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Abstract

In the context of Predictive Maintenance, architectures, systems, and models are devel-
oped to monitor industrial processes and detect failures at early stages, by driving main-
tenance operations only when they are completely necessary. In this thesis, we investigate
unsupervised and semi-supervised Anomaly Detection models for Predictive Maintenance
that do not rely on the availability of failure data, and we propose a novel approach based
on the Open Set Recognition framework. Indeed, Open Set Recognition models can extend
the capabilities of Anomaly Detection models by enriching the concept of normality with
the addition of semantic classes that characterize the industrial process, while they pre-
serve the capability of detecting abnormal patterns. Moreover, the more complete concept
of normality leads the model to more accurate and stable anomaly predictions. Finally,
the proposed model leads to the definition of an interpretable condition indicator that
can be monitored for driving maintenance decisions. We investigate the models on two
benchmark datasets of condition monitoring of rolling bearing, by conducting quantitative
as well as qualitative analysis.
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Chapter 1

Introduction

In the industrial context, every unplanned machine downtime can cause a stop in the
company’s production resulting in significant costs and potential loss in revenues. For
this reason, companies are perfecting their maintenance strategies in order to be able not
only to detect an already happening failure but to identify its incipient characteristics
and prevent it. Due to this necessity, manufacturers perform maintenance activity to
keep machines healthy and maximize the plant’s reliability and productivity. Historically,
maintenance operations were treated in a time-driven or fault-driven fashion. In fact, in
Reactive Maintenance (RM) (also found as Corrective Maintenance) actions are performed
only when a component has already seen a failure, that is fault-driven. While in Preventive
Maintenance (PM) checks, services and replacements are carried out at regularly scheduled
intervals, or else time-driven. Such plannings are based on mathematical degradation
models and statistical analysis typically conducted by the components’ manufacturer, and
they indicate at which point of the elapsed life the components should theoretically be
replaced. A relevant example is the L10 bearings rating life [40]: a number that indicates
how many millions of revolutions a rolling bearing can perform, with 90% of reliability.
Out of this span, the substitution of the rolling bearing is suggested. However, such rules
do not often stick to the reality: bearings may be substituted when they could run for
more time, and there is a 10% probability of getting into unexpected fault before the
designated life.

On the other hand, RM maximizes the components’ life but it often leads to higher
maintenance cost [34]: existing studies show that repairing costs in reactive mode is
normally 3 times more than the ones with a scheduled basis [29]. This is not surprising
because faulty components could, for example, begin to vibrate and overheat by causing
damage also to other connected parts.

Differently, in Predictive Maintenance (PdM) operations are conducted only when
they are completely necessary, by developing software and systems that continuously
monitor the production and predict failure at early stages. Therefore, in this setting
maintenance are status-driven. For this reason PdM would be by far the most reliable
and economically convenient maintenance strategy, as shown in Figure 1.1.

Nevertheless, PdM has its own challenges, requiring to develop an accurate system
able to predict failure events in advance. Since the complexity of industrial machines and
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Introduction

Figure 1.1. Maintenance plans of RM, PM and PdM, from [34].

the non-deterministic behavior of failures make the problem intractable from a purely
analytical viewpoint, data-driven techniques are considered.

In fact, the concept of PdM has existed for many years. However, only recently, the
new emerging technologies and computational systems allow manufacturers to tackle many
industrial problems by making accessible Predictive Maintenance strategies [31]; among
them, we mention:

• IoT sensors for data acquisition [46]: multiple sensors are mounted on machines
or single components and they enable the collection of data from many physical
conditions of the production process, by gathering, therefore, a huge volume of data
that can be then stored in cloud facilities.

• Big data techniques for data manipulation: data from sensors must be cleaned,
transformed, merged, and resorted to a suitable form for ML models, but the massive
amount of information requires using large-scale distributed techniques, like Spark
[42].

• Advances in Machine Learning (ML): mathematical models that can learn how
to tackle a problem from data; for example, they can infer the imminent occurrence
of a failure by recognizing hidden schema inside sensors’ signals.

There are two main axis for developing a PdM system: fault diagnosis and fault
prognosis. The former detects failure at early stages by spotting anomalous behaviors.
With "early stages" we intend that a machine is worn but can still work without com-
promising safety and reliability. The latter predicts the Remaining Useful Life (RUL)
by learning how the degradation process behaves. Modelling RUL is undoubtedly more
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appealing, however, it is also a more challenging task because distinct failures can de-
pict very different degradation patterns. For that reason, it is often unfeasible to obtain
stable prognostic algorithms. Hence, in this thesis, we will discuss only fault diagnosis
algorithms.

More in general, ML approaches for PdM can be divided into two main families:
supervised and unsupervised models; the most relevant difference is that the supervised
methods require the presence of failures in the historical data while the unsupervised
ones do not. Supervised approaches are by far the most effective when we have data.
However, since most manufacturers usually use a Preventive Maintenance strategy we have
(hopefully) a few failures in our historical data, even with years of recording. Moreover,
machines can break with many different fault types that can depict even widely different
behaviors: for example, a given fault type could be easily detected by looking at vibration
sensors while it turns out invisible to thermal cameras, similarly, another fault could
be evident from power consumption whereas the other sensors depict normal patterns.
Therefore, to learn strong supervised models, we would need not only many failures but
also enough of them for each fault type, which is almost always an unfeasible requirement.
On these grounds, the employment for supervised algorithms is often limited to specific
circumstances, while unsupervised algorithms are widely considered.

In this thesis, we will discuss unsupervised anomaly detection models for fault
detection in the context of Predictive Maintenance, where the scope is developing a system
that can raise warnings by spotting abnormal behaviors from sensor data. Such algorithms
ingest data from normal working conditions for understanding which patterns characterize
the ordinary behavior, and complementary detect when sensors show abnormal conditions.
As a result, unsupervised fault detection models learn to detect failures without we need
to explicitly teach them what a failure is. The advantage is that usually, we can have
an almost unlimited amount of data from normal operating conditions because it is the
ordinary way of producing goods in industrial plants.

In general, anomaly detection algorithms are asked to decide if a new instance does
belong to the same distribution of training data, or if it should be considered as different.
Usually, normal data form a dense cluster in the feature space while anomalies or outliers
result in isolated points. An anomaly detection algorithm somehow defines the boundaries
of such clusters and complementary detect outliers; Figure 1.2 reports the idea on a toy
example.

The most popular anomaly detection algorithms are Local Outlier Factor [4], One
Class SVM [26], Isolation Forest [22] and Autoencoders [16]. The first free are variants
of classification algorithms, respectively K-NN, SVM and Random Forest. While Autoen-
coders are neural network architecture originally developed for dimensionality reduction
that can be easily used for outliers detection.

The common feature of these algorithms is that they work in a one-vs-all fashion, they
separate what is considered normal from all other possible deviations. The limitation
is that a normal point is just normal and the models have no knowledge about semantic
concepts that characterize ordinary points. For examples, if normal points belong to three
different classes the algorithms [4], [26], [22] and [16] will not recognize such peculiarity.

These considerations give a link to the field of Open Set Recognition (OSR) [38] [39]
[1], where classifiers are asked not only to predict classes of new samples but also to

6



Introduction

Figure 1.2. A toy example of anomaly detection algorithms on synthetic data: Local
Outlier Factor [4], One Class SVM [26], Isolation Forest [22] recognise the dense orange
cluster of points as normal while the isolated blue points are anomalies; [26] and [22] are
also able of obtaining separation boundaries reported as black curves.

discern if they belong to a concept that is not yet known. From an anomaly detection
perspective, they look at normal to the classes discovered during training while they
consider anomalies all of the other concepts that are not yet known. It seems a quite
strong framework for developing anomaly detection algorithms because the concept of
normality can be enriched with further details leading to models that should stick more
to reality. These can be exploited in an industrial scenario, where many situations lead
to the definition of well-defined classes, for example:

• the same group of sensors monitors the development of a product across different
assembly stages: imagine the production of an electronic device where different pieces
and circuits are sequentially assembled for building the device;

• the same machine tool can work in different operating modes: think about a cutting
blade that performs different cuts depending on the type of material manufactured.

Operating modes or assembly stages could easily define semantic classes and enrich
the concept of normality. As a result, we could, for example, detect whenever a blade
performs as required a specific kind of cut rather than just understand if the blade is able
of cutting well in general.

However, OSR is mainly investigated in Computer Vision [14], [25]. Therefore, this
thesis aims to investigate Open Set Recognition models in an industrial scenario, by making
a bridge between PdM and OSR.

With this scope, we propose a novel anomaly detection algorithm build in an Open Set
Recognition framework and we investigate its performances on two benchmark datasets
of condition monitoring of rolling bearings: PRONOSTIA [30] and CWRU [45]. Indeed,
rolling bearings (see figure 1.3) are ubiquitous components in industrial machinery: they
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support and guide rotating or oscillating machine elements – such as shafts, axles, or
wheels – and transfer loads between machine components, by providing high precision
and low friction movements.

Figure 1.3. A rolling bearing.

According to the literature on this subject, most approaches for rolling bearing fault
detection exploit vibration sensors or stator currents. Traditional methods consist of visual
analysis by determining handcrafted condition indicators based on physical evidence [18],
or by accurately cleaning signals with time-frequency signal processing techniques [33].
The drawback of such kind of methods is that they require relevant domain knowledge for
defining critical levels for a condition indicator or understanding when a cleaned signal
depicts abnormal patterns. Alternatively, Machine Learning models can be considered to
automate the decision process.

Many authors [44] [37] [6] apply feature engineering techniques for determining a good
number of predictors from raw signals and then they consider classifiers (SVM and Neural
Networks) for building fault detection systems. Others [27] [7] employ Deep Learning
algorithms (Autoencoders and Convolutional Neural Networks) directly to raw signals.
The main disadvantage of these methods is that they require label datasets that contain
anomalies, which are rarely available in real industrial applications. Indeed, since data
is typically collected by means of sensors without human intervention, it might not be
difficult to obtain a sufficient amount of data for supervised bearing fault detection [35],
because labeling requires domain knowledge experts and it is time-consuming and ex-
pensive [36] [21]. For that reason, semi-supervised and unsupervised methods should be
considered with more attention for fault detection: semi-supervised models require that
labels are assigned only to a limited portion of the dataset, while unsupervised methods
do not need labels at all. For example, [50] proposes a bearing fault detection system
with a semi-supervised Variational Autoencoder. While [23] considers an unsupervised
Autoencoder for detecting anomalies by controlling the reconstruction error.

On the other hand, the research on Open Set Recognition explores the possibility to
extend Deep Learning classifiers to the Open Set scenario. [2] proposes a modification in
the softmax output layer of a Convolutional Neural Network, based on the information
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from the second-last layer, to account also for the unknown class probability. While [25]
proposes a further improvement of [2] that consist of extending the neural architecture
by considering both classification and reconstruction modules: the last one is devoted to
understanding whenever a new sample deviates from the known classes and it plays a
crucial role in re-balancing the classification probabilities.

The link between Fault Detection and Open Set Recognition is that in both situations
we can consider reconstruction models, like Autoencoders, for detecting anomalies where
in Fault Detection an anomaly is a machine fault while in Open Set Recognition an anomaly
is an unknown class.

The thesis is structured as follows. Chapter 2 present the industrial scenario that we
consider, by describing two benchmark datasets: PRONOSTIA 2.1, CWRU 2.2. Next,
in Chapter 3 we present exploratory techniques for understanding the relevant aspects of
our data, while in Chapter 4 we describe the preprocessing pipeline that extracts features
for Anomaly Detection models. After that, in Chapter 5 we start by introducing popular
machine learning models, specifically Autoencoders 5.1.1 and XGBoost 5.1.2, then we
propose simple anomaly detection algorithms, and finally we propose a novel approach for
fault detection based on the Open Set framework. In Chapter 6 we show the results of
the proposed methods. Finally, we conclude the work with Chapter 7, by giving further
directions to our approach.
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Chapter 2

Datasets

In this chapter, we report the datasets considered in this thesis for investigating the per-
formances of anomaly detection models. We examine two benchmark datasets of condition
monitoring of rolling bearings: PRONOSTIA [30] and CWRU [45].

In Section 2.1 we describe PRONOSTIA, which consist in a set of run-to-failure exper-
iments where bearings are tested and monitored until they show a failure. This dataset
allows the investigation of the capability of anomaly detection models in recognizing the
failures at early stage.

In Section 2.2 we describe CWRU : a dataset in which brand new and defective rolling
bearings are tested and monitored for a few seconds. The defects are artificially injected
and they can be of different types. The dataset provides labels that indicate which exper-
iments should be considered normal or faulty together with the fault type, allowing us to
objectively evaluate the models’ effectiveness in detecting anomalies.

2.1 Pronostia
The PRONOSTIA dataset was published for the IEEE Prognostics and Health Managemen
Data Challenge in 2012 [30], where the participants competed for building the prognostic
algorithm in order to predict the Remaining Useful Life (RUL) of rolling bearings. For
the competition, the organizers provided a platform to enable testing and to evaluate
methods for machine fault diagnosis and prognosis, by making available data of condition
monitoring of rolling bearings in run-to-failure experiments. Specifically, in each experi-
ment an intact bearing is installed, then the execution is monitored over time by means of
vibration and temperature sensors. Moreover, the bearings rotate in 3 distinct operating
conditions, in terms of rotating speed and radial load.

During the competition, participants received 6 run to failure experiments, two for each
operating condition, and they were asked to learn RUL models on this dataset. Then, the
model were evaluated by testing the RUL predictions on 11 new run-to-failure experiments
in which the monitored history was cut off at some point.

In this thesis, we will not use this dataset for modelling RUL; instead we use it for
developing fault detection models and inspect whenever they are able of detecting failures

11



Datasets

Figure 2.1. Experimental setup of PRONOSTIA, from [30].

Figure 2.2. Detail of the installed sensors, from [30]. On the right, a vibration
and a temperature sensors.

at early stages. Indeed, since during the experiment the bearings from intact become
worn, we can analyse the entire degradation process.

Figure 2.1 reports the experimental setup of PRONOSTIA: on the left we can see
an alternating current (AC) motor; on the right the tested bearing is installed in an
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2.1 – Pronostia

Figure 2.3. Detail of the load transmission part, from [30].

appropriate housing; on the top right corner there is a system that applies the radial load
on the bearing housing. The sensors are placed directly on the bearing housing, as Figure
2.2 shows. The two vibration sensors sample at 25.6kHz for 0.1 seconds every 10 and
they are placed directly on the bearing housing at 12 o’clock and 9 o’clock. The first
collect the vertical vibrations while the second samples the horizontal vibrations. While
the temperature sensor continuously sample at 0.1kHz. The loading transmission system
can apply a radial load to the installed bearing, as reported in figure 2.3. This component
of the system reduces the bearing’s life duration by setting a load value up to the bearing’s
maximum dynamic load which is 4000N . As a result, the degradation process is naturally
accelerated and the experiments last only a few hours. The term naturally indicates that
the fault are not artificially injected, by they origin from the spontaneous wear of the
system.

Bearings can run in 3 different operating conditions :

• Operating condition 1 : 1800 rpm1 and 4000N load;

• Operating condition 2 : 1650 rpm and 4200N load;

• Operating condition 3 : 1500 rpm and 5000N load.

They differ both for the rotating speed and for degree of stress applied by the radial load.
Each experiment was carried out with only one working condition, from the beginning to
the end. Table 2.1 list all of the experiments by indicating the available sensor’s data,
and the corresponding duration. The first number in the experiment’s name refer to
the operating condition, while the second is a progressive number for the corresponding
operating condition. From the table we can see that temperature data is not available for
all experiments.

1rotation per minute
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Experiment
Sensors Execution

timeacc_H acc_V temp
Bearing1_1 x x x 7 h47’00”
Bearing1_2 x x x 2h25’00”
Bearing1_3 x x 6h35’30”
Bearing1_4 x x x 3h15’19”
Bearing1_5 x x x 6h50’19”
Bearing1_6 x x x 6h47’50”
Bearing1_7 x x x 6h16’21”
Bearing2_1 x x x 2h31’40”
Bearing2_2 x x 2h12’40”
Bearing2_3 x x 5h26’00”
Bearing2_4 x x x 2h5’00”
Bearing2_5 x x x 6h25’00”
Bearing2_6 x x 1h56’40”
Bearing2_7 x x 38’10”
Bearing3_1 x x x 1h25’40”
Bearing3_2 x x 4h32”40”
Bearing3_3 x x x 1h12’10”

Table 2.1. List of PRONOSTIA experiments. The first number in the experiment’s
name refer to the operating condition.

