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ABSTRACT 
This paper proposes a series of estimated solutions with Electric Propulsion, based 
on Edelbaum’s approximation, for the preliminary calculation of the propellant 
consumption and the required orbital changes in periapsis and apoapsis maneuvers 
during an interplanetary mission to Near-Earth Asteroids. A set of 75 asteroids is 
considered with a revolution period close to one year and small eccentricity and 
inclination, and the assumed time of flight for the mission is three years, so three 
burning arcs are performed. The estimation does not need numerical integration, but 
only the resolution of two three-variable algebraic systems is necessary to define the 
whole transfer; thus, the computational time and cost are significantly reduced. 
Various modifications have been made to the orbital elements of the arrival orbit to 
observe the trends of the parameters useful for the calculation of the algebraic 
systems: the inclination of the orbit is initially considered linearly proportional to 
the eccentricity, while in the following cases it is fixed at a certain number of values; 
the right ascension of ascending node in the first two cases is null, with the periapsis 
and the ascending node coinciding, then is assumed equal to 𝜋 4⁄  and 𝜋 2⁄ , 
monitoring the changes due to the distancing of the line of nodes and the line of 
apsides. The results demonstrate a good accuracy of the method, especially in 
particular conditions. Both in periapsis and apoapsis maneuvers, the estimation is 
accurate for the furthest asteroids from Earth and quite inaccurate as regards the 
closest asteroids to Earth, hence a subgroup of asteroids whose distance does not 
allow to perform long burning arcs. When the inclination is set at slightly higher but 
still small values, together with an obvious increase in consumption, there is a very 
accurate response on almost the entire group of asteroids for maneuvers at both 
apsides, except for the very first asteroids which always have some oddities. 
Furthermore, also the RAAN variations, even with a small increase of fuel 
consumed, evidently contribute to raise the overall quality of the estimation; this can 
be seen especially in the results of the cases at low inclination, in which the precise 
solution tends to include a larger number of asteroids if the periapsis and the 
ascending node are not coincident, but in quadrature. 
The analysis of the method in these different case studies has allowed to ascertain 
the goodness and relevance to reality of the results obtained, particularly in cases 
with a relatively high inclination (but always small to adhere to Edelbaum’s 
approximation) and in cases with low to null inclination, but RAAN different from 
0 (even if the latter increase more propellant consumption).  New studies and 
analysis may be focused on improving the accuracy of this estimation method in the 
planar problem, i.e., with null inclination, in which the periapsis and the ascending 
node are coincident, that is, Ω equal to 0.  
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INTRODUCTION 
Electric Propulsion is now regularly used for space operations such as orbital and/or 

attitude adjustments, compensation of aerodynamic drag in the presence of an 

atmosphere and deep space missions. The low thrust values provided combined with 

the very high specific impulses [1] make it indeed possible to efficiently perform 

missions which do not involve overcoming high gravitational forces (i.e., launching 

a vehicle out of the atmosphere) and ending in strict times.  

This paper proposes the use of an estimation method presented by L. Mascolo, A. 

De Iuliis, L. Casalino [2] and based on Edelbaum’s approximation. The method, 

originally developed to analyze rendezvous transfer from Earth to the Near-Earth 

Asteroids, can be also employed to evaluate interplanetary transfers between two 

celestial bodies having similar and small value of semi-major axis, eccentricity, and 

inclination. The required changes of these orbital parameters throughout the transfer 

are also calculated algebraically, thus the method is not complex and computational 

time and cost are significantly reduced. The 75 asteroids, whose orbits are 

considered the arrival ones in this work, are actually fictitious and are needed to 

observe under what conditions and with which and how many orbital changes the 

parameters stably follow the predictions of the theory. The orbital elements that have 

been varied to monitor their influence on the method are the inclination (𝑖) of the 

orbital plane, which in this work coincides with the Ecliptic plane, and the right 

ascension of ascending node (Ω, RAAN). Initially, the inclination is linearly linked 

to the eccentricity, gradually increasing, and therefore assumes variable values; 

subsequently, it is fixed four times to study and understand the effects of these 

changes. Furthermore, there is only one case with null inclination to also treat the 

planar problem. The RAAN can instead assume three possible values which 

basically reveal the orbital position of the ascending node with respect to the 

periapsis (or perihelion) and, as one can easily guess, heavily affects the costs and 

the overall accuracy of the preliminary estimation. 

Therefore, the cases examined and dealt with hereinafter are sixteen. 
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NOMENCLATURE 

𝑎 Semi-major axis, AU 
𝑒 Eccentricity 

𝑒𝑥, 𝑒𝑦 Eccentricity vector components 
𝑖 Inclination, deg or rad 
Ω Right ascension of ascending node, deg or rad 
𝜔 Argument of periapsis, deg or rad 

𝑚𝑝 Propellant mass, kg 
𝑚𝑖 Initial mass, kg 
𝑚𝑓 Final mass, kg 
𝑛 Number of revolutions 
𝑟 Radius, AU 
𝑟𝑝 Perihelion radius, AU 
𝑟𝑎 Aphelion radius, AU 
𝑇 Thrust, N 
𝛼 In-plane thrust angle, deg or rad 
𝛽 Out-of-plane thrust angle, deg or rad 

Δ𝑃𝐴 Total propulsive effort at perihelion 
Δ𝐴𝑃 Total propulsive effort at aphelion 

𝜗𝑒  Reference right ascension, deg or rad 
𝜗 Right ascension, deg or rad 
Λ Control law coefficient 

Δ𝜗 Burn arc angular length, deg or rad 
ΔV Velocity increment, m/s 

Δ𝑖2𝜋 1-rev. inclination change, deg or rad 
𝐾 Correction factor 

𝑘0, 𝑘1, 𝑘2, 𝑘3 Correction parameters 
 

SUBSCRIPTS 

𝐸 = Earth 𝑇 = Target 

𝑖𝑛𝑖𝑧 = Initial  𝑓𝑖𝑛 = Final  

𝑃𝐴 = Perihelion maneuver 𝐴𝑃 = Aphelion maneuver 
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1. SPACE PROPULSION – TRANSFER TO NEAs 
 

1.1 Main differences between Chemical and Electric Propulsion 

Space Propulsion is a field that deals with the realization and the development of 

engines or thruster, devices that through the third principle of dynamics set a 

spacecraft in motion with respect to a specific reference system. There are several 

applications related to this area: the exit from the Earth’s atmosphere, orbital 

changes and adjustments, fly-by, interplanetary transfers, interstellar travels. 

The exit from Earth’s atmosphere is a maneuver that requires a huge thrust and 

velocity to defeat the atmospheric drag and the force of gravity of the planet. This 

kind of maneuver is well performed with Chemical Propulsion: propellants can be 

liquid, solid or hybrid and stored in tanks; the thrust is generated through their 

mixture and heating in the combustion chamber and the high-speed expulsion of the 

burnt gases. Chemical Propulsion is ideal when the performance is defined in terms 

of high thrust [1] and propellants can be stored in tanks with realistically acceptable 

volumes, which explains why launchers (engines specialized in exiting the 

atmosphere and placing vehicles into orbit) use mainly solid and liquid propellants. 

CP is therefore used when the mission goal is not to have high efficiency, but huge 

power in terms of thrust generated [1].  

Nuclear Propulsion is studied and taken into consideration especially regarding 

longer lasting missions (such as a transfer to Mars), due to the enormous thrust 

produced which could shorten the duration of the mission. The amount of thrust 

generated is the highest of all the space thrusters, but there are still many doubts 

about the use of NP, starting with the safety of the eventual human presence in a 

spacecraft in which there is also a nuclear reactor, in terms of radiation shielding 

(for example with superconducting magnets) and protection of the reactor from 

external disturbances.  To summarize, NP provides high thrust combined with high 

efficiency, but the technological complexity and the poor predictability of 
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malfunctions make it still the subject of study today [1], with the main goal of 

reducing the effective time of a mission. 

Electric Propulsion is now a serious alternative to Chemical Propulsion. EP does not 

require propellant tanks (less structural weight) and it is the most efficient among 

any types of Space Propulsion: it can be easily demonstrated, trough the definition 

of the Specific Impulse, that the gas outflow velocity and the fuel consumption are 

strictly related. In fact, with the same value of applied thrust, the lower the propellant 

consumption, the higher the gas outflow velocity is. This kind of propulsion is 

limited by the available electric power onboard the spacecraft [2], so the low thrust 

generated makes these thrusters unsuitable for aeronautical use or launching 

vehicles in orbit, but actually perfect for space applications as orbit transfers, 

alignment adjustments, aerodynamics drag compensation and, of course, 

interplanetary or deep space missions; namely operations in which the gravity of a 

planet must not be overcome, time is not a crucial factor and no excessive thrust is 

needed [3]. The large specific impulse of EP (particularly Ion Propulsion) enables 

low-thrust long-duration missions that would require huge amounts of propellant 

with CP and enormous tanks to contain it, making the mission unfeasible. One of 

the main reasons why EP has been utilized so far is the possibility of reaching some 

celestial bodies which are remnant debris of the solar system formation process. 

These asteroids have a perihelion distance of less than 1.3 AU, that’s why they are 

known as NEAs, Near-Earth Asteroids [2]. These celestial bodies, given their 

proximity with the Earth, are easily accessible with low Δ𝑉 and propellant 

consumption and they have potentially unique scientific features such as their raw 

materials [4,5]. The purpose of this discussion is to find out if, through Edelbaum’s 

approximation, the proposed estimation method always returns results relevant to 

theory even if certain orbital parameters are significantly varied. 
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1.2 Edelbaum’s Approximation: the origin of the estimation method 

The discussed estimation method is based on Edelbaum’s approximation [6]. It is a 

considerable simplification to the general problem of interplanetary transfers, since 

if some parameters have similar small values both in the starting orbit and in the 

target orbit and their variations are also small, the Δ𝑉 and the propellant 

consumption inherent to the transfer can be minimized. This approach is suitable for 

the use of EP, since it is not based on the concept of thrust impulse given in an 

infinitesimal time, but on the concept of continuous thrust, with burning arcs and 

coasting arcs; so, it is possible to obtain the minimum-fuel trajectories to NEAs. It 

is therefore necessary to introduce the hypotheses related to Edelbaum’s 

approximation, inherent to a trajectory performed with EP: 

 Almost-circular orbit (𝑒 ≈ 0); this assumption has consequences regarding the 

semi-major axis, the spacecraft velocity and the shape of the orbit. The semi-major 

axis and the semilatus rectum can be confused at any moment with the radius of the 

circular trajectory (𝑎 ≈ 𝑝 ≈ 𝑟); furthermore, the spacecraft velocity will be 

comparable to the circular velocity (𝑉2 ≈
𝜇

𝑟
) and the true, eccentric and mean 

anomalies can be confused with each other (𝜈 ≈ 𝐸 ≈ 𝑀). 

 Small variations of inclination (𝑖 ≈ 0); if the theory of small perturbations is 

considered and the plane of the orbit is taken as the reference plane, the following 

approximation can be utilized: cos 𝑖 ≈ 1, sin 𝑖 ≈ 𝑖. 

 Thrusts and acceleration are small ( 𝑇

𝑚
≪

𝜇

𝑟2). 

 Thrust is analyzed through its components; the in-plane thrust angle 𝛼 and the out-

of-plane thrust angle 𝛽 are introduced to express a set of three perpendicular 

components: 

1. 𝑇𝑉 = 𝑇 cos 𝛼 cos 𝛽 is the component along the velocity direction; 

2. 𝑇𝑅 = 𝑇 sin 𝛼 cos 𝛽 is the component along the radial direction; 

3. 𝑇𝑊 = 𝑇 sin 𝛽 is the out-of-plane component [7]. 
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The method generates two three-variable sets of algebraic equations which are 

numerically solved; thus, the problem due to the integration of the equations of 

motion does not occur and the computational complexity of the operation is 

significantly lowered. In addition to that, the computational time is drastically 

reduced, the preliminary evaluation of large groups of possible targets is quick and 

precise, and the overall accuracy is very high, even compared with other approaches 

with similar complexity, such as multiple-revolution Lambert’s problem or three 

impulse transfers [2].  

The proposed estimation method was originally conceived for dealing with 

rendezvous transfers from Earth to the most reachable NEAs. In this paper, it is 

shown that it can be also used with fairly accurate results for interplanetary transfers 

between two celestial bodies (such as the Earth and an asteroid of the NEAs or in 

the Main Belt) that have similar semi-major axis, eccentricity and inclination; the 

purpose of this work is indeed to determine and analyze what happens to the Δ𝑉 and 

to the propellant consumption if, in addition to varying more or less significantly 

one of these three parameters (inclination), other orbital parameters are also varied, 

for example the right ascension of ascending node Ω. It is important to notice that 

the method has been revised and improved from its initial version: some correction 

factors has been introduced to take the geometry of the transfer into account; so, the 

estimation accuracy is greatly improved compared to the previous work and the 

other existing methods with comparable computational cost [2].  

1.3 Trajectories to NEAs 

1.3.1 In-plane scenario 

As reported by L. Mascolo, A. De Iuliis and L. Casalino [2], the trajectory to reach 

an asteroid can change according to the actual cost (in terms of Δ𝑉 and propellant 

consumption) required to make it; this cost is strongly related to changes in orbital 

parameters from the starting orbit to the target one. Generally, asteroids can be 

considered targets for science missions if the required changes of inclination and 

eccentricity are small with respect to Earth’s reference orbit. Indeed, possible targets 

have semi-major axis close to 1 AU and small to null eccentricities and inclinations; 
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an asteroid with a semi-major axis larger than 1 AU and/or relevant changes in 

eccentricities and/or inclinations is selected as mission objective only if it has 

exceptional features that justify the cost of the transfer, such as (433) Eros reached 

by the NEAR spacecraft [8].  

In this section, a transfer is analyzed in which the inclination of both the departure 

and arrival orbit is null (planar problem, treated in case 0), while the next paragraph 

deals with the plane change, and the final one is about RAAN variation.  

The first assumption concerns the starting orbit, the Earth’s one: a circular orbit with 

a radius of 1 AU (𝑒𝐸 = 0, 𝑎𝐸 = 1). Intuitively, the simplest type of in-plane transfer 

to be performed consists of two impulsive maneuvers to raise the altitudes of 

perihelion and aphelion and obtain the semi-major axis of the target orbit [9]. 

Variations of eccentricity and semi-major axis Δ𝑒 and Δ𝑎 relative to the target orbit 

are closely related to each other. It is possible to notice this already from the 

calculation of the new altitudes of perihelion and aphelion: a perihelion impulse 

provides 𝑟𝑎 = 𝑎𝑇(1 + 𝑒𝑇), an aphelion impulse returns 𝑟𝑝 = 𝑎𝑇(1 − 𝑒𝑇). From 

these calculations it is easy to derive the variations Δ𝑒 and Δ𝑎 which modified the 

aphelion (with the perihelion maneuver, PA) and the perihelion (with the aphelion 

maneuver, AP): 

Δ𝑎𝑃𝐴 = Δ𝑒𝑃𝐴 = [(𝑎𝑇 − 1) + 𝑒𝑇]/2 

Δ𝑎𝐴𝑃 = −Δ𝑒𝐴𝑃 = [(𝑎𝑇 − 1) − 𝑒𝑇]/2 

The assumption behind these two equations is that both the impulses are given at 1 

AU from the Sun; in reality, the second impulse is affected from the effects of the 

first one, that modified the apsidal distance. These effects are neglected due to the 

complexity increase they would bring to the method compared to not too high 

improvements in terms of accuracy [2]. 

The two in-plane impulses applied to raise the apsidal distance can be easily 

performed with Chemical Propulsion. Electric Propulsion, given the low thrust 

provided, is not effective in terms of punctual impulses in which the engine fires for 
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few fractions of a second, but is instead suitable for long thrusting arcs. However, a 

time-sustained thrusting arc, in which the thrust effect is spread among different 

orbital positions, is not as efficient in changing certain orbital parameters as a single 

high-trust impulse executed at a given point. In fact, a single burn may not even be 

able to produce the required changes. This is no longer a problem in missions where 

time is not an indispensable factor and these changes can be provided in many 

thrusting arcs, therefore multiple revolutions. Each maneuver is divided in smaller 

burns conveniently placed close to the apsides [2]. 

