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Abstract

This thesis focuses on a detailed implementation of the Relative Cyclic Component
Mode Synthesis (RCCMS) approach on cyclically symmetrical systems with an
in depth development of the algebra involved. Subsequently, it is showed how
stiffness and density mistuning can be efficiently introduced in the final Reduced
Order Models (ROMs). Eventually, numerical simulations are presented to reveal
the accuracy of the RCCMS approach in predicting natural frequencies, mode
shapes and linear forced response of the reduced systems of a bladed disk. In
conclusion, the performances of the systems built with the two types of mistuning
introduced are compared to show how, in some cases, density mistuning can be a
valid alternative to stiffness mistuning.
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Chapter 1

Introduction

1.1 Contextualization of the problem

Turbomachinery today plays a fundamental role in aviation both civil and military,
but has also numerous terrestrial applications. Critical components of turboma-
chines are the bladed disks which are highly subjected to periodic stresses. This
makes it essential to be able to predict their expected life before an eventual high
cycle fatigue (HCF) failure. Accordingly, it is necessary to perform forced response
analysis to efficiently compute the maximum response of the system in different
conditions.

Forced response analysis become increasingly computationally demanding with
the growth of the dimensions of the finite elements models, in order to overcome
this issue, different techniques have been developed to reduce the size of the models
without compromising the accuracy of the results of the analysis.

In an ideal condition, the cyclic symmetry of the bladed disks is guaranteed,
this allows to perform linear and even non-linear analysis on reduced models built
using only single sector computations. In reality though, the cyclic symmetry
of the bladed disk is compromised by many factors like geometrical tolerances,
material inhomogeneity, assembly process or due to the operating conditions such
as the wear phenomena. This asymmetries of the system are collectively referred
as mistunig. The presence of mistuning can have a strong impact on the dynamic
of the system, in particular can cause vibration energy to be localized around few
number of blades which can result in premature HCF of the blades.

Mistuning is usually divided in small and large. Small mistuning allows for the
assumption that, considering a certain range of natural frequencies, mode shapes
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1.1. CONTEXTUALIZATION OF THE PROBLEM

of the mistuned bladed disks, in that range, can be considered a linear combination
of the tuned bladed disk’s mode shapes in the same frequencies range. When this
assumption loses its validity then the mistuning is considered large.

To perform the analysis on a mistuned bladed disk, since it is impossible to use
the full system due to the large number of degrees of freedom, it is necessary to
build the reduced matrices of that system. The approach studied in this theses will
use a technique based on Relative Cyclic Component Mode Synthesis (RCCMS)
[1]. This method was tailored for nonlinear forced response analysis of bladed disks
subjected to different sources of friction damping, but in this case, the focus will
be on the introduction of different types of mistuning and the performances of the
resulting ROMs in terms of linear forced response.

The ROMs built using RCCMS have numerous advantages for this study:

• The ROMs are built only from sector level calculations

• The ROMs include relative displacement between contact surfaces

• The method allows to introduce small mistuning directly in the final matrices

Using only sector level calculations is a requirement because it is computationally
unsustainable to operate with the full system matrices.

Having retained relative displacements at contact surfaces allows to easily move
between the two linear conditions of the system that will be considered: one with
the contact interfaces completely clumped to each other and one with the two
interfaces not interacting.

Finally having the possibility to introduce the mistuning in the final ROMs
allows for a statistical characterization of the phenomena. The building process of
the reduced matrices is, in fact, quite demanding and not being required to repeat
the process for every mistuning pattern is really useful.

Small mistuning is usually introduced in terms of small deviations of a structural
property of the system from its nominal value. In this theses will be studied
how introducing the mistuning in terms of deviation of stiffness or density impact
differently the accuracy of the ROMs and in particular, how and why the density
mistuned ROMs can, in some cases, outperform the stiffness mistuned ones.
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1.2. OUTLINE

1.2 Outline
The theses is divided in the following chapters:

• Chapter 2 describes the methodology to build the RCCMS reduced matrices
of the tuned system from the full tuned system. Follows a detailed explanation
on how the same matrices can be computed using only sector level calculations,
having as starting point the free interfaces stiffness and mass matrices of
the fundamental sector of the tuned system. Eventually it is described how
stiffness and density mistuning can be introduced in the final ROMs, what
are the hypotheses and approximations necessary for both cases and why it
is expected the density mistuning to be a suitable substitution to stiffness
mistuning.

• Chapter 3 compares the results obtained from the analysis performed on
the systems described by the ROMs with the results obtained performing the
analysis on a FE model of the full system available in Ansys. The model
used to apply the methodology is a bladed disk with shrouds at the blades
tips and 27 sectors. The comparisons aim to show how the accuracy of the
ROMs is impacted by different parameters, such as the size of the ROMs,
the kind of mistuning introduced (density or stiffness) and the severity of the
mistuning. Moreover, the results cover both the systems in the condition of
shroud contact interfaces perfectly clumped (without relative displacement)
and the system where the blades are considered cantilever and there is no
interaction between the shrouds of two adjacent sectors.

• Chapter 4 contains the conclusions and final considerations of the theses.
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Chapter 2

Methodology

In this section will be discussed in more details how the ROMs of the full system
are built, in particular what are approximations introduced and how these affect
the final result.

First it will be shown how the reduced matrices of the tuned system can be
obtained applying RCCMS to the full tuned system. Then it will be discussed how
it is possible to obtain those matrices performing only sector level computations
applied to the free interface matrices of the fundamental sector of the tuned system.
Eventually it will be shown how mistuning can be directly introduced in the
reduced system; both stiffness and density mistuning can be easily introduced, the
differences obtained in the two cases will be discussed then in the results section.

2.1 Reduction applied to a full bladed disk’s sys-
tem

In this section it will be showed how the reduction of a full system can operated,
the goal is to express clearly all the terms in the final reduced matrices so that,
in the following sections, can be studied a way to express those terms operating
exclusively at a single sector level.

The equation of motion relative to the Full System is:è
Mtot

é î
Ẍtot

ï
+

è
Ktot

é î
Xtot

ï
=

î
0

ï
(2.1)

It is possible to define:

• N: Number of sectors of the bladed disk

• M: Number of DOFs per sector
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2.1. REDUCTION APPLIED TO A FULL BLADED DISK’S SYSTEM

The dimensions of Mtot and Ktot will be MN ×MN .

The matrices are ordered grouping the DOFs of each sector, they will be
consistent with this representation of the Xtot vector:

î
Xtot

ï
=



X1
X2
...
Xn
...
XN


(2.2)

Where every Xn vector is M × 1 and is associated the n-th sector.

The internal ordering of every vector is defined as follows:

î
Xn

ï
=


Xsh,H

Xsh,L

Xdi,H

Xint

 (2.3)

Where:

• Xsh,H and Xsh,L: DOFs relative to the contact interfaces (High and Low) at
the shroud, (Lsh × 1)

• Xdi,H : DOFs relative to the disk interfaces (High), (Ldi × 1)

• Xint: DOFs relative to the internal nodes of each sector, (Lint × 1)

It is clearly true that 2Lsh + Ldi + Lint = M .

