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Summary

Synchronization is a ubiquitous phenomenon, universally found both in natural and
human-engineered systems: from firing neurons to the twinkling of fireflies, from metronomes
to power grids, from applauding audiences to the circadian rhythms of plants and animals.
Patterns and order magically emerge from the disordered interplay of many interacting
parts, with a complexity which seems to give no hope for simple models. The Kuramoto
model is one of the hallmarks of complex systems’ theory, with its simplicity, richness of
behavior and surprising modeling power. It allows us to describe the onset of synchroniza-
tion in systems of oscillators which interact in pairs according to a determined network
topology.

A particular reformulation of the Kuramoto model naturally lends itself to a general-
ization which, on the recent wave of research on higher-order systems, allows one to go
beyond pairwise interactions and consider oscillators influencing each other in groups.
Such higher-order interactions can be easily described with simplicial complexes, discrete
combinatorial objects which generalize graphs, from nodes and edges, to triangles, tetrahe-
dra and so on. The rich theory of discrete exterior calculus, which brings classical calculus
on manifolds to the discrete domains of simplicial complexes, provides us with a vast set
of tools and ideas which can help us to study the simplicial Kuramoto model. Interesting
relations between the topology of the complex and the synchronization properties of the
model emerge.

In the thesis, after having introduced Hodge’s decomposition theorem and discrete ex-
terior calculus, we explore the properties of the simplicial Kuramoto model on weighted
simplicial complexes, with a particular focus on its equilibrium properties. We study the
peculiar character of simplicial interactions, generalize known results to find new notions
of synchronization and phase-locking, together with necessary and sufficient conditions
for their onset. We investigate the equilibrium phase transition which occurs when the
strength of the interaction is increased, and its effect on the order parameter. Finally,
we consider the case where an external frustration influences the interactions, study how
it reshapes the equilibrium configurations of the system and how it can be used in a
synchronization control perspective.
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“This is what makes the world, Ms. Lin. I
believe this to be the fundamental dynamic.
Transition. The point where one thing
becomes another. It is what makes you, the
city, the world, what they are. And that is
the theme I’m interested in. The zone where
the disparate become part of the whole.”
[China Mieville, Perdido Street Station]



1 | Introduction

Complex networks theory is the study of phenomena which result from the interplay among
many distinct parts interacting in a non-trivial way. Examples can be found everywhere:
the spread of fake news on a social networks, the interaction network of proteins in an
organism, the activation of neurons in the brain, climate networks, etc. The common
modeling approach proceeds in a bottom-up fashion: first we identify the agents, then
we decide which ones interact and, more importantly, how they interact. The hard part,
then, is being able to say something about the emergent macroscopic phenomena directly
from the microscopic evolution rules, which are usually quite simple. The idea that com-
plex behaviors can emerge from simple rules is an old and well established one: from the
physical world of disordered magnets subject to a magnetic field, to the computational
world of cellular automata [27]. In some sense, we look for ways to “skip” the middle
scales, where the agents interact and change in such complex and unpredictable ways that
our exact analytical tools break down completely. In many real or ideal systems, in fact,
there is a right scale, where this enormous complexity leaves space for the emergence of
ordered phenomena which can be understood with simple mathematical models.

One of the most successful ways to give a mathematical description of these complex
systems of interacting agents is the following:

• consider agents as nodes in a graph with state variables associated to them;

• represent interactions by edges connecting them;

• establish a discrete or continuous-time evolution rule for the nodes’ states which
depends, for each one, only on the states of its neighbors.

This is the mantra of complex networks theory, which stands as one of the major workhorses
of modern scientific research. This simple recipe works surprisingly well and has been suc-
cessfully applied in modeling a vast class of systems, from the spread of epidemics [20]
and disinformation [26], to the regulation of genes in an organism [15]. Graph theory,
moreover, is an old and extremely well studied subject, which provides precious tools to
study the interplay between structure and dynamics.

Graphs, however, are only a part of the story. Recent years have seen the birth of
a different paradigm which aims at going one step beyond [5]. The key observation is
that nodes and edges can describe only pairwise interactions, i.e. the evolution of the
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Introduction

system comes from pairs of agents influencing each other. Group interactions are thus
completely neglected or reduced to combinations of pairwise (or dyadic) ones. This is
indeed a strong limitation, which can have harmful effects on the descriptive power of a
model. It is not hard to see that if we want to describe, say, social dynamics, a group
of friends is quite different from a collection of one-on-one friendships. The number of
systems where higher-order interactions have been recognized to be present and relevant
is rapidly growing: brain networks [28], biological communities [17], scientific research
groups formation [19] are just a few examples.

The mathematical models which are able to describe higher-order interactions are mul-
tiple but, among them, the most common ones are hypergraphs and simplicial complexes.
Simplicial complexes, in particular, allows us to go from nodes and edges, to triangles,
tetrahedra and general higher order simplices. They are more structured than hypergraphs
and, like graphs, possess a rich theory rooted in the mathematical field of topology. Their
expressive power, moreover, is greatly increased by the possibility of naturally including
weights [2]. Simplicial variants of known models [18, 6, 10] have thus emerged in the last
years, displaying rich dynamical properties, from explosive phenomena [18] to chimera
states [13].

Naturally, the process of “simplicialization” has reached also the study of synchroniza-
tion. This particular field [21] deals with systems of oscillators, i.e. objects whose state
follows a periodic evolution, which influence each other and sometimes become coherent.
Think, for example, of frictionless pendula attached to the same support, or metronomes
on a moving platform, or even a swarm of fireflies synchronously blinking in the night. Os-
cillatory materials, like the heart’s muscle cells responsible for its periodic and synchronous
beating, are object of this study as well. Among the different mathematical models which
can describe oscillators’ systems, the Kuramoto model [14] is the most renowned. With
its simple evolution rule, written in the language of ordinary differential equations, it is
able to characterize discrete systems of simple oscillators which, when left alone, evolve
with constant angular speed. These oscillators are placed in the nodes of a network which
regulate interactions, chosen in such a way that they naturally tend to minimize the phase
difference between neighboring nodes. Thanks to its simplicity and descriptive power, the
Kuramoto model has been the object of massive research which revealed interesting rela-
tions between the dynamical properties of the model, like its propensity to synchronize,
and the topology of the network [11].

The simplicial Kuramoto [18, 1] is a natural generalization of the original model. With
it, we are not constrained to considering the evolution of oscillators placed on nodes, but
we can place them on simplices of any order. This change, which may seem completely
arbitrary, actually allows us to consider higher order interactions: if an edge can connect
only two nodes at a time, a triangle connects three edges, a tetrahedron four faces and
so on. Simplicial oscillators of order k will interact through (k + 1)-simplices, resulting
in interactions of order k + 2. In line with the guiding principles of higher-order network
theory, the essential difference between agents and “carriers of interactions” fades away,
leaving us with a much wider modeling freedom.
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Introduction

What we get is a remarkable model, whose behavior is peculiar. Its evolution equation,
moreover, can be elegantly written by borrowing some of the concepts of discrete exterior
calculus [8], the discrete analogous to differential geometry on manifolds. As we will see,
this geometrical structure allows us to “open the black box” and get precious insights
on the dynamical properties of the model and how they are related to the topological
characteristics of the simplicial complex.

The thesis is divided in two parts:

• Chapters 2,3, and 4 describe the fundamentals required to build the simplicial Ku-
ramoto model. In particular,

– Chapter 2 introduces adjoint operators, the concept of Laplacian, homology and
the Hodge decomposition theorem;

– Chapter 3 is a brief review of discrete exterior calculus, aimed at defining sim-
plicial complexes, the coboundary and codifferential operators acting on them
and showing the relation between the Laplacian operator and the topology of
the complex;

– Chapter 4 describes the basis of the Kuramoto model for coupled oscillators,
the original formulation and some of its variants. The chapter ends with the
derivation of the Kuramoto model for weighted simplicial oscillators and the
generalizations of the concepts of full synchronization and order parameter.

• Chapter 5, finally, contains a bottom-up analysis of the simplicial Kuramoto model,
focused on the study of its equilibrium configurations. All the novel contributions
of this work can be found there. In particular,

– Section 5.1 studies the case of a single simplicial oscillator in isolation, high-
lighting how it differs from a standard Kuramoto oscillator;

– in Section 5.2, Hodge’s decomposition theorem is applied to find the main com-
ponents of the dynamics which are found to evolve independently of each other.
Separate equilibrium expressions for the curl-free and divergence-free compo-
nents are found and are related to the equilibria of the dynamics projected onto
adjacent simplices. A linear stability analysis of the equilibrium sets is also
performed;

– in Section 5.3, we investigate how the coupling strength influences the equilib-
rium properties of the system. Necessary and sufficient conditions for simplicial
phase-locking are derived, generalizing known results for the standard graph
Kuramoto to the weighted simplicial case;

– in Section 5.4 we examine the order parameter of equilibrium configurations,
giving upper and lower bounds for their value as functions of the interaction
strength;

– finally, in Section 5.5 we examine a variant of the Kuramoto model where the
interactions are “frustrated” by the action of an external field. We discuss the
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ways in which one can extend it to the simplicial case and study the case of a
single, frustrated, simplicial oscillator.

Chapter 6 summarizes the work and the major contributions of the thesis.
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2 | Hodge theory in a nutshell

We present here the fundamentals aspects of Hodge theory, a set of tools which will be
extensively used in the rest of the thesis. As it is excellently done in [16], we choose here
to give an abstract exposition in order to show the beauty and generality of this theory.
Moreover, we choose to concentrate most of the proofs here, a sacrifice which will grant a
more fluent exposition when all of this will be applied in later sections.

2.1 Fundamentals
In a few words, Hodge theory studies the property of sequences of linear maps which
satisfy a particular “nesting” relation. We will see how, from a simple algebraic property,
many useful concepts can be derived.

Consider three finite-dimensional Hilbert spaces (i.e. vector spaces with non-degenerate
inner product) (V, ⟨·, ·⟩V ), (W, ⟨·, ·⟩W ), (Z, ⟨·, ·⟩Z) and linear maps f : V → W , g : W → Z.

Property 1. Hodge theory studies the properties of

V
f−→ W

g−→ Z

when
g ◦ f = 0,

i.e. when Im(f) ⊆ ker(g) (see Figure 2.1).

If we choose bases for the (finite dimensional) vector spaces {vi}i , {wi}i , {zi}i we
can then represent f and g with matrices F ,G. Property 1 then becomes GF = 0.
In the same way, one can represent the inner products as symmetric positive definite
matrices MV ,MW ,MZ (called Gram matrices) whose elements are (MV )ij = ⟨vi, vj⟩V ,
(MW )ij = ⟨wi, wj⟩W and (MZ)ij = ⟨zi, zj⟩Z . The inner product between two vectors
x, y ∈ V , for example, will be given by x⊤MV y.

Definition 2.1.1 (Adjoint operator). If f : (V, ⟨·, ·⟩V ) → (W, ⟨·, ·⟩W ) is a lin-
ear map between Hilbert spaces, we define its adjoint as the linear map f∗ :
(W, ⟨·, ·⟩W )→ (V, ⟨·, ·⟩V ) such that ⟨fx, y⟩W = ⟨x, f∗y⟩V ∀x ∈ V, y ∈ W .

13



Hodge theory in a nutshell

Figure 2.1: Representation of the property g ◦ f = 0.

The adjoint operation is a way to invert the direction of a map without the strong
requirements needed for an actual inverse.

Proposition 2.1.1. The adjointness operation is idempotent, i.e. (f∗)∗ = f .

Proof.
⟨x, (f∗)∗y⟩ = ⟨f∗x, y⟩ =üûúý

symmetry

⟨y, f∗x⟩ = ⟨fy, x⟩ = ⟨x, fy⟩ ,

hence (f∗)∗ = f .

It is easy to prove that the adjoint of an operator f : V → W represented by the
matrix F is represented by F ∗ = M−1

V F⊤MW .
The analogous to Property 1 also holds for adjoints:

Proposition 2.1.2. If g ◦ f = 0 then the analogous holds for the adjoints i.e.
f∗ ◦ g∗ = 0.

Proof. This is proven by considering

⟨f∗ ◦ g∗x, y⟩V = ⟨g∗x, fy⟩W = ⟨x, g ◦ fy⟩Z = 0, ∀x ∈ Z, y ∈ V,

meaning that ⟨Im(f∗ ◦ g∗), V ⟩V = 0, i.e. f∗ ◦ g∗ = 0.

We now state and prove some essential linear algebra properties which relate a map
and its adjoint.

14



2.1 – Fundamentals

Theorem 2.1.1. If f : V → W is a linear map between Hilbert spaces

1. ker(f∗) = Im(f)⊥,

2. Im(f∗) = ker(f)⊥,

3. V = ker(f)⊕ Im(f∗).

The ⊥ and ⊕ reference orthogonality conditions with respect to the correct inner
product.

Proof. 1. If y ∈ ker(f∗) then, for every x ∈ V , ⟨y, fx⟩W = ⟨f∗y, x⟩V = 0, meaning
that y ∈ Im(f)⊥. If y ∈ Im(f)⊥ then, for every x ∈ V ⟨f∗y, x⟩V = ⟨y, fx⟩V = 0 i.e.
f∗y = 0, y ∈ ker(f∗).

2. Im(f∗) =
!
Im(f∗)⊥"⊥ = ker((f∗)∗)⊥ = ker(f)⊥. Because of the previous property

and the fact that the adjointness operation is idempotent.

3. V = ker(f)⊕ ker(f)⊥ = ker(f)⊕ Im(f∗).

One simple way to remember these properties is by noticing that they all come from
the fact that one can swap the kernel and the image of a map by taking both the adjoint
and the orthogonal complement.

Armed with these results, it is possible to introduce a fundamental objects which will
be essential in later chapters.

Definition 2.1.2 (Discrete Hodge Laplacian). We define the Hodge Laplacian
as the linear automorphism ∆ : W → W defined by

∆ = g∗ ◦ g + f ◦ f∗.

We represent ∆ with the square matrix L = G∗G+ FF ∗.

Proposition 2.1.3. The Hodge Laplacian is a self-adjoint, positive semidefinite
operator.

Proof. • ∆ is self-adjoint because ⟨∆x, y⟩W = ⟨g∗gx+ ff∗x, y⟩W = ⟨g∗gx, y⟩W +
⟨ff∗x, y⟩W = ⟨gx, gy⟩Z + ⟨f∗x, f∗y⟩V = ⟨x, g∗gy⟩W + ⟨x, ff∗y⟩W = ⟨x,∆y⟩W ;

• ∆ is positive semidefinite because ⟨∆x, x⟩W = ⟨g∗gx+ ff∗x, x⟩W = ⟨gx, gx⟩Z +
⟨f∗x, f∗x⟩V = ∥gx∥2

Z + ∥f∗y∥2
V ≥ 0.
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Hodge theory in a nutshell

The matrix L directly inherits these two properties, being then Hermitian and positive
semidefinite. It thus has real, non-negative eigenvalues.

If we define harmonic vectors as the ones belonging to ker(g)∩ ker(f∗), we can see
a first interesting property of the Hodge Laplacian.

Proposition 2.1.4.
ker(∆) = ker(g) ∩ ker(f∗)

i.e. the kernel of ∆ is the harmonic space.

Proof. A harmonic vector obviously belongs to ker(∆) as, if x ∈ ker(g) ∩ ker(f∗), then

∆(x) = g∗ ◦ g(x) + f ◦ f∗(x) = 0.

The converse is also true:

∆x = 0 ⇐⇒ g∗gx+ ff∗x = 0 ⇐⇒ g∗gx = −ff∗x

⇐⇒ ⟨g∗gx, y⟩W = −⟨ff∗x, y⟩W ∀y ∈ W
⇐⇒ ⟨gx, gy⟩Z = −⟨f∗x, f∗y⟩V ∀y ∈ W

=⇒ ⟨gx, gx⟩Z = −⟨f∗x, f∗x⟩V
=⇒ ∥gx∥2

Z = −∥f∗x∥2
V =⇒ gx = 0, f∗x = 0

=⇒ x ∈ ker(g) ∩ ker(f∗),

where ∥x∥W
∆=
ñ
⟨x, x⟩W is the norm induced by the inner product of W .

We are now ready to state and prove the core of Hodge theory: the decomposition
theorem. This result allows one to decompose a vector space W in a way which reflects
the structure of the maps f∗, g which act on it.

Theorem 2.1.2 (Hodge decomposition). The vector space W can be decomposed
as the orthogonal sum

W = Im(g∗)⊕ ker(∆)⊕ Im(f)

w.r.t the inner product on W .

Proof. According to property 3 applied to g, we have

W = Im(g∗)⊕ ker(g).

Let us focus on the second term:

ker(g) = W∩ker(g) = (Im(f)⊕ker(f∗))∩ker(g) = (Im(f)∩ker(g))⊕(ker(f∗)∩ker(g)).

16



2.2 – Homology

Given that g ◦ f = 0 we have that Im(f) ⊆ ker(g) and thus

ker(g) = (Im(f)∩ker(g))⊕(ker(f∗)∩ker(g)) = Im(f)⊕(ker(f∗)∩ker(g)) = Im(f)⊕ker(∆),

hence the thesis
W = Im(g∗)⊕ ker(∆)⊕ Im(f).

Figure 2.2: Graphical representation of Hodge’s decomposition theorem 2.1.2.

2.2 Homology
The second important property of the Hodge Laplacian has to do with the concept of
homology. Homology groups were first defined in the field of algebraic topology in order
to have an algebraic tool which could count the holes of a topological space and be robust
to deformations. Likewise, in differential geometry one has De Rham cohomology which
intuitively measures how a manifold fails to be globally covered by local charts. These
two and many others, are aspects of the same underlying concept whose bare bones we
briefly present here.

Definition 2.2.1 (Homology group). The homology group associated to the sys-
tem V

f−→ W
g−→ Z is defined as

H = ker(g)/Im(f).

The quotient is performed by considering the two vector spaces as Abelian groups
under addition. In more detail, this means that we identify (consider homologous) two
vectors x, y in the kernel of g if and only if they differ by a vector in Im(f)

x ∼ y ⇐⇒ ∃c ∈ Im(f) : x = y + c.

Intuitively, the homology group considers vectors which are mapped by g onto 0 while
neglecting the ones which are images of vectors in V through f . Im(f) which is contained
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Hodge theory in a nutshell

in ker(g) is, in some sense, “contracted”. This interpretation will be much clearer in part
3, when we will translate all of this to the world of simplicial complexes.

A natural question is whether one can find a reasonable way to pick representatives of
the equivalence classes in H. In particular, one would like to find a space which is easy
to define and isomorphic to H which allow us to work on the homology without actually
considering equivalence classes. It turns out that this is possible with the help of the
Hodge Laplacian.

Theorem 2.2.1 (Harmonic representative). The homology group is isomorphic to
the harmonic space

H ∼= ker(∆).

Proof. Given an equivalence class [z] ∈ H we decide to pick, as a representative, the
unique vector x ∈ ker(g) which is orthogonal to every other vector in Im(f). This means
that x ∈ Im(f)⊥.

• This vector exists. x = z+ c∗, we ask the existence of a vector c∗ ∈ Im(f) such that
⟨z + c∗, c⟩ = 0 ∀c ∈ Im(f). If we write c∗ = f(y∗), c = f(y), then

⟨z + f(y∗), f(y)⟩W = 0 ⇐⇒ ⟨f∗(z) + f∗ ◦ f(y∗), y⟩V = 0
⇐⇒ ⟨f∗(z), y⟩V = ⟨−f∗ ◦ f(y∗), y⟩V
⇐⇒ f∗(z) = −f∗ ◦ f(y∗),

which admits solutions for y∗, as f∗(z),−f∗ ◦ f(y∗) ∈ Im(f∗).

• This vector is unique as, if x, y ∈ Im(f)⊥ and x ∼ y, then ∃c ∈ Im(f) such
that x − y = c. This means that c = x − y ∈ Im(f)⊥ and c ∈ Im(f) and thus
c ∈ Im(f)⊥ ∩ Im(f) = {0} =⇒ c = 0 =⇒ x = y.

Given that Im(f)⊥ = ker(f∗), we require that x ∈ ker(g) ∩ ker(f∗) meaning that x
is indeed harmonic. The thesis follows from the property ker(∆) = ker(g) ∩ ker(f∗)
(Proposition 2.1.4).

We note here that, in the rest of this work, we will not work with homology but with
cohomology. For the sake of this thesis, the distinction is merely a matter of notation, as
their properties turn out to be exactly the same. In other applications, however, homology
and cohomology are distinct structures, dual to one another but nonetheless differently
built and with different properties. We shall not concern with such issues here, but we
refer the interested here to [9].
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3 | Introduction to discrete ex-
terior calculus

In this first part of the thesis, we give an overview of the field of discrete exterior calculus,
whose concepts and instruments will largely be used throughout all of this work. The
exposition loosely follows the book by Grady [8] although with a different notation and
a few differences in the mathematical constructions. The main goal will be to define and
explore the properties of simplicial complexes, a particular class of combinatorial objects
which extend the familiar notion of oriented graph to account for higher order connections.
Simplicial complexes will take the role of geometrical domains, discrete in nature, upon
which one can define many of the familiar concepts at the core of standard calculus such
as differential forms, derivatives, integration and Laplacian operators.

It is important to underline that discrete calculus is not a mere discretization of differ-
ential calculus. It is, in truth, possible to discretize (more precisely triangulate) manifolds
with simplicial complexes in such a way that the discrete objects converge to their con-
tinuous equivalents as the discretization becomes finer and finer. In this setting discrete
calculus can be seen as a discretization of calculus, useful for performing computations
regarding continuous objects, which, by their nature, cannot be fully described by a com-
puter. Discrete calculus, however, can be applied to much more general situations and
provides tools to work with other kind of geometries, such as networks, with no notion of
an underlying continuous space.

3.1 Simplicial complexes

Differential geometry works with manifolds, topological spaces which are locally home-
omorphic to Euclidean spaces. Continuous objects however, cannot be understood by a
digital computer, which is discrete in nature. One therefore needs spaces with a discrete
combinatorial structure which can be constructed with a finite set of “bricks”. This role
is covered by simplicial complexes, a particular family of mathematical objects which, in
their purest form, contain only information regarding the relation between their parts
and nothing about position. The bricks which make up a simplicial complex are called
simplices, among which are points, segments, triangles, tetrahedra and so on.
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3.1.1 Fundamentals

Definition 3.1.1 (Simplicial complex). Given a finite set V = {v0, . . . , vN−1} of
N points, a k-simplex σi is a set {vi0 , . . . , vik

} of k+ 1 points in V. A face of σi

is any subset
)
vi0 , . . . , vij−1 , vij+1 , . . . , vik

*
for some j. If τi is a face of σi we write

τi ⊂ σi. An abstract simplicial complex X is a finite collection of simplices
closed under the inclusion of faces, i.e. if σi ∈ X then all of its faces belong to X .

We call nk the number of kth order simplices in X and K the smallest integer for which
nK+1 = 0, i.e. the maximum order of the complex. The kth order simplices together form
the k-skeleton of the complex, denoted by Xk. According to the definition above, an
abstract simplicial complex is a purely combinatorial construct where no coordinates, and
therefore no geometry, are involved. If we associate coordinates in some space RN to
the points in V then we can define a geometric k-simplex as the convex hull of k + 1
affinely independent points (see Figure 3.2). A geometric simplicial complex is a
finite collection of geometric simplices which is closed under inclusion and such that any
intersection of simplices is itself a simplex belonging to the complex or the empty set.
Every abstract simplicial complex can be given a geometric realization by gluing together
the different simplices in a space with large enough dimension. When geometrized in this
way, a simplicial complex can be endowed with a topology given by restriction of the
ambient Euclidean topology.

