply for our case. A 

further evolution and continuation of this work should also include it, to further guarantee the spatial 

and temporal coherence of any following application. Nevertheless, the similarities between this study 

and the cited one in paragraph 6.4 are numerous (region, reference grid’s resolution, gauged 

catchments used for the calibration), not invalidating completely the plausibility of our flood 

reconstruction application. The main issue could be the temporal coherence (they considered the 

period 2000-2020), but all the event simulated in this study are included or not distant in time (the 

furthest is in 1994) from the validation period they have considered. Last, another marginal issue is 

the non-coverage by the reference grid of the high Canton-Ticino Basin that may have negatively 

influenced the calibrations in that area. 

On the other hand, many positive aspects, that opens to possible future implementations of this 

regionalization procedure are highlighted hereafter: first, the possibility of efficiently reconstruct 

discharges in the river network at ungauged locations. This is the main goal and application of the 

regional distributed parameters reported in this study, as shown in chapter 7 with the historical floods’ 

reconstructions. Having a tool to not only reconstruct a full coherent spatial map of an event of which 

only partial observations are available, but potentially also reconstruct entire events with few or no 

observations (starting only from the climatological inputs), can be of great relevance in environmental 

studies. A clear example is the simulation for the flood of 1994 when many of the stations of the 

monitoring network failed, were destroyed during the event (in the most affected areas) or were not 

functioning at all in first place: the obtained simulated discharges and the distributed maps like the 

one presented in Figure 52 enables many possible considerations about what could realistically have 

happened. A better regional knowledge of the hydrological response, even if approximated, may also 

lead to a better understanding of the past criticalities on the territory, to a stronger awareness and 

bring to a better distribution and implementation of prevention and monitoring systems. 
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In second place, one of the most useful findings, purely under a practical standpoint, is the great 

flexibility of the HydroPASS algorithm itself and its partial independency from the catchment 

descriptors used to characterize the territory. Paragraph 6.4 shown how alternatively removing all the 

CDs belonging to one of the five considered groups and repeating the regionalization procedure led 

to nearly identical model efficiency eCDF. This fact directly translates into the possibility to reproduce 

similar procedures in regions with lower attributes data availability without excessively reduce the 

quality of the regionalization, making it suitable also for poorer or less mapped (in open databases) 

countries. Further verifications are still needed about the minimal number of catchment descriptors 

required (and in which possible combinations) to not degrade the quality of the regionalization; this 

can be easily performed with further HydroPASS runs checking the mutual possible combinations 

removing gradually more than one group of descriptors (but may be indeed a time-consuming 

operation). 

A final proposed option, not considered inside this thesis, is the possibility to not stop at 

implementations focusing only on what happened in the past but also thinking about applications to 

future climate projections. From a practical point of view, once the regionalized model parameters 

have been obtained, nothing prevents their utilization with simulated future climate input to construct 

what would happen in possible futures (assuming the same regional functional relationship will still 

be valid). Such fictional climate inputs are for example generated inside climate models, following 

different possible scenarios, to try to understand what may lead in front of us and have been the 

center of an increasing interest in the scientific community in the last decades. The resolution used in 

this study (around 12 𝑘𝑚 on the ground) is in fact compatible with the resolution of the climate input 

of a Regional Climate Model (RCM), that ranges around the tens of 𝑘𝑚, after the downscaling from a 

Global Climate Model (GCM). Having a regional hydrological model to be easily and directly coupled 

with a climate model can facilitate the production of ensembles to assess the uncertainty of such 

models in runoff generation inside climate change studies. Further testing and mutual integrations 

with climate models will be needed to validate such possibility and it opens to abundant future studies 

involving the innovative regionalization approach here described.  
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MAIN R SCRIPTS 

 
# CATCHMENTS LOCAL LUMPED CALIBRATION # 

 

# ------------------------------- INITIALIZATION ------------------------------- # 

#Packages loading 

library(hydroGOF)      #For KGE function 

library(zoo)           #For timeseries data management (zoo objects) 

library(TUWmodel)      #For TUWmodel function 

library(DEoptim)       #For Differential Evolution algorithm 

 

#Definition of the objective function 

ME <- function(param, prec, airt, ep, area, disc) { 

  simu <- TUWmodel(prec=prec, airt=airt, ep=ep, area=area, param)$q   

  simu[is.nan(simu)] <- -999 

  simu <- simu[-c(1:303)]  #Remove the warming period from simulated series 

  obse <- disc[-c(1:303)]  #Remove the warming period from observed series 

  kgeQ <- KGE(simu, obse, na.rm=TRUE) # Calculation of the KGE 

  return(-kgeQ)              #Negative KGE (DEoptim minimize the function) 

} 

 

 

# -------------------------------- DATA LOADING -------------------------------- # 

#Observed timeseries for all catchments (N series) [m^3/s] 

Discharge <- load("Discharge.RData")     

 

#"Train topology" for all catchments (N matrices) 

train.topology <- load("Weights.RData")   

 

#Additional information of the catchments          

char_197catch <- load("char_197catch.RData")       

 

#Precipitation timeseries for pixels of the grid (matrix 23276*500)[mm/d] 

prec <- load("Prec.RData")   

 

#Mean temperature timeseries for pixels of the grid (matrix 23276*500) [°C]    

Tmean <- load("Tmean.RData")    

 

