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Summary

In a world which is every day more interconnected and permeated with social
relationships (both physical and virtual) modelling such interactions has become
an interesting issue, in order to achieve a better comprehension of phenomena such
as the development of communities.
From a mathematical perspective, the general theory of unsigned networks - where
nodes are linked one to each others by arcs with positive weights, representing
friendly and collaborative interaction between individuals can only in part describe
real situations, and signed networks are commonly used in order to take into
account also negative interactions (representing unfriendly relationships).
Referring to Cartwright and Harary’s generalization of Heider’s theory, the two
theories of structural balance and weak balance have been developed in order
to investigate the cause of conflicts in networks of individuals whose mutual
relationships are characterizable in terms of friendship and hostility. In this regard
structural balance theory postulates that the origin of such tensions is related to
the presence of negative cycles (i.e. cycles with an odd number of negative edges),
meaning that a network is exactly balanced if it has no negative cycles, while it is
increasingly unbalanced the more the negative cycles are present in the network.
Relaxing the hypothesis allowing the network to have "weakly balanced cycles" (i.e.
negative cycles with more than one negative link) weak balance theory instead
generalizes the previous one postulating that a network is weakly balanced if it
can be exactly partitioned into communities where every within-community link is
positive and every between-communities link is negative, while it is increasingly
unbalanced the more is the amount of unbalanced cycles.
As it is hard to expect that real networks are exactly balanced, particularly
interesting is to quantify how far a network is from balance; in this regard, among
the various methods introduced in literature, one of interest is the frustration index
(also known as line index of imbalance) which represents the minimum amount of
edges that must be reversed in order to achieve a balanced network. Despite the
simple derivation (that refers to the Ising spin glass model), its computation turns
out to be an NP hard problem (which does not allow it to be calculated for large
networks), and heuristics have been proposed to estimate it in a feasible time.
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For the case of weakly balanced fully connected networks, and supposing that the
related partition of the network is known, we prove that the frustration index
is related to the fractionalization - a dispersion index well known in literature
and vastly used in economy and ecology - by an exact formula. We show that on
empirical data the two indexes are well correlated in the vast majority of the cases.
Two consequences follow: first knowing the network partition, we can interpret
fractionalization as an easy to compute estimation of the frustration; second we
can use frustration to estimate the number of expected communities in community
detection algorithms.
The aim of this work is to provide a formal analysis of these concepts in the case
of fully connected networks, Erdos Renyi networks, and quasi weakly balanced
networks (i.e. allowing the network to present violations from the weakly balanced
state). For all these cases the exact formula for the frustration index is obtained
and shown numerically using artificial networks. Moreover for the fully connected
case some examples of real networks belonging to economy, politics and etno-
linguistic are considered in order to validate the formula. Lastly a novel approach
for community detection is proposed, and compared with the state of the art both
for unsigned and signed networks in the case of planted partition graphs.
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Network Basic Definitions

In this chapter we introduce some basic notation about networks which will be
used in the following sections.

Definition 1. Denote V = v1, v2 . . . vn a set of nodes, denote as “undirected signed
network” the set G = (V, E−, E+) where the set of couples E+ ⊆ V × V contains
all the positive links between nodes and similarly E− ⊆ V × V contains all the
negative links between nodes; such that E+ ∩ E− = ∅.

Definition 2. Define the “positive adjacency matrix” as follows:

A+
ij =

I
1 if (i, j) ∈ E+

0 otherwise
(1)

Definition 3. Define the “negative adjacency matrix” as follows:

A−
ij =

I
1 if (i, j) ∈ E−

0 otherwise
(2)

Definition 4. Define the “signed adjacency matrix” as A = A+ − A−, which can
be expressed as:

Aij =


1 if (i, j) ∈ E+

−1 if (i, j) ∈ E−

0 otherwise
(3)

Definition 5. Given a signed undirected graph G = (V, E−, E+) we define the
“Laplacian of G” as the matrix L = ∆ − A, where ∆ = diag{δ1 . . . δn} and δi =qn

j=1|aij|

Definition 6. Given a signed undirected graph G = (V, E−, E+) we define the
“normalized Laplacian of G” as the matrix L = I−∆−1A, where ∆ = diag{δ1 . . . δn}
and δi = qn

j=1|aij|
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Network Basic Definitions

Definition 7. We call the “positive neighbors” of the node v all the nodes which
are connected with v by a positive edge, which means N+

v = {u | (v, u) ∈ E+}

Definition 8. We call the “negative neighbors” of the node v all the nodes which
are connected with v by a negative edge, which means N−

v = {u | (v, u) ∈ E−}

Definition 9. We call the “neighbors” of a node v all the nodes which are connected
with v by an edge (whether positive or negative), which means N+

v = N+
v ∪N−

v

Definition 10. We define the “positive (negative) degree” of a node v as the
number of nodes which are connected to v by a positive (negative) edge, which
means d+

v = |N+
v |, d−

v = |N−
v |.

Definition 11. We define the “total degree” of a node v as the total number of
nodes linked to it by a positive or a negative edge, which means dv = |N+

v |+ |N−
v |

Definition 12. A sequence of nodes v1v2v3 . . . vn is called a “n-length path” if
∀k ∈ 1 . . . n it holds that Ak,k+1 /= 0.

Definition 13. Given a n-path C = v1v2v3 . . . vn+1, we call “sign” of the path the
following:

sgn(C) =
nÙ

i=1
Avi,vi+1

Definition 14. We define a “n-cycle” a closed path, which means a sequence of
nodes v1v2v3 . . . vnv1 such that ∀k ∈ 1 . . . n it holds that Avkvk+1 /= 0 and A1,n /= 0.

Definition 15. Given a n-cycle C = v1v2v3 . . . v1, we call “sign” of the cycle the
following:

sgn(C) =
nÙ

i=1
Avi,vi+1

Definition 16. Given a n-cycle v1v2v3 . . . v1, we call “chord” an edge connecting
any two non consecutive nodes of the cycle.

Theorem 1. Let C = v1v2v3 . . . v1 be a cycle with a chord between nodes v1 and
vr. Then let C1 = v1v2 . . . vrv1 and C2 = vrvr+1 . . . vnvr be the induced subcycles.
Then sgn(C) = sgn(C1)sgn(C2).

2





Chapter 1

Effective Number of Parties

1.1 Generalities

The “effective number of parties ” (ENP) is a simple and intuitive concept used in
population analysis to represent the fragmentation of a population.
Let’s consider a political scenario in which a parliament is divided into different
parties each one with its own size (but the same concepts hold for every situation
in which a population is formed by different groups competing with each others).
We can generally say that the effective number of parties is the number of groups
of equal size corresponding to a given fragmentation of a population.
Intuitively it’s clear that this number is not strictly correlated to the true number
of parties. In fact if we consider a political parliament composed by 4 parties
with fractional sizes (0.45, 0.35, 0.1, 0.1), it’s clear that even if namely the num-
ber of parties represented is 4, the number of important parties is 2, hence the
situation in terms of balance of power is much more similar from the one where
- for instance - the party vote-shares is (0.6, 0.4) (which is effectively a 2-party
system) while it’s sensibly different from another in which the party vote-shares is
(0.25, 0.25, 0.25, 0.25) (which on the contrary is a true multiparty system).
There should be a way to weight each party depending on its size, and to discount
the smaller ones.
One way to operate intuitively is to choose a threshold of exclusion, discounting
parties whose share is under that threshold; even though it’s unclear how to deter-
mine this value as of course it depends strongly on the party constellation itself
(a party with a 5% for instance is almost irrelevant in a 3-party political scenario
(0.5, 0.45, 0.5), but it’s way more important in a 20-party equally shared political
scenario).
These observations suggest us that we need a mathematical formula able to weight
every party depending on their relative size.
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Effective Number of Parties

1.2 Laakso-Taagepera ENP
The Laasko-Tasgepera effective number of parties, first introduced in [1] and further
investigated in [2], is the most used formula for our scope and it relies on the
Herfindal Hirshman index (HH), developed in 1940s and widely used in economics
to measure the market concentration and monopoly detection [3].
One of the main features of the HH index is that it’s connected to mean and
standard deviation of the groups distribution; in fact suppose we have a market of
size N divided in n groups s̃1, . . . , s̃n such that qn

i s̃i = N and let’s call s1, . . . , sn

the relative shares which means si = s̃
N

, then the Herfindal-Hirschman index is
defined as follows:

HH = 1
n

+ nV

where 1
n

represents the mean and the variance V is defined as

V = σ2 =
qn

1 (si − (1/n))2

n
where the summation runs over all the groups, i.e. every component gives is

contribution to the index.
The formula can be rewritten as follows:

HH = 1
n

+
nØ
1

(si − (1/n))2

and exploiting the fact that si are relative sizes, which means they sum to 1, it
can be further reduced to:

HH = 1
n

+
nØ
1

(si − (1/n))2

= 1
n

+
nØ
1

3
s2

i −
2si

n
+ 1

n2

4

= 1
n

+
nØ
1

s2
i −

2
n

+ 1
n

=
nØ
1

s2
i

(1.1)

The Herfindal Hirshman index has 2 main properties which are worth to be
mantioned:
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Effective Number of Parties

1. The range of values it can assume is fixed and in particular the fact that it
is bounded between 0 and 1 means that it can be used to compare different
scenarios regardless of the number of groups involved.