2.2 Case Western Reserve University dataset (CWRU)
The Case Western Reserve University2 makes publicly available a dataset in which whole
and defective rolling bearings are tested and monitored for a few seconds [45]. The test
apparatus is reported in Figure 2.4: a motor on the left makes rotating a rolling bearing
appropriately installed in its housing.

The defects are artificially injected in different locations: inner race, ball, outer race;
moreover, they are engraved with different diameters and depths: Table 2.2 reports all of
the tested failure configurations. Moreover, both for whole and defective experiments the
bearings rotate at 4 different speeds: 1797, 1772, 1750, and 1730 rpm . Finally, vibration
data is collected using an accelerometer that samples at 12kHz attached to the housing
with a magnetic base.

2A private university in Cleveland, Ohio.
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2.2 – Case Western Reserve University dataset (CWRU)

Figure 2.4. CWRU test apparatus.

Table 2.3 reports the overall time of monitoring for whole and defective rolling bearings
separated by operating conditions.

Location Diameter Depth
Inner Raceway 0.007 0.011
Inner Raceway 0.014 0.011
Inner Raceway 0.021 0.011
Inner Raceway 0.028 0.05
Outer Raceway 0.007 0.011
Outer Raceway 0.014 0.011
Outer Raceway 0.021 0.011
Outer Raceway 0.028 0.05

Ball 0.007 0.011
Ball 0.014 0.011
Ball 0.021 0.011
Ball 0.028 0.15

Table 2.2. Fault configurations. The Diameter and Depth are expressed in inches.
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Operating condition
Time (s)

Normal Faulty
1797 rpm 20.33 152.3
17702 rpm 40.33 152.3
1750 rpm 40.33 152.3
1730 rpm 40.47 152.49

Table 2.3. The overall time of monitoring separating for operating conditions.
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Chapter 3

Exploratory Data Analysis

In this chapter we explore signals of the datasets PRONOSTIA 2.1 and CWRU 2.2 with
the aim of gaining insights for developing effective anomaly detection models. In Section
3.1 we introduce mathematical concepts for managing IoT sensor’s data. Then, in Section
3.2 we apply exploratory techniques to the two datasets.

3.1 Techniques
In our setting, the health condition of rolling bearings is monitored by one or more IoT
sensor. They can continuously sample information from which we can understand the
quality of the bearing’s rotation. More in general, IoT sensors are placed in every industrial
machine for monitoring the processes, and the more the machine is complex the more
sensors we need for correctly observing the operations.

In Section 2.2 we have presented the dataset CWRU where bearings are continuously
monitored for a few seconds, using a single vibration sensor. While in Section 2.1 we have
introduced the dataset PRONOSTIA where two vibration sensors sample information in
batches of 0.1 seconds every 10: the monitoring is not continuous but consists of sampled
intervals alternated by breaks. This last approach is common in many industrial scenarios,
because manufacturers have numerous machines and often multiple plants, therefore, the
continuous monitoring of every component will lead to an unmanageable quantity of data.
Indeed, sensors are often characterized by a high sampling frequency. For example, the
ones of PRONOSTIA samples at 25kHz, that is 25600 samples every second. With an
hour of monitoring without pauses, we get around 92 million of samples. On the other
hand, if we sample for 0.1 seconds every 10 we get only a total of

25600× 3600
10 × 0.1 = 921600

records every hour, which is a great reduction.
In general, from an IoT sensor we obtain a sequence of signals that brings snapshots

of the process that we are monitoring. Therefore, we need to formalize the signals in
mathematical terms and introduce techniques that can extract useful features from them.
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Exploratory Data Analysis

Specifically, in Section 3.1.1 we introduce the time series; while in Section 3.1.2 we
present Fourier analysis, a set of techniques to extract features in the frequency domain;
finally, in Section 3.1.3 we propose a method for dimensionality reduction.

3.1.1 Time series
A time series is a sequence of numbers

xt ∈ R, t = 0,1,2, ..., n− 1,

where n is the temporal length of the series, and the set of indexes t = 0,1, . . . , n − 1
indicates the temporal order of the sequence.

The sequence can be compactly written as a vector

x =


x0

x1
...

xn−1

 ∈ Rn.

While a multivariate time series is a sequence of vectors

xt ∈ Rl, t = 0,1,2, . . . , T − 1,

where l is the number of channels, or else the number of sensors, and it can be written as
a matrix

X =


x0,0 x0,1 . . . x0,l

x1,0 x1,1 . . . x1,l

...
...

...
...

xn,0 xn,1 . . . xn,l

 ∈ Rn×l.

Time series are suitable when we consider just one sensor, while multivariate time series
are appropriate when we have multiple ones.

Moreover, since IoT sensors sample at a constant sampling rate, f , from the time
series indexes it is possible to obtain the exact temporal location of the samples. Indeed,
the inverse of the sampling frequency,

∆t = 1
f

,

indicates the elapsed time from one sample to the next one. Therefore, for every time
index t we can obtain the corresponding temporal location by computing t ·∆t.

Finally, we point out that in the context of Predictive Maintenance, time series, rather
than single sampled points, should be considered as instances of a dataset. Indeed, since
we are interested in understanding whether a machine performs the process as it should,
we have to assess whether the whole signal is anomalous or not.
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3.1 – Techniques

3.1.2 Fourier analysis
In this section, we restrict our attention to time series and we introduce Fourier analy-
sis: a set of signal processing techniques for extracting features related to the frequency
domain. Indeed, the rotational behavior of the ball bearings suggests that most of the
important characteristics are closely related to frequencies. Moreover, considering only
time series is not restrictive: every multivariate time series can be seen as a set of time
series, one for each channel.

In brief, Fourier Analysis consists in changing the basis on which we express time series
as vectors, bringing out aspects that are not evident over time. In fact, time series are
essentially vectors in which the components indicate the precise temporal order.

From basic linear algebra, we know that every vector can be written in terms of a
chosen basis of the vector space. Observing a time series over time is equivalent to
considering the corresponding vector in the canonical basis1 because the coefficients with
respect to the basis are the elements of the sequence themselves. On the other hand,
time series from condition monitoring of rolling bearings may show interesting aspects in
the frequency domain, because the rotating behavior shows patterns that are repeated
over time. However, these aspects are often hidden in the time series and a suitable
transformation should be performed for revealing them. To this extent, we introduce
Fourier Analysis: a set of techniques for extracting features in the frequency domain.
An extended description of this argument is outside the scope of the thesis (see [47] for
further information) and we introduce only the tools that are useful for our discussions.

Since Fourier Analysis involves complex numbers and linear algebra we start by intro-
ducing preliminary concepts.

Let C be the set of complex numbers, that is

C = {u + jv, u, v ∈ R},

where j is the imaginary unit, u is the real part, and v is the imaginary part. The
conjugate of a complex number, z = u + jv, is another complex number with the same
real part and the imaginary part flipped in sign,

z = u− jv, (3.1)

where ·̄ is the conjugation symbol. While, the product between two complex numbers
z = u + jv and z′ = u′ + jv′ is given by

z · z′ = uu′ − vv′ + j(uv′ + u′v) (3.2)

1The canonical basis of Rn is a set of vectors L = {e(0), e(1), . . . , e(n−1)} so that

e
(k)
i =

I
1 i = k

0 i /= k
, ∀k ∈ {0,1, . . . , n − 1},
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Exploratory Data Analysis

Let Cn be a complex n-dimensional vector space. A basis of Cn is a set of n vectors,

L = {f (k) ∈ Cn, k = 0,1, . . . n− 1},

so that for every x ∈ Cn

x =
n−1Ø
k=0

αkf (k),

for some set of coefficients {αk ∈ C}n−1
k=0 , and

n−1Ø
k=0

αkf (k) = 0 ⇐⇒ αk = 0 ∀k ∈ {0,1, . . . , n− 1}.

Moreover, a base L = {f (0), f (1), . . . , f (n−1)} is orthonormal if for every couple of basic
vector f (k), f (h) the following equation holds

e
f (k), f (h)

f
=

n−1Ø
i=0

f
(k)
i f

(h)
i =

 1 h = k

0 h /= k

If a basis, L, is orthonormal it can be shown (see [47] at Section 2.5.2) that for every vector
x ∈ Cn the coefficients {αk ∈ C}n−1

k=0 , can be computed as the inner product between the
vector the corresponding basic vector, that is

αk =
e
x, f (k)

f
, ∀k ∈ {0,1, . . . , n− 1}.

For example, the canonical basis, that is the set of vectors L = {e(0), e(1), . . . , e(N−1)} so
that

e
(k)
i =

 1 i = k

0 i /= k
, ∀k ∈ {0,1, . . . , n− 1},

is an orthonormal basis, and the coefficients are the vector entries themselves.
While, the Fourier Basis of Cn is set of vectors {f (k)}n−1

k=0 , so that for every k

f
(k)
t = 1√

n
ej 2πk

n
t, t = 0,1, . . . , N − 1.

For understanding more their formulation we can use the Euler formula,

ejθ = cos(θ) + j sin(θ). (3.3)

Specifically, we can rewrite the basis vectors as follow, for every k

f
(k)
t = 1√

n

3
cos(2πk

n
t) + j sin(2πk

n
t)
4

.

That is, every basic vector f (k) consist of two harmonic waves in the real and imaginary
part, with oscillating frequency ωk = 2πk

n . Moreover, we can show that the Fourier Basis
is orthonormal, see [41]
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The Discrete Fourier Transform (DFT) of a signal is the vector of coefficients in
the Fourier Basis. Formally, the DFT is defined as an operator

F : CT −→ CT ,

that for every signal x ∈ CT it gives as output the coefficients in the Fourier Basis,

F(x) =



e
x, f (0)

fe
x, f (1)

f
...e

x, f (n−1)
f

 ∈ Rn.

Each coefficient is given by the inner product between the signal vector x and the corre-
sponding basis vector f (k), that is

[F(x)]k =
e
x, f (k)

f
= 1√

n

n−1Ø
t=0

xt · ej 2πk
n

t = 1√
N

n−1Ø
t=0

xt · e−j 2πk
n

t, (3.4)

where, for obtaining the last equality, we use the definition of complex conjugate 3.1
together with formula 3.3. Moreover, it is worth noting that the product inside the
summation is a product between complex numbers, defined by the equation 3.2.

In this thesis, we will apply the Discrete Fourier Transform only to real-valued signals,
so we can further simplify coefficients’ formula 3.4. By using the equation 3.2 we obtain

[F(x)]k = 1√
n

n−1Ø
t=0

xt cos(2πk

n
t)− ixt sin(2πk

n
t)

= 1√
n

n−1Ø
t=0

xt(cos(2πk

n
t)− i sin(2πk

n
t)).

Next, by considering the Discrete Fourier Transform we can obtain the Power Spectrum
of a signal: the vector whose components are the squared modulus of the coefficients.
Formally, for every signal x ∈ Rn the power spectrum is the vector S(x) whose components
are computed as follow

[S(x)]k = Re([F(x)]k)2 + Im([F(x)]k)2, k ∈ {0,1,2, . . . , n− 1}, (3.5)

where Re(·) and Im(·) are respectively the real and imaginary part of a complex number.
Moreover, we can show (see [41]) that the spectrum for the real-valued signals is

symmetric with respect to the middle element of the vector, that is

[S(x)]k = [S(x)]n−k, ∀k ∈ {0,1,2, . . . , N},

where N = n
2 if n is even and N = n−1

2 if n is odd.
As a result, we can consider the first N + 1 component of the power spectrum without

losing information. In the following, when we say "we compute the Power Spectrum" we
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implicitly intend that we compute the power spectrum and we select only the first N + 1
values.

Moreover, since signals are sampled from IoT sensors with a constant sampling rate we
can relate the Power Spectrum coefficients with sample frequencies [24]. Specifically, if
f is the sampling rate of our sensor from which we obtain signals, the sample frequency
of the coefficient with index k ∈ {0,1, . . . , N} is given by

f

n
· k, (3.6)

and it is expressed in Hertz (Hz).
As an example, if f = 25.6kHz, n = 2560, every index k ∈ {0,1, . . . , 1280} is related

to the sample frequency f
n · k = 10 · k. As a result, the sampling frequency ranges in the

set k ∈ {0,10,20, . . . , 12800}.

3.1.3 Principal Component Analysis
In this subsection we introduce the Principal Component Analysis (PCA): a tech-
nique for dimensionality reduction. We will use it in the next sections for visualization
purposes. Indeed, IoT sensors lead to high dimensional data, therefore it is difficult to
understand the high-level property that characterizes the signals. However, the possibility
to summarize the data by means of a few features may allow gaining useful insights.

We consider a dataset arranged in a matrix X ∈ Rm×n, where m is the number of
instances and n is the number of features. We can see the matrix as a set of row vectors
x1, x2, . . . , xm ∈ Rn. We would like the reduce the dimensionality of the vectors using
a linear transformation. Then, we can consider a matrix W ∈ Rd×n, with d < n, that
defines the linear mapping

x ∈ Rn −→ Wx ∈ Rd

that reduces the dimensionality from n to d. Moreover, we want that the lower dimensional
representation summarizes most of the information of the original vector. That is, we
would like to restore the original input from h = Wx. Then, we consider another matrix
U ∈ Rn×dthat defines the linear mapping

h ∈ Rd −→ Uh ∈ Rn,

that from the compressed form recover the original dimensionality.
Intuitively, the transformation induced by W is able of decreasing the dimensionality

and preserving most of the information if

xi ≈ UWxi, i = 1, . . . , m.

In PCA, the compression matrix W and the recovering matrix U are obtained by mini-
mizing the distance between xi and UWxi in euclidean norm,

argmin
W ∈Rd×n,U∈Rn×d

mØ
i=1
||xi − UWxi||22. (3.7)
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As a result, by solving 3.7, we can use W to decrease the dimensionality.
Interestingly, the numerical routines that solve 3.7 gives us the proportion of variance

explained by each principal component (see [9] Section 10.2.2).
Moreover, before solving 3.7 is a common practice to standardize input data [9]. That

is, we scale each column of the matrix X so that they have zero mean and unit variance.
Formally, we compute the mean vector

µ =


µ1

µ2
...

µn

 ,

where,

µj = 1
m

mØ
i=1

Xi,j , j = 1, . . . , n.

Then, we define a diagonal variance-covariance matrix

Σ =


σ1

σ2
. . .

σn

 ,

where,

σj =

öõõô 1
m− 1

mØ
i=1

(Xi,j − µj)2, j = 1, . . . , n.

Finally, we standardize every row xi = {Xi,j}n
j=1 as

Σ−1 (xi − µ)

3.2 Data Exploration

3.2.1 PRONOSTIA
In this dataset, we have signals from condition monitoring of rolling bearings from 17
run-to-failure experiments. The signals are sampled from two vibration sensors and a
temperature sensor. However, temperature values are not available for all experiments,
therefore we decided to not take them into account during our analysis, while the vibra-
tion data is always available and will be considered in the development of our models.
The sensors are installed directly in the bearing housing and they sample information in
different locations. Namely, the vertical accelerometer (acc_V ) is placed at 12 o’clock
while the horizontal accelerometer (acc_H) is placed at 3 o’clock.
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Figure 3.1. The vibration raw signal monitored by the horizontal accelerometer in the
first experiment with operating condition 1.

The experiments’ duration ranges from 1 hour to 8, and the degradation patterns
depict different behaviors.

As an example, we can look at Figure 3.1 where we can see a slow and progressive
degradation captured by the acc_H sensor: after 4 hours of operation we can recognize the
beginning of the degradation process, where the amplitude of the signal starts to increase,
and the more time runs the more the amplitude increases until the failure occurs. This
is a perfect example of the standard degradation process that we can expect in rolling
bearings and more in general industrial machines: the failure is not sudden but it shows
early warning signs. Data-driven approaches for Predictive Maintenance must recognize
these warnings, detecting component degradation before the failure occurrence.

On the other hand, Figure 3.2 shows a sudden failure: the raw signal maintains the
same behavior from the beginning of the experiment until a failure unexpectedly occurs.

Of course from a signal similar to the one presented in Figure 3.1 the degradation can
be easily detected by monitoring simple summary statistics of the signal. For example,
the standard deviation can be a good indicator because the amplitude of the signal sym-
metrically increases both in the positive and the negative directions, and then we can
determine when a maintenance operation should be performed by considering a threshold
on the statistic’s value above which we should stop the execution.

However, this approach has many disadvantages. First, it is a reasoning that works
in retrospect: we have no guarantees that degradation can be detected by the standard
deviation; maybe the signal’s behavior becomes asymmetric and can be seen for example
with the skewness, or even the abnormal behavior does not intact significantly the values
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3.2 – Data Exploration

of any summary statistics, but it is only visible with the use of different kind of features.
Second, even if we know in advance that the degradation will affect exactly the standard
deviation of the signal, is not trivial to define a suitable upper bound to the allowed values
for the statistic.