#PET timeseries for pixels of the grid (matrix 23276*500) [mm/d] 

pet <- load("Pet.RData")        

 

 

# ----------------------- DATA WINDOWING (60 years of data) -------------------- # 

prec <- window(prec, start=as.Date('1961-01-01'), end=as.Date('2020-12-31'))        

tmean <- window(tmean, start=as.Date('1961-01-01'), end=as.Date('2020-12-31'))    

pet <- window(pet, start=as.Date('1961-01-01'), end=as.Date('2020-12-31'))        

 

 

# -------------------------------- CALIBRATION --------------------------------- # 

NOMI <- names(Discharge)              #Vector with all the names of the catchments 

calibr <- vector('list', length(NOMI))#List to save the results 

names(calibr) <- NOMI                 #Renamed the elements of the list 

 

 

for(i in 1:127){ 

  #Extraction observed discharge for the current catchment
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  Qobs <- Discharge[[NOMI[i]]]  

  

#Fill the observed discharge series with NA at the beginning and at the end to 

match the length of the  

  #Climate variables observation series 

  dummy0 <- zoo(NA, seq(as.Date('1900-01-01'), as.Date('2021-01-01'), by='day'))            

  Qobs <- window(merge(Qobs, dummy0)[,1], start=min(time(tmean)), 

end=max(time(tmean)))  

    

   

  #Calculation of the conversion factor between m^3/s and mm/d 

  m3s2mmd_2 <- char_197catch[char_197catch$codice == NOMI[i], 

'area_bacinokm']/(3.6*24)    

   

  #Extraction (as numbers) of the pixel ID (1 to 500) 

  temp <- as.numeric(colnames(prec))     

   

  #Extraction only of the pixels touched by the catchment 

  qualiPixels <- train.topology[[NOMI[i]]][,1]       

   

  #Determination of the position inside temp of the pixels 

  temp2 <- vector() 

  for (j in 1:length(qualiPixels)){                 

    temp2[j] <- which(qualiPixels[j] == temp) 

  } 

 

  #Extraction of precipitation only for the needed pixels 

  precCat <- round(prec[, temp2, drop=FALSE],3)      

 

  #Extraction of mean temperature only for the needed pixels 

  tmeanCat <- round(tmean[, temp2, drop=FALSE],3)    

 

  #Extraction of evapotranspiration only for the needed pixels 

  petCat <- pet[, temp2, drop=FALSE]  

                

  #Vector with the weight of each needed pixel 

  weightsCat <- round(train.topology[[NOMI[i]]]$effarea,2)   

   

  #Renaming of the column of new filtered matrices 

  names(precCat) <- train.topology[[NOMI[i]]]$grd 

  names(tmeanCat) <- train.topology[[NOMI[i]]]$grd 

  names(petCat) <- train.topology[[NOMI[i]]]$grd 

  names(weightsCat) <- train.topology[[NOMI[i]]]$grd 

   

  # Calibration with DEoptim 

  timestamp() 

calibr[[NOMI[i]]] <- try(DEoptim(fn=ME, lower=c(SCF=0.9, DDF=0.0, Tr=1.0,    

Ts=-3.0, Tm=-2.0, LPrat=0.0, FC=0.0,   BETA=0.0,  k0=0.0, k1=2.0,  k2=30.0, 

lsuz=1.0, cperc=0.0, bmax=0.0, croute=0.0),  

upper=c(SCF=1.5, DDF=5.0, Tr=3.0, Ts=1.0,  Tm=2.0, LPrat=1.0, FC=600.0, 

BETA=20.0, k0=2.0, k1=30.0, k2=250.0, lsuz=100.0, cperc=8.0, bmax=30.0, 

croute=50.0), 

control=DEoptim.control(NP=NA, itermax=200, reltol=1e-3, steptol=10, trace=5, 

parallelType=1, packages=c('TUWmodel','hydroGOF')), 

prec=precCat, airt=tmeanCat, ep=petCat, area=weightsCat, 

disc=as.numeric(Qobs)/m3s2mmd_2)) 

  timestamp() 
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# ---------------------------------- SAVING ------------------------------------ # 

save(calibr, file='Calibration.RData', compress='xz') 

#HydroPASS APPLICATION# 

# ----------------------- INITIALIZATION AND DATA LOADING ---------------------- # 

 

library(TUWmodel) 

library(hydroGOF) 

library(zoo) 

library(rpart) 

 

load('data117cat305pxl.RData')  

#It contains 30 lumped calibrated parameter sets for each catchment, descriptors  

#for each catchment and each pixel, the "train topology", the observed discharges 

#for each basin and the climate variables for each pixel 

 

 

# ------------------------------- PASS FUNCTION -------------------------------- # 

#Y is a list (N.cat) of data.frames (XXX x N.par) with locally lumped calibrated 

#model parameters OR previously obtained PASS output. 

 

#X.cat is a matrix or data.frame (N.cat x N.dsc) of catchment descriptors 

 

#X.grd is a matrix or data.frame (N.grd x N.dsc) of model unit/pixel descriptors 

 

#grd2cat is a list (N.cat) of model unit/pixel names belonging to each catchment 

 

#model.edd.fn is the function to be optimized (maximized). The function should 

#have as its first argument the vector/matrix of real-valued parameters to 

#optimize, as second argument the catchment index, and return a scalar real result 

#with maximum equal to 1. 'NA' and 'NaN' values are not allowed. 