2. It encodes the probability of two random selected individuals to belong to the
same group.

Once defined the Herfindal-Hirshman index we can define the Laakso-Taagepera
effective number of parties as:

NLT = 1qn
1 s2

i

= 1
HH

(1.2)

Another related index which encodes the same information of the previous ones
is the so called “Fractionalization Index ”.
It can be interpreted as an indicator of how fragmented is a multi-group population
(or equivalently how well distributed are the resources among the groups, if we think
of the groups as competing with each others for a good). The Fractionalization
index is defined as:

F = 1−HH = 1− 1
NLT

(1.3)

Similarly to the Herfindal-Hirshman index, also the fractionalization index is
bounded between 0 and 1, however in order to better understand the analysis in the
next sections it has to be noticed that given a multi-group population composed by
n groups, while the upper bound remains 1, the lower bound is 1−1/n, consequence
of the fact that the lower bound of the effective number of parties is n.
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Chapter 2

Networks Balance

2.1 Generalities
In different types of networks, especially when they represent social interactions
between individuals, it becomes necessary to allow edges to be either positive or
negative in a way that we can both encode friendship (intended as a positive inter-
action between nodes) and animosity (intended as a negative interaction between
nodes).
To be complete we could define several (even a continuum) degrees of friendship
letting the weight corresponding to edges vary in the real field, but let us focus
to the simplest case where edges are in one of these two values: positive (like) or
negative (dislike); these networks are called "signed networks".
In this setup it has to be clear that the absence of an edge between nodes is not the
same as having a negative interaction; differently from unsigned networks, where
an interaction is forced a priori to be positive and the absence of interaction meant
two nodes are as far as possible to be related, now the absence of edge represents
two nodes that do not interact, which is a different situation with respect to two
people disliking each others.

Let us consider now all the possible configurations of three edges in a triangle of
possible nodes where + indicates a positive interaction and - indicates a negative
interaction. It is reasonable to imagine that some of these configurations lead to
some social problems if brought to real life; let us analyze all of them:

(a) ” +++ triangle ” , which means three people all liking each other.

(b) ” + - - triangle”, which means two of the three people are friends and they
have a common enemy. It’s not as trivial as the situation (a) but it seems
stable: the 3 people can be partitioned into 2 groups with two friends on one

8



Networks Balance

side and a common enemy on the other.

(c) ” ++- triangle ”, which represents one of the three people is liked by the other
two but these two are enemies. Our intuition suggests that this situation
could be unstable; in fact if we assume that two friends tend to behave in the
same way it is clear that the person liked by the other two is in an ambiguous
position as he’s friend with two people hating each other. We can imagine that
in this situation there’s an implicit strength from the two people competing to
convince the loved guy to hate the other one, hence to make the configuration
become + - - which we have seen to be stable.

(d) The last triangle is the - - - and also this configuration is somewhat ambiguous.
On one hand it consists of people who all dislike each others, which seems not
to be strange; on the other hand it’s reasonable to think that two of the three
individuals may like to form an alliance against the third common enemy.
Because of this we can assume that this configuration is unstable.

Starting from this qualitative perspective let’s now point out some definitions
and theorems which will lead us to define the concept of "structural balance".

Figure 2.1: Balanced triad (a) Figure 2.2: Balanced triad (b)

2.2 Definitions
Definition 17. Given a signed undirected graph G = (V, E−, E+), a triad of nodes
(i,j,k) is considered “balanced” if it holds that

AijAjkAik = 1

Definition 18. A complete signed graph G = (V, E−, E+) is considered “balanced”
if all triads (i, j, k) with i /= j /= k are balanced.

9



Networks Balance

Figure 2.3: Imbalanced triad (c) Figure 2.4: Imbalanced triad (d)

Theorem 2. A complete signed graph G = (V, E−, E+) is balanced if and only
if the set of nodes V can be partitioned into two subsets V + and V − such that
V + ∩ V − = ∅ and ∀e ∈ E+ it holds either e ∈ V + × V + or e ∈ V − × V −, while
∀e ∈ E− it holds that e ∈ V + × V −.

Proof.
→ Assume G is balanced. Consider some node v ∈ V and the two sets V1 =

v ∪N+(v) and V2 = V \ V1. Consider an edge (u, w) ∈ V2 × V2; then (u, v) ∈ E−

and (u, w) ∈ E+ by definition of structural balance, this means all edges in V2 are
positive and similarly any adge (u, w) ∈ V1×V1 is positive. Hence we can partition
V in two disjoint subsets V1 and V2.
← By hypothesis V can be partitioned in 2 disjoint subsets V1 and V2 such

that every in-group edge is positive and every group-group edge is negative. Up
to simmetry only 2 triads are possible: the first vi, vj, vk all in V1 and the second
vi, vj, vk such that vi ∈ V1, vj ∈ V1 and Vk ∈ V2. Considering the edges between the
nodes, the first is a (+ + +) tryad, while the second is a (+−−) tryad. It’s easy to
see that both tryads have positive sign, which means they are both balanced.

Definition 19. Let G = (V, E−, E+) be a signed graph, A the signed adjacency
matrix and C = v1v2v3 . . . v1 a cycle. Then the cycle C is called balanced whenever
sgn(C) = 1

Definition 20. A signed graph G = (V, E−, E+) is considered “balanced” whenever
all cycles v1v2v3 . . . v1 are balanced.

Theorem 3. A connected signed graph G = (V, E−, E+) with adjacency matrix
A is balanced if and only if the set of nodes V can be partitioned into two subsets
V + and V − such that V + ∩ V − = ∅ and ∀e ∈ E+ it holds either e ∈ V + × V + or
e ∈ V − × V −, while ∀e ∈ E− it holds that e ∈ V + × V −.

10



Networks Balance

Proof.
← Assume G in balanced. Then select any v ∈ V and set V1 as the set of nodes

which can be reached by v through a positive path. Define V2 = V \ V1. Let
e = (u, v) ∈ E− and suppose e ∈ V1 × V1. By construction of V1 then both u and
w have a positive path to v, so that the path u− v through v is also positive. But
if (u, w) is negative, it would be contained in a negative cycle, which contraddicts
the balance hypotesis; hence e /∈ V1 × V1. Similarly, suppose that e ∈ V2 × V2.
Then both the paths connecting u− v and the one connecting w − v are negative
(otherwise u and w would be in V1). The u−w path through v is then positive since
it’s the product of two negative paths; and again - since (u, w) ∈ E− it contraddicts
the balance hypothesis. As a consequence, all negative edges lie between V1 and V2.
Then there is a positive u− v path and a negative w − v path, so that the u− w
path throw v is negative, which combined with the positive edge (u, w) leads to a
negative cycle, contraddicting again the balance; hence positive edges lie either in
V1 × V1 or V2 × V2. As a consequence we conclude that G is balanced.

→ Suppose G can be partitioned in two disjoint sets V1 and V2 such that every
positive edge lies either in V1 × V1 or V2 × V2. Let C be a cycle, there are two
possible cases: if all the nodes of the cycle are in the same subset, them all edges
within the cycle will be positive and the cycle will be balanced; if C has some node
u ∈ V1 and some node v ∈ V2, then any u − v path contains an odd number of
negative edges (hence is negative), it follows that the cycle - which is product of
negative paths - will be positive. As all the cycle belong to one of this two cases
the theorem is proven.

Definition 21. A cycle C = v1v2v3 . . . v1 is considered “weakly balance” if it does
not contain a single negative edge, which means

n−1Ø
i=1

Avi,vi+1 /= n− 1 or equivalently
n−1Ø
i=1

A−
vi,vi+1 /= 1

Lemma 1. Let C = v1 . . . vkv1 be a cycle with a chord between the nodes v1 and
vr in C. Then let C1 = v1 . . . vrv1 and C2 = v1vk . . . vrv1 be the induced subcycles.
Then C is weakly balanced if C1 and C2 are weakly balanced.

Proof. We denote by m−
1 /= 1 and m−

2 /= 1 the number of negative edges of
respectively C1 and C2 and m− the number of negative edges for C. Then if the
link (v1, vr) is positive, it means that m− = m−

1 + m−
2 /= 1 which implies C is

balanced. If the link (v1, vr) is negative then we have m−
1 ≥ 2 and m−

2 ≥ 2 , which
leads to m− = (m−

1 − 1) + (m−
1 − 1) ≥ 2, so that C is weakly balanced.

11
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Theorem 4. A signed network G = (V, E−, E+) is considered “weakly structurally
balanced” if all chordless cycles are weakly balanced.

Proof.

→ If G is weakly balanced all cycles are balanced; as every chordless cycle is a
cycle the all chordless cycles are also balanced.
← Assume every chordless cycle is weakly balanced. Let’s procede by induction

on |C|. All chordless cycles are balanced so we have an inductive base for |C| = 3
(because all tryads are chordless). Assume now that every cycle such that |C|< r
is balanced, then consider a cycle of length r: if it contains a chord then it can be
split into two cycles C1 and C2 such that |C1| < r and |C2| < r, which are both
balanced. Then by the previous lemma cycle C is also balanced as product of two
balanced cycles.