Therefore, in order to develop a more robust anomaly detection system, other tech-
niques have to be imagined. Data-driven approaches together with suitable pre-processing
pipelines can detect hidden behaviors inside apparently normal raw signals, by emerging
the incipient of anomalous patterns. We have explored the presented experiments by the
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Figure 3.2. The vibration raw signal monitored by the horizontal accelerometer in the
first experiment with operating condition 3.

use of one sensor only. It is also interesting to investigate the signals from the two sen-
sors jointly and analyze whether they bring concordant information or not. Indeed, since
they are placed at different locations they give a distinct point of view of the system:
one sensor could show abnormal behaviors while the other does not. Imagine a situation
where a little scratch originated exactly in the location where the acc_H sensor points:
every time the bearing’s balls pass over the scratch the sensor collects data that contains
some aspect that is not normal; on the other hand, the scratch is so small that the acc_V
sensor completely ignores the incipient failure.

Figure 3.3 reports 3 experiments by showing the signals from both sensors. In Figure
3.3 (b) the two sensors show the same behavior during the degradation process: after 30
minutes of operation, we can observe a change in the signal shape that proceed in the same
manner for both sensors until the fault. While in Figure 3.3 (a) and (c) the two sensor
often reveal different information. In Figure 3.3 (a) the horizontal acceleration depicts a
smooth degradation while the vertical sensor shows a sequence of spikes spaced out over
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time. Similarly, in Figure 3.3 (c) we can observe spikes in terms of vertical acceleration
when the horizontal does not.
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Figure 3.3. Condition monitoring for 3 different experiment, one for each kind
of operating condition.

Figure 3.4. Comparison between signals from acc_V sensor with different operating
conditions, in terms of: (a) raw vibrations, (b) Power Spectrum.

The bearings work in three different operating conditions:

• Operating condition 1 : 1800 rpm and 4000 N radial load;

• Operating condition 2 : 1650 rpm and 4200 N radial load;
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• Operating condition 3 : 1500 rpm and 5000 N radial load.

We could expect that different operating conditions may depict signals with different
shapes. However, from Figure 3.4 (a) it is not trivial to distinguish them. Indeed, the
high sampling rate brings 2560 points for each signal, and the samples draw an oscillating
behavior making visual analysis hard.

By considering the Power Spectrum of the same signals the comparison become
clearer as shown in Figure Figure 3.4 (b). We can see that the energy of the distinct
signals is focused in different locations of the frequency spectrum. Specifically, the sig-
nal of operating condition 1 deeply differs from the others, while signals from operating
conditions 2 and 3 are similar to each other.

Thus, the Power Spectrum seems promising for extracting features from signals for
condition monitoring. Indeed, discriminating the operating condition in which bearings
work should be a simpler task than detecting anomalies. So, determining features that
should be able to discriminate this aspect should be a first step toward building a promising
anomaly detection model.

For that reason, in the following, we further analyze the power spectrum of the signals.
Specifically, we compute the Power Spectrum of each signal of every experiment and we
inspect if the coefficients’ values change significantly during the degradation process. As
an example, Figure 3.5 reports a heatmap that shows the distribution of the coefficients
over time. Precisely, we consider the signals from the acc_H sensor of the experiment
Bearing3_2 and we compute the normalized Power Spectrum for all signals. That is, for
every signal x we compute the power spectrum S(x) and then we normalize it as

S̃(x) = S(x)qN−1
k=0 [S(x)]k

,

where N is the signal length. We note that S̃(x) is a vector that sums up to one and it
has negative entries. As a result, it can be seen as a probability distribution, where the
density indicates the energy of the signal allocated to a specific harmonic frequency.

The heatmap of Figure 3.5 is a matrix where the columns correspond to data batches
and the rows to frequency, and the entries are the normalized Power Spectrum, that is

Hk,i = [S̃(x(i))]k,

where x(i) is the signal of batch i of the experiment Bearing3_2 from the acc_H sensor.
By analyzing Figure 3.5, we can recognize that the coefficients’ distribution significantly

changes over time by drawing 3 phases:

1. Phase 1 : approximately before batch 100 the energy distribution is mostly concen-
trated between 3 and 4 kHz.

2. Phase 2 : approximately from batch 100 to 1400 the spectrum become mostly located
between 1 and 2 kHz.

3. Phase 3 : from batch 1400 on the frequency spectrum is completely changed.
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A possible interpretation is the following. During Phase 1 the bearing is brand new, it
rotates perfectly and shows a spectrum that is proper for its operating condition. While in
Phase 2 the rotational behavior slightly changes. This can be caused by the appearance
of small defects, for example when the bearing surface shows natural abrasions. Finally,
in Phase 3 the defects degenerate and the spectrum completely changes by shifting most
of the energy to the high frequencies. This kind of behavior is known as data drift or

Figure 3.5. The heatmap shows the distribution on the frequency spectrum of the energy
of the signals across the different data batches of experiment 3_2.

data shift (for example see [17], [10], [48]): the underling distribution of the data is
not stationary but it changes overtime. However, it should not be surprising to discover
data drift in the context of Predictive Maintenance: the rolling bearings degraded over
time and the imperfection in the physical system are naturally transferred to a change
in the data distribution. In Sections 5.2.2, 5.2.3 we will extensively exploit this behavior
for building Anomaly Detection models. Indeed, since the data distribution changes the
model should detect the data drift and consequently detect abnormal behavior.

Finally, we would get an overall view of the dataset. Since raw signals as well as power
spectrums are high dimensional data, we have to perform dimensionality reduction tech-
niques for observing the whole data by means of a few features. First, we arrange power
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Figure 3.6. Result of PCA on Power Spectrum data for the first 30 minutes of monitoring
from each experiments. The colors refer to the different operating conditions.

spectrum data from the two signals in a single matrix and then we perform Principal
Component Analysis (PCA) by obtaining a 5-dimensional representation of the data.
Let X be a data matrix, whose rows are the batches of the experiments and the columns
are the power spectrum coefficients of the signals from the two sensors, stacked one after
the other, that is

Xi,· =
è
S(x(i)

V ),S(x(i)
H )
é

,

where x
(i)
V and x

(i)
H are the signals of respectively the vertical and horizontal accelerometers

for a given batch of some experiment.
First, we build such a matrix by considering only the first 30 minutes of monitoring

from each experiment and we apply PCA. Figure 3.6 shows the result, where different
colors indicate distinct operating conditions. Overall, we can see that the operating con-
ditions are organized into distinct clusters, showing that the different operating conditions
correspond to distinct patterns in the signals.

Next, we build the data matrix by considering the whole data that refer to experiment
Bearing3_2 and we apply the same procedure. Figure 3.7 shows the result, where the
colors reflect the monitoring time. Overall, we can see that the first 200 batches form a
dense red cluster; the next batches until 1400 form stretched profiles and finally the last
batches draw isolated points. A possible interpretation is that the stretched profile refers
to the fault incipient as a slow and progressive degradation, while the isolated points
correspond to the fault. Moreover, we observe that the phases that we have highlighted
are the same individuated in Figure 3.5.
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Figure 3.7. Results of PCA on Power Spectrum data for the experiment Bearing3_2.
The colors refer to the monitoring time, in terms of the number of the corresponding data
acquisition batch. We recall that from a data acquisition batch it elapse 10 seconds.

3.2.2 CWRU
CWRU dataset contains signals from condition monitoring of brand new as well as defec-
tive rolling bearings, monitored by a single vibration sensor. The defects are artificially
originated by damaging the bearings in specific locations, resulting in different fault types.
The experiments’ duration ranges from 20 seconds to 152. Moreover, the bearings are
tested in four different operating conditions, in terms of rotating speed.

In order to analyse the signals in a similar manner with the previous section, we chunk
the signal in windows of 2560 samples. Since the sampling rate of the sensor is 12kHz
the seconds elapsed in every window are

2560 · 1
12000Hz ≈ 0.21s.

Next, as in the previous section we can build a data matrix where the rows correspond
to windows and the columns to the power spectrum. Then, upon standardization with
equation 3.1.3 we can apply PCA.

First, we apply the approach by considering only normal data, as Figure 3.8 shows:
we can draw two important considerations:

• We are not able of finding points of operating condition 1. Indeed, a more careful
analysis shows that the normal data of operating condition 1 are the duplicates of
data from class 2: as a result, the points overlap and we can see only one class. Since
in Sections 5.2.2 and 5.2.3 we will extensively use the fact of having signals from the
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Figure 3.8. Results of PCA on Power Spectrum data for the experiments of
CWRU dataset that refer to healthy rolling bearings. The colors refer to the
different operating conditions.

different operating conditions, we must select only the points from one of the two
classes, also for anomaly data. We decide to keep only class 1.

• We can observe a clear separation between the classes: see for example PC4 vs
PC2 and PC3. As a result, a classifier can easily distinguish between operating
conditions.

Next, we consider only data from operating condition 3 and we perform PCA. Figure
3.9 shows the result. We can see that the points from normal signals form a tight cluster
while the anomalies are more scattered. Moreover, we note that normal data cluster is
quite distant from the one of the inner race fault, while the difference is less stressed for
ball and outer race faults. From this consideration, we may expect that some inner race
anomalies will be easy to detect while catching the others may be more difficult.

31



Exploratory Data Analysis

Figure 3.9. Result of PCA on Power Spectrum data for the experiments of CWRU
dataset. The colors refer to the different failure types.
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Chapter 4

Preprocessing

In this Chapter, we describe the preprocessing operations that we perform to datasets
PRONOSTIA 2.1 and CWRU 2.2 for preparing the data for the modelling phase described
in the next chapter. Specifically, in Section 4.1 we present the algorithm that maps
raw signals into several salient features, by computing time-domain as well as frequency-
domain aggregations. The feature extraction algorithm is in common for both datasets
and will be used as a part of the preprocessing pipelines in Sections 4.2, and 4.3. In
addition, in Sections 4.2, and 4.3 we will detail all of the operations that we perform for
transforming raw data into well-organized datasets, which can be then used for training
and evaluating Anomaly Detection models.

4.1 Feature extraction algorithm
Let we assume that we have a set of signal {x(i)}i∈I , where I is a set of indexes, and
every signal is a time series with n samples, x(i) ∈ Rn. Since n is a large number (we
will see that in this thesis n = 2560), we would extract a few features that can properly
summarize the time series. To this extent, we compute 9 summary statistics of the signal,
by gaining time domain aggregations. Next, we consider the signal’s Power Spectrum and
we aggregate its coefficients in frequency bands, by obtaining frequency-domain features.

Formally, let us consider a signal x = x(i) for some i ∈ I; we compute the summary
statistics:

1. Mean,

µ = 1
n

nØ
j=1

xj ;

2. Standard deviation,

σ = 1
n− 1

öõõô nØ
j=1

(xj − µ)2 ;
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3. Skewness,

γ =
1
n

qn
j=1(xj − µ)3

σ3 ;

4. Kurtosis,

κ =
1
n

qn
j=1(xj − µ)4

σ4 − 3 ;

5. Maximum
max

j=1,...,n
(xj) ;

6. Minimum,
min

j=1,...,n
(xj) ;

7. Median,
quantile(x, 0.5);

8. 1% quantile,
quantile(x, 0.1);

9. 99% quantile,
quantile(x, 0.99);

Where the quantile at the level α ∈ [0,1] is defined as

quantile(x, α) = inf{u ∈ R : P (X ≤ u) ≥ α} (4.1)

where X is the probability distribution of x. However, this definition requires the an-
alytical knowledge of the probability distribution of our signals, which we do not have.
Therefore, the equation 4.1 is estimated using numerical routines. In particular, in this
thesis, we use the one available in the Python package Numpy [32].

Next, we compute the frequency-domain aggregations. First, from every signal x we
compute the Power Spectrum, by using formula 3.5,

s = S(x) ∈ R
n
2 ,

where the vector s has n
2 real components because with our data n is always an even

number.
Moreover, we recall that the Power Spectrum coefficients can be related to sample

frequency with the relation 3.6. Namely, let f be the sampling rate of the sensor from
which we obtain the signals, then the Power Spectrum coefficient at index k is related to
the sample frequency fk = k · f

n .
Next, we select a band width of ω = 100Hz and we split the sample frequencies into

several contiguous and non-overlapping windows of length given by the band width. Then,
for each window, we obtain a feature by summing up all the Power Spectrum coefficients
whose corresponding sample frequencies fall into the window.
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Formally, for every b ∈ {1, . . . , f
2ω} we define the frequency window as the interval

J (b) =

 [ωb− ω, ωb) b < f
2ω

[ωb− ω, ωb] b = f
2ω

.

We observe that the window with index b = f
2ω is a closed interval because the upper

extreme coincides with the largest available frequency.
Finally, we compute the features

ϕ(b) =
Ø

k:fk∈J (b)
sk, ∀b ∈ {1, . . . ,

f

2ω
}.

As a result, by considering both time-domain and frequency-domain aggregations, for
every signal we obtain a total of

d = 9 + f

200
features. We can then summarize the whole feature extraction algorithm in a function

Ψ : Rn −→ Rd,

that for every signals x gives the vector of aggregations Ψ(x).

4.2 Preprocessing pipeline PRONOSTIA
In PRONOSTIA we have data from condition monitoring of rolling bearings through
two vibration sensors in 17 run-to-failure experiments, where the bearings are tested
in different operating conditions, in terms of rotational speed and radial load. In each
experiment, we have a sequence of data acquisition batches where the sensors collect
information for 0.1 seconds, and since the sensors have a sampling rate of f = 25.6kHz,
for any data batch we have two signals of n = 2560 samples each.

In this thesis, we are interested in investigating Anomaly Detection models for rolling
bearings fault detection, whose task is detecting failures at early stages by spotting abnor-
mal patterns in the signals. To this extent, we transform the raw data into a well-organized
dataset whose rows correspond to a data batch of a given experiment, while the columns
are the extracted features from the signals of the two sensors. Indeed, in this context,
we can look at the data batches as snapshots of the bearing’s health state from the point
of view of the two sensors. In addition, among the columns, we consider also metadata
information, namely: the operating condition, the experiment identifier, and the batch
number. We will see that the operating condition will be a crucial information for the
development of the anomaly detection models of Sections 5.2.2, and 5.2.3. While the
experiment identifier is just a piece of information that indicates which experiment cor-
responds to a given data batch. Finally, the batch number is a progressive number that
indicates the order of the data batch in a given experiment.
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Formally, for every experiment e ∈ E, where E is the set of experiments, and for every
batch i ∈ {1,2, . . . , Ne}, where Ne is the number of batches of experiment e, a record of
the dataset is given by è

Ψ(x(e,i)
V ) Ψ(x(e,i)

H ) metadata
é

, (4.2)

where x
(e,i)
V and x

(e,i)
H are the signals from the vertical and horizontal accelerometer of

experiment e and data batch i, while the metadata consist in the experiment identifier, e,
the batch number, i, and the operating condition, c. On the other hand, the numerical
columns consist of the set of extracted features from the signals of the two accelerometers.
Overall, since the sampling rate is f = 25.6kHz we obtain a total of

2 · d = 2 ·
3

9 + f

200

4
= 2 · (9 + 128) = 274.

By repeating the procedure for all batches and all experiments we obtain a dataset D of
277 columns and 24018 rows.

4.3 Preprocessing pipeline CWRU
In CWRU dataset we have a set of experiments where intact and defective rolling bearings
are tested under different operating conditions, in terms of rotational speed. A vibration
sensor monitors the bearings’ execution, with a sampling rate of 12kHz. Since the ex-
periments’ duration ranges from 20 seconds to 152, every signal contains a huge number
of samples. Therefore, we decide to split each signal into time windows of 2560 samples
each, which correspond to around 0.213 seconds of monitoring.

In this section, we describe how the raw signals from CWRU are transformed into a
well-organized dataset, whose row corresponds to the time windows of the experiments,
while the columns contain the extracted features as well as metadata information.

Formally, for every experiment e ∈ E, where E is the set of experiments, and for time
window i ∈ {1,2, . . . , Ne}, where Ne is the number of time windows in experiment e, we
obtain a record of the dataset is given byè

Ψ(x(e,i)) metadata
é

, (4.3)

where x(e,i) is the signal from the vibration sensor of experiment e and data batch i, while
the metadata consists of the operating condition, the anomaly label, and the failure type.
The anomaly label is a qualitative indicator that discriminates whether the current record
refers to an intact or a defected bearing. On the other hand, since the sampling rate is
f = 12kHz the feature extraction algorithm leads to a total of

d =
3

9 + f

200

4
= (9 + 60) = 69.