 

#lower and upper are two vectors specifying scalar real lower and upper bounds on 

#each parameter to be optimized, so that the i-th element of 'lower' and 'upper' 

#applies to the i-th 

 

PASS <- function (Y, X.cat, X.grd, grd2cat, model.eff.fn, lower, upper,         

                  options=PASS.options(), ...) {    

                

#Select parameter sets 

  N.cat <- nrow(X.cat)  # Number of catchments 

  N.grd <- nrow(X.grd) 

  if (class(Y) != 'PASS') { 

    train.parameters <- Y 

    options <- do.call(PASS.options, as.list(options)) 

    overall.eff.threshold <- rep(-999, options$nGroups) 

    PASS.group <- list() 

    PASS.save <- list() 

  } else { 

    previousPASSout <- Y 

    overall.eff.threshold <- sapply(previousPASSout$groups, function (x) 

x$overall.eff) 

    options <- do.call(PASS.options, as.list(options)) 

    options$nGroups <- length(previousPASSout$groups) 

    train.parameters <- previousPASSout$train.parameters.updated 

    PASS.group <- list() 

    PASS.save <- previousPASSout 

  } 
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#Parameter normalization (to calculate distances in the regional consistency     

#algorithm) 

  train.parameters.norm <- train.parameters 

  for (i.cat in 1:N.cat) { 

    dummy_max <- t(upper %*% t(rep(1, nrow(train.parameters[[i.cat]])))) 

    dummy_min <- t(lower %*% t(rep(1, nrow(train.parameters[[i.cat]])))) 

    train.parameters.norm[[i.cat]][,-1] <- (train.parameters[[i.cat]][,-1] –  

                                         dummy_min)/(dummy_max - dummy_min)   

#Transformation (the first column contains efficiencies) 

  } 

  dummy_max.cat <- t(upper %*% t(rep(1, N.cat))) 

  dummy_min.cat <- t(lower %*% t(rep(1, N.cat))) 

  dummy_max.grd <- t(upper %*% t(rep(1, N.grd))) 

  dummy_min.grd <- t(lower %*% t(rep(1, N.grd))) 

   

  cat('%%%% ------------- START ------------- %%%%\n') 

  time0 <- Sys.time() 

  for (i.PASS in 1:options$maxLoops) { 

    if (i.PASS %% round(options$maxLoops/10) == 0) cat('     Loop', i.PASS, 'out 

of', options$maxLoops, 'loops\n') 

    i.Group <- sample(options$nGroups, 1) 

    if (options$sampling == 'random') { 

      selected.parameters <- t(sapply(train.parameters, function (x)  

x[sample(nrow(x), 1),]))   

#Matrix with N rows (n. of catchments) and M columns (n. of parameters) 

    } else if (options$sampling == 'optim') { 

      selected.parameters <- previousPASSout$groups[[i.Group]]$selected.parameters 

      select.cat <- sample(N.cat, round(N.cat*options$optim.subset.cat)) 

      selected.parameters[select.cat,] <- t(sapply(train.parameters[select.cat], 

function (x) x[sample(nrow(x), 1),])) 

    } 

 

#Parameter normalization (to calculate distances in the regional consistency  

algorithm) 

    selected.parameters[,-1] <- (selected.parameters[,-1] –  

dummy_min.cat)/(dummy_max.cat - dummy_min.cat)  #Transformation 

 

#Regional consistency algorithm: 

    for (i.REG in 1:options$REGloops) { 

      regionalization <- .DT.app(par.in=selected.parameters[, -1], 

catch_CDs=X.cat, grds_CDs=X.grd)  # output = cat.par.pred and grd.par.pred 

      for (i.cat in 1:N.cat) { 

        par.reg.cat <- regionalization$cat.par.pred[i.cat,] 

        distances <- (train.parameters.norm[[i.cat]][,-1] - t(par.reg.cat %*% 

t(rep(1, nrow(train.parameters.norm[[i.cat]])))))^2 

        selected.parameters[i.cat,] <- 

train.parameters.norm[[i.cat]][which.min(apply(distances, 1, sum, na.rm=TRUE)),] 

      } 

    } 

    colnames(regionalization$cat.par.pred) <- colnames(selected.parameters)[-1] 

    rownames(regionalization$cat.par.pred) <- rownames(X.cat) 

    colnames(regionalization$grd.par.pred) <- colnames(selected.parameters)[-1] 

    rownames(regionalization$grd.par.pred) <- rownames(X.grd) 

    regionalization$cat.par.pred[regionalization$cat.par.pred > 1] <- 1 

    regionalization$cat.par.pred[regionalization$cat.par.pred < 0] <- 0 

    regionalization$grd.par.pred[regionalization$grd.par.pred > 1] <- 1 

    regionalization$grd.par.pred[regionalization$grd.par.pred < 0] <- 0 

    regionalization$cat.par.pred <- regionalization$cat.par.pred*(dummy_max.cat - 

dummy_min.cat) + dummy_min.cat 

    regionalization$grd.par.pred <- regionalization$grd.par.pred*(dummy_max.grd - 

dummy_min.grd) + dummy_min.grd 
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 eff.lump <- rep(NA, N.cat) 

    eff.dist <- rep(NA, N.cat) 

    for (i.cat in 1:N.cat) { 

      #Lumped 

      param.cat <- regionalization$cat.par.pred[i.cat, ] 

      param.cat[is.na(param.cat)] <- -999 

      eff.lump[i.cat] <- model.eff.fn(param.cat, i.cat, ...) 