A k-simplex {vi0 , . . . , viN
} can be oriented by fixing an order to its vertices [vi0 , . . . , viN

].
Two orientations (orderings of the vertices) are equivalent if and only if they are related
by an even permutation, i.e. if one is related to the other by an even number of swaps of
two vertices. Every simplex can thus have only 2 orientations (see Figure 3.2). [a, b, c] and
[c, a, b] are oriented in the same way as the second can be obtained by the first with two
swaps: [a, b, c] → [a, c, b] → [c, a, b]. We say that an oriented simplex naturally induces
an orientation on its faces by considering the order of each of the faces’ vertices. For
example, the 2-simplex [a, c, b] induces the orientations [a, c], [c, b], [b, a] of its faces.

Figure 3.1: (a) is an allowed geometric simplicial complex. (b) is not a simplicial complex,
as it is not closed under face inclusion. (c) is not a geometric simplicial complex because
there is an intersection between simplices which is not a simplex.
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0 1 2 3

Figure 3.2: Oriented simplices by order.

Now that we have got an underlying space, we devote the rest of the section to the
construction of a useful algebraic structure on it: the cochain complex.

Definition 3.1.2 (Chain space). We denote with Ck(X ;R) the set of ordered k-
simplices with the structure of vector space over the field of real numbersa. We call it
chain space of order k and its elements, k-chains, are formal linear combinations
of the k-th order simplices. By definition, we change the orientation of a simplex
in a chain by changing its sign.

aOne could choose coefficients in any field F.

Consider for example the simplicial complex

X = {[a], [b], [c], [d], [a, b], [b, c], [c, d], [d, a], [a, c], [a, b, c]} ,

some examples of chains are

3[a]− [b] ∈ C0(X ;R), [a, b] + 4[b, c]− π[a, c] ∈ C1(X ;R), −3[a, b, c] ∈ C2(X ;R).

It also holds that [a, b] = −[a, b] and [a, b, c] = [c, a, b] = −[b, a, c]. Note that, by construc-
tion, the set of k-th order simplices is a basis of Ck(X ;R) meaning that dim(Ck(X ;R)) =
nk. We write a general k-chain as

x = xiτi, xi ∈ R, τi ∈ Xk

using Einstein notation.

Definition 3.1.3 (Adjacency). Two k-simplices are upper adjacent in a complex
X if they are both faces of a (k + 1)-simplex in Xk+1. They are lower adjacent
if they have a common face of order (k − 1) in Xk−1.

For example, in a filled triangle, the edges are lower adjacent through the nodes and
upper adjacent through the face. These relationships can be expressed by the action of a
family of special linear operators acting on chain spaces.
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Definition 3.1.4 (Boundary operator). We define the boundary operator of
order k as the linear operator

∂k : Ck(X ;R)→ Ck−1(X ;R)

which acts on k-simplices in the following way

∂k[vi0 , . . . , vik
] ∆=

kØ
j=0

(−1)j [vi0 , . . . , vij−1 , v/ij
, vij+1 , . . . , vik

].

Figure 3.3: Action of the boundary opera-
tors on chains.

The boundary of a k-simplex is thus the
(k−1)-chain given by the alternating sum of
its faces. All the lower adjacency structure
of Xk is directly encoded in ∂k.

A chain whose boundary is zero is called
a cycle. Intuitively, a 1-cycle can be
a closed loop of edges and a 2-cycle a
triangulation of a closed surface like a
sphere or a torus. A k-chain which is
in the image of ∂k+1 is called a bound-
ary.

A fundamental property of chain spaces
and boundary operators is that together they
form a chain complex

CK(X ;R) ∂K−−→ CK−1(X ;R) ∂K−1−−−→ . . .
∂2−→ C1(X ,R) ∂1−→ C0(X ,R) ∂0−→ {0}

where we define ∂0 = 0 and it holds that

Property 2.
∂k−1∂k = 0 ∀k = 1, . . . , K. (3.1)

This property, which is sometimes called fundamental theorem of topology, can be given
geometrical sense by the intuitive notion that “a boundary has no boundary”. We prove
it for a single k-simplex.

∂k−1∂k[vi0 , . . . , vik
] =

kØ
j=0

(−1)j∂k−1[vi0 , . . . , vij−1 , vij+1 , . . . , vik
] =

=
kØ

j<l

(−1)j(−1)l[vi0 , . . . , vij−1 , vij+1 , . . . , vil−1 , vil+1 , . . . , vik
]+

+
kØ

j>l

(−1)j(−1)l[vi0 , . . . , vil−1 , vil+1 , . . . , vij−1 , vij+1 , . . . , vik
] = 0
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as the terms of the two summands cancel in pairs. The result is extended to chains by
linearity. Note that this is exactly the fundamental property required to apply the tools
of Hodge theory (Property 1) and, in fact, we will do so after a few more concepts will be
introduced.

When working in practice with these elements, we make use of the obvious isomorphism
Ck(X , R) ∼= Rnk and represent chains as nk-dimensional real vectors. Accordingly, we
represent the kth order boundary operator as a matrix with the so-called incidence matrix.

Definition 3.1.5 (Incidence matrix). We define the incidence matrix Bk ∈
Rnk−1×nk as

Bk(i, j) =


0 if σi /⊂ σj

1 if σi ⊂ σj and σi ∼ σj

−1 if σi ⊂ σj and σi /∼ σj

where, when σi ⊂ σj, we write σi ∼ σj if their orientations are coherent. For
completeness, we also define B0 = 0 ∈ R1×n0 .

Property 2 is translated to matrix form to

Bk−1Bk = 0 ∀k = 1, . . . , K.

In the same way as one defines a Riemannian metric on a manifold in order to introduce
notions of length, area and volume, we can now define an inner product on each chain
space giving it the structure of a Hilbert space

⟨x, y⟩(k) = W
(k)
ij xixj

where x, y ∈ Ck(X ;R) and W (k) is a symmetric positive definite metric tensor i.e.
W (k) : Ck ×Ck → R. One usually considers diagonal inner products W (k)

ij = W
(k)
ii δji > 0.

In this way the simplices form an orthogonal basis of the chain space and W
(k)
ii can be

interpreted as the weight of the k-simplex i. In matrix form, the inner product is simply
a symmetric positive definite matrix W (k) ∈ Rnk×nk .

Definition 3.1.6 (Norm). The inner product induces a norm on each chain space,
defined as

∥x∥(k)
∆=
ñ
⟨x, x⟩(k) ∀x ∈ Ck(X ;R).

When we write ∥x∥k without the parentheses we will instead mean the standard k-norm
of a vector i.e.

∥x∥k =
A

nØ
i=1

xk
i

B 1
k

.
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3.1.2 The cochain complex
Armed with a chain complex and an inner product, we can now build another important
ingredient of discrete calculus: the cochain complex. If chains correspond to geometrical
domains, cochains will correspond to the most natural objects which can be integrated on
such domains, i.e. differential forms.

Definition 3.1.7 (Cochain space). We define the kth order cochain space
Ck(X ;R) as the dual space to Ck(X ;R), i.e. the vector space of linear functionals
Ck(X ;R)→ R endowed with an inner product given by the inverse of W (k), which
we denote with W(k).

In matrix form, the inner product W(k) is just the matrix inverse of W (k).

Every Hilbert space is isomorphic to its dual, therefore Ck and Ck have the same
dimension, equal to the number of k-simplices nk. A natural basis for Ck(X ;R) is the
canonical basis

)
τ i
*

whose elements are each supported on one single k-simplex
τ i(τj) = δi

j .

Cochains can thus be seen as real functions on simplices. The analogy with differential
forms is clear if one looks explicitly at simplices as lists of vertices. Consider for example
the complex X = {♣,♢,♠, [♣,♢], [♢,♠], [♣,♠], [♣,♢,♠]} and the basis 2-cochain x = τ ,
where τ([♣,♢,♠]) = 1. If we think of τ as a real function of the vertices, then the prop-
erty τ([♢,♣,♠]) = τ([♠,♢,♣]) = −1 is the same of asking the basis cochain τ to be an
antisymmetric function of the vertices.

The role of the inner product, aside from introducing “geometry” to the simplicial
complex, is in establishing a relation between chain and cochain space. This is done in
two ways:

1. by inducing an isomorphism between chains and cochains;

2. by establishing a notion of integration of cochains onto chains, i.e. of differential
forms onto domains.

First, one can canonically associate a cochain to a chain through the action of W (k). We
do this with the musical isomorphism operators ♭ and ♯.

♭k : Ck(X ;R) −−−−−−−−−→ Ck(X ;R)

x = xiτi −−−−−−−−−→ x♭k = W
(k)
ij xjτ i

♯k : Ck(X ;R) −−−−−−−−−→ Ck(X ;R)
x = xiτ

i −−−−−−−−−→ x♯k = W ij
(k)xjτi
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3.1 – Simplicial complexes

Both ♭k and ♯k are vector space isomorphisms because W (k) is square and invertible.
Moreover, they are one the inverse of the other ♭k = ♯−1

k and they can be represented
respectively with the inner product matrices W (k) and W(k).

Secondly, one can pair a cochain and a chain by integrating the first on the latter, in
the same way as one would integrate a differential form on a domain.

Definition 3.1.8 (Integral). We define the integral of a k-cochain y ∈ Ck(X ;R)
onto the k-chain x ∈ Ck(X ;R) as

(x, y) ∆= xiyi ∈ R ←−−−→
Ú

x
y,

Note that this is the same as taking the inner product of x with the sharp of y.

Proposition 3.1.1. It holds that

(x, y) =
e
x, y♯k

f
(k)

Proof. e
x, y♯k

f
(k)

= xiW
(k)
ij W jl

(k)yl = xiyi,

as W(k) is the inverse of W (k).

Having the concept of integration, we can define the “volume” of a k-chain as the
integration of the volume cochain w

∆= W (k)
✶ on x

(x,w) = W
(k)
ij xi

✶
j =

Ø
i

Ø
j

W
(k)
ij xi = ⟨x,✶⟩(k) ,

i.e. the inner product of x with ✶ in Ck(X ;R).

Let us return to the analogy with differential geometry. We have defined differential
forms and the operation of integration, but something is clearly missing: the differential.
The differential, which extends the notion of derivative, sends k-forms to (k + 1)-forms
in such a way that the differential of the differential always vanishes. To complete the
construction of the cochain complex, we thus need to define a linear operator which sends
k-cochains to (k+ 1)-cochains. The most natural way to do this is to, once again, employ
the inner product.

Definition 3.1.9 (Coboundary operator). We define the coboundary operator
dk : Ck(X ;R) → Ck+1(X ,R) as the dual operator to ∂k+1 w.r.t to the integration
pairing

(∂k+1x, y) = (x, dky) (3.2)

for every x ∈ Ck+1(X ,R) and y ∈ Ck(X ;R).
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If we look closely at equation 3.2 we can see a striking resemblance to Stoke’s funda-
mental theorem of calculus as, formally,Ú

x
dy ←−→ (x, dky) = (∂k+1x, y)←−→

Ú
∂x
y,

a surprising result which further motivates our efforts.

In analogy with the boundary operator, we call cocycle a cochain whose coboundary
is 0 and coboundary a k-cochain in the image of dk−1. Note that 3.2 implies that, if x
is a cycle, (x, dky) = 0. This is, once again, in perfect analogy to the continuous case as
it is the discrete version of the fact that conservative vector fields (coboundaries) vanish
when integrated on closed curves.

From the definition, we directly prove that a dual property to 2 holds

Property 3.
dk+1dk = 0

i.e. the differential of a differential vanishes.

Proof. We prove it by showing that ⟨y, dk+1dkx⟩(k+2) = 0 for every pair of cochains y ∈
Ck+2, x ∈ Ck.

⟨y, dk+1dkx⟩(k+2) = (y♯k+2 , dk+1dkx) = (∂k+2y
♯k+2 , dkx) = (∂k+1∂k+2y

♯k+2 , x) = (0, x) = 0.

We have built the cochain complex

0 d0
−→ C1(X ,R) d1

−→ C2(X ,R) d2
−→ . . .

dK−2
−−−→ CK−1(X ;R) dK−1

−−−→ CK(X ;R),

where, contrarily to the chain complex, the action of the operator increases the order.

Proposition 3.1.2. In terms of matrix representation, the coboundary operator is
just the transpose of the incidence matrix Dk = B⊤

k+1 ∈ Rnk+1×nk .

Proof. To prove this, consider the component expressions of both the boundary and
coboundary operators,

(∂kx)i = Bi
jx

j , (dk+1y)i = Dj
i yj .

By definition one has

(∂k+1x, y) = (x, dky) ⇐⇒ (∂k+1x)iyi = xi(dky)i ⇐⇒ Bi
jx

jyi = Dj
ix

iyj ⇐⇒ Bi
j = Dj

i ,

hence the thesis.

As a final step we can put together the chain and cochain complexes with boundary,
coboundary operators and the musical isomorphisms relating them.
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Ck−1 Ck Ck+1. . . . . .

Ck−1 Ck Ck+1. . . . . .

∂k ∂k+1∂k−1

dk−1 dkdk−2

∂k+2

dk+1

♭k−1 ♭k ♭k+1♯k−1 ♯k ♯k+1

One needs not be constrained to the “ascending” order on cochain complexes given
by dk. In order to formulate the simplicial Kuramoto model (Section 4.1.5 of Chapter 4)
we need to build an operator, analogous to ∂k, which lowers the order of a cochain. The
diagram above makes it an easy task as we can just go to the chain complex, perform the
boundary there and then come back down to the cochain complex.

Definition 3.1.10 (Adjoint coboundary operator). Define the adjoint cobound-
ary operator acting on cochains as

∂k : Ck(X ;R) −−−−−−−−−→ CK−1(X ;R)

x −−−−−−−−−−−−−−→ (∂kx
♯k)♭k−1 = W

(k)
il W lj

(k)xj∂
kτ i

represented by the matrix
Bk = W (k−1)BkW(k). (3.3)

Note that, with the standard “Euclidean” inner product W (k) = I for every k =
1, . . . , K, the coboundary operator acting on cochains and the boundary acting on chains
have the same matrix representation Bk = Bk. If the inner products are diagonal, then the
adjoint coboundary differs from the boundary just by a rescaling in its components. For
this reason, with a slight abuse of notation, we will sometimes call the adjoint coboundary
operator just boundary.

A further important property emerges from this construction, motivating the “adjoint”
part of the name.

Proposition 3.1.3. The adjoint coboundary of order k ∂k is the adjoint operator
to the order k − 1 coboundary dk−1 i.e.e

∂kx, y
f

(k−1)
=
e
x, dk−1y

f
(k)
∀x ∈ Ck, y ∈ Ck−1.

Proof.e
∂kx, y

f
(k−1)

=
e
(∂kx

♯k)♭k−1 , y
f

(k−1)
= (∂kx

♯k , y) = (x♯k , dk−1y) =
e
x, dk−1y

f
(k)
.
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The adjoint coboundary operator satisfies Hodge’s property as well.

Proposition 3.1.4. It holds that

∂k∂k+1x = 0 ∀x ∈ Ck+1(X ;R).

Proof. Because of Proposition 3.1.3, ∂k is the adjoint of dk−1 for which it holds that
dkdk−1 = 0 (Proposition 3). The thesis follows from the direct application of Proposition
2.1.2 of Chapter 2.

Figure 3.4: Representation of Property 3 of the coboundary operator. dkdk−1 = 0 means
that Im(dk−1) ⊂ ker(dk). The analogous holds for the adjoint coboundary operators and
their matrix representations.

Given the direct relation between dual coboundary and boundary, we call cochains in
ker(∂k) cycles and cochains in Im(∂k) boundaries. If the inner product is not trivial,
then the cycles of the dual coboundary correspond to weighted geometrical cycles in the
complex.

Having now coboundary operators and their adjoints acting on cochains, in the rest
of the thesis we will mainly restrict our attention to cochains, simply due to their direct
analogy with differential forms. Notice that one could easily define the adjoint of the
boundary operator on the chain complex and get a perfectly equivalent structure. One
could have also started directly with cochains, but we think that this derivation is better
able to show the geometric intuition involved. Furthermore, it is certainly more natural
to weigh chains of simplices, in the same way as one establishes a Riemannian metric
on a manifold, and induce the structure of the cochain space then directly weighing the
cochains.

Because of 3, all of Hodge’s theory, illustrated in Chapter 2, can now be applied to the
cochain complex:

Ck−1 Ck Ck+1. . . . . .
dk−1 dkdk−2 dk+1

∂k−1 ∂k ∂k+1 ∂k+2
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3.1 – Simplicial complexes

Figure 3.5: Intuitive representation of the formal difference between simplicial chains and
cochains. (a) represents a 2-chain where each 2-simplex is “weighted” with a scalar value.
(b) represents a 2-cochain i.e. a scalar function on 2-simplices.

Of particular interest are the discrete Hodge Laplacian operators

Lk = ∂k+1dkü ûú ý
Lk

up

+ dk−1∂kü ûú ý
Lk

down

(3.4)

which provide a discrete generalization to the continuous Hodge Laplacians of differential
geometry. The discrete Hodge Laplacians are represented by the square nk-dimensional
matrices

Lk = Bk+1Dkü ûú ý
Lk

up

+Dk−1Bkü ûú ý
Lk

down

= W (k)Bk+1W(k+1)B
⊤
k +B⊤

k−1W
(k−1)BkW(k) (3.5)

Remember that, as proven in Proposition 2.1.3 of Section 2, the Lk and Lk are both
self-adjoint and positive semidefinite. We will study these operators and their properties
in more detail in the next section.
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3.1.3 Example
Before going forward, let us catch a breath and work
on a simple example. Consider the simplicial complex
X whose geometrical realization is shown on the right.
Let us choose unitary weights for all simplices so that
W (k) = I for every k. We have

X = {v1, v2, v3, v4, v5, v6, [v1, v2], [v2, v3], [v1, v3], [v3, v4], [v3, v5],
[v4, v5], [v5, v6], [v1, v2, v3]}.

It follows that its skeletons are

X0 = {v1, v2, v3, v4, v5, v6} ,X1 = {[v1, v2], [v2, v3], [v1, v3], [v3, v4],
[v3, v5], [v4, v5], [v5, v6]}, X2 = {[v1, v2, v3]} .

The boundary incidence matrices acting on cochains are

B1 = B1 =



−1 0 −1 0 0 0 0
1 −1 0 0 0 0 0
0 1 1 −1 −1 0 0
0 0 0 1 0 −1 0
0 0 0 0 1 1 −1
0 0 0 0 0 0 1

 ,
ü ûú ý

edges

B2 = B2 =



1
1
−1
0
0
0
0


ü ûú ý

faces

and the Hodge Laplacians

L0 =



2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 4 −1 −1 0
0 0 −1 2 −1 0
0 0 −1 −1 3 −1
0 0 0 0 −1 1

 , L
1 =



3 0 0 0 0 0 0
0 3 0 −1 −1 0 0
0 0 3 −1 −1 0 0
0 −1 −1 2 1 −1 0
0 −1 −1 1 2 1 −1
0 0 0 −1 1 2 −1
0 0 0 0 −1 −1 2


, L2 = 3.
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3.2 Spectral Simplicial theory

In this section we complete the exposition began above and, in particular, we focus on
the algebraic properties of the Hodge Laplacian operators and their striking relation to
topology and signal analysis.

From now on, it will be convenient to put aside the coordinate free expressions and
work with matrices and vector representations.

3.2.1 The Fourier basis as eigenvectors of the Laplacian
The goal of signal analysis is to study the characteristics of scalar functions, such as sounds
(1-dimensional) or images (2-dimensional). The uncontested king of the tools in the belt
of a signal analyst is without doubt the Fourier transform, which allows to study a signal
not by its shape in space (or time), but by the fundamental frequencies it contains. To
do so, one defines a new basis, called Fourier basis, of the signal space and describes
the signal with its coefficients. What is often neglected is that the Fourier basis has an
intimate relation with geometry as it is composed by the eigenfunctions of the Laplacian
operator ∆ on a precise geometrical domain, i.e. a circle for sounds and a torus for images.
The natural generalization of the Laplacian, the Laplace-Beltrami operator, then allows
one to define the Fourier basis even when the underlying space is a curved manifold of
any dimension. Moreover, generalizing the Laplacian to work on k-forms, lets us build
a Fourier basis even for vector fields. As we see here, the same holds for the discrete
geometries of simplicial complexes.

Figure 3.6: The first 3 eigenvector cochains of L1 on a chain of 11 (left) and 79 (right)
oriented edges. They clearly seem to resemble the continuous Fourier basis function on
an interval.

We are thus interested in working with signals which are defined on the simplices of a sim-
plicial complexes X . A kth order signal is just a scalar function defined on the k-simplices
of X and, as such, is a kth order cochain. The Hodge Laplacian of order k 3.4, in complete
analogy with the Laplace-Beltrami operator, has the remarkable property that it may be
used to build an alternative basis of the signal space Ck(X ;R) which is nonlocal and, as
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it is extensively discussed in [3], is “topology-aware”.

Lk is a self-adjoint matrix, and thus it is possible to find eigenvectors which form an
orthonormal basis of Ck(X ;R) ∼= Rnk

Lk = UkΛk(Uk)⊤,

where Uk ∈ Rnk×nk is an orthonormal matrix (Uk)⊤W(k)U
k = I and Λk is diagonal with

non-negative elements. Each signal x ∈ Ck ∼= Rnk can be described with its coefficient in
the Fourier basis given by the eigenvectors of Lk in Uk. We write x̂ = UT

k W(k)s
k and call

it Fourier transform of x. The matrix W(k) appears as we are considering a non-trivial
inner product on Rnk .

The consistence with the standard Fourier basis can be qualitatively seen in Figure 3.6
where the first eigenvectors of L1 on a line of 1-simplices are shown. The Fourier basis for
periodic signals on an interval would be exactly obtained in the limit if one considered a
closed line of 1-simplices i.e. the discretization of a circle.

3.2.2 Topological relevance of the harmonic space

Of particular importance is the space of signals belonging to ker(Lk), i.e. the harmonic
cochains. This space has the remarkable property that it is one of the three components of
the Hodge decomposition of the signal cochain space. Recalling theorem 2.1.2 of Chapter
2 we have that every k-cochain can be uniquely written as the sum of three orthogonal1
components:

Ck(X ;R) = Im(∂k+1)⊕ ker(Lk)⊕ Im(dk−1) (3.6)

or, in matrix form,
Rnk = Im(Bk+1)⊕ ker(Lk)⊕ Im(Dk−1).

To make things clearer and more intuitive let us look at an example.

Figure 3.7: Hodge decomposition of an edge signal. The edges’ width is proportional to
the absolute value of the signal components.

1w.r.t the inner product induced by the inner product W (k).
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Consider the complex X obtained by triangulating a square in R2 with 2 holes and
generate the edge signal x ∈ C1(X ;R) shown in the leftmost panel of Figure 3.7.If we
reason by analogy with differential geometry and think of an edge signal (1-cochain) as
a vector field, we can give interesting interpretations of the three component. The first
one, which belongs to Im(∂2), looks like a field which wraps around the domain and the
holes without any sources. This comes from the fact that Im(∂2) ⊂ ker(∂1) i.e. this
component is actually a cycle which, in some sense, has to “close”. We call this first
component divergence-free. In the third component, belonging to Im(d0), the divergence
aspect seems to be strong as the field “radiates” from the holes and the boundaries.
This behavior is strongly reminiscent of a curl-free vector field, hence the name curl-free.

Figure 3.8: Fourier basis signals of
ker(L1).