The 75 fictitious asteroids considered in this work each have a revolution period of 

about 1 year, thus a mission with an expected completion time of n years has n 

passages at the perihelion and n passages at the aphelion, allowing for n equal burns 

at each apside [9]. A single burn provides 1 𝑛⁄  of the required changes of semi-

major axis and eccentricity. In this case, the trip time is 3 years (𝑛 = 3), so it is 

expected to have 3 perihelion burns and 3 aphelion burns. Again, it is assumed that 

a burn is not affected by the previous one. 

First, the components of eccentricity vector on the ecliptic plane are introduced to 

assure the proper alignment of the line of apsides [2]: 

Δ𝑒𝑥 = 𝑒𝑇 cos(Ω𝑇 + 𝜔𝑇) − 𝑒𝐸 cos(Ω𝐸 + 𝜔𝐸) 

Δ𝑒𝑦 = 𝑒𝑇 sin(Ω𝑇 + 𝜔𝑇) − 𝑒𝐸 sin(Ω𝐸 + 𝜔𝐸) 

The variations Δ𝑒 and Δ𝑎 can be written as functions to these values: 

Δ𝑒 = √Δ𝑒𝑥
2 + Δ𝑒𝑦

2 = 𝑒𝑇 

Δ𝑎 = 𝑎𝑇 − 𝑎𝐸 

Now it is possible to calculate the effective change in semi-major axis and 

eccentricity at each apside. With 𝑛 = 3 burns, each perihelion maneuver (PA) has 

Δ𝑎𝑃𝐴 =
(Δ𝑎 + Δ𝑒)

2𝑛
=

𝑎𝑇 − 𝑎𝐸 + 𝑒𝑇

6
 

Δ𝑒𝑃𝐴𝑥 = Δ𝑎𝑃𝐴 (
Δ𝑒𝑥

Δ𝑒
) =

𝑎𝑇 − 𝑎𝐸 + 𝑒𝑇

6
[cos(Ω𝑇 + 𝜔𝑇)] 
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Δ𝑒𝑃𝐴𝑦 = Δ𝑎𝑃𝐴 (
Δ𝑒𝑦

Δ𝑒
) =

𝑎𝑇 − 𝑎𝐸 + 𝑒𝑇

6
[sin(Ω𝑇 + 𝜔𝑇)] 

Each aphelion maneuver (AP) has instead 

Δ𝑎𝐴𝑃 =
(Δ𝑎 − Δ𝑒)

2𝑛
=

𝑎𝑇 − 𝑎𝐸 − 𝑒𝑇

6
 

Δ𝑒𝐴𝑃𝑥 = −Δ𝑎𝐴𝑃 (
Δ𝑒𝑥

Δ𝑒
) =

𝑎𝐸 + 𝑒𝑇 − 𝑎𝑇

6
[cos(Ω𝑇 + 𝜔𝑇)] 

Δ𝑒𝐴𝑃𝑦 = −Δ𝑎𝐴𝑃 (
Δ𝑒𝑦

Δ𝑒
) =

𝑎𝐸 + 𝑒𝑇 − 𝑎𝑇

6
[sin(Ω𝑇 + 𝜔𝑇)] 

 

As it has been mentioned earlier, the changes of 𝑎 and 𝑒 produced at each burn are 

linked, as to reach the right eccentricity value and assure the proper alignment of the 

line of apsides, the semi-major axis must be varied proportionally in the same orbital 

position (perihelion or aphelion) [2]. 

After describing the contributions of each burn to the changes of semi-major axis 

and eccentricity, the need is to have a thrust control law to assure the proper thrust 

direction and to monitor the evolution of the orbital parameters over time. The 

importance of the fact that thrust must always be oriented correctly is mainly related 

to the minimization of propellant consumption while proceeding to change the 

orbital elements. Gauss planetary equations accurately describe the temporal 

variation of the orbital parameters under the effect of thrusting. In a non-dimensional 

form, here are the related equations to 𝑎, 𝑒 and 𝑖: 

𝑉
𝑑𝑎

𝑑𝑡
= 2𝑎 (

𝑇

𝑚
) cos 𝛼 cos 𝛽 

𝑉
𝑑𝑒

𝑑𝑡
= 2 (

𝑇

𝑚
) (cos 𝜗 cos 𝛼 cos 𝛽 + sin 𝜗 sin 𝛼 cos 𝛽) 

𝑉
𝑑𝑖

𝑑𝑡
= (

𝑇

𝑚
) cos 𝜗 sin 𝛽 
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In the planar problem (𝑖 = 0), only 𝑎 and 𝑒 are considered, and the thrust control 

law refers only to the thrust in-plane angle 𝛼. The optimal control law asserts that 

𝛼 can be expressed as a function of two parameters, 𝜗𝑒  and 𝜆, related to the 

proximity of the line of apsides and to changes of eccentricity and semi-major axis. 

Thus, the in-plane angle is a function of the longitude 𝜗 with respect to 𝜗𝑒  for 

different values of 𝜆, and for each orbital position there two possible solutions, from 

which the correct one is obtained through the boundary conditions of the problem 

[2]. The real issue with this control law is that numerical integration or elliptic 

integrals are necessary for the global resolution of the problem; for this reason, a 

linear control law that accurately approximates the solution is used instead of the 

optimal control law. In this case, the important parameters are 𝜗𝑒  and Λ: the first 

one is the same of the exact solution and 𝜗 = 𝜗𝑒  represents the longitude where the 

thrust is perfectly horizontal, concurrent with the spacecraft velocity (Δ𝑎 > 0, 𝛼 =

0) or opposite to the spacecraft velocity (Δ𝑎 < 0, 𝛼 = 𝜋); Λ is a value between 0 

and 1 which must be small to have thrust close to the velocity direction. Of course, 

large values of Λ mean a significant misalignment of thrust direction and a 

consumption increase. The linear control law can be written in two ways, depending 

on the sign of Δ𝑎: 

{
𝛼 = Λ(𝜗 − 𝜗𝑒)           Δ𝑎 > 0

𝛼 = 𝜋 + Λ(𝜗 − 𝜗𝑒)     Δ𝑎 < 0  
 

This linear control law allows for analytical integration and produces a set of three 

algebraic equations that relate the required changes of Δ𝑎, Δ𝑒𝑥  and Δ𝑒𝑦 to 𝜗𝑒 , Λ and 

the burn arc angular length Δϑ [2]. In the planar problem, these equations take into 

consideration the in-plane acceleration component, the main one, from with the 

mass of the spacecraft is therefore easily obtained; in the complete problem (𝑖 ≠ 0), 

out-of-plane thrust angle 𝛽 is equally important. The second algebraic system 

consists of three algebraic equations generated by the burn evaluation. It is easily 

solved with an iterative procedure in which tentative values are assumed for 𝜗𝑒 , Λ 

and Δϑ (in addition to 𝛽 and using the initial mass) and Δ𝑎, Δ𝑒𝑥  and Δ𝑒𝑦 are 

analytically derived. After an initial correction given according to a Newton’s 
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scheme, the required orbital changes are achieved from the relations of Δ𝑎, Δ𝑒𝑥 and 

Δ𝑒𝑦 in perihelion and aphelion maneuvers. 

1.3.2 Plane change 

Variations of inclination are important since frequently a mission expects the target 

orbit to be out of phase by a few degrees with respect to the departure orbit. In this 

paper, a single case deals with the planar problem (𝑖 = 0, case 0) explained in the 

previous section; in three cases inclination of the arrival orbit is proportional to 

eccentricity and its variation (𝑖 = (1 8⁄ )𝑒, cases A, B, C), while in six cases the 

inclination is set at a constant value, of which three with 𝑖 = 3° (cases A3, B3 and 

C3) and three others with 𝑖 = 6° (cases A6, B6 and C6). 

The overall accuracy of the solution requires that out-of-plane thrust angle 𝛽 has to 

be kept constant during each burn and then progressively adjusted as the iterations 

progress to obtain the desired plane change. More precisely, 𝛽 has a constant 

positive value during the half revolution centered at the ascending node and the 

opposite negative value during the half revolution centered at the descending node 

[2]. Even regarding the Δ𝑖 split, the optimal law is not chosen due to the complexity 

and the computational slowness; the adopted law considers the fact that maneuvers 

combination is advantageous especially when the Δ𝑉 of the different maneuvers are 

similar, because of the vector sum. Therefore, accurate results are expected if a large 

Δ𝑖 is associated to with a large in-plane burn, because the inclination change is 

proportional to the changes of the in-plane orbital elements (Δ𝑃𝐴 and Δ𝐴𝑃), which 

occurs with the burns to the two apsides. In this way, inclination change at each burn 

is easily derived [9]: 

Δ𝑃𝐴 = |Δ𝑎𝑃𝐴| + |Δ𝑒𝑃𝐴|   →    Δ𝑖𝑃𝐴 =
Δ𝑃𝐴

(Δ𝑃𝐴 + Δ𝐴𝑃)

Δ𝑖

𝑛
 

Δ𝐴𝑃 = |Δ𝑎𝐴𝑃| + |Δ𝑒𝐴𝑃|   →    Δ𝑖𝐴𝑃 =
Δ𝐴𝑃

(Δ𝑃𝐴 + Δ𝐴𝑃)

Δ𝑖

𝑛
 

According to Edelbaum’s approximation, is it possible to determine Δ𝑖 starting from 

the differential equation that expresses the infinitesimal variation d𝑖 with respect to 

the longitude (or angular position) 𝜗: 
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𝑑𝑖 = (
𝑇

𝑚
) sin 𝛽 cos 𝜗 𝑑𝜗 

It is important to observe that 𝜗 = 0, 𝜋 are the corresponding positions for the 

ascending and the descending nodes respectively; hence it is evident, even 

mathematically, that thrusting at the nodes is more convenient (𝑑𝑖 =

(𝑇 𝑚⁄ ) sin 𝛽 𝑑𝜗). However, given the difficulty of prediction of the thrust effect for 

a generic burn that spans a Δ𝜗 angle, to determine the global Δ𝑖, it is necessary to 

go through a simple calculation of a specific inclination change along a single 

revolution Δ𝑖2𝜋, derived with 𝛽 = 𝑐𝑜𝑠𝑡 and Δ𝜗 = 2𝜋 [2]: 

Δ𝑖2𝜋 = 4 (
𝑇

𝑚
) sin 𝛽  →    Δ𝑖 =

Δ𝑖2𝜋

2𝜋
=

2

𝜋
(

𝑇

𝑚
) sin 𝛽 Δ𝜗 

This relation seems decisive, but there is still a significant problem to be resolved: 

the average rate of inclination variation does not take into account the position of 

the burns with respect to the line of nodes. It is not a trivial issue since it considerably 

influences the propellant consumption. In detail, when the line of nodes is close to 

the line of apsides consumptions are underestimated, while they are overestimated 

when both lines are in quadrature or close to it (that is, when the two lines are 

separated by an angular difference close to or exactly 90°). As it is now clear, the 

assumption of a constant out-of-plane thrust angle 𝛽 and the relative position of the 

line of nodes and the line of apsides are two indispensable and crucial factors for 

this estimation method accuracy [2]. Therefore, a correction factor 𝐾 that strongly 

considers the geometry of the trip and accounts more considerably the effect of the 

out-of-plane thrust component 𝑇𝑊. Δ𝑖 equation changes in the following way: 

Δ𝑖 =

2
𝜋 (

𝑇
𝑚) sin 𝛽 Δ𝜗

𝐾
 

With  

𝐾 = 𝑘0 + 𝑘1𝑘2𝑘3 

This constituent parameters of the correction factor 𝐾, linked to some orbital 

elements, are now described: 
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 𝑘0 represents the cost of a plane change precisely at the node; a value of 0.6 is 

imposed, although the precise value would be 2 𝜋⁄ = 0,6366.., since the use of a 

linear approximate control law tends to overestimate the consumption, hence this 

lower value partially compensates this overestimation. 

 𝑘1 = 1 − cos(2Ω𝑇) is a parameter which considers the position of both line of 

apsides and line of nodes; in particular, the thrusting effect is maximum when they 

are coincident (Ω𝑇 = 0, 𝜋, 2𝜋), while it is significantly penalized when they are in 

quadrature (Ω𝑇 = 𝜋 2, 3𝜋 2⁄⁄ ). 

 𝑘2 = 1.5𝑒𝑇 takes into consideration one of the most important assumptions of 

Edelbaum’s approximation: the eccentricity variation must be small, otherwise the 

cost of the maneuver highly increases. The reason why this is significant is that an 

orbit with small eccentricity, that is almost-circular, allows placing the burns to raise 

perihelion and/or aphelion close to the nodes instead of the apsides with a small 

extra cost to pay; in an eventual case with 𝑒𝑇 = 0 these burns can be placed at any 

orbital longitude since the problem would deal with the transfer between two 

circular orbits. On the other hand, positioning the burns close to the apsides is 

essential to minimize the cost of the maneuver when the target orbit’s eccentricity 

increases. 

 𝑘3 = [3 + cos(Δ𝜗)] 4⁄  is related to the burn arc angular length, favoring long 

thrusting arcs; it is interesting to report that when the burn arc is longer than 90° it 

necessarily comprises both the lines of nodes and apsides. When this situation 

occurs, the value of 𝛽 can be varied in the optimal solution to increase the out-of-

plane thrust component 𝑇𝑊 = 𝑇 sin 𝛽 at the nodes, where the plane change is more 

efficient, and the consumption is lower. 

The evaluation of these four parameters leads K to assume the following range of 

values (with 𝑒𝑇 = 0.25): 

0.6 < 𝐾 < 1.35 
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The minimum value 0.6 corresponds to a plane change maneuver precisely at the 

nodes, while the maximum value corresponds to a plane change maneuver executed 

about 60° away from the line of nodes [2]. 

1.3.3 RAAN variation 

So far, the variations of some in-plane parameters (semi-major axis and eccentricity) 

and of the inclination with regard to the orbital plane change have been discussed. 

In this paragraph, the right ascension of ascending node (RAAN or Ω) change is 

presented, lately in the next chapters it is observed how it affects the consumption 

estimation, alone and together with the variations of the other elements. Ω is the 

orbital parameter that measures counterclockwise (as seen from north of the Ecliptic 

Plane) the angular distance between the First Point of Aries and the ascending node 

[10,11]. The set of 75 fictitious asteroids considered in this work assumes that the 

positions of periapsis and apoapsis are always maintained even while varying their 

altitudes, and so periapsis and apoapsis can be also called perihelion and aphelion, 

since the reference plane is the Ecliptic Plane; hence, it is possible to say that Ω 

represents in this work the angular difference from the line of apsides (starting from 

the perihelion) to the line of nodes (precisely, the ascending node). 

Cases 0 and A, A3 and A6 presents for the target orbit Ω𝑇 = 0, meaning that the 

ascending node is coincident with the perihelion even when a plane change occurs 

(cases A, A3 and A6). A different situation arises instead for cases B, B3 and B6, 

which have Ω𝑇 = 45°, and for cases C, C3 and C6, which present Ω𝑇 = 90°: in the 

first three cases the ascending node is 45° away from the perihelion, while in the 

other three ascending node and perihelion are in quadrature. As it has been seen in 

the previous section, a RAAN value significantly different from 0 especially 

penalizes the plane change maneuver (through 𝑘1 factor of the correction factor 𝐾), 

but the cases with 𝑖 changing proportionally to 𝑒 (cases B and C) and the cases with 

a fixed 𝑖 (particularly, the ones with relatively high 𝑖) show that, if eccentricity 

variation is small, the estimation of some important parameters such as Λ and 𝜗𝑒  

improves considerably. 
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2. APPROXIMATE SOLUTIONS 
 

This paper proposes approximate solutions based on Edelbaum’s approximation of 

a 3-year mission using Electric Propulsion [9]. The mission, as already written in 

the first chapter, includes three passages at the periapsis and three passages at the 

apoapsis, in which the relative maneuvers necessary to raise the apsides’ altitude 

and gradually change other orbital parameters are performed [2].  