In order to proceed in a more convenient way it is better to reorder the matrices,
separating the shroud DOFs of each sector from the other DOFs.

The matrices are reordered to be consistent with:

î
Xtot

ï
=


{Xsh,H}
{Xsh,L}
{Xdi,H}
{Xint}

 (2.4)
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2.1. REDUCTION APPLIED TO A FULL BLADED DISK’S SYSTEM

Where every partition is defined for example as:

î
Xsh,H

ï
=



{Xsh,H}1
{Xsh,H}2

...
{Xsh,H}n

...
{Xsh,H}N


(2.5)

To clarify, the dimensions of the partitions are:

• {Xsh,H} and {Xsh,L}: NLsh × 1

• {Xdi,H}: NLdi × 1

• {Xint}: NLint × 1

It is useful to introduce relative coordinates between the shroud DOFs of two
adjacent sectors, the definition for the generic sector is:î

Xrel

ï
n

=
î
Xsh,L

ï
n

−
î
Xsh,H

ï
n−1

(2.6)

It is now possible to have a simple linear transformation that allows to go from the
absolute coordinate system to the relative one:



...
{Xshroud,H}n−1
{Xshroud,H}n

{Xshroud,H}n+1
...


{Xsh,L}
{Xdi,H}
{Xint}



=
è
T

é





...
{Xrel}n−1
{Xrel}n

{Xrel}n+1
...


{Xsh,L}
{Xdi,H}
{Xint}



(2.7)

Where [T ] is the transformation matrix.

Combining the various reordering and transformation matrices, the full system
can now be expressed as:C

MNN MNL

MLN MLL

D I
Ẍrel

Ẍslave

J
+

C
KNN KNL

KLN KLL

D I
Xrel

Xslave

J
=

I
0
0

J
(2.8)

Where Xrel is NLsh × 1 and is composed of all the {Xrel}n, while Xslave is
N(Lsh + Ldi + Li) × 1 and contains everything else.

6



2.1. REDUCTION APPLIED TO A FULL BLADED DISK’S SYSTEM

A constraint mode is defined as the static deformation of the system when a
unitary displacement is applied to one relative DOF, to compute all of them, the
following equation must be solved:

[KLL] {Xslave} = − [KLN ] {Xrel} (2.9)

{Xslave} = − [KLL]−1 [KLN ] {Xrel} (2.10)

Imposing every time a unitary displacement to one relative DOF and zero to the
others can be done using the identity matrix:

[Ψc] = − [KLL]−1 [KLN ] [I] (2.11)

Given that [I] is NLsh ×NLsh, [Ψc] will be N(Lsh +Ldi +Li) ×N(Lsh +Ldi +Li).

The full matrix with the static modes can be built combining the displacement
imposed and the the one calculated:

[Ψ] =
C

[I]
[Ψc]

D
(2.12)

The full size will be NM ×NLsh.

The full stick modes are defined as the mode shapes of the system with the
shrouds interfaces merged between the sectors. This can be computed by imposing
null the relative DOFs defined before, this results in a standard eigenvector problem
of the system: è

MLL

é î
Ẍslave

ï
+

è
KLL

é î
Xslave

ï
=

î
0

ï
(2.13)

Given that [Φi] are the eigenvectors of this system, the complete mode shapes can
be again obtained by considering the partition given by the DOFs imposed and the
one calculated:

[Φ] =
C

[0]
[Φi]

D
(2.14)

The complete set of eigenvectors is NM ×N(Lsh +Ldi +Li), but it can be reduced
by retaining a reduced number of vectors and would become NM × ret_mode,
where ret_mode << N(Lsh + Ldi + Li) is the number of eigenvectors retained.

We can now define the transformation:I
Xrel

Xslave

J
=

C
[I] [0]

[Ψc] [Φi]

D I
Xrel

Xgen

J
(2.15)
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2.1. REDUCTION APPLIED TO A FULL BLADED DISK’S SYSTEM

Where Xgen is a set of generalized coordinates, considering the reduced set of full
stick modes, will be ret_mode×1. Performing the change of coordinates will result
in: C

MNN MNL

MLN MLL

D C
[I] [0]

[Ψc] [Φi]

D I
Ẍrel

Ẍgen

J
+

+
C
KNN KNL

KLN KLL

D C
[I] [0]

[Ψc] [Φi]

D I
Xrel

Xgen

J
=

I
0
0

J (2.16)

To balance the equation it is necessary to multiply the reduction matrix on the left
side of the equation as well:C

[I] [0]
[Ψc] [Φi]

DT C
MNN MNL

MLN MLL

D C
[I] [0]

[Ψc] [Φi]

D I
Ẍrel

Ẍgen

J
+

+
C

[I] [0]
[Ψc] [Φi]

DT C
KNN KNL

KLN KLL

D C
[I] [0]

[Ψc] [Φi]

D I
Xrel

Xgen

J
=

I
0
0

J (2.17)

Performing the multiplication, the result is:C
MGuyan Mrg

MT
rg Mid

D I
Ẍrel

Ẍgen

J
+

C
KGuyan Krg

KT
rg KΛ

D I
Xrel

Xgen

J
=

I
0
0

J
(2.18)

Where the partition of the mass matrix are:

MGuyan = MNN + ΨT
c MLN +MNLΨc + ΨT

c MLLΨc

Mrg = MNLΦi + ΨT
c MLLΦi

Mid = ΦT
i MLLΦi = I

(2.19)

The partition of the stiffness matrix are:

KGuyan = KNN + ΨT
c KLN +KNLΨc + ΨT

c KLLΨc

Krg = KNLΦi + ΨT
c KLLΦi

KΛ = ΦT
i KLLΦi

(2.20)

For the stiffness matrix is possible to simplify the equations by considering that
[Ψc] = − [KLL]−1 [KLN ], the Guyan partition becomes:

KGuyan = KNN −
1
K−1

LLKLN

2T
KLN −KNL

1
K−1

LLKLN

2
+

+
1
K−1

LLKLN

2T
KLL

1
K−1

LLKLN

2 (2.21)
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2.2. SECTOR LEVEL CALCULATIONS

KGuyan = KNN −KNLK
−1T
LL KLN −KNLK

−1
LLKLN+

+KNLK
−1T
LL KLLK

−1
LLKLN

(2.22)

KGuyan = KNN −KNLK
−1T
LL KLN (2.23)

KGuyan = KNN −KNLK
−1
LLKLN (2.24)

The out of diagonal partition becomes:

Krg = KNLΦi −
1
K−1

LLKLN

2T
KLLΦi (2.25)

Krg = KNLΦi −KNLK
−1T
LL KLLΦi (2.26)

Krg = 0 (2.27)
Eventually what is left is:C

MGuyan Mrg

MT
rg Mid

D I
Ẍrel

Ẍgen

J
+

C
KGuyan 0

0 KΛ

D I
Xrel

Xgen

J
=

I
0
0

J
(2.28)