Finally, it appears that the harmonic compo-
nent is concentrated around one of the two
holes. This last behavior is not a coinci-
dence as a numerical computation shows that
the dimension of the harmonic space is 2, the
same as the number of holes of the domain,
and the relative Laplacian eigenvectors are both
supported around the two holes (see Figure
3.8).

The most beautiful property of the Hodge Lapla-
cians is, in fact, their intimate connection to topology. Indeed, the dimensions of the
harmonic subspaces of cochains ker(Lk) correspond to the Betti numbers of the geo-
metric complex

dim(ker(Lk)) = βk.

Figure 3.9: β0 = 3 because the complex has
3 connected components. β1 = 2 because
there are 2 loops and β2 = 1 because there
is one empty void.

The Betti numbers {βk}k∈N are well known
topological invariants which encode the num-
ber of k-dimensional holes in the space. β0 is
the number of connected components of X ,
β1 is the number of loops, β2 of closed voids,
and so on. A torus, for example, would have
β0 = 1, β1 = 2, β2 = 1 and the disjoint union
of two spheres β0 = 2, β1 = 0, β2 = 2. This
property comes from the fact, proved in gen-
eral in Theorem 2.2.1 of Chapter 2, that the
harmonic space of cochains is isomorphic to
the cohomology group of the complex

Hk(X ) = ker(dk)/Im(dk−1),

whose dimension is by definition the kth Betti number. For the sake of this thesis, the
prefix co here is used simply because we are working with cochains instead of chains.
It can be proven that dim(Hk(X )) = dim(Hk(X )), where the second is the homology
group of the complex

Hk(X ;R) = ker(∂k)/Im(∂k+1).
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Figure 3.10: (a) Representation of the way one can associate a vector field on the nodes to
an edge cochain with Equation 3.7. (b) Harmonic vector field (normalized) on a triangu-
lated domain with a hole. (c) The two vector fields (normalized) spanning the harmonic
space ker(L1) of a triangulated torus. In both these cases, the vector field “wraps” around
the two 1-dimensional holes of the Torus.

Intuition-wise, it is clearer to look at the homology group. The elements of the homology
group are in fact equivalence classes of cycles (elements of ker(∂k)) which are identified
when they differ by a boundary (element of Im(∂k+1)). More intuitively, one counts k-
holes with the homology group by considering all cycles, which correspond to both actual
k-dimensional holes and boundaries of filled (k + 1)-dimensional regions, and simply re-
moves the last ones, which are contained in Im(∂k+1), through the quotient.

We can make the analogy 1-cochains - vector fields more explicit and intuitive in the
following way. Let X be a geometric simplicial complex embedded in Rn such that each
vertex i has position pi ∈ Rn. If x ∈ C1(X ;R) is an edge signal, we can associate to
each node a vector which is the sum of the oriented vectors connecting it to its neighbors,
weighted by the components of x. More precisely we associate to vertex i a vector vi

vi =
Ø

[i,j]∈X1

x[i,j](pj − pi)ü ûú ý
edges leaving i

+
Ø

[j,i]∈X1

x[j,i](pi − pj)ü ûú ý
edges entering i

. (3.7)

This association is graphically represented in Figure 3.10 (a). If we compute the associated
vector fields to harmonic 1-cochains in a simplicial complex, we will find that they will
wrap around 1-dimensional holes, just like it is shown in Figure 3.10 (b, c).

34



4 | The Kuramoto model

Synchronization is a ubiquitous phenomenon, universally found both in natural and
human-engineered systems. From firing neurons to the twinkling of fireflies, from metronomes
to power grids, from applauding audiences to the circadian rhythms of plants and animals.
All of these systems display similar synchronization behaviors. Patterns and order mag-
ically emerge from the disordered interplay of many interacting parts, with a complexity
which seems to give no hope for simple models. As it often happens in complex systems,
however, their obvious differences fade away when the phenomenon is examined at the
right scale and with the right level of abstraction. The way synchronization occurs seems
to be independent of whether the agents are singing crickets, heart cells or metronomes.
The mathematical power of capturing structure regardless of form can thus be exploited
to formulate powerful models which surprise with both their simplicity and explanatory
power.

The father of these models is, no doubt, the one proposed by Yoshiki Kuramoto (蔵本
由紀) in his seminal work of 1975 [14]. Its multiple variants have been extensively studied
in the decades since its creation and, although many questions are still unanswered, thanks
to it, we now have a much firmer grasp on the behavior of synchronizing systems.

4.1 The model

4.1.1 What is an oscillator?
The exposition of this first section loosely follows the book by Pikovsky [21].

We start our formal treatment by discussing the fundamental issue of describing os-
cillator systems. In our modeling effort this must necessarily be a simplifying step which
has to capture the essential characteristics which relate, for example, a neuron to a firefly.
We will describe oscillators which belong to the family of self-sustained oscillators.
With this term, we denote a system in which an internal source of energy makes it os-
cillate with a given periodical pattern for an indefinite amount of time. When its state
is slightly perturbed, the periodical pattern is restored after a transient. Requiring the
existence of this internal source of energy lets us work with oscillators whose behavior is
autonomous, i.e. time independent. We do not have to worry, for example, about the
effect of air friction, which would quickly dissipate all of a pendulum’s initial energy.

35



The Kuramoto model

Figure 4.1: Example of oscillatory behav-
iors.

Simple examples of self-sustained oscil-
lators are clocks and isolated fireflies. Of
course, in nature there are no infinite sources
of energy which can indefinitely power the
oscillations. The clock’s spring will eventu-
ally loosen and the firefly will unfortunately
die after a couple of months. For model-
ing purposes, we assume that this source is
big enough to be considered infinite w.r.t the
timescale we want to consider (hours for the
clock, seconds for the firefly).

Some examples of oscillatory behaviors
are represented in Figure 4.1 as real periodic
functions of time x(t). An important obser-
vation is that, if one has to describe the evo-
lution of such systems, one variable is not enough. Knowing the position of a pendulum
at a given time, for example, does not provide a complete description of its state as its
velocity could both be pointing up or towards the equilibrium. A state description which
also takes into consideration angular velocity is necessary. The state of the system is
then represented by a point in the multidimensional phase space. Let us now focus on
oscillators whose phase space is 2-dimensional, although analogous arguments hold for
any dimension.

If we describe the state of the system in the phase space with a variable x ∈ R2, in
order for x(t) to describe the evolution of a self-sustained oscillator, we require that x(t)
is T -periodic, i.e. C ∆= {x(t) : t ∈ R} is a closed, non-intersecting curve in R2 which is
periodically traveled by the system every T units of time. This curve is called the limit
cycle of the oscillator.

Figure 4.2: Phase space portrait of some oscillatory behaviors. The vector field repre-
senting the autonomous dynamics is shown together by some integral curves and its limit
cycle.

Remember that in the definition of self-sustained oscillator we also require that its
evolution is stable w.r.t small perturbations. This means that the dynamics of the system
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is such that C is a stable attractor, i.e. trajectories which are close to C will converge to
C. Examples of oscillatory dynamics of this type, which are given by autonomous systems
of differential equations, are shown in Figure 4.2.

If we parametrize the limit cycle C, we call its scalar parameter phase and denote it
by θ. It follows that θ(t) is a T -periodic function of time. The stability condition implies
that a perturbation which is transversal to the limit cycle will go to 0 with time.

Of course, a general description of the evolution of such a vast class of oscillators
is impossible. A restriction is surely necessary. Kuramoto’s model makes two essential
simplifications:

1. constrain the oscillator’s state to lie on the unit circle (no transversal motion possi-
ble);

2. consider oscillators which travel the unit circle with constant angular speed ω i.e.
x(t) = (cos(ωt+ θ0), sin(ωt+ θ0)).

The phase parameter θ can then be chosen to be the angle which the state makes with
the x axis. With this in mind, the second simplification can be translated in asking for
θ(t) = ωt + θ0 i.e. constant angular speed. This speed is called the natural frequency
of the oscillator, as it is the angular frequency it will have when left unperturbed. If we
have n different isolated oscillators, each with its own natural frequency ωi ∈ R, we can
describe the evolution of the system with the ordinary system of differential equations

θ̇ = ω. (4.1)

We stress the word “isolated” because, up to this point, no interaction is considered. The
oscillators are each evolving as by their nature, with no external disruptions (see Figure
4.3 for an example). It is also important to underline that, unlike the dynamics portrayed
in Figure 4.2, here the motion is constrained to the limit cycle and thus the phase is
enough to fully describe the evolution of the oscillator.

4.1.2 All-to-all interactions
We now come to the central point of explaining how it is possible for a system of oscillators
to synchronize. Why do metronomes on a moving platform, each set with its own tempo
(natural frequency), synchronize after a few beats? The reason is to be found in interac-
tion. In each of the synchronizing systems mentioned above, one finds that the oscillators
are always coupled, in the sense that they exchange information about their phase. This
could mean different things depending on the specific system: the metronomes are coupled
through the slight movements and vibrations of the moving platform, the fireflies can see
each other’s light, and the applauding crowd can feel the movement of their seats induced
by the applause itself. No matter how weak, interactions disrupt the natural behavior of
oscillators, allowing for the emergence of a variety of interesting collective phenomena, of
which synchronization is just one.
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Figure 4.3: Example trajectories of two isolated Kuramoto oscillators with different nat-
ural frequencies.

Let us consider a system of n Kuramoto oscillators with natural frequencies gathered
in the vector ω ∈ Rn. We want to modify model 4.1 for isolated oscillators in order to
account for physically meaningful interactions. Following Kuramoto’s work, we do this in
the following way:

θ̇i = ωi − σ
nØ

j=1
sin(θi − θj). (4.2)

The newly added term tells us that the evolution of the phase of oscillator i is dis-
rupted by the interaction between i and every other oscillator j, modulated by the cou-
pling or interaction strength σ > 0. First notice that, by the properties of the
sine function, the interaction between oscillators i and j will be 0 when θi − θj = kπ
i.e. when θi and θj represent the same angle (in-phase synchronization) or oppo-
site angles (anti-phase synchronization), modulus 2π. The interaction, instead, is
strongest when the two phases differ by an odd multiple of π

2 i.e. when the two states,
as seen on the unit circle, are orthogonal. This last facts suggests us to formulate
a graphical and more intuitive interpretation of the interaction term (see Figure 4.4).

Figure 4.4: Geometrical inter-
pretation of the pairwise inter-
action term.

Consider a pair of oscillators as two points on the
unit circle with position xi = (cos(θi), sin(θi)) i = 1,2
such that they are pulled together by a force whose di-
rection is the line connecting xi to xj and its intensity
is proportional to their distance. The oscillators’ states
however need to be constrained to the circle and so the
pull they actually experience is an orthogonal projection
of x2 − x1 onto the tangent line to the circle, spanned
by the unit vector v(θi) = (− sin(θi), cos(θi))⊤. More
formally

ẋi = ⟨v(θ1), x2 − x1⟩ v(θ1)
= (− sin(θi), cos(θi))(x2 − x1)(− sin(θi), cos(θi))⊤,
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which, after some algebra and trigonometry, becomes, for oscillator 1,

ẋ1 = − sin(θ1 − θ2)
3
− sin(θi)
cos(θ1)

4
.

The evolution of the phase θ1 will then be

θ̇1 = d

dt
arctan

A
x2

1
x1

1

B
= 1

1 +
1

x2
1

x1
1

22
ẋ2

1x
1
1 − x2

1ẋ
1
1

(x1
1)2 = 1

(x1
1)2 + (x2

1)2 (ẋ2
1x

1
1 − x2

1ẋ
1
1)

= 1
cos(θ1)2 + sin(θ1)2 (− cos(θ1) sin(θ1 − θ2) cos(θ1)− sin(θ1) sin(θ1 − θ2) sin(θ1))

= − sin(θ1 − θ2)(sin(θ1)2 + cos(θ1)2) = − sin(θ1 − θ2).

Figure 4.5: Representa-
tion of a system of 5 in-
teracting oscillators.

In the same way one finds

θ̇2 = − sin(θ2 − θ1),

which, if multiplied by the coupling strength σ, is pre-
cisely the interaction term of the Kuramoto model 4.2 for
a single pair of oscillators. This intuition can be ex-
tended to any number of oscillators: each oscillator will
be simultaneously pulled, as by springs, by all the oth-
ers and will move according to their total (See Figure
4.5).

Adding interaction terms together with natural frequencies
will give us behaviors like the one shown in Figure 4.6. We can
clearly see how the two oscillators, each with its own frequency,
are pulled together by the interaction until their phases differ-
ence “locks” to a fixed amount, and they start oscillating at the

same frequency. We call this configuration phase-locked. For now, we must be satisfied
with an intuitive understanding, as we will formally define it in later sections.

Many questions can be asked about the behavior of the Kuramoto model 4.2. For
example, one could investigate the shapes of the possible equilibrium configurations θ̇ = 0
(when the interaction terms are balanced out by the natural frequencies) or look at the
conditions on the coupling strength under which phase locking occurs. We will examine
these kinds of questions in later sections, right after we will make a couple more general-
izations of the model.

4.1.3 Network interactions
The first obvious generalization naturally comes with the observation that model 4.2 de-
scribes a system in which every oscillator interacts with every other oscillator in the same
way. This, especially for large populations of oscillators, becomes an unrealistic assump-
tion.
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Figure 4.6: Example of phase locking in a system of two interacting oscillators with
different natural frequencies.

Figure 4.7: Examples of Kuramoto sys-
tems with network interactions.

In a swarm of thousands of fireflies, each
insect will surely not be influenced by
all the others, but only by the ones
nearby. In other examples, the “all-to-
all” assumption is even more harmful to
the modeling purpose. Think of a coun-
try’s power grid, where the power plants
are not directly connected to one an-
other, but are instead structured in a
network fashion. The first generaliza-
tion, therefore, makes it possible for the
model to describe network-like interac-
tions.

Let G be an undirected graph with n nodes,
no self-loops, and adjacency matrix A. Each
node is an oscillator and each edge is a pairwise
interaction between oscillators.

θ̇i = ωi − σ
nØ

j=1
Aij sin(θi − θj). (4.3)

Having network interactions lets us describe a much bigger class of systems, while also
raising interesting questions regarding the relation between the synchronization properties
of the system and its network topology. It is immediate to see how the all-to-all model
4.2 is just the network model 4.3 on the complete graph.

Notice that, when the natural frequencies coincide for all oscillators, ωi = ω ∀i, it is
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possible to perform a change of variable γi = θi − ωt which results in 4.3 becoming

γ̇i = −σ
nØ

j=1
Aij sin(γi − γj). (4.4)

This means that, if we put ourselves in a reference frame which rotates at frequency
ω, we can describe the system as if the natural frequencies were 0. When the natural
frequencies are not the same and the graph is connected, it is also common to change to
a frame moving at the average frequency ⟨ω⟩ = 1

n

q
i ωi i.e. γi = θi− ⟨ω⟩t, which leads to

γ̇i = (ωi − ⟨ω⟩)− σ
nØ

j=1
Aij sin(γi − γj).

This change of variable, which for now has little meaning, is actually rooted in topological
reasons and will naturally come up in Section 5.2.

A further natural extension of model 4.3 is to substitute the global coupling σ with a
different strength for each pairwise interaction. On the line of the considerations which
motivated the introduction of network interactions, this extension is useful for considering
systems of oscillators in which the interaction depends on spatial factors. It is more
realistic to say that a firefly will be more strongly influenced by its closer neighbors than
by those further away. We do this by simply considering G as a positively weighted graph
with adjacency matrix Aij = Aji ≥ 0.

4.1.4 Polyadic network interactions
Recent years have seen a new wave of research in the thriving field of complex systems. Its
origin can be traced to the realization that many complex phenomena cannot be captured,
as it was always done, by network models [5]. Describing a system through the pairwise
interactions between its agents is a powerful tool which dominated the scene because of
its simplicity and its roots in graph theory, which goes as far as the 18th century. It
should be understood, however, that the choice to consider pairwise interaction is indeed
a choice and not a universal principle in nature. Interactions among multiple agents at
once, also called higher-order interactions, are present in many cases, and they do, in fact,
have an impact in the emergence of complex phenomena: for example, in social systems
group interactions are crucial to cooperation and decision-making; in neuronal networks,
interneurons mediate interactions between multiple other neurons; indirect competition
for resources generates interactions among multiple species in ecological systems. It is
natural therefore, at least for the sake of curiosity, to bring higher order interactions into
the Kuramoto model as well. The reader who would like to learn more about higher order
systems is referred to the “manifesto” [5] and the book [4].

A natural way to do this is to extend the underlying structure of interaction to some-
thing more general than a graph. We can imagine oscillators as nodes which are connected
by edges (pairwise interactions), triangles and higher order structures. This construction
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surely makes simplicial complexes come to mind but, we can see, is actually more general
as it does not need to satisfy the inclusion relation of Definition 3.1.1. We can, in fact,
have a group interaction between three oscillators (a, b, c), without having the “included”
pairwise interactions (a, b), (b, c) or (a, c).

Figure 4.8: Graphical rep-
resentation of the interac-
tions of a higher-order Ku-
ramoto system.

The mathematical object which describes best this situation
is called a hypergraph, whose structure is encoded in the
adjacency tensors A(k), k ∈ N, such that A(k)

i1...ik+1
= 1 if and

only if there is a (k+1)th order interaction among oscillators
i1, . . . , ik+1. A possible higher-order Kuramoto model on a
hypergraph structure of order k is, as proposed in different
forms in [24], [13] and [25],

θ̇i = ωi − σ1

nØ
j1=1

A
(1)
ij1

sin(θi − θj1)

− σ2

nØ
j1,j2=1

A
(2)
ij1j2

sin(2θi − θj1 − θj2)− . . .

− σk

nØ
j1,...,jk=1

A
(k)
ij1...jk

sin(kθi − θj1 − · · · − θjk
) (4.5)

Introducing higher-order interactions into the Kuramoto model makes it possible for in-
teresting behaviors to appear, from chimera states [13] to chaotic dynamics [7]. Being this
model very general, it is quite hard to study it analytically except for very simple cases.

In this work, we will abandon this model and consider an alternative way of introducing
higher-order interactions, based on simplicial complexes.

4.1.5 Simplicial interactions
The main references for the simplicial Kuramoto model are [18] and [1].

The fundamental step which naturally leads to the simplicial formulation comes from
a particular rewriting of the Kuramoto model on an unweighted graph 4.3.

Let G = (V , E) be an undirected graph, where V is the set of nodes and E its edges.
Let us give an orientation1 to each edge, coded in the action of two functions h, t : E → V
which, respectively, return the head and tail node of a given edge. Let B ∈ R|V|×|E| be
the node-link incidence matrix associated to the graph, i.e.

Biϵ =


1 if i = h(ϵ)
−1 if i = t(ϵ)
0 otherwise

i ∈ V , ϵ ∈ E .

1“Orientation” is different from direction as it does not stop the flow of information.
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Then it holds that
nØ

k=1
Aik sin(θi − θk) = B sin(B⊤θ).

Let us prove this fact. First, compute the action of B⊤ on the phases vector

(B⊤θ)ϵ =
Ø
i∈V

B⊤
ϵiθi =

Ø
i∈V

Biϵθi = θh(ϵ) − θt(ϵ)

for every ϵ ∈ E . It follows that, for i ∈ V ,è
B sin(B⊤θ)

é
i

=
Ø
ϵ∈E

Bij sin(B⊤θ)ϵ =
Ø
ϵ∈E

Biϵ sin(θh(ϵ) − θt(ϵ))

=
Ø

ϵ:h(ϵ)=i

sin(θi − θt(ϵ))−
Ø

ϵ:t(ϵ)=i

sin(θh(ϵ) − θi)

=
Ø

ϵ:h(ϵ)=i

sin(θi − θt(ϵ)) +
Ø

ϵ:t(ϵ)=i

sin(θi − θh(ϵ))

=
Ø

k∈N (i)
sin(θi − θk) =

nØ
k=1

Aik sin(θi − θk).

We then find that the Kuramoto dynamics 4.3 can be elegantly written in matrix form as

θ̇ = ω − σB sin(B⊤θ). (4.6)

Notice that this works independently of the orientation chosen for the edges.

We are now ready to make the mathematical leap necessary for our final generalization
of Kuramoto’s model. The trick is just to consider θ as a 0-cochain on the 0-simplices
of the simplicial complex given by the oriented graph. With this in mind, we can finally
take advantage of the theory developed in Chapter 3 to give new meaning to the terms
in Equation 4.6. We immediately notice that B⊤ = D0 and B1 are, respectively, the
matrices representing the operators d0 and ∂1 defined in Section 3.1.2. Equation 4.6 is
then written as

θ̇ = ω − σB1 sin(D0θ), (4.7)
where ω too represents a 0-cochain. This last formulation is actually more powerful than
4.6 as it is capable of describing weighted interactions. This is easily done by defining
a diagonal inner product on the 1-chain space W (1) such that W (1)

ii is the weight of the
interaction mediated by edge i, and remembering that, according to 3.3, it induces a mod-
ification of the boundary (actually adjoint coboundary 3.1.10) operator B1 = B⊤

1 W(1).

Equation 4.7 moreover has components which possess indexes. In such a situation,
any respectable mathematician must then ask him or herself what happens when these
indexes are varied. This simple curiosity leads us to a first formulation of a simplicial
version of the Kuramoto model:

θ̇ = ω − σBk+1 sin(Dkθ). (4.8)
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In a general oriented simplicial complex X (see Section 3.1.1), Equation 4.8 describes the
evolution of the phases of oscillators which are general k-simplices interacting through
(k+ 1)-simplices. If 4.7 describes oscillators which interact in a pairwise fashion, 4.8 then
describes oscillators which are involved in (k + 2)th order interactions, as every (k + 1)-
simplex has k+ 2 faces. Accordingly, both the phase vector θ and the natural frequencies
ω, represent kth order cochains in Ck(X ;R). In the left panel of Figure 4.9, for example,
the oscillators are the edges, and they interact in triplets through the triangle faces. We
effectively introduced higher order interactions in the Kuramoto model.

One further observation is necessary. kth order simplices can be connected to each
other in two different ways (Definition 3.1.3): from “above”, when they are faces of the
same (k+ 1)-simplex, and from “below”, when they have a common (k− 1)th order face.
It is easy to see that Equation 4.8 describes only the first kind of interaction, as both Dk

and Bk+1 depend only on the k and (k + 1)-skeletons of the complex. This makes sense
as it was obtained by directly extending the equation describing node oscillators, which
are only connected from “above” by edges. When working with higher order simplices
it is then worth considering this new other kind of interaction. We do this as it was
proposed in [18] for unweighted complexes and in [1] for weighted complexes, and define
the simplicial Kuramoto model of order k

θ̇ = ω − σdDk−1 sin(Bkθ)− σuBk+1 sin(Dkθ), (4.9)

where each interaction term is regulated by a different coupling strength σd, σu2. One
interesting thing to notice is that interactions from “above” always involve k+2 oscillators,
as a k + 1 simplex will always have k + 2 faces. Interactions from “below”, do not have
this constraint because there can be an arbitrary number of k-simplices which share the
same face.

Figure 4.9: The same simplicial complex describes the interactions between 1st order
oscillators (a) and 2nd order oscillators (b).

Returning again to the left panel of Figure 4.9, Equation 4.9 prescribes that the edge
oscillators interact both in pairs through nodes and in triplets through triangles.

2d stands for “down” and u for “up”.
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It must be noted that the “rigid” structure of simplicial complex, which may seem like
a great modeling weakness, is actually its greatest strength. The algebraic properties of
boundary, coboundary and Laplacian operators give us powerful tools to investigate and
understand the dynamics from a topological point of view. Moreover, as it is discussed
in [2], the freedom in choosing weights makes simplicial complexes just as expressive as
hypergraphs.