       

      if (eff.lump[i.cat] > 

options$proportion.max.eff.update*max(train.parameters[[i.cat]][, 1])) {    # ME 

        train.parameters[[i.cat]] <- rbind(train.parameters[[i.cat]], 

c(eff.lump[i.cat], param.cat)) 

      }    

 

      #Distributed 

      param.grd <- regionalization$grd.par.pred[as.character(grd2cat[[i.cat]]), ] 

      param.grd[is.na(param.grd)] <- -999 

      eff.dist[i.cat] <- model.eff.fn(param.grd, i.cat, ...)   

    } 

 

    overall.eff.dist <- mean(eff.dist) 

 

    if (options$sampling == 'random') { 

      i.Group <- which.min(overall.eff.threshold)  

    }    

    if (overall.eff.dist > overall.eff.threshold[i.Group]) { 

      overall.eff.threshold[i.Group] <- overall.eff.dist 

      PASS.group[['overall.eff']] <- overall.eff.dist 

      PASS.group[['selected.parameters']] <- selected.parameters 

      PASS.group[['regionalized.parameters']] <- regionalization 

      PASS.group[['cat.eff.lump']] <- eff.lump 

      PASS.group[['cat.eff.dist']] <- eff.dist 

      PASS.save[['groups']][[paste('Group', i.Group, sep='')]] <- PASS.group 

    } 

  }   

  PASS.save[['train.parameters.updated']] <- train.parameters 

  PASS.save[['PASS.options']] <- options 

  cat('%%%% -------------  END  ------------- %%%%\n') 

  time1 <- Sys.time() 

  print(time1 - time0) 

  class(PASS.save) <- 'PASS' 

  return(PASS.save) 

} 

 

 

# --------------------------- ADDITIONAL PASS FUNCTIONS ------------------------ # 

print.PASS <- function (x, ...) { 

  cat('Output of the PArameter Set Shuffling algorithm:\n\n') 

  cat(' number of catchments:', 

nrow(x$groups[[1]]$regionalized.parameters$cat.par.pred), '\n') 

  cat(' number of model units (e.g. pixels):', 

nrow(x$groups[[1]]$regionalized.parameters$grd.par.pred), '\n') 

  cat('sampling strategy:', x$PASS.options$sampling, '\n') 

  cat(' number of loops:', x$PASS.options$maxLoops, '\n') 

  cat(' number of groups:', x$PASS.options$nGroups, '\n') 

  cat(' number of loops for regional consistency:', x$PASS.options$REGloops, '\n') 

  if (x$PASS.options$sampling == 'optim') { 

    cat(' proportion of randomized parameters (when optim):', 

x$PASS.options$optim.subset.cat, '\n') 

  } 

  cat('lumped regionalization efficiencies:', '\n')
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  print(round(apply(sapply(x$groups, function(x) x$cat.eff.lump), 2, summary), 3)) 

 cat('distributed regionalization efficiencies:', '\n') 

  print(round(apply(sapply(x$groups, function(x) x$cat.eff.dist), 2, summary), 3)) 

  cat(' updated number of train parameter sets:', 

sum(sapply(x$train.parameters.updated, nrow)), '\n') 

} 

 

 

PASS.options <- function(maxLoops=100, nGroups=10, REGloops=5,  

                         generalized.mean.power=-1, 

proportion.max.eff.update=0.95,  

                         sampling='random', optim.subset.cat=0.7) { 

  list(maxLoops=maxLoops, nGroups=nGroups, REGloops=REGloops,  

       generalized.mean.power=generalized.mean.power, 

proportion.max.eff.update=proportion.max.eff.update, 

       sampling=sampling, optim.subset.cat=optim.subset.cat) 

} 

 

 

# ------------------------------ RANDOM FOREST ROUTINE ------------------------- # 

.DT.app <- function(par.in, catch_CDs, grds_CDs)  { 

  iparam <- ncol(par.in) 

   

  catch_CDs <- as.data.frame(catch_CDs) 

  grds_CDs <- as.data.frame(grds_CDs) 

  DT.save <- list() 

  par.pred <- array(NA, dim=c(nrow(catch_CDs), iparam)) 

  grd.par.pred <- array(NA, dim=c(nrow(grds_CDs), iparam)) 

   

  ###Account for NAs in descriptors 

  grds_CDs.temp <- grds_CDs 

  goodgrds <- complete.cases(grds_CDs.temp) 

  grds_CDs.temp[is.na(grds_CDs.temp)] <- -9999.99   

  par.in.temp <- as.data.frame(par.in) 

   

  for (ipar in 1:iparam) { 

    trainX <- cbind(par.in.temp[,ipar], catch_CDs) 

    colnames(trainX) <- c("Par", colnames(catch_CDs)) 

    DT.pred <- rpart(Par ~ ., data=trainX,  

                     control=rpart.control(minsplit=min(20, nrow(trainX)/2))) 

    DT.save[[ipar]] <- DT.pred 

    #Catchments 

    par.pred[,ipar] <- predict(DT.pred, catch_CDs) 

    #Grid pixels 

    grd.par.pred[,ipar] <- predict(DT.pred, grds_CDs.temp) 

  } 

  grd.par.pred[!goodgrds,] <- NA 

  DT.app.back <- list() 