2.2 Sector level calculations
Given that equation 2.17 can be expressed as:C

[Ψ]T
[Φ]T

D
[Mtot]

è
[Ψ] [Φ]

é I
Ẍrel

Ẍgen

J
+

C
[Ψ]T
[Φ]T

D
[Ktot]

è
[Ψ] [Φ]

é I
Xrel

Xgen

J
=

I
0
0

J
(2.29)

Performing the matrices multiplications:C
ΨTMtotΨ ΨTMtotΦ
ΦTMtotΨ ΦTMtotΦ

D I
Ẍrel

Ẍgen

J
+

C
ΨTKtotΨ ΨTKtotΦ
ΦTKtotΨ ΦTKtotΦ

D I
Xrel

Xgen

J
=

I
0
0

J
(2.30)

Comparing this equation with equation 2.28, it is possible to define the different
partitions in an alternative way:

MGuyan = ΨTMtotΨ
Mrg = ΨTMtotΦ
Mid = ΦTMtotΦ

(2.31)

KGuyan = ΨTKtotΨ
KΛ = ΦTKtotΦ

(2.32)
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2.2. SECTOR LEVEL CALCULATIONS

Considering that, accordingly with the theory of finite elements, the matrices of
the full system are built as a summation of the contribution of the single sectors,
we can express:

[Mtot] =
NØ

n=1
[M0] (2.33)

[Ktot] =
NØ

n=1
[K0] (2.34)

Where the [M0] and [K0] matrices are the free-interfaces matrices of the sector.
For more details on how the summation is performed see [2].

After this consideration it is possible to perform the substitution and obtain:

MGuyan = ΨT
1qN

n=1[M0]
2

Ψ

Mrg = ΨT
1qN

n=1[M0]
2

Φ

Mid = ΦT
1qN

n=1[M0]
2

Φ

(2.35)


KGuyan = ΨT

1qN
n=1[K0]

2
Ψ

KΛ = ΦT
1qN

n=1[K0]
2

Φ
(2.36)

It is possible to further modify the equations and express the products of this
matrices (full system level size) as the summation of the products of smaller matrices
(sector level size): 

MGuyan = qN
n=1 ΨT

f,n[M0]Ψf,n

Mrg = qN
n=1 ΨT

f,n[M0]Φf,n

Mid = qN
n=1 ΦT

f,n[M0]Φf,n

(2.37)


KGuyan = qN

n=1 ΨT
f,n[K0]Ψf,n

KΛ = qN
n=1 ΦT

f,n[K0]Φf,n

(2.38)

Where Ψf,n and Φf,n are the f rows of the modes matrices corresponding to the
n− th sector.
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2.3. FULL STICK MODES

All the elements now in the equations are obtainable from sector level calcula-
tions, without having to work with the matrices of the full system.

It is important to make sure that all the partitions are computed using all the
matrices expressed in a consistent set of coordinates. In this case, since it will be
assumed that [M0] and [K0] will be given in absolute physical coordinates, all the
the modes will be computed in a efficient set of coordinates and then expressed in
the absolute-physical set.

2.3 Full stick modes
In this section will be discussed how it is possible to compute the full stick modes
of the full system.

The starting point of the implementation will be the mass and stiffness matrices
of a sector of a bladed disk obtained from a FEM software.

From the FEM software it is also obtained a mapping file that allows to under-
stand which line and columns of the matrices are referring to which DOFs. The
entirety of the DOFs will then be divided in the same smaller groups that have
already been considered in the previous sections. In particular it is possible to
distinguish the disk interfaces nodes, the shroud interfaces nodes and the internal
nodes, which are all the nodes not contained in the previous groups.

The matrices are reordered to be consistent with a displacement vector defined
as follows:

î
X

ï
=



Xsh,H

Xsh,L

Xdi,H

Xdi,L

Xint


(2.39)

During the reduction process will be exploited in different ways the cyclic symmetry
of the full system, so it is useful to define the inter-blade phase angle:

ϕ = h
2π
N

(2.40)

Where N is the number of sectors in the full system and h is the harmonic index.

It is possible to define a linear transformation to go from the physical coordi-
nates sets of the system obtained from the FEM software to an equivalent set of

11



2.3. FULL STICK MODES

coordinates that assumes the repetition of N sectors in the disk.

The transformation matrix is defined as:

[C] =


I 0 0 0
0 I 0 0
0 0 I 0
0 0 Ie−iϕ 0
0 0 0 I

 (2.41)

Where the I and 0 are, in fact, identity and zeros matrices of the correct dimension
to perform the following multiplication:

Xsh,H

Xsh,L

Xdi,H

Xdi,L

Xint


= [C]


Xsh,H

Xsh,L

Xdi,H

Xint


cyc

(2.42)

Furthermore it is possible to define a transformation matrix to introduce relative
coordinates between the shroud interfaces of two adjacent sectors. Before that it is
convenient to clarify that, since it is possible to correlate the corresponding nodes
of two sectors taking into account the cyclic symmetry of the full system, it is true
that: î

Xsh,H

ï
n−1

=
î
Xsh,H

ï
n
e−iϕ (2.43)

The definition of the relative coordinates that are going to be used is the one in
equation 2.6: î

Xrel

ï
n

=
î
Xsh,L

ï
n

−
î
Xsh,H

ï
n−1

(2.44)

And so: î
Xrel

ï
n

=
î
Xsh,L

ï
n

−
î
Xsh,H

ï
n
e−iϕ (2.45)

The transformation matrix is then:

è
V

é
=


−Ieiϕ Ieiϕ 0 0

0 I 0 0
0 0 I 0
0 0 0 I

 (2.46)

And it is then valid the equation:
Xsh,H

Xsh,L

Xdi,H

Xint


cyc

=
è
V

é 
Xrel

Xsh,L

Xdi,H

Xint


rel,cyc

(2.47)
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2.3. FULL STICK MODES

It is now possible to operate all the substitutions introduced in the equation of
motion of the single sector:è

M0
é î
Ẍ

ï
+

è
K0

é î
X

ï
=

î
0

ï
(2.48)

è
M0

é è
C

é î
Ẍ

ï
cyc

+
è
K0

é è
C

é î
X

ï
cyc

=
î

0
ï

(2.49)

è
M0

é è
C

é è
V

é î
Ẍ

ï
rel,cyc

+
è
K0

é è
C

é è
V

é î
X

ï
rel,cyc

=
î

0
ï

(2.50)

The equation is then balanced:
è
V

éT è
C

éT è
M0

é è
C

é è
V

é î
Ẍ

ï
rel,cyc

+
è
V

éT è
C

éT è
K0

é è
C

é è
V

é î
X

ï
rel,cyc

=
î

0
ï

(2.51)

Consistently with the notation of the displacement vector, it is possible to define
the matrices: 

[M0]rel,cyc = [V ]T [C]T [M0][C][V ]

[K0]rel,cyc = [V ]T [C]T [K0][C][V ]
(2.52)

The size of this matrices has to be consistent with the displacement vector, and so
they are 2Lsh + Ldi + Lint × 2Lsh + Ldi + Lint.