4.1.6 Synchronization and order parameter
Until now, we relied on an intuitive notion of “synchronization”, without a precise mathe-
matical definition. We will see that asking for the phases to be all equal is not a satisfying
definition in the general simplicial case. In this section, we take care of this problem and
discuss a notion of simplicial synchronization with firm topological roots.

Let us consider a population of node oscillators regulated by the graph Kuramoto
model of Equation 4.6 on a connected graph. As intuition suggests, we say that the
network of oscillators is synchronized when the phases are all equal θ ∝ ✶. This does
not mean that the system must be static, it just means that the phases change together
with time, i.e. the phases vector does not leave the vector space spanned by ✶. The key
ingredient for understanding this comes from noticing that, because of connectedness, the
graph Laplacian L = BB⊤ has eigenvalue with multiplicity 1 and its kernel is spanned by
the vectors of ✶. More precisely, this means that

ker(L) = ker(BB⊤) = ker(B⊤) = span {✶} .

A synchronized phases vector θ then is such that the interaction term B sin(B⊤θ) vanishes
and, in this case, this intuitive notion is equivalent to harmonicity.

With this in mind, it makes sense to define synchronization for the simplicial case in
the same way.

Definition 4.1.1 (Complete synchronization). We say that a phase cochain θ ∈
Ck(X ;R) on a simplicial complex X is completely synchronized w.r.t the sim-
plicial Kuramoto model 4.9 if θ is harmonic i.e. θ ∈ ker(Lk).

Just like the node case, harmonicity implies the vanishing of the interaction term.
Disregarding the coupling strengths σu, σd,

Dk−1 sin(Bkθ) +Bk+1 sin(Dkθ) = 0

because
θ ∈ ker(Lk) = ker(Bk+1Dk +Dk−1Bk) = ker(Dk) ∩ ker(Bk).

Interestingly, with this definition, a configuration in which the phases of the simpli-
cial oscillators are all equal is generally not synchronized. In fact, it often holds that
✶ /∈ ker(Lk).
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The Kuramoto model

Having understood what it means for a configuration to be completely synchronized, we
now move on to quantifying synchronization. In his original work in 1975 [14], Kuramoto
introduced the order parameter, a scalar function of the phases, whose value quantifies
the amount of synchronization of the system. Let us come back to the model with all-to-all
interaction 4.2, the order parameter is defined as

R(θ) = ∥x̄∥ = 1
n

.....
nØ

i=1
xi(θi)

.....
2

≥ 0,

i.e. the distance of the oscillators’ centroid x̄ from the origin. If the oscillators’ phases
have similar values then x̄ will be necessarily close to the circle and when synchronization
happens θ ∝ ✶ xi = x ∀i R reaches its maximum

R(θ) = 1
n
∥nx∥2 = ∥x∥ =

ñ
cos(θ)2 + sin(θ)2 = 1.

Interestingly, the square order parameter acts as a sort of “potential” for the interaction

Figure 4.10: Representation of the order parameter as the distance of the oscillators’
centroid from the origin.

term of the Kuramoto model. We see this by noticing that

∂

∂θi
R2(θ) = 1

n2
∂

∂θi

 nØ
j=1

cos(θj)

2

+

 nØ
j=1

sin(θj)

2
= 2
n2

− sin(θi)

 nØ
j=1

cos(θj)

+ cos(θi)

 nØ
j=1

sin(θj)


= 2
n2

Ø
j /=i

(sin(θj) cos(θi)− cos(θj) sin(θi)) = 2
n2

Ø
j /=i

sin(θj − θi),

meaning that we can rewrite 4.2 as

θ̇ = ω + n2σ

2 ∇θR
2(θ) = ∇θ

A
ω⊤θ + n2σ

2 R2(θ)
B
.
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Dynamics of this type are called gradient systems.

The order parameter for the graph Kuramoto model 4.6 is built in such a way as to
be the potential of the interaction function B sin(B⊤θ). Define

R2(θ) ∆= 1
|E|

✶
⊤ cos(B⊤θ). (4.10)

First, if θ is harmonic θ ∝ ✶, then R2(θ) = 1 meaning that this parameter actually
measures synchronization in the sense of Definition 4.1.1. Second, it is easy to show that

∇θR
2(θ) = 1

|E|
= − 1
|E|

B⊤ sin(B⊤θ)

and thus
θ̇ = ω − σB sin(B⊤θ) = ∇θ

1
ω⊤θ + σ |E|R2(θ)

2
.

If we modify Equation 4.10 in order to take into account interactions from “below” we
can find an order parameter which is able to measure synchronization under the simplicial
Kuramoto dynamics. We then define the simplicial order parameter (SOP), first
proposed in [18].

Definition 4.1.2 (Simplicial order parameter). Define the (square) simplicial order
parameter of order k as

R2
k(θ) = 1

Ck

1
w⊤

(k−1) cos(Bkθ) + w⊤
(k+1) cos(Dkθ)

2
, (4.11)

where Ck = ✶
⊤w(k−1) + ✶

⊤w(k+1) is a normalization constant and w(k) = W(k)✶ is
the inverse volume cochain of order k.

If θ is harmonic θ ∈ ker(Lk), then R2
k(θ) = 1 as ker(Lk) = ker(Dk)∩ker(Bk). Moreover,

if the complex is unweighted W (j) = I ∀j, then the simplicial Kuramoto model with
σu = σd = σ is a gradient system

θ̇ = ∇θUk(θ) = ∇θ

1
ω⊤θ + σCkR

2
k(θ)

2
. (4.12)

What Equation 4.12 tells us is that, much like the well-known algorithm of gradient
descent, the simplicial Kuramoto dynamics will always follow the direction of steepest
ascent in the landscape of Uk(θ). This means that every local maximum of Uk(θ) will
be a stable equilibrium point which, if reached by the dynamics, will correspond to a
configuration of phases static in time.
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Figure 4.11: The function U2(θ) is plotted for the 2nd order simplicial Kuramoto on the
complex on the left for ω = (1,2)⊤, together with a trajectory of the dynamics (dark line).
The two plots were made for two different values of σ. When σ is high enough (plot on
the right) local maxima appear in the landscape and the gradient system stops at a stable
phase configuration.
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5 | Analysis of the simplicial
Kuramoto model

This last chapter is entirely devoted to the analysis of the simplicial Kuramoto model
introduced and motivated in Chapter 4. We will take a bottom-up approach in trying to
explore the behavior of this beautiful model, deriving all the results without omitting the
proofs.

Our main focus will be exploring the equilibrium properties of this system. Are there
configurations of phases which do not change in time? How are they made? Under what
conditions do they exist? These are some of the questions which have been extensively
asked about the Kuramoto model and which we will now ask for its simplicial variant.

5.1 The simplicial oscillator
In this first section, we take a look at one of the most peculiar properties of the simplicial
Kuramoto model, which has to do with the fundamental behavior of its oscillators. Re-
call that in Section 4.1.5, the introduction of the model was motivated purely by formal
(4.8) and symmetry (4.9) arguments and was not obtained in a bottom-up fashion like
the original model 4.2. Here, therefore, we take a step back and look at the behavior of a
single simplicial oscillator under the simplicial Kuramoto dynamics.

5.1.1 Interactions and self-interactions
Let us consider an unweighted simplicial complex X made by a single kth order simplex
together with its faces, the faces of its faces and so on. Let also ω ∈ R be its natural
frequency. As there are no (k + 1)-simplices, the “above” part of the dynamics 4.9 will
not be present, thus leaving us with the scalar equation

θ̇ = ω − σdDk−1 sin(Bkθ), (5.1)

where Bk will be a (k + 1) × 1 matrix whose elements are either 1 or −1 depending
on the orientation of the (k − 1)-faces w.r.t to the simplex. We can write Bk = Bk = ξ
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Analysis of the simplicial Kuramoto model

with ξ ∈ {−1,1}k+1. ξi will be the relative orientation of face i w.r.t the simplex. Since
the complex is unweighted, 3.3 tells us that Dk−1 = B⊤

k . Equation 5.1 becomes

θ̇ = ω − σdξ⊤ sin(ξθ) = ω − σdξ⊤ξ ⊙ sin(θ✶) = ω − σd
✶

⊤ sin(θ✶),

as the sine is an odd function. Expanding the scalar product, we finally get the scalar
equation

θ̇ = ω − σ(k + 1) sin(θ), (5.2)

where we write for simplicity σ = σd. This simple result clearly tells us a surprising and
quite disturbing fact, i.e. that

simplicial oscillators are not Kuramoto oscillators

in the sense of Section 4.1.1 as they do not follow Equation 4.1.
The reason for this lies in the fact that simplicial oscillators can never actually be free

of interactions. A simplicial complex is by definition (3.1.1) closed under the inclusion
of faces, meaning that a single kth order oscillator will always have k + 1 faces. The
interaction term from “below” will never disappear and will result in the extra term of
Equation 5.2. For these reasons, we name this extra term self-interaction.

The first thing that we notice is that the self-interaction term −σ(k + 1) sin(θ) is
proportional both to the order (plus one) and to the coupling strength. This suggests
that it comes from a sum of contributions for all the faces, each with strength σ. To
understand the origin of this phenomenon, it is worth looking at the case of two k-
simplices adjacent from below. If k = 1, for example, we are talking about two edges

connected by a node. We can describe such a system with B1 = B1 =

−1 0
1 −1
0 1

 , and

if k = 2 B2 = B2 =


−1 0
−1 1
1 −1
0 1

 . By direct generalization, we see that a system of two

adjacent oscillating k-simplices can be described with the boundary matrix

Bk = Bk =

ξ1 0
ν1 ν2
0 ξ2

 ,
where ξi ∈ {−1,1}k (i ∈ {1,2}) contains the orientations of the k faces of simplex i which
are not faces of the other and νi is the orientation of the common face w.r.t the simplex i.
By carrying out the simple computations, we find that the interaction term from “below”
is

B⊤
k sin(Bkθ) =

3
ξ⊤

1 sin(ξ1θ1) + ν1 sin(ν1θ1 + ν2θ2)
ν2 sin(ν1θ1 + ν2θ2) + ξ⊤

2 sin(ξ2θ2)

4
=
3
k sin(θ1) + sin(θ1 + ν1ν2θ2)
k sin(θ2) + sin(ν1ν2θ1 + θ2)

4
.
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5.1 – The simplicial oscillator

The simplicial Kuramoto dynamics regulating the system will then be

θ̇ = ω − σk sin(θ)− σ
3sin(θ1 + ν1ν2θ2)

sin(ν1ν2θ1 + θ2)

4
.

Notice how the self-interaction term is still present but, this time, is multiplied by k in-
stead of k+ 1. The “missing” unit has become an interaction term which depends on the
difference (or sum, depending on the relative orientation ν1ν2) of the phases of the two
simplices. It is reasonable to deduce that a simplex interacting with two others will have
a self-interaction term of strength k − 1 and so on. Consider for example 3 oscillating
edges in sequence with boundary matrix:

B1 =


−1 0 0
1 −1 0
0 1 −1
0 0 1

 .
We get

B⊤
1 sin(B1θ) =


sin(θ1) + sin(θ1 − θ2)

sin(θ2 − θ3) + sin(θ2 − θ1)
sin(θ3)ü ûú ý

Self-interaction
ü ûú ý
Head interaction

+ sin(θ3 − θ2)ü ûú ý
Tail interaction


where we see that the middle simplex experiences no self-interaction term.

We are now ready to give an interpretation of this phenomenon and, as a result, of
the behavior of the whole simplicial Kuramoto model. The interaction term from “below”
B⊤

k sin(Bkθ) means that each oscillating simplex “sends a message” through each of its
faces. If there is a simplex of the same order on the other side an interaction bond is
formed, otherwise the signal “bounces” back and causes a self-interaction. Figure 5.1
gives a graphical explanation of this fact.

This of course does not happen for nodes, as there are no (−1)-simplices.

Figure 5.1: Self-interactions and interactions in the case of the edge and triangle dynamics.
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5.1.2 Equilibrium properties of the simplicial oscillator
Having now given an interpretation of the self-interaction term, let us come back to the
single oscillating k-simplex of Equation 5.2. Let us fix k, ω and a starting phase, and
integrate the ODE for different values of σ, in order to get a sense of its behavior. The
results, shown in Figure 5.2, suggest us at least three observations:

1. the oscillations, which of course correspond to Kuramoto oscillations for σ = 0, are
increasingly deformed as σ grows;

2. the oscillations’ period increases with σ;

3. after a certain value of σ, which we call σ∗, the oscillator is no longer self-sustaining
and quickly stabilizes into an equilibrium position.

When σ passes σ∗ the systems experiences a phase transition, from a self-sustaining
oscillator to a dissipative system which stops moving after a few instants.

Finding the particular value of σ, which we call critical coupling, is actually an easy
task. An equilibrium configuration of Equation 5.2 will have to satisfy

σ(k + 1) sin(θ) = ω ⇐⇒ sin(θ) = ω

σ(k + 1) ,

which, given the bounded image of the sine function, will have solutions if and only if---- ω

σ(k + 1)

---- ≤ 1.

It thus trivially follows that:

Theorem 5.1.1. The simplicial oscillator admits equilibria if and only if---- ω

σ(k + 1)

---- ≤ 1.

If ω and k are fixed, we can easily turn this into a condition on σ and find

σ ≥ σ∗
∆= |ω|
k + 1 . (5.3)

Moreover, if 5.3 holds, we can even find an explicit expression of all the equilibrium
configurations

θ = (−1)s arcsin
3

ω

σ(k + 1)

4
+ sπ + 2mπ s ∈ {0,1} , m ∈ Z.

Modulo periodicity, then the equilibria are just two:

θs = arcsin
3

ω

σ(k + 1)

4
, θu = − arcsin

3
ω

σ(k + 1)

4
+ π.
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5.1 – The simplicial oscillator

Figure 5.2: Dynamics of a kth order simplicial oscillator for different values of σ.
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Figure 5.3: On the left, the two equilibria of a single oscillating simplex are shown. On
the right, a simulation of the model shows convergence to θs.

Their stability can be computed through linear stability analysis by looking at the sign of
the Jacobian of 5.2.

J(θ) = ∂

∂θ
θ̇ = −σ(k + 1) cos(θ).

If σ > σ∗

J(θs) = −σ(k + 1) cos
3

arcsin
3

ω

σ(k + 1)

44
= −σ(k + 1)

ó
1−

3
ω

σ(k + 1)

42
< 0

and thus θs is asymptotically stable. Instead,

J(θu) = −σ(k + 1) cos
3
− arcsin

3
ω

σ(k + 1)

4
+ π

4
= σ(k + 1)

ó
1−

3
ω

σ(k + 1)

42
> 0

meaning that θu is unstable. The two equilibrium configurations are symmetric w.r.t the
y-axis, as shown in Figure 5.3.

*

Figure 5.4: Plot of the potential Uk(θ) for
different values of σ. The black line shows
Uk(θ) when σ = σ∗.

Let us give a more geometrical interpreta-
tion of this phase transition. Remember how
in Section 4.1.6 we defined the order param-
eter and rewrote the unweighted simplicial
Kuramoto as a gradient system (Equation
4.12). If we do the same for a single simpli-
cial oscillator, we can see that the dynamics
5.2 becomes

θ̇ = ∂

∂θ
Uk(θ) = ∂

∂θ
(ωθ + σ(k + 1) cos(θ)) .

It is then a gradient system whose potential
landscape is given as the sum of two contri-
butions:

• a line with slope ω;
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5.1 – The simplicial oscillator

• a cosine wave with amplitude σ(k+ 1).

When σ ≥ σ∗ the potential will have local
maxima (corresponding to θs + 2mπ,m ∈ Z) and thus the system will reach one of
them and stop there (unless it starts in a local minimum corresponding to an unstable
equilibrium θu + 2mπ,m ∈ Z).
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5.2 Equilibria of the simplicial Kuramoto model
Having gained a valuable insight on the way the simplicial Kuramoto model works in the
most simple case, we can now go on studying more complex situations. The main question
we address in this section has to do with the equilibrium properties of the model. Are
there configurations of phases which are left unchanged by the dynamics? If so, how are
they made? On which factors does their existence depend?

5.2.1 Decomposing the equilibrium problem
Let us consider a simplicial complex X , weighted or unweighted, which describes the
interactions between kth order oscillators. Remember that the equation regulating the
dynamics (Equation 4.9) is

θ̇ = ω − σdDk−1 sin(Bkθ)− σuBk+1 sin(Dkθ). (5.4)

A first important observation is that the addition of a harmonic cochain x ∈ ker(Lk)
to the phases has no effect on the dynamics. This comes from the fact that ker(Lk) =
ker(Bk) ∩ ker(Dk) (Proved in general in Proposition 2.1.4 of Chapter 2). Any change
of variable γ = θ + x, which corresponds to describing oscillator i in a reference system
rotating at speed xi, will thus leave Equation 5.4 formally unchanged. In this sense we
can say that the harmonic space is the gauge of the simplicial Kuramoto. Note here the
difference with respect to the node Kuramoto on a graph in which the trivial constant
phase shift is the gauge transformation that leaves the dynamics unchanged.

To find the equilibrium conditions, a rewriting of the model is necessary. In fact, the
dynamics can be better understood and greatly simplified if one resorts to the simplicial
Hodge decomposition theorem (Equation 3.6) which, we recall, tells us that

Ck(X ;R) = Im(∂k+1)⊕ ker(Lk)⊕ Im(dk−1)

or, in matrix form,
Rnk = Im(Bk+1)⊕ ker(Lk)⊕ Im(Dk−1).

We use the theorem to decompose both the phases cochain θ and the natural frequencies
ω:

θ = θcf + θH + θdf , ω = ωcf + ωH + ωdf

(cf means curl-free and df means divergence-free) where

θcf = Bk+1ϕ, θdf = Dk−1ψ, ωcf = Bk+1λ, ωdf = Dk−1µ.

Equation 5.4 becomes

θ̇cf + θ̇H + θ̇df = ωcf + ωH + ωdf − σdDk−1 sin(Bk(θcf + θH + θdf ))
− σuBk+1 sin(Dk(θcf + θH + θdf ))
= ωcf + ωH + ωdf − σdDk−1 sin(Bkθdf )− σuBk+1 sin(Dkθcf ),
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5.2 – Equilibria of the simplicial Kuramoto model

because BkBk+1 = 0, DkDk−1 = 0 and Bkθh = DkθH = 0. Given the orthogonality1 of
the three components ensured by the theorem, the equation can be decomposed into the
system of ODEs 

θ̇cf = ωcf − σuBk+1 sin(Dkθcf )
θ̇H = ωH

θ̇df = ωdf − σdDk−1 sin(Bkθdf )
. (5.5)

The three equations in 5.5, which are equivalent to 5.4, are of crucial importance. They
tell us that under the simplicial Kuramoto dynamics: i) the curl-free, the harmonic and
the divergence-free components evolve independently of one another; and, ii) the harmonic
component is not affected by the interaction terms (see Figure 5.5). Notice also that the
interaction from “above” affects only the curl-free component, while the one from “below”
affects only the divergence-free component.

Figure 5.5: Hodge decomposition (Equation 5.5) of the edge simplicial Kuramoto dynam-
ics on a small simplicial complex. The harmonic component divides the edges in two
groups, the ones on the boundary of the hole, and the others. The two groups evolve
with constant angular speed. Notice also how, in this case, the divergence-free component
reaches an equilibrium configuration.

The independence of the harmonic term from the interaction θ̇H = ωH directly implies
that the harmonic component of the phases acts as a system of isolated Kuramoto oscilla-
tors with natural frequencies given by the harmonic component of the natural frequencies.
Moreover, if ωH /= 0, there can be no equilibrium of the system as θH will always evolve
with a fixed angular speed. In looser but more intuitive terms, we could state that

1w.r.t the inner product defined on Ck(X ;R).
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Observation 1. the presence of topological k-holes (non-trivial harmonic space) is re-
sponsible for the existence of an underlying harmonic dynamics which wraps around them
and evolves with constant angular speeds, one for each k-simplex.

It is therefore convenient to change coordinates and pass to a system rotating at ωH

γ = θ − ωH , where γ̇H = 0 and equilibrium is possible. This leads us to a new system
γ̇cf = ωcf − σuBk+1 sin(Dkγcf )
γ̇H = 0
γ̇df = ωdf − σdDk−1 sin(Bkγdf )

(5.6)

where only the curl-free and divergence-free components evolve. Notice that this is a direct
generalization of what it is usually done in the literature when moving to the corotating
frame, that is, asking for ω to have 0 mean (see Section 4.1.3). In fact, if the complex
is connected and unweighted, ker(Lk) = span {✶} the projection of ω onto the harmonic
space is

ωH =
3 1√

n
✶

43 1√
n
✶

4⊤
ω = 1

n
✶✶

⊤ω = ω̄✶.

Proposition 5.2.1. Without loss of generality, we can always move to the
harmonic co-rotating frame, that is, assume that the natural frequencies cochain
has no harmonic component ωH = 0.

Under this last assumption, studying the equilibrium properties of the simplicial Ku-
ramoto model is equivalent to studying the equilibria of the curl-free and divergence-free
components. If these two converge to an equilibrium configuration, then the complete
system will converge to a configuration evolving with constant angular speed, given by
ωH .

We have that θ̇ = 0 if and only ifI
Bk+1 sin(Dkθcf ) = ωcf

σu

Dk−1 sin(Bkθdf ) = ωdf

σd

. (5.7)

These two equations need not be satisfied simultaneously: one could perfectly have a
curl-free component in equilibrium and an evolving divergence-free component. To solve
them, we employ the Moore-Penrose pseudoinverse, whose main properties are listed in
Appendix B. Since ωcf ∈ Im(Bk+1) and ωdf ∈ Im(Dk−1), the linear systems admits
solutions which can be written as2I

sin(Dkθcf ) = (Bk+1)† ωcf

σu + x

sin(Bkθdf ) = ( Dk−1)† ωdf

σd + y
, (5.8)

2This is done by virtue of Theorem B.0.1 of Appendix B.
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for any x ∈ ker(Bk+1) and y ∈ ker(Dk−1). As they will come up surprisingly often, it
is convenient to give names to the vector quantities above.

Definition 5.2.1 (Structure potentials). Given a simplicial complex X and a fre-
quency k-cochain ω ∈ Rnk , we call structure potentials of order k the quantities

β(+) ∆= (Bk+1)†ωcf ∈ Rnk+1 , β(−) ∆= (Dk−1)†ωdf ∈ Rnk−1 .

The adjective “structure” is chosen because they encode the structural properties of
the system through the boundary matrix and the natural frequencies.

Proposition 5.2.2. By the properties of the Moore-Penrose pseudoinverse we have
that

β(+) ∈ Im((Bk+1)∗) = ker(Bk+1)⊥, β(−) ∈ Im((Dk−1)∗) = ker(Dk−1)⊥.

We can immediately prove an interesting fact about the structure signals which relates
them to the Hodge decomposition of ω and justifies the name “potentials”.

Proposition 5.2.3. β(+) = λ, β(−) = µ, where ωcf = Bk+1λ and ωdf = Dk−1µ

Proof.
Bk+1β(+) = Bk+1(Bk+1)†ωcf

is the orthogonal projection of ωcf onto Im(Bk+1) (See Property 9 of Appendix B). ωcf ,
however, belongs to Im(Bk+1) and thus

Bk+1β(+) = ωcf

hence the thesis. An analogous argument holds for β(−).

Proposition 5.2.3 tells us that the structure signals correspond to the higher and lower
order signals which make up the Hodge decomposition’s components of the natural fre-
quencies vector ω:

ω = Bk+1β(+) + ωH +Dk−1β(−).