Initially, four cases have been studied; one of them treats the planar problem (𝑖 =

0), the remaining three have in common a plane change in which the inclination is 

proportional to the eccentricity and differ in the values of the RAAN. The initial 

cases are therefore presented below: 

1. Case 0: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing, 𝑖 = 0 

and the other parameters are null; 

2. Case A: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing,  

𝑖 = (1 8⁄ )𝑒 and the other parameters are null; 

3. Case B: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing,  

𝑖 = (1 8⁄ )𝑒,  Ω = 𝜋 4⁄  and the other parameters are null; 

4. Case C: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing,  

𝑖 = (1 8⁄ )𝑒,  Ω = 𝜋 2⁄  and the other parameters are null. 

Subsequently, some cases very similar to the initial ones, but with a fixed 

inclination, have been analyzed as a matter of comparison. The chosen inclinations 

with which the first four cases have been modified are 𝑖 = 1.5°, 𝑖 = 3°, 𝑖 = 4.5° 

and 𝑖 = 6° and do not depend on eccentricity. These cases are also reported here: 

 Case A1.5: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing, 

 𝑖 = 1.5° and the other parameters are null; 

 Case A3: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing,  

𝑖 = 3° and the other parameters are null; 

 Case A4.5: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing,  
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𝑖 = 4.5° and the other parameters are null; 

 Case A6: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing,  

𝑖 = 6° and the other parameters are null; 

 Case B1.5: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing, 

𝑖 = 1.5°,  Ω = 𝜋 4⁄  and the other parameters are null; 

 Case B3: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing,  

𝑖 = 3°,  Ω = 𝜋 4⁄  and the other parameters are null; 

 Case B4.5: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing, 

𝑖 = 4.5°,  Ω = 𝜋 4⁄  and the other parameters are null; 

 Case B6: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing,  

𝑖 = 6°,  Ω = 𝜋 4⁄  and the other parameters are null; 

 Case C1.5: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing, 

𝑖 = 1.5°,  Ω = 𝜋 2⁄  and the other parameters are null; 

 Case C3: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing,  

𝑖 = 3°,  Ω = 𝜋 2⁄  and the other parameters are null; 

 Case C4.5: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing, 

𝑖 = 4.5°,  Ω = 𝜋 2⁄  and the other parameters are null; 

 Case C6: the target orbit presents 𝑎 = 1 at first, 𝑒 progressively increasing,  

𝑖 = 6°,  Ω = 𝜋 2⁄  and the other parameters are null. 

The thrusting effects are therefore perceived and calculated through the burning arcs 

at perihelion and aphelion, always considering the relative proximity of the line of 

apsides and the line of nodes. In fact, the changes due to having a variable or fixed 

inclination and Ω variations are critical factors that determine the burn arc angular 

length and, in turn, the feasibility of the mission with respect to the number of 

burning arcs imposed and the different distances of the asteroids taken into account.  

2.1 Perihelion maneuver 

2.1.1 Planar Problem: Case 0 

Speaking in terms of code used with Fortran programming language, the Earth is 

regarded as asteroid #1, so the considered group of 75 Near-Earth Asteroids goes 
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from asteroid #2 to asteroid #76 (respectively, the closest and the farthest from Earth 

departure orbit). To avoid misunderstandings, it should also be taken into 

consideration that in each graph in this report the numbering does not reflect the one 

just reported but goes from asteroid #1 to asteroid #75 (only target asteroids are 

numbered).  

The first analyzed case deals with the planar problem: the transfer consists only of 

the variations of the semi-major axis, made by changing the altitude of the apsides, 

and the eccentricity, having 𝑖𝐸 = 𝑖𝑇 = 0. The absence of an orbital plane change 

maneuver makes this case by far the simplest among all those studied in this work, 

and the least expensive in terms of propellant consumption. Asteroid #76, the 

farthest and the most expensive one, consumes indeed only 5,00281 𝑘𝑔 of the 

starting 20 𝑘𝑔, as it can be seen in the following joint graph of the propellant mass 

utilized and the final mass of the spacecraft (trivially, this last value is the difference 

between the starting mass and the propellant consumed). 

 

Figure 1. Trends of Propellant Mass and Final Mass 
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Although this initial feedback may seem encouraging, case 0 is the one that globally 

presents the least accurate (but still acceptable) answer on the fundamental 

parameters calculated using this estimation method, that is, 𝜗𝑒 , Λ and the initial and 

final values of the in-plane thrust angle 𝛼𝑖𝑛𝑖𝑧 − 𝛼𝑓𝑖𝑛. 𝜗𝑒  is probably the most 

important of these parameters with regards to the accuracy of the solution, because 

when it is equal to 0 the thrust is practically horizontal [2] (there are no losses or 

errors due to misalignment) and the maneuver is perfectly centered at the perihelion 

(a crucial aspect especially for the plane change maneuvers in cases where the 

perihelion and the ascending node coincide, that is, Ω = 0). 

 

Figure 2. 𝜗_𝑒 angle for Case 0 - Perihelion 

In this graph, it is possible to notice that the first set of about 50 asteroids return an 

unexpected output. The original value of 𝜗𝑒  pulled out of the code seemed to 

fluctuate between 𝜋 and −𝜋, but these angular values represent the same orbital 

longitude, consequently it has been chosen to adopt the absolute value (in this range 

of about 50 asteroids) for greater clarity. However, as already written, 𝜗𝑒 ≅ 𝜋 may 

an issue for the accuracy of the method since, in essence, it estimates that the 

maneuver is performed not at the perihelion, but at the diametrically opposite point 
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to it. At about asteroid #53, a transition takes place which brings the value in closest 

range of 0 and maintains it up to asteroid #76. 

Λ assumes in case 0 very acceptable values since they are very low, but it has a 

particular trend: it decreases starting from the first asteroid until it is almost equal 

to 0 at asteroid #51, and then begins to increase and maintains this trend until the 

final asteroids. 

 

Figure 3. Λ value for Case 0 - Perihelion 

It is particularly curious that for both 𝜗𝑒  and Λ the transition (of values for 𝜗𝑒 , of 

trend for Λ) takes place at a distance of very few asteroids. It has been observed that 

is not a random or isolated factor but is also found in subsequent cases, and it is 

even found in the trends of 𝛼𝑖𝑛𝑖𝑧 and 𝛼𝑓𝑖𝑛. 
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Figure 4. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 comparison for Case 0 - Perihelion 

The estimation only makes sense if 𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧 , and it is easy to note that the 

section of the graph for which the previous inequality is satisfied begins at the same 

asteroid where the Λ transition from decreasing to increasing occurs and a few 

asteroids away from the 𝜗𝑒  transition to 0. When 𝛼𝑓𝑖𝑛 < 𝛼𝑖𝑛𝑖𝑧, 𝛼 is discontinuous 

since the burning arc is not centered at 𝜗 = 𝜗𝑒, that is 𝜋 in absolute value, but at 

𝜗 = 0, that is the perihelion [2]. It is also important to note that the adopted linear 

control law for the thrusting in-plane effect is valid when −𝜋 < (𝜗 − 𝜗𝑒) < 𝜋, 

hence the reason why having 𝜗𝑒  in a range of  𝜋 could represent an inaccuracy of 

the method is easily understandable, although it is however acceptable as suboptimal 

solution and in the future it will be necessary to understand why the code choose 

these solutions instead of the responses expected. 

Lastly, the graph of the burn arc angular length Δ𝜗 in perihelion for each asteroid is 

shown. This parameter, crucial for the veracity of the estimation, is calculated as the 

difference of the two orbital positions where the thrusting arc begins and ends: Δ𝜗 =

𝜗𝑖𝑛𝑖𝑧,𝑇 − 𝜗𝑓𝑖𝑛,𝑇. 
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Figure 5. Δ𝜗 angle for Case 0 - Perihelion 

As expected, the burning arcs are very small as far as the asteroids closest to Earth 

are concerned; then, the angular values increase significantly moving towards the 

most distant asteroids. This trend is practically identical to the trend of the propellant 

consumption, except for the last two asteroids which have Δ𝜗 values larger than 𝜋, 

an eventuality in disagreement with an assumption of reliability of the method that 

impose Δ𝜗 < 𝜋 at each apside; hence, when Δ𝜗 > 𝜋, in each case a correction is 

adopted by subtracting 2𝜋 and the taking the absolute value of the result: Δ𝜗 =

|Δ𝜗𝑖𝑛𝑖𝑧 − 2𝜋|. Trivially, Δ𝜗 values larger than 𝜋 are always defined by subtracting 

2𝜋 and their reported value is between 0 and 2𝜋; therefore, the trend stops as soon 

as Δ𝜗 > 𝜋, since the used relations are valid only if Δ𝜗 < 𝜋. 

This is interesting not only because Δ𝜗 and propellant consumption are actually 

connected, but also since the required orbital changes affect them both: the more 

orbital elements need to be varied, the larger Δ𝜗 and 𝑚𝑝 are. This result is 

effectively shown and reported in the next section, in which cases with variable 

inclination (A, B and C) are treated. 
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2.2 Plane change with 𝑖 = (1 8⁄ )𝑒 ∶ 𝑐𝑎𝑠𝑒𝑠 𝐴, 𝐵 𝑎𝑛𝑑 𝐶 

Cases A, B and C share the linear dependence of inclination on eccentricity, and 

instead are distinguished due to the different positions that the ascending node 

assumes with respect to the line of apsides, hence for the different values of Ω. The 

rate of inclination change is described by the following equation: 

𝑖 = (1 8⁄ )𝑒 

So, the inclination gradually increases as a fraction of the eccentricity, which also 

grows progressively. Due to this slow and in any case contained growth, the trends 

of the significant parameters as regards cases A, B and C can be compared with the 

results obtained with the planar problem in case 0. 

 

Figure 6. Propellant consumption comparison for Cases 0, A, B and C - Perihelion 

The comparison of the propellant masses utilized in these first four cases provides 

a fairly predictable response: propellant consumption is strongly related to the 

required changes of orbital parameters from the departure orbit to the arrival orbit 

[2]; thus, case C is the one with the highest consumption since a lot of parameters 
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are varied throughout the mission (𝑎, 𝑒, 𝑖 and Ω). On the contrary, the case in which 

the least propellant is used is trivially case 0 as it performs a simpler mission, 

consisting only of the elevation of the apsides and the small increase of the 

eccentricity.  

 

Figure 7. 𝜗_𝑒 comparison for Cases 0, A, B and C - Perihelion 

As it can be seen, the response of the estimation method regarding 𝜗𝑒  follows a 

similar path in all four cases. Also for the cases with variable inclination there is a 

first group of asteroids in which the answer is unexpected since 𝜗𝑒 ≅ 𝜋, and then, 

at a certain point, a transition to 0 occurs. It is easy to observe that the last group of 

asteroids, the one with an accurate answer in which 𝜗𝑒 ≅ 0, tends to grow going 

from case 0 to case C, in fact the transition shifts to the left, i.e., towards a previous 

asteroid. And a similar, but slightly different situation occurs with Λ patterns. 
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Figure 8. Λ comparison for Cases 0, A, B, C - Perihelion 

It is no coincidence that the trends are practically identical, and the respective 

transitions occur a few asteroids before those of 𝜗𝑒: these parameters are related, as 

well explained in chapter 1, section 1.3, and paragraph 1.3.1. In detail, it almost 

seems that these values offset each other, and any case can be taken to demonstrate 

this. Case C is taken as example. In this case, up to asteroid #37 𝜗𝑒  response seems, 

as seen above, inaccurate, and the transition takes place at asteroid #39; Λ values in 

this first group of asteroids are instead very small, as theoretically they must be. 

This parameter is indeed in a range that goes from a value lower than 0,2 initially to 

an almost-null value at asteroid #37. Subsequently, when 𝜗𝑒  response becomes ideal 

and remains so until the last asteroid, Λ, which in the first part has a decreasing trend 

that brings it almost to 0, assumes an increasing logarithmic-like trend that leads it 

to have a value greater than 0,5 in the last asteroids, not irrelevant for a parameter 

between 0 and 1 [2]. 

The aspects described so far might suggest that there is no problem of an inaccurate 

answer if, somehow, 𝜗𝑒  and Λ tend to compensate each other more or less in the 

whole group of asteroids analyzed. The unforeseen fact is that the linear control law, 
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adopted to accurately approximate the behavior of the in-plane thrust angle 𝛼, 

continues to provide, even for cases A, B and C, surprising values for the Δ𝛼 range 

in the first set of asteroids, in which 𝜗𝑒 ≅ 𝜋. 

 

Figure 9. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 comparison for Case A - Perihelion 
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Figure 10. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 comparison for Case B - Perihelion 
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Figure 11. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 comparison for Case C - Perihelion 

As indeed it can be noted, although the transition after which 𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧 is 

anticipated and shifts to the left going from case 0 to case C, in all four cases there 

is still a quite consistent group of asteroids in which the maneuver appears 

discontinuous because is not centered at the right point. In fact, in the group of 

asteroids in which 𝛼𝑓𝑖𝑛 < 𝛼𝑖𝑛𝑖𝑧 , 𝛼 goes from 𝛼𝑖𝑛𝑖𝑧 to Λπ, then it has a discontinuity 

and starts again from −Λπ to 𝛼𝑓𝑖𝑛. Λπ and −Λπ values are asymptotic and not 

random since, as reported above, 𝜗 − 𝜗𝑒  must be a number between −π and π. 

Furthermore, the linear control law of 𝛼 is relevant to theory only if ∆𝜗 < π. 

However, even the results given by the first group of asteroids can be accepted as 

suboptimal solutions of the utilized code. Here are the trends of the burn arc angular 

length for cases 0, A, B and C: 
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Figure 12. ∆𝜗 comparison for Cases 0, A, B and C - Perihelion 

The case where ∆𝜗 reaches first 𝜋 value is case C and looking the trends of the 

propellant consumption above it is easy to understand why: case C requires the 

largest orbital changes, consequently it is also the case with the longest burning arcs 

among the first four cases. Asteroid #62 in case C has ∆𝜗 ≅ 3,07636°, thus the last 

14 asteroids must be corrected with the mathematical law shown before to get the 

appropriate response in terms of ∆𝜗 and their values are not shown on the graph 

since ∆𝜗 > 𝜋. 

2.3 Aphelion maneuver 

The apoapsis (or aphelion) maneuver is generally more complicated than the 

periapsis (or perihelion) maneuver, mainly due to the fact that the thrust direction is 

not taken for granted as in the periapsis, and it is described by the parameter “verse” 

which assumes value 1 if the thrust is concurrent to the expected direction of 

advancement while takes value -1 if the thrust is opposite from the direction of 

advancement, that basically means that the spacecraft is braking. In aphelion, this 

trend is variable for each asteroid, and this is not a trivial information: if the vehicle 
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brakes, 𝛼 and 𝜗 are no longer centered in 0, but in 𝜋, and this has numerical 

consequences on the treated parameters which are immediately visible in the 

reference graphs.   

2.3.1 Cases 0, A, B and C comparison 

As mentioned in the previous paragraph, the aphelion maneuver may be more 

difficult to understand and interpret than the perihelion maneuver. The analysis of 

the maneuver performed in the first four cases can begin by observing the trends of 

𝜗𝑒 . 

 

Figure 13. 𝜗_𝑒 comparison for Cases 0, A, B and C - Aphelion 

 

The reported values are ambiguous at first sight: in the first group, 𝜗𝑒  oscillates 

between 0 and 𝜋; in the central group it is in a range of 0, while for the final asteroids 

it stabilizes at 𝜋. These trends are strongly related to the verse of the thrust, as it is 

possible to note in the following graph. 
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Figure 14. Thrust verse comparison for Cases 0, A, B and C - Perihelion 

In the first group, the most complex to deal with, the thrust verse varies frequently, 

and this could be seen as a symptom of possible inaccuracy of the method. 