The equation is rewritten as:è
M0

é
rel,cyc

î
Ẍs

ï
rel,cyc

+
è
K0

é
rel,cyc

î
Xs

ï
rel,cyc

=
î

0
ï

(2.53)

The full stick modes of a single sector (once the harmonic index is defined) are
obtainable by solving the eigenvalues/eigenvectors problem of the system defined
by the [M0]rel,cyc and [K0]rel,cyc matrices, after having imposed null the relative
displacement.

The result of the solution of the eigenvector problem is a matrix of p columns
(where p is the number of eigenvector we decided to compute), each one representing
one eigenvector. The mode shapes obtained are consistent with the matrix ordering
considered in the problem, so the generic column of the full stick modes matrix is:

{Φ}c =


Φsh,L

Φdi,H

Φint

 (2.54)
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2.3. FULL STICK MODES

It is useful to modify the mode shapes so that they have all the partitions present
in the equation 2.39.

Considering the cyclic symmetry, it is possible to obtain the high shroud interface
DOFs from the low one. This is possible because for the full stick modes it has been
imposed that the relative displacement of the shroud interfaces of two adjacent
sectors is zero: î

Xsh,L

ï
n

−
î
Xsh,H

ï
n−1

=
î

0
ï

(2.55)

î
Xsh,L

ï
n

−
î
Xsh,H

ï
n
e−iϕ =

î
0

ï
(2.56)

î
Xsh,H

ï
n

=
î
Xsh,L

ï
n
eiϕ (2.57)

Considering the cyclic symmetry of the system is also possible to express the
partition of the low disk interface as function of the high one.

With this considerations it is possible to define another version of the full stick
modes:

{Φ}s =



Φsh,Le
iϕ

Φsh,L

Φdi,H

Φdi,He
−iϕ

Φint


(2.58)

To build the full disk mode shape, it is possible to either consider the cyclic symmetry
and the relation available for two adjacent sectors: {Φ}s,n+1 = {Φ}s,ne

ih 2π
N .

{Φ} =



{Φ}s,1
{Φ}s,1e

iϕ

...
{Φ}s,1e

i(n−1)ϕ

...
{Φ}s,1e

i(N−1)ϕ


(2.59)

Or, since this operation has to be done considering the different harmonic indices,
it is possible to take advantage of the property of the discrete Fourier matrix.
It is possible to build the final matrix of the full system mode shapes as:

[Φ] = (EN ⊗ IM+Lsh)Bdiag [Φs,h] (2.60)

Where Bdiag [Φs,h] is a block diagonal matrix composed with the p {Φ}s mode
shapes of every harmonic index. EN is the discrete Fourier matrix of size N ×N ,
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2.3. FULL STICK MODES

whose elements are defined as:

(EN)j,k = 1√
N
ei 2π

N
(j−1)(k−1) (2.61)

For a more complete description of the discrete Fourier matrices or the Kronecker
products see [3] .

To better explain this procedure let’s consider a simplified example. Let’s
consider just a 4 × 4 Fourier matrix and only DOF per sector, so that it is not
necessary to to scale with the Kronecker product.

The Fourier matrix will be:

E4 = 1
2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 (2.62)

The full stick modes matrix will be:

Bdiag [Φs,h] =


Φs,h=0 0 0 0

0 Φs,h=1 0 0
0 0 Φs,h=2 0
0 0 0 Φs,h=3

 (2.63)

Performing the multiplication the result will be:

[Φ] = 1
2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




Φs,h=0 0 0 0
0 Φs,h=1 0 0
0 0 Φs,h=2 0
0 0 0 Φs,h=3

 (2.64)

[Φ] = 1
2


Φs,h=0 Φs,h=1 Φs,h=2 Φs,h=3
Φs,h=0 iΦs,h=1 −Φs,h=2 −iΦs,h=3
Φs,h=0 −Φs,h=1 Φs,h=2 −Φs,h=3
Φs,h=0 −iΦs,h=1 −Φs,h=2 iΦs,h=3

 (2.65)

It is shown how every mode is rotated, according to his own harmonic index, on
the column of the resulting matrix. It is also possible to notice that the modes
do not interact with each other, and every element of the final matrix is just a
rotation of a initially computed mode. With more than one DOF per sector, The
Kronecker product assures that the dimensions of the multiplication agree, but the
concept remains the same.
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Either way it is now available the matrix of the full stick modes of dimensions
N (2Lsh + 2Ldi + Lint) ×N (2Lsh + 2Ldi + Lint) where the columns are a sequence
of {Φ}s vectors whose dimensions and organization are consistent with the [M0]
and [K0] matrices.

2.4 Constraint modes
As for the full stick modes, the computation of the constraint modes must be done
having available only the free-interfaces matrices of the generic sector.

This operation can be done performing a change of coordinates on the static
problem considered in equation 2.9:

{Xslave} = [EN ⊗ ILsh+Ldi+Lint ] {Xslave}cyc

{Xrel} = [EN ⊗ ILsh ] {Xrel}cyc

(2.66)

Performing the substitution and the balancing in the static problem results in a
decoupling of the equations due to the results of the application of the Fourier ma-
trices to the block circulant matrix [KLL] (for more details see the appendices of [4]).

It is then possible to solve multiple static problems (one per harmonic index) at
a sector level and obtain portions of the constraint modes.

Given that the final constraint modes will have the following structure:

{Ψslave}cyc =


{Ψslave}cyc,0
{Ψslave}cyc,1

...
{Ψslave}cyc,N−1

 (2.67)

Each portion can be computed as:

{Ψslave}cyc,n = −[K0
LL]−1[K0

LN ]{Ψrel}cyc,n (2.68)

Where [K0
LL] and [K0

LN ] are the partition of the matrix [K0]rel,cyc defined for the
full stick modes computation.

It is now necessary to express the imposed displacement vector {Ψrel}cyc,n, re-
membering that in physical coordinates it was the identity matrix. First it is
possible to reduce the problem since it is only necessary to compute the constraint
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2.4. CONSTRAINT MODES

modes due to the displacement of all the relative DOFs of one sector; after that it
is possible to rotate this modes to obtain the ones resulting from the displacement
of the relative DOFs of the other sectors (thanks to the symmetry of the system).
So instead of the full identity matrix the imposed unitary displacement {Ψrel}
(in physical coordinates) will just be the first Lsh columns of the identity matrix
NLsh ×NLsh.

To obtain the equivalent matrix in cyclic coordinates it is used the inverse of
the transformation defined in 2.66:

{Ψrel}cyc = [EN ⊗ ILsh ]T {Ψrel} (2.69)

Now all the portions of the constraint mode vector can be computed by solving
the static problem in cyclic coordinates, using the partitions of the free-interface
stiffness matrix (with imposed cyclic boundary conditions and relative coordinates
transformation).