Let us come back to the equilibrium conditions of Equation 5.8. We see that a necessary
condition for the existence of a solution is.....β(+)

σu
+ x

.....
∞
≤ 1,

.....β(−)

σd
+ y

.....
∞
≤ 1,

because the image of the sine function is the closed interval [−1,1]. The kernel vectors
x,y associated to equilibrium configurations are thus constrained to lie in a particular set
which we now define.
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Definition 5.2.2 (Admissible cycles). We call a cycle x ∈ ker(Bk+1) admissible
if .....β(+)

σu
+ x

.....
∞
≤ 1.

We call a cocycle y ∈ ker(Dk−1) admissible if.....β(−)

σu
+ y

.....
∞
≤ 1.

With a slight abuse of notation, we call them both admissible cycles, and we name
their sets A(+) and A(−).

Figure 5.6: x is admissible as it belongs to the
intersection of ker(Bk+1) and the unit∞-ball
centered in −β(+)/σu. z is not admissible.

The name “admissible cycles” is chosen
to highlight an interesting observation.

Observation 2. At least for the (+) com-
ponent, the equilibrium properties of the
model are related to the existence of cycles
in the complex which are, in some sense,
compatible with the natural frequencies.

It is easy to see that A(±) is the
intersection of a vector space with an
∞-norm ball centered in −β(±)/σ with
radius 1. A(±) can thus be de-
scribed with a set of linear inequal-
ities, meaning that it is a closed,
convex, bounded polytope whose ver-
tices cannot be explicitly found in gen-
eral.

When x and y are admissible, each com-
ponent of the left-hand side of 5.8 belongs
to [−1,1]. We can invert the sine, and findD

kθcf = (−1)s+ ⊙ arcsin
1

β(+)

σu + x
2

+ s+π + 2πm+

Bkθdf = (−1)s− ⊙ arcsin
1

β(−)

σd + y
2

+ s−π + 2πm−
,

(5.9)
where

s+ ∈ {0,1}nk+1 , s− ∈ {0,1}nk−1 , m+ ∈ Znk+1 , m− ∈ Znk−1 .

Let us take a moment to recap what we did in the previous steps. We started with
the simplicial Kuramoto equation 5.4 and found out that, through Hodge decomposition,
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we could find independent equations 5.5 for the evolution of the curl-free, harmonic and
divergence-free components. When considering a reference system with ωH = 0 (Proposi-
tion 5.2.1), we can state that the phases will be in equilibrium if and only if the curl-free
and divergence-free components are in equilibrium. With a few algebraic steps, we finally
found two independent equations 5.9 which give conditions for their equilibrium.

Notice, however, that the Equations 5.9 are not explicit but are cast in the form of lin-
ear systems. Matrices Dk and Bk are in general non-square and non-invertible, and they
cannot be brought to the right side through the pseudoinverse as we have no guarantees
that the system has solutions.

Let us take a closer look at the right-hand sides of the equations.

Definition 5.2.3 (Equilibrium sets). We define the equilibrium sets of the dy-
namics as

E (+) ∆=
;

(−1)s+ ⊙ arcsin
A
β(+)

σu
+ x

B
+ s+π + 2πm+ : x ∈ A(+),

s+ ∈ {0,1}nk+1 ,m+ ∈ Znk+1

<
E (−) ∆=

;
(−1)s− ⊙ arcsin

A
β(−)

σd
+ y

B
+ s−π + 2πm− : y ∈ A(−),

s− ∈ {0,1}nk−1 ,m− ∈ Znk−1

<
.

The equilibrium sets, whose name will be justified in the next pages, are the sets of all
possible right-hand sides of 5.9. A simple fact follows immediately:

Proposition 5.2.4. If E (±) = ∅ then the curl-free/divergence-free component ad-
mits no equilibria. Moreover,

E (±) = ∅ ⇐⇒ A(±) = ∅

i.e. there are no equilibrium vectors if and only if there are no admissible cycles.

Proof. The first statement comes from the fact that, if E (±) = ∅, then there are no possible
right-hand sides of Equation 5.9, which cannot be solved and, therefore, gives no equilibria.

The second statement comes directly from the definition of equilibrium set 5.2.3.

Moreover, we can see that there will be equilibria exactly when we can solve the
equations in 5.9 i.e. when some vector in the right-hand side belongs to the image of the
matrix on the left-hand side.
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Proposition 5.2.5. The curl-free/divergence-free component admits equilibria if
and only if, respectively,

E (+) ∩ Im(Dk) /= ∅, E (−) ∩ Im(Bk) /= ∅.

5.2.2 Simplicial phase-locking and types of equilibrium
Let us now focus on the (k+1)-cochain Dkθcf . First notice that, by Hodge decomposition,

θ(+) ∆= Dkθ = Dk(θcf + θH + θdf ) = Dkθcf .

Let us consider the node dynamics of the standard Kuramoto model 4.6 on a simplicial
complex X of order 1 (a graph with oriented edges) and look at the value of θ(+). θ(+) is
a signal defined on the edges and its components are

θ
(+)
[i,j] = (D0θ)[i,j] = (B⊤

1 θ)[i,j] = θj − θi,

when [i, j] ∈ X1. θ(+) then contains the phase difference along each edge. It follows that,
when θ

(+)
[i,j] does not change in time, the phases of oscillators i and j evolve maintaining

a constant distance from each other. The equilibrium of the whole vector θ(+) will cor-
respond to a phase-locked configuration: the oscillators move at the same angular speed,
but do not have the same phase. With this in mind, we can easily generalize this concept
to Kuramoto dynamics of any order and define phase locking as the onset of a particular
fixed relation between the oscillators’ phases.

Definition 5.2.4 (Phase-locking). A configuration θ is said to be phase-locked
from above w.r.t the kth order Kuramoto dynamics if θ̇(+) = 0. Analogously, it is
called phase-locked from below when θ̇(−) = 0 with θ(−) ∆= Bkθ.

Phase locking is an important phenomenon which relaxes the notion of complete syn-
chronization to contain also configurations which are not harmonic but still evolve in an
“ordered” manner. It is therefore worth studying the evolution and equilibrium properties
of θ(−) and θ(+). This paradigm shift was first proposed in the original paper [18], where
the phase transition of θ(±) is investigated.

The interesting thing about θ(±), which we can interpret as “projections” of the phases
onto upper and lower simplices, respectively, is that one can explicitly find the equilibrium
configurations of their dynamics. First, their evolution equations are readily obtained by
multiplying Equations 5.4 by Dk and Bk

I
Dkθ̇ = Dkω − σuDkBk+1 sin(Dkθ)
Bkθ̇ = Bkω − σdBkDk−1 sin(Bkθ)

=⇒
I
θ̇(+) = ω(+) − σuLk+1

down sin(θ(+))
θ̇(−) = ω(−) − σdLk−1

up sin(θ(−))
(5.10)
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where ω(+) ∆= Dkω, ω(−) ∆= Bkω and Lk+1
down, L

k−1
up are the half Laplacian matrices defined

in 3.5. The following algebraic properties of the Laplacians should be kept in mind:

Im(Lk+1
down) = Im(Dk), Im(Lk−1

up = Im(Bk).

We can now solve the equilibrium equations. For example, θ(−) will be in equilibrium
if and only if

Lk−1
up sin(θ(−)) = ω(−)

σd
⇐⇒ü ûú ý

ω(−)∈Im(Lk−1
up )

sin(θ(−)) = (Lk−1
up )†ω

(−)

σd
+x ∀x ∈ ker(Lk−1

up ) = ker(Dk−1).

This equation closely resembles Equation 5.8 in its form and in the fact that, to solve
it, the vector x still needs to satisfy an admissibility condition (Definition 5.2.2). The
admissibility condition, moreover, is exactly the same. It turns out that we can push this
similarity further:

Proposition 5.2.6. It holds that

(Lk−1
up )†ω(−) = β(−), (Lk+1

down)†ω(+) = β(+).

Proof. Notice first that Lk−1
up = BkDk−1 and, by the construction of the adjoint cobound-

ary operator, ∂k and dk−1 are adjoint operators, Dk−1 = (Bk)∗ which mean that, by
Property 5 of the pseudoinverse,

(Lk−1
up )† = ((Bk)∗)†(Bk)†.

Moreover
(Lk−1

up )†ω(−) = (Lk−1
up )†Bkω = ((Bk)∗)†(Bk)†Bkω

which, by Property 6 of the pseudoinverse applied to ((Bk)∗)†, gives us the thesis

(Lk−1
up )†ω(−) = ((Bk)∗)†ω = (Dk−1)†ω = β(−).

The same steps can be repeated mutatis mutandis to obtain the thesis for the (+) com-
ponent.

This result directly implies that a projected configuration θ(±) will be in equilibrium
if and only if it belongs to the equilibrium set E (±) of Definition 5.2.3!

Proposition 5.2.7. θ̇(±) = 0 if and only if θ(±) ∈ E (±).

One must however be careful when looking at this last result. Notice that the dynamics
for the (−) component (the same holds for (+)) 5.10 states that the time derivative of
θ(−) will be the vector ω(−) − σdLk−1

up sin(θ(−)), which always belongs to Im(Bk). This
means that, if the initial configuration is θ(−)

0 , the trajectories of the dynamics will live
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in the affine space given by Im(Bk) + θ
(−)
0 (See Figure 5.7). Only the equilibria in E (−)

which are also in Im(Bk) + θ
(−)
0 are actual equilibria of the dynamics. Moreover, given

the nature of its definition, θ(−)
0 = Bkθ0 i.e. the projection onto lower simplices of the

initial phase configuration. Thus θ(−)
0 ∈ Im(Bk) and the dynamics will live in the vector

space Im(Bk) + θ
(−)
0 = Im(Bk). So, practically, the equilibria which have a real effect

on the dynamics are the ones in E (−) ∩ Im(Bk). For this reason, we call them reachable.

Figure 5.7: The trajectories of the (−) com-
ponent 5.10 live on the affine space Im(Bk)
centered in the starting phase configuration
θ

(±)
i .

Definition 5.2.5 (Reachable equilib-
rium). We call an equilibrium config-
uration for the (−) dynamics θ(−)

eq ∈
E (−) reachable if

θ(−)
eq ∈ Im(Bk).

Analogously θ
(+)
eq ∈ E (+) is reachable

if
θ(+)

eq ∈ Im(Dk).

We denote the sets of reachable equi-
libria R(±) ⊆ E (±).

To complete the picture, we need to make
one last observation. Return to the decom-
posed equilibrium conditions for the curl-free
and divergence-free components of Equa-
tions 5.9D

kθcf = (−1)s+ ⊙ arcsin
1

β(+)

σu + x
2

+ s+π + 2πm+

Bkθdf = (−1)s− ⊙ arcsin
1

β(−)

σd + y
2

+ s−π + 2πm−
=⇒

I
Dkθcf = θ

(+)
eq ∈ E (+)

Bkθdf = θ
(−)
eq ∈ E (−) .

If θ(−)
eq is a reachable equilibrium θ

(−)
eq ∈ R(−) = E (−) ∩ Im(Dk) then the first linear

equation has a unique solution in Im(Dk) and so the curl-free component will admit
equilibria. Let us better formulate this fact in a proposition.

Proposition 5.2.8. The curl-free (divergence-free) component admits equilibria
if and only if θ(+) (θ(−)) admits reachable equilibria. Moreover, the equilibria of
the curl-free (divergence-free) component are in one-to-one correspondence with the
reachable ones in R(+) (R(−)) through the action of the matrix (Dk)† ((Bk)†).

It is useful now to focus on a simple case in order to clarify these concepts. We already
discussed the case when ωH = 0. What happens when ωcf or ωdf are 0?
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5.2 – Equilibria of the simplicial Kuramoto model

First notice that, by Proposition 5.2.3, ωcf = Bk+1β(+) and, being β(+) ∈ ker(Bk+1)⊥,
we have that ωcf = 0 ⇐⇒ β(+) = 0. The same holds for ωdf and β(−).

Proposition 5.2.9. If ωcf = 0 (respectively ωdf = 0) then the null cochain θ(±)
eq = 0

is a reachable equilibrium for the (±) component.

Proof. We prove it for the (+) component. First notice that the cycle x = 0 is admissible
as .....β(+)

σu
+ x

.....
∞

= ∥x∥∞ = 0 ≤ 1.

By Definition 5.2.3 we have that to x = 0 corresponds a set of equilibria given by

(−1)s+ ⊙ arcsin (x) + s+π + 2πm+ = s+π + 2πm+.

The null vector belongs to this set and, given that every vector space contains it, it is also
reachable.

It follows that, when ωcf = ωdf = 0, there are configurations when θcf and θdf do not
evolve and they are equal to 0. In this case, the only component of the phases which
evolves is the harmonic one and thus θ(t) ∈ ker(Lk) ∀t. This means, by Definition 4.1.1,
that this is a case where complete synchronization is possible.

5.2.3 The shape of equilibria
Now that the heavy burden of the previous section has been lifted off our shoulders, let us
build some intuition about these equilibria through some pictures and basic observations.
Note that here we examine only the (−) component but, for now, the situation is com-
pletely analogous for the (+) component. If we plot the points of E (−) in some particular
region (Figure 5.8) we see that, depending on the complex, the value of σd and of ω(−),
peculiar geometrical structures emerge.

Remember the general equilibrium expression for the (−) component in Definition
5.2.3:

θ(−)
eq = (−1)s ⊙ arcsin

A
β(−)

σd
+ y

B
+ sπ + 2mπ, y ∈ A(−), s ∈ {0,1}nk−1 , m ∈ Znk−1 .

This expression deserves some further comments. Let us fix the integer vectors s and m

and consider the map f
(−)
(s,m) : Rnk−1 → Rnk−1

f (−)
s,m(x) = (−1)s ⊙ arcsin

A
β(−)

σ
+ x

B
+ sπ + 2mπ.

f
(−)
s,m is a C∞ invertible map with C∞ inverse, i.e. a C∞-diffeomorphism.
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Figure 5.8: Examples of equilibrium sets E (−) together with the flowers (Definition 5.2.7)
which make them up. Small complexes with at most 3 nodes were chosen in order to make
E (−) representable.

Definition 5.2.6 (Petal). We call petal the subset of E (−) defined by E (−)(s,m) =î
f

(−)
s,m(x) : x ∈ A(−)

ï
, having fixed s and m.

A petal is thus a compact, connected, dim(ker(Dk−1))-dimensional manifold with
boundary, homeomorphic to the bounded convex polytope A(−). It follows that E (−)

is given by the union of petals, which differ only by rotation ((−1)s⊙) and by position.

Figure 5.9: Example of a single
flower for the (−) component B1θ of
the edge dynamics on a single un-
weighted triangle complex.

If we fix m and take the union of the petals asso-
ciated to all possible values of s, we get a set which
is the “fundamental atom” of the equilibrium set,
in the sense that E (−) is just a 2π-periodic tessel-
lation of Rnk−1 with them. We call them flowers.

Definition 5.2.7 (Flower). We call flower
of the equilibrium set E (−) the set

E (−)
∗ =

Û
s∈{0,1}nk−1

E (−)(s,m).

As it is shown in Figure 5.8 it often hap-
pens that the flowers intersect in some points,
sometimes forming loops It is easy to see that
every flower has a number of petals equal to
2nk−1 .

Remember that the equilibria we actually care about are the reachable ones (Definition
5.2.5) resulting from the intersection of E (−) with Im(Bk). It is impossible to give a general
expression of such an intersection, but we can, through some numerical experiments, get
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a sense of their shape. The examples of Figure 5.10 seem to suggest that R(−) will be
composed by a discrete set of points arranged in some lattice structure which periodically
repeats itself in space.

Figure 5.10: Example of reachable equilibria for θ(−) for two unweighted small simplicial
complexes. On the left θ(−) ∈ R2 as there are 2 nodes. On the right θ(−) ∈ R3 as there
are 3. When β(−) = 0 the equilibrium structures look more regular.

5.2.4 Linear stability analysis of the equilibrium sets
Now that we know the explicit expression of the equilibria of the projections onto upper
and lower adjacent simplices, it is natural to ask whether they are stable or unstable. If
θ(+), for example, is close to a reachable equilibrium, will it converge?

Consider a reachable equilibrium point in R(±) given by

θ(±)
eq = (−1)s ⊙ arcsin

A
β(±)

σ
+ x

B
+ sπ + 2mπ (5.11)

for some integer m, s and admissible x ∈ A(±). We can formulate a sufficient condition
for asymptotic stability and individuate a stable petal in the fundamental flower of E (±).

Theorem 5.2.1. A reachable equilibrium point for the (±) dynamics given by 5.11
is asymptotically stable if s = 0 ∈ Rnk±1 and

...β(±)/σ + x
...

∞
< 1.

Proof. We prove this for weighted simplicial complexes, i.e. W(k) = diag(w(k)) ∀k.

To study the stability of a reachable equilibrium, we need to get rid of the redundancy
contained in the dynamics and restrict our analysis to the reachable subspace. We do
that by putting ourselves in a new basis and considering the evolution of the coefficients
of θ(±) w.r.t it. Let us adopt the following useful notation

L(−) = Lk−1
up , L(+) = Lk+1

down.
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Because of Proposition 2.1.3 in Chapter 2, L(±) is a Hermitian positive semidefinite matrix
which, because of Theorem A.0.1 in Appendix A, admits an eigendecomposition L(±) =
V ΛV ∗. Being L(±) in general not full rank, we can pass to the reduced decomposition,

L(±) = Ṽ Λ̃Ṽ ∗,

where
Ṽ ∗ = W̃ (k±1)Ṽ ⊤W(k±1).

It also holds that the columns of Ṽ are a basis of the reachable subspace Im(L(±)). We
can now write the following differential equation which describes the evolution of the
coefficients c of θ(±) = Ṽ c.

θ̇(±) = ω(±) − σL(±) sin(θ(±)) (5.12)

=⇒ d

dt
(Ṽ c) = ω(±) − σṼ Λ̃Ṽ ∗ sin(Ṽ c) (5.13)

=⇒ Ṽ ∗Ṽ ċ = Ṽ ∗ω(±) − σṼ ∗Ṽ Λ̃Ṽ ∗ sin(Ṽ c) (5.14)
=⇒ ċ = Ṽ ∗ω(±) − σΛ̃Ṽ ∗ sin(Ṽ c). (5.15)

Adopting the terminology of [11], where the node Kuramoto is studied with a perspective
analogous to ours, we call this last equation grounded dynamics.

The associated Jacobian is then

J (±)(c) = −σΛ̃Ṽ ∗diag(cos(Ṽ c))Ṽ . (5.16)

If the matrix calculated in the coefficient of θ(±)
eq w.r.t to V has all strictly negative

eigenvalues, then the equilibrium will be asymptotically stable. Given that θ(±)
eq is reach-

able then θ
(±)
eq ∈ Im(L(±)) = Im(Ṽ ) and thus we get

J (±)
eq = −σΛ̃Ṽ ∗diag(cos(θ(±)

eq ))Ṽ .

If we replace θ(±) with its expression 5.11 we get

J (±)
eq = −σΛ̃Ṽ ∗diag

A
cos

A
(−1)s ⊙ arcsin

A
β(±)

σ
+ x

B
+ sπ + 2mπ

BB
Ṽ

= −σΛ̃Ṽ ∗diag

(−1)s ⊙

öõõô
✶−

A
β(±)

σ
+ x

B2
 Ṽ .

Λ̃ = Λ̃ 1
2 Λ̃ 1

2 because it is a symmetric positive definite square matrix. With this in mind
we find that J (±)

eq has the same eigenvalues as the following matrix

J̃ (±)
eq = −σΛ̃

1
2 Ṽ ∗diag

(−1)s ⊙

öõõô
✶−

A
β(±)

σ
+ x

B2
 Ṽ Λ̃

1
2

∆= −σΛ̃
1
2 Ṽ ∗SṼ Λ̃

1
2 ,

as they are similar J̃ (±)
eq = Λ̃ 1

2J
(±)
eq Λ̃− 1

2 . It is immediate to see that
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• s = 0 implies that S is positive semidefinite as its diagonal elements are non-negative
(given that x is admissible and the square root returns non-negative numbers);

•
...β(±)/σ + x

...
∞
< 1 implies that the diagonal elements of S are nonzero and S is

invertible.

The combination of these two facts results in J̃
(±)
eq having all negative eigenvalues. We

prove this by showing that J̃ (±)
eq is a negative semidefinite operator on the space of coeffi-

cient w.r.t the inner product W̃(k±1).e
J̃ (±)

eq c, c
f

W̃(k)
= −σc⊤(J̃ (±)

eq )⊤W̃(k±1)c = −σc⊤Λ̃
1
2 Ṽ ⊤SW(k±1)Ṽ W̃

(k±1)Λ̃
1
2 W̃(k±1)c.

Λ 1
2 and W̃(k±1) are diagonal, and thus they commute.e

J̃ (±)
eq c, c

f
W̃(k±1)

= −σc⊤Λ̃
1
2 Ṽ ⊤SW(k±1)Ṽ Λ̃

1
2 c = −σ

...(SW(k±1))
1
2 Ṽ Λ̃

1
2 c
... ≤ 0.

Finally, being V a basis, it holds that V c = 0 ⇐⇒ c = 0 and thus J̃ (±)
eq is actually

negative definite and has all strictly negative eigenvalues.

This result can be conveniently restated in the following way: the intersection of any
equilibrium petal characterized by s = 0 with Im(Bk) is asymptotically stable. Figure 5.11
shows this fact in two simple cases.

Figure 5.11: In red are shown examples of the stable petals of two equilibrium sets for
θ(−). Their intersections with Im(B1) are asymptotically stable reachable equilibria.

5.3 The role of the coupling strength
In this section, we investigate the relation between the equilibrium properties of the sim-
plicial Kuramoto model and the value of the coupling strength. It is natural to think that
having a stronger interaction would make it easier for the system to reach a phase-locked
or synchronized configuration as the intrinsic differences among the oscillators, encoded by
their natural frequencies, become secondary. We already encountered this fact in Section
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5.1 for a single simplicial oscillator, where a proper phase transition occurs when tuning
the value of σ, making the system go from an equilibrium-free potential landscape to a
situation where the energy is “dissipated” and the oscillator stops moving. Does the same
occur when more oscillators are combined in a simplicial complex?

An important point must be stressed. In the next pages we will focus on the relation
between σ and the equilibria of the projected dynamics θ(±) which, by Proposition 5.2.8,
when reachable are perfectly equivalent to the equilibria of the curl-free and divergence-free
components. Contrary to the case of the single simplicial oscillator, when we say “equi-
librium” we mean a phase-locked configuration (Definition 5.2.4), although, by Equation
5.5, when ω has no harmonic component, phase-locking from below and from above imply
actual equilibrium of the phases.

Finally, in this section we will always consider complexes which are weighted, i.e. they
have diagonal inner product W(k) = diag(w(k)).

5.3.1 Simple bounds for phase-locking
Here we derive a first family of bounds on σ, the first of which is a sufficient condition for
the non-existence of equilibria (and thus a necessary condition for their existence). The
way we can find them is simply by taking advantage of the relation admissible cycles -
equilibria of Proposition 5.2.4. Remember that, by Definition 5.2.2, a coclosed cochain
x ∈ ker(Dk−1) is admissible for the (−) component if.....β(−)

σ
+ x

.....
∞
≤ 1.

Surely there will be no equilibria if the ∞-ball centered in β(−)/σ with radius 1 does not
intersect the subspace x ∈ ker(Dk−1).

Proposition 5.3.1. If

σ <

...β(±)
...

(k±1)ñ
✶⊤w(k±1)

then the (±) component admits no equilibria E (±) = ∅.