  DT.app.back$cat.par.pred <- par.pred 

  DT.app.back$grd.par.pred <- grd.par.pred 

  return(DT.app.back) 

}  
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# ------------------------------ OBJECTIVE FUNCITON ---------------------------- # 

ME.TUWmodel <- function(param, cat.number, grdname, prec, airt, ep, area, disc, 

iwarmup=303) { 

  GRDNAME <- grdname[[cat.number]] 

  AREA <- area[[cat.number]] 

  PREC <- prec[, as.character(GRDNAME)] 

  AIRT <- airt[, as.character(GRDNAME)] 

  EP <- ep[, as.character(GRDNAME)] 

  DISC <- disc[, cat.number] 

  if (!is.null(dim(param))) param <- t(param) 

  if(length(AREA) != 1){ 

    simu <- TUWmodel(prec=PREC, airt=AIRT, ep=EP, 

                     area=AREA, param=param) 

    simu <- simu$q[-c(1:iwarmup)]                  #Remove the warming period 

  } 

  if(length(AREA) == 1){ 

    simu <- TUWmodel(prec=as.numeric(PREC), airt=as.numeric(AIRT), 

ep=as.numeric(EP), 

                     area=AREA, param=param) 

    simu <- t(simu$q)[-c(1:iwarmup)]               #Remove the warming period 

  } 

  simu[is.na(simu)] <- -999 

  obse <- DISC[-c(1:iwarmup)]                      #Remove the warming period 

  me <- KGE(simu, obse, na.rm=TRUE) 

  if (is.na(me)) me <- -999 

  return(me)                                       #KGE calculation  

} 

 

 

# ------------------------------- START APPLICATION ---------------------------- # 

#Select 30 best sets of parameters for each catchment that satisfies the selection 

#condition 

train.parameters <- 

data117cat305pxl$local_param.calibraNOneve[sapply(data117cat305pxl$local_param.cal

ibraNOneve, function(x) max(x[,1])) > 0.8]  # 90 

 

#Extraction of descriptors for catchments and grid + "train topology" 

cat.CD <- data117cat305pxl$cat.CD[rownames(data117cat305pxl$cat.CD) %in% 

names(train.parameters), ] 

grd.CD <-data117cat305pxl$grd.CD 

topology <- data117cat305pxl$grd2cat[names(train.parameters)] 

 

#Extraction observed discharges 

qobs <- data117cat305pxl$qobs[, names(train.parameters)] 

 

 

# ----------------------- 1000 ITERATIONS IN "RANDOM" MODE --------------------- # 

timestamp() 

run01 <- PASS(Y=train.parameters, 

              X.cat=cat.CD, 

              X.grd=grd.CD, 

              grd2cat=sapply(topology, function(x) x$grd.name), 

              model.eff.fn=ME.TUWmodel, 

              lower=c(SCF=0.9, DDF=0.0, Tr=1.01, Ts=-3.0, Tm=-2.0, 

                      LPrat=0.0, FC=0.0, BETA=0.0, k0=0.0, k1=2.0, k2=30.0, 

                      lsuz=1.0, cperc=0.0, bmax=0.0, croute=0.0), 

              upper=c(SCF=1.5, DDF=5.0, Tr=3.0, Ts=1.0, Tm=2.0, 

                      LPrat=1.0, FC=600.0, BETA=20.0, k0=2.0, k1=30.0, k2=250.0, 

                      lsuz=100.0, cperc=8.0, bmax=30.0, croute=50.0), 

              options=PASS.options(maxLoops=100, nGroups=10, REGloops=5, 

sampling='random'),
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              prec=data117cat305pxl$prec, 

              airt=data117cat305pxl$tmean, 

              ep=data117cat305pxl$pet, 

              area=sapply(topology, function(x) x$grd.weightCat), 

              grdname=sapply(topology, function(x) x$grd.name), 

              disc=qobs) 

print(run01) 

save(run01, file='run01_TUW.RData', compress='xz') 

timestamp() 

 

timestamp() 

for (rr in 2:10) { 

  run01 <- PASS(Y=run01, 

                X.cat=cat.CD, 

                X.grd=grd.CD, 

                grd2cat=sapply(topology, function(x) x$grd.name), 

                model.eff.fn=ME.TUWmodel, 

                lower=c(SCF=0.9, DDF=0.0, Tr=1.01, Ts=-3.0, Tm=-2.0, 

                        LPrat=0.0, FC=0.0, BETA=0.0, k0=0.0, k1=2.0, k2=30.0, 

                        lsuz=1.0, cperc=0.0, bmax=0.0, croute=0.0), 

                upper=c(SCF=1.5, DDF=5.0, Tr=3.0, Ts=1.0, Tm=2.0, 

                        LPrat=1.0, FC=600.0, BETA=20.0, k0=2.0, k1=30.0, k2=250.0, 

                        lsuz=100.0, cperc=8.0, bmax=30.0, croute=50.0), 

                options=PASS.options(maxLoops=100, nGroups=10, REGloops=5, 

sampling='random'), 

                prec=data117cat305pxl$prec, 

                airt=data117cat305pxl$tmean, 

                ep=data117cat305pxl$pet, 

                area=sapply(topology, function(x) x$grd.weightCat), 

                grdname=sapply(topology, function(x) x$grd.name), 

                disc=qobs) 

  print(run01) 

  save(run01, file='run01_TUW.RData', compress='xz') 

} 

timestamp() 