Once all the partitions are computed and assembled, it is possible to transform
back the constraint modes in physical coordinates using the definition of the
transformation: 

{Ψslave}0
{Ψslave}1

...
{Ψslave}N−1

 = [EN ⊗ ILsh+Ldi+Li ] {Xslave}cyc (2.70)

Where every portion is referred to the same DOFs of different sectors:

{Ψslave}n =


{Ψsh,L}
{Ψdi,H}
{Ψint}


n

(2.71)

Similarly to what has been done for the full stick modes, also for the constraint
modes it is useful to express them consistently with the structure of the vector in
equation 2.39 and so with the [M0] and [K0] matrices.

From equation 2.6, we can express:

{Ψsh,H}n = {Ψsh,L}n+1 − {Ψrel}n+1 (2.72)

And from the consideration made about the cyclic symmetry, we can express:

{Ψdi,L}n = {Ψdi,H}n−1 (2.73)
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2.5 Reduced matrix computation review
In the first part of this chapter it has been shown how the reduction of a full
system with RCCMS affect the matrices of that system, arriving at the expression
of equation 2.28 and then it has been shown that the partition in that equation
can be expressed in term of summations of sector level terms.

The focus was then on how to actually compute the terms in the summations,
having available only the free interfaces matrices of a sector [M0] and [K0].

The full stick mode shapes can be computed exploiting the cyclic symmetry
of the system to impose the boundary condition on one sector and then it is a
eigenvector/eigenvalue problem.

The constraint modes can be computed using the properties of the discrete
Fourier matrices, particularly the fact that when they are applied to a block
circulant matrix transforming it into a block diagonal matrix. With that it is
possible to define N static problems, one per harmonic index, which once solved
give portion of the constraint modes. It was then possible to reassemble all the
portions and to obtain the final matrix.

2.6 Mistuning introduction
In this section will be shown how mistuning can be directly introduced in the
reduced matrices of the full system. The power of this reduction process is shown
here, since the introduction of mistuning does not require to recompute neither
the constraint modes or the full stick modes with a significant benefit in terms
of computing time. Mistuning analysis are usually statistical, that means that
are generated many mistuning patterns for a fixed deviation value, having the
possibility to generate ROMs for every pattern with close to none additional time
required is fundamental.

2.6.1 Stiffness mistuning
First of all is is useful to understand how the stiffness mistuning impacts the
system. Having a deviation in the stiffness of each sector means that all the [K0]
are different, moreover the full stick modes are different from the tuned case and
also the constraint modes change. It is not applicable to compute the mode shapes
of the full system for every mistuning pattern, so it is still required to express the
reduced matrices with sector level terms.
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It is possible to express the stiffness matrix partitions of equation 2.38, taking
into account the effect of mistuning:

K∗
Guyan = qN

n=1 Ψ∗T
f,n[K0]∗nΨ∗

f,n

K∗
Λ = qN

n=1 Φ∗T
f,n[K0]∗nΦ∗

f,n

(2.74)

Using the superscript ∗ to specify that the terms are referred to the mistuned system.

The following considerations are introduced in further details in [1], fourth
chapter.

Introducing the hypotheses of cyclic static modes which states that the effect
of mistuning negligible on the constraint modes allows to use the same constraint
modes already computed for the tuned case.

Introducing the hypotheses of small mistuning which states that the mode
shapes of the mistuned system can be expressed as a linear combination of the
ones of the tuned system allows to express the mistuned full stick modes as:

[Φf ]∗n = [Φf ]n [P ] (2.75)

Where [P ] is the coefficient matrix of the transformation, performing the substitu-
tion in the expression above allows to use the full stick modes of the tuned systems
and apply [P ] to the generalized coordinates partition of the displacement vector.

Last it is possible to express the mistuned stiffness matrix of the single sector
as: è

K0
é∗

n
=

è
K0

é
+

è
∆K0

é
n

(2.76)

Where [∆K0]n is the effect of the mistuning on the stiffness matrix of one specific
sector.

The mistuning has usually been introduced in term of a pattern of small devia-
tions of the sectors stiffness.

The deviation of the stiffness introduced for every sector is defined as:

δn = Emist,n

Emat

(2.77)

Where Emat is the Young modulus of the material in tuned conditions, while Emist,n

is the Young modulus of the material considered the mistuning of that sector.
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It is possible then to express the stiffness matrix of every mistuned sector as:è
K0

é∗

n
= δn

è
K0

é
(2.78)

With all this considerations the introduction of the stiffness mistuning can be
performed as follows: 

K∗
Guyan = qN

n=1 δnΨT
f,n[K0]Ψf,n

K∗
Λ = qN

n=1 δnΦT
f,n[K0]Φf,n

(2.79)

The out of diagonal partitions of the stiffness matrix, which in the tuned case are
all zeros, are expected to be close to null even in the mistuned case and so they
are neglected.

It is immediate to see how the building process of the reduced matrices can stay
the same as the tuned case until the very final assembling. There is no need to
compute again the static or constraint modes.

2.6.2 Density mistuning
The introduction of density mistuning can be done following the same steps of the
stiffness mistuning, but some differences must be taken into account. Without any
hypotheses introduced, it is assumed, as was for the stiffness mistuning, that all
the terms in 2.37 are different in the mistuned case from the tuned case:

M∗
Guyan = qN

n=1 Ψ∗T
f,n[M0]∗nΨ∗

f,n

M∗
rg = qN

n=1 Ψ∗T
f,n[M0]∗nΦ∗

f,n

M∗
id = qN

n=1 Φ∗T
f,n[M0]∗nΦ∗

f,n

(2.80)

Here it is possible to see where the introduction of the mistuning in terms of density
deviations is powerful. Since, in this case, the stiffness matrix is exact, then the
constraint modes of the mistuned system are the same of the the tuned system.
This can be understood considering the definition of constraint modes, equation
2.9. In fact physically these modes are static deformations, which do not depend
in any way from the mass of the system.

The rest of the considerations are the same as for the stiffness mistuning. Under
the hypotheses of small mistuning the full stick modes of the mistuned system can
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be seen as a linear combination of the full stick modes of the tuned system. While
the mass matrices of the mistuned system can again be decomposed in their tuned
counterparts and a deviation due to the presence of the mistuning:è

M0
é∗

n
=

è
M0

é
+

è
∆M0

é
n

(2.81)

In this case the deviation parameter is defined as:

δn = ρmist,n

ρmat

(2.82)

Where ρmat is the density of the material in tuned conditions, while ρmist,n is the
density of the material considered the mistuning of that sector.

The mass matrix of the mistuned sector can be then expressed as:è
M0

é∗

n
= δn

è
M0

é
(2.83)

Eventually, the partitions of the mistuned reduced mass matrix can be expressed
as: 

M∗
Guyan = qN

n=1 δnΨT
f,n[M0]nΨf,n

M∗
rg = qN

n=1 δnΨT
f,n[M0]nΦf,n

M∗
id = qN

n=1 δnΦT
f,n[M0]nΦf,n

(2.84)

In this case as well are still valid all the considerations made for the stiffness
mistuning and also it worth mentioning again how this time was not introduced
the hypotheses of cyclic static modes, which brings a reduction of the accuracy of
the ROM, but it is mandatory for the stiffness mistuning case since it was imposed
as a requirement to be able to express all the terms in the matrices performing
only sector level calculations.
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Chapter 3

Results

In this chapter the results obtained will be presented in terms of natural frequencies,
mode shapes and linear forced response. The comparison will be between the
analysis performed on the system described by the reduced matrices built following
the methodology described in the previous chapter, with the analysis performed on
the full model of the bladed disk, available in Ansys.