Proof. First recall that all norms are equivalent in a finite dimensional space and, in
particular, we can bound a strong norm with a weaker one

∥v∥(k±1) =

öõõônk±1Ø
i=1

wiv2
i ≤

öõõôAØ
i

wi

B3
max

i
(vi)2

4
≤
ñ
✶⊤w(k±1) ∥v∥∞ .
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With this in mind, we can write.....β(−)

σ
+ x

.....
∞
≥ 1ñ

✶⊤w(k±1)

.....β(−)

σ
+ x

.....
(k±1)

.

The two addenda in the norm are orthogonal w.r.t. the inner product W(k±1) because,
for the two cases,

x ∈ ker(Dk−1) and β(−) ∈ Im((Dk−1)†) = Im((Dk−1)∗) = ker(Dk−1)⊥

x ∈ ker(Bk+1) and β(+) ∈ Im((Bk+1)†) = Im((Bk+1)∗) = ker(Bk+1)⊥.

Thus

1ñ
✶⊤w(k±1)

.....β(±)

σ
+ x

.....
(k±1)

= 1ñ
✶⊤w(k±1)

öõõõô.....β(±)

σ

.....
2

(k±1)
+ ∥x∥2

(k±1) ≥
1ñ

✶⊤w(k±1)

.....β(±)

σ

.....
(k±1)

.

If this last term is strictly greater than 1 then there will surely be no admissible cycles
and, therefore, no equilibria.

What we did in this proof can be interpreted as bounding the∞-ball from above with
the smallest 2-ball bigger than it. This 2-ball will intersect the subspace if and only if its
center is close enough to the origin (See Figure 5.12).

Figure 5.12: Representation of the
idea behind Proposition 5.3.1.

Notice that, when the complex is unweighted, it
holds that

✶
⊤w(k±1) = nk±1.

This last bound is a necessary condition for the
existence of reachable equilibria too as, naturally,

R(±) ⊆ E (±).

So, if σd <
...β(−)

... /√nk−1, there is no
configuration which is phase locked from be-
low.

A lower bound on σ which is sufficient for ex-
istence of equilibria (not necessarily reachable) can
be easily obtained as well by finding conditions for
the existence of a particular admissible cycle.

Proposition 5.3.2. If σ ≥ σ∞
∆=
...β(±)

...
∞

then the (±) component admits equi-
librium points E (±) /= ∅.
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Proof. It is straightforward to see that if σ ≥
...β(±)

...
∞

then the null cycle 0 is admissible.
The family of equilibria associated to this vector will be

E (±)(0) =
I

(−1)s ⊙ arcsin
A
β(±)

σ

B
+ sπ + 2mπ : m ∈ Znk±1 , s ∈ {0,1}nk±1

J
.

5.3.2 The critical coupling
As it is shown by Proposition 5.2.4 the (−) dynamics admits equilibrium points (not
necessarily reachable) if and only if there exists an admissible cycle x ∈ ker(Dk−1) such
that .....β(−)

σ
+ x

.....
∞
≤ 1,

or, equivalently, if

min
x∈ker(Dk−1)

.....β(±)

σ
+ x

.....
∞
≤ 1.

It is natural now to ask if it is possible to find the minimum value σ∗ of the coupling
parameter for which there are equilibrium solutions.

Definition 5.3.1 (Critical coupling). We call critical coupling σ
(±)
∗ for the (±)

component the minimum value of σ such that there are admissible cycles in A(±).

Lemma 1. The critical couplings σ(±)
∗ will satisfy

min
x∈ker(Dk−1)

.....β(−)

σ
(−)
∗

+ x

.....
∞

= 1, min
y∈ker(Bk+1)

.....β(+)

σ
(+)
∗

+ y

.....
∞

= 1.

Proof. If the statement were false and

min
x∈ker(Dk−1)

.....β(−)

σ
(−)
∗

+ x

.....
∞

= a

with 0 < a < 1, then we could divide both sides by a and get

min
x∈ker(Dk−1)

..... β(−)

aσ
(−)
∗

+ 1
a
x

.....
∞

= 1,

which means that for σ = aσ
(−)
∗ < σ∗ there is an admissible cycle x = x

a . This is not
possible because we assumed that σ∗ is the smallest coupling with that property.
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Armed with this characterizing property, we can get the following important result.

Theorem 5.3.1. The critical coupling θ(±)
∗ can be found in the solution of a linear

optimization problem

σ(+)
∗ = min

y∈ker(Bk+1)

...β(+) + y
...

∞
, σ(−)

∗ = min
x∈ker(Dk−1)

...β(−) + x
...

∞
(5.17)

Proof. Let us take the expression of Lemma 1 and multiply both terms by σ(−)
∗

min
x∈ker(Dk−1)

...β(−) + σ(−)
∗ x

...
∞

= σ(−)
∗ .

It is now possible to perform a linear change of variable in the optimization problem
σ

(−)
∗ x → x̃ which will change the optimal solution position but not the optimum itself!

This means that σ(−)
∗ disappears from the left-hand side and σ(−)

∗ is found as the solution
of an optimization problem.

σ(−)
∗ = min

x̃∈ker(Dk−1)

...β(−) + x̃
...

∞
.

Moreover, this problem can be easily recast into a linear program (LP)

σ(−)
∗ = min

s∈R,x∈Rnk−1
s

s.t. −s✶ ≤ β(−) + x ≤ s✶

Dk−1x = 0

(5.18)

which can be efficiently solved with the simplex algorithm or other analogous mehods [12].

Let us take a look at the geometrical meaning of σ(±)
∗ in terms of the relative equilibrium

set E (±). In Figure 5.13 the equilibrium set E (−) of a one-edge complex is shown for
different values of σ. We can clearly see that, as expected, there are no equilibria for
σ < σ

(−)
∗ and that for σ = σ

(−)
∗ the equilibrium petals (Definition 5.2.6) first appear as

single points which “expand” into continuous structures for σ > σ
(−)
∗ . This is of course

true because in the optimization problem 5.17 the optimal value σ(−)
∗ will be associated

to an optimal solution x∗ which will be the only admissible cycle of the complex. This
means that

E (−) =
Û
s,m

E (−)
s,m(x∗),

which is a union of 2nk−1 discrete lattices, one for each value of s.

Notice that in Figure 5.13 some of the equilibria which appear for σ = σ
(−)
∗ are reach-

able as they are on the line Im(B1). This is by no means true in general: most of the
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Figure 5.13: The meaning of the critical coupling in the shape of the equilibrium sets.
For σ = σ

(−)
∗ equilibrium flowers first appear as discrete sets of points

time, for σ = σ
(−)
∗ there will be no reachable equilibria at all. This doesn’t mean however

that the critical coupling is a useless concept, in fact it holds that σ(±)
∗ is the sharpest

possible necessary condition for the existence of reachable equilibria.

Proposition 5.3.3.
R(±) /= ∅ =⇒ σ ≥ σ(±)

∗ .

It trivially holds that the two values of σ discussed in Propositions 5.3.1 and 5.3.2
bound the critical coupling from below and from above.

Proposition 5.3.4. ...β(±)
...

(k±1)ñ
✶⊤w(k±1)

≤ σ(±)
∗ ≤ σ(±)

∞ .

In the special case of the (−) component of the edge dynamics on an unweighted
connected complex, the set of admissible vectors and the critical coupling can both be
found explicitly, giving a useful necessary condition for the equilibrium of the curl-free
component.

Theorem 5.3.2. For the (−) component of the edge dynamics on a connected
simplicial complex it holds that

x ∈ A(−) ⇐⇒ −min
A
β(−)

σ

B
− 1 ≤ x ≤ −max

A
β(−)

σ

B
+ 1

and
σ(−)

∗ = max(β(−))−min(β(−))
2 .
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Proof. If the complex is connected we have that D0 has a 1-dimensional kernel given by
span {✶}. This means that there are admissible vectors if and only if.....β(−)

σ
+ x✶

.....
∞
≤ 1 ⇐⇒ −1 ≤ β

(−)
i

σ
+ x ≤ 1 ∀i = 1, . . . , n0.

It is easy to see that this holds if and only if

max
A
−β

(−)

σ

B
− 1 ≤ x ≤ min

A
−β

(−)

σ

B
+ 1

which is nonempty when

max
A
−β

(−)

σ

B
− 1 ≤ min

A
−β

(−)

σ

B
+ 1 ⇐⇒ 1

σ

1
max(−β(−))−min(−β(−))

2
≤ 2

⇐⇒ σ ≥ max(β(−))−min(β(−))
2 .

It is now worth noting that the properties of the projected components θ(+) = Dkθ
and θ(−) = Bkθ are not entirely symmetrical. Let us consider the kth order dynamics on
a simplicial complex X which, therefore, has a nonempty k-skeleton. Remember that the
existence of equilibria for both of them depends on the presence or absence of admissible
cycles (Definition 5.2.2) which, respectively, must belong to ker(Bk+1) and ker(Dk−1).
The asymmetry stems from the fact that Dk−1 cannot have a trivial kernel because

ker(Dk−1) = Im(Bk)⊥ =üûúý
Hodge decomp.

Im(Dk−2)⊕ ker(Lk−1) (5.19)

and thus

• if k = 1 then ker(D0) = ker(L0), which is nontrivial as there is at least one connected
component;

• if k > 1 then dim(ker(Dk−1)) ≥ dim(Im(Dk−2)) which is nonzero because, by
inclusion, there is a nonzero number of (k − 2)-simplices.

The same cannot be said for Bk+1 as, in general, there is no restriction on the number of
(k + 1)-cycles. In fact, on the same line of Equation 5.19,

ker(Bk+1) = Im(Dk)⊥ = Im(Bk+2)⊕ ker(Lk+1),

which is empty when there are no k + 2 simplices and no (k + 1)-holes. Therefore, the
case when ker(Bk+1) = {0} deserves a special treatment.
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Theorem 5.3.3. If there are no (k+1)-cycles ker(Bk+1) = {0} then the following
properties hold:

1. if A(+) /= ∅ then A(+) = {0};

2. if A(+) /= ∅ then the equilibrium set is a discrete set of point given by

E (+)
s,m = (−1)s ⊙ arcsin

A
β(+)

σ

B
+ sπ + 2mπ;

3. σ(+)
∗ = σ

(+)
∞ =

...β(+)
...

∞
;

4. All equilibria are reachable E (+) = R(+).

Proof. 1. It is trivial because 0 is the only vector in ker(Bk+1).

2. Directly follows from Definition 5.2.3 with x = 0.

3. 0 is the only vector in ker(Dk) so it will be admissible if and only if.....β(+)

σ

.....
∞
≤ 1.

The smallest value of σ for which this holds is σ =
...β(+)

...
∞

= σ
(+)
∞ .

4. According to Definition 5.2.5, an equilibrium is reachable for the (+)-component if
it belongs to Im(Dk). In this case,

Im(Dk) = ker((Dk)∗)⊥ = ker(Bk+1)⊥ = {0}⊥ = Rnk+1 ,

hence the thesis.

In this case then the critical coupling σ
(+)
∗ has a stronger meaning as it is also the

transition value for reachable equilibria and, by virtue of Proposition 5.2.8, for the equi-
libria of the divergence-free component as well. This concept of reachability transition is
of paramount importance and will be discussed in general in the next section.

An interesting result can be obtained without effort from Theorem 5.3.3.

Theorem 5.3.4. Consider the node Kuramoto model on a connected tree graph
(i.e. with no 1-cycles) with natural frequencies ω such that

q
i ωi = 0. The critical

coupling for which the node Kuramoto with natural frequencies ω admits equilibria
is

σ∗ =
...β(+)

...
∞

=
...(B1)†ω

...
∞
.
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Figure 5.14: Equilibrium phase transition occurring in the tree graph on the left with
random natural frequencies (with 0 sum). The critical coupling σ∗ was computed exactly
using Theorem 5.3.4.

Proof. If
q

i ωi = 0 then ω ∈ {✶}⊥, meaning that ω has no harmonic component. So, by
Equation 5.5, the system will admit equilibria if and only if its divergence-free component
admits equilibria (there is no curl-free component). In turn, by Proposition 5.2.8, the
divergence-free component will admit equilibria if and only if the (+) component θ(+) =
D0θ will admit reachable equilibria. Given the fact that a tree graph has no cycles, we
have that ker(B1) = {0} and thus, by Theorem 5.3.3, its critical coupling will be

σ∗ = σ(+)
∗ = σ(+)

∞ =
...β(+)

...
∞

=
...(B1)†ω

...
∞
.

Note that this result, which is also derived in [11], guarantees that for σ ≥ σ∗ the
system will have actual equilibria i.e. configurations where the phases do not evolve
anymore and are not just phase-locked.

5.3.3 The reachability problem
Let us quickly review the content of the last sections. We found out that the equilibrium
properties of the curl-free and divergence-free components are related to the equilibria of
the dynamics projected onto upper θ(+) and lower θ(−) simplices. Not all the equilibria
of their ODE are actually “compatible” with the dynamics, as they live in a lower di-
mensional subspace (as it is shown in Figure 5.7). One therefore establishes the concept
of reachable equilibria to talk about the special ones which also belong to this subspace.
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Reachable equilibria are evidently more important because, as the name suggests, they
can be actually be “reached” by the dynamics. It turns out that reachable equilibria
are in one-to-one correspondence with the equilibria of the curl-free and divergence-free
components, which we called phase-locked configurations (Definition 5.2.4). In the last
section we proved bounds on σ which guarantee the existence of equilibria. The question
rises naturally: is it possible to find bounds which also guarantee reachability? Or, more
fundamentally, does increasing the coupling strength always generate phase-locked config-
urations?

Definition 5.3.2 (Reachability coupling). We call reachability coupling σ(±)
r the

smallest σ for which reachable equilibria exist for the (±) dynamics. If R(±) = ∅
for all σ > 0, we say that σ(±)

r =∞.

Notice that, although this value is well-defined, it is not clear whether it is actually
phase transitions. In other words, while for σ = σr there surely will be reachable equilibria
by definition, nothing is known a priori when σ > σr.

Finding the exact value of σr seems to be a quite hard task. There are indeed particular
cases, like the one of Theorem 5.3.3 where σr = σ∗, where it can be done but, in general,
we should lower our expectations and settle for something less precise. We would therefore
be happy enough to find a bound on the value of σr which is “strict enough” and easy to
compute.

It turns out that an elegant bound that satisfies these requirements (and even more)
can be found by generalizing one of the result proved in [11] for the node Kuramoto.

Theorem 5.3.5 (Bound for the existence of stable reachable equilibria). If

σ ≥ σ
(±)
fp :=

...β(±)
...

(k±1)ñ
min(w(k±1))

, (5.20)

there exists an asymptotically stable reachable equilibrium for the (±) dynamics in
the ball ...θ(±)

...
(k±1)

≤ π

2
ñ

minw(k±1).

This directly means that σ(±)
fp ≥ σ

(±)
r .

Proof. The idea of the proof, which directly follows the constructions in [11], is to rewrite
the equilibrium equation for the reduced dynamics 5.15 as a fixed point equation and find
σ such that it is a continuous function from a convex compact set to itself. Brouwer’s fixed
point theorem will then provide the existence of the fixed point (a reachable equilibrium)
in this set.
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We return to the grounded dynamics introduced in the proof of Theorem 5.2.1:

ċ = Ṽ ∗ω(±) − σΛ̃Ṽ ∗ sin(Ṽ c),

describing the evolution of the coefficients of θ(±) w.r.t the basis given by the columns of
Ṽ , which span the reachable subspace. The coefficients c are associated to a reachable
equilibrium configuration if and only if

Ṽ ∗ω
(±)

σ
= Λ̃Ṽ ∗ sin(Ṽ c).

We want to reduce this equation to a fixed point equation, i.e. of the form f(c) = c.

Ṽ ∗ω
(±)

σ
= Λ̃Ṽ ∗ sin(Ṽ c) ⇐⇒ Λ̃−1Ṽ ∗ω

(±)

σ
= Ṽ ∗diag(sinc(Ṽ c))Ṽ c

c = (Ṽ ∗S(c)Ṽ )−1Λ̃−1Ṽ ∗ω
(±)

σ
∆= f(c), (5.21)

where we defined S(c) := diag(sinc(Ṽ c)). In order to do this, we need to be able to invert
the matrix Ṽ ∗S(c)Ṽ . Let us therefore look for conditions for its invertibility.

We claim that, if S(c) has strictly positive elements, then Ṽ ∗S(c)Ṽ is invertible. First,
notice that S is diagonal which, together with the inner product matrix being diagonal,
means that S(c) is a Hermitian matrix (S(c)∗ = S(c)), and so is its square root. We get
the following

Ṽ ∗S(c)Ṽ = (S
1
2 (c)Ṽ )∗(S

1
2 (c)Ṽ ) ∆= A∗A.

Given that ker(A∗) = Im(A)⊥, we deduce that A∗A is invertible if and only if A = S
1
2 (c)Ṽ

has trivial kernel. Given that the columns of Ṽ are a basis, we have that Ṽ c = 0 ⇐⇒
c = 0. If S 1

2 (c) is invertible, then, its kernel will be trivial and, by extension, the same
will hold for A.

If we give a condition for S(c) to be positive definite, then we also have the invertibility
of Ṽ ∗S(c)Ṽ . For this purpose, we restrict ourselves to the ball...θ(k±1)

...
(k±1)

=
...Ṽ c...

(k±1)
≤
ñ

min(w(k±1))
π

2 .

We choose this because, under such an assumption,

...Ṽ c...
∞
≤
...Ṽ c...

2
=
óØ

i

(Ṽ c)2
i =

óØ 1
(w(k±1))i

(w(k±1))i(Ṽ c)2
i ≤

1ñ
min(w(k±1))

...Ṽ c...
(k±1)

≤ π

2 ,

meaning that every component of θ(±) = Ṽ c will belong to the interval [−π/2, π/2]. The
sinc function, which is applied component-wise to Ṽ c, is strictly positive in [−π/2, π/2],
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hence the positive definiteness of S(c).

We now want to prove that the left-hand side of the equilibrium fixed point equation
5.21 is a contraction from the set B =

;
c :
...Ṽ c...

(k±1)
≤
ñ

min(w(k±1))π
2

<
to itself.

First, we prove conditions for f(c) to belong to B, when c ∈ B.

∥f(c)∥(k±1) =
.....(Ṽ ∗S(c)Ṽ )−1Λ̃−1Ṽ ∗ω

(±)

σ

.....
(k±1)

≤ 1
σ

...(Ṽ ∗S(c)Ṽ )−1
...

(k±1)

...Λ̃−1Ṽ ∗ω(±)
...

(k±1)
.

(5.22)

Let us look at the two terms of Equation 5.22 separately, starting from the right one.

...Λ̃−1Ṽ ∗ω(±)
...

(k±1)
=
...Ṽ ∗Ṽ Λ̃−1Ṽ ∗ω(±)

...
(k±1)

=
...Ṽ ∗(L(±))†ω(±)

...
(k±1)

=
...Ṽ ∗β(±)

...
(k±1)

.

Moreover

...Ṽ ∗β(±)
...

(k±1)
=
òe

Ṽ ∗β(±), Ṽ ∗β(±)
f

(k±1)
=
òe

Ṽ Ṽ ∗β(±), β(±)
f

(k±1)
.

According to Proposition A.0.4 of Appendix A, Ṽ Ṽ ∗ is the orthogonal projection operator
onto Im(L(±)). Being β(±) ∈ Im(L(±)), then, we see that the projection will leave it
unchanged. ...Ṽ ∗β(±)

...
(k±1)

=
òe

Ṽ Ṽ ∗β(±), β(±)
f

(k±1)
=
...β(±)

...
(k±1)

.

Let us now analyze the first term of Equation 5.22 and try to bound it from above. When
c ∈ B then S(c) is positive definite and therefore we can write

...(Ṽ ∗S(c)Ṽ )−1
...

(k±1)
=
...(A∗A)−1

...
(k±1)

,

for which it holds that

1
∥(A∗A)−1∥(k±1)

= min
∥c∥(k±1)=1

∥A∗Ac∥(k±1) . (5.23)

We apply here the Cauchy-Schwarz inequality

|⟨A∗Ac, c⟩| ≤ ∥A∗Ac∥ ∥c∥
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and find that 5.23 can be bounded from below

min
∥c∥(k±1)=1

∥A∗Ac∥(k±1) ≥ min
∥c∥(k±1)=1

---⟨A∗Ac, c⟩(k±1)

--- = min
∥c∥(k±1)=1

---⟨Ac,Ac⟩(k±1)

---
= min

∥c∥(k±1)=1
∥Ac∥2

(k±1) =
A

min
∥c∥(k±1)=1

...S 1
2 (c)Ṽ c

...
(k±1)

B2

=

 min
∥Ṽ c∥(k±1)

=1

...S 1
2 (c)Ṽ c

...
(k±1)

2

=
A

min
∥d∥(k±1)=1,d∈Im(L(±))

...S 1
2 (c)d

...
(k±1)

B2

≥
A

min
∥d∥(k±1)=1

...S 1
2 (c)d

...
(k±1)

B2

=
3...S− 1

2 (c)
...2

(k±1)

4−1
.

We have proven that

1
∥(A∗A)−1∥(k±1)

≥
3...S− 1

2 (c)
...2

(k±1)

4−1
,

or, equivalently, ...(A∗A)−1
...

(k±1)
≤
...S− 1

2 (c)
...2

(k±1)
. (5.24)

According to Proposition A.0.2 of Appendix A, this term can be rewritten as...S− 1
2 (c)

...2

(k±1)
=
...(W(k±1))− 1

2S− 1
2 (c)(W(k±1))

1
2

...2

2
=
...S− 1

2 (c)
...2

2
= 1

mini sinc(Ṽ c)i

because S(c) is diagonal with positive diagonal elements.

We now remove the dependence on c by taking a maximum over B...S− 1
2 (c)

...2

(k±1)
≤ max

c∈B

1
mini sinc((Ṽ c)i)

= 1
minc∈B mini sinc((Ṽ c)i)

≤ 1
minx∈[−π/2,π/2] sinc(x) = 1

2/π = π

2 .

Putting all of this together in Equation 5.22, we finally find,

∥f(c)∥(k±1) ≤
1
σ

π

2

...β(±)
...

(k±1)
,

which means that f(c) ∈ B if and only if

1
σ

π

2

...β(±)
...

(k±1)
≤
ñ

min(w(k±1))
π

2 ⇐⇒ σ ≥

...β(±)
...

(k±1)ñ
min(w(k±1))

∆= σ
(±)
fp .
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This proves that, under the condition of the theorem, f(c) maps the closed ball B to
itself and so Brouwer’s theorem ensures the existence of a fixed point (i.e. a reachable
equilibrium) in B.

The asymptotic stability of the equilibrium directly comes from the fact that

c ∈ B =⇒
...θ(±)

...
(k±1)

≤
ñ

min(w(k±1))
π

2 =⇒
...θ(±)

...
∞
≤ π

2 =⇒ cos
1
θ(±)

2
≥ 0

and thus the Jacobian of Equation 5.16 is negative definite.

Two important observations should be highlighted from this result:

Observation 3. • it is always possible to tune the coupling strength in order for the
curl-free or divergence-free component to reach equilibrium;

• after a certain value of the coupling strength, these equilibrium configurations always
exist.

This result also makes intuitive sense as it states that the curl-free (divergence-free)
component will have equilibria when the coupling is stronger then the curl-free (divergence-
free) component natural frequencies.

no equilibria equilibria

reachable equilibria

stable reachable equilibria

Figure 5.15: Ordering of the couplings values discussed in Section 5.3

The value of σfp, where fp stands for “fixed point”, is quite significant as it often
comes up when working with the simplicial Kuramoto model. We will see this later when
we will concentrate on the order parameter.