Theorem 5. Let G = (V, E−, E+) be a connected signed graph. Then G is weakly
structurally balanced if and only if it can be partitioned into subsets V1 . . . Vn such
that ∀i /= j, Vi ∩ Vj = ∅ and ∀e ∈ E+ it holds e ∈ Vi × Vi, while ∀e ∈ E− it holds
that e ∈ Vi × Vj with i /= j.

Proof.
→ Suppose G is weakly balanced. Let G+ = (V, E+) be the positive part of

the signed graph, and let the clusters be defined by the connected components of
G+. Any positive edge then clearly cannot fall between clusters, because different
connected components cannot be connected through a positive link. Consider
then some negative link (u, v) ∈ E−. Suppose that u and v are both in the same
cluster Vc. Then there exists a positive u− v path because they are in the same
component , thus yielding a cycle with exactly a single negative link, contradicting
weak balance. Hence we proved that any negative link fall between clusters.
← Let’s suppose that G is split into clusters as stated in the theorem. Any cycle
completely contained within a cluster has only positive links. Consider a cycle
through u ∈ Vc and v ∈ Vd; then any path between u and v must contain at least a
single negative link, so that any cycle must contain at least two negative links.

2.3 Measuring structural balance
In the previous section we introduced the main ideas behind structural balance,
however the necessary conditions for balance to hold are often very strict and in
practice it’s not common to deal with network without cycles with odd number of
negative edges (or with a single negative link).

12
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Because of that several ways to measure the extent to which a graph is balanced
have been introduced by researchers and resumed in [6]; we briefly discuss the main
ones in this section and will analyze in detail one of them in the next one.

1. Measures based on cycles
The simplest of such measures is the so called "degree of balance" suggested by
Cartwright and Harary which is the fraction of balanced cycles of a network

D(G) =

nØ
k=3

O+
k

nØ
k=3

Ok

where O+
k is the total number of positive cycles in the network (close paths

with even number of positive edges) and Ok is the total number of cycles of
length k.
Another measure strictly related to the previous mentioned is the "relative
k-balance" which is again a cycle based measure where the two sums in the
numerator and the denominator are restricted to a single term of fixed index
k, that is the fraction of balanced cycles of fixed length k.

Dk(G) = O+
k

Ok

A generalization of this two measures is the "weighted degree of balance"
obtained by weighting cycles based on length using a non negative decreasing
function f(k) which can be chosen arbitrarily (for instance 1/k, 1/kn . . . ).

D(G) =

nØ
k=3

f(k)O+
k

nØ
k=3

f(k)Ok

Among all the "relative k-balance" indexes the most commonly used is the
so called "triangle index" (with k = 3); as the network increases in fact the
counting of cycles becomes hard to compute, however for the triangle index
we have a closed function of the adjacency matrix A

T (G) = D3(G) = O+
3

O3
= Tr(A3) + Tr(|A|3)

2Tr(|A|3)
13
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2. Spectral measures
Beside checking cycles - which can easily become an unfeasible approach as
the cardinality of the network grows - there are easier approaches to measure
the distance from structural balance related to the eigenvalues.
If in the previously discussed measures based on cycles we place more weight
on shorter walks using a specific weight function as proposed in [] we come
out with a form of the weighted ratio of balanced to total closed walks based
on the eigenvalues of the adjacency matrix; in particular:

W (G) = K(G) + 1
2

with

K(G) =

Ø
k

Q+
k −Q−

k

k!Ø
k

Q+
k + Q−

k

k!

= Tr(eA)
Tr(e|A|)

where for the calculation of Tr(eA) it can be used the fact that A is a symmetric
matrix for undirected graphs and it holds that

Tr(eA) =
Ø

i

eλi

where λi are the eigenvalues of the adjacency matrix.
Another eigenvalue based measure comes from spectral graph theory and
comes from the fact that smallest eigenvalue of the signed Laplacian matrix -
called. "algebraic conflict" and indicated with λ(G) is equal to zero if and only
if the graph is balanced and it increases the far the graph is from monotonicity.

3. Measures based on frustration
A quite different measure which we only introduce here and we elaborate
in the next chapter is the "frustration index", also referred as "line index of
imbalance".
A set E∗ of edges is called "deletion-minimal" if deleting all edges in E∗ results
in a balanced graph but no proper subset of E∗ has this property. Each edge
in E∗ lies on an unbalanced cycle. The graph resulted from deleting all edges
in E∗ is called "balanced transformation" of a signed graph and the frustration
index equals the minimum cardinality among all deletion-minimal sets

14
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L(G) = min
E∗
|E∗|

Similarly, in a setting where each vertex is given a black or white colour, calling
"frustrated" all the positive vertices whose endpoints have different colours and
all negative edges whose endpoints have same colour, the frustration index is
therefore defined as the smallest number of frustrated edges over all possible
2-colourings of the nodes.

2.4 Frustration
Let’s consider a network in which the nodes represent entities and edges represent
the binary symmetric relationship between them (friend or enemy) and let’s suppose
moreover that either friendship or enmity holds between every couple of nodes.
This network can be described by a complete undirected signed graph G =
(V, E−, E+) where E ∈ {−1,1} and A ∈ Sym(B2) .
As suggested by spin glass theory and according to the above definitions, computing
the global balance is equivalent to split the nodes set V into V + and V − as to
minimize the total inconsistencies among all possible splitting cuts.
To achieve this let’s write a function which assigns each node a value of +1 (if it
belongs to faction X) or -1 (if it belongs to faction Y).

σ : V → B2 σ(vi) = si ∈ {+1,−1} (2.1)

In this scenario there are two possible types of inconsistency between two nodes
vi and vj (up to simmetry):

• The two nodes are mapped through σ to the same faction but they are enemies,
which means σ(vi) = σ(vj) and Aij = −1

• The two nodes are mapped through σ to different factions but they are friends,
which means σ(vi) /= σ(vj), and Aij = 1.

Minimizing the total number of inconsistencies all over the possible partitions
of the V set is equivalent to minimize the following energy functional

h(s) = 1
2
Ø
(i,j)

(1− Aijsisj)

In fact, as in both the above cases it holds that Aijsisj = −1 while otherwise
Aijsisj = +1, only inconsistent edges will contribute to the summation.
The summation runs over all the couples of adjacent nodes, however in our case

15
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the graph is fully connected hence the adjacency matrix is full and the energy
functional can be written as

h(s) = n(n− 1)
2 − 1

2
Ø
(i,j)

Aijsisj

Recalling that the number of edges m in a fully connected graph is equal to all
the possible pairs of nodes, which is

m =
A

n

2

B
= n(n− 1)

2

then the energy functional takes the form

h(s) = m− 1
2
Ø
(i,j)

Aijsisj

2.4.1 Ordinary formulation

Definition 22. A diagonal matrix S is called "signature matrix" if Sii ∈ {+1,−1}
∀i ∈ 1 . . . n

Using the above definition and defining Sn as the set containing all the possible
2n n× n signature matrices we can define

Definition 23. Let G = (V, E−, E+) be a signed undirected graph and let S be a
signature matrix as defined above, we define the "frustration" of the graph as:

min
S∈Sn

h(s)

Theorem 6. Minimizing h(S) among all S ∈ Sn is equivalent to minimize the
following energy:

e(S) = 1
2
Ø
i,j /=i

(|L|+ SLS)ij

16



Networks Balance

Proof.

e(S) = 1
2
Ø
i,j /=i

(|L|+ SLS)ij

= 1
2
Ø
i,j /=i

(|∆− A|+ S (∆− A) S)ij

= 1
2
Ø
i,j /=i

(|∆− A|+ S∆S − SAS)ij

= 1
2
Ø
i,j /=i

(∆ + |A|+ S∆S − SAS)ij

= 1
2
Ø
i,j /=i

(2∆ + |A| − SAS)ij

= 1
2
Ø
i,j

(|A| − SAS)ij

= m− 1
2
Ø
i,j

(SAS)ij

(2.2)

2.4.2 Another formulation

Even though this formulation of the energy is natural to use as it comes directly
from the "deleting edges" approach, another possible formulation for the energy
functional substitutes the ordinary Laplacian matrix with the normalized Laplacian
matrix:

en(S) =
1

2
Ø
i,j /=i

|L|+ SLS


ij

Even if the two formulations reach the minimum at the same Sbest, they are not
equivalent, in fact

17



Networks Balance

en(S) =
1

2
Ø
i,j /=i

|L|+ SLS


ij

=
1

2
Ø
i,j /=i

|I −∆−1A|+ S
1
I −∆−1A

2
S


ij

=
1

2
Ø
i,j /=i

|I −∆−1A|+ SIS − S∆−1AS


ij

=
1

2
Ø
i,j /=i

I + |∆−1A|+ SIS − S∆−1AS


ij

=
1

2
Ø
i,j /=i

2I + |∆−1A| − S∆−1AS


ij

=
1

2
Ø
i,j

∆−1|A| − S∆−1AS


ij

=
n− 1

2
Ø
i,j

∆−1SAS


ij

(2.3)