By repeating the procedure for all time windows and all experiments we obtain a dataset
D of 72 columns and 2589 rows.
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Chapter 5

Models

In the context of Predictive Maintenance, Anomaly Detection models can be used to
continuously assist the production: they monitor the signals sampled from IoT sensors,
and raise warnings when they find abnormal patterns. To this extent, we have to train
a Machine Learning model, so that it recognizes ordinary as well as anomalous condi-
tions. However, supervised methods are typically unfeasible, due to the extreme rarity of
anomalies in historical data, and therefore, unsupervised methods become often the only
viable strategy.

In this chapter, we discuss unsupervised Anomaly Detection models for fault de-
tection. Such algorithms leverage data from ordinary working conditions for understand-
ing which are the schema and the patterns that characterize the monitoring of ordinary
production, and complementary they detect anomalies.

To this extent, in Section 5.1, we introduce methods and algorithms that will be
part of the proposed Anomaly Detection models. Afterward, in Section 5.2 we present
three different Anomaly Detection models. Specifically, in Section 5.2.1, we propose an
Anomaly Detection algorithm based on reconstruction errors of an Autoencoder. Then,
in Section 5.2.2, we link Anomaly Detection with the Open set Recognition framework
by proposing a method that exploits classification probabilities for detecting anomalies.
Finally, in Section 5.2.3, we proposed a novel approach based on more sophisticated Open
Set Recognition techniques taken from [49], that leads to the definition of an interpretable
condition indicator and overcomes the necessity of computing thresholds for predicting
anomalies.

The Open Set Recognition inspired methods are developed by considering a scenario
where the machine can work under different operating conditions, which is quite common
in the industrial context. In particular, in the thesis, we have investigated the algorithms
in condition monitoring of rolling bearings that can work with different rotating speeds
(See Chapter 2). However, we can apply such algorithms in general for every kind of
machine where we can recognize distinct operating modes or working stages. For example,
think about a machine that can produce different kinds of pieces by changing its operating
mode, or a when production line follows a sequence of steps where distinct operations are
carried out.
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5.1 Preliminary concepts

5.1.1 Neural Networks
A Neural Network [15] is a network of connected units, called neurons; each neuron is an
elementary calculation unit, which is able to send its results to the other cells according to
a precise graph structure. Every neuron and every connection have free parameters, called
weights, that can be fitted in order to tackle a given task. A set of neurons constitutes the
input of the network, and some other neurons indicate the output. The remaining layers,
instead, form the computational core of the neural network, that is, the ensemble of the
mathematical operations that transform the input into output.

Neurons can perform different kinds of computations, and they send information to
other neurons by means of weighted links. The outgoing links indicate where the compu-
tations are feed, while incoming links indicates the neuron inputs. The weights are object
of inference and are determined by model training.

The simplest Neural Network architecture is the Feed Forward Neural Network (see
Chapter 6 of [15]), where neurons are arranged in a set of layers and there are connections
only between a layer and the consecutive one, moreover, each neuron performs a linear
transformation followed by a non-linear activation function. Formally, let I be the number
of layers and let mi be the number of neurons in layer i, then the j-th neuron of the i-th
layer perform the following computation

x
(i)
j = f

A
b

(i)
j +

mi−1Ø
k=1

w
(i)
jk x

(i−1)
k

B
, ∀j ∈ 1,2,3, ..., mi,

where f(·) is a non-linear activation function, b
(i)
j ∈ R is the bias for the neuron j ,

w
(i)
jk ∈ R is the link weight between neuron k of layer i − 1 and neuron j of layer i, and

x
(i)
j ∈ R is the output of neuron j of layer i.

More compactly, we can arrange the biases in a vector b(i) ∈ Rmi , where the j-th
component is b

(i)
j ; the link weights in a matrix W (i) ∈ Rmi×mi−1 , where W

(i)
j,k = w

(i)
jk ; the

inputs in a vector x(i−1) where the k-th entry is x
(i−1)
k ; then the computation of layer i

can be written as,
x(i) = f

1
b(i) + W (i)x(i−1)

2
,

where f(·) is computed element-wise. As an activation function we mention the sigmoid
function (see Figure 5.1), that for any input x ∈ R it gives

f(x) = 1
1 + e−x

. (5.1)

Since in this kind of layer, every neuron of the preceding layer is connected to each
neuron of the following one, they are known as dense layers.

The biases and the weights are parameters and they are learned during training by
minimizing a loss function, which is a metric that penalizes the parameters when the
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Figure 5.1. The sigmoid function.

model makes errors in a given task, e.g. classification or regression. Formally, we can
indicate with Θ the set of parameters of the network and we can denote the model with
F (·), that takes as input a vector x and gives as output F (x). For clearness, during the
discussion, we consider supervised learning tasks only. That is, for any data point x,
we have a class label or response variable y and the learning task is to understand the
functional relation between them. Formally, for every couple (x, y) we want to fit the set
of weights Θ in order to satisfy the equation

F (x) = y; (5.2)

the loss function will then take a form that during training it will encourage the adjustment
of the weights Θ, so that the model satisfies equation 5.2, we denote it as

l(F (x ; Θ), y).

The notation F (x ; Θ) strengthens the fact that the network outputs depend on the current
values of the parameters Θ.

Next, instead of considering a single data point we consider a dataset of n ∈ N in-
stances, that we denote with D = (xi, yi)n

i=1; then, the loss function computed over the
dataset D is given by the average of the losses compute on every couple of points,

L(D; Θ) = 1
n

nØ
i=1

l(F (xi; Θ), yi).

Finally, the parameters Θ are obtained by minimizing the loss function, that is

min
Θ∈X

L(D; Θ), (5.3)

where X is the feasible set where the parameters can range. Usually, the optimization is
unconstrained, that is X = R|Θ| where | · | is the cardinality of a set. On the other hand,
the feasible set can also be constrained in order to limit the model capacity, but this is
outside the scope of this thesis and we will always consider unconstrained optimization.
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The problem 5.3 is tackled with Stochastic Gradient Descent (SGD), a numerical op-
timization algorithm that iteratively updates the parameters according to the gradient
computed over random subsets of the dataset. Formally, at each iteration or epoch, we ran-
domly split the dataset into a sequence of subsets or batches, that is D = {B1,B2, . . . ,Bb}
where b is the number of batches. Then, iteratively for every j = 1,2, . . . b we update the
parameters as follows

θ = θ − α
∂L(Bj ; Θ)

∂θ
, ∀θ ∈ Θ,

or with a vector notation,
Θ = Θ− α∇(L(Bj ; Θ)), (5.4)

where ∇(·) is the gradient operator and α is an hyper-parameter called learning rate used
for controlling the updating speed, and it is typically set to small values, e.g. 0.001.

The interpretation of the formula 5.4 is that for each step and for each batch the
parameters are updated such that they give the greatest local decrease in the loss function
over the corresponding data batch. For that reason, this is a quite natural and simple
update rule but it has also some defects. First, the gradient indicates the direction where
the function locally decreases most but it does not tell to what extent we can make a
step in this direction in order to gain a (global) decrease: if the learning rate is too high
we can even end up in an increase. Second, the gradients are computed independently at
each step and batch and we do not take into account the history of the previous steps.
For these reasons, researchers propose different optimization algorithms or optimizers to
obtain better results: in this thesis, we will use Adam optimizer [19]. An exhaustive
description of the optmizer is outside the scope of the thesis, but it worth noting that it
basically consist in a variant of the formula 5.4, which can be written

Θ = Θ− α · d(Bj ; Θ),

where d(Bj ; Θ) is called descent direction, and it take the place of the gradient in formula
5.4. The formulation of d(Bj ; Θ) contains the gradient, but also other quantities that
improve the overall optimization process.

The update process is repeated for a given number of epochs. The data batches have
all the same size; except for the last one: whenever the dataset size is not a multiple
of the batch size, the last batch contains only the number of samples which is not yet
included in the previous batches. The number of epochs as well as the batch size are
hyper-parameters. The structure of the neural network is pretty general, and allows us to
tackle different tasks by selecting a suited loss. For example, we can address a regression
task by using the Mean Squared Error loss,

L(D; Θ) = 1
n

nØ
i=1

(ŷi − yi)2,

where yi ∈ R is the response variable and ŷi ∈ R is the model prediction, of the sample i;
or we can tackle a classification problem by selecting the Cross Entropy loss,

L(D; Θ) = − 1
n

nØ
i=1

✶(ŷi = yi) log(P(ŷi = yi)), (5.5)
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where yi is the class label, ŷi is the predicted class, ✶(ŷi = yi) has value 1 when the
predicted class coincide with the actual one, and 0 otherwise; P(ŷi = yi) is probability of
predicting the correct class, which is estimated by the model.

In general, we can consider any kind of problem. That is, with a proper neural network
architecture and a proper loss we can learn any kind of functional relation between and
outputs. A relevant example is when y = x, where the network try to learn the identity
map; this framework forms a class of neural network models called autoencoder 5.1.1.
Differently, from what we have described so far the learning task is now unsupervised,
because of the response variable is the input itself.

Independently from the learning task, what we want to avoid in neural networks, and
more in general in Machine Learning models, is overfitting: the model is perfectly fit
training data but it has no generalization capacity for new data. The literature propose a
lot of techniques for address this issue. In this thesis, we consider dropout [43]: during
training some neurons are randomly dropped, preventing the network to rely too much
on specific neurons. The noise injected during training leads to a more robust model by
significantly reduces the overfitting.

In the following, we describe how a dropout layer works. Let we consider a dropout
probability p ∈ [0,1], that indicates the probability of activating a given neuron, and
suppose that the input has dimension n; then we define the dropout vector as

z = 1
p


r1

r2
...

rn

 , ri ∼ Bernoulli(p),

where the quantities ri assume value 1 with probability p and 0 with probability (1− p),
moreover, they are randomly sampled during each prediction in the training phase. The
vector z multiplies the input x by performing a product element-wise

x · z.

Thereafter, when the training phase is over the dropout vector end its random behaviour
and it keeps the input data untouched. Formally, the dropout vector is set to

z =


1
1
...
1

 .

Autoencoder

An autoencoder is a neural network that is trained for learning the identity map, by a
compression-decompression procedure. Indeed, it can be viewed as consisting of two parts:
the encoder that learns how to encode an input with a smaller number of features, and
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Figure 5.2. An autoencoder.

the decoder that learns how to get back to the original input. The autoencoder is the
composition of the two blocks, see Figure 5.2. The model is learned by minimizing the
error obtained during reconstruction.

Formally, let d and p be the input and the encoding dimensions, then the encoder is
the function

fENC : Rd −→ Rp,

while the decoder is the function,

fDEC : Rp −→ Rd,

finally, the autoencoder is the composition of the two blocks, that is

f = fDEC ◦ fENC : Rd −→ Rd.

The encoder output h = fENC(x) is known as code or latent representation. It is the
innermost part of the network, and it contains the smallest number of neurons: it then
acts as the bottleneck of the architecture. By construction it extract the most relevant
information that data contain as they are used by the decoder to restore the whole input.
Therefore, it can be then used for dimensionality reduction.

Let x ∈ Rd be an input vector and x̂ = f(x) be the autoencoder output, the difference

E(x) = x̂− x ∈ Rd

is called residual vector, and measure how far the reconstruction deviates from the
original input element-wise: we get a good reconstruction if the residuals are almost zero.
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With this extent, we can define loss functions that penalize the residuals magnitude:
for example we can consider the Mean Squared Error, computed over a set of data
points B = {x1, x2, . . . xn}, as

L2(B) = 1
n

nØ
i=1
||x̂i − xi||22, (5.6)

where the terms,

||x̂i − xi||22 =
dØ

j=1
([x̂i]j − [xi]j)2, i = 1,2, . . . n,

are the Euclidean norm of the residual vectors and they are called reconstruction errors.
The minimum of the function is reached when all inputs are perfectly reconstructed,

x̂i = xi = f(xi), ∀xi ∈ B, (5.7)

or else when the autoencoder is able to reproduce the identity map for every sample in B.
However, being able to perfectly reproduce a restricted set of input data is far from

being a useful task, and it corresponds to overfitting. It is more useful to learn the
equations 5.7 only approximately but being able to generalize the reconstruction capability
also to new data: this can be obtained for example by limiting the model parameters or
adding regularization.

In this thesis, we use autoencoders for anomaly detection and dimensionality
reduction. The encoder allows to compress data in a lower dimensional space, the
encoded features brings all information that the decoder needs for restoring the original
input. By choosing the network design we can decide:

• how many neurons use for encoding data,

• the complexity of the encoding (and decoding) transformation.

Indeed, we can obtain the lower dimensional representation by an arbitrarily high number
of non-linear transformations in sequence. As a result, we can find hidden and complex
relationships between input features and decrease the dimensionality without loosing too
many information.

By learning how to summarize and reconstruct inputs, an Autoencoder learns the most
intrinsic aspects of data, obtaining an high level abstraction that characterize the data it
has learned. Furthermore, the minimization of the Mean Squared Error loss 5.6 leads the
model not only to obtain minimal reconstruction errors for training instances but also to
get a small error for new instances sampled from the same probability distribution.

On the other hand, if the new instances show relevant difference with training data,
the model will find difficulties during reconstruction, ending up in a high reconstruction
error. We can use this idea for anomaly detection:

• we estimate a level where reconstruction error normally ranges;

• we predict an anomaly whenever the reconstruction error is otside the range.
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Autoencoders are a fairly general class of models because both encoder and decoder can
have an arbitrary neural network architecture. For that reason, Autoencoders can work
with any kind of data and tackle also different problems from anomaly detection and
dimensionality reduction.

However, a general rule is making the autoencoder symmetric with respect to the
bottleneck layer, that is, the encoder and the decoder implement the same transformations
but in opposite directions. As a result, the model is encouraged to perform symmetric
operations for encoding and then decoding input data. Indeed, it is quite natural to
think that the compression process should be (approximately) a reversible transformation:
from the encoded information we should get back to the original input by doing the same
operation backward with a minimum error.

The choice of architecture for the two blocks usually depends on the kind of data we
have. For example, if we deal with images we should consider convolutional autoencoder,
where the encoder and the decoder are convolutional neural networks (see chapter 9 of
[15]); or if we deal with raw time series we should consider recurrent autoencoders, that
is where the two blocks are recurrent neural networks (see [15] at chapter 10). A more
general architecture that works with any kind of data consist of simply stacking dense
layers, in this case, we call just autoencoders.

5.1.2 eXtreme Gradient Boosting
In this section we present an efficient Gradient Tree Boosting method, known as eXtreme
Gradient Boosting (XGBoost) [5].

A Gradient Tree Boosting method is an algorithm that learns an ensemble of decision
trees [3] via local approximations. The idea of ensemble learning is that simple weak
models can create a single stronger model. In particular, with boosting [13], the weak
models are learned sequentially, so that at each step the new model is learned for correcting
the mistakes of the previous ones.

In XGBoost the trees are learned by minimizing an objective function approximated
via second-order Taylor expansion, where the objective function contains a task-specific
loss and a regularization term. Indeed, XGBoost models can learn any kind of task, the
only requirement is that the objective function must be differentiable.

In the following, we will explain the model by considering a binary classification prob-
lem, but statements can be generalized to an arbitrary one. Formally, we consider a
dataset D = {(xi, yi) ∈ Rn × {0,1}}m

i=1, for any sample xi ∈ Rn the model uses K trees
to predict the output

ŷi =
KØ

k=1
fk(xi), fk ∈ F ,

where F = {f(x) = wq(x), q : Rn → T, w ∈ RT} is the functional space of the decision
trees, T is the number of leaves of the tree, the function q(·) denotes the tree structure,
that for any sample x gives as output the predicted leave, and wq(x) is the probability of
predicting class 1 for the sample x.. Moreover, the trees are not independent, and they
are related by the equations

ŷ
(k)
i = ŷ

(k−1)
i + fk(xi), ∀k ∈ {1,2, . . . , K}, (5.8)
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where ŷ(k) is the prediction at step k for the sample xi.
The training algorithm performs a sequence of K steps, one for each tree, where at

each step, k, we consider the objective function

L(k)(D ; fk) =
mØ

i=1
l(yi, ŷ

(k−1)
i + fk(xi)) + Ω(fk), (5.9)

where l(y, ŷ) is a classification loss and Ω(f) is a regularization term. The notation
L(k)(D ; fk) enforces the fact that at each step, only the parameters of the k-th tree are
optimized.