It is thus worth to spend a few moments to directly look at its value. Let us consider
the (−) dynamics:

σfp =
...β(−)

...
(k−1)

=
...(Dk−1)†ω

...
(k−1)

.

According to B.0.2, this can be seen as the (k − 1)-norm of the weighted least squares
solution to the linear system Dk−1x = ω, i.e. the problem of finding the best (k − 1)-th
order signal whose coboundary is close to ω. The least squares problem is very common in
engineering applications and therefore there are many efficient algorithms to solve it, with
full or sparse matrices and even without the explicit computation of the pseudoinverse.
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5.4 Bounding the simplicial order parameter in an
equilibrium

Recall from Definition 4.1.2 that the kth order simplicial order parameter (SOP) is a
scalar function of the phase cochain defined as

R2
k(θ) = 1

Ck

1
w⊤

(k+1) cos(Dkθ) + w⊤
(k−1) cos(Bkθ)

2
where Ck = ✶

⊤wk+1 + ✶
⊤wk−1. Thanks to the work we did in the previous sections, it

should be now clear that the two terms inside the cosines are just the projections onto
upper and lower simplices Given θ(+) = Dkθ and θ(−) = Bkθ. It follows that

R2
k(θ) = 1

Ck

1
w⊤

(k+1) cos
1
θ(+)

2
+ w⊤

(k−1) cos
1
θ(−)

22
.

Observation 4. The simplicial order parameter R2
k depends only on the projections of

the phases cochain onto upper and lower adjacent simplices.
This means that the order parameter does not depend on the harmonic component

of θ and is decomposed, modulo normalization constants, as the sum of two independent
terms (See [18]), measuring respectively the order of the curl-free and divergence-free
components.

Definition 5.4.1. We define

R
(+)
k (θ) = 1

✶⊤w(k+1)
w⊤

(k+1) cos
1
θ(+)

2
, R

(−)
k (θ) = 1

✶⊤w(k−1)
w⊤

(k−1) cos
1
θ(−)

2
and call them, respectively, upper and lower order parameter.

Two questions naturally arises. Given an equilibrium configuration for the curl-free
(or divergence-free) component, how ordered is it? Do all the equilibria have the same
order? We can easily answer to both of them.

Let θ(−)
eq be an equilibrium for the (−) component θ(−)

eq ∈ E (−). According to Definition
5.2.3 there exist s ∈ {0,1}nk−1 , m ∈ Znk−1 and an admissible cycle x ∈ A(−) such that

θ(−)
eq = (−1)s ⊙ arcsin

A
β(−)

σd
+ y

B
+ sπ + 2πm.

If we plug this value into the expression of the lower order parameter R(−)
k we get

R
(−)
k

1
θ(−)

eq

2
= 1
✶⊤w(k−1)

w⊤
(k−1) cos

A
(−1)s ⊙ arcsin

A
β(−)

σd
+ y

B
+ sπ + 2πm

B
(5.25)

= 1
✶⊤w(k−1)

w⊤
(k−1)

(−1)s ⊙

öõõô
✶−

A
β(−)

σd
+ y

B2
 , (5.26)
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where both the square and the square root act on vector in a component-wise manner.

A first observation is that the value of the order does not depend on m i.e. by which
flower we are considering. This was to be expected given the 2π-periodicity of the phases.
It depends, however, on the petal (Definition 5.2.6) it belongs to, established by the value
of s. For example, we see that, if θ(−)

eq belongs to the stable petal (Theorem 5.2.1) then

R
(−)
k

1
θ(−)

eq

2
= 1
✶⊤w(k−1)

w⊤
(k−1)

öõõô
✶−

A
β(−)

σd
+ y

B2

,

which, as we see, depends on the admissible cycle y. Therefore, to answer the second
question, not all equilibria have the same order and, even among the stable ones, we find
variability. Moreover, we can easily prove that, for a stable equilibrium,

0 ≤ R
(−)
k (θ(−)

eq ) ≤ 1

and

R
(−)
k (θ(−)

eq ) = 1 ⇐⇒ β(−)

σ
+ y = 0

which, being β(−) ⊥ y, is possible only when β(−) = 0.

Just like above, the (+) component on a complex with no (k + 1)-cycles stands apart
from the general case and allows us and find nice, exact results.

Proposition 5.4.1. If ker(Bk+1) = {0} then, when σu ≥ σ
(+)
∞ , all the equilibria

belonging to a petal have the same order

R
(+)
k (θ(+)

eq ) = 1
✶⊤w(k+1)

ω⊤
(k+1)(−1)s ⊙

öõõô
✶−

A
β(+)

σu

B2

.

If θ(+)
eq belongs to the stable petal (s = 0) therefore,

R
(+)
k (θ(+)

eq ) = 1
✶⊤w(k+1)

ω⊤
(k+1)

öõõô
✶−

A
β(+)

σu

B2

.

Notice how this means that, when β(+) = 0, the upper order parameter of the stable
configurations is strictly increasing in σu, with an asymptote in 1. The maximum order
cannot be obtained when the natural frequencies have a nonzero divergence-free compo-
nent.
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5.4 – Bounding the simplicial order parameter in an equilibrium

Theorem 5.4.1. If σ ≥ σ
(±)
∗ , and thus E (±) /= ∅, then we can bound the upper and

lower order parameters in an equilibrium with

R
(±)
k

1
θ(±)

eq

2
≤ 1−

min(w(k±1)
2✶⊤w(k±1)

σ(±)
fp

σ

2

,

where σ(±)
fp is defined in Theorem 5.3.5.

Proof. Let us consider an equilibrium θ
(±)
eq ∈ E (±). According to Equation 5.25 its order

is

R
(±)
k

1
θ(±)

eq

2
= 1
✶⊤w(k±1)

w⊤
(k±1)

(−1)s ⊙

öõõô
✶−

A
β(±)

σ
+ x

B2
 .

Given that w(k±1) > 0 and the square root is non-negative, we can bound R
(±)
k with its

value in a stable equilibrium

R
(±)
k

1
θ(±)eq

2
≤ 1
✶⊤w(k±1)

w⊤
(k±1)

öõõô
✶−

A
β(±)

σ
+ x

B2

.

To obtain the bound we make use of the following inequalityð
1− x2 ≤ 1− x2

2 ,

which is also the 2nd order Taylor expansion of
√

1− x2 around 0. We get

R
(±)
k

1
θ(±)

eq

2
≤ 1
✶⊤w(k±1)

w⊤
(k±1)

✶− 1
2

A
β(±)

σ
+ x

B2


=
✶

⊤w(k±1)

✶⊤w(k±1)
− 1

2✶⊤w(k±1)
w⊤

(k±1)

A
β(±)

σ
+ x

B2

= 1− 1
2✶⊤w(k±1)

.....β(±)

σ
+ x

.....
2

(k±1)

which, thanks to the Pythagorean theorem (being the two terms in the norm orthogonal),
becomes

R
(±)
k

1
θ(±)

eq

2
≤ 1− 1

2✶⊤w(k±1)

.....β(±)

σ

.....
2

(k±1)
− 1

2✶⊤w(k±1)
∥x∥2

(k±1)

≤ 1− 1
2✶⊤w(k±1)

.....β(±)

σ

.....
2

(k±1)
= 1−

min(w(k±1))
2✶⊤w(k±1)

σ(±)
fp

σ

2

.
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This upper bound is a continuous function of σ which converges to 1 from below as
σ → +∞. This means that there can be no equilibria with maximum order for a finite
value of σ unless σ(±)

fp = 0.

It would now be useful to find a lower bound on the SOP, which would tell us the
“minimum amount of synchronization” that the system has when reaching an equilibrium.
Unfortunately, naive bounding approaches will only give the trivial bound for the equilibria
of the stable petal R(±)

k (θ(±)
eq ) ≥ 0. We can, however, restrict our attention to some

equilibria, in particular the reachable, stable ones which are close to the origin, whose
existence is guaranteed by Theorem 5.3.5.

Theorem 5.4.2. If σ(±) ≥ σ
(±)
fp then we can bound the order of the equilibria

belonging to the set ...θ(±)
eq

...
(k±1)

≤ π

2

ñ
min(w(k±1))

as

R
(±)
k (θ(±)

eq ) ≥ cos

π
2
σ

(±)
fp

σ

 .
Proof. If σ ≥ σ

(±)
fp then, according to Theorem 5.3.5, there is a stable reachable equilibrium

θ
(±)
eq with ...θ(±)

eq

...
(k±1)

≤ π

2

ñ
min(w(k±1)).

Consider now the proof of Theorem 5.3.5 where we prove that

∥f(c)∥(k±1) ≤
π

2σ

...β(±)
...

(k±1)
= π

2σσ
(±)
fp

ñ
min(w(k±1)).

It is easy to see that, if we take σ > σ
(±)
fp , we can ask for f to be contracting onto a ball

with a smaller radius. That is, if 0 < a ≤ π
2 ,

σ ≥ π

2aσ
(±)
fp =⇒ ∥f(c)∥(k±1) ≤ a

ñ
min(w(k±1)).

This means that under this condition the reachable equilibria will be in the ball with
center 0 and radius a. So it holds that

σ = π

2aσ
(±)
fp =⇒

...θ(±)
...

(k±1)
≤ a

ñ
min(w(k±1)) =⇒

...θ(±)
...

∞
≤ a =⇒ cos

1
θ

(±)
i

2
≥ cos(a) ≥ 0,

as 0 < a < π
2 . Finally

w⊤
(k±1) cos

1
θ(±)

2
≥
Ø

i

(w(k±1))i cos(a) = ✶
⊤w(k±1) cos(a) = (✶⊤w(k±1)) cos

π
2
σ

(±)
fp

σ

 ,
hence the thesis.
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5.5 – Simplicial Sakaguchi-Kuramoto model

In Figure 5.16, we see this bound plotted as a function of σ. Under the condition
required by the theorem, σ ≥ σ

(±)
fp , the bound is a strictly increasing function whose value

is ≥ 0. Moreover it converges asymptotically to 1 from below, for σ → +∞. This means
that there will always be a reachable stable equilibrium which is both close to the origin
and whose order goes to the maximum possible value (which is 1) when σ is increased.

Figure 5.16: The lower bound on the order parameter of Theorem 5.4.2. The shaded
region indicates where the bound holds.

Putting this together with Theorem 5.4.1, we find a nice bounding region which be-
comes indefinitely smaller with σ.

Figure 5.17: The lower bound of Theorem 5.4.2 together with the upper bound of Theorem
5.4.1.

5.5 Simplicial Sakaguchi-Kuramoto model
A particular variant of the Kuramoto model deserves particular attention. First proposed
in [22], the Sakaguchi-Kuramoto model introduces a phase-lag parameter (or frustration)
in the interactions which disrupts the natural synchronizing behavior of the Kuramoto
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model. On a graph G with adjacency matrix A the model can be written as

θ̇i = ωi − σ
nØ

k=1
Aik sin(θi − θk + αij), (5.27)

where αij is the frustration vector, defined on the edges. Intuitively, we can of the frus-
tration as an external field changing the natural behavior of the oscillators, from striving
to synchronize to searching for configurations where their phase difference is a particular
value, given by αij .

It turns out that it is not possible to introduce frustrations with the incidence matrix
in a trivial way, i.e. B sin(B⊤θ + α). To see this, it is enough to look at a single edge
coupling two node oscillators. The incidence matrix will be B = [1,−1]⊤ and the resulting
interaction term

B sin(B⊤θ + α) =
3sin(θ1 − θ2 + α)

sin(θ2 − θ1 − α)

4
,

meaning that the frustration acts differently for each node. We need a formulation for
which the relative sign difference between the phases and the frustration is independent
w.r.t the edge orientation.

This problem has been solved in [1] with a particular reformulation of the model, which
also works for the simplicial case. Before analyzing it, we first explore the consequences
of introducing frustrations in the “trivial” way.

5.5.1 Orientation-dependent frustration
It is a simple task to modify the simplicial Kuramoto model in order to add a frustration
which disrupts the synchronization process without being orientation-independent. Given
two frustration cochains ωk−1 ∈ Ck−1, ωk+1 ∈ Ck+1, respectively applied on (k − 1) and
(k + 1)-simplices we can write

θ̇ = ω − σdDk−1 sin(Bkθ + ωk−1)− σuBk+1 sin(Dkθ + ωk+1). (5.28)

The equilibrium properties of this model are not so different from the one without frus-
tration. Again, it is possible to resort to the Hodge decomposition of the dynamics

θ̇cf = ωcf − σuBk+1 sin(Dkθcf + ωk+1)
θ̇H = ωH

θ̇df = ωdf − σdDk−1 sin(Bkθdf + ωk−1)
,

and, equivalently, consider the projections onto upper and lower adjacent simplices

θ(+) = Dkθ, θ(−) = Bkθ.

The dynamics of these two components are easily obtained

θ̇(±) = ω(±) − σL(±) sin(θ(±) + ωk±1). (5.29)
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5.5 – Simplicial Sakaguchi-Kuramoto model

It is clear from this last equation that the frustration will account only for a shift of
the equilibrium set! In fact, following the same steps in Section 5.2, we find that every
equilibrium can be written as

θ(±) = (−1)s ⊙ arcsin
A
β(±)

σ
+ x

B
+ sπ + 2mπ − ωk±1

for admissible x ∈ A(±), s ∈ {0,1}nk±1 m ∈ Znk±1 .

The situation, however, is not entirely analogous to the non-frustrated case. Looking
at the dynamics of the projection 5.29 we see that, by construction, θ̇(±) ∈ Im(L(±)) and,
given that θ(±)(0) ∈ Im(L(±)), we have that θ(±)(t) ∈ Im(L(±)) for all times t. This
means that, while the equilibrium set E (±) is translated by a vector −ωk±1, the reachable
subspace stays the same. By direct consequence, the set of reachable equilibria R(±) will
have, in general, a different shape. See Figure 5.18 for an example.

Proposition 5.5.1. The sets of reachable equilibria for the frustrated model 5.28
are

R(−) =
1
E (−) − ωk−1

2
∩ Im(Bk), R(+) =

1
E (+) − ωk+1

2
∩ Im(Dk).

Notice also that, if the frustration cochain belongs to the reachable subspace, ωk−1 ∈
Im(Bk) or ωk+1 ∈ Im(Dk), then the sets of reachable equilibria will just be translated.
This amounts to moving θ(±)

eq to the origin and then shifting it to θ(±)
∗ .

Figure 5.18: The orientation-dependent frustration acts on the equilibrium set E (−) by
translating it in Rnk−1 . The intersection of the shifted set with Im(B1) gives the reachable
equilibria.

An interesting property of such a frustration is that, by tuning it appropriately, one
can turn every equilibrium into a reachable one.
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Proposition 5.5.2. If θ(±)
eq is an equilibrium solution of the (±) dynamics without

frustration θ
(±)
eq ∈ E (±), then by choosing ωk±1 = θ

(±)
eq one will have a frustrated

system with a reachable equilibrium in the origin.

Full synchronization (in the classical sense) is then achieved in a system which would
otherwise not admit it as an equilibrium. An exemplification of this can be seen in Figure
5.19.

Figure 5.19: Any equilibrium θ
(±)
eq ∈ E (±) can be made reachable by choosing ωk±1 = θ

(±)
eq .

If σ ≥ σ
(±)
∞ then x = 0 is an admissible vector (Proposition 5.3.2), and thus a natural

choice for θ(±)
eq is

θ(±)
eq = arcsin

A
β(±)

σ

B
∈ E (±),

which, by virtue of 5.2.1, also belongs to the stable petal. If we choose

ωk±1 = arcsin
A
β(±)

σ

B

we will have a system in which the configuration θ(±) = 0 is asymptotically stable.

In general, it is possible to make every reachable configuration an equilibrium.

Proposition 5.5.3. Let θ(±)
∗ ∈ Im(L(±)) be a reachable configuration and θ

(±)
eq ∈

E (±) an equilibrium. If we apply the following frustration

ωk±1 = θ(±)
eq + θ(±)

∗

then θ
(±)
∗ ∈ R(±).
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5.5 – Simplicial Sakaguchi-Kuramoto model

We conclude this section with an interesting reformulation of the trivial frustration
which will come helpful in the next section. The idea is to apply the simple trigonometric
identity for the sine of a sum to the interaction terms. For the “above” interaction we
have:

σuBk+1 sin(θ(+) + ωk+1)

= σuBk+1
1
cos(ωk+1)⊙ sin(θ(+))

2
+ σuBk+1

1
sin(ωk+1)⊙ cos(θ(+))

2
= σuBk+1Ωcos

k+1 sin(θ(+)) + σuBk+1Ωsin
k+1 cos(θ(+)), (5.30)

where we defined Ωsin
k+1

∆= diag(sin(ωk+1)) and Ωcos
k+1

∆= diag(cos(ωk+1)). In the same way

σdDk−1 sin(θ(−) + ωk−1) = σdDk−1Ωcos
k−1 sin(θ(−)) + σdDk−1Ωsin

k−1 cos(θ(−)). (5.31)

Observation 5. The trivial frustration splits the interaction term into two components:

• the first is the usual simplicial Kuramoto interaction, weighted3 by Ωcos
k±1;

• the second one has the same form, weighted by Ωsin
k±1, except for the cosine acting on

θ(±) instead of the sine. Intuitively, if the sine tends to push the phases together,
the cosine tends to make them as distant as possible, hence we may call it an anti-
synchronization force.

The dependence of the model on the orientation of (k ± 1)-simplices is clear from
Equations 5.30 and 5.31. If we change, for example, the orientation of a (k + 1)-simplex
indexed by i we will have that the boundary and coboundary operators change in the
following way

B̃k+1 = Bk+1P, D̃k = PDk,

where P is a diagonal matrix with −1 in position i and 1 everywhere else. We thus see
that

σuB̃k+1Ωcos
k+1 sin(θ̃(+)) + σuB̃k+1Ωsin

k+1 cos(θ̃(+))
= σuBk+1PΩcos

k+1 sin(Pθ(+)) + σuBk+1PΩsin
k+1 cos(Pθ(+))

= σuBk+1PΩcos
k+1P sin(θ(+)) + σuBk+1PΩsin

k+1 cos(θ(+))
= σuBk+1P 2Ωcos

k+1 sin(θ(+)) + σuBk+1PΩsin
k+1 cos(θ(+))

= σuBk+1Ωcos
k+1 sin(θ(+)) + σuBk+1PΩsin

k+1 cos(θ(+)),

as P and Ωk±1, being diagonal, commute and P 2 = I. Notice that the first term, the
“syncrhonization” force, has not changed and is therefore orientation-independent. In the
second one, the “anti-syncrhonization” term, an extra P comes up, changing the effect of
the frustration. The same holds for the interaction from below.

3Note that they are not actual weights, as they can have negative or zero value. The intuition,
however, still stands.
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5.5.2 Orientation-independent frustration
We now take a look at a smarter way of introducing frustration and see how it relates to
the trivial one. Following the recipe proposed in [1], the idea is to double the simplices
by mapping them to a space where they have all possible orientations, apply frustration
there and then come back using a particular projection operator. To do this, we need to
define a few ingredients.

Definition 5.5.1 (Lifted chain space). Let X be an oriented simplicial complex.
We define the lifted chain space of order k Dk(X ;R) as the real vector space of
linear combinations of the simplices with both orientations.

The lifted chain space contains chains of simplices with both orientations, without the
identification of different oriented simplices by changing the sign, as its is done in chain
spaces. For example, if X = {a, b, c, d, [a, b], [a, c], [b, c], [b, d], [c, d], [a, b, c], [b, c, d]}, some
lifted chains are

[a, b]− 2[b, a] + [b, d] + 3[d, b] ∈ D1(X ;R), [a, b, c] + π[b, a, c]− [b, c, d] ∈ D2(X ;R).

It is easy to see that a natural basis is given by the simplices of both orientations and thus
dim(Dk) = 2nk. In the same way we did in Chapter 3, we also define the lifted cochain
space Dk(X ;R) as the dual to Dk(X ;R).

Given a cochain on a complex Ck(X ;R), we can associate a lifted cochain in a natural
way, by simply associating to the simplices with different orientation the same coefficient
with changed sign.

Definition 5.5.2 (Lift operator). We define the lift operator of order k Vk :
Ck(X ;R)→ Dk(X ;R) by its action on the basis cochains

Vk([vi0 , . . . , vik
]) = [vi0 , vi1 , . . . , vik

]− [vi1 , vi0 , . . . , vik
].a

aNote that, with a slight abuse of notation, we are denoting the basis cochains with the
simplex they are supported on.

For example, for 1-cochains,

v1(4[1,2] + [2,3]) = 4[1,2]− 4[2,1] + [2,3]− [3,2].

In the natural basis we have that Vk is represented by the following matrix

V k =
3
I
−I

4
∈ R2nk×nk .

For more details, we refer to [23], where this construction was first introduced in order to
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5.5 – Simplicial Sakaguchi-Kuramoto model

Figure 5.20: The lift operator (Definition 5.5.2) acts by doubling the simplices and chang-
ing the sign of the coefficient on the orientation-reversed simplices.

define random walks on simplicial complexes. Finally, we define the projection onto the
positive/negative entries of a matrix as

A± = 1
2(A± |A|),

where | · | is applied element-wise.

Putting everything together, we write the simplicial Sakaguchi-Kuramoto model
as

θ̇ = ω − σu
1
Bk+1(V k+1)⊤

2−
sin(V k+1Dkθ + Uk+1ωk+1)

− σd
1
Dk−1(V k−1)⊤

2−
sin(V k−1Bkθ + Uk−1ωk−1), (5.32)

where

• ωk−1, ωk+1 are the frustration cochains respectively on interactions from below and
from above;

• V k is the lift matrix of Definition 5.5.2,

• Uk is the matrix representation of a lifting operator which, contrary to V k, does not
change the sign on the differently-oriented simplices, i.e.

Uk =
3
I
I

4
∈ R2nk×nk .

Note that the formulation proposed is a slight generalization of the one in [1], as it ac-
counts for frustration on lower order simplices as well.
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Let us unpack the complicated expression of Equation 5.32. We can actually expand
the lift operator and the projections onto negative elements, and find an expression which
makes the behavior of the model clearer. Let us focus on the interaction term from above
for simplicity. 1

Bk+1(V k+1)⊤
2−

sin(V k+1Dkθ + Uk+1ωk+1)

=
1
Bk+1(V k+1)⊤

2−
sin
AA

θ(+)

−θ(+)

B
+
3
ωk+1
ωk+1

4B

=
1
(Bk+1)− (−Bk+1)−

2
sin
A
θ(+) + ωk+1
−θ(+) + ωk+1

B
= (Bk+1)− sin(θ(+) + ωk+1) + (Bk+1)+ sin(θ(+) − ωk+1),

because, trivially, (−Bk+1)− = −(Bk+1)+. If we consider the node Kuramoto, we can
see that, basically, the last equation is applying the frustration ωk+1 on the heads of the
edges and −ωk+1 on their tails. We can go a step further and replace the projections with
their explicit forms and expand the sums inside the sine.