Actually, for the closest asteroids to Earth there are two possible solutions among 

which the code could choose: one with 𝑣𝑒𝑟𝑠𝑒 = 1 and 𝜗𝑒 ≅ 0 and the other one 

with 𝑣𝑒𝑟𝑠𝑒 = −1 and 𝜗𝑒 ≅ 𝜋; these solutions are close to each other, and the 

convergence algorithm tends to randomly find one or the other. Random 

convergence explains the reason for this apparently unclear response and therefore 

the presence of oscillations. It is interesting to observe that the transition from 

oscillating values in the first group to stable at 0 in the second group always 

occurs earlier (i.e., to a previous asteroid) going from case 0 to case C; in fact, the 

first group “ends” at asteroid #26 for case 0, whereas this first transition takes 

place at asteroid #19 for case C. The second and last groups instead follow, at least 

in theory, what the linear control law of the in-plane thrust angle 𝛼 imposes. When 

the thrust is concurrent to the expected direction of advancement [2]and so 

𝑣𝑒𝑟𝑠𝑒 = 1, ∆𝑎 is a positive value and 𝛼 = Λ(𝜗 − 𝜗𝑒), so 𝜗𝑒 , that indicates the 

angular position in which the maneuver must be performed to have the thrust 

-1.5

-1

-0.5

0

0.5

1

1.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75

Thrust verse values - aphelion (Cases 0, A, B and C)

verse2 (0) verse2 (A) verse2 (B) verse2 (C)



36 
 

perfectly horizontal, must be in the closest range of 0. Subsequently, another 

transition occurs, and when it occurs in the four cases is analogous to what is 

written above (case 0 → asteroid #62, case C → asteroid #50). Last asteroids, in 

each case, have 𝑣𝑒𝑟𝑠𝑒 = −1; therefore, the thrust is opposite from the direction of 

advancement and ∆𝑎 < 0, and this causes the linear control law to be 𝛼 = 𝜋 +

Λ(𝜗 − 𝜗𝑒). When ∆𝑎 is a negative value and consequently the spacecraft has to 

brake, 𝜗𝑒  must be in the closest range of 𝜋, in order to have 𝛼 ≅ 𝜋. 

 

Figure 15. Λ comparison for Cases 0, A, B and C - Aphelion 

Λ values are controversial. There is a very small subgroup of asteroids at the 

beginning which, for each case, has Λ < 0,5. Subsequently, it increases until it gets 

very close to 1 and then starts to decrease again (but not very much) a few asteroids 

away from the transition occurred for 𝜗𝑒  and verse. 

But, if possible, the results regarding Λ are not the only ones to be complex and 

worthy of further study. In fact, the graphs of 𝛼𝑖𝑛𝑖𝑧  and 𝛼𝑓𝑖𝑛 are visible below. 
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Figure 16. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 comparison for Case 0 - Aphelion 

 

Figure 17. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 comparison for Case A - Aphelion 
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Figure 18. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 comparison for Case B - Aphelion 

 

Figure 19. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 comparison for Case C - Aphelion 

These graphs are probably the most important to try to correctly interpret the 

aphelion maneuver and understand which path would be possible to follow if these 

models are applied in reality. Also with regard to these parameters, there is 
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some asteroid 𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧; the second one, in which one stably has 𝛼𝑓𝑖𝑛 < 𝛼𝑖𝑛𝑖𝑧; 

the last one, in which, in the same way, one has 𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧. Trying to analyze the 

situation of the first group, it is now clear that the first asteroids in these cases 

present significant oddities (due to the random convergence of the algorithm to the 

two possible solutions, each with their respective values of 𝑣𝑒𝑟𝑠𝑒 and 𝜗𝑒), certified 

by oscillating and never evident results. The second and third groups generally tend 

to follow the trends of 𝜗𝑒  and verse: particularly, the expected response is given in 

the area where 𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧, and this area coincides with the areas seen in the 

previous graphs in which 𝑣𝑒𝑟𝑠𝑒 = −1 and 𝜗𝑒 ≅ 𝜋. In the first and second areas, 𝛼 

tends to be discontinuous and this may be related to an odd and discontinuous 

centering of the maneuver.   

 

Figure 20. ∆𝜗 comparison for Cases 0, A, B and C - Aphelion 

As it can be observed, making the correction already discussed in the perihelion 

maneuver (if ∆𝜗 > 𝜋 → ∆𝜗 = |∆𝜗𝑖𝑛𝑖𝑧 − 2𝜋| and the original value is not shown in 

the graph), the trend of ∆𝜗 does not differ from what is seen in perihelion; 
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nevertheless, it can be easily noted that the burning arcs are almost as long as those 

seen in the previous maneuver. 

 

2.4 The relations between 𝝑𝒆, 𝝑𝒊𝒏𝒊𝒛 and 𝝑𝒇𝒊𝒏, 𝜶𝒊𝒏𝒊𝒛 and 𝜶𝒇𝒊𝒏   

2.4.1 Perihelion maneuver 

At perihelion, one has always 𝜗𝑓𝑖𝑛 > 𝜗𝑖𝑛𝑖𝑧  and ∆𝜗 = 𝜗𝑓𝑖𝑛 − 𝜗𝑖𝑛𝑖𝑧  (or, with the 

correction, ∆𝜗 = |∆𝜗𝑖𝑛𝑖𝑧 − 2𝜋|). At this point, it is necessary to discuss about 𝜗𝑒 , 

since a correct “placement” of this value makes the difference between an accurate 

and an imprecise output. In fact, it is possible to distinguish two possible situations 

by observing 𝜗𝑒: 

 If  𝜗𝑖𝑛𝑖𝑧 < 𝜗𝑒 < 𝜗𝑓𝑖𝑛 , 𝛼 definitely has a continuous value, since it not only 

follows the approximate linear control law 𝛼 = Λ(𝜗 − 𝜗𝑒), but knowing 

𝜗𝑖𝑛𝑖𝑧, 𝜗𝑓𝑖𝑛, 𝛼𝑖𝑛𝑖𝑧, 𝛼𝑓𝑖𝑛 it is possible to demonstrate trough a mathematical 

relationship that it varies linearly with 𝜗: 

𝛼 = 𝛼𝑖𝑛𝑖𝑧 + (𝛼𝑓𝑖𝑛 − 𝛼𝑖𝑛𝑖𝑧) ∙
𝜗 − 𝜗𝑖𝑛𝑖𝑧

𝜗𝑓𝑖𝑛 − 𝜗𝑖𝑛𝑖𝑧
 

 If  𝜗𝑒 ∉ [𝜗𝑖𝑛𝑖𝑧 ; 𝜗𝑓𝑖𝑛], then 𝛼 has a discontinuous value and as written in 

section 2.2, it initially goes from 𝛼𝑖𝑛𝑖𝑧 to Λ𝜋, a discontinuity makes it start 

again from −Λ𝜋 and then it grows until 𝛼𝑓𝑖𝑛. 

The observation of the graphs certainly helps the understanding of these concepts, 

also because in perihelion the trends for cases 0, A, B and C are similar, the only 

difference is the initial value for which 𝜗𝑒 ∈ [𝜗𝑖𝑛𝑖𝑧; 𝜗𝑓𝑖𝑛]. 

 

 

 

 



41 
 

 Case 0 

 

Figure 21. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case 0 - Perihelion 

 

Figure 22. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 for Case 0 - Perihelion 
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 Case A 

 

Figure 23. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 for Case A - Perihelion 

 

Figure 24. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛 , Λ𝜋 for Case A - Perihelion 
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 Case B 

 

Figure 25. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 for Case B - Perihelion 

 

Figure 26. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 for Case B - Perihelion 
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 Case C 

 

Figure 27. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 for Case C - Perihelion 

 

Figure 28. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 for Case C - Perihelion 
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It is trivial to note that, for each case, 𝛼 graphs start to give the expected solution 

(hence, the area in which 𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧) when 𝜗𝑖𝑛𝑖𝑧 < 𝜗𝑒 < 𝜗𝑓𝑖𝑛 . Furthermore, the 

evolution of  Λ𝜋 demonstrates what has been written previously: in the first section 

on the left, 𝛼𝑖𝑛𝑖𝑧 tends to the asymptotic value Λ𝜋, subsequently, to the point of 

intersection between 𝛼𝑖𝑛𝑖𝑧 and 𝛼𝑓𝑖𝑛, the trend restarts from −Λ𝜋 (not shown) and 

goes to 𝛼𝑓𝑖𝑛; in the second section on the right, 𝛼 is continuous and far from 

asymptotic value, which it no longer approaches.  

 

 

 

 

 

 

2.4.2 Aphelion maneuver 

The answer in aphelion is more complicated also as regards these relations, and the 

reason is the same discussed in section 2.3: the thrust verse is not taken for granted 

and affects the accuracy and the meaning of the results. The first step in analyzing 

the theoretical response of this maneuver is to observe 𝜗𝑖𝑛𝑖𝑧  and 𝜗𝑓𝑖𝑛 ; if, as always 

in perihelion, 𝜗𝑓𝑖𝑛 > 𝜗𝑖𝑛𝑖𝑧, these values are maintained; if 𝜗𝑓𝑖𝑛 < 𝜗𝑖𝑛𝑖𝑧, as often 

happens in aphelion, then 2𝜋 is added to 𝜗𝑓𝑖𝑛  (𝜗𝑓𝑖𝑛=𝜗𝑓𝑖𝑛,𝑖𝑛𝑖𝑧 + 2𝜋) and one 

consequently has ∆𝜗 = 𝜗𝑓𝑖𝑛 − 𝜗𝑖𝑛𝑖𝑧  reported between 0 and 2𝜋, as expected since 

the maneuver seems to be centered in 𝜋 and therefore 𝜗𝑓𝑖𝑛 especially should have 

values larger than 𝜋.  

However, one must remember what is initially written in chapter 2, section 2.1, 

paragraph 2.1.1: even if a solution may at first appear unexpected, it does not mean 

that is inaccurate since probably it is a suboptimal solution the algorithm chooses 

for a certain reason.  
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For each case, not only the graphs including 𝜗𝑒, 𝜗𝑖𝑛𝑖𝑧  and 𝜗𝑓𝑖𝑛  and those of 𝛼𝑖𝑛𝑖𝑧, 

𝛼𝑓𝑖𝑛 and Λ𝜋 are reported, but also those relating to the thrust verse to immediately 

give an idea of how much this affects the final responses. 
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 Caso 0 

 

Figure 29. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 for Case 0 - Aphelion 

 

Figure 30. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 for Case 0 - Aphelion 

 

Figure 31. Thrust verse for Case 0 – Aphelion 
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 Case A 

 

Figure 32. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 for Case A - Aphelion 

 

Figure 33. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 for Case A - Aphelion 

 

Figure 34. Thrust verse for Case A – Aphelion 
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 Case B 

 

Figure 35. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 for Case B - Aphelion 

 

Figure 36. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 for Case B - Aphelion 

 

Figure 37. Thrust verse for Case B - Aphelion 
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 Case C 

 

Figure 38. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 for Case C - Aphelion 

 

Figure 39. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 for Case C - Aphelion 

 

Figure 40. Thrust verse for Case C - Aphelion 
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The aphelion maneuver is in some ways symmetrical to the perihelion maneuver, 

and certainly one can have the same kind of discussion here, even if the trends show 

more fluctuating and less stable values. Even in these graphs there are three 

reference areas: the first one, very chaotic, in which the values of 𝜗𝑒 , 𝛼𝑓𝑖𝑛 and 𝑣𝑒𝑟𝑠𝑒 

oscillate significantly and change from asteroid to asteroid; the second one, in which 

𝑣𝑒𝑟𝑠𝑒 = 1, 𝜗𝑒 ≅ 0, 𝜗𝑒 ∉ [𝜗𝑖𝑛𝑖𝑧; 𝜗𝑓𝑖𝑛] and 𝛼𝑓𝑖𝑛 < 𝛼𝑖𝑛𝑖𝑧  and, in the end, the third one 

on the right, in which 𝑣𝑒𝑟𝑠𝑒 = −1, 𝜗𝑒 ≅ 𝜋 and 𝜗𝑖𝑛𝑖𝑧 < 𝜗𝑒 < 𝜗𝑓𝑖𝑛 , and of course 

𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧. As in perihelion, also in aphelion the expected answer is given by the 

farthest fictitious asteroids from Earth, but here this result is even more interesting 

since the thrust is opposite from the direction of advancement, ∆𝑎 < 0, the 

spacecraft has to brake, and the linear control law is 𝛼 = 𝜋 + Λ(𝜗 − 𝜗𝑒).  

These results would seem to show that, with a small-to-null inclination (even 

because 𝑒 is very low), the asteroids able to provide an adequate and expected 

estimation of the theoretical predictions are those distant beyond a certain amount. 

By separating the perihelion from the ascending node, that is, Ω ≠ 0, this distance 

is reduced, and more asteroids have an accurate output, at the cost of a small increase 

in consumption. Especially when the line of apsides and the line of nodes are in 

quadrature (Ω = 𝜋 2⁄ ), the perihelion response is accurate for about 50% of the 75 

asteroids and the aphelion response for about 33%. 

In the next chapter, the cases in which 𝑖 is fixed have been analyzed. Particularly in 

the last two cases studied with 𝑖 = 4.5° and 𝑖 = 6°, the inclination assumes larger 

values than those obtained with the linear dependence from eccentricity (but not so 

high to still adhere to Edelbaum’s approximation), and this, together with an obvious 

but not huge increase in consumption and some oddities in the very first asteroids, 

improves the overall accuracy of the preliminary estimation.  
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3. RESULTS WITH FIXED INCLINATION: 

IMPROVEMENTS AND COSTS 
 

The four cases treated in the previous chapter have in common, as seen, the linear 

dependence of the inclination on the eccentricity, a very positive factor in terms of 

consumption especially for the closest fictitious asteroids of the group: the orbits of 

these asteroids are almost-circular, thus the relation 𝑖 = (1 8⁄ )𝑒 suggests an 

infinitesimal plane change and ∆𝑉 and the overall cost are contained. 

The responses provided by these cases in terms of 𝜗𝑒 , Λ, ∆𝜗 and 𝛼𝑖𝑛𝑖𝑧-𝛼𝑓𝑖𝑛 are 

however unexpected, particularly, precisely for the closest asteroids, although 

generally acceptable as suboptimal solutions. The aim of this chapter is to analyze 

the possible improvements and the eventual additional costs of fixing the inclination 

to a certain value from the very first asteroid and maintaining it for the whole set. 

The inclination values analyzed for each case are the following: 𝑖 = 1.5°, 𝑖 = 3°, 

𝑖 = 4.5° and 𝑖 = 6°. Performing a plane change with an inclination larger than 6° 

would have probably meant departing too much from one of the fundamental 

hypotheses of Edelbaum’s approximation [6] and, for this reason, invalidating the 

results obtained and making the estimation method useless.   

The answers obtained are first compared between the various cases by 

corresponding inclination values (for example, A3, B3, C3), to study the influence 

of the RAAN variation as the inclination value increases; only later there are 

comparisons for each case seen but at different inclinations (ex. A, A1.5, A3, A4.5, 

A6).  
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3.1 Perihelion maneuver 

3.1.1 𝒊 = 𝟏. 𝟓° 

The first fixed inclination value to be treated is 𝑖 = 1.5°. Initially, the graphs of the 

consumed propellant mass are shown to observe any differences in trends with the 

cases treated in chapter 2. 

 

Figure 41. Propellant Mass comparison with i=1.5°  

As one can see, the trends in the propellant mass present smoother and less elevated 

curves than in the cases with variable inclination. Going into details, these curves, 

as shown in few paragraphs, intersect the curves of the cases treated in chapter 2. In 

fact, taking cases A and A1.5 as examples, the propellant mass consumed for 

asteroid #2 is 0,06363 𝑘𝑔 in case A and 0,954 𝑘𝑔 in case A1.5, so there is a 6,67% 

increase in consumption and this actually makes it clear that for the closest asteroids 

the cost of this plane change is slight, but present; instead, the propellant mass 

consumed for asteroid #76 is 5,40704 𝑘𝑔 in case A and 5,10758 𝑘𝑔 in case A1.5, 

with a decrease of 5,53% with fixed inclinations. This means that the farthest 
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fictious asteroids from Earth perform, with inclination increasing and linearly 

dependent from eccentricity, a larger plane change than the 1.5° imposed here. 