Comparing the two expressions we notice that while the first one is bounded
between 0 and |E| (number of edges), the second one is bounded between 0 and n
(number of nodes).
While the first boundaries seem intuitive from the reasoning done above, this second
ones may seem hard to interpret as the frustration is not strictly related to the
number of nodes but more to the number of edges to delete to reach the balance.
To have some more insight about what this normalized energy represents let’s
divide the expression by n, it follows that:

ϵ(S) = en(S)
n

= 1− 1
2
Ø
i,j

1
n

∆−1SAS (2.4)

Let’s now define a new matrix Ã such that

[Ã]ij = Aij

nδi

We can see that the denominator of the above expression varies depending on
the row index of the element we are considering; anyway like in the previous cases
if we consider a fully connected network δ1 . . . δn = n− 1, which means
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[Ã]ij = Aij

n(n− 1)
As n(n− 1) is (twice) the number of edges in the network, every element of this

modified adjacency matrix no longer represents an edge, but a fraction of it.
The energy functional hence becomes

ϵ(S) = 1− 1
2
Ø
i,j

SÃS (2.5)

In the same fashion as the previous reasoning we can now claim that minimizing
ϵ(S) among all S ∈ S means finding an S such that the induced partition of the
nodes minimizes the fraction of frustrated edges (with respect to the total number
of edges).

Let’s now go back to en(S); in order to understand what this energy is trying
to mimize let’s introduce for a generic network the following parameter:

γ = m

n

where m is the number of edges of the network and n is the number of nodes.
It can be seen as a "density parameter" which underlines how "full of edges" is the
network (hence it encodes the sparsity of the network).
Using this new parameter it follows that:

e(S) = m− 1
2
Ø
i,j

SAS = m ·

1− 1
2
Ø
i,j

SÃS

 = γ · en(S) (2.6)
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Chapter 3

Frustration in WB
unweighted networks

3.1 Fully connected networks
Let’s consider a weak balanced and fully connected network. As previously stated
for this class of networks the property of clusterability holds, which means V can
be split into n ≥ 2 subsets V1, . . . Vnp of size c1 . . . cnp such that every within set
edge is positive and every between sets edge is negative.

In this scenario both the adjacency matrix A (which is full off diagonal)
and the matrix ∆ can be represented as block matrices and in particular ∆ =
diag{δiIci

. . . δcnIcn} and S = diag{siIci
. . . snpIcnp

}. Moreover each block of ∆
satisfies the following

(δiIci
) 1cj

=
Ø
j∈I
|Aij|1cj

=
Ø
j∈I
|wij|Ecicj

1cj
+ (Eci

− Ici
) 1ci

=
Ø

j∈I
|wij|cj − 1

1ci

where I = {1, . . . , np} and Ecicj
is the ci × cj ones matrix. Then, the the

weighted energy functional - considering wij as the weights associated to the edge
connecting vi and vj - can be rewritten as follows:

e(S) = 1
21T

n ∆−1 (|A| − SAS) 1n = 1
2
Ø

i,j∈I

cicj

δi

(|wij| − siwijsj)

Let’s now assume that every between-group weight is negative and equal to -1
while every within-group weight is positive and equal to +1, then it holds that
∀i ∈ I, δi = n− 1 and the above expression becomes
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e(S) = 1
2(n− 1)

Ø
i,j /=i

cicj (1 + sisj) = 1
n− 1

Ø
i,j /=i

sisj>0

cicj

Let’s now consider the partition of V induced by the signature matrix S and
let’s call C+ = {i ∈ I : si = +1} and C− = {i ∈ I : si = −1}. Let moreover be
nc+ = q

i∈C+ ci and nc− = q
i∈C− c−, then the frustration index can be computed

as follows:

ζ = 1
n− 1 min

diag{s1,...snp }
si=±1

Ø
i,j∈I,j /=i

sisj>0

cicj

= 1
n− 1 min

C+⊆I

 Ø
i,j∈C+

j /=i

cicj +
Ø

i,j∈C−
j /=i

cicj


= 1

n− 1

min
C+⊆I

 Ø
i,j∈C+

cicj +
Ø

i,j∈C−

cicj

−Ø
i∈I

c2
i


= 1

n− 1

A
2 min

C+⊆I

1
n2

c+ − n · nc+

2
+ n2 −

Ø
i∈I

c2
i

B

= n2

n− 1

A
−2 max

C+⊆I

A
nc+

n
−

n2
c+

n2

B
+ 1−

q
i∈I c2

i

n2

B

= n2

n− 1

A
−2 max

C+⊆I

A
nc+

n
−

n2
c+

n2

B
+ F

B

We see that in this particular scenario the frustration index is proportional (up
to a constant term which depends on the size of the network) to a difference between
the fractionalization index and a term which is the result of the maximization of a
parabolic function, whose maximum is reached when nc+ is as close as possible to
n/2.

Consider now C+ as the greatest cardinality group, then to have some more
insight about the first term of the formula we can rewrite nc+ = n

2 + Ebest, where
Ebest is the minimum distance from n

2 ; then we have
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ζ · n− 1
n2 = F − 2 max

C+⊆I

A
nc+

n
−

n2
c+

n2

B

= F − 2
A

1
2 + Ebest

n
− 1

4 −
E2

best

n
− E

n

B

= F − 2
A

1
4 −

E2
best

n

B

= F − 1
2 + 1

2

A
Ebest

n/2

B2

(3.1)

From the above equation is clear that the frustration is proportional to a sum
of the fractionalization index, a constant term and a new term which encodes the
distance of the cardinality of the optimal partition induced by S from n/2.

3.1.1 Numerical results
In order to prove the formula above four different numerical experiments are made:
first using randomly generated artificial networks, second building a network from a
dataset containing the political fragmentation of different European countries, then
using an etno linguistic dataset and finally using a dataset containing information
about the market share of smartphones.

1. Randomly generated networks
In MATLAB we generate random networks of 1000 nodes divided into n
groups. Every couple of nodes belonging to the same group is given a +1
weight while for every couple of nodes belonging to different groups a -1 weight
is assigned; the network is then weakly balanced and fully connected. n is
varied between 3 and 15 and 100 simulations for each step are carried on.
Frustration and fractionalization are computed for every simulation, then for
every n the mean of the two indexes over the 100 simulations is computed and
plotted in the graph over n.
It can be observed in figure 3.1 that fractionalization and frustration index
follow the same trend and in particular for number of groups greater than 5
the two curves representing the two indexes overlap, meaning that on average
they coincide. This is further confirmed by plots 3.3, 3.4 and 3.5 which
show that the two indexes are very well correlated (close to 1) for values of
fractionalization greater than 0.5 (which leads to low values of ENP). As found
in the previous section (formula 3.1) we can observe that the gap between the
two curves for small values of n is due to the term

1
Ebest

n/2

22
which quickly falls

to zero for growing values of number of parties (see plots 3.2 and 3.6).
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Figure 3.1: Comparison between av-
erage frustration and average fraction-
alization for fully connected weakly bal-
anced networks with increasing number
of groups

Figure 3.2: Average Ebest

n/2 for weakly
balanced fully connected networks with
increasing number of groups

Figure 3.3: Correlation between frus-
tration and fractionalization index in
weakly balanced fully connected net-
works for increasing number of groups

Figure 3.4: Frustration index VS frac-
tionalization index in weakly balanced
fully connected networks

2. Politics Networks
For these simulations data belonging to European parliaments are used. In
particular for each election year from 1997 a fully connected network is build for
every country in the dataset: each node represents a member of the parliament
and each edge - which is given +1 or -1 weight for sake of simplicity - represents
the relationship between couples of nodes. Accounting that every couple of
member of parliament belonging to the same party behaves the same way (i.e.
"friend" with every other member of the same party and rival of every member
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Figure 3.5: Frustration index VS ef-
fective number of parties in weakly bal-
anced fully connected networks

Figure 3.6: Frustration index VS Ebest

n/2
in weakly balanced fully connected net-
works

belonging to a different party) the network turns out to be weakly balanced,
so this scenario can be used to prove our formula (see for more details [4].
For each country, frustration is computed and plotted versus fractionalization
in figure 3.7 . It can be shown that frustration ξ and fractionalization F
have high correlation in the vast majority of the cases analyzed (red line in
the figure) and this is due to the fact that the number of competing parties
is generally greater than 4. The cases where fractionalization is not a fair
approximation of the frustration index in fact are the ones where there are
few parties dominated parliament, meaning the term of the formula describing
the distance of the best coalition from 50% is generally high (see subplots).
See Appendix A for analogous plots for all countries investigated.