3.1 Description of the models
3.1.1 FE model
The model considered in this thesis is a simplified model of a bladed disk with 27
sectors, composed of 449226 degrees of freedom (149742 nodes). The single sector
model (considering both disk interfaces) has 17484 DOFs (5828 nodes).

Figure 3.1: Full bladed disk
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3.1. DESCRIPTION OF THE MODELS

In this case, it is possible to identify the partitions of the fundamental sector
described in the methodology chapter:

Figure 3.2: Elemental sector, (a) Shroud interface, (b) Disk interface

The low and high interfaces have the same number of DOFs, the shroud inter-
faces have Lsh = 75 DOFs, the disk interfaces have Ldi = 846 DOFs there are then
Lint = 15642 internal DOFs. The FEM model has also additional DOFs on which
are imposed the constraints, these DOFs are not counted in the list, since imposing
there no displacement at all is equivalent at excluding those DOFs from mass and
stiffness matrices of the system.

The mistuning will be introduced in the FEM model changing the characteristics
of the material sector by sector. It has also been considered the case in which the
mistuning is introduced only on the blades DOFs, while the disk is not affected
by it. This cases where introduced to test the performances of the ROMs with a
simplified case compared to the full sector mistuning described earlier.

3.1.2 Reduced order models
The reduced order models used in the following sections will be defined by their size,
usually bigger ROMs better approximate the real system, and the characteristics
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3.1. DESCRIPTION OF THE MODELS

of the mistuning introduced.

The size of the ROM will be defined by the number of full stick modes that are
retained during the reduction process. In this case the choice is to retain a equal
amount of modes for every harmonic index, the cases considered will be with 5, 10,
20 and 30 modes per nodal diameter (ND) which results in reduced matrices with,
respectively, 2160, 2295, 2565 and 2835 rows and columns.

3.1.3 Mistuning patterns
The system is strongly impacted by the mistuning pattern and since the objective
of this theses is to compare the performance of the ROMs when introducing dif-
ferent types of mistuning, it is necessary to be able to have stiffness and density
mistuning patterns that have similar impact on the system. This is accomplished
by generating patterns of δn that can be introduced in equations 2.79 and 2.84 into
the ROMs and can be used to define the material properties of the sectors of the
FE models.

Let’s define δstiff the vector of δn applied in the stiffness mistuning case and
δdens the vector of δn applied in the density mistuning case. Clearly having the
same pattern introduced for both would not result in similar systems since, in
general, stiffness and density contribute to the dynamic of the system as one the
inverse of the other. But defining δdens = δ−1

stiff is not possible as well, because
for small mistuning it is valid the hypotheses that, in the real bladed disks, the
imperfection causing the mistuning do not impact the overall stiffness or density of
the components. This is verified in the reduced order models if the averages of the
δ vectors are unitary. So, if δdens is a function of δstiff and the stiffness mistuning
pattern is defined to have average 1, the transformation function must be linear to
assure that also the density mistuning pattern has also average 1.

Always under the hypotheses of small mistuning it is possible to consider the
Taylor expansion valid for values really close to 1 of the function introduced before,
so that the transformation is linear:

δstiff = δ−1
dens Ä 2 − δdens (3.1)

This transformation is not supposed to make sure that the two generated systems
are the exact same, its porpoise is to only to assure that the systems are similar
enough so that the difference in performances of the ROMs generated to approx-
imate them are not dependent on the mistuning patterns, but only on type of
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3.1. DESCRIPTION OF THE MODELS

mistuning. The validity of this assumption is assessed in the appendix A.

The stiffness mistuning patterns introduced will be sampled from normal distri-
butions with different standard deviation, 3% and 6%. Then the average will be
set to 1 and the density mistuning patterns will be generated using equation 3.1:

δstiff 3% δdens 3% δstiff 6% δdens 6%
0.971 1.029 0.941 1.059
0.978 1.022 0.957 1.043
1.006 0.994 1.012 0.988
0.989 1.011 0.978 1.022
1.000 1.000 1.000 1.000
1.014 0.986 1.029 0.971
1.008 0.992 1.016 0.984
1.017 0.983 1.034 0.966
1.012 0.988 1.024 0.976
0.998 1.002 0.996 1.004
1.008 0.992 1.016 0.984
1.003 0.997 1.006 0.994
1.011 0.989 1.022 0.978
1.007 0.993 1.013 0.987
1.007 0.993 1.014 0.986
0.991 1.009 0.982 1.018
0.998 1.002 0.996 1.004
0.975 1.025 0.950 1.050
1.004 0.996 1.007 0.993
0.998 1.002 0.996 1.004
0.999 1.001 0.999 1.001
1.012 0.988 1.024 0.976
0.992 1.008 0.985 1.015
0.974 1.026 0.948 1.052
0.992 1.008 0.984 1.016
1.023 0.977 1.047 0.953
1.012 0.988 1.023 0.977

Table 3.1: Mistuning patterns introduced
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3.1. DESCRIPTION OF THE MODELS

To give an idea of how just a 3% mistuning in stiffness or density can impact
the system, here are reported two mode shapes of the tuned and mistuned systems:

Figure 3.3: Example of tuned mode shape of the open contact system

Figure 3.4: Example of mistuned mode shape of the open contact system
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3.1. DESCRIPTION OF THE MODELS

The localization of the vibration energy is evident in this case, while in the full
stick cases it is much less immediate:

Figure 3.5: Example of tuned mode shape of the close contact system

Figure 3.6: Example of mistuned mode shape of the close contact system
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3.2. TUNED SYSTEM CHARACTERISTICS

3.2 Tuned system characteristics
In this section will be presented the results obtained comparing the natural fre-
quencies of the full system and the ROMs without the introduction of any mistuning.

In this section, as in the followings, will be distinguished two extreme cases:
one with the contacts at the shroud interfaces completely open and one with the
contact completely clumped. In reality the contact at the shroud interfaces is
non-linear and its accurate descriptions in the models goes beyond the porpoises of
this thesis.

Here are presented the natural frequencies of the systems at various harmonic
indexes as obtained from a modal analysis performed in Ansys:

(a) System with opened shroud contacts (b) System with closed shroud contacts

Figure 3.7: Natural frequencies at various harmonic indexes for the tuned systems

It is possible to see how the first families of mode shapes of the open contact’s
system are well distinguished from one another, however the close contact’s system
graphs shows that the families tend to interact more since the beginning. It is also
noticeable how the natural frequencies of the close contact’s system are overall
higher than the other system’s, this is due to an increased stiffness of the system
thanks to the clumping of the shroud interfaces.
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3.3. STIFFNESS MISTUNING

The different tuned ROMs have been tested to check how accurately they can
predict the natural frequencies of the full system:

Figure 3.8: Deviation of the different tuned ROMs in predicting the natural
frequencies

It is possible to see at what level the different ROMs can be considered precise
in predicting higher natural frequencies. The precision of the ROMs its higher
in the lowest natural frequencies range because of the set of retained full stick modes.