Hence it is also easy to guess that the central group of asteroids has almost-similar 

consumption in these two cases. The trends are identical for cases B and B1.5, C 

and C1.5, and so are the percentage of increase for asteroid #2 (6,64% going from 

B to B1.5, 6,57% going from C to C1.5), while the gap widens as regards asteroid 

#76 (−11,05% going from B to B1.5, (−16,59% going from C to C1.5). Therefore, 

fixing the inclination to a low value significantly decreases the propellant 

consumption as regards the farthest asteroids, especially in cases where Ω ≠ 0, at 

the expense of a slight increase in asteroids close to Earth.   

 

Figure 42. ϑ_e values comparison with i=1.5° - Perihelion 

As one could easily imagine, even the graph of 𝜗𝑒  trends for cases A1.5, B1.5 and 

C1.5 recalls what has been seen in cases with variable inclination. Given an initial 

oscillation caused, as already reported, by the proximity of the two possible 

solutions, the trends indeed appear very similar to those of the cases seen previously: 

initially, 𝜗𝑒  values settle at 𝜋, then at a certain asteroid a transition to the expected 

solution (𝜗𝑒 ≅ 0) takes place. Two considerations are particularly interesting: the 

first one is that the transition occurs “delayed” by 1-2 asteroids with respect to cases 
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A, B and C, and the almost identical answer demonstrates how this low inclination 

value has little impact on the final response; in the end, in case C the transition takes 

place much earlier than in the other two cases with 𝑖 = 1.5°. Another signal that the 

quadrature between the perihelion and the ascending node speeds up the transition 

of the algorithm to the expected solution. 

 

Figure 43. Λ values comparison with i=1.5° - Perihelion 

Even the graph with Λ values is quite similar to the graph seen for cases A, B and C. 

One can easily notice that here too, in correspondence with the section in which 

𝜗𝑒 ≅ 𝜋, Λ is very low, less than 0,1. Then, approximately at the same asteroids of 

the transition happened with 𝜗𝑒 , Λ starts to increase until values near 0,5 in the same 

area in which 𝜗𝑒 ≅ 0. The only difference between the current cases and cases with 

variable inclination is the is the very first stretch, where there is a little oscillation 

probably derived from the 𝜗𝑒  response, chaotic and fluctuating. In this area Λ is in 

a range between about 0,18 and 0,42.  
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Figure 44. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case A1.5 – Perihelion 

 

Figure 45. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case B1.5 – Perihelion 
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Figure 46. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case C1.5 – Perihelion 

The graphs of 𝛼𝑖𝑛𝑖𝑧 − 𝛼𝑓𝑖𝑛 trace those of Λ and 𝜗𝑒 , presenting the same subdivision 

into three zones: the first one, characterized by the random convergence value of the 

algorithm and therefore with some oddities; the second one, with 𝛼𝑓𝑖𝑛 < 𝛼𝑖𝑛𝑖𝑧, and 

the last one, with 𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧. Even with this inclination, 𝛼 in the first two zone is 

discontinuous, and the code has produced suboptimal responses. As expected, the 

transition to the foreseen answer occurs in case C before the other cases. 
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Figure 47. ∆𝜗 values comparison with i=1.5° - Perihelion 

In this graph, it is easy to note that the value of the last asteroid before ∆𝜗 > 𝜋 is 

very close for all the cases (#69 for case C1.5, #71 for case B1.5 and #72 for case 

A1.5), while in cases A, B and C these values are more widely spaced. It is very 

interesting to observe that for case C (Ω = 𝜋 2⁄ ) four more asteroids fall within the 

hypothesis of validity of the method (∆𝜗 < 𝜋), in fact for case C the last asteroid is 

#65. This means perhaps that for case C 𝑖 = 1.5° helps to slightly shorten the 

burning arcs. 

 

3.1.1.1 The relations between 𝜗𝑒, 𝜗𝑖𝑛𝑖𝑧 and 𝜗𝑓𝑖𝑛, 𝛼𝑖𝑛𝑖𝑧 and 𝛼𝑓𝑖𝑛 

Descriptive graphs of 𝜗𝑒 , 𝜗𝑖𝑛𝑖𝑧 and 𝜗𝑓𝑖𝑛 , 𝛼𝑖𝑛𝑖𝑧 and 𝛼𝑓𝑖𝑛 parameters and their 

relations are presented below for cases A1.5, B1.5 and C1.5.  

Obviously, one must remember that being a perihelion maneuver, the thrust verse 

is taken for granted and is 𝑣𝑒𝑟𝑠𝑒 = 1. 
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 Case A1.5 

 

Figure 48. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Cases A1.5 – Perihelion 

 

Figure 49. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case A1.5 – Perihelion 
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 Case B1.5 

 

Figure 50. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Cases B1.5 – Perihelion 

 

Figure 51. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case B1.5 – Perihelion 
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 Case C1.5 

 

Figure 52. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Cases C1.5 – Perihelion 

 

Figure 53. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case C1.5 – Perihelion 
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As expected, it can be observed that the situation for these cases with 𝑖 = 1.5° is 

similar to what has been described for cases with variable inclination, and the only 

difference is represented once again by the fluctuating values in the first area of the 

graph in which something unclear happens. Even with this inclination, in the first 

zone and in the zone in which 𝛼𝑓𝑖𝑛 < 𝛼𝑖𝑛𝑖𝑧 , the trend of 𝛼 is discontinuous and the 

same: it starts from 𝛼𝑖𝑛𝑖𝑧 and goes until Λ𝜋, then restarts from −Λ𝜋 and proceeds 

until 𝛼𝑓𝑖𝑛.  

 

3.1.2 𝒊 = 𝟑° 
The next cases treated are those with 𝑖 = 3°. Even here, the first interesting thing 

to notice is in the graph of the propellant mass consumed. 

 

Figure 54. Propellant Mass comparison with i=3°  

Trivially, consumption goes up in all cases, but unexpectedly, not all along the set 
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cases with 𝑖 = 3° burn nearly twice the propellant with respect to the cases with 𝑖 =

1.5° and almost 30 times the propellant consumed in the cases with variable 

inclination (1,86375 𝑘𝑔, 1,88785 𝑘𝑔 and 1,91022 𝑘𝑔 respectively in cases A3, B3 

and C3 for asteroid #2). But moving toward the farthest asteroids from Earth, this 

substantial difference becomes very thin with cases A1.5, B1.5 and C1.5 

(5,41121 𝑘𝑔, 5,90279 𝑘𝑔 and 6,5211 𝑘𝑔 respectively in cases A3, B3 and C3 for 

asteroid #76) and almost zeroes completely with respect to cases A, B and C, with a 

deviation of approximately 1% of the values. If the final consumption values of 

cases with 𝑖 = 3° and cases with variable inclination are almost identical, then one 

can say that the inclination values reached with the relation 𝑖 = (1 8⁄ )𝑒 for the 

farthest asteroids are very close to or equal to 3°. 

 

Figure 55. 𝜗_𝑒 values comparison with i=3° - Perihelion 

This is a perihelion maneuver, so 𝑣𝑒𝑟𝑠𝑒 = 1 and 𝜗𝑒  should be in a range of 0. As it 

easily observable, except for an initial subgroup of about 5 asteroids, the whole set 

of the fictitious asteroids presents the solutions predicted by the theory. Therefore, 

having further increased the inclination value by 1.5° helps the algorithm to choose 

among the possible answers the one foreseen by the theoretical studies. 
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Figure 56. Λ values comparison with i=3° - Perihelion 

Λ demonstrates also with this inclination value that has a quite strange behavior with 

respect to 𝜗𝑒 , but pretty much acceptable: when 𝜗𝑒  presents some oddities, in the 

very first zone, Λ assumes quite low values, less than 0,5; then a rapid transition 

brings the values close to 0,7, value from which begins to descend with different 

slopes for the various cases, to finally settle down in a range between 0,49 (case A3 

value) and 0,55 (case C3 value). Λ could perhaps be the only parameter, together of 

course with propellant mass consumed, to be negatively affected by the raise of 

inclination. More exhaustive considerations are reported in the next paragraphs, 

where cases with 𝑖 = 4.5° and 𝑖 = 6° are dealt with. 
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Figure 57. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case A3 – Perihelion 

 

Figure 58. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case B3 – Perihelion 
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Figure 59. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case C3 – Perihelion 

The 𝛼𝑖𝑛𝑖𝑧 − 𝛼𝑓𝑖𝑛 graph is the consequence of what has been seen regarding 𝜗𝑒  and 

Λ. In fact, expect for the first zone, even these parameters return the expected 

solution, in which 𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧. It is interesting to observe that the distance between 

𝛼𝑖𝑛𝑖𝑧 and 𝛼𝑓𝑖𝑛 widens going towards the farthest asteroids, and this suggest that the 

burn arc angular lengths still grow. 
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Figure 60. ∆𝜗 values comparison with i=3° - Perihelion 

The raise of inclination is highly tangible as regards the cases in which Ω ≠ 0. For 

case A3, the last asteroid where ∆𝜗 < 𝜋 is indeed asteroid #69, not so much different 

from asteroid #72 for case A1.5; for cases B3 and C3, instead, the last asteroids to 

fall within the hypothesis of validity of the method are respectively asteroids #63 

and #56, unlike the cases B1.5 and C1.5 (#71 and #69). Hence, it is reasonable to 

expect that in the next cases, where the inclination is further raised, these trends 

(especially case C) tend to move rapidly to the right of the graphs. 

 

3.1.2.1 The relations between 𝜗𝑒, 𝜗𝑖𝑛𝑖𝑧 and 𝜗𝑓𝑖𝑛, 𝛼𝑖𝑛𝑖𝑧 and 𝛼𝑓𝑖𝑛 

The relations between the fundamental parameters of the estimation method reveal 

what has already been understood in the previous paragraph, namely that this 

inclination value makes the algorithm choose the solution foreseen by the theory. 
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 Caso A3 

 

Figure 61. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case A3 – Perihelion 

 

Figure 62. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 for Case A3 – Perihelion 
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 Case B3 

 

Figure 63. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 for Case B3 – Perihelion 

 

Figure 64. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case B3 – Perihelion 
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 Case C3 

 

Figure 65. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case C3 – Perihelion 

 

Figure 66. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case C3 – Perihelion 
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For all three cases, there are the initial area on the right of about 5 asteroids, in which 

𝜗𝑒 ∉ [𝜗𝑖𝑛𝑖𝑧; 𝜗𝑓𝑖𝑛] and 𝛼 is discontinuous (𝛼𝑓𝑖𝑛 < 𝛼𝑖𝑛𝑖𝑧), and the rest of the set where 

the expected solution is clearly visible and 𝛼 is continuous and quite far from the 

asymptotic value Λ𝜋 (particularly with Ω ≠ 0). So, with 𝑖 = 3° one has both an 

increase in consumption (at least for the first group of asteroids) and an early 

transition to the expected answers in terms of 𝜗𝑒 , Λ and 𝛼𝑖𝑛𝑖𝑧 − 𝛼𝑓𝑖𝑛. 

 

3.1.3 𝒊 = 𝟒. 𝟓° 
It is possible to observe what happens if the inclination is further increased and its 

value reaches 𝑖 = 4.5°. First comment is obviously on the propellant mass. 

 

Figure 67. Propellant Mass comparison with i=4.5° 

As it is normal, the propellant mass consumed still increases in all three cases 

following the rise of the inclination, and this time it is completely above the trends 

of the respective fuel masses seen in the previous cases. The increase is palpable 

already from asteroid #2: consumption in cases with 𝑖 = 4.5° exceeds the 
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corresponding in cases with 𝑖 = 3° by 47% as regards cases A4.5 and A3, 46,6% 

as regards cases B4.5 and B3, 46,5% as regards cases C4.5 and C3. Once again, the 

larger required changes in orbital elements imposes in cases with Ω ≠ 0 affect the 

results as one moves farther away from Earth, hence for the final asteroids. 

Regarding asteroid #76, there is a growth in consumption percentage of 8,66% 

going from A3 to A4.5, of 16% going from B3 to B4.5 and of 22,7% going from C3 

to C4.5 (consuming in the latter 8,00152 𝑘𝑔 when Ω = 𝜋 2⁄ ). 

 

Figure 68. 𝜗_𝑒 values comparison with i=4.5° - Perihelion 

The trends of 𝜗𝑒  are almost identical to what has been seen for cases with 𝑖 = 3°, 

and here more than in the previous cases these trends are so similar that they can be 

confused with each other. There is an initial subgroup of asteroids in which 𝜗𝑒  are 

far from 0; the first value is close to 1,35 − 1,40 𝑟𝑎𝑑, it arrives to 1,78 − 1,90 𝑟𝑎𝑑 

and then decreases and is in the range of 0. Two small differences between these 

cases and cases with 𝑖 = 3° are now reported: firstly, the transition here takes place 

at asteroid #9 for case A4.5 and at asteroid #10 for cases B4.5 and C4.5 (remember 

that a value is considered in a range of 0 or in the closest range of 0 if it is less than 

0,2), hence “delayed” by a few asteroids with respect to the transition for cases A3, 
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B3 and C3, occurred for each case after 5 asteroids (and so at asteroid #6); secondly, 

while the cases B3, C3, B4.5 and C4.5 have the same trends in the zone where the 

expected solution is present, case A3 has some small fluctuation (which in any case 

do not destabilize the results) that almost completely disappear in case A4.5.      

 

Figure 69. Λ values comparison for i=4.5° - Perihelion 

Even for this parameter, the trends recall the behavior of Λ in cases A3, B3 and C3, 

but there are differences that cannot be ignored and begin to clarify the influence of 

inclination on Λ. In fact, initially the value reaches about 0,3 (and not about 0,2 as 

in cases with 𝑖 = 3°), it arrives to a value between 0,7 and 0,8 and then assumes a 

decreasing trend until it reaches a value between 0,5 and 0,6. As it is easy to note, 

the trend from about asteroid #10 until asteroid #76 are no longer so far apart, and 

this means that for each case Λ values has risen on average (it should be noted how 

the very pronounced curve that distinguishes case A3 is now much higher in case 

A4.5). The only current case in which Λ value for asteroid #76 is lower than in the 

case with 𝑖 = 3° is case C4.5; this may suggest that the quadrature between the line 

of apsides and the line of nodes is capable of mitigating, at least for the farthest 

asteroids from Earth, the effect of inclination on this parameter.   
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Figure 70. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case A4.5 - Perihelion 

 

Figure 71. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case B4.5 - Perihelion 
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Figure 72. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case C4.5 - Perihelion 

After an initial subgroup of about 5 asteroids in which some oddities happen, the 

trends of these parameters are what is expected for about the whole set of asteroids. 

In fact, 𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧 from asteroid #6 for cases A4.5 and B4.5 and form asteroid #7 

for case C4.5. Even with these cases, the considered burning arcs are very long and 

the length of many of them does not fall within the hypothesis of validity of the 

method. 
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Figure 73. ∆𝜗 values comparison for i=4.5° - Perihelion 

As it is trivial to notice, the burn arc angular lengths are further increased with 𝑖 =

4.5°, and this basically means that more asteroids need the correction introduced in 

chapter 2, section 2.1, paragraph 2.1.1. In fact, as already written, Δ𝜗 values larger 

than 𝜋 are always defined by subtracting 2𝜋 and their reported value is between 0 

and 2𝜋, but they are not shown in the graph since they are outside one of the 

fundamental hypotheses of the estimation method. Then, as expected, the trends 

appear to be shortened and shifted to the right of the graph. About this parameter, 

closely related to the propellant mass consumed, it seems that Ω significantly affects 

both Δ𝜗 and consumption since the trend of case C4.5 for the asteroids in which 

Δ𝜗 < 𝜋 is basically a straight line that grows much faster than the observed curves 

for cases A4.5 and B4.5, as it is predicted by the theory which assumes that both ∆𝑉 

and the cost of transfer is significantly related to the required orbital changes from 

the starting orbit to the arrival orbit [2]. 
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3.1.3.1 The relations between 𝜗𝑒, 𝜗𝑖𝑛𝑖𝑧 and 𝜗𝑓𝑖𝑛, 𝛼𝑖𝑛𝑖𝑧 and 𝛼𝑓𝑖𝑛 

Even in these cases the predominant answer is the expected one, present in almost 

the whole set of fictitious asteroids. 