The equation is then approximated via a second order Taylor expansion, obtaining

L(k)(D ; fk) ≈
mØ

i=1

5
l(yi, y

(k−1)
i ) + gifk(xi) + 1

2hifk(xi)2
6

+ Ω(fk), (5.10)

where
gi =

5
∂l(y, ŷ)

∂ŷ

6
(y,ŷ)=(yi,ŷ

(k−1)
i )

,

and
hi =

C
∂2l(y, ŷ)

∂ŷ2

D
(y,ŷ)=(yi,ŷ

(k−1)
i )

.

Finally, at each step, the approximated objective function 5.10 is minimized for training
the k-th tree, by learning the tree structure and the leaves’ weights.

If we select the function,

Ω(f) = λ
TØ

j=1
w2

j , (5.11)

as regularization term, where λ is an hyper-parameter; we can show (see [5]) that for any
tree structure q : Rn → T , the optimal leaves weights w ∈ RT are given by

wj = −
q

i∈Ij
giq

i∈Ij
hi + λ

, ∀j ∈ {1, . . . , T},

where Ij = {i ∈ {1, . . . , m} : q(xi) = j}, and the corresponding optimal value is

L∗(q) = −1
2

TØ
j=1

1q
i∈Ij

gi

22

q
i∈Ij

hi + λ
.

Therefore, the last quantity can be seen as a score for evaluating a given tree structure.
However, finding the optimal structure of a decision tree is known to be a hard combina-

torial problem that cannot be solved exactly [20]. XGBoost exploits numerical procedures
that efficiently find a sub-optimal solution; in particular, it uses the weighted quantile
sketch as an approximation algorithm for split finding, and cache access patterns, data
compression, and sharding for obtaining efficient management of the computational cost
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both in terms of memory and time. The optimization details are outside the scope of the
thesis and are reported in [5].

Moreover, the algorithm can be improved by adding additional features for managing
the overfitting. We can introduce the shrinkage coefficient,

η ∈ [0,1],

to the equations 5.8, by obtaining,

ŷ
(k)
i = ŷ

(k−1)
i + η · fk(xi), ∀k ∈ {1,2, . . . , K}. (5.12)

As a result, η reduces the influence of each single decision tree and leave room for future
trees to improve the model. We can also limit the depth of the trees, by limiting, therefore,
the feasible set of the decision trees. Otherwise, at each step, we can learn the tree by
considering a random subset of dataset. Formally, we modify the equation 5.9 as follow

L(k)(D̃ ; fk) =
mØ

i=1
l(yi, ŷ

(k−1)
i + fk(xi)) + Ω(fk), D̃ ⊆ D.

In this thesis, we will consider XGboost for a multi-class problem, in which the formu-
lation that we have presented is extended by considering a vector of probabilities rather
than a single number in each leaf of the trees. Moreover, at each step, the tree structure
is optimized by considering the Cross Entropy loss (see equation 5.5).

5.1.3 Open Set Recognition
Consider a trained classification model and imagine that we have discovered that it exists
a new class that was not present during training; if we do not retrain the model and we
ask to predict samples from this new class, it will give us predictions from the set of the
old classes which are naturally wrong; while we would prefer that the model would be able
to recognise that those samples belong to a class which is different from all of the known
ones. This idea leads to the definition of Open Set Classifiers, some classification
models able of

1. recognising the known from the unknown,

2. classifying among the known classes;

that is, in addition to the standard classification task it is able to detect whenever a
concept is outside of its bag of knowledge.

More formally, let C be the set of classes available during training and let c′ be the
new discovered class. For any new sample x of class c′ a standard classification model
will always predict as class c ∈ C, while an open set classifier will tell us that the class is
unknown. We can formalize this concept by adding to the set of classes a new auxiliary
class label, {unk}, that indicates the unknown,

C ∪ {unk}.
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A closed set classifier can be easily reformulated for the Open Set scenario. Let’s consider a
probabilistic classifiers, that for any instance x gives as output the probability distribution
across the classes

p = f(x) ∈ R|C|,

where f(·) is the model itself. Then the standard prediction strategy is to consider the
class with maximal probability,

ŷ = argmax(pi)
i∈C

We can say that we accept this prediction only if the corresponding maximum probability
is above some level of confidence, for example we predict as ŷ only if we have a probability
of 0.9. Formally,

ŷ =


argmax(pi)

i∈C
if max(pi)

i∈C
≥ τ

{unk} otherwise

where τ is the threshold that selects the level of confidence, and can be set to any values
in [0,1]. Usually, it make sense to require at least a probability of 0.5, but we can be more
conservative by raising the threshold to higher values like 0.8 or 0.9. However, the right
threshold depends on the specific problem and the corresponding data, and there can be
more sophisticated strategy for selecting a good threshold.

Of course this is just the simplest strategy for obtaining an open set classifier, and it
is far from being ideal. More complex approaches generally consist in the developing of
classification models that by design take into account the presence of the unknown class.
Here, instead we have just resorted the model outputs.

5.2 Proposed methods
In this section, we present 3 different Anomaly Detection models, and we assume to have
a portion of data devoted to learn the models, which can be divided into two portions:
the training set and the validation set. Moreover, both portions contain only normal data,
that is data from condition monitoring when the bearings have no defects.

5.2.1 Autoencoder Anomaly Detection
In this thesis, we will use an autoencoder for unsupervised anomaly detection of
signals from condition monitoring of rolling bearing: we fit an autoencoder with normal
training data, and we then use the model to obtain reconstruction errors of new samples
and we predict an anomaly whenever the error is above some well defined level. First,
we go into details of the selected autoencoder architecture and we highlight the model’s
parameters. Next, we describe how the model is trained. Then, we explain how to define
a reconstruction error threshold. Finally, we explicit the anomaly detection algorithm.

Since our data has tabular format (see Chapter 4), it is suitable to choose a simple
architecture with 5 dense layers for our autoencoder, as reported in Figure 5.3. The
encoder is made up of the first 3 layers: the third layer is the bottleneck layer; the last 3
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Latent Rapresentation (h)

X̂X

Figure 5.3. An Autoencoder with 5 dense layers.

layers forms the decoder. The inputs enter into the network from the first layer, while the
output are obtained from the last network. Formally, it computes the following operations,

h0 = x

h1 = σ(W1h0 + b1) · z1

h2 = W2h1 + b2

h3 = σ(W3h2 + b3) · z2

x̂ = W4h3 + b4

where hi is the output of layer i, h0 = x is the input while x̂ is the output; Wi and bi are
the coefficient matrix and the bias vector that defines the linear transformation of layer i
, σ(·) is the sigmoid activation function, while z1 and z2 are dropout vectors (see Section
5.1.1). The parameters of the model are Wi and bi, for i = 1,2,3,4; their dimensions meet
the input-output requirement of each layer, that is, if di is the output dimension of layer
i, we have that

Wi ∈ Rdi×di−1 , bi ∈ Rdi , i = 1,2,3,4.

The dimensions of the inner layers d1, d2 and d3 are model’s hyper-parameters, and are
chosen by trials and errors. The chosen configuration is given by:

• d1 = d3 = 40,

• d2 = 5.
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The bottleneck dimension d2 is set to a small value to make the learning task harder and
force the model in learning interesting lower dimensional representations. The hidden
dimensions d1 and d3 are set to the same value to attain network symmetry. Moreover,
the value of 40 is selected as a good trade-off between the bottleneck dimension of 5 and
the input dimension (which for our data is between 69 and 274, see 4).

In the dropout layers we select a probability of 0.01 for mitigating the overfitting.

Latent Rapresentation (h)

X̂X

Step 1 Step 2

Figure 5.4. The figure reports a sketch of the architectures considered in the two steps
training procedures. The red-colored arcs indicate that the weights learned in step 1 are
used for initializing the same parameters in step 2.

We learn the weights by minimizing the Mean Squared Error loss (see formula 5.6);
as an optimization algorithm we select the Adam optimizer with learning rate α = 0.001,
and b = 64 samples as batch size.

The training phase considers the training data which do not contain anomalies, and
it consists of two sequential steps, see Figure 5.4. In step 1, we consider a subset of the
architecture just described, by selecting the layers 0, 1, 3 and 4, where the two layers of
size 40 are collapsed to a single one, that becomes the bottleneck of the new architecture.
As a result, this sub-model is a smaller Autoencoder where the latent representation is
made by a layer of 40 neurons. Formally, the sub-model compute the following operations,

h0 = x

h = σ(W1h0 + b1)
x̂ = W4h + b4
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We train this sub-model for 250 epochs, and we obtain the parameters,

W1, W4, b1, b4.

Then, in step 2, instead of randomly initializing all weights, we use the obtained pa-
rameters for initializing the shared weights, and we train the whole architecture for 1500
epochs.

After that, we consider validation portion of data for estimating a reconstruction error
threshold. Since this portion contains only normal data we would define the threshold as
the upper extreme where most of the reconstruction errors ranges. Specifically, for every
instance x in the validation set we compute the reconstruction error,

e(x) = ||x̂− x||22 =
dØ

i=1
(x̂i − xi)2,

and we estimate a threshold as the 99% quantile of the empirical distribution of the
reconstruction errors,

T = quantile(E ,0.99),

where E is the vector that collects all reconstruction errors on validation data.
The use of the validation portion data rather than training one allows for a more

reliable estimate of the reconstruction error. Indeed, validation instances are not seen
by the model during training, so they reflect more faithfully the new samples that will
come. Moreover, the use of the quantile rather than the maximum leads to a more robust
estimate, with respect to the presence of possible outliers.

Finally, the Anomaly Detection algorithm work as follow: for any new sample x

1. we feed x into the Autoencoder and we obtain the reconstruction x̂,

2. we compute the reconstruction error e(x) = ||x̂− x||22,

3. if e(x) > T we predict an anomaly,

4. otherwise we predict as normal.

5.2.2 Operating Condition Classification Anomaly Detection
The model that we have described in the previous section is an unsupervised approach for
Anomaly Detection and it does not exploit any kind of additional knowledge about the
data. Actually, from Section 3.2, we know that the bearings work in 3 distinct operating
conditions: can we exploit this information to build a more anomaly detection algorithm?

Distinct operating conditions correspond to the different physical conditions of the un-
derlying system, and then to different data-generating processes. From a theoretical point
of view data from distinct operating conditions are generated from different underlying
probability distributions. Consequently, a classification model can easily discriminate be-
tween operating conditions. On the other hand, from exploratory analysis (see Section
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[3.2.1]) we know that frequency features are exposed to data drift due to natural bear-
ing degradation; that is, the system degradation causes a change in the data generating
process, which is evident in the frequency domain.

Moreover, we know that in each experiment the corresponding bearing work in the same
operating condition from the beginning to the end, then a classification model should be
able to predict always the same class when it is monitoring a given experiment. However,
we expect that data drift will cause a strong reduction in model performances: when the
bearing wears out the model will find data with different patterns from the ones discov-
ered during training, and consequently, the probability of being in the correct operating
condition class decreases. The more the defect are evident the more we expect that the
classification probability decreases.

We can therefore exploit this hypothetical behavior for Anomaly Detection: for every
experiment we know in which operating condition it runs, so we can monitor the classifica-
tion probability of being in the correct class, and predict an anomaly when it falls below a
safe level. Indeed, a decrease in such probability can only be due to the bearing degrada-
tion because the operating condition does not change during the experiment. Moreover, is
natural to think that in most situations bearing’s failure is preceded by a slow degradation
process; for example, the bearing’s surface becomes scratched, the scratch expands, and
then it becomes more and more deep until it ends up in a crack in the ring. For that
reason, we expect a progressive and monotonic reduction in the classifier performance as
a progressive decrease in the classification probability of the correct class.

Interestingly, the classifier is exploited in an unusual way: we do not use it for predicting
new labels but instead we monitor the classification probabilities to detect anomalies
in correspondence of performance decrease. Indeed, the class label is an information
that we we always know in advance, because in each experiment the bearings run in the
same operating condition from the beginning to the end. More in general, the operating
condition when a machine works can change during but it is set by a technician or by
an automated software; in any case it is a condition that is defined by the production
scheduling rather than something we should infer. Similarly, rather than trying to mitigate
data drift with domain adaptation techniques, we exploit it to individuate a degradation
process.

In the following, we describe the steps we make for building an anomaly detection
model that exploits the classification probabilities and the insights that we have explained
so far. First, we define the classifier that we have chosen. Then, we describe how we can
compute classification probabilities thresholds. Finally, we explicit the anomaly detection
algorithm.

As classification model choose the XGBoost classifier (see Section5.1.2), with K =
500 trees and shrinkage parameter η = 0.3. Moreover, we consider 3 hyper-parameters
that are chosen with 10 fold cross-validation, namely:

• the regularization coefficient, λ, of formula 5.11;

• the depth of each tree;

• the subsample ratio that is used for randomly sampling a portion of the dataset at
each training step, by considering only a data subset in equation 5.10.
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The Table 5.1 report the hyper-parameters grid. After cross-validation, the XGBoost
classifier, with the selected hyper-parameters configuration, is trained by considering the
training set.

Parameter Values
Maximum

Depth
of a tree

{3, 6, 9}

Subsample
ratio

{0.5, 0.75, 1.0}}

λ {0, 2.5, 5}

Table 5.1. Hyper-parameters grid.

Let we denote with f(·) be the XGboost model, that for every sample x it gives as
output a probability vector,

p̂ = f(x) ∈ R|C|,

where C is the set of classes, which in our case is C = {1,2,3}.
Then for any data point (x, c) ∈ Rd × C in the validation set,

• we compute the predicted probability vector p̂ = f(x),

• we consider the correct class probability p̂c,

• we accumulate such probability in the set Pc.

As a result, Pc contains all of the predicted probability related to the correct class for any
class c.

For any class c, we compute the threshold as the 1% quantile of the probability values
in the set Pc,

τc = quantile(Pc, 0.01), ∀c ∈ C. (5.13)

As a result, for any class the thresholds are the lower extreme where of most the proba-
bilities for normal instances range. Finally, the Anomaly Detection algorithm works
as follow: for any new sample (xi, ci)

1. we compute predicted probability p̂ = f(xi),

2. we select the probability of being in the correct class p̂ci ,

3. if p̂ci < τc we predict an anomaly,

4. otherwise we predict as normal.
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Once more, we remark that we can consider the correct class probability because we always
know in advance the operating condition where the system runs.

The approach is quite simple and it is similar to the Autoencoder, but it leverages
classification probability rather than reconstruction errors. Moreover, here we have a
vector of threshold while with the Autoencoder we had just a single number.

Interestingly, we can note a strong analogy between this algorithm and the Open Set
Recognition framework, described in Section 5.1.3: the thresholds we use for detecting
anomalies are, actually, rejection thresholds. Indeed, they are the levels of probability
required by the model to make a prediction among the known classes. As a result, we
have built an open set classifier where the unknown class should be intended as the
anomaly class. The only difference is that here we use the correct class probability while
in Section 5.1.3 we have used the maximum one.

5.2.3 Classification-Reconstruction Anomaly Detection
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Figure 5.5. The Classification-Reconstruction Anomaly Detection model: ||x − x̂||2
is the reconstruction error (see formula 5.17); p̂ is the probability distribution of
the operating conditions (see formula 5.15), from the ensemble classifier; ω are the
class confidence weights (see formulas 5.19); finally, p̂(OP EN) is the model output (see
formula 5.16), used for detecting anomalies.

The methods proposed in the previous sections are effective for detecting anomalies,
but they show important conceptual limitations.

Autoencoders detect anomalies by recognizing what is not normal, but they do not
use any additional knowledge to enrich the concept of normality. Imagine that we are
monitoring a machine that works in different conditions or where the process has different
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phases: an Autoencoder will just understand what is the normal behavior as a whole, but
it does not learn such peculiarities.

On the other hand, the model described in the previous section leverages this kind
of information but it does not have a technique for modeling degradation, it just detects
anomalies by looking when the classifier decreases its confidence in predicting the right
class. However, as we will see in Chapter 6, the closed set of classes may lead to unstable
predictions when a bearing wears out. Indeed, when a bearing degrades we observe a
decrease in the probability of the correct class, because of data drift; correspondingly, we
see an increase in the probability of some other class, because probabilities always sum
up to one. However, is hard to believe that the other probabilities can increase arbitrarily
because the bearing does not change its operating condition. As a result, the model
becomes somehow undecided in which class should predict. This behavior is born from
the fact that we are considering a closed-set classifier that learns to discriminate across
operating conditions from normal data but it cannot understand whenever an instance is
unknown.

In this section, we propose a novel approach for Anomaly Detection that overcomes the
weakness of the previous models by considering jointly the coding-decoding reconstruction
and a classification tasks for building a richer concept of normality and complementary
detect anomalies. Figure 5.5 reports an outline of the model.