3. Etno-Linguistic networks
For these simulations data belonging to the etno linguistic dataset ([15]) are
employed. This dataset - collecting for 160 countries worldwide the fraction
of people belonging to different etno and/or linguistic groups - aims to find
connections between the etno-linguistic fractionalization (ELF) and some
existing cultural indexes; as an example it turns out that there is a correlation
between ELF and the economic progress of countries [16] or the political
implications [17].
Our goal is to compare the ELF index, computed with the formula, with the
frustration index of a network designed taking the data from the dataset. The
networks are designed as follows: for each of the 160 countries addressed a
fully connected weakly balanced network is built taking all the individuals of
the country population as nodes and assigning a positive edge +1 to every
couple of nodes belonging to the same etno-linguistic group and a negative
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Figure 3.7: Frustration index VS Fractionalization index for Swedish and Albanian
parliamentary networks. Over the inset: distance from 50 % in the best case, over
all possible coalitions.

edge -1 to every couple of nodes belonging to different etno-linguistic groups.
In this scenario it has to be mentioned that negative connections between
nodes do not stand necessarily for rivalry or competition, but they must be
understood more like cultural distance.
It can be shown also in this scenario that etno-linguistic fractionalization
and the frustration index of the related network are positively correlated, in
particular for countries with high cultural diversity as the middle African
countries. Low correlation between fractionalization and frustration instead is
shown in countries culturally dominated by a single etno-linguistic group; as
in the previous case the reason of the low correlation is explained by the high
value of the term of the formula describing the distance of the best coalition
from 50% (see subplots in 3.8).

4. Economical networks
For these simulations data employed belong to economic field; in particu-
lar to the worldwide market share of smartphones (data are available at
https://gs.statcounter.com/vendor-market-share). As in the previous cases
the aim of the analysis is comparing fractionalization and the frustration
index of the networks created from the available data. In particular for each
of the 22 countries analyzed a weakly balanced fully connected network is
built considering each device sold as a node of the network and connecting
every couple of devices sold by the same brand with a positive edge +1 and
linking every couple of devices sold by different brands with a negative edge
-1. This choice may seem not to have a logical explanation as smartphones do
not compete each others, for this reason another possible choice for creating
the network is letting each node of the network be a fraction of the market,
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Figure 3.8: Frustration index VS Fractionalization index for Tanzanian and
Portuguese etno-linguistic networks, over the inset: distance from a 50 % partition

letting each group be a brand and connecting each node to any other node of
the same group with a positive weight (meaning the fraction of the market
belong to the same brand) and connecting each couple of nodes belonging
to competitor brands with a negative arc. in this way greatest groups will
correspond to greatest brands.
Networks for the 22 countries are built for every year between 2015 and 2022
and frustration and fractionalization are computed. It can be noticed that in
most of the countries the blue points corresponding to red teorethical line,
meaning the fractionalization is a good approximation of the frustration index;
this is because of the highly fragmentation of the market (which is contended
between many different companies) which leads the term of the equation
representing the distance of the best coalition from 50% to be small. The
only exception in the analyzed cases is Japan, where in fact the market is
dominated by Apple with more than 65% of sold devices every year.

3.2 Sparse networks
Let’s now consider a slightly different situations in which the network is still weakly
balanced (hence clusterable), but are sparse which means every edge has a certain
probability p to exist.

Definition 24. Let σ be a random variable such that σ ∼ U(0,1).Then G =
(V, E−, E+) is a Erdos-Renyi network if its adjacency matrix is defined as follows:

aij =
I

/= 0 if σ > p

0 otherwise
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Figure 3.9: Frustration index VS Fractionalization index for Italian and Japanese
smartphones market share networks

As now aij is a uniform random variable, both ∆ and the energy functional will
be a random variable too.
In particular the following hold:

E[aij] = σ E[δi] = σ · (n− 1)

As a consequence the expected values of the energy function takes the form:

E[en(S)] = −1
2
Ø
i,j

E
è
∆−1

é
E [|A| − SAS]

= −1
2
Ø
i,j

E
è
∆−1

é
(SE[|A| − A]S)

= −1
2

σ

σ(n− 1)
Ø
i,j

1
|Â| − SÂS

2
(3.2)

where Â is the full matrix associated to the sparse one A.
The parameter σ is canceled and we are back to the fully connected case; we can
then conclude that - according to what we have discussed in the previous section
- choosing the energy function with the normalized Laplacian, doesn’t take in
account the sparsity of the network.

If instead we choose the energy with the ordinary Laplacian matrix we have:

E [e(S)] = γE [en(S)] = σnE [en(S)]
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3.2.1 Numerical Results
In order to prove the previous result we carried some simulations in MATLAB.
We took at first a fully connected weakly balanced network composed by 1000
nodes splitted into 5 groups randomly and computed its frustration index ξfull. We
then introduced a sparsity parameter σ representing the percentage of arcs deleted
randomly from the fully connected graph, we made σ vary between a lower bound
of 0 and an upper bound of 0.6 and for each value of the sparsity parameter we run
100 simulations computing the frustration index of the new sparse weakly balanced
graph ξsparse. As we expect it turns out that the ratio between the frustration
index of the sparse graph and the frustration index of the fully connected one is
on average equal to σ. In figure 3.11 the yellow points represent the mean values
computed on the 100 simulations of the ratio between ξsparse and ξfull; the points
fit well the red line representing y = σx.
Moreover same analysis as in Section 3.1 are made to show the high correlation
between the fractionalization and the frustration index (plot 3.14) and its link with
the term Ebest

n/2 which drops to zero for high values of the frustration index (see plot
3.12) which correspond to high values of fractionalization index (see plot 3.15) and
low values of ENP (see plot 3.13).

Figure 3.10: Comparison of average
frustration and average fractionalization
for sparse weakly balanced networks
with increasing number of groups

Figure 3.11: Average ξ ratio for net-
works with increasing number of viola-
tions σ

3.3 Quasi WB fully connected networks
In order to make our analysis more interesting it’s worth to explore what happens
if we consider more generic networks.
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Figure 3.12: Frustration index VS
Ebest

n/2 for weakly balanced sparse net-
works

Figure 3.13: Frustration index VS ef-
fective number of parties for weakly bal-
anced sparse networks

Figure 3.14: Correlation between frus-
tration index and fractionalization index
for sparse weakly balanced networks

Figure 3.15: Frustration index VS frac-
tionalization index for sparse weakly bal-
anced networks

We already found an exact formula for the frustration in the case of weakly balanced
networks, in this section we are going to extend the reasoning to a more general
class of networks which we’ll call “quasi weakly balanced”, defined as follows:

Definition 25. A complete signed graph G = (V, E−, E+) is considered “quasi
weakly balanced” whenever among all triads (i, j, k) with i /= j /= k at least (1− ϵ)%
are balanced.

where ϵ ∈ (0,1) is a parameter (ϵ small means the network is close to balance).
Let’s consider as hypothesis that the network is fully connected and quasi weakly
balanced. Now it is no longer true that all the in-cluster edges are positive and
the cluster-cluster edges are negative, the statement though is valid just for the
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(1− ϵ)% of them.
As a consequence the inconsistencies of the energy functional will no longer be
present only in the in the off diagonal inter coalition blocks, but also in the diagonal
blocks and in the off diagonal off coalition blocks. This is because allowing the
network to be not exactly weakly balanced leads the adjacency matrix to be not
exactly a block matrix, and consequently the form of the energy function of the
fully connected case is no longer true.

Let’s consider an Erdos-Renyi quasi weakly balance network whose clusters have
dimensions C = c1 . . . cn. Let’s call C+ and C− respectively the bi-partition of the
set C, and nc1 . . . ncn the cardinality of the elements of the set C. Then - given
a certain bi-partition of the clusters - we can split the energy functional into 3
contributions:

• The first contribution counts the number of negative edges connecting nodes
belonging to different clusters in the same faction.

e1 =
Ø

Ci,Cj∈C−
i /=j

(1− σ)nci
ncj

+
Ø

Ci,Cj∈C+
i /=j

(1− σ)nci
ncj

• The second contribution counts the number of negative edges connecting nodes
belonging to the same clusters:

e2 =
Ø
Ci

σn2
ci

• The third contribution counts the number of positive edges connecting nodes
belonging to different factions:

e3 =
Ø

Ci∈C−
Cj∈C+

σnci
ncj

The energy functional takes the form

e = e1 + e2 + e3

The frustration is the minimum of the energy functional among all possible
partitions, however the term e2 is independent from the partition as it takes
into account only the in-cluster edges, moreover it can be expressed in terms of
fractionalization F as

e2 = n2(1− F )σ
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As a consequence we can call

e = e2 + ẽ = n2(1− F )σ + ẽ

where

ẽ = e1 + e3

and the frustration takes the form

ξ = min
s

e(s) = n2(1− F )σ + min−sẽ

Let’s now work with the term ẽ trying to exploit as much as possible the block
structure of the adjacency matrix.
It holds that:

ẽ =
Ø

Ci,Cj∈C−
i /=j

(1− σ)nci
ncj

+
Ø

Ci,Cj∈C+
i /=j

(1− σ)nci
ncj

+
Ø

Ci∈C−
Cj∈C+

σnci
ncj

= (1− σ)
1
n2 −

Ø
c2

i − 2nc+nc−

2
+ 2σnc+nc−

= n2(1− σ)
A

1−
q

n2
ci

n2 − 2nc+nc−

n2

B
+ 2σnc+nc−

= n2(1− σ)
3

F − 2nc+nc−

n2

4
+ 2σnc+nc−

= n2(1− σ)F + 2(2σ − 1)nc+nc−

We can see that the first term of the expression does not depend from the partition
either, hence it can be taken out from the minimization and the frustration takes
the form:

ξ = min
s

e(s) = n2 [σ (1− F ) + F (1− σ)] + 2 (2σ − 1) min
s

nc+nc−

= n2 (σ + F − 2σF ) + (2σ − 1) min
s

nc+mc−

We observe that the minimization depends again only on the dimension of
the factions. As the term c+c− can be written as c+(1 − c+) the problem is the
minimization of a quadratic form; as a consequence what we expect is that the
minimum is achieved when the coalitions have more or less the same dimension.
Calling Ebest the best distance from 50% then we have

C+ = n

2 + Ebest C− = n

2 − Ebest
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and we the frustration takes the form

ξ = n2 (σ + F − 2σF ) + (2σ − 1) min nc+nc−

= n2 (σ + F − 2σF ) + (2σ − 1)
A

n2

4 − E2
best

B

= n2
C
σ + F − 2σF + (2σ − 1)

A
1
4 −

E2
best

n2

BD

= n2

σ + F − 2σF + 2σ − 1
2 +

32σ − 1
2

4A
E

(n/2)

B2


= n2

(1− 2σ) F + 2σ − 1
2 +

32σ − 1
2

4A
E

(n/2)

B2


(3.3)

The expression is consistent, in fact if we put σ = 0, meaning the network is
exactly weakly balanced we obtain the formula investigated in the previous sections.
Recalling the formula of the frustration index for fully connected weakly balanced
networks then we have

ξQW B

ξW B

= 1 +
2σ(1− F ) + σ

1
E

(n/2)

22

F − 1
2 −

1
2

1
E

(n/2)

22

Similarly to the sparse case we have a relation between the fully connected weakly
balanced frustration index ξW B and the fully connected quasi weakly balanced
frustration index ξQW B, however - while in the sparse case the ratio between the
two frustration indexes was constant - in this case the ratio between the two
is no longer function of the only variable σ (violations parameter) but also of
the the fractionalization index F . In particular given a network with a fixed
fractionalization index its quasi weakly balanced frustration varies linearly with σ.

3.3.1 Numerical Results
In order to prove the above formula we built artificial networks in the same fashion
as for sparse graphs. In particular we fixed the total number of nodes (1000 for
these simulations) and split them into n parts, then we built at first the weakly
balanced fully connected network connecting with a positive arc of weight +1 each
pair of nodes belonging to the same group and with a negative -1 arc each pair of
nodes belonging to different groups, then we created the quasi weakly balanced
transformation of the first network by flipping a percentage σ of edges (it’s worth
to be mentioned that σ must be strictly lower than 0.5; a value of 0.5 in fact would
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make the adjacency matrix lose its block structure). We performed two difference
experiment:

• Fixed a certain value of σ we made the number of groups vary between 3 and
12 and for each of these values we generate 100 random quasi weakly balanced
networks, then we computed the average frustration and average fractional-
ization. From the graph we can notice that even in this case frustration and
fractionalization are well correlated, in particular (2σ − 1) F + 2σ − 1

2 is a
good approximation of ξ. Also in this case the correlation between fractional-
ization and frustration index turns out to be high and inversely proportional
to the term Ebest

n/2 as shown in plot 3.18. Moreover as in the previous cases
this happens for high values of frustration (see plot 3.18) and low values of
fractionalization (see 3.21).

• We fixed a random weakly balanced fully connected network and we made
σ vary between 0.05 and 0.4, then we performed for each iteration of σ 100
simulations computing both the quasi weakly balanced frustration. In the
second graph it is shown that the ratio between the fully connected weakly
balanced network and the quasi weakly balanced network varies linearly with
σ, confirming the relation.

Figure 3.16: Comparison of average
frustration and average fractionalization
for QWB networks with increasing num-
ber of groups

Figure 3.17: Average ξ ratio for net-
works with increasing number of viola-
tions σ
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Figure 3.18: Frustration index VS
Ebest

n/2 for quasi weakly balanced networks
Figure 3.19: Frustration index VS
effective number of parties for quasi
weakly balanced networks

Figure 3.20: Correlation between frus-
tration index and fractionalization index
in quasi weakly balanced networks for
increasing number of parties

Figure 3.21: Frustration index VS frac-
tionalization index for quasi weakly bal-
anced networks
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Chapter 4

Clusterization of signed
networks

The goal of the general problem of clusterization is - given a population of individuals
or entities (nodes of the network) - to group them into parts called clusters such
that all the individuals belonging to a cluster are united in a way that they have to
be more similar to each others than to any other individual belonging to another
clusters.

While in the context of unsigned networks the problem of clusterization (also
called community detection) is easy to undertake - as it consists in maximizing
the total amount of positive edges in the groups - dealing with signed networks is
a more complex problem. We now analyze two of the most popular methods for
community detection.

4.1 Modularity
Let us consider for the moment a network with only positive edges. Modularity is
a measure of the structure of a network that quantifies the strength of division in
clusters comparing the community structure to a random null model.
Let us consider a network with n nodes and m positive edges, the modularity
function is the difference between the fraction of edges laying within the given
groups and the fraction of edges within groups of another network built assigning
edges randomly to the nodes of the network keeping the degree distribution of the
nodes.
The first term of the expression simply consists in counting the number of edges in
the groups, hence the summation over all possible couples of nodes belonging to
the same groups of the corresponding element of the adjacency matrix
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Ø
ij

Aijδ(σi, σj)

where δ(σi, σj) = 0 if nodes i and j belong to the same group and 0 otherwise.
For the second term let’s consider a new network where each node i has got degree
distribution di and each edge is randomly assigned to a node. The probability that
an edge is assigned to the node i is di

2m
, as a consequence the number of expected

edges laying inside the clusters is

Ø
ij

didj

2m
δ(σi, σj)

Finally the cost function representing the modularity is given by the following

Q =
Ø
ij

A
Aij −

didj

2m

B
δ(σi, σj)

where in this case Aij contains only positive values, i and j represent the indexes
of the nodes and σi and σj represent the indexes community the nodes i and
j belong to. Maximizing this expression over all possible partitions gives the
desired community structure. Even though this method suffers from the problem
of resolution limit - meaning it fails to find small communities in large networks -
it performs well for community detection in unsigned and unweighted networks.
If we want to generalize the cost function to signed networks the above formula
has to be corrected; consistently with structural balance in fact it is reasonable to
expect that as positive links lay within communities, negative links lay between
communities. Then we can define the "positive modularity" as

Q+ =
Ø
ij

A
A+

ij −
d+

i d+
j

2m

B
δ(σi, σj)

and "negative modularity" as

Q− =
Ø
ij

A
A−

ij −
d+

i d+
j

2m

B
δ(σi, σj)

In order to find a good partition then we would like to maximize the first
quantity while minimizing the second one. As the minimization of Q− is equivalent
to the maximization of −Q−, we can define the "signed modularity" as Q+ −Q−

which is:

Q = Q+ −Q− =
Ø
ij

C
Aij −

A
d+

i d+
j

2m
−

d+
i d+

j

2m

B
δ(σi, σj)

D
(4.1)
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More in general when dealing with signed networks it is always possible to define
a cost function related to the positive subnetwork Q+ and a cost function related
to negative subnetwork Q− and defining the cost function associated to the whole
network as Q = Q+ −Q−.

4.2 Constant Potts Model
Let us consider a connected graph G = (V, E) with n nodes and m edges and
its adjacency matrix Aij = 1 if the nodes i and j are connected and Aij = 0
otherwise; let us consider moreover for weighted graph wij representing the weight
corresponding to the edge connecting the two nodes.
In order to have a good partition in principle we wish links within communities
are relatively frequent while those between communities are rare. Starting from
this idea we can build a general cost function that aims to reward links within
communities and at the same time discourage negative and missing connections.
This can be written as follows:

Hγ = −
Ø
ij

(aijAij − bij (1− Aij)) δ(σi, σj)

where the term δ(σi, σj) means that the sum is computed over all couples of
nodes belonging to the same community and aij and bij are both non negative.
The minimum of H over all possible choices of community structure corresponds to
the optimal partition, however this minimum could not be unique and even more
important it strongly depends on the choice of the parameters aij and bij.
Among the several choices analyzed in literature the most promising one is the one
introduced by Traag and Van Dooren in [10] as an improvement of the previous
Potts Model of Reichardt and Bornholdt in [18]. By defining aij = wij − bij and
bij = γ we obtain the following cost function

Hγ = −
Ø
ij

(wijAij − γ) δ(σi, σj)

called Constant Potts Model (CPM), meaning that the adjacency matrix is
compared with the constant null model γ.
It is interesting to notice that writing the number of edges inside a community as

ec =
Ø
ij

Aijwijδ(σi, c)δ(σj, c)

and the number of nodes inside a community

nc =
Ø

i

δ(σi, c)
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we can rewrite the cost function as