To increase the precision of the ROM it can be useful to retain a higher number
of modes, but over a certain level the deviation doesn’t decrease anymore.

3.3 Stiffness mistuning
In this section the performances of ROMs built introducing stiffness mistuning at
different levels will be reported, considering 20 modes per harmonic index, which,
as seen for the tuned case, is usually enough to have a converged ROM.

3.3.1 Natural frequencies
The first results shown refer to the open contact systems and intend on showing
how accurate the prediction of the mistuned systems natural frequencies is.
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3.3. STIFFNESS MISTUNING

Figure 3.9: Natural frequencies of the open contact system, with 3% stiffness
mistuning

The deviation between the Ansys model natural frequencies and the ones
computed using the ROM is presented here:

Figure 3.10: Deviation between the natural frequencies (Ansys-ROM) of the
open contact system, with 3% stiffness mistuning
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3.3. STIFFNESS MISTUNING

While considering the close contact systems, the results are:

Figure 3.11: Natural frequencies of the close contact system, with 3% stiffness
mistuning

Figure 3.12: Deviation between the natural frequencies (Ansys-ROM) of the
close contact system, with 3% stiffness mistuning
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3.3. STIFFNESS MISTUNING

Increasing the severity of the mistuning to 6% deviation makes it harder for ROM
to correctly predict the natural frequency, however the results are still accurate.
Here are compared the deviations between the 3% and 6% mistuning for both the
open and close cases.

Figure 3.13: Comparison of the deviations between the 3% and 6% stiffness
mistuned systems, open contact

Figure 3.14: Comparison of the deviations between the 3% and 6% stiffness
mistuned systems, close contact
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3.3. STIFFNESS MISTUNING

It can be also be noticed how the ROM perform better in predicting the close
shroud system, this is due to the introduction, in the reduction basis, of the full
stick modes.

3.3.2 Mode shapes

The mode shapes comparison has been performed using the Modal Assurance
Criterion or MAC.

The comparison has been done considering the values of the mode shapes for
the three DOFs of a node on the leading edge of the blades. The nodes considered
are 27, one per sector, close to the shrouds. The choice was made trying to select
a node that would present significant displacement for all the different mode shapes.

Starting with the open contact systems:

Figure 3.15: MAC plot for the open contact system with 3% stiffness mistuning
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3.3. STIFFNESS MISTUNING

Figure 3.16: MAC plot for the open contact system with 6% stiffness mistuning

Both the Ansys mode shapes and the ROM mode shapes are ordered in ascend-
ing order of natural frequencies.

It is possible to notice how some mode shapes are predicted accurately but are
ordered wrongly, this is due to the error in predicting the natural frequencies of
two really close modes, which is large enough to switch their order.

In some other cases it is possible to identify small 2 × 2 matrices in the MAC
matrices that show some deviation in predicting the mode shapes. For example
here are shown the mode shapes of these cases for the open contact case with 3%
mistuning:
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3.3. STIFFNESS MISTUNING

(a) Mode 18 (b) Mode 19

Figure 3.17: Normalized displacement of the chosen node in all sectors

It is possible to notice how the prediction of the ROM, mode by mode, has sig-
nificant discrepancies with the Ansys results, but it has to be said that considering
the two couples of mode shapes gives the same "information" in both cases, this
means that the linear combinations of modes obtained from mode 18 and mode 19
in Ansys, can be also obtained as linear combinations of mode 18 and mode 19 of
the ROM.

For the full stick cases the results obtained are:

Figure 3.18: MAC plot for the full stick system with 3% stiffness mistuning
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3.3. STIFFNESS MISTUNING

Figure 3.19: MAC plot for the full stick system with 6% stiffness mistuning

In this conditions the performance of the ROMs are better, since in the reduction
process the base chosen contains the full stick mode shapes.

It is worth noticing one generic mode shape of the close contact case with 3%
mistuning:

Figure 3.20: Normalized displacement of the chosen node in all sectors, mode 25
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3.3. STIFFNESS MISTUNING

The full stick case’s mode shapes maintain their periodicity and are overall
much less impacted by the presence of mistuning thanks to the stiffening effect of
the shrouds that also help transferring the vibration energy between the adjacent
sectors. They tend to avoid the really localized mode shapes typical of the bladed
disks with cantilever blades.

3.3.3 Linear forced response
The linear forced response was analyzed only for the full stick systems, this cases
are more significant because the real micro-slip conditions of the shrouds contact
interfaces are much closer to the close contact case than to the open contact one.

The force is applied at a node on top of the shrouds of every sector in a tangen-
tial direction. The magnitude of the forces is set to 100 N and the phase angles
are known once engine order (EO) is defined. The amplitude of the response
represented in the following results is relative to the tangential displacement of one
node positioned on the blade close to the shroud. It was also considered a damping
matrix defined as proportional to the stiffness matrix.

The range for the analysis, 2.000 Hz to 2.400 Hz and the EO, 11, were chosen
based on the distribution of the natural frequencies of the tuned system at the
various harmonic indexes (figure 3.7b):

Figure 3.21: Envelope of maximum response for the full stick system with 3%
stiffness mistuning, EO = 11
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3.4. DENSITY MISTUNING

Figure 3.22: Envelope of maximum response for the full stick system with 6%
stiffness mistuning, EO = 11

It is possible to observe how all the higher picks are correctly represented in the
analysis, however in some of the smaller ones the ROMs tend to overestimate the
response of the system.

3.4 Density mistuning

The procedure followed here will be the exact same as for the stiffness mistuning,
in the following section will then be highlighted the differences and similarities
between the two approaches.

3.4.1 Natural frequencies

The overall values of the natural frequencies for the stiffness and density mistuned
systems are the same as it shown in figures A.1 and A.2, in this section will only
be presented the results in terms of deviations and not in terms of absolute values
because they would be redundant.
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3.4. DENSITY MISTUNING

Figure 3.23: Deviation between the natural frequencies (Ansys-ROM) of the
open contact system, with 3% density mistuning

While considering the close contact systems, the results are:

Figure 3.24: Deviation between the natural frequencies (Ansys-ROM) of the
close contact system, with 3% density mistuning
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3.4. DENSITY MISTUNING

The considerations made for the stiffness case are still valid: the severity of the
mistuning impact the accuracy of the ROMs, but a 6% standard deviation pattern
still gives good results for the first natural frequencies.

Figure 3.25: Comparison of the deviations between the 3% and 6% density
mistuned systems, open contact

Figure 3.26: Comparison of the deviations between the 3% and 6% density
mistuned systems, close contact
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3.4. DENSITY MISTUNING

Comparing these results with the stiffness mistuning cases, it is possible to notice
how the ROMs now maintain the same performances also in the 6% mistuning
cases. Introducing mistuning in terms of density allows for better results in terms
of natural frequencies also with more severe mistuning introduced.