 

 

# ---------------------- 1000 ITERATIONS IN "OPTIM" MODE ----------------------- # 

timestamp() 

run02 <- PASS(Y=run01, 

              X.cat=cat.CD, 

              X.grd=grd.CD, 

              grd2cat=sapply(topology, function(x) x$grd.name), 

              model.eff.fn=ME.TUWmodel, 

              lower=c(SCF=0.9, DDF=0.0, Tr=1.01, Ts=-3.0, Tm=-2.0, 

                      LPrat=0.0, FC=0.0, BETA=0.0, k0=0.0, k1=2.0, k2=30.0, 

                      lsuz=1.0, cperc=0.0, bmax=0.0, croute=0.0), 

              upper=c(SCF=1.5, DDF=5.0, Tr=3.0, Ts=1.0, Tm=2.0, 

                      LPrat=1.0, FC=600.0, BETA=20.0, k0=2.0, k1=30.0, k2=250.0, 

                      lsuz=100.0, cperc=8.0, bmax=30.0, croute=50.0), 

              options=PASS.options(maxLoops=100, nGroups=10, REGloops=4, 

sampling='optim', optim.subset.cat=0.7), 

              prec=data117cat305pxl$prec, 

              airt=data117cat305pxl$tmean, 

              ep=data117cat305pxl$pet, 

              area=sapply(topology, function(x) x$grd.weightCat), 

              grdname=sapply(topology, function(x) x$grd.name), 

              disc=qobs) 

print(run02) 

save(run02, file='run02_TUW.RData', compress='xz')
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timestamp() 

 

timestamp() 

for (rr in 2:10) { 

  run02 <- PASS(Y=run02, 

                X.cat=cat.CD, 

                X.grd=grd.CD, 

                grd2cat=sapply(topology, function(x) x$grd.name), 

                model.eff.fn=ME.TUWmodel, 

                lower=c(SCF=0.9, DDF=0.0, Tr=1.01, Ts=-3.0, Tm=-2.0, 

                        LPrat=0.0, FC=0.0, BETA=0.0, k0=0.0, k1=2.0, k2=30.0, 

                        lsuz=1.0, cperc=0.0, bmax=0.0, croute=0.0), 

                upper=c(SCF=1.5, DDF=5.0, Tr=3.0, Ts=1.0, Tm=2.0, 

                        LPrat=1.0, FC=600.0, BETA=20.0, k0=2.0, k1=30.0, k2=250.0, 

                        lsuz=100.0, cperc=8.0, bmax=30.0, croute=50.0), 

                options=PASS.options(maxLoops=100, nGroups=10, REGloops=4, 

sampling='optim', optim.subset.cat=0.7), 

                prec=data117cat305pxl$prec, 

                airt=data117cat305pxl$tmean, 

                ep=data117cat305pxl$pet, 

                area=sapply(topology, function(x) x$grd.weightCat), 

                grdname=sapply(topology, function(x) x$grd.name), 

                disc=qobs) 

  print(run02) 

  save(run02, file='run02_TUW.RData', compress='xz') 

} 

timestamp() 

 

!!! All the functions reported in the head of this script can now be found inside the R package 
HydroPASS downloadable from CRAN !!!
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# REGIONAL FLOODS RECONSTRUCTION # 

 

# --------------------------------- INITIALIZATION ----------------------------- # 

#Packages loading 

library(raster) 

library(rgdal) 

library(sf) 

library(tidyverse) 

library(zoo) 

library(TUWmodel) 

library(maptools) 

library(scales) 

 

#Data loading 

load("run02_TUW.RData")                 #It contains regionalization PASS results 

load("data117cat500pxl.RData")          #It contains the climate timeseries 

bacini <- st_read("C_ZYHD_Italia.shp")  #Load JRC basins shapefile 

rivers <- st_read("c_tr_Italia.shp")    #Load JRC rivers shapefile 

Piemonte <- st_read("Ambiti_amministrativi-Regione.shp") #Load Piedmont borders 

grid <- st_read("griglia.shp")          #Load reference grid in UTM32                       

 

 

# --------------- INTERSECTION BETWEEN REGIONAL BORDDERS AND BASINS ------------ # 

crs(bacini)      #Check the reference system of the JRC basins --> Lambert 

bacini <- st_transform(bacini,crs = crs(grid))    #Basins in UTM32       

rivers <- st_transform(rivers,crs = crs(grid))    #Rivers in UTM32  

Piemonte <- Piemonte[c(11,12)]                    #Keeping only name and Geometry 

grid[,1] <- c(1:500)                  #Renaming of the grid cells (from 1 to 500) 

area_grid <- st_area(grid)                    #Evaluation area of each grid cell 

colnames(grid)[1] <- "Pxl"                    #Renaming column of the cells 

bacini$area_b <- st_area(bacini)              #Calculation area of each JRC basin 

names(bacini)[1] <- "ID"                          #Renomination column "ID" 

 

#Intersection between regional borders and basins (638 remaining) 

qualibacini <- st_intersection(bacini,Piemonte)    

 

 

# --------------------- EVALUATION TEMPORARY "TRAIN TOPOLOGY" ------------------ # 

#Calculation intersection JRC basins and reference grid 

intersection <- st_intersection(grid, qualibacini)   

 

#Calculation areas of each pixel intersection 

intersection$area_Pxl <- as.numeric(st_area(intersection))     