 Case A4.5 

 

Figure 74. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case A4.5 - Perihelion 
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Figure 75.𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case A4.5 - Perihelion 

 Case B4.5 

 

Figure 76. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case B4.5 - Perihelion 
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Figure 77. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case B4.5 - Perihelion 
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Figure 78. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case C4.5 – Perihelion 

 

Figure 79. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case C4.5 – Perihelion 
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As it can be seen, the responses are very similar to those of the cases with 𝑖 = 3°, 

but there are still some small diversities. It has already been mentioned above the 

damping of the oscillations in the central section as regards 𝜗𝑒  values in case A4.5; 

the solution predicted by the theory is present in all cases in a range of about 87 −

89% of the asteroids, similarly to what happens in cases A3, B3 and C3, but here 

the higher inclination value lengthens the burning arcs and this can be observed from 

the larger distance between 𝜗𝑖𝑛𝑖𝑧 and 𝜗𝑓𝑖𝑛. This larger burn arc angular length can 

also be seen in the graphs of 𝛼𝑖𝑛𝑖𝑧, 𝛼𝑓𝑖𝑛 and Λ𝜋. For the latest asteroids of the set 

𝛼𝑓𝑖𝑛 value, especially in cases B4.5 e C4.5 (respectively Ω = 𝜋 4⁄  and Ω = 𝜋 2⁄ ), 

almost reaches the asymptotic value Λ𝜋, which is the upper limit that the relation 

𝛼 = Λ(ϑ − 𝜗𝑒) must not exceed.   

 

3.1.4 𝒊 = 𝟔° 
The last and largest inclination value imposed in the various cases is 𝑖 = 6°. A 

check is performed to see if with such a value it can still be considered within 

Edelbaum’s approximation: cos(6°) = 0,9945 ≅ 1, sin(6°) = 0,1045 ≈ 0 [7], 

adherence to the approximation is still confirmed. Despite this, the current 

inclination leads, in addition to an obvious and substantial increase in consumption, 

to a strange situation as regards asteroid #2, the one hypothetically closest to Earth: 

about this asteroid, in all three cases the propellant consumption is 20 𝑘𝑔, the entire 

amount of fuel available for the mission; moreover, 𝜗𝑖𝑛𝑖𝑧 = 𝜗𝑓𝑖𝑛 = 0, 𝛼𝑖𝑛𝑖𝑧 =

𝛼𝑓𝑖𝑛 = 𝜋 and both 𝜗𝑒  and Λ are null. These odd values can be explained by the fact 

that the algorithm has probably calculated too long burning arcs to be performed in 

a mission with 𝑛 = 3 arcs in 3 years. In fact, a check can be carried out by imposing 

this inclination value to a mission with 𝑛 = 4 arcs in 4 years: the output results are 

normal since the time of flight increases and the higher number of arcs performed 

means that they can be shortened. For all these reasons, in the following discussion 

the values of asteroid #2 are excluded from the graphs and it is therefore considered, 
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only for cases with 𝑖 = 6°, a group of 74 asteroid (asteroid #3 is now the closest to 

Earth, which is always considered asteroid #1). 

 

Figure 80. Propellant Mass comparison with i=6° 

As it is easy to note, values are higher for all asteroids of the set with respect to the 

cases with 𝑖 = 4.5°. As with all other inclination values, the very first asteroids 

consume a similar amount of propellant, while the difference between the various 

cases in the required changes of the orbital parameters is felt more as one moves 

farther from Earth. In fact, the trends of case B4.5 and above all case C4.5 are those 

which differ the most from the trends of the previous cases. About asteroid #76, 

consumption is, respectively, 6,46658 𝑘𝑔 for A4.5, 8,01814 𝑘𝑔 for B4.5 and 

9,07338 𝑘𝑔 for C4.5. 
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Figure 81. 𝜗_𝑒 values with i=6° - Perihelion 

It is now clear that, beyond 𝑖 = 3°, the algorithm maintains the expected solution 

from a certain asteroid (even here, relatively close to Earth) to asteroid #76. 

However, it is particularly interesting to note that while the maximum value of 𝜗𝑒  

in the suboptimal solution in the first zone decreases globally (for cases A3, A4.5 

and A6, it is respectively 2,32238 𝑟𝑎𝑑, 1,90332 𝑟𝑎𝑑 and 1,53125 𝑟𝑎𝑑), the range 

of asteroids in which the code chooses this answer widens slightly (asteroid #11 for 

case A6, #12 for case B6 and #13 for case C6); hence, as the inclination raises, the 

transition from the suboptimal solution to the optimal solution moves towards a 

farther asteroid (i.e., in the graphs it shifts to the right). 
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Figure 82. Λ values with i=6° - Perihelion 

Λ trends shown in the graph are similar to those of the cases with 𝑖 = 4.5°, but even 

here the further rise of the inclination has slightly influenced them: after the initial 

subgroup of asteroids, in which there is first a descent to about 0,4 and then a rise 

up to 0,73-0,75, the trend are much less curved, especially in case A6, and much 

closer to each other. Indeed, cases B6 and C6 seem to assume an almost rectilinear 

trend in the central and final sections of the graph and, especially in the central 

section, they can be confused with each other. As already mentioned in cases with 

𝑖 = 4.5°, in the farthest asteroids Ω tends to slightly lower Λ: about asteroid #76, for 

case A6 (Ω = 0) →  Λ = 0,55112, for case B6 (Ω = 𝜋 4⁄ ) →  Λ = 0,54458 and for 

case C6 (Ω = 𝜋 2⁄ ) →  Λ = 0,53254.  
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Figure 83. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case A6 - Perihelion 

 

Figure 84. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case B6 – Perihelion 
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Figure 85. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case C6 - Perihelion 

Even for 𝛼𝑖𝑛𝑖𝑧 and 𝛼𝑓𝑖𝑛 the graphs show no particular oddities. The first area where 

𝛼𝑓𝑖𝑛 < 𝛼𝑖𝑛𝑖𝑧 is now taken for granted since it is repeated with any inclination value, 

and with 𝑖 ≥ 3° about 93% of the set returns the expected solution represented by 

𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧. An almost obvious detail can be seen: with this further elevated plane 

change, the burning arcs become even longer (and this heavily affects the next 

analyzed parameter). Indeed, from about asteroid #69 for case C6, it seems that 𝛼𝑖𝑛𝑖𝑧 

and 𝛼𝑓𝑖𝑛 values suddenly decrease very significantly; actually, the burning arcs for 

these latter asteroids are so long they are theoretically larger than 2𝜋, hence no 

oddities are detected in this zone. 
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Figure 86. ∆𝜗 values comparison with i=6° - Perihelion 

As explained above, the burn arc angular lengths react to the new rise of 𝑖 growing 

even more. Case A6 is the only one with a number of asteroids for which ∆𝜗 < 𝜋 

larger than half of the group, counting 51 asteroids: in fact, there are 31 asteroids 

for case B6 and 26 for case C6 which actually fall within the hypothesis of validity 

of the method. Even here it is possible to observe that, for C6, from asteroid #69 to 

#76 ∆𝜗 > 2𝜋, therefore the values are calculated as they start from 0 𝑟𝑎𝑑 and are 

regularly included in trends. 

 

3.1.4.1 The relations between 𝜗𝑒, 𝜗𝑖𝑛𝑖𝑧 and 𝜗𝑓𝑖𝑛, 𝛼𝑖𝑛𝑖𝑧 and 𝛼𝑓𝑖𝑛 

In this section, the relations between the fundamental parameters of the theory are 

analyzed. The situation is similar to that of the cases with 𝑖 = 4.5°, but as the 

previous section has shown, case C6 has a peculiarity which however does not affect 

the validity of the solution. 
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 Case A6 

 

Figure 87. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case A6 - Perihelion 

 

Figure 88. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case A6 - Perihelion 
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 Case B6 

 

Figure 89. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case B6 - Perihelion 

 

Figure 90. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case B6 – Perihelion 
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 Case C6 

 

Figure 91. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case C6 – Perihelion 

 

Figure 92. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case C6 - Perihelion 
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There are no substantial anomalies in these graphs either. After the now usual 

oddities in the very first subgroup of asteroids, the predominant solution is that 

foreseen by the theory, that is, 𝜗𝑒 ∈ [𝜗𝑖𝑛𝑖𝑧 ;  𝜗𝑓𝑖𝑛] with 𝜗𝑒 ≅ 0 and 𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧 . The 

particularly interesting results to observe and analyze concern case C6, as it can also 

be seen at a quick glance. Firstly, when ∆𝜗 > 2𝜋 and 𝜗𝑖𝑛𝑖𝑧  and 𝜗𝑓𝑖𝑛  “restart the 

circle” with very small values at asteroid #69, 𝜗𝑒’s answer is perfectly aligned with 

the theory since it is 𝜗𝑒 ≡ 0. Afterwards, it is necessary to analyze, again regarding 

C6, 𝛼𝑓𝑖𝑛 values immediately before ∆𝜗 > 2𝜋; in fact, as it is can be understood from 

the graph above, some values (asteroids #67 and #68) go very close to the 

asymptotic value Λ𝜋, especially asteroid #68 with a difference of only 

0,018947 𝑟𝑎𝑑, but the never intersect it or surpass it.   

 

3.2 Perihelion maneuver: overall comparison 

After having analyzed the cases separately by the inclination value, now an overall 

comparison is made essentially based on the value of RAAN. Thus, the cases that 

are now compared are those with: 

 Ω = 0 (Cases A, A1.5, A3, A4.5 and A6); 

 Ω = 𝜋 4⁄  (Cases B, B1.5, B3, B4.5 and B6); 

 Ω = 𝜋 2⁄  (Cases C, C1.5, C3 and C6). 

 

3.2.1 𝛀 = 𝟎 𝒓𝒂𝒅 

The overall comparison is performed by analyzing the fundamental parameters of 

the theory: the propellant mass consumed, 𝜗𝑒  and Λ. ∆𝜗 has an identical trend to the 

propellant mass even if they are interrupted due to the hypothesis ∆𝜗 < 𝜋, while 

𝛼𝑖𝑛𝑖𝑧 − 𝛼𝑓𝑖𝑛 are single parameters already exhaustively observed and studied in the 

previous section; hence, now these parameters are not treated. First cases to be dealt 

with are those with Ω = 0. 
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Figure 93. Propellant consumption values comparison with Ω=0 rad - Perihelion 

Cases with Ω = 0 are undoubtedly those which consume the least, and this is 

expected since they require the least number of orbital changes (𝑎, 𝑒 and 𝑖) [2]. It is 

possible to see, as described above, the trend for case A1.5 which intersect A since 

the first asteroids consume more, but the last significantly less, and trend for case 

A3 which at the beginning has a higher consumption than A and A1.5, but at the end 

it presents very similar consumption values with the case with variable inclination. 

Finally, cases A4.5 and A6 are detached from the first three analyzed since their 

inclination value significantly raise the consumption. As one can notice, they have 

basically identical, slightly spaced patterns. 
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Figure 94. 𝜗_𝑒 values comparison with Ω=0 rad - Perihelion 

Even here, it is possible to see the effect of the gradual rise of inclination given Ω. 

This effect on 𝜗𝑒  is certainly positive, since, as one can see, with 𝑖 = (1 8⁄ )𝑒 and 

𝑖 = 1.5° 60% of the asteroids presents the suboptimal solution with 𝜗𝑒 ≅ 𝜋 and 

only much later the transition to the expected solution takes place. Raising the 

inclination, the following events occur: not only the range of asteroids in which the 

suboptimal solution is present narrows (8% of asteroids for A3, about 11% for A4.5 

and 13% for A6), but the peak value of 𝜗𝑒  in this range get lower. Thus, with 𝑖 ≥ 3° 

almost in the whole set of asteroids there is the foreseen solution by the theory. 
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Figure 95. Λ values comparison with Ω=0 rad - Perihelion 

About Λ, there is a basically opposite behavior, at least in the first and the central 

part of the group, with respect to 𝜗𝑒 . In fact, cases A and A1.5 presents in these 

stretches of the graph optimal values that fall within the prediction of the theory; 

case A3 has a high peak of almost 0,7 in the first section and then in the central one 

gets lower and goes close to A and A1.5; instead, in cases A4.5 and A6, the trends 

after their peak (between 0,7 and 0,8) do not drop that much (A6 do not get lower 

than 0,5). In the final zone, it seems that values tend to converge, but not enough. 

This effect is much more visible in cases with  Ω = 𝜋 4⁄  and Ω = 𝜋 2⁄ .  
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3.2.2 𝛀 = 𝝅 𝟒⁄  𝒓𝒂𝒅 

Cases with Ω = 𝜋 4⁄  are now treated.  

 

Figure 96. Propellant consumption values comparison with Ω=π⁄4 rad - Perihelion 

As it can be easily observed, the patterns are identical to those with Ω = 0, but 

higher, meaning that the change of an additional orbital parameter significantly 

affects the total cost of the mission [2]. Moreover, the increase in inclination 

contributes as well to raise fuel consumption, thus the trends for the various cases 

are more distant from each other. 
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Figure 97. 𝜗_𝑒 values comparison with Ω=π⁄4 rad – Perihelion 

Ω = 𝜋 4⁄  improves results especially for cases with variable or low inclination (B 

and B1.5. As it can be observed, for B and B1.5 the transition occurs a few asteroids 

before with respect to cases A and A1.5; furthermore, the same thing does not 

happens in the very first section of asteroids, in which the transition from the 

suboptimal solution to the optimal solution is more gradual and occurs about at the 

same asteroids with respect to cases A3, A4.5 and A6. 
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Figure 98. Λ values comparison with Ω=π⁄4 rad – Perihelion 

Two things are very interesting in this graph: first, the trend of B3, with the influence 

of Ω = 𝜋 4⁄ , outdistances the patterns of B and B1.5 and assumes higher values in 

the central section of the graph; secondly, the only case that do not converge to a 

certain point is B1.5, that reaches a value less than 0,5. 
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3.2.3 𝛀 = 𝝅 𝟐⁄  𝒓𝒂𝒅 

Cases that present the quadrature between the perihelion and the ascending node 

are now dealt with. 

 

Figure 99. Propellant consumption values comparison with Ω=π⁄2 rad – Perihelion 

The trends are now usual, but take on even higher values. Asteroid #76 for case C6, 

so with the highest inclination value studied, consumes 9,07338 𝑘𝑔, that is, almost 

half the propellant used for the mission. It is indeed the highest consumption value 

of all sixteen cases treated according with the fact that, together with the highest 

values of inclination and RAAN, asteroid #76 is the farthest one from the Earth and 

the one with the most eccentric orbit [2]. Hence the required orbital changes are 

massive and heavily affect the consumption. 
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Figure 100. 𝜗_𝑒 values comparison with Ω=π⁄2 rad – Perihelion 

Even here, there are no surprises about the trends. The quadrature between the line 

of apsides and the line of nodes further anticipates the transition from 𝜗𝑒 ≅ 𝜋 to 

𝜗𝑒 ≅ 0, proving that for orbits with small inclination and eccentricity Ω ≠ 0 helps 

to reach to reach the solution predicted by the theory some asteroids before with 

respect to the cases with Ω = 0. In the first section, in which occurs the suboptimal 

solution for cases with 𝑖 ≥ 3°, almost nothing changes for C3 with respect to A3 

and B3, while the transition for C4.5 and C6 appears even more spread on various 

asteroids.  
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Figure 101. Λ values comparison with Ω=π⁄2 rad – Perihelion 

The first thing that catches the eye in this graph is the large distance that separates 

cases C and C1.5 from cases with 𝑖 ≥ 3°, C3, C4.5 and C6. With Ω = 𝜋 2⁄ , even 

case C3 after its peak does not drop below 0,5, but in the central section it touches 

this value. In the final stretch of the graph, cases C, C3, C4.5 and C6 almost 

converge to a value around 0,53-0,54.  
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3.3 Aphelion maneuver 

Even with the fixed inclination, aphelion maneuver is complex and deserves an in-

depth analysis. As already seen in chapter 2, section 2.4, paragraph 2.4.2, thrust 

verse can be concurrent with (𝑣𝑒𝑟𝑠𝑒 = 1, 𝜗𝑒 ≅ 0, 𝛼 ≅ 0) or opposite to (𝑣𝑒𝑟𝑠𝑒 =

−1, 𝜗𝑒 ≅ 𝜋, 𝛼 ≅ 𝜋) the direction of advancement [2], and for cases with variable 

inclination the optimal solution has been recognized as the zones of the various 

graphs in which 𝑣𝑒𝑟𝑠𝑒 = −1, hence at the aphelion of the orbits of these asteroids 

the spacecraft has to brake. It is interesting from now on to analyze whether this fact 

changes or remains the same. For all cases dealt with for the aphelion maneuver 

with fixed inclination, the first parameter to be studied is precisely the thrust verse 

to observe the behavior of the other parameters (especially 𝜗𝑒) in relation to it. The 

optimal solution is instead identified for this maneuver in the description of the 

relations between 𝜗𝑒 , 𝜗𝑖𝑛𝑖𝑧  and 𝜗𝑓𝑖𝑛 , 𝛼𝑖𝑛𝑖𝑧 and 𝛼𝑓𝑖𝑛, since only in these graphs it is 

possible to see the belonging of the parameters to certain ranges.   