In the development of the model, we have taken inspiration from [49], where the authors
propose a Classification-Reconstruction method for Open Set Recognition, in the context
of Computer Vision. Specifically, we have brought the idea of exploiting the reconstruction
and the classification tasks synergically as well as the use of class-confidence weights; but
we have changed both the neural network architecture and the expression of the confidence
weights.

For building the model, we start by extending an Autoencoder by adding a few layers
for classification as bifurcation of the architecture from the bottleneck layer, making the
model able of performing both reconstruction and classification (see Figure 5.6). The clas-
sification power is then enhanced by considering also an independent classifier, namely
a XGBoost classifier, and averaging their predictions. Then, we use the two tasks si-
multaneously for building a strong open set classifier that is able to adjust the predicted
probability distribution to both recognizing whenever an instance is unknown and dis-
criminating across operating conditions. Finally, we exploit the open set classifier for
detecting anomalies.

The development of such a model requires two sequential phases:

• The training of the Autoencoder-Classifier and XGBoost models;

• The adjustment of the probabilistic model to the Open Set framework;

As a result, we expect that this new model is able of obtaining more stable predictions
even when the bearings wear out: specifically we expect that when the model encounter the
data drift the decrease in the correct class probability causes an increase in the unknown
class probability.

In the following, we go into details in each of the two phases for model development.
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Figure 5.6. An Autoencoder with a classification module.

Phase I - Training
In the first phase we use the training set for learning two sub-models: an Autoencoder

with a classification module and an XGBoost classifier. We start by explaining the modi-
fications we introduce in the Autoencoder, described in Section 5.2.1, for tackling the two
tasks, and then we explain how it is combined with the other model.

The bottleneck of an Autoencoder contains the encoded features that brings the most
of the information that data contains, therefore, they seems good inputs for a classifier.
So, we insert a simple classification model, made up by two layers, after the bottleneck of
the Autoencoder: the first is a dense layer with sigmoid activation, while the second is a
dense layer with softmax activation, from which we obtain probabilities.

We recall that the softmax function is defined as

[softmax(z)]i = eziqn
j=1 ezj

,

where z ∈ Rn is an input vector.

As a result, the model has two outputs: the reconstruction error and the classification
probabilities, as shown in Figure 5.6.
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Formally, for any input x the Autoencoder-classifier perform the following operation

Autoencoder
h0 = x

h1 = σ(W1h0 + b1) · z1

h2 = W2h1 + b2 (Bottleneck layer)
h3 = σ(W3h2 + b3) · z2

x̂ = W4h3 + b4

Classifier
h4 = σ(W5h2 + b5) · z3

p̂(AE) = softmax(W6h4 + b6)

where x̂ is the reconstruction and p̂(AE) is the predicted probability vector, and z1, z2,
and z3 are dropout layers with probability 0.01; while Wi, bi with i = 5,6 are the new
parameters that account for the classification module. We have introduced a superscript
to the output probabilities because we will consider also the XGBoost classifier. The
parameters of the model are Wi and bi, for i ∈ {1,2, . . . ,6}; their dimensions meet the
input-output requirement of each layer, that is, if di is the output dimension of layer i,
we have that

Wi ∈ Rdi×di−1 , bi ∈ Rdi , i ∈ {1,2,3,4,6},

and
W5 ∈ Rd5×d2 , bi ∈ Rd5 .

As in Section 5.2.1, the layers’s dimensions are chosen by trial and errors. Specifically, we
set:

• d1 = d3 = 40,

• d2 = 10,

• d5 = 5,

• d6 = |C|;

where |C| is the number of classes, which is equal to 3 in our experimental setting.
We learn the Autoencoder-Classifier parameters with a two-step procedure. First, the

Autoencoder alone is trained for 750 epochs by minimizing the Mean Squared Error loss.
The obtained Autoencoder weights will initialize the corresponding parameters for the
next phase. Then, we train the overall architecture by minimizing, jointly, the Mean
Squared Error (MSE) from the decoder’s output, and the Cross Entropy (CE) from the
classifier’s output. Specifically, we consider the overall objective function

L(D; Θ) = L(MSE)(D; Θ) + L(CE)(D; Θ), (5.14)

56



5.2 – Proposed methods

where L(MSE)(D; Θ) is the MSE loss (see formula 5.6), and L(MSE)(D; Θ) is the CE
loss (see formula 5.5), and we minimize it for 750 epochs. As in Section 5.2.1, for the
optimization, we consider the Adam optimizer with learning rate α = 0.001, and b = 64
samples as batch size.

Let f(·) be an XGBoost classifier with the same hyper-parameters described in the
previous section, that for any input x gives as output the probability vector

p̂(XGB) = f(x) ∈ R|C|.

Then, we train the XGBoost on the training set.
As a result, we have two classifiers able to discriminate the operating conditions in

which a bearing run, in terms of predicted probabilities. Therefore, it is natural to consider
an ensemble classifier that merges predictions from the Autoencoder-Classifier and the
XGBoost. Specifically, we obtain a single probability vector by averaging their predictions,

p̂ = p̂(NN) + p̂(XGB)

2 . (5.15)

Phase II - Probability calibration
The second phase merges the two outputs (and tasks) into a single object, by developing

an open set classifier.
The probabilities from the ensemble classifier are balanced for taking into account the

possibility of encounter unknown concepts. Specifically, each probability p̂j is weighted
by a coefficient wj that quantify the degree of confidence the model have in making such
prediction. We refer to the quantities {wj}|C|

j=1 as class-confidence weights. The idea is
the following. When a bearing is healthy the model should accurately predict the correct
operating condition. On the other hand, when the bearing degrades, the classifier not
only decreases in performance but it become also uncertain with its prediction because it
encounters instances that are more and more different from the ones seen during training.
By construction, the Autoencoder will recognize this kind of drift, so it will play a crucial
role in defining suitable coefficients wj .

Specifically, each weight wj is a number between 0 and 1

wj ∈ [0,1], ∀j ∈ C,

and it is smaller the higher the reconstruction error is. Moreover, if some coefficient is
strictly smaller than 1, the adjusted probabilities do not sum up to one anymore: the
residual account for the unknown class.

Formally, the new probabilistic model is given by

p̂(OP EN) =

 p̂jwj if j ∈ C;q
j∈C p̂j(1− wj) otherwise;

(5.16)

where the last row is the unknown class probability,

P(x ∈ {unk}) =
Ø
j∈C

p̂j(1− wj) = 1−
Ø
j∈C

p̂jwj = 1−
Ø
j∈C

p̂j
(OP EN),
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and can be seen as the probability of being in none of the known classes.
We note that the weights as well as the predict probabilities depend on data instances,

so implicitly suppose that wi = wj(·) and p̂j = p̂j(·) are functions rather than simple
numbers.

Next, we describe how we compute the weights, wj . In Section 5.2.1 we consider the
reconstruction errors to determinate thresholds and then we predict an anomaly whenever
the threshold is exceeded. Here instead we want quantify by how far the threshold is
surpassed. Specifically, for any class c ∈ C we consider all of the instances of that class in
the validation set and for each we compute the reconstruction error

E(x) = ||x̂− x||22 =
dØ

i=1
(x̂i − xi)2 (5.17)

and we collect these quantities in the vector Ec ; then we compute the threshold for class
c as the 99% quantile of reconstruction error empirical distribution,

Tc = quantile(Ec, 0.99), ∀c ∈ C. (5.18)
Finally, for every class c ∈ C we compute the weight as
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Figure 5.7. An example of the confidence function (see formula 5.19) with
a threshold of 0.01.

wc =

 e− E(x)−Tc
Tc if E(x) > Tc

1 if E(x) ≤ Tc

(5.19)

Note that if E(x) ≤ Tc the probability is not altered,
wc = 1 =⇒ p̂(OP EN)

c = p̂cwc = p̂c, c ∈ C.
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Instead, if E(x) > Tc the probability is shrunk,

wc = e− e(x)−Tc
Tc < 1 =⇒ p̂(OP EN)

c = p̂cwc < pc,

and the unknown class probability is positive. Indeed,

p̂(OP EN)
c < pc =⇒

Ø
c∈C

p̂cwc < 1,

then,
P(x ∈ {unk}) =

Ø
c∈C

p̂c(1− wc) = 1−
Ø
c∈C

p̂cwc > 0.

Interestingly, we can interpret formula 5.19 as follows. For sake of simplicity we drop the
class-specific subscript. The quantity

E(x)− T
T

is the percentage of excess, in terms of reconstruction error, from the threshold, T . Thus,
the formulas 5.19 defines weights that:

• if the threshold is not exceed, the keep the probability untouched,

• else, the shrink according to the percentage of excess.

For example, if E(x) = T , then,
w = 1;

if E(x) = 2 · T , then,
w = 1

e
;

or, more in general, if E(x) = k · T ,

w =
31

e

4k−1
.

This formulation is a variant of the one proposed by [49], for developing an Open
Set classifier. In [49], the authors consider a Weibull distribution for modeling the class
confidence weights. However, such a formulation is inappropriate for anomaly detection
because it could also penalize normal instances. Instead, the use of a threshold and a piece-
wise function allow to not penalize samples that, according to the Autoencoder, should
not be anomalous, and penalize, proportionally, the instances with a reconstruction error
that exceeds the threshold.

We denote the model that we have obtained as CR(·), that for any sample x ∈ Rd it
gives as output the |C|+ 1 classification probabilities

p̂(OP EN) = CR(x) ∈ R|C| × R, (5.20)

that account both form known and unknown classes.
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Anomaly Detection algorithm
Differently from Section 5.2.2, the design of the model explicitly takes into account

the possibility of discovering unknown classes, and, as a result, we do not need to define
threshold anymore for understanding when we meet anomalies. Indeed, for any new
sample (xi, ci), we can use the open set classifier to predict the class with maximum
probability, if this coincides with the actual one ci, then xi is normal, otherwise it is an
anomaly.

Formally, for any data point (xi, ci) ∈ Rd × C,

1. we compute predicted probability probability p̂(OP EN) = CR(x),

2. we get the predicted class with maximum probability ĉi = argmax
j∈C∪{unk}

(p̂(OP EN)
j ),

3. if ĉi = ci, we predict as normal,

4. otherwise we predict an anomaly.

Interestingly, we can observe that two factors drive the prediction. First, the recon-
struction error enters the probabilistic model, with formula 5.16, by scaling the probabil-
ities from the classification model. When the class confidence weights assume values that
approach zero, the probabilistic model shifts the probability distribution towards the un-
known class, resulting in an anomaly prediction. In this situation, the reconstruction task
completely drives the prediction. Instead, if class confidence weights assume intermediate
values, the decision depends on the mutual relations between classification probabilities.
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Chapter 6

Results

In this chapter, we investigate the Anomaly Detection models, proposed in Section 5.2, on
the two benchmark datasets described in Chapter 2. Specifically, we conduct an analysis
in two directions:

1. a qualitative evaluation, described in Section 6.1, where the models are tested on
the PRONOSTIA dataset with the aim of understanding how they can be used for
monitoring an industrial process.

2. a quantitative evaluation, described in Section 6.2, where, by considering the
CWRU dataset, we compare the proposed models in terms of an anomaly detection
score.

6.1 Qualitative analysis
The PRONOSTIA dataset (see Section 2.1) is a collection of 17 run-to-failure experi-
ments, where rolling bearings are monitored under different operating conditions. At the
beginning of each experiment the installed bearing is intact. Then, as the time passes
the bearings suffer from the natural degradation, and the experiments proceed until they
end up in failures. Therefore, since the process is continuously monitored by the sensors,
we have the complete picture that describe the degradation process that lead the bearing
to the failure. However, we do not have labels that state when the bearings start to
show signs of defects. For that reason, we can only conduct a qualitative analysis on this
dataset.

The data is processed according to the operation described in Section 4.2, resulting
in a dataset with 24018 rows and 277 columns (the format described by equation 4.2).
Then, in order to test the Anomaly Detection models, we split the dataset into distinct
portions for training and testing.

In Section 5.2, we have pointed out that the proposed Anomaly Detection requires only
normal instances for training. Generally speaking, we can think of normal data when we
are monitoring rolling bearings, or more in general machines, under ordinary conditions,
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while anomalous data refers to situations like unexpected events, or unexplainable behav-
iors. However, it is not trivial to discern which data are normal or anomalous, indeed,
it is precisely the problem considered in developing anomaly detection models. In a real
industrial scenario, we should require the contribution of a domain expert. However, in
this case, our data derive from run-to-failure experiments and we can make an assump-
tion. Specifically, since most of the experiments’ duration ranges from 1 hour to 8, and
at the beginning the rolling bearings are brand new, we can assume that for the first 30
minutes we are monitoring bearings with no defects, or at least with minimal ones.

Therefore, we split the dataset into two portions:

• the learning set, made up of the first 30 minutes of monitoring from all experiments,
that will be used to train Anomaly Detection models;

• the test set, that contains the remaining part from all experiments, and will be used
for testing Anomaly Detection models.

In addition, we further divide the learning set into two portions, namely the training
set and the validation set, with a 80/20 stratified random splitting, by considering the
operating condition as class label. That is, we divide the learning set into two parts that
account respectively for 80% and 20% of the original set, moreover, the records in the two
parts are randomly sampled by conserving the same operating condition class proportion
of the original set for both splits.

Finally, we normalize the numerical data with a [0,1] min-max scaling. Specifically,
let we consider a matrix X ∈ Rm×d that contains numerical data, for each column j ∈
{1,2, . . . , d} we compute the minimum,

mj = min
i∈{1,2,...,m}

Xi,j , (6.1)

and the maximum,
Mj = max

i∈{1,2,...,m}
Xi,j ; (6.2)

after that, we normalize the j-th columns as

Xi,j ←
Xi,j −mj

Mj −mj
, ∀i ∈ {1,2, . . . , m}, (6.3)

and we repeat the procedure for all column j ∈ {1,2, . . . , d}. We compute the quantities
6.1 and 6.2 by considering on the training set while we apply the normalization 6.3 to all
sets.

The normalized datasets will be considered in the Sections 6.1.1, 6.1.2, and 6.1.3 for
training and evaluating the proposed Anomaly Detection models.

6.1.1 Autoencoder Anomaly Detection
In this section, by considering the PRONOSTIA dataset 2.1, we investigate the Autoen-
coder anomaly detection model described in Section 5.2.1.
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By considering the training set we learn the model’s parameters by minimizing the
Mean Squared Error (MSE) loss (see equation 5.6), with a procedure of two steps, as
described in Section 5.2.1. The first step is used just to initialize the parameters for the
second phase, by optimizing the weights only for a restricted portion of the model. The
second phase considers the whole architecture, and the optimizer performs 1500 epochs.
Figure 6.1 reports the training history of the second phase in terms of loss computed
on training and validation set. The training portion only is used by the optimizer for
learning the model’s parameters, while the validation set is just considered for obtaining a
benchmark loss score at each epoch. From the Figure 6.1 we can see that the training and
validation losses are close to each other, and, therefore, we can conclude that the model
does not overfit.
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Figure 6.1. Autoencoder’s training loss history.

Next, we consider the validation set and we compute the reconstruction error threshold
as the 99% quantile of the reconstruction errors. We obtain a value of

T = 0.0089.

Figure 6.2 shows that considering validation rather then training data leads to de-
terminate a more robust threshold. Indeed, since during training we minimize the MSE
loss, compute the threshold from training data may easily lead to underestimate the new
samples’s error. Specifically, with training data we get a value of 0.0072, that is around
20% less than the value obtained with the validation portion. This underestimate could
lead the model to be too sensible in evaluating the reconstruction errors by predicting
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anomalies even when there are none. Moreover, since validation data are unseen by the
model during training, they are representative of the new instances that will come, and
the obtained threshold leads to discriminate anomalies more carefully.
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Figure 6.2. The histogram of the reconstruction error distribution over the training and
validation set. The vertical dotted lines are the corresponding thresholds.

As a result, the obtained model predicts an anomaly whenever the reconstruction
error is above the value of 0.0089. Then, we can consider the test portion and investigate
how the model behave in monitoring new signals. For example, Figure 6.3 reports the
anomaly predictions over time for the signals from experiments Bearing1_1, Bearing2_2,
Bearing3_2 (see Table 2.1), the same are reported in Figure 3.3 of Chapter 3. In the
figure we have also included the first 30 minutes of monitoring of the experiments, that
forms the learning set. From Figure 6.3 we can see that the experiments depicts very
different degradation patterns both in terms of hours of execution and reconstruction
errors:

(a) Starting from hour 1 the algorithm detects anomalies; the reconstruction error re-
mains below the value of 0.2 (which is around 22 times more the threshold) until
hour 4; then it increases more and more until the end of the experiment.
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(b) Almost at the beginning of the test period the model starts to detect anomalies; the
reconstruction error sharply increases until it reach a maximum between hour 1 and
1.5; then it decreases until hour 2, by always showing values above the threshold;
finally it suddenly increase to extremely high values until the end of the experiment.