Hγ = −
Ø

c

ec − γn2
c

Having this form of the cost function it is clear that minimizing the expression
means maximize the number of positive edges within the communities trying too
keep them relatively small; in this sense the parameter γ plays the role of balancing
this two factors. Reminding moreover that fractionalization index is defined as

F = 1−
Ø

i

n2
ci

we can rewrite the cost function as

Hγ = −
Ø

c

ec + γ (1− F )

The parameter γ in particular acts as the inner and outer edge density threshold,
this means that supposing there is a community c with ec links and nc nodes that
it is better to split it into two communities r and s whenever

er−s

2nrns

< γ

where the numerator indicates the number of edges between the communities r
and s. The ratio represents exactly the density of the edges between communities
hence the expressions means our best partitions will have a between communities
link density lower than γ (and consequently a within communities link density)
greater than γ.
In general the parameter γ can vary between minij Aijwij and maxij Aijwij , however
taking the extremes of such interval leads to get the trivial partitions of having
one big community (γ = minijAijwij) and having n unitary communities (γ =
maxijAijwij).
In conclusion the best partition using the constant potts model is obtained by
further minimizing the already found cost function over all possible values of γ

min
γ

Hγ

As discussed in Section 4.1, the generalization of the CPM to signed networks
can be done by taking the positive and the negative adjacency matrix A+ and A−

and by considering

H+
γ = −

Ø
ij

1
wijA

+
ij − γ+

2
δ(σi, σj)
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H−
γ = −

Ø
ij

1
wijA

−
ij − γ−

2
δ(σi, σj)

The function to minimize then will be:

H = H+ −H− =
Ø
ij

(wijAij − γ) δ(σi, σj) (4.2)

where the new parameter γ is given by subtracting γ− and γ+.

4.3 SQ2 model

4.3.1 General Idea
In this section a new model for community detection is proposed starting from
analyzing the weak points of the Constant Potts Model and a re definition of the
notion of "community"; one of the problems related to community detection in
fact is the lack of unicity of the definition of community itself. The general idea is
that given a network, a group of nodes is considered community if they have more
connections (positive connections in signed graph) with each others than with any
other node of the network, however from a practical point of view this definition
seems poor as it gives no precise quantitative decision rule.
The state of the art in signed networks represented by the Constant Potts Model
finds the community structure of the network by maximizing the number of positive
edges while at the same time minimizing the number of negative edges within
groups over all the possible partitions of the network; this suggests us that the
only parameter taken into account in order to decide a community structure is the
interaction of the first order between nodes (the paths of length one connecting
the nodes). Even though this choice gives excellent results in the vast majority
of the cases, in my perspective it has a meaningful weakness and does not reflect
correctly the behaviour of a community.
Let us analyze two simple examples:

1. Let us consider a simple political parliament composed by 9 deputies divided
in 3 factions: the right side, the left side and the center; assume moreover
that 4 members of parliament belong to the left side, 3 to the right side and
the remaining 2 to the center. Let us create a network where every member of
parliament represents a node and the edges connecting each couples of nodes
represents the relationship between the deputies, in particular assume the
network is signed and unweighted (meaning the the weight must be +1 or -1);
let us assign a +1 edge to every couple connecting nodes belonging to the left
faction, a +1 to each couple of nodes connecting nodes belonging to the right
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faction and a +1 to every arc connecting nodes belonging to the center. Let
us assign a -1 to each arc connecting couples of nodes belonging one to the left
side and one to the right side. For the nodes belonging to the center instead
let us consider they sympathize both with the left side and with the right side,
then let us put a +1 weight to every arc connecting a couple of nodes one of
whom belongs to the center.
Recalling the cost function of the Constant Potts Model and adapting it to
the unweighted case (meaning the adjacency matrix is the signed adjacency
matrix and the weights are all equal to +1) we have

Hγ = −
Ø
ij

(Aij − γ) δ(σi, σj)

The signed adjacency matrix of the case above - considering the first 4 nodes
belonging to the left, the nodes from 5 to 7 belonging to the right faction and
the last 2 nodes to the center - takes the following form:

A =



1 1 1 1 −1 −1 −1 1 1
1 1 1 1 −1 −1 −1 1 1
1 1 1 1 −1 −1 −1 1 1
1 1 1 1 −1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1 1
−1 −1 −1 −1 1 1 1 1 1
−1 −1 −1 −1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1


As every node belonging to a certain faction behave the same way of any other
we can identify 5 ways of clustering the network. Let us analyze each of them
and evaluate it with the Constant Potts Model cost function:

• Case 1: every nodes belongs to the same bug cluster. in this case the cost
function is:

H(1) = 16 + 25 + 16− 24 = 33

• Case 2: There are two groups, the first containing the nodes belonging
to the left side and the right side, and the second corresponding to the
center side. In this case the cost function is:

H(2) = 16 + 9− 24 + 2 = 3
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• Case 3: There are two groups, the first containing the nodes belonging
to the left side and the center side, and the second corresponding to the
right side. In this case the cost function is:

H(3) = 16 + 4 + 16 + 9 = 45

• Case 4: There are two groups, the first containing the nodes belonging to
the right side and the center side, and the second corresponding to the
left side. In this case the cost function is:

H(4) = 9 + 4 + 12 + 16 = 41

• Case 5: There are three groups corresponding rispectively to the left side,
the center side and the right side. In this case the cost function is:

H(5) = 16 + 9 + 4 = 29

The maximization of the cost function leads to choose the case 3 as the best
partition, meaning the center side has to be agglomerated with the greatest
group (the left side in this case) however intuitively it would seem more likely
the case 5; this suggests us that the CPM could not be totally satisfactory.

2. Let us consider a fully connected unweighted signed network defined as follows:
100 nodes are divided in 3 groups (respectively 1

2 , 1
6 and 1

3 such that any
couple of nodes belonging to different groups is connected by a negative arc
while every couple of nodes belonging to the same group is connected by a
positive arc +1 with probability p and by a negative -1 arc with probability
1− p. The network is not weakly balanced since there are some inconsistencies
within groups, however the cluster structure seems to be evident as we can
see plotting the block form of the adjacency matrix.

Let’s see how the Constant Potts Model behaves in this class of cases.
Of course as the network in analysis is stochastic, meaning it is defined
randomly given a certain probability parameter, it is not possible to check all
the possible cases, however it is enough to point out an observation in order
to question the goodness of the model.
Let us consider the "right" partition, that is the one described in the figure
and let us calculate the CPM cost function on average would be

H(1) = n2
31

2 (p− (1− p)) + 1
6 (p− (1− p)) + 1

3 (p− (1− p))
4
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Figure 4.1: Adjacency matrix example 2

which is for a probability parameter p smaller than 0.5 a sum of negative
quantities, hence lower than zero.
Let us now consider the trivial partition obtained by assigning every node to
its own community, in this case the CPM cost function turns out to be

H(2) =
nØ
1

1 = n

In conclusion with a probability parameter lower than 1 the trivial partition
will always be preferred with respect to the right one.

From these 2 examples we have found two classes of networks where the Constant
Potts Model does not behave as we wish, in this two cases in fact the simple counting
of positive and negative arcs inside the groups is not sufficient to detect the right
partition.
The problem is that this method only looks at the within clusters connections which
means a group of nodes will be considered as a community if it contains a good
amount of positive connections; however in my perspective the only connection of
the first order is not enough to detect a community and a key role is played by the
second order interactions meaning the path of length 2 connecting nodes.
Let us consider a network and a couple of nodes, let us suppose we want to determine
whether they belong to the same community or not; the first order interaction
is important since it gives us information about if the two nodes are positively
related one to the other, nevertheless other useful informations to take into account

44



Clusterization of signed networks

is how many friends nodes they have in common, how many enemies they have
in common and how many friends node they don’t share (meaning nodes which
are positively connected to just one of them). What we want to do is designing
a metric which rewards the positive second order interactions and penalizes the
negative ones; this is immediate considering that the form of the adjacency matrix
in fact let us consider we want to compute the similarity between node i and node
j by evaluating the paths of length 2 connecting them. We can sum a +1 for every
positive path of length 2 and a -1 for every negative length 2 path. The overall
sum will be

Ø
k

AikAjk = A2
ij

This form is based on the form of the adjacency matrix with the self edge (and
consequently the +1 on the diagonal), if we want to consider the adjacency matrix
with no self edges, i.e. Ã such that

A = I + Ã

we have
Ø

k

AikAjk =
è
I + Ã

é2
ij

Computing the power and looking at the terms we have

= 1 + 2Ãij + Ã2
ij

The first term is constant and does not play a role in the maximization, the
second term counts the interaction of the first order and the third term counts the
interaction of the second order.
In conclusion the cost function we want to maximize over all possible partitions is

Wγ = −
Ø
ij

1
Ãij − γ

22
δ(σi, σj) (4.3)

where the parameter γ plays the same role as in the Constant Potts Model.