 

3.3.1 𝒊 = 𝟏. 𝟓° 

First studied cases in aphelion are those with 𝑖 = 1.5°. 
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Figure 102. Thrust verse values comparison with i=1.5° - Aphelion 

The trends of the thrust verses for cases with 𝑖 = 1.5° are well defined and also very 

similar. In fact, except for the first two asteroids, a subdivision into two zones is 

clearly visible: a larger area encompassing the initial and central segments of the set 

in which one has 𝑣𝑒𝑟𝑠𝑒 = 1 and the final stretch where the spacecraft must instead 

brake and so 𝑣𝑒𝑟𝑠𝑒 = −1. The transition from the central section to the final section 

takes place a few asteroids before going from case A1.5 to case C1.5.     
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Figure 103. 𝜗_𝑒 values comparison with i=1.5° - Aphelion 

As it is easy to notice, excluding some oddities for the very first fictitious asteroids, 

𝜗𝑒  perfectly follows the trend of the thrust verse in each case and assumes the values 

that are predicted by the theory for certain segments of the graph, i.e., 𝜗𝑒 ≅ 0 where 

𝑣𝑒𝑟𝑠𝑒 = 1 and 𝜗𝑒 ≅ 𝜋 where 𝑣𝑒𝑟𝑠𝑒 = −1. The transition between these values 

occurs at exactly the same asteroids it occurs for the thrust verse. 
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Figure 104. Λ values comparison with i=1.5° - Aphelion 

Λ values are very high with 𝑖 = 1.5°. In fact, except for the first section, for about 

60 asteroids for case C1.5, 65 for B1.5 and 67 for A1.5 it is in a range between 0,92-

0,97. It is interesting to see the evolution of this parameter in the following cases to 

understand how the inclination affects it. 
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Figure 105. α_iniz-α_fin values for Case A1.5 - Aphelion 

 

Figure 106. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case B1.5 – Aphelion 
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Figure 107. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case C1.5 - Aphelion 

By observing these graphs, it is already possible to guess in which area of them there 

is the optimal solution. In fact, the expected solution foresees 𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧  and it is 

the current situation for the last few asteroids in each graph. However, what happens 

in the initial and central sections can be safely considered a suboptimal solution 

since 𝜗𝑒  is in a range of the value predicted by the theory in relation to 𝑣𝑒𝑟𝑠𝑒, but 

𝛼𝑓𝑖𝑛 < 𝛼𝑖𝑛𝑖𝑧.  
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Figure 108. ∆𝜗 values comparison with i=1.5° - Aphelion 

About the burn arc angular lengths in aphelion, the concept is the same as in the 

aphelion maneuver for cases with variable inclination (chapter 2, section 2.4, 

paragraph 2.4.2): if 𝜗𝑓𝑖𝑛 < 𝜗𝑖𝑛𝑖𝑧 , then 2𝜋 is added to 𝜗𝑓𝑖𝑛  (i.e., 𝜗𝑓𝑖𝑛=𝜗𝑓𝑖𝑛,𝑖𝑛𝑖𝑧 + 2𝜋) 

and one consequently has ∆𝜗 = 𝜗𝑓𝑖𝑛 − 𝜗𝑖𝑛𝑖𝑧  reported between 0 and 2𝜋, but if 

∆𝜗 > 𝜋 the result is not shown as it does not fall within one of the hypotheses of 

validity of the method. The trends show an almost perfect symmetry with respect to 

the ∆𝜗 values shown in the perihelion maneuver with the same cases. In fact, the 

interruption occurs at asteroid #74 for case A1.5 (in perihelion, at #73), at #73 for 

B1.5 (in perihelion, at #72) and at #71 for C1.5 (in perihelion, at #70).  

 

3.3.1.1 The relations between 𝜗𝑒, 𝜗𝑖𝑛𝑖𝑧 and 𝜗𝑓𝑖𝑛, 𝛼𝑖𝑛𝑖𝑧 and 𝛼𝑓𝑖𝑛 

In aphelion, one has to take into account the thrust verse to understand where the 

optimal solution is.  
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 Case A1.5 

 

Figure 109. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case A1.5 - Aphelion 

 

Figure 110. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case A1.5 - Aphelion 

 

 

Figure 111. Thrust verse for Case A1.5 – Aphelion 
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 Case B1.5 

 

Figure 112. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case B1.5 - Aphelion 

 

Figure 113. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case B1.5 - Aphelion 

 

Figure 114. Thrust verse for Case B1.5 - Aphelion 
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 Case C1.5 

 

Figure 115. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case C1.5 - Aphelion 

 

Figure 116. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case C1.5 – Aphelion 

 

Figure 117. Thrust verse for Case C1.5 - Aphelion 
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From these graphs is clearly possible to see what one could only guess from 𝛼𝑖𝑛𝑖𝑧 −

𝛼𝑓𝑖𝑛 graphs. There is indeed an area where 𝜗𝑒 ∈ [𝜗𝑖𝑛𝑖𝑧; 𝜗𝑓𝑖𝑛] and 𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧 , 

which is in the right stretch and corresponds to the latter asteroids of the group. It 

can also be understood from the trends that both 𝜗 and 𝛼 are centered in 𝜋 (in 

addition of course to 𝜗𝑒), hence the maneuver theoretically foreseen is braking and 

the optimal solutions are in the zones of the graphs which corresponds to 𝑣𝑒𝑟𝑠𝑒 =

−1. It also seems correct that Λ𝜋 is between 𝛼𝑓𝑖𝑛 and 𝛼𝑖𝑛𝑖𝑧  trends where the 

expected solution is present, since when 𝑣𝑒𝑟𝑠𝑒 = −1 one has ∆𝑎 < 0 and of course 

𝛼 = 𝜋 + Λ(𝜗 − 𝜗𝑒) [2], and whereas Λ𝜋 is the maximum value that Λ(𝜗 − 𝜗𝑒) can 

reach (and never touches it). Therefore, calculating 𝛼𝑓𝑖𝑛 it is plausible to think that 

by adding 𝜋 to Λ(𝜗 − 𝜗𝑒) then 𝛼𝑓𝑖𝑛 > Λ𝜋, at least in the area with the expected 

solution. In the central area it seems instead, at least in terms of 𝛼, that the algorithm 

chooses the maneuver centered in 0, but and 𝛼𝑓𝑖𝑛 < 𝛼𝑖𝑛𝑖𝑧. It probably is a 

suboptimal answer of the problem and further studies may show why the code 

chooses an unexpected solution for these asteroids. 

 

3.3.2 𝒊 = 𝟑° 

Now cases with 𝑖 = 3° are treated. 
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Figure 118. Thrust verse values comparison with i=3° - Aphelion 

The increase in inclination already shows some significant changes in the thrust 

verses, at least as regards the transition and the asteroid to which it occurs. In fact, 

while the transition for cases A1.5, B1.5 and C1.5 is compressed into a small range 

of asteroids (respectively #59, #58 and #56), now it is anticipated in each case and 

the asteroids to which it occurs are farther away from each other (#55, #45 and #37). 

In addition to the inclination, the positive influence of the non-zero RAAN on the 

response must be mentioned since cases B3 and especially C3 (Ω = 𝜋 2⁄ ) have many 

more fictitious asteroids with the expected solution. 
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Figure 119.  𝜗_𝑒 values comparison with i=3° - Aphelion 

Not taking into consideration an initial fluctuation of the results (probably due to 

the proximity of the two possible answers at the first asteroids of the set), 𝜗𝑒  

essentially follows the path of the trust verses, being close to 0 where 𝑣𝑒𝑟𝑠𝑒 = 1 

while it is in a range of 𝜋 where 𝑣𝑒𝑟𝑠𝑒 = −1, and having a transition that starts at 

the same asteroid to which, for each case, the transition of 𝑣𝑒𝑟𝑠𝑒 occurs.  

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

1 3 5 7 9 111315171921232527293133353739414345474951535557596163656769717375

𝜗_𝑒 values (Cases A3, B3 and C3) 

Mod the2 - A3 Mod the2 - B3 Mod the2 - C3



114 
 

 

Figure 120. Λ values comparison with i=3° - Aphelion 

Λ trends do not change very much with respect to the trends with 𝑖 = 1.5°. Values 

are still very high in almost the whole set, but approximately starting from a close 

asteroid to which, for each case, the transition of 𝑣𝑒𝑟𝑠𝑒 and 𝜗𝑒  takes place, Λ begin 

to slightly decrease.  
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Figure 121. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case A3 – Aphelion 

 

Figure 122. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case B3 – Aphelion 
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Figure 123. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case C3 - Aphelion 

The areas to the right of the graphs in which the foreseen solution is present is larger 

by increasing the inclination to 3°. Even here, except for the first zone in which there 

are oscillating values, two distinct areas can be distinguished: the central area with 

𝛼𝑓𝑖𝑛 < 𝛼𝑖𝑛𝑖𝑧 and the final area with the farthest fictitious asteroids from Earth with 

𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧. The influence of Ω ≠ 0 is also clearly visible in these trends. 
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Figure 124. ∆𝜗 values comparison with i=3° - Aphelion 

The symmetry with the same maneuver in perihelion is clearly visible and almost 

perfect: the transition between asteroids with ∆𝜗 < 𝜋 and ∆𝜗 > 𝜋 basically occurs 

at the same asteroid for each case. A small curiosity is now reported: case A3 is the 

only one where 𝜗𝑓𝑖𝑛 > 𝜗𝑖𝑛𝑖𝑧 always, instead of B3 and C3 in which the usual 

correction must be imposed for almost di entire set of asteroids. 

 

3.3.2.1 The relations between 𝜗𝑒, 𝜗𝑖𝑛𝑖𝑧 and 𝜗𝑓𝑖𝑛, 𝛼𝑖𝑛𝑖𝑧 and 𝛼𝑓𝑖𝑛  

The fundamental parameters for the estimation have reported visible variations 

compared to the cases with 𝑖 = 1.5°. Now one can see what happens to their 

particular relations. 
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 Case A3 

 

Figure 125. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case A3 - Aphelion 

 

Figure 126. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case A3 – Aphelion 

 

Figure 127. Thrust verse for Case A3 – Aphelion 
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 Case B3 

 

 

Figure 128. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case B3 - Aphelion 

 

Figure 129. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case B3 - Aphelion 

 

Figure 130. Thrust verse for Case B3 – Aphelion 
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 Case C3 

 

Figure 131. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case C3 - Aphelion 

 

Figure 132. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case C3 – Aphelion 

 

Figure 133. Thrust verse for Case C3 – Aphelion 
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The situation is basically the same as in the cases dealt with in the previous section, 

except for the various transitions that take place, as already seen, some asteroids 

before. The optimal solution is always the one in which the vehicle brakes and is 

described by 𝑣𝑒𝑟𝑠𝑒 = −1, 𝜗𝑒 ∈ [𝜗𝑖𝑛𝑖𝑧 ; 𝜗𝑓𝑖𝑛] and 𝛼 = 𝜋 + Λ(𝜗 − 𝜗𝑒). A detail is 

very interesting: while with 𝑖 = 1.5° the trends of 𝛼𝑖𝑛𝑖𝑧 almost touches the 

asymptotic value Λ𝜋 especially in the central stretch, with 𝑖 = 3° the values are more 

spaced. Even Ω, in cases with the same inclination, contributes positively to this by 

moving 𝛼𝑖𝑛𝑖𝑧 away from the asymptote. 

 

3.3.3 𝒊 = 𝟒. 𝟓° 

The aphelion maneuver is analyzed for cases with 𝑖 = 4.5°. It is noted from the 

very first graphs that, especially with regard to a specific case, the increase in 

inclination made the output results very accurate. 

 

Figure 134. Thrust verse values with i=4.5° - Aphelion 
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As it is possible to see, while cases A4.5 and B4.5 still improve their outcomes not 

only by anticipating the right transition to a previous asteroid, but also for the actual 

appearance of the first area of the graph with 𝑣𝑒𝑟𝑠𝑒 = −1, case C4.5 is the first 

case in the aphelion maneuver discussion to reach, at least in terms of trust verse, 

the optimal solution for the whole group of 75 asteroids. It is certainly a result for 

which not only the inclination value, but also the quadrature between the perihelion 

and the ascending node, heavily contribute. 

 

Figure 135. 𝜗_𝑒 values comparison for i=4.5° - Aphelion 

Even the graph with 𝜗𝑒  trends is influenced by the thrust verses. In fact, for cases 

A4.5 and B4.5 there is basically a subdivision into three zones: the first one, in which 

each case starts with a value close to 2 𝑟𝑎𝑑, it decreases to a value less the 1,5 𝑟𝑎𝑑 

and then increases to reach 𝜋; the second one, that starts immediately after a 

transition from 𝜗𝑒 ≅ 𝜋 to 𝜗𝑒 ≅ 0; the final one, where a second transition occurs, 

but this time is from 0 to 𝜋. Analyzing just these two cases one can clearly see the 

contribution of the RAAN, which going from 0 (for A4.5) to 𝜋 4⁄  (for B4.5) 

anticipates the second transition of about 15 asteroids with respect to A4.5. For case 

C4.5 there is an almost total predominance of the answer foreseen by the theory for 
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this maneuver, that is, 𝜗𝑒 ≅ 𝜋. In the first section of about 9-11 asteroids, the pattern 

for C4.5 is similar to those already analyzed for A4.5 and B4.5.  

 

Figure 136. Λ values comparison with i=4.5° - Aphelion 

Λ trends for about the first 23 asteroids are identical to those seen with 𝑖 = 1.5° and 

𝑖 = 3°. But even here, together with this inclination value, Ω too gives a huge 

contribution to improve responses. In fact, the first case to lower its Λ values is C4.5 

at asteroid #24, followed by B4.5 at asteroid #37 and A4.5 at asteroid #54. Values 

remains still high, considering that asteroid #76 in case C4.5 (the best in terms of 

accurate results with 𝑖 = 4.5°) has Λ = 0,70687. 
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Figure 137. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case A4.5 - Aphelion 

 

Figure 138. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case B4.5 - Aphelion 
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Figure 139. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case C4.5 – Aphelion 

Cases A4.5 and B4.5 have similar trends of 𝛼𝑖𝑛𝑖𝑧 − 𝛼𝑓𝑖𝑛. Both have, initially, the 

first section where the situation is chaotic since probably the two possible solutions 

are close to each other and the algorithm randomly chooses one instead of the other; 

then, two well separated and distinct areas are present; the central section, where 

𝛼𝑓𝑖𝑛 < 𝛼𝑖𝑛𝑖𝑧, and the final section with the optimal solution 𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧 . The only 

difference is that for A4.5 the optimal solution includes about 34 asteroids, while 

for B4.5 the asteroids for which 𝛼𝑓𝑖𝑛 > 𝛼𝑖𝑛𝑖𝑧  are about 48. The situation is different 

for case C4.5 since, except for the now usual initial stretch with some oddities, the 

entire set of fictitious asteroids present the optimal and expected solution. 𝑖 = 4.5° 

and Ω = 𝜋 2⁄ , although are quite significative and hence expensive orbital changes 

[2], give a huge contribution to the accuracy of the method. 
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Figure 140. ∆𝜗 values comparison with i=4.5° - Aphelion 

Even with this inclination value, there is an almost perfect symmetry between this 

maneuver and the perihelion maneuver. Cases A4.5, B4.5 and C.5 have indeed, 

respectively, 63, 50 and 36 asteroids in which ∆𝜗 < 𝜋. These numbers of asteroids 

are basically confirmed in perihelion: 62, 50 and 36. The symmetry between the 

maneuvers, also considering that the effects of one maneuver on the other (in this 

case, those of the perihelion maneuver on this one) are neglected [2], is an excellent 

indicator of overall accuracy for the estimation method. 