3.4.2 Mode shapes

The comparison has been done considering the values of the mode shapes for the
three DOFs of a node on the leading edge of the blades. The nodes considered
are 27, one per sector, close to the shrouds. The choice was made trying to select
a node that would present significant displacement for all the different mode shapes.

The open contact systems results are:

Figure 3.27: MAC plot for the open contact system with 3% density mistuning
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3.4. DENSITY MISTUNING

Figure 3.28: MAC plot for the open contact system with 6% density mistuning

Both the Ansys mode shapes and the ROM mode shapes are ordered in ascend-
ing order of natural frequencies.

In the close contact case, the MAC plots are:

Figure 3.29: MAC plot for the close contact system with 3% density mistuning
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3.4. DENSITY MISTUNING

Figure 3.30: MAC plot for the close contact system with 6% density mistuning

According with what is presented in appendix A, the mode shapes of the density
and stiffness mistuned systems are really similar thanks to how the mistuning
pattern were chosen. Thanks to this, the phenomena described in the subsection
3.3.2 are still apparent in this case.

3.4.3 Linear forced response

In the density mistuning section as well, the linear forced response was analyzed
only for the full stick systems.

The force is applied at a node on top of the shrouds of every sector in a tangen-
tial direction. The magnitude of the forces is set to 100 N and the phase angles
are known once engine order (EO) is defined. The amplitude of the response
represented in the following results is relative to the tangential displacement of one
node positioned on the blade close to the shroud. It was also considered a damping
matrix defined as proportional to the stiffness matrix.

The range for the analysis, 2.000 Hz to 2.400 Hz and the EO, 11, were chosen
based on the distribution of the natural frequencies of the tuned system at the
various harmonic indexes (figure 3.7b):
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Figure 3.31: Envelope of maximum response for the full stick system with 3%
density mistuning, EO = 11

Figure 3.32: Envelope of maximum response for the full stick system with 6%
density mistuning, EO = 11

It is possible to observe how all the higher picks are correctly represented in the
analysis, however in some of the smaller ones the ROMs tend to overestimate the
response of the system.
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3.5 Performances comparison between density and
stiffness mistuning

In this section are going to be compared the performances of the stiffness and
density mistuning, in particular it will be shown how the different parameters
considered in the previous results affect differently the accuracy of the ROMs.

It is noticeable to see how the accuracy of the ROMs in predicting the natural
frequencies is impacted by the ROM size:

Figure 3.33: Accuracy in predicting the natural frequencies of the open contact
systems, considering different ROMs sizes
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Figure 3.34: Accuracy in predicting the natural frequencies of the close contact
systems, considering different ROMs sizes

This results are about the 3% mistuning ROMs. The deviations of the close
cases are comparable for all the ROMs sizes, this was expected since in this systems
the constraint modes are not playing any role and the accuracy of the ROMs is
only dependent on the full stick modes. In the open contact case however, the
performances of the density mistuned ROMs improve far better, with the size of
the matrices, than the the stiffness mistuned ones. In this case, the introduction of
density mistuning, which allows for exact constraint modes, represents the better
option.

The same comparison can be performed with the diagonal of the MAC matrix,
to see how the different types of mistuning can approximate the mode shapes. It
must be specified that for this comparison it was considered the highest value of
three central diagonals of the MAC matrices, to make sure that the wrong ordering
of the mode shapes doesn’t affect the results presented.
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Figure 3.35: Accuracy in predicting the mode shapes of the open contact systems,
considering different ROMs sizes

Figure 3.36: Accuracy in predicting the mode shapes of the close contact systems,
considering different ROMs sizes
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Once again the results for the close contact systems are overall better, but there
is no significant difference in introducing either stiffness or density mistuning, while
for the open contact systems the density mistuned ROMs are more precise than
the stiffness mistuned ones.
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Chapter 4

Conclusions

This thesis presented the computational implementation of the RCCMS method
described in [1], developing the algebra involved in details. Closing the Methodology
chapter, it is presented the introduction of mistuning in the final reduced order
models, highlighting the differences between stiffness and density mistuning from
the algebraic point of view, however both can be introduced with ease making the
method suitable for industrial applications where statistical analysis are required
for the characterization of bladed disks.

In the Results chapter are presented the most significant results of the tests
operated on the various ROMs generated. The systems have been tested considering
the accuracy in predicting the natural frequencies, the mode shapes and the linear
forced response of a FE model available in Ansys.

The tests showed how it is equivalent to introduce the mistuning in terms
of stiffness or density if the behaviour of the bladed disk is close to a full stick
condition, where the contact interfaces at the blades shrouds have no relative
displacement between adjacent sectors. However, the more the system’s behaviour
can represented as a bladed disk with cantilever blades, the more introducing
density mistuning is convenient compared to stiffness mistuning. The behaviour of
the system is, in reality, non-linear and depends on multiple factors like pre-stress
applied at the shrouds and friction coefficient between the shrouds interfaces.
It is necessary then to perform a non-linear forced response analysis, comparing
the results given by the ROMs and a finite element model, to further investigate if
the density mistuning can, indeed, be a suitable alternative to stiffness mistuning.
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Appendix A

Comparison of the stiffness
and density mistuned
systems

In this appendix will be addressed the validity of the hypotheses that the two
systems generated with the δ mistuning patterns defined using equation 3.1, are, in
fact, similar in terms of natural frequencies and mode shapes. The results presented
here are referred only to the 3% mistuning cases for brevity.

A.1 Natural frequencies

The comparisons presented here are all between FE models, which are the ones
used as references to show the performances of the ROMs. The first graphs show
how close the natural frequencies of the density and stiffness mistuned systems are.
The figure A.1 refers to the systems with open contact at the shrouds interfaces,
while the figure A.2 refers to the system in full stick conditions.
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Figure A.1: Natural frequencies deviation between the stiffness and density
mistuned open contact systems

Figure A.2: Natural frequencies deviation between the stiffness and density
mistuned closed contact systems

For both cases the deviation between the first natural frequencies of the systems
never exceeds 0.1%.

A.2 mode shapes
As in the other cases the mode shapes comparison is performed using the modal
assurance criterion (MAC), evaluating how similar the modes of the two mistuned
systems are. The comparison was performed using only the values of the mode
shapes for one node (three degrees of freedom). As for the natural frequencies, both
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cases are presented. The figure A.3 refers to the systems with open contact at the
shrouds interfaces, while the figure A.4 refers to the system in full stick conditions.

Figure A.3: mode shapes comparison between the stiffness and density mistuned
open contact systems

Figure A.4: mode shapes comparison between the stiffness and density mistuned
closed contact systems

For the open contact case it is possible to see how there is close to perfect match
between the various mode shapes, while for the closed contact case few modes are
ordered differently but, a part from that, the results are really close.
The results presented in this chapter show how the introduction of the mistuning
in terms of a vector of δn, which is applied as it is to the stiffness and after the
transformation in equation 3.1, to the density, guarantees good similarity between
the systems generated.
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