(c) The algorithm detect an isolated anomaly before one hour; then it identify a normal
behaviour until hour 4, where it detect a sequence of anomalies; surprisingly, the
anomalies disappears until around four hour and an half, after that, we can see a
sudden increase to the reconstruction error.
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Figure 6.3. Monitoring 3 different experiments with the Autoencoder. The reconstruc-
tion error are cut-off above 1 for visualization purposes.

The analysis confirms the insights that we bring from the analysis of the raw signals
of Figure 3.3: the experiments 1_1 and 2_2 show early sign of defect with large advance,
while in experiment 3_2 the bearing is healthy for most of the time and it shows a fast
degradation pattern. Therefore, from a qualitative point of view the algorithm is able of
correctly detecting anomalies on new data.

On the other hand, is difficult to interpret the reconstruction error values when they
are above the threshold. Specifically, the model detects as anomalies the instances with
a reconstruction error above the threshold, but we can ask: the anomalies are all equal
to each other? An anomaly could be more severe than another? Does a greater error
correspond to a more severe anomaly?

If the threshold has a value of 0.0089 we can say that if the threshold is slightly ex-
ceed, for example when the reconstruction error is around 0.01, the anomaly is mild: it
moderately deviates from normality. But outside of this range, it is difficult to draw con-
clusions: discern between the severity of a value of 0.02 (around 2 times the threshold) or
0.05 (around 5 times the threshold) or even 0.2 (around 22 times the threshold) is impos-
sible. This problem arise from the fact that the reconstruction error is a quantity with no
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prior upper bounds. Indeed, the values reported in the pictures of Figure 6.3 are cut off
at 1 because the reconstruction error extremely increase at the end of the experiments:
without limiting the plot we could not observe the behaviour of the reconstruction error
in the proximity to the threshold.

Figure 6.4. Latent representation of data from learning set.

Finally, is interesting to investigate if the model somehow understand the presence of
the distinct operating conditions. To this extent, we explore the latent representation of
the data from learning set. We recall that the latent representation is the output of the
encoder, and it summarizes the data with a 5 dimensional representation that conserve
the most relevant information.

Figure 6.4 reports the latent representations of the data from learning set: we can
see that the data from the distinct operating conditions are organized into clusters with
stretched profiles that often overlap each other. Moreover, the figure is quite similar for
the one presented with PCA, in Section 3.2.1.

As we can expect, since signals from different operating condition shows distinct char-
acteristics (as we have observed in Section 3.2.1) the points of distinct classes are arranged
into different clusters. However, it is not clear the nature of the stretched profiles and of
the overlapping of the clusters.

6.1.2 Operating Condition Classification Anomaly Detection
In this section, we consider the PRONOSTIA dataset, and we investigate the Anomaly
Detection model proposed in Section 5.2.1.

The model exploits an auxiliary classification task for detecting anomalies. Specifically,
it exploits the fact that the bearings are monitored under different operating conditions,
that implicitly generates signals with different characteristics, as we have observed in
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Section 3.2.1. Moreover, it leverages the presence of data drift caused by the natural
degradation for detecting the anomalies, by spotting the decrease in the classifier perfor-
mances.

As a first step, we consider the problem of discriminating among operating conditions,
and we select the XGBoost classifier as classification model. Then, we determinate its
hyper-parameters with a 10 fold cross validation: we split the learning set in 10 folds, and
at each iteration we select nine of these folds to train the model and the remaining one for
the evaluation; we repeat the procedure until all folds are tested. Moreover, the folds are
made by preserving the percentage of samples for each class, and we select the accuracy
as evaluation score.

We recall that the accuracy is defined as the ratio between the number of correct
prediction and the total number of samples,

Accuracy = Number of correct prediction
Number of samples .

As a result, for each hyper-parameter configuration we obtain 10 accuracy scores, and
we select the one that maximize the mean accuracy. Table 5.1 reports all hyper-parameters
configurations together with the mean and the standard deviation of corresponding scores.

From the Table 5.1 we can see that best configuration in terms is given by:

• Maximum Depth of a tree = 3,

• λ = 5,

• Subsample ratio = 0.5.

With these hyper-parameters, every tree can have at most 3 levels and is trained on a
randomly sampled data portion that accounts for the half of the dataset. Moreover, we
observe that the selected parameters are the ones that most limit the overfitting. We can
expect, therefore, that the model will show good generalization skills.

Next, we train the XGboost classifier with the selected set of hyper-parameters on the
training set only. Figure 6.5 reports the classification performances on training, validation,
and test sets. We can see that the model gains perfect results in the training set, and
similarly, in the validation, it makes only two misclassifications, by gaining 99.66% of
accuracy. Contrarily, in the test set, we observe a relevant decrease in performance. This
behavior confirms the assumptions we have considered for developing the model in Section
5.2.2. As time runs, the model suffers from data drift, because the natural degradation
of the bearings causes a change in the probability distribution that generates data, and,
consequently, the classifier finds difficulties in predicting the correct class.

We exploit this behavior for detecting anomalies: we set thresholds that declare the
required probability for predicting an operating condition; if the probability falls below
the level, we raise an anomaly warning.

Specifically, as described in Section 5.2.2, we consider the validation set and we compute
the class-specific thresholds according to formula 5.13, and we obtain:

1. Threshold for class 1 : 0.991,
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Ranking
Maximum

Depth of a tree
λ

Subsample
ratio

Accuracy
Mean

Accuracy
Standard
Deviation

1 3 5.0 0.5 0.9641 0.0986
2 9 5.0 0.5 0.9607 0.1067
3 6 5.0 0.5 0.9603 0.1066
4 3 2.5 0.5 0.9572 0.1181
5 9 2.5 0.5 0.9572 0.1137
6 6 2.5 0.5 0.9569 0.1135
7 3 0.0 0.5 0.9479 0.1437
8 3 5.0 1.0 0.9469 0.1491
9 9 5.0 0.75 0.9459 0.1499
10 3 2.5 0.75 0.9455 0.1533
10 3 5.0 0.75 0.9455 0.1533
12 6 5.0 0.75 0.9452 0.1509
13 3 2.5 1.0 0.9452 0.1509
14 9 5.0 1.0 0.9445 0.1518
15 6 5.0 1.0 0.9438 0.1515
16 9 2.5 1.0 0.9434 0.1537
17 9 2.5 0.75 0.9428 0.1604
18 6 0.0 0.5 0.9427 0.1581
19 6 2.5 1.0 0.9427 0.1536
19 3 0.0 1.0 0.9427 0.1558
21 6 2.5 0.75 0.9421 0.1602
22 9 0.0 0.5 0.9421 0.1602
23 3 0.0 0.75 0.941 0.1644
24 6 0.0 0.75 0.939 0.165
25 9 0.0 0.75 0.9386 0.1682
26 6 0.0 1.0 0.9386 0.1625
27 9 0.0 1.0 0.9352 0.1659

Table 6.1. All the considered hyper-parameter configurations of XGboost.

2. Threshold for class 2 : 0.938,

3. Threshold for class 3 : 0.976.

We observe that the thresholds are rather demanding in terms of classification perfor-
mance. Indeed, for example, to predict class 1 we ask for a classification probability of at
least 0.991, thus, the model should be almost sure in the prediction.

Moreover, by looking at Figure 6.6 we can see that the probabilities show different
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Figure 6.5. Confusion matrices by considering, training, validation, and test sets.

patterns for the distinct classes. The distribution of classification probability for class
1 is narrow around 1.0, while the ones of classes 2 and 3 are more skewed toward 0.9.
Consequently, the thresholds assume different values.

Interestingly, we can observe that XGBoost model seems quite a good classifier for
discriminating operating conditions. Indeed, in the validation set, where there are unseen
samples that should not be still exposed to data drift, the classifier makes only a minimal
number of mistakes, and predictions are made with corresponding very high probabilities.

Then we can investigate the Anomaly Detection model, made up of the XGBoost to-
gether with the probability thresholds, in monitoring the vibration signals. Since the
model is structured analogously to the Autoencoder explored in the previous section, we
expect similar results. Indeed, in both models, we calculate thresholds starting from
indicators computed on validation data which define from which values we should con-
sider instances as anomalies. The only difference is that this model uses probability as
indicators, while the Autoencoder uses reconstruction errors.

In Figure 6.7 we can see the classification probability for the correct operating con-
dition, monitored over time in 3 different experiments. In each plot the threshold is
reported as a black dotted line, and the anomaly predictions are shown by changing color
and shape.

We can see common points with the results of the previous section:

• in experiment Bearing1_1 (see 6.7(a)), the model detects anomalies after one hour;

• in experiment Bearing3_2 (see 6.7(c)), before 1 hour the model detects isolated
anomalies, while after 4 hour it detect many anomalous instances.

On the other hand, in experiment Bearing3_2 (see 6.7(c)), the model detect also anomalies
between one hour and two, which are not recognized by the Autoencoder. Moreover,
in Bearing2_1 (see 6.7(b)) the model detects anomalies only it the last minutes of the
experiment, while the Autoencoder detect the degradation process at early stages.
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Figure 6.6. Histograms of correct class probabilities on the validation set and the
corresponding rejection thresholds as vertical dotted lines.
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Figure 6.7. Monitoring 3 different experiments with the model describe in Section 5.2.2.
The same experiments are described in Figure 3.3 of Chapter 3.

In addition, by looking with more attention at Figure 6.7(a), we can make further
considerations:
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• it is not true that the more the degradation process proceeds, or equivalently, the
more the defect become evident, the more the probability decreases;

• the predicted probabilities are unstable: after hour 1 we can find also Normal pre-
diction (blue points), even toward the end of the experiment.

Therefore, the model has many limitations and the probabilities are hard to be interpreted.
As we have anticipated in Section 5.2.3, the behavior is caused by the so called closed set
assumption: the classifier believe that they exist only the class it already known, and it
does not contemplate the possibility of discover unknown classes.

6.1.3 Classification-Reconstruction Anomaly Detection
In this Section, we consider the Classification-Reconstruction model, described in
Section 5.2.3, and we investigate its effectiveness in monitoring signals and detecting
anomalies on PRONOSTIA dataset. The model is made up of two main blocks, as shown
in Figure 5.5:

• an Autoencoder with a classification module,

• an XGBoost classifier;

the two are trained separately over the training set, and then they are merged for obtaining
an Open-Set classifier, which outputs can be used for anomaly detection.
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Figure 6.8. Training history for the Autoencoder-Classifier.
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First, we train the Autoencoder-Classifier with a procedure of two steps: we train
the Autoencoder for 750 epochs by minimizing the Mean Squared Error loss (see formula
5.6), then we add a classification module by connecting it to the encoder’s output, and we
train the overall architecture by minimizing jointly, the MSE and the Cross-Entropy (see
formula 5.14). Figure 6.8 reports the loss history across the epochs for the two steps. On
the left, we can see the first step where we train the Autoencoder without the classification
module: the loss history is similar to the one of Figure 6.1, presented in Section 6.1.1. On
the right is shown the loss curve for the training of the Autoencoder-Classifier. We can
see that at the beginning the loss is above 1 and the optimization leads its value towards
0, showing that the model learns to tackle both tasks.
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Figure 6.9. The histogram of the reconstruction error distribution in the 3 different
operating conditions. The vertical dotted lines are the corresponding thresholds.

Next, we consider the reconstruction output of the Autoencoder-Classifier for comput-
ing the thresholds required for the confidence functions (see formulas 5.19). By applying
the formulas 5.18, we obtain

1. Threshold for class 1 : 0.0094,

2. Threshold for class 2 : 0.0079,

3. Threshold for class 3 : 0.0041.

Since the thresholds are different the class-confidence functions will shrink differently from
the corresponding probabilities.
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Then, the XGBoost model is learned on the training set, by selecting the same hyper-
parameters configuration determined in Section 6.1.2.

After this, we build the Classification-Reconstruction Anomaly Detection model
by merging the outputs of the two blocks, together with the class-confidence functions,
as described in Section 5.2.3 (see Figure 5.5 for an outline of the model). The model
overcomes the issue of defining thresholds, by using the whole output probability vector
for predicting anomalies, as described in Section 5.2.3. Moreover, it leads to the definition
of a sensible health indicator: since in each experiment we know the operating condition
it runs, for assessing the health of the bearing, we can monitor the probability that refers
to this specific class.
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Figure 6.10. Confusion matrices by considering, training, validation, and test sets.

First, we inspect the model’s skills in classifying the operating conditions, and inves-
tigate the effect of the data drift. Figure 6.10 reports the classification performances on
training, validation, and test sets. As in the previous section, we can see that the model
gains perfect results in the training set, and similarly, in the validation, it makes only a
few misclassifications. Contrarily, in the test set, we observe a relevant decrease in per-
formance, together with an relevant number of predictions related to the unknown class.
This confirms our hypotheses: the data drift causes a shift in the predicted probability
distribution towards the unknown class.

Next, we test the model performances in monitoring the run-to-failure experiments.
Figure 6.11 reports the health indicator and the anomaly prediction in the monitoring of
3 distinct experiments (the corresponding raw signals are reported in Figure 3.3):

(a) The value of the health indicator is stable at around 1.0 until one hour of monitoring;
then its value starts to decrease and the algorithm predicts anomalies; until 3 hours
we can see a progressive decrease in the health indicator, and accordingly, an increase
in the number of anomaly predictions; after 3 hour most of the predictions reaches
the value of 0.0; after 4 the health indicator is stable at 0.0, showing that the bearing
is completely worn.
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Figure 6.11. Monitoring 3 different experiments with the Classification
Reconstruction model.

(b) After some minutes from the beginning of the test period the model detects anomalies
by showing a drastic change in the condition indicator.

(c) Except for some isolated points, the condition indicator show value of around 1.0 for
the first four hours of monitoring; then the value decrease, and the model predicts
anomalies; at the end of the experiment, the indicator reaches the minimal value.

From the analysis, we can argue that the health indicator allows interpretations of the
anomaly severity. Indeed, since it is a probability, its range is restricted to [0,1], we can
make, therefore, the following considerations:

• when it is around 1 we can consider the bearing as completely healthy,

• As the signals deviates from the ordinary the health indicator decreases,

• when it is around 0 the bearings are totally damaged,

• for intermediate values we let the model decide if it is an anomaly by considering
the whole probabilistic model.

We end the section by investigating the latent representation of the model. From
Figure 6.12, we can see that the distinct operating conditions are organized into well-
defined clusters. The stretched profiles and the overlap between clusters that we have
seen in Section 6.1.1 are not present anymore: it seems that the model has gained more
complete knowledge of the underlying data.

74



6.2 – Quantitative analysis

Figure 6.12. The first 5 encoded features of data from learning set.

6.2 Quantitative analysis
The CWRU dataset (see Section 2.1) contains signals from condition monitoring of brand
new as well as defective rolling bearings, monitored by a single vibration sensor. The
defects are artificially originated by damaging the bearings in specific locations, resulting
in different fault types. We process the data according to the operation described in
Section 4.3, by obtaining a dataset with 2589 rows and 72 columns ( the format is described
by equation 4.3).

Then, in order to evaluate the Anomaly Detection models, we split the dataset into
distinct portions for training and testing.

Let us denote the dataset with D. Since in this dataset we have labels that declare
which records are normal or anomalous, we can divide the dataset into separate portions:

• D(normal), the set of normal instances;

• D(anomaly), the set of anomaly records.

Then, we divide D(normal), in two parts with an 80/20 stratified random splitting, in which
the stratification is made by considering the operating condition class. The largest part
will be the learning set. The other part, together with D(anomaly) forms the test set. We
use the learning set to train the model and the test set for evaluation. Then, the learning
set is further divided into two sets with another stratified split, by obtaining the training
set and the validation set.

Finally, we normalize the numerical data with a [0,1] min-max scaling, in which we
compute the quantities, defined by equations 6.1 and 6.2, by considering the training set
while we apply the normalization, according to formula 6.3, to all sets.
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Therefore, we train the models by considering only normal data, and we test their
capacity to recognize anomalies as well as normal instances. Specifically, we select the F1
score as a quality measure and we consider the following evaluation protocol:

1. we select a random seed s that controls the first random splitting;

2. we obtain training, validation, and test sets;

3. we train the models on the learning set and we evaluate them, by computing the F1
score, on the test set;

4. we iterate the procedure for 30 different random seeds, and we collect the obtained
scores.