(Bk+1)− sin(θ(+) + ωk+1) + (Bk+1)+ sin(θ(+) − ωk+1)

= 1
2
1
Bk+1 −

---Bk+1
---2 sin(θ(+) + ωk+1) + 1

2
1
Bk+1 +

---Bk+1
---2 sin(θ(+) − ωk+1)

= 1
2B

k+1
1
2 sin(θ(+))⊙ cos(ωk+1)

2
− 1

2

---Bk+1
--- 12 cos(θ(+))⊙ sin(ωk+1)

2
= Bk+1Ωcos

k+1 sin(θ(+))−
---Bk+1

---Ωsin
k+1 cos(θ(+)). (5.33)

This formulation of the interaction term looks extremely close to the one obtained with
the trivial frustration 5.30. In fact, they are exactly the same, except for the fact that the
orientation-dependence of the anti-synchronization term is “corrected” by taking (minus)
the absolute value of the boundary matrix. A change in orientation of a (k + 1)-simplex
will not change cos(θ(+)), as the cosine is even, nor will it change

--Bk+1--. We can interpret
this in the following way

Observation 6. The frustration in Equation 5.32 acts as if it was on a different complex,
oriented in such a way that all (k + 1)-simplices are incoherent with their faces (hence
−
--Bk+1-- has all negative components). We could say that a reference system independent

of the orientation of (k+ 1)-simplices is fixed for the frustration. The same is true for the
frustration on lower simplices.

If we change the projection (·)− into (·)+ we find that it is equivalent to considering
frustration on a complex where all (k ± 1)-simplices are oriented coherently with their
faces. Note that this complex may not actually exist: given an orientation to the faces of
a k-simplex τ , there will almost always be no orientation for τ which is coherent with all
of its faces.
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5.5.3 Single oscillating simplex with frustration
Just like we did in Section 5.1, it is now worth taking a look at the simplest possible cases
of orientation-independent frustration, i.e. a single oscillating simplex with frustration
acting on its faces.

Let us consider an unweighted simplicial oscillator of order k with natural frequency ω
and a frustration cochain ωk−1 ∈ Rk+1 on its k + 1 faces. Let us explicitly write the sim-
plicial Sakaguchi-Kuramoto dynamics of Equation 5.32, starting from the reformulation
5.33 (in its variant for the interactions from below).

θ̇ = ω − σ
1
Dk−1Ωcos

k−1 sin(Bkθ)−
---Dk−1

---Ωsin
k−1 cos(Bkθ)

2
.

Given that we are considering unitary weights, we have that

Bk = ξ ∈ {−1,1}k+1 , Dk−1 = (Bk)⊤ = ξ⊤ =⇒
---Dk−1

--- = ✶
⊤,

where ξi is the relative orientation of face i w.r.t to the k-simplex. Substituting these into
the equation gives us

θ̇ = ω − σ
1
ξ⊤diag(cos(ωk−1)) sin(ξθ)− ✶⊤diag(sin(ωk−1)) cos(ξθ)

2
.

We can take ξ out of the sine because it is an odd function and remove it in the cosine
because it is even.

θ̇ = ω − σ
1
ξ⊤diag(cos(ωk−1))ξ sin(θ)− ✶⊤diag(sin(ωk−1))✶ cos(θ)

2
.

Finally

ξ⊤diag(cos(ωk−1))ξ =
k+1Ø
i=1

cos(ωk−1)i(ξi)2 =
k−1Ø
i=1

cos(ωk−1)i
∆= c,

✶
⊤diag(sin(ωk−1))✶ =

k+1Ø
i=1

sin(ωk−1)i
∆= s,

from which
θ̇ = ω − σc sin(θ) + σs cos(θ). (5.34)

The first thing to notice is that the dynamics does not depend on the orientations of the
faces. This is no surprise, as the simplicial Sakaguchi-Kuramoto model was explicitly built
with this in mind. Moreover, the frustration cochain comes in the equation only through
c and s, i.e. the sums respectively of the sines and cosines of its components. The order
of the simplex k comes into play only as the number of summands. In this regard, this
next proposition is particularly useful.

Proposition 5.5.4. The constants c and s in Equation 5.34 can take all the values
in the disk of radius k + 1, i.e.

c2 + s2 ≤ (k + 1)2.
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Proof. Let us define

C =
IA

k+1Ø
i=1

cos(ωk−1)i,
k+1Ø
i=1

sin(ωk−1)i

B
∈ R2 : ωk−1 ∈ Rk+1

J

and
B =

î
(c, s) ∈ R2 : c2 + s2 ≤ (k + 1)2

ï
The problem can be restated in the following way: given k + 1 points on the unit circle
given by their phases (ωk−1)i, what are their possible vector sums? More intuitively, which
points of the plane can we reach by taking exactly k+1 unit length steps from the origin?
The claim is that every point in the disk of radius k+ 1 can be reached with exactly k+ 1
unit steps.

It is easy to see that C ⊆ B, asAØ
i

cos(ωk−1)i

B2

+
AØ

i

sin(ωk−1)i

B2

=
Ø

i

1
cos(ωk−1)2

i + sin(ωk−1)2
i

2
+ 2

Ø
i<j

(cos(ωk−1)i cos(ωk−1)j + sin(ωk−1)i sin(ωk−1)j)

≤
Ø

i

1 + 2
Ø
i<j

(1 + 1) = (k + 1) + 2(k + 1)2 − (k + 1)
2 = (k − 1)2.

This means that the furthest we can go from the origin is the circle of radius (k + 1)

Proving the converse is a bit harder. Let us choose a point in the disk (x, y) ∈ B
and prove that we can reach it from the origin in k + 1 unit steps. We write its polar
coordinates (R, θ), which are, respectively, the distance from the origin and the angle. If
R = k+1 then (x, y) ∈ ∂B and we can reach it by taking k+1 steps in the same direction.
If R < k + 1 we proceed in the following way (Figure 5.21):

• take ⌊R⌋ − 1 unit steps in the direction from the origin to the point;

• given that R < k+ 1 we have that ⌊R⌋− 1 ≤ k− 1 and thus we have at least 2 steps
left;

• take one step on the circle with radius 1 centered in (x, y);

• move on the circle until we have one step left, and then we reach the center, i.e.
(x, y).

We can completely describe the frustrated simplicial oscillator, forgetting about ωk−1 ∈
Rk+1 and considering only the two values c and s in the disk of radius k + 1. We
reparametrized the frustration, going from k + 1 parameters to two, without loss of in-
formation. It is natural now to ask what is the behavior of the oscillator for the different
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5.5 – Simplicial Sakaguchi-Kuramoto model

Figure 5.21: Construction of the proof of Proposition 5.5.4 for k + 1 = 6.

possible values of c and s. For which ones, for example, equilibrium configurations exist?

Theorem 5.5.1. The dynamics of the frustrated simplicial k-oscillator 5.34 admits
equilibria if and only if s2 + c2 ≥

!
ω
σ

"2. Moreover, they are given by

θ±
eq = 2 arctan

c±
ñ
c2 + s2 −

!
ω
σ

"2
ω
σ − s

+ 2mπ

if ω
σ − s /= 0, otherwise

θ0
eq = 2 arctan

3
ω

σc

4
+ 2mπ

with m ∈ Z.

Proof. We need to solve the following trigonometric equation
ω

σ
= c sin(θ)− s cos(θ). (5.35)

To do this, we perform the change of variable

η = tan
3
θ

2

4
,

which allows us to write

sin(θ) = 2η
1 + η2 , cos(θ) = 1− η2

1 + η2 .
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Equation 5.35, becomes

ω

σ
= c

2η
1 + η2 − s

1− η2

1 + η2 = 2cη − s(1− η2)
1 + η2

ω

σ
(1 + η2) = 2cη − s(1− η2)

η2
3
ω

σ
− s

4
+ η(−2c) +

3
ω

σ
+ s

4
= 0.

If ω
σ − s = 0 then we get a linear equation whose solution is

η0 = ω

σc
.

Otherwise, the solutions to the quadratic equation are

η± =
c±

ñ
c2 + s2 −

!
ω
σ

"2
ω
σ − s

,

defined when c2 + s2 − ω
σ

2. We can now return to θ by taking the inverse tangent and
directly find the thesis.

This last result can be made clearer by plotting the values of θ+
eq, θ−

eq and θ0
eq for

different values of s, c such that s2 + c2 ≥
!

ω
σ

"2. Figure 5.22 shows the resulting surfaces
obtained for a single value of m = 0. We can clearly see how θ+

eq and θ−
eq are associated to

two spiral surfaces wrapping around a central hole of radius
--ω

σ

-- and periodically repeating
as m varies. As the right panel shows, if we plot them together, we see that the curve θ0

eq

“stitches” the two surface together, perfectly fitting in the line where they are not defined.
A single continuous surface is obtained in this way, describing, for each pair of frustration
constants c, s, the position of the equilibrium phases.

Figure 5.22: The values of θ0
eq “stich” together the two sets of equilibria into a single spiral

surface wrapping around the circle of radius
--ω

σ

--.
98



5.5 – Simplicial Sakaguchi-Kuramoto model

We should not forget that, having fixed the order of the oscillator k, the possible values
of c, s are constrained in the set c2 + s2 ≤ (k + 1)2 (Proposition 5.5.4). We then have
a situation just like the one shown in Figure 5.23, where the accessible regions for the
frustration are shown for different values of k. It is easy to see that, graphically, there will
be equilibria if and only if the disk with radius k + 1 is bigger then the one with radius--ω

σ

--.
Proposition 5.5.5. The frustrated simplicial oscillator admits equilibria if and
only if ---- ω

σ(k + 1)

---- ≤ 1.

Notice that this is the same condition we found for the non-frustrated single oscillator
5.1.1. The frustration, interestingly, has no effect on whether there are equilibria or not, it
can only change their position. Moreover, Theorem 5.5.1 tells us that, when c2+s2 =

!
ω
σ

"2,
there will be a single equilibrium

θeq = 2 arctan
A

c
ω
σ − s

B
.

Figure 5.23: On the left: fixing the order of the oscillator constrains the possible values of
c, s to lie within the disk of radius k + 1. On the right: choosing c, s to lie exactly on the
circle of radius

--ω
σ

-- gives a single equilibrium configuration (modulo 2π). Two equilibria
(modulo 2π) are associated to c, s chosen outside the circle.

We can ask, finally, whether these equilibria are stable or unstable.

Proposition 5.5.6. If c2 + s2 >
!

ω
σ

"2 then θ−
eq is asymptotically stable and θ+

eq in
unstable.
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Proof. To prove this we need to compute the Jacobian and look at its sign.

J(θ) = ∂

∂θ
(ω − σc sin(θ) + σs cos(θ)) = −σ(c cos(θ) + s sin(θ)).

We now need to plug in θ±
eq of Theorem 5.5.1 inside J and take advantage of the trigono-

metric identities

sin(arctan(x)) = x√
1 + x2

, cos(arctan(x)) = 1√
1 + x2

.

After some long but simple algebraic steps we get

J(θ±
eq) = ±σ

ó
c2 + s2 −

3
ω

σ

42
,

which is strictly negative for θ−
eq and positive for θ+

eq.

Putting this result together with the easily proven fact that θ0
eq is asymptotically stable

when c > 0 and unstable when c < 0, we get that the spiral surfaces on the left of Figure
5.22 are respectively stable and unstable. For any couple of frustration constants c, s
which do not lie on the circle with radius |ω/σ|, the system will have a pair of equilibria,
one stable and one unstable, just like the non frustrated case.
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6 | Conclusions

In this thesis, we gave a preliminary analytical study of the simplicial Kuramoto model.
Focusing on its equilibrium properties, we were able to set up a theoretical framework
which can help to understand it in detail. We recognized its difference from the standard
Kuramoto in the behavior of a single simplicial oscillator, showing how, under certain
conditions, it is not self-sustaining. The Hodge decomposition allowed us to reveal the
three-fold nature of the dynamics, unveiling the beautiful geometry of the equilibrium
structures of the projected dynamics. Looking at them explicitly allowed us both to
formulate optimal necessary conditions for phase-locking (Theorem 5.17), give a geomet-
rical interpretation to the reachability phase transition and understand the action of the
orientation-dependent frustration (Proposition 5.5.1). In the same way, we were able to
give upper and lower bounds for the order parameter in an equilibrium configuration.
As it often happens in mathematics, the simplicial generalization sheds new light on the
meaning and behavior of the standard Kuramoto. Well known results, like the sufficient
bound for phase locking (Theorem 5.3.5), were generalized, while others, like the exact
value of the phase transition for trees (Theorem 5.3.4), were proven in a different way. Fi-
nally, we extended the orientation-independent Sakaguchi-Kuramoto model [1] to include
frustration on lower simplices and, by expanding its expression, gave an interpretation to
its behavior.

There is, however, much left to do. Many aspects of the model, which have not been
adequately discussed here, deserve further investigations in future works. Some ideas
follow.

• First, the shape of the equilibrium structures needs to be examined in more detail,
especially for higher-dimensional cases. The computations of persistent homology of
the equilibrium structures could help in those situations in which visualization is not
possible. On the same note, the equilibria for the simplicial Sakaguchi-Kuramoto
model (Equation 5.32) have not yet been computed, mainly because, in that case,
Hodge decomposition does not produce decoupled dynamics. If an analytical ap-
proach is not feasible, numerical experiments showing how the frustration reshapes
the equilibrium sets could certainly be interesting.

• Numerical experiments show that reachable equilibria are present for values much
lower than σfp. Almost always we see that σ∞, whose value does not depend ex-
plicitly on the number of simplices, is enough to guarantee it. This suggests that
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Conclusions

better sufficient bounds for reachability can be found, if not in general, at least for
particular classes of complexes and natural frequency cochains.

• Finally, it is easy to see that the coupling strengths σu,σd do not need to be distinct
elements of the model, as they could perfectly be incorporated as rescalings of the
weights. We could therefore move on to a coupling-agnostic formulation and study,
with more generality, the impact of weights on the properties of the model.
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A | Linear algebra with inner
products

When working with finite dimensional Hilbert spaces, it is often useful to fix a basis
and pass to a matrix representation. In this way, elements of the space become finite
dimensional vectors and the inner product is represented by a positive definite matrix
⟨x, y⟩ = x⊤Gy. What one usually do is then change the basis in order to reshape the
inner product into the standard Euclidean one. Sometimes, however, it is not possible
or convenient to perform this change, and we must stick with a particular basis. In this
case, we need to adopt a different kind of linear algebra, often neglected, which takes into
consideration the presence of a different inner product.

Let us consider two finite-dimensional Hilbert spaces which can be represented by Rn

and Rm together with inner products given by the symmetric, positive definite matrices
W,G. If A ∈ Rn×m is a matrix representing a linear operator between the two vector
spaces A : (Rm, G)→ (Rn,W ), then we write its adjoint as

A∗ = G−1A⊤W ∈ Rm×n.

A is self-adjoint (or Hermitian) if A∗ = A. The norm of a vector x ∈ Rm is defined as

∥x∥G
∆=
√
x⊤Gx.

From this, we can immediately establish a relation between the G-norm and the familiar
Euclidean norm

Proposition A.0.1.
∥x∥G =

...G 1
2x
...

2

Proof.

∥x∥G =
√
x⊤Gx =

ñ
x⊤G

1
2G

1
2x =

ñ
(G 1

2x)⊤G
1
2x =

...G 1
2x
...

2
.
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A similar result can be found for the matrix norm.

Proposition A.0.2.
∥A∥G =

...W 1
2AG− 1

2

...
2
.

Proof.

∥A∥G = sup
∥x∥G=1

∥Ax∥W = sup...G
1
2 x

...
2
=1

...W 1
2Ax

...
2

(y ∆= G
1
2x)

= sup
∥y∥2=1

...W 1
2AG− 1

2 y
...

2
=
...W 1

2AG− 1
2

...
2

Being ∥·∥G the operator norm, it also holds that

Proposition A.0.3.

∥Ax∥W ≤ ∥A∥W ∥x∥W ∀x ∈ Rm.

When performing the eigendecomposition of a matrix, it is important to take into
consideration the inner product as well.

Theorem A.0.1. Let B ∈ Rm×m be a Hermitian matrix. There exists two matrices
V,Λ such that

B = V ΛV ∗ = V ΛG−1V ⊤G,

where Λ is a diagonal matrix containing the (real) eigenvalues of B and V is unitary
V ∗V = V V ∗ = I.

When the image of B does not coincide with the entire Rm, we will have that r ∆=
rank(B) < m and Λ will have only r nonzero elements in its diagonal. In this case, we
can pass to a “reduced” eigendecomposition by considering only the nonzero eigenvalues.

B = V ΛV ∗ =
!
v1 . . . vm

"


λ1
. . .

λr

0
. . .

0



 (v∗
1)⊤

...
(v∗

m)⊤



=
!
v1 . . . vr

"λ1
. . .

λr


(v∗

1)⊤

...
(v∗

r )⊤

 = Ṽ Λ̃Ṽ ∗,
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where Ṽ ∈ Rm×r,Λ ∈ Rr×r. This rewriting is particularly useful because it holds that the
columns of Ṽ are a basis for Im(B). Moreover, when G is a diagonal matrix, it is easy to
prove that

Ṽ ∗ = G̃−1Ṽ ⊤G,

where G̃ ∈ Rr×r contains only the elements of G corresponding to nonzero eigenvalues. In
this way, we can consider Ṽ as an operator from the Hilbert space of coefficients (Rr, G̃)
to (Rm, G) and Ṽ ∗ is its adjoint. The fact that V is unitary translates to

Proposition A.0.4. • Ṽ ∗Ṽ = I;

• Ṽ Ṽ ∗ is the G-orthogonal projection operator onto Im(B).

Proof. We prove the second using the characterizing property of an orthogonal projection
operator: P is an orthogonal projection w.r.t an inner product if and only if P 2 = I and
⟨x− Px, Px⟩ = 0 ∀x. First

(Ṽ Ṽ ∗)2 = Ṽ Ṽ ∗Ṽ Ṽ ∗ = Ṽ Ṽ ∗.

And secondlye
x− Ṽ Ṽ ∗x, Ṽ Ṽ ∗x

f
G

=
e
Ṽ ∗x− Ṽ ∗Ṽ Ṽ ∗x, Ṽ ∗x

f
G̃

=
e
Ṽ Ṽ ∗x− (Ṽ Ṽ ∗)2x, x

f
G

= 0 ∀x,

by the adjointness relation of Ṽ and Ṽ ∗.
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B | Moore-Penrose pseudoin-
verse

In this second Appendix, we give a quick introduction to the concept of Moore-Penrose
pseudoinverse and its fundamental properties without proofs. This is by no means a com-
plete exposition, but just a reference to be used in the rest of the thesis.

The Moore-Penrose pseudoinverse is the most known generalization of the concept of
inverse, which can be applied to any matrix, regardless of whether it is invertible or even
square.

Let us consider two finite-dimensional Hilbert spaces which can be represented by Rn

and Rm together with inner products given by the symmetric, positive definite matrices
W,G (see Appendix A).

Definition B.0.1. Given a matrix A ∈ Rn×m, we call the Moore-Penrose pseu-
doinverse of A a matrix A† ∈ Rm×n such that it satisfies the following properties

• A†AA† = A†,

• AA†A = A,

• AA† is Hermitian,

• A†A is Hermitian.

From this definition it is easy to see that, when m = n and G = W = I (meaning that
the adjoint is the transpose), the pseudoinverse of an invertible matrix A ∈ Rn×n is just
its inverse A−1 = A†:

• A−1AA−1 = A−1I = A−1,

• AA−1A = AI = A,

• AA−1 = I = I⊤,

• A−1A = I = I⊤.
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When A is singular or even non-square, it can be proven that a pseudoinverse that satisfies
the properties of the definition always exists and is unique.

We now give a list of important properties without proof.

1. (A†)† = A;

2. (A⊤)† = (A†)⊤;

3. (A∗)† = (A†)∗;

4. (cA)† = 1
cA

† for any scalar c ∈ R, c /= 0;

5. (AA∗)† = (A∗)†A†;

6. A = AA∗(A†)∗ = (A†)∗A∗A;

7. Im(A†) = Im(A∗);

8. ker(A†) = ker(A∗);

9. AA† is the orthogonal1 projection matrix onto Im(A);

10. A†A is the orthogonal2 projection matrix onto Im(A∗);

11. I − AA† is the orthogonal projection matrix onto ker(A∗);

12. I − A†A is the orthogonal projection matrix onto ker(A).

The pseudoinverse can be used to give an explicit expression to all the solutions of a
linear system.

Theorem B.0.1. If the system Ax = b admits solutions, then they can be written
as

x = A†b+ (I − A†A)c

for every c ∈ Rm.

It can be shown that the first term is the solution with minimum norm and the second
term, by virtue of Property 12, captures the vector space of homogeneous solutions Ax = 0
i.e. ker(A).

The pseudoinverse is also useful when the system admits no solutions.

1w.r.t the inner product given by W
2w.r.t the inner product given by G
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Theorem B.0.2. If the system Ax = b admits no solutions then

x = A†b

is its least squares solution, i.e.

A†b = argmin
x∈Rn

∥Ax− b∥W .

This directly comes from the fact that AA†b, because of Property 9, is the orthogonal
projection of b onto Im(A).

Finally, we state a useful result which relates the pseudoinverse of a Hermitian, positive
definite matrix to its eigendecomposition (Theorem A.0.1).

Theorem B.0.3. Let B ∈ Rm×m be a positive definite Hermitian matrix such that
its reduced eigendecomposition is

B = Ṽ Λ̃Ṽ ∗.

Then its pseudoinverse can be written as

B† = Ṽ Λ̃−1Ṽ ∗.

Proof. By Definition B.0.1.

1. B†BB† = Ṽ Λ̃−1
✟
✟✟✯

I

Ṽ ∗Ṽ Λ̃✟
✟✟✯

I

Ṽ ∗Ṽ Λ̃−1Ṽ ∗ = Ṽ Λ̃−1Λ̃Λ̃−1Ṽ ∗ = Ṽ Λ̃−1Ṽ ∗ = B†;

2. BB†B = Ṽ Λ̃✟✟✟✯
I

Ṽ ∗Ṽ Λ̃−1
✟✟✟✯

I

Ṽ ∗Ṽ Λ̃Ṽ ∗ = Ṽ Λ̃Λ̃−1Λ̃Ṽ ∗ = Ṽ Λ̃Ṽ ∗ = B;

3. BB† = Ṽ Λ̃✟✟✟✯
I

Ṽ ∗Ṽ Λ̃−1Ṽ ∗ = Ṽ Ṽ ∗ is Hermitian because (Ṽ Ṽ ∗)∗ = (Ṽ ∗)∗Ṽ ∗ = Ṽ Ṽ ∗;

4. B†B = Ṽ Λ̃−1
✟
✟✟✯

I

Ṽ ∗Ṽ Λ̃Ṽ ∗ = Ṽ Ṽ ∗ is Hermitian because (Ṽ Ṽ ∗)∗ = (Ṽ ∗)∗Ṽ ∗ = Ṽ Ṽ ∗.

113


	Introduction
	Hodge theory in a nutshell
	Fundamentals
	Homology

	Introduction to discrete exterior calculus
	Simplicial complexes
	Fundamentals
	The cochain complex
	Example

	Spectral Simplicial theory
	The Fourier basis as eigenvectors of the Laplacian
	Topological relevance of the harmonic space


	The Kuramoto model
	The model
	What is an oscillator?
	All-to-all interactions
	Network interactions
	Polyadic network interactions
	Simplicial interactions
	Synchronization and order parameter


	Analysis of the simplicial Kuramoto model
	The simplicial oscillator
	Interactions and self-interactions
	Equilibrium properties of the simplicial oscillator

	Equilibria of the simplicial Kuramoto model
	Decomposing the equilibrium problem
	Simplicial phase-locking and types of equilibrium
	The shape of equilibria
	Linear stability analysis of the equilibrium sets

	The role of the coupling strength
	Simple bounds for phase-locking
	The critical coupling
	The reachability problem

	Bounding the simplicial order parameter in an equilibrium 
	Simplicial Sakaguchi-Kuramoto model
	Orientation-dependent frustration
	Orientation-independent frustration
	Single oscillating simplex with frustration


	Conclusions
	Linear algebra with inner products
	Moore-Penrose pseudoinverse