 

for (i in 1:dim(intersection)[1]){ 

  #Normalization of pixel area intersections 

  intersection$area_Pxl[i] <- 

  intersection$area_Pxl[i]/area_grid[intersection$Pxl[i]]  

} 

 

#Kept only basin "ID", numeration, normalized pixel areas and geometry 

intersection <- intersection[,c(2,1,56)]    

final <- intersection %>% 

  as_tibble() %>%                          #Change format 

  group_by(ID, Pxl) %>% 

  summarize(area = sum(area_Pxl)) 

 

#Creation of a list for a temporary "train topology" 

train.topology_b <- vector('list',dim(qualibacini)[1])   

for (i in 1:length(train.topology_b)){ 

  cat(i)
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  dummy <- filter(final,ID == qualibacini$ID[i]) 

  dummy <- as.data.frame(dummy)    #Calculation of the temporary "train topology" 

  dummy <- dummy[,-1] 

  colnames(dummy) <- c("grdname","effarea") 

  train.topology_b[[i]] <- dummy 

} 

names(train.topology_b) <- qualibacini$ID       #Rename the element of the list  

 

 

# -------------------- EXCLUDING POLYGONS EXTERNAL TO GRID --------------------- # 

NOMI <- names(train.topology_b)                #Vector with "ID" JRC basins 

#Extraction of regionalized PASS parameters over the grid 

param <- 

run02[["groups"]][["Group5"]][["regionalized.parameters"]][["grd.par.pred"]]   

control <- as.numeric(rownames(param))         #Numeration of the 305 used pixels 

 

#Elimination of any basin outside of the 305 pixels (633) 

for (i in 1:length(NOMI)){ 

  grdname <- as.numeric(train.topology_b[[NOMI[i]]]$grdname) 

  if(sum(grdname %in% control) < length(grdname)){                                      

    train.topology_b[[NOMI[i]]] <- NULL 

  } 

} 

 

NOMI <- names(train.topology_b)                #Update of the "ID" vector 

 

 

# ----------------------------- EXTRACT RIVER NETWORK  ------------------------- # 

#Removal of the geometry of the removed basins 

qualibacini <- qualibacini[as.character(qualibacini$ID) %in% NOMI,]                     

NOMI <- qualibacini$ZHYD                             #Vector with ZHYD codes 

 

#Removal of the river geometry of the removed basins 

qualirivers <- rivers[rivers$ZHYD %in% NOMI,]                                           

            

                          

# ---------------------------- NEW CATCHMENTS GEOMETRY --------------------# 

Final_CAT <- vector('list')             #Creation list for new catchments geometry 

 

#Determination new catchments geometry (requires some time) 

for (i in 1:dim(qualibacini)[1]) {            

  CAT <- vector('list') 

  print(i) 

  timestamp() 

  zhyd0 <- qualibacini$ZHYD[i] 

  zhyds <- zhyd0 

  lengthminus1=0 

  while(length(zhyds) > lengthminus1) { 

    lengthminus1 <- length(zhyds) 

    zhyds <- unique(c(zhyd0, qualibacini$ZHYD[qualibacini$NextDown %in% zhyds])) 

  } 

  IDs <- c(NA,zhyd0)[1 + (qualibacini$ZHYD %in% zhyds)] 

  dummy <- st_union(qualibacini$geometry[!is.na(IDs)]) 

  dummy2 <- qualirivers$geometry[qualirivers$ZHYD == zhyd0] 

  CAT$BACINO <- dummy 

  CAT$FIUMI <- dummy2 

  Final_CAT[[i]] <- CAT 

}  

names(Final_CAT) <- qualibacini$ZHYD                    #Rename list
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AREA <- vector()       #Vector for the Areal extension of the new basins’ geometry 

  for (i in 1:length(Final_CAT)){                                                   

#Calculation of the areas 

    cat(i) 

    timestamp() 

    AREA[i] <- st_area(Final_CAT[[i]]$BACINO) 

  } 

  AREA <- AREA/1000000              #Area in Km^2 
 

 

# ---------------- EXTRACTION TRAIN TOPOLOGY AGGREGATED CATCHMENTS ------------- # 

#List for the new train.topology_b 

train.topology_b <- vector('list',length(Final_CAT))                               

names(train.topology_b) <- NOMI                        #Rename list's elements 

 

#Calculation new "train topology" (requires some minutes) 

for (j in 1:length(train.topology_b)){                                             

  cat(j)   

  timestamp() 

  intersection <- st_intersection(grid, Final_CAT[[j]]$BACINO) 

  intersection$area_Pxl <- as.numeric(st_area(intersection)) 

  for (i in 1:dim(intersection)[1]){ 

    intersection$area_Pxl[i] <- 

intersection$area_Pxl[i]/area_grid[intersection$Pxl[i]]   

  } 

  final <- intersection %>% 

    as_tibble() %>% 

    group_by(Pxl) %>% 

    summarize(area = sum(area_Pxl)) 

  final <- as.data.frame(final) 

  colnames(final) <- c("grdname","effarea") 

  train.topology_b[[NOMI[j]]] <- final 

} 

 

 

# ---------------------- SIMULATE DISCHARGES OVER CATCHMENTS ------------------- # 

#List for regional simulated discharges  

SIMUL_PASS <- vector('list',length(train.topology_b))                    

names(SIMUL_PASS) <- NOMI                              #Rename list's elements 

date <- index(data117cat500pxl$prec[,1])               #Estraction vector of dates 