We recall that, in the context of Anomaly Detection, the F1 score is defined as:

Precision = TP

TP + FP
,

Recall = TP

TP + FN
,

F1-score = 2 · Precision · Recall
Precision + Recall ,

where TP , FP , and FN are defined in Table 6.2.

Predicted
Normal Anomaly

True
Normal TN FP

Anomaly FN TP

Table 6.2. The confusion matrix.

The Recall measures the model’s capability of recognizing the anomalies. While the
Precision quantifies the proportion of correctly detected anomalies over the total number
of anomaly predictions. These two metrics are complementary, and they are combined
into the F1-score, which is the harmonic mean of the two.

As a result, we can obtain an overall evaluation of the models that does not depends
on the specific data-partition that we have chosen, which can be used for making a reliable
comparison.

Table 6.3 reports the results in terms of the mean and standard deviation of the ob-
tained scores. We can see that the mean scores are above 0.99 and the standard deviations
are of the order of the third decimal digit or less; therefore all models show excellent and
stable performances.

The Classification-Reconstruction model outperforms the other methods by show-
ing the highest mean score and the lowest standard deviation. Consequently, we can argue
that the proposed model improves anomaly detection performances of an Autoencoder.
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Model Name Mean Standard Deviation
Autoencoder 0.99926 0.00044

Operating Condition Classification 0.99046 0.00773
Classification-Reconstruction 0.99984 0.00017

Table 6.3. Performance of the Anomaly Detection models evaluated on CWRU
dataset, in terms of F1 score.
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Chapter 7

Conclusions

In this thesis, we have investigated the connection between Open Set Recognition and
Predictive Maintenance by proposing a novel Anomaly Detection model for rolling
bearings fault detection.

First, we have presented two benchmark datasets for condition monitoring of rolling
bearings through vibration sensors, and we have proposed a preprocessing pipeline for
extracting frequency-domain and time-domain features from raw signals. Moreover, we
have explored the data by using Fourier Analysis, observing that the natural degrada-
tion process can be seen in terms of data drift: as the defect becomes evident the data
distribution changes due to different physical conditions of the system.

Then, we have described Anomaly Detection models that can recognize the data drift
by spotting the failure’s incipient. First, we have analyzed the use of Autoencoder in
Anomaly Detection by monitoring the reconstruction error, in which the method requires
setting a threshold that defines the critical value above which we detect anomalies. Next,
we observed that Autoencoders do not exploit the fact that the bearings work under three
different operating conditions. Then, we have developed an Anomaly Detection model
that leverages this information by using a classifier together with thresholds defined in
terms of probability for detecting anomalies. However, we have found that such a model
leads to unstable predictions because of the closed set of classes. Finally, in Section
5.2.3, we have developed a novel Anomaly Detection model that exploits an Open Set
classifier to build a rich concept of normality and detect anomalies. Moreover, the model
can recognize anomalies without requiring the definition of sensible thresholds, which is a
critical point of the previous models.

We have evaluated the models in terms of qualitative and quantitative analysis, show-
ing that the novel approach outperforms the others in terms of anomaly detection perfor-
mances, and it leads to the definition of an interpretable condition indicator that can be
used for driving maintenance decisions.

Further Works
The Classification-Reconstruction Anomaly Detection model that we have pro-

posed requires a set of well-defined classes that characterizes the signals and can be in-
vestigated in different industrial scenarios that meet this requirement. For example, we
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consider an industrial process in which the sensors monitor the development of a product
across different assembly stages; or where a machine tool can work in different operating
modes for performing distinct actions.

Moreover, our model can be extended and, possibly, improved by considering different
kinds of modifications to its building blocks. In the following, we list some ideas.

First, instead of considering only the XGboost as the additional classifier in equation
5.15, we can extend the model by considering a stack of classifiers and average out all of
their predictions.

Second, we can modify the neural network architecture by considering convolutional
layers, allowing us to work directly with raw signals.

Then, we can investigate different methods for computing the quantiles in equation
5.18. As an example, we can consider the method proposed in the article [11], which is
particularly suitable for skewed distribution.

Moreover, instead of considering the reconstruction error to define the class-confidence
weights in equation 5.19, we can consider the distances from the class-specific centroids
in the latent space, as reported in [49].

Finally, we can consider different losses for training the Autoencoder. For example,
we can learn the reconstruction task by minimizing the Mean Absolute Percentage Error
loss [8]. As a result, the reconstruction error is expressed in relative terms rather than
absolute ones, leading, thus, to a more clear interpretation. Differently, we can consider
the clustering-based losses [12] [28] to learn the classification task, obtaining clusters in
the latent space that are well separated and narrow around the centroid. These losses are
particularly suitable for defining the class-confidence weights in terms of distances.

80



Bibliography

[1] Abhijit Bendale and Terrance Boult. Towards open world recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 1893–1902,
2015.

[2] Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition, pages
1563–1572, 2016.

[3] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classi-
fication and regression trees. Routledge, 2017.

[4] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof:
identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, pages 93–104, 2000.

[5] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining, pages 785–794, 2016.

[6] Francesca Cipollini, Luca Oneto, Andrea Coraddu, Stefano Savio, and Davide An-
guita. Unintrusive monitoring of induction motors bearings via deep learning on
stator currents. Procedia Computer Science, 144:42–51, 2018. ISSN 1877-0509. doi:
https://doi.org/10.1016/j.procs.2018.10.503. URL https://www.sciencedirect.
com/science/article/pii/S1877050918322129. INNS Conference on Big Data and
Deep Learning.

[7] Mingliang Cui, Youqing Wang, Xinshuang Lin, and Maiying Zhong. Fault diagnosis of
rolling bearings based on an improved stack autoencoder and support vector machine.
IEEE Sensors Journal, 21(4):4927–4937, 2021. doi: 10.1109/JSEN.2020.3030910.

[8] Arnaud De Myttenaere, Boris Golden, Bénédicte Le Grand, and Fabrice Rossi. Mean
absolute percentage error for regression models. Neurocomputing, 192:38–48, 2016.

[9] Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for ma-
chine learning. Cambridge University Press, 2020.

[10] Anton Dries and Ulrich Rückert. Adaptive concept drift detection. Statistical Analysis
and Data Mining: The ASA Data Science Journal, 2(5-6):311–327, 2009.

81

https://www.sciencedirect.com/science/article/pii/S1877050918322129
https://www.sciencedirect.com/science/article/pii/S1877050918322129


BIBLIOGRAPHY

[11] Ted Dunning and Otmar Ertl. Computing extremely accurate quantiles using t-
digests. arXiv preprint arXiv:1902.04023, 2019.

[12] Dario Fontanel, Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo, Elisa Ricci,
and Barbara Caputo. Boosting deep open world recognition by clustering. IEEE
Robotics and Automation Letters, 5(4):5985–5992, 2020.

[13] Jerome H Friedman. Greedy function approximation: a gradient boosting machine.
Annals of statistics, pages 1189–1232, 2001.

[14] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Recent advances in open set
recognition: A survey. IEEE transactions on pattern analysis and machine intelli-
gence, 43(10):3614–3631, 2020.

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[16] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data
with neural networks. science, 313(5786):504–507, 2006.

[17] Hanqing Hu, Mehmed Kantardzic, and Tegjyot S Sethi. No free lunch theorem for
concept drift detection in streaming data classification: A review. Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, 10(2):e1327, 2020.

[18] Fabio Immovilli, Marco Cocconcelli, Alberto Bellini, and Riccardo Rubini. Detection
of generalized-roughness bearing fault by spectral-kurtosis energy of vibration or cur-
rent signals. IEEE Transactions on Industrial Electronics, 56(11):4710–4717, 2009.
doi: 10.1109/TIE.2009.2025288.

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[20] Hyafil Laurent and Ronald L Rivest. Constructing optimal binary decision trees is
np-complete. Information processing letters, 5(1):15–17, 1976.

[21] Pengfei Liang, Chao Deng, Jun Wu, Zhixin Yang, Jinxuan Zhu, and Zihan Zhang.
Single and simultaneous fault diagnosis of gearbox via a semi-supervised and high-
accuracy adversarial learning framework. Knowledge-Based Systems, 198:105895,
2020.

[22] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth
ieee international conference on data mining, pages 413–422. IEEE, 2008.

[23] Han Liu, Jianzhong Zhou, Yang Zheng, Wei Jiang, and Yuncheng Zhang. Fault diag-
nosis of rolling bearings with recurrent neural network-based autoencoders. ISA
Transactions, 77:167–178, 2018. ISSN 0019-0578. doi: https://doi.org/10.1016/
j.isatra.2018.04.005. URL https://www.sciencedirect.com/science/article/
pii/S0019057818301514.

82

http://www.deeplearningbook.org
https://www.sciencedirect.com/science/article/pii/S0019057818301514
https://www.sciencedirect.com/science/article/pii/S0019057818301514


BIBLIOGRAPHY

[24] Douglas A Lyon. The discrete fourier transform, part 4: spectral leakage. Journal of
object technology, 8(7), 2009.

[25] Atefeh Mahdavi and Marco Carvalho. A survey on open set recognition. In 2021 IEEE
Fourth International Conference on Artificial Intelligence and Knowledge Engineering
(AIKE), pages 37–44. IEEE, 2021.

[26] Larry Manevitz and Malik Yousef. One-class svms for document classifica-
tion. Journal of Machine Learning Research, 2:139–154, 01 2001. doi: 10.1162/
15324430260185574.

[27] Wentao Mao, Wushi Feng, Yamin Liu, Di Zhang, and Xihui Liang. A new deep auto-
encoder method with fusing discriminant information for bearing fault diagnosis.
Mechanical Systems and Signal Processing, 150:107233, 2021.

[28] Dimity Miller, Niko Sunderhauf, Michael Milford, and Feras Dayoub. Class anchor
clustering: A loss for distance-based open set recognition. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pages 3570–
3578, 2021.

[29] R Keith Mobley. An introduction to predictive maintenance. Elsevier, 2002.

[30] Patrick Nectoux, Rafael Gouriveau, Kamal Medjaher, Emmanuel Ramasso, Brigitte
Chebel-Morello, Noureddine Zerhouni, and Christophe Varnier. Pronostia: An exper-
imental platform for bearings accelerated degradation tests. In IEEE International
Conference on Prognostics and Health Management, PHM’12., pages 1–8. IEEE Cat-
alog Number: CPF12PHM-CDR, 2012.

[31] Kim-Anh Nguyen, Phuc Do, and Antoine Grall. Multi-level predictive maintenance
for multi-component systems. Reliability engineering & system safety, 144:83–94,
2015.

[32] Numpy. Numpy.org. URL https://numpy.org/.

[33] Hai Qiu, Jay Lee, Jing Lin, and Gang Yu. Wavelet filter-based weak signature de-
tection method and its application on rolling element bearing prognostics. Journal
of sound and vibration, 289(4-5):1066–1090, 2006.

[34] Yongyi Ran, Xin Zhou, Pengfeng Lin, Yonggang Wen, and Ruilong Deng. A sur-
vey of predictive maintenance: Systems, purposes and approaches. arXiv preprint
arXiv:1912.07383, 2019.

[35] Roozbeh Razavi-Far, Ehsan Hallaji, Maryam Farajzadeh-Zanjani, and Mehrdad Saif.
A semi-supervised diagnostic framework based on the surface estimation of faulty
distributions. IEEE Transactions on Industrial Informatics, 15(3):1277–1286, 2018.

[36] Roozbeh Razavi-Far, Ehsan Hallaji, Maryam Farajzadeh-Zanjani, Mehrdad Saif,
Shahin Hedayati Kia, Humberto Henao, and Gerard-Andre Capolino. Information

83

https://numpy.org/


BIBLIOGRAPHY

fusion and semi-supervised deep learning scheme for diagnosing gear faults in induc-
tion machine systems. IEEE Transactions on Industrial Electronics, 66(8):6331–6342,
2018.

[37] B. Samanta, K.R. Al-Balushi, and S.A. Al-Araimi. Artificial neural networks and
support vector machines with genetic algorithm for bearing fault detection. En-
gineering Applications of Artificial Intelligence, 16(7):657–665, 2003. ISSN 0952-
1976. doi: https://doi.org/10.1016/j.engappai.2003.09.006. URL https://www.
sciencedirect.com/science/article/pii/S0952197603001143.

[38] Walter J. Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and Terrance E.
Boult. Toward open set recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(7):1757–1772, 2013. doi: 10.1109/TPAMI.2012.256.

[39] Walter J. Scheirer, Lalit P. Jain, and Terrance E. Boult. Probability models for open
set recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
36(11):2317–2324, 2014. doi: 10.1109/TPAMI.2014.2321392.

[40] SKF. Skf bearing rating life. URL https://www.skf.com/uk/
products/rolling-bearings/principles-of-rolling-bearing-selection/
bearing-selection-process/bearing-size/size-selection-based-on-rating-life/
bearing-rating-life.

[41] Julius Orion Smith. Mathematics of the discrete Fourier transform (DFT): with audio
applications. Julius Smith, 2008.

[42] Apache Spark. Apache spark. URL https://spark.apache.org/.

[43] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[44] V. Sugumaran, V. Muralidharan, and K.I. Ramachandran. Feature selection using
decision tree and classification through proximal support vector machine for fault
diagnostics of roller bearing. Mechanical Systems and Signal Processing, 21(2):930–
942, 2007. ISSN 0888-3270. doi: https://doi.org/10.1016/j.ymssp.2006.05.004. URL
https://www.sciencedirect.com/science/article/pii/S0888327006001142.

[45] Case Western Reserve University. Case western reserve university bearings dataset.
URL https://engineering.case.edu/bearingdatacenter.

[46] Muhammad Habib ur Rehman, Ejaz Ahmed, Ibrar Yaqoob, Ibrahim Abaker Targio
Hashem, Muhammad Imran, and Shafiq Ahmad. Big data analytics in industrial iot
using a concentric computing model. IEEE Communications Magazine, 56(2):37–43,
2018.

[47] Martin Vetterli, Jelena Kovačević, and Vivek K Goyal. Foundations of signal pro-
cessing. Cambridge University Press, 2014.

84

https://www.sciencedirect.com/science/article/pii/S0952197603001143
https://www.sciencedirect.com/science/article/pii/S0952197603001143
https://www.skf.com/uk/products/rolling-bearings/principles-of-rolling-bearing-selection/bearing-selection-process/bearing-size/size-selection-based-on-rating-life/bearing-rating-life
https://www.skf.com/uk/products/rolling-bearings/principles-of-rolling-bearing-selection/bearing-selection-process/bearing-size/size-selection-based-on-rating-life/bearing-rating-life
https://www.skf.com/uk/products/rolling-bearings/principles-of-rolling-bearing-selection/bearing-selection-process/bearing-size/size-selection-based-on-rating-life/bearing-rating-life
https://www.skf.com/uk/products/rolling-bearings/principles-of-rolling-bearing-selection/bearing-selection-process/bearing-size/size-selection-based-on-rating-life/bearing-rating-life
https://spark.apache.org/
https://www.sciencedirect.com/science/article/pii/S0888327006001142
https://engineering.case.edu/bearingdatacenter


BIBLIOGRAPHY

[48] Heng Wang and Zubin Abraham. Concept drift detection for streaming data. In 2015
international joint conference on neural networks (IJCNN), pages 1–9. IEEE, 2015.

[49] Ryota Yoshihashi, Wen Shao, Rei Kawakami, Shaodi You, Makoto Iida, and Takeshi
Naemura. Classification-reconstruction learning for open-set recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4016–4025, 2019.

[50] Shen Zhang, Fei Ye, Bingnan Wang, and Thomas G Habetler. Semi-supervised bear-
ing fault diagnosis and classification using variational autoencoder-based deep gener-
ative models. IEEE Sensors Journal, 21(5):6476–6486, 2020.

85


	Introduction
	Datasets
	Pronostia
	Case Western Reserve University dataset (CWRU)

	Exploratory Data Analysis
	Techniques
	Time series
	Fourier analysis
	Principal Component Analysis

	Data Exploration
	PRONOSTIA
	CWRU


	Preprocessing
	Feature extraction algorithm
	Preprocessing pipeline PRONOSTIA
	Preprocessing pipeline CWRU

	Models
	Preliminary concepts
	Neural Networks
	eXtreme Gradient Boosting
	Open Set Recognition

	Proposed methods
	Autoencoder Anomaly Detection
	Operating Condition Classification Anomaly Detection
	Classification-Reconstruction Anomaly Detection


	Results
	Qualitative analysis
	Autoencoder Anomaly Detection
	Operating Condition Classification Anomaly Detection
	Classification-Reconstruction Anomaly Detection

	Quantitative analysis

	Conclusions