4.3.2 The algorithm
Given the cost function, the maximization has to be computed over all the possible
partitions of the nodes. This is an NP-hard problem and heuristics must be
employed to solve the problem in an efficient way. The Louvain algorithm and
its subsequent improvement Leiden algorithm are the best known in literature,
however only a small number of cost functions are natively implemented in the
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original code, that is why I designed my own heuristic. It is worth to clarify that it
does not pretend to be as good as the existing ones but an alternative to test the
goodness and robustness of the new cost function.
Let us suppose we have a network and its adjacency matrix A. The core of the
algorithm consists in the function called "split2" which splits the nodes into 2
clusters; this procedure is done by first computing the A2 matrix and selecting
the nodes i and j as the indexes of the entries of the matrix corresponding to the
minimum of the elements of the matrix itself; these two nodes are the least similar
hence can be considered as centroids of the two subclusters. Once obtained the
centroids, a cluster is assigned to each one of the remaining nodes by computing
the average distance between the node itself and the two forming clusters. After
one single cycle the two subclusters are formed. The second part of the algorithm
consist in a decision step; in this phase the mean of the elements of the adjacency
matrix of the 2 subclusters obtained are compared with the mean of the elements
of the adjacency matrix of the network father (i.e. the network whose split formed
the subclusters), the split is accepted if at least one of the subclusters has got an
increase of the mean of its adjacency matrix greater than a certain threshold.
The algorithm can be summarized as follows:

Algorithm 1 Split2 algorithm
1: procedure Split2(A, γ, σ)
2: ▷ A is the adjacency matrix of the network
3: ▷ γ is the resolution parameter
4: ▷ σ is the threshold parameter
5: ▷ Initialization
6: cl1 ← [] ▷ Vector containing indexes corresponding to subcluster 1
7: cl2 ← [] ▷ Vector containing indexes corresponding to subcluster 2
8: ▷ Execution
9: dist← (A− γ)2

10: [c1, c2]← arg max A_sq ▷ Find the indexes of the centroids
11: for vi ∈ V do
12: if dist(vi, c1) < dist(vi, c2) then
13: cl1 ← cl1 + vi ▷ Add node to cluster 1
14: c1 ← mean(c1, vi) ▷ Update centroid
15: else
16: cl2 ← cl2 + vi ▷ Add node to cluster 2
17: c1 ← mean(c2, vi) ▷ Update Centroid
18: end if
19: end for
20: end procedure
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4.4 Numerical Results
In order to validate the algorithm and evaluate the performance of the new cost
function four different tests have been carried out.
All the tests are performed on 1000 nodes planted partitioned networks, that
are graphs built starting from the block form of the adjacency matrix of a fully
connected weak balanced network by adding some sparsity and some violations de-
pending on 4 parameters: vi_in (determining the percentage of internal violations),
vi_out (determining the percentage of external violations), sp_in (determining
the percentage of internal sparsity) and sp_out (determining the percentage of
external sparsity).
For each test, a scalar value µ called ”mixing parameter” indicating the distance of
the network from the weak balance state is defined and numerical experiments are
made on increasing values of the mixing parameter in a specified range.
The different community detection algorithms are tested and the goodness of
the resulting partitions is evaluated with the metric called Normalized Mutual
Information" (NMI), an external index derived from entropy in information theory

NMI(X, Y ) = 2I(X; Y )
H(X) + H(Y )

where H(X) and H(Y ) represent the entropy of the discrete variables X and Y ,
that is:

H(X) = −E [log p(x)] = −
Ø

x

p(x) log p(x)

H(Y ) = −E [log p(y)] = −
Ø

y

p(y) log p(y)

and I(X; Y ) represents the mutual informations between the two discrete vari-
ables X and Y , that is

I(X; Y ) = H(X)−H(X|Y )
where H(X|Y ) is the conditional entropy defined as

H(X|Y ) = −E [log p(x|y)] = −
Ø

x

p(x|y) log p(x)

4.4.1 Test 1
The first test aims to compare the Constant Potts Model cost function implemented
in the Leiden algorithm with SQ2.
For this test we choose signed networks with equal internal and external percentage
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of violations (vi_in = vi_out) and random sparsity parameters between 0 and
0.2 and set µ as the percentage of violations. The mixing parameter is varied in
the range [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.28, 0.31, 0.33, 0.35, 0.37, 0.39, 0.41, 0.43,
0.45] and for each value 10 simulations are made. The number of communities is
randomly chosen between 2 and 7 and the proportion of the clusters is random as
well.
From the plot of the NMI we can see that both the algorithms perform superbly
for quite low values of the mixing parameter i.e. in networks where communities
are well defined. The CPM however keeps an high accuracy even for values of the
parameter greater than 0.35, falling only at µ = 0.4, SQ2 instead falls rapidly after
µ = 0.35. It is still unclear if the problem is related to the cost function or to the
heuristic employed.

Figure 4.2: Performance Test 1

4.4.2 Test 2
The second test aims to compare CPM and SQ2 for negative dominated networks
i.e. networks with a percentage of internal violations vi_in ≥ 0.5.
For this test we choose signed networks with fixed vi_in = 0.6 and incremental
vi_out = µ, where the mixing parameter varies in the range [0, 0.03, 0.07, 0.1, 0.13,
0.16, 0.19, 0.22, 0.25, 0.28, 0.31, 0.33, 0.35, 0.37, 0.40]; as in Test 1 the internal
and external sparsity sp_in and sp_out is selected randomly between 0 and 0.2
and the number of communities are randomly selected between 2 and 7.
The plot shows - in accordance to what we expect from the analysis of Example 2
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-that in this class of networks CPM is not able to replicate the initial clusters for
none of the values of µ, meaning it is not able to replicate the initial communities
neither where they are well defined. On the other side SQ2 manages to perform
quite well for µ ≤ 0.2 outperforming CPM which tends to split the network into
many small clusters.
It is worth to observe that in this Test the variance in the results over the 10 iteration
is significatively high for both the methods, this means that the performances
of both the algorithms is influenced by the number of the clusters and their
proportions.

Figure 4.3: Performance Test 2

4.4.3 Test 3

The third test aims to evaluate the performances of CPM and SQ2 for positive
dominated networks i.e. networks with high percentage of external violations
vi_out ≥ 0.5.
For this test, in accordance with the setup of Test 2, we choose signed networks
with fixed parameter vi_out = 0.6 and incremental vi_in = µ, where the mixing
parameter varies in the same range. The sparsity parameters, the number of cluster
and their proportions are chosen randomly as well.
As in Test 1 the plot shows that both CPM and SQ2 performs well for low values of
µ, however the accuracy of SQ2 drops earlier around µ = 0.18 while CPM manages
to keep high accuracies until µ = 0.28.
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Figure 4.4: Performance Test 3

4.4.4 Test 4
The fourth test aims to compare the performances of CPM, SQ2 and Modularity
for unsigned networks (i.e. networks with positive edges only).
In order to obtain a positive network we set vi_out = 1, then we let the mixing
parameter coincide with the sparsity parameters sp_in = µ, sp_out = 1− µ and
make µ vary in the range [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.28, 0.31, 0.34, 0.37, 0.40,
0.43, 0.46]. As in the previous tests the number of clusters is selected randomly
between 2 and 7 and the proportion of cluster as well.
The plot shows that modularity cost function suffers to reach good performances
even for low values of the mixing parameter; SQ2 and CPM instead performs very
well for low values of µ and drop only for µ > 0.35; CPM however seems to keep
the accuracy a little higher.
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Figure 4.5: Performance Test 4
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Appendix A

Politic graphs
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Figure A.1: Frustration VS time for European multiparty parliaments
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Appendix B

Etno-Linguistic graphs
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Etno-Linguistic graphs
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Etno-Linguistic graphs

Figure B.1: Frustration VS fractionalization for etno-linguistic dataset
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Appendix C

Smartphones market share
graphs
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Smartphones market share graphs

Figure C.1: Frustration VS fractionalization for smartphones market share dataset

62





Conclusions and future work

In this work we have shown by analyzing different empirical datasets that in weak
balanced and high fractionalized networks, fractionalization is a good approximation
of the frustration index. An exact formula relating the frustration index to the
fractionalization is provided in the case of fully connected networks, while for
Erdos-Renyi sparse networks and quasi weakly balanced networks a formula is
provided for the expected value.
In the second part of the work a novel approach for community detection, based on
the optimization of a cost function relying on a second order Taylor expansion of the
adjacency matrix, is introduced and compared with the Constant Potts Model and
Modularity optimization both for signed networks and unsigned networks. Results
based on normalized mutual information have shown that our approach works well
and outperforms Modularity based maximization for unsigned networks, while it
gives lower results compared with CPM (both for signed and unsigned networks)
for high values of the mixing parameter. For negative dominated networks however
our approach performs better and overcomes by far CPM.
A future improvement will be designing a better performing heuristic algorithm
(inspiring on Louvain agglomerative approach) for the minimization of our new
cost function in order to detect whether the loss of accuracy for high values of the
mixing parameter is due to the algorithm used or the cost function itself. Moreover
testing our new algorithm on different classes of networks and comparing it to
other community detection approaches would be an interesting way to proceed in
the future.
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