 

#Discharge simulation with TUWmodel (it requires several minutes) 

for (i in 1:length(NOMI)){                     

  cat(i)                                                                 

  timestamp() 

  grdname <- as.character(train.topology_b[[NOMI[i]]]$grdname) 

  prec <- data117cat500pxl$prec[,grdname] 

  tmean <- data117cat500pxl$tmean[,grdname] 

  pet <- data117cat500pxl$pet[,grdname] 

  area <- train.topology_b[[NOMI[i]]]$effarea 

  param.grd <- param[grdname,] 

  if (!is.null(dim(param.grd))) param.grd <- t(param.grd) 

  if(length(area) != 1){ 

    simul <- TUWmodel(prec=prec, airt=tmean, ep=pet, 

                      area=area, param=param.grd) 

    simul <- zoo(simul$q,date) 

  } 

  if(length(area) == 1){ 

    simul <- TUWmodel(prec=as.numeric(prec), airt=as.numeric(tmean), 

ep=as.numeric(pet), 

                      area=area, param=param.grd)
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   simul <- zoo(t(simul$q),date) 

  } 

  simul[is.na(simul)] <- -999 

  SIMUL_PASS[[NOMI[i]]] <- simul 

 

# --------------------- PLOT MAPS FOLLOWING FLOODING EVENTS -------------------- # 

Piemonte <- st_union(qualibacini$geometry)                

CUT_RIVERS <- vector('list',length(Final_CAT)) 

ID <- NOMI                                               

names(CUT_RIVERS) <- ID 

 

#Elimination rivers' section exceeding regional borders 

for(i in 1:length(CUT_RIVERS)){                                       

  cat(i) 

  timestamp()                                                         

  CUT_RIVERS[[i]] <- st_intersection(Piemonte,Final_CAT[[i]]$FIUMI) 

} 

 

#Convert simulated discharges as matrix 

Q <- matrix(NA,ncol=length(date),nrow=length(SIMUL_PASS)) 

for(i in 1:length(SIMUL_PASS)){                                       

  Q[i,] <- SIMUL_PASS[[i]] 

} 

 

ID <- names(SIMUL_PASS)                                              

Event <- rep(NA,6)                                     #Matrix for the flood event 

s <- "2020-09-30"                                      #Start date 

e <- "2020-10-05"                                      #End date 

yy <- 2020                                             #Year 

start <- which(date == s) 

end <- which(date == e) 

 

#Estraction discharges for the event 

for(i in 1:length(SIMUL_PASS)){                                       

  cat(i) 

  timestamp() 

  dummy <- as.numeric(SIMUL_PASS[[i]][start:end]) 

  Event <- rbind(Event,dummy) 

} 

Event <- Event[-1,] 

colnames(Event) <- as.character(seq(from=as.Date(s),to=as.Date(e),by="day"))    

rownames(Event) <- ID 

 

pal <- colorRampPalette(c("lightblue","red"))    #Definition of the colorscale 

min <- 0                                    #Minimum discharge for colorscale 

max <- 100                                  #Maximum discharge for colorscale 

ncol <- 100                                 #Number of intervals of the colorscale 

int <- (max-min)/ncol                       #Intervals width definition 

col <- pal(ncol)                            #Colors definition 

cuts <- seq(from = min,to = max, by = int   #Intervals edges definition 

 

 

# ---------------------------------- MAPS PLOTS -------------------------------- # 

setwd("/saving_destination")            #Set the path where to save the .pdf 

par(mai=c(0.1,0.1,0.2,0.1))             #Graphical settings 

 

for(j in 1:dim(Event)[2]){ 

  n <- paste("Flood_",yy,"_",j,".pdf",sep="")           #Title of .pdf 

  pdf(file=n,width = 9, height = 9)                     #.pdf creation
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  #Start plot 

  plot(Piemonte,main = colnames(Event)[j],cex.main = 0.8,border="azure4")        # 

  for (i in 1:length(ID)){ 

    flag1 <- FALSE 

    for(k in 1:(length(cuts)-1)){ 

      if(flag1 == FALSE){ 

        if(between(Event[i,j],cuts[k],cuts[k+1]) == TRUE){

 

          flag1 <- TRUE 

          flag2 <- k 

        } 

      } 

    } 

     

    flag3 <- FALSE 

    for(k in 1:(length(wd_a)-1)){ 

      if(flag3 == FALSE){ 

        if(between(AREA[i],wd_a[k],wd_a[k+1]) == TRUE){ 

          flag3 <- TRUE 

          flag4 <- wd[k] 

          TRNSP <- tsnp[k] 

        } 

      } 

    } 

    plot(CUT_RIVERS[[i]],col=col[flag2],lwd=flag4,add=TRUE) 

  } 

  dev.off()                                                     #End plot 

} 

 

 

# ------------------ SEPARATE CREATION OF THE COLORSCALE GRAPHIC --------------- # 

layout(matrix(c(1,1,2,2),byrow=TRUE)) 

plot(1) 

legend_image <- as.raster(matrix(pal(100), nrow=1)) 

plot(c(0,2),c(0,1),type = 'n', axes = F,xlab = '', ylab = '', main = 'mm/d') 

text(x=1.5, y = seq(0,100,l=20), labels = seq(0,100,l=20)) 

rasterImage(legend_image, 0, 0, 2,2)
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