 

3.3.3.1 The relations between 𝜗𝑒, 𝜗𝑖𝑛𝑖𝑧 and 𝜗𝑓𝑖𝑛, 𝛼𝑖𝑛𝑖𝑧 and 𝛼𝑓𝑖𝑛 

The graphs which describe the relations between the fundamental parameters are 

studied. With 𝑖 = 4.5°, the difference between the various cases is basically 

evident. 
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 Case A4.5 

 

Figure 141. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case A4.5 - Aphelion 

 

Figure 142. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case A4.5 - Aphelion 

 

Figure 143. Thrust verse for Case A4.5 - Aphelion 
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 Case B4.5 

 

Figure 144. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case B4.5 - Aphelion 

 

Figure 145. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case B4.5 - Aphelion 

 

Figure 146. Thrust verse for Case B4.5 - Aphelion 
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 Case C4.5 

 

Figure 147. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case C4.5 - Aphelion 

 

Figure 148. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case C4.5 - Aphelion 

 

Figure 149. Thrust verse for Case C4.5 - Aphelion 
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As it is clearly possible to see, the only section that differentiates these graphs, for 

each parameter (𝜗𝑒 , 𝛼𝑓𝑖𝑛, 𝑣𝑒𝑟𝑠𝑒), is the central one where there is the suboptimal 

solution. In fact, for A4.5 it is larger and includes 32 asteroids, for B4.5 it shrinks 

and contains 14 asteroid and, finally, for C4.5 it disappears completely including 

almost the whole set of fictitious asteroids in the optimal solution predicted by the 

theory, since the first area always presents some oddities. 

 

3.3.4 𝒊 = 𝟔° 

Last cases treated are those with 𝑖 = 6°. Despite this inclination value significantly 

increases consumption (as it is shown and explained in paragraph 3.1.4), the final 

responses in terms of the fundamental parameters of the estimation method (𝜗𝑒  and 

𝛼𝑖𝑛𝑖𝑧 − 𝛼𝑓𝑖𝑛 above all, but also Λ is safely acceptable) are very accurate. One must 

remember that asteroid #2 is neglected for the reasons seen in paragraph 3.1.4. 

 

Figure 150. Thrust verse values with i=6° - Aphelion 

With 𝑖 = 6° a significant result is achieved: all asteroids present, in each case 

treated, the optimal solution, in which the spacecraft that maneuver in aphelion must 

necessarily brake. 
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Figure 151. 𝜗_𝑒 values comparison with i=6° - Aphelion 

Except for the first zone of very few asteroids, in each case 𝜗𝑒 ≅ 𝜋 just as theory 

predicts. 

 

Figure 152. Λ values comparison with i=6° - Aphelion 
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Despite Λ values are still high for each case, the improvements are noticeable as 

now only case A6 almost touches the unit in the first part of the graph. Cases B6 and 

C6 have lower values along the entire group of asteroids. These results are however 

acceptable since they do not seem to affect the overall accuracy of the method and 

both 𝜗𝑒  and 𝛼𝑖𝑛𝑖𝑧 − 𝛼𝑓𝑖𝑛 basically the whole set presents the optimal solution. 

 

Figure 153. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case A6 - Aphelion 
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Figure 154. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case B6 – Aphelion 

 

Figure 155. 𝛼_𝑖𝑛𝑖𝑧−𝛼_𝑓𝑖𝑛 values for Case C6 - Aphelion 
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perihelion maneuver (symmetry in the burning arcs, as it also can be seen with ∆𝜗), 

but there the maneuver is centered in 0, the aphelion maneuver is centered in 𝜋: 

from asteroid #74 until the end the burning arcs are so long that they become larger 

than 2𝜋 and it is possible to count them from the beginning (in this maneuver, 𝜋). 

 

Figure 156. ∆ϑ values with i=6° - Aphelion 

Even here the symmetry between perihelion and aphelion maneuver is basically 

perfect since the transition from ∆𝜗 < 𝜋 to ∆𝜗 > 𝜋 occurs at the same asteroids for 
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can be found for the final asteroids of the group. It has been seen that for the farthest 

asteroids from Earth with 𝑖 = 6° one can have ∆𝜗 > 2𝜋 and hence count the relative 

asteroids as they start from the beginning (that is, once again, 0 at perihelion and 𝜋 

at the aphelion); perihelion maneuver is a bit longer than aphelion maneuver since 

in perihelion the asteroids where ∆𝜗 > 2𝜋 go from asteroid #69 to #76, while in 

aphelion only asteroids #75 and #76 presents ∆𝜗 > 2𝜋 .  

 

0

0.5

1

1.5

2

2.5

3

3.5

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74

∆𝜗 (Cases A6, B6 and C6)

Delta theta2 (A6) Delta theta2 (B6) Delta theta2 (C6)



135 
 

3.3.4.1 The relation between 𝜗𝑒, 𝜗𝑖𝑛𝑖𝑧 and 𝜗𝑓𝑖𝑛, 𝛼𝑖𝑛𝑖𝑧 and 𝛼𝑓𝑖𝑛 

The relations that link the fundamental parameters of the theory are now studied 

through the respective graphs. The answers with 𝑖 = 6° are particularly accurate. 

 

 

 Case A6 

 

Figure 157. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case A6 - Aphelion 

 

Figure 158. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 for Case A6 - Aphelion 
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Figure 159. Thrust verse for Case A6 - Aphelion 

 

 Case B6 

 

Figure 160. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case B6 - Aphelion 
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Figure 161. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case B6 - Aphelion 

 

Figure 162. Thrust verse for Case B6 – Aphelion 

 

 Case C6 

 

Figure 163. 𝜗_𝑖𝑛𝑖𝑧, 𝜗_𝑓𝑖𝑛, 𝜗_𝑒 values for Case C6 - Aphelion 
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Figure 164. 𝛼_𝑖𝑛𝑖𝑧 - 𝛼_𝑓𝑖𝑛, Λ𝜋 values for Case C6 - Aphelion 

 

Figure 165. Thrust verse for Case C6 – Aphelion 
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 Ω = 0 (Cases A, A1.5, A3, A4.5 and A6); 

 Ω = 𝜋 4⁄  (Cases B, B1.5, B3, B4.5 and B6); 

 Ω = 𝜋 2⁄  (Cases C, C1.5, C3 and C6). 

The propellant consumption comparison has been made for the perihelion 

maneuver, thus now the only parameters to be compared are 𝜗𝑒  and Λ. 

 

3.4.1 𝛀 = 𝟎 𝒓𝒂𝒅 

First cases to be compared are of course those where the perihelion and the 

ascending node coincide, i.e., Ω = 0.  

 

Figure 166. 𝜗_𝑒 values comparison with Ω=0 rad - Aphelion 

The graph is very chaotic in its first part since there are a lot of fluctuation between 

0 and 𝜋 for case A. For cases A, A1.5 and A3 the transitions to the right of the graph 

occur a few asteroids away, while raising the inclination to 4.5° significantly 
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almost the whole set presents the optimal solution. Ω = 0 is positive for the 
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consumption, but it somehow penalizes the results, as one can also understand by 

reading the next two paragraphs. 

 

Figure 167. Λ values comparison with Ω=0 rad – Aphelion 

Even as regards Λ, cases with null RAAN have the worst results, as it is clearly 

visible. Each case has a trend very close to 1 for at least 16-17 asteroids (case A6, 

the best between those with Ω = 0) and despite all the trends having a descending 

stroke at the end (which begins earlier when the inclination increases), the values 

always remain very high. 

 

3.4.2 𝛀 = 𝝅 𝟒⁄  𝒓𝒂𝒅 

Cases with the lines of nodes shifted by 45° with respect to the line of apsides are 

now dealt with. 
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Figure 168. 𝜗_𝑒 values comparison with Ω=π⁄4 rad – Aphelion 
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solution for almost the entire set of asteroids. 
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Figure 169. Λ values comparison with Ω=π⁄4 rad – Aphelion 
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Figure 170. 𝜗_𝑒 values comparison with Ω=π⁄2 rad – Aphelion 
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asteroids of the set in the optimal solution (no other cases with 𝑖 = 3° does that), 

and C4.5 has an almost identical trend to C6, keeping 𝜗𝑒  in a range of the optimal 

solution for nearly all 75 asteroids. The fact that case C4.5 also managed to have 

this trend and this response is certainly due to the contribution of the quadrature 

which, together with an adequate inclination value (but still small to adhere to 

Edelbaum’s approximation [6,7]), has improved the overall response of the 

algorithm at the cost of a few more kilos of fuel consumed. 
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Figure 171. Λ values comparison with Ω=π⁄2 rad – Aphelion 

While cases C, C1.5 and C3 have globally very high Λ values and do not improve 

the situation with respect to their counterparts, cases C4.5 and above all case C6 

have slightly lower values. In detail, the peak value of C6 trend is equal to 0,87516 

(while the peak values of the other cases almost touch 1) and at asteroid #76 one has 

Λ = 0,63582 which is not a very high value with respect to the average.     
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CONCLUSIONS 
An analytical method for the fast and accurate estimation of orbital trajectories to 

NEAs [2], based on Edelbaum’s approximation, has been employed in this paper to 

find out how much the required changes of some orbital parameters affect the output 

results in perihelion and aphelion maneuvers.  

The orbital elements whose variations have heavily influenced the solutions and the 

costs are the inclination and the right ascension of ascending node (RAAN). As it is 

clear from the first cases studied in this work, there are essentially two possible 

solutions among which the algorithm can choose: the optimal solution is the one 

actually foreseen by the theory and it is obviously the best in terms of accuracy, 

while another solution is almost always present and does not strictly respect the 

relations that govern the method. However, even with this last answer, perihelion 

and aphelion maneuvers are in any case symmetrical as well as the burning arcs, 

consequently it is considered a suboptimal solution which offer a similar 

performance with respect to the optimal one (no strange variations in consumption 

are detected) and in which the in-plane thrust angle 𝛼 and the reference right 

ascension 𝜗𝑒  appear discontinuous and not centered in the theoretically correct 

point.  

A first revelation comes out of the analysis of the cases with variable inclination. In 

fact, with 𝑖 = (1 8⁄ )𝑒, both in perihelion and aphelion there are two sections in the 

trends of the fundamental parameters of the method: the first one, that includes a 

significant number of asteroids, where there is the suboptimal solution and then, 

following a transition, the final one with the farthest asteroids from Earth that 

present the optimal solution. It almost seems that within a certain distance from 

Earth the algorithm is led to choose something unexpected, but still acceptable, 

while after this distance it reaches the theoretical answer. One must note that even 

in this first cases the transition is anticipated for cases where Ω ≠ 0, hence cases 

with the ascending node not coincident to the perihelion has more asteroids with the 

optimal solution both in perihelion and aphelion. Furthermore, the very first 

asteroids of the set always (both in perihelion and aphelion, and with any value of 
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inclination and/or RAAN) show chaotic, fluctuating, and unclear responses in the 

graphs. Probably the short distance that separates these asteroids from the Earth still 

influences the results, bringing the possible solutions very close and preventing the 

algorithm from obtaining a stable and clear response. In the future, this phenomenon 

should be investigated to strengthen the method and allow it to evaluate transfers 

also for real asteroids and close to our planet. 

Setting the inclination leads, particularly for cases with 𝑖 ≥ 3°, to better results in 

terms of optimal solution together with an obvious increase in consumption. In fact, 

despite cases with 𝑖 = 1.5° have no global improvements since this inclination value 

is higher than that of the very first asteroids but equally lower than that of the farthest 

ones, the imposed values higher than this (3°, 4.5° and 6°) tend to lead faster the 

algorithm to the expected solution, as evidently shown both in perihelion and 

aphelion by the graphs of the fundamental parameters of the method, 𝜗𝑒  and 𝛼𝑖𝑛𝑖𝑧 −

𝛼𝑓𝑖𝑛 above all. In perihelion maneuver 𝜗𝑒  and 𝛼𝑖𝑛𝑖𝑧 − 𝛼𝑓𝑖𝑛 trends are indeed almost 

identical for cases with the three highest inclinations values, and this may be 

explained by the fact that the maneuver here is easier to handle since the thrust verse 

is taken for granted and it is concurrent with the direction of advancement and so it 

is not difficult to frame the optimal answer. The two possible solutions indeed offer 

similar performances, since for the first asteroids 𝜗𝑒 ≅ 𝜋 decreases the parameters’ 

variations and shortens the burning arcs. Aphelion maneuver is instead more 

complex (and this can be seen in the various patterns) since the vehicle at this point 

can also brake, so there are two possible thrust verses and the optimal solution can 

be found only in the graphs, observing where 𝜗𝑒  and 𝛼 are centered, that is also the 

point in which the maneuver must be centered. In aphelion, the two possible 

solutions (𝑣𝑒𝑟𝑠𝑒 = 1 and 𝜗𝑒 ≅ 0, 𝑣𝑒𝑟𝑠𝑒 = −1 and 𝜗𝑒 ≅ 𝜋) are even closer to each 

other and the algorithm finds one or the other, without the regularity present in the 

perihelion maneuver. Despite this phenomenon, however, the aphelion maneuver 

remains almost perfectly symmetrical to the perihelion maneuver, hence the output 

results are still accurate. Together with the inclination, Ω too gives a huge 

contribution to widening the range of the expected solution almost in each case dealt 

with. It seems that, with small-to-null eccentricity and inclination values, spacing 
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out the line of apsides and the line of nodes increases the overall accuracy of the 

method at the cost of an expected but limited rise of the consumption, since the 

thrust is provided at the perihelion and not at the ascending node. From these 

considerations, the results with the highest level of accuracy among all the cases 

studied come from the cases with Ω ≠ 0 and 𝑖 ≥ 3°. In fact, in aphelion the first 

case to extend the optimal solution to almost all the 75 asteroids is C4.5 (Ω = 𝜋 4⁄  

and 𝑖 = 4.5°), where 𝑣𝑒𝑟𝑠𝑒 = −1 throughout the set, while cases with 𝑖 = 6° all 

present identical trends, also accurate and predicted by the theory. The only 

parameter that, especially in aphelion, has values a bit counter trend is Λ, with the 

trends that in perihelion are penalized by the increases in inclination while in 

aphelion it seems to improve with them and with Ω ≠ 0. Despite this, the results 

still remain generally accurate since 𝜗𝑒  and 𝛼 are perfectly fit with the optimal 

solution as inclination increases, even if Λ should be subject of study to understand 

the reasons of these high values. 

 Lastly, as one can now guess, the estimation method completely embraces the 

solution foreseen by the theory when the inclination is significantly raised (but not 

too much to still adhere to Edelbaum’s approximation [6,7]) and the perihelion does 

not coincide with the ascending node, that is, non-zero RAAN, with these relevant 

changes that lead to a slight increase in the cost of the mission. These consumption 

estimations are sufficiently precise since if the variation increase, the costs increase 

as well [2], hence there are no particular strange cases. The results generally follow 

the theoretical expectations with 𝑖 ≠ 0 and Ω ≠ 0. New studies and analyses may 

be focused on improving the accuracy of the solution in the planar problem, i.e., 

with null inclination, in which the perihelion and the ascending node are coincident, 

that is, Ω = 0.